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The forest ecosystem is a dominant landscape in the Gulf of Mexico (GOM) 

coastal region. Currently, many studies have been carried out to identify factors that drive 

forest dynamics. Changes in meteorological conditions have been considered as the main 

factors affecting the forest dynamics. For this study, the statistical regression analysis was 

used for modeling forest dynamics. Meteorological impact analysis was driven by 

observed data from PRISM (parameter-elevation regressions on independent slopes 

model) climate dataset. The forest dynamics was characterized by an indicator, the 

normalized difference vegetation index (NDVI). The objectives of this study are to 1) to 

specify and estimate statistical regression models that account for forest dynamics in the 

Golf of Mexico coastal region, 2) to assess which model used to capture the relationship 

between forest dynamics and its explanatory variables with the best explanatory power, 

and 3) to use the best fitted regression model to explain forest dynamics. By using fixed-

effects regression methods: ordinary least squares (OLS) and geographically weighted 

regression (GWR), the sample-point-based regression analysis showed that 

meteorological factors could generally explain more than half of variation in forest 



 

 

dynamics. In respect of the unexplained variation of forest dynamics, the necessity of 

using soil to explain forest dynamics was then discussed. The result suggested that the 

forest dynamics could be explained by both meteorological parameters and soil texture. 

One of the basic considerations in this study is to include the spatiotemporal 

heterogeneity caused by seasonality and forest types. The model explanatory power was 

found differ among forest types (spatially) and seasons (temporally). By constructing 

regression models with randomly varying intercepts and varying slopes, the linear mixed-

effects model (LMM) was fitted on composite county-based data (e.g., precipitation, 

temperature and NDVI). The use of LMMs was proved to be appropriate for describing 

forest dynamics to mixed-effects induced by meteorological changes. Based on this 

finding, I concluded that meteorological changes could play a significant role in forest 

dynamics through both fixed-effects and random-effects. 
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CHAPTER I 

INTRODUCTION 

The forest dynamics was observed and interpreted in many ways. Crookston et al 

(2010) treated it as changes in forest stand (e.g., changes of tree volume and species 

distributions, and growth and mortality rates). Pretzsch (2009) used forest dynamics to 

indicate changes in forest structure and composition, including forest response to 

anthropogenic and natural disturbances. Some studies on forest dynamics were concerned 

with gap (i.e., small openings formed in the forest canopy that are then filled with other 

trees) dynamics of forests, which refers to the gap formation and closure (Yamamoto 

2000; Bossel and Krieger. 1991). Moreover, some studies placed focus on forest 

dynamics from a carbon modeling perspective by quantifying the biomass consequences 

of forest disturbance and regrowth processes, which was known as forest biomass 

dynamics (Powell et al. 2010; Nascimento and Laurance. 2004; Hughes et al. 1999). 

Seasonal variations of NDVI (Normalized Difference Vegetation Index) are always used 

as a proxy for the forest dynamics (Soudani et al. 2012; Beck et al. 2006) 

Satellite remote sensing could play an important and effective role obtaining 

information of forest dynamics (Giri et al. 2007). Remote sensing based vegetation index 

such as the NDVI could be utilized as the indicator of forest dynamics. NDVI is always 

calculated from low-correlated, red and near infrared bands, which is one of the most 

common measures of vegetation information. It is highly correlated to biophysical 
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parameters such as vegetation biomass and the fraction of green vegetation cover 

(Goward et al. 1985; Sellers 1987; Myneni et al. 1995; Birky 2001; Boelman et al. 2003; 

Verbesselt et al. 2010; Zhao et al. 2011; Li and Fox 2012). It is also closely related to 

annual cycles of vegetation and forest phenology (e.g., green-up, peak and offset of 

development) (McCloy and Lucht 2004). The surface area of the NDVI implies the area 

of trees for both site and area (Meng et al. 2007). The MODIS (Moderate Resolution 

Imaging Spectroradiometer) NDVI product has been widely used to indicate forest 

dynamics (Otto et al., 2014; Li et al., 2013; Zhao et al., 2011; Verbesselt et al. 2010). In 

these studies, the value of NDVI is a relative measure of the amount of greenness and 

photosynthetic biomass of forests. 

It has been widely recognized that climate change has an important influence on 

landscape dynamics including forests dynamics (Crookston et al. 2010). Changing 

climate is associated with widespread changes in meteorological patterns and 

meteorological parameters (e.g., temperature and precipitation) become indicators of the 

climate change. As climate continues to change, the surface temperature is projected to 

rise over the 21st century and the heat waves will occur more often and last longer; At the 

same time, there are likely more land regions where extreme precipitation events will 

become more intense and frequent (Pachauri et al. 2014). Additionally, changes in 

precipitation might not be uniform over space. Pachauri et al (2014) have found that the 

high latitudes and the equatorial Pacific are expected to experience an increase in annual 

mean precipitation; in many mid-latitude and subtropical dry regions, mean precipitation 

will likely decrease; and in many mid-latitude wet regions, mean precipitation will likely 

increase. Meteorological changes induced by the climate change have caused widespread 
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impacts on landscapes, and from learning about which we could have a better 

understanding of the forest dynamics. 

The US Gulf Coast region extends from Brownsville, Texas to the Florida Keys 

and encompasses a large variety of landscapes (Burkett. 2008). The forest composition 

around the Gulf Coast varies with substrate type, latitude/longitude, and aridity (Krauss et 

al. 2011). The climate change has a strong and direct impact on Gulf Coast forests 

through sea level rise, increased temperature, rainfall distribution variation and changes 

in frequency and intensity of extreme climate conditions: hurricanes, floods, droughts and 

tropical storms (Merem et al. 2012; Burkett. 2008; Day et al. 2008; Desantis et al. 2007; 

Mills and Andrey. 2002; Harcombe et al.1999; Michener et al.1997). The meteorological 

impact on the Gulf Coast forests differs by regions. For instance, precipitation in the 

spring and summer was found to be positively related to longleaf pine growth in Gulf of 

Mexico coastal plain (Henderson and Grissino-Mayer. 2009). While forests located 

within eastern Texas and Louisiana was found to be a function mostly of temperature 

(Cook et al. 2001). Understanding potential effects of climate change on Gulf Coast 

forests is therefore of critically importance from a meteorological perspective. 

One of the critically important aspects of studies on forest dynamics is the 

application of correlation and regression analysis to examine landscape forest dynamics 

in relation to meteorological factors, such as precipitation and temperature. However, the 

use of relationship modelling to study faces (at least) two fundamental challenges. First, 

meteorological factors obtained in different scales or observed in diverse scenarios are 

expected to exhibit distinct impacts on the environment. Therefore, it is extremely 

difficult to establish an identical correlation between certain meteorological factors and 
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environment over large space, even if it were possible to accurately discern 

meteorological changes impacts and to precisely model the environment responses. In 

particular, it was believed that spatial and temporal heterogeneity are critical to the 

understanding of underlying impacts of meteorological changes at different scenarios and 

scales (Ackerly et al., 2010; Elmendorf et al., 2012). The second issue is that given the 

complex nature of meteorological changes, they interact in myriad ways with forest 

landscapes. Because of the imperfect knowledge of current climates or the lack of 

awareness of potentially important variables, models are intrinsically uncertain, and the 

application of modelling is frequently overshadowed by uncertainties that arise in model 

parameterizations. 

The regression analysis includes a set of statistical methods that are always 

employed to explain why different phenomenon occur and predict spatial outcomes. 

Evaluating impacts of meteorological changes is inherently difficult and yet of significant 

importance. The complexity in the understanding of the underlying meteorological 

changes poses substantial challenges. For instance, the spatial analysis needs to face two 

general problems: spatial autocorrelation (i.e., spatial dependence) and spatial non-

stationarity (Zhang et al. 2009; Zhang et al. 2008; Shi and Zhang. 2003; Anselin and 

Griffith. 1988). Spatial autocorrelation represents correlations among neighbors over 

space (Zhang et al. 2008). The spatial autocorrelation in the error term might cause the 

violation of the independence assumption, which could lead to a biased estimation of the 

variance (Zhang et al. 2009). Spatial non-stationarity refers to a structural instability that 

model parameters vary systematically over space (Anselin 1990; Anselin and Griffith. 

1988). In the face of these challenges, a diversity of approaches is needed. For instance, 
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the geographically weighted regression (GWR) approach was developed to provide 

solutions to investigate the spatial relationship between variables. Moreover, the linear 

mixed-effects model (LMM) method was developed to model the spatial covariance 

structure in the data and which has been proved to be able to remove the effects of spatial 

autocorrelation to obtain more accurate estimates (Zhang et al. 2009; Breidenbach et al. 

2007; Littell et al. 2006). It is because of that OLS method yields biased and inefficient 

estimates (Anselin. 1988), it was always taken as a benchmark when investigating other 

models (Zhang et al. 2009). 

There has been a considerable number of studies extensively explored how 

changes in meteorological characteristics render vegetation dynamics in different spatial 

scales from local (Halper et al, 2012; Zhang et al, 2010) to global (Piao et al, 2014; Jong 

et al, 2013) and most of which were studying on landscapes influenced by extreme 

precipitation and temperature. For instance, a well-established relationship between 

meteorological characteristics and vegetation properties have been developed in Inner 

Mongolia, China (Chuai et al, 2013; Yang et al, 2012). It was found that in Inner 

Mongolia, NDVI correlated differently with temperature and precipitation, with obvious 

temporal differences and time scale of 80-day is the most significant and suitable for 

evaluating the vegetation dynamics to meteorological factors. Moreover, Qinghai-Tibetan 

Plateau, China was found to be characterized by a strong correlation between NDVI and 

meteorological factors, with variations in relation to the vegetation type and seasonality 

(Zhang et al, 2013; Piao et al, 2011; Zhong et al, 2010). However, there are still little 

remains known about the forest dynamics and underlying meteorological changes in the 

coastal areas, especially the Gulf of Mexico coastal region (Fig. 1.1). 
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Soils typically have adequate nutrient stocks to construct forest biomass (Murphy 

and Bowman. 2012) and soil was believed to be the foundation of the forest system 

(Schoenholtz et al. 2000). Several studies have shown the existence of soil effect on 

forests. The forest growth has been found in relation to soil water deficits (Michelot et al. 

2012), soil fertility (Toledo et al. 2011) and soil drainage (Schoenholtz et al. 2000). Soil 

texture also appears to be important to forest ecosystems. For instance, the soil texture 

influences aboveground net primary production (ANPP) by controlling soil water 

availability. In humid areas, fine-textured soils with high water-holding capacities reduce 

water losses that occur through drainage below the rooting zone of plants, and support 

greater production (Epstein et al. 1997). Soil texture impacts on many hydrologic and 

biogeochemical processes in forest ecosystem by influencing retention of carbon, water, 

and nutrient ions (Silver et al. 2000; Jenny 1980). 

This study aims to investigate forest dynamics to meteorological changes from 

three aspects: 1) By using statistical regression methods to model forest dynamics, this 

study firstly attempts to answer such a question as: if meteorological factors (i.e., 

precipitation and temperature) are the two factors that significantly explain alteration of 

forest landscapes and how the landscape dynamics was influenced spatiotemporally by 

them; 2) Given the fact that different vegetation types response differently to 

meteorological changes (Mao et al., 2012), this study will compare model performance 

from several different forest types and assess the capability of soil texture to explain 

forest dynamics that cannot be adequately explained by meteorological factors; and 3) 

this study will developed linear mixed-effects models (LMMs) for understanding of 
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forest dynamics to the potential impacts from both fixed-effects and random-effects 

induced by meteorological factors. 
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Figure 1.1 The geographical distribution of GOM coastal region 

The Gulf of Mexico (GOM) coastal region consists of all counties located at a 100-miles 
landward buffer from Gulf of Mexico coastline (including coastal boundaries of five 
states located in the United States portion of the Gulf of Mexico region: Texas, 
Louisiana, Mississippi, Alabama, and Florida). 
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CHAPTER II 

FOREST DYNAMICS TO PRECIPITATION AND TEMPERATURE IN THE GULF 

OF MEXICO COASTAL REGION 

Previously published in International Journal of Biometeorology, 61(5):869-879 
(DOI:10.1007/s00484-016-1266-0). 

Literature Review 

Global climate change in the recent decades has emerged as one of the major 

factors affecting physiological and biophysical characteristics of vegetation. There is a 

growing body of studies direct toward modeling and analyzing dynamic vegetation 

response to rapid climate change, which suggests that seasonal behaviors of plants, such 

as emergence and senescence, are closely related to climate pattern shifts (Gordo and 

Sanz 2010; Krishnaswamy et al. 2014; Forkel et al. 2015; Estiarte and Peñuelas 2015). 

For instance, when it is getting warmer, growing season is expected to start earlier in the 

spring and survive longer into the fall (Baumol and Blinder 2015). Several global and 

regional studies have indicated that fluctuation of climate affects plant growth in diverse 

ways (Wu et al. 2011; Jong et al. 2013; Pravalie et al. 2014; Zhao et al. 2015; Bornman et 

al. 2015). It was believed that most plants are frequently sensitive to effects of two 

specific climate conditions: precipitation and temperature. 

The recent studies showed that precipitation is the main driver for most ecological 

processes in vegetation system (Hilker et al. 2014; Zhao et al. 2015; Pravalie et al. 2014; 
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Hao et al. 2012; Paudel and Andersen 2010). However, differences of rainfall patterns 

can lead to spatiotemporal divergence in vegetation responses to precipitation, and

 different vegetation has significant response to precipitation. In more detail, 

variations in amount and timing of precipitation may not keep the magnitude of 

precipitation effect consistent through all seasons (Nischitha et al. 2014; Otto et al. 2014; 

He 2014; Liu et al. 2011; Fensholt and Rasmussen 2011). Specifically, some ecological 

effects of climate are largely dependent on rainfall especially in summer (Chikoore and 

Jury 2010). In addition, it is also demonstrated that vegetation types did not have a 

uniform response to rainfall and thus vegetation responses could not be represented by an 

identical global model (Omuto et al. 2010; Richard et al. 2012). 

Temperature is a dominant driving factor for vegetation growth and its correlation 

with vegetation dynamics has obvious global differences (Chuai et al. 2013; Piao et al. 

2014). For instance, the correlation between temperature and vegetation growth is 

negative in low latitude during summer, while a positive correlation was found in high 

elevations at the beginning of growing season (Karnieli et al. 2010). Typically, 

agriculture areas are characterized by statistically significant relationships between 

temperature and plant growth (Na et al. 2010). Moreover, the influence of temperature 

could be hampered by strong topography (such as altitude and terrain orientation) when 

controlling greening patterns (Peters et al. 2012). 

To make inferences about the condition of plant growth, remote sensing of 

vegetation is needed. Satellite remote sensing offers an efficient means of systematically 

obtaining vegetation information over large spatial and temporal scales. Research on 

vegetation cover detection and measurement has been conducted since the early 1980s 



 

11 

(Kirdiashev et al. 1979). Since it is closely related to chlorophyll/carotenoid ratio, the 

value of NDVI is an important indicator of vegetation activities, and thus it could provide 

information about the timing and progression of plant development (Yang et al. 2010). 

Through its reliable quality, MODIS (moderate resolution imaging spectroradiometer) 

NDVI product enables scientific analysis of plant growth with spatially and temporally 

consistent coverage. The assessment of vegetation coverage using MODIS NDVI product 

has been implemented by numerous studies successfully (Hao et al. 2012; Peters et al. 

2012; Otto et al. 2014; Nischitha et al. 2014; Li et al. 2013). 

Although there has been a considerable number of studies extensively explored 

how changes in precipitation or temperature render NDVI dynamics, neither of which 

was reported to have a dominant role. For instance, precipitation was found to be the 

most important factor that affects NDVI changes in Northwest China (Duan et al. 2011), 

whereas the NDVI – temperature correlation was found stronger than NDVI – 

precipitation correlation in most study sites located in Northeast China (Mao et al. 2012). 

There is a more specific case where either of those two factors has an individual 

influence on NDVI, which is however not the same for all ecoregions across a study area 

(Gao et al. 2012; Ghobadi et al. 2013). 

Even though relationships between climatic factors and vegetation biophysical 

properties could be found in many global and regional studies, the effect of climate 

change on forests is still poorly understood within GOM (Gulf of Mexico). GOM 

encompasses temperate and tropical climate and provides multiple habitats for wildlife. A 

number of studies indicate that GOM coastal environment is among the most biologically 

diverse ecosystems (Peet and Allard. 1993; Sherrod and McMillan 1985; Noel et al. 
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1998). Occupied by high amounts of forest, vegetation regions characterized by diverse 

plant communities constitute a major terrestrial ecosystem in GOM coastal area, where 

fluctuations in precipitation and temperature bring about periodic changes to the local 

environment every year. 

This study explored two climatic parameters, precipitation and temperature, that 

were derived from gridded dataset recorded over the period from March (2012) to 

February (2013), designed two linear regression methods geographically weighted 

regression (GWR) and ordinary least square (OLS) and applied them to evaluate 

spatiotemporal characteristics of forests and their implicit links with climate change. By 

monitoring NDVI changes, this study attempted to answer a question that precipitation 

and temperature are the two main causative factors, which drive forest growth and 

spatiotemporally influence forest growth changes. 

Study Area 

This study focused on measurement of climate change on GOM coastal forests. 

The GOM coastal forests were defined within a 160.9 km (i.e., 100 miles) inland buffer 

from Gulf of Mexico coastline (including coastal boundaries of five states located in the 

United States portion of the Gulf of Mexico forests: Texas, Louisiana, Mississippi, 

Alabama, and Florida). The combined coastline of this region is about 2,700 km 

(1,680miles) with an area of approximately 500,716.94 km2, around 5% of U. S’s 

territory and extending from latitude 24°57'22.953" N to 32°32'55.734" N and longitude 

from 80°3'3.280" W to 100°12'51.898" W. The study area is located within an extent that 

experiences warm temperate and equatorial climate (Kottek et al., 2006). Both of 

temperature and precipitation over this region are unimodal and have significant inverted-
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U shapes (Fig. 1). Annual average temperature ranged from 12.6 °C to 28.0 °C with July 

being the hottest month and February the coldest month. Average monthly precipitation 

was about 118.7 mm. The most abundant rains were recorded in August, with an average 

of 194.5 mm, while November was the driest month, with only 30.0 mm of precipitation.  

 

Figure 2.1 Monthly precipitation (mm) and temperature (°C) at randomly sampled 
coastal forest sites. 

 

Data and Variables 

Explanatory Variables: Precipitation and Temperature 

Precipitation and temperature were chosen for two reasons: Firstly, as a result of 

periodic occurrences of several climate conditions, climate change could influence 
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vegetation activities. However, it is often hard to fully determine all the climatic 

conditions affecting vegetation and even harder to qualify their effects. Thus, 

precipitation and temperature are the two variables only to be selected based on their 

availability. Secondly, as the pattern of photosynthetic activity is a function of 

precipitation and temperature and both of those are necessary for plants converting 

carbon into biomass, the development of greening pattern is thought to be largely 

dependent upon precipitation and temperature (Yamori et al. 2014). Monthly 

meteorological data (from March 2012 to February 2013) were obtained from a 

geographically referenced precipitation and temperature database, which was developed 

by the NRCS National Water and Climate Center (NWCC) partnering with Oregon State 

University (OSU). These datasets were generated as spatial climate products using 

PRISM (parameter-elevation regressions on independent slopes model) climate mapping 

system. The PRISM model outputs interpolated grid data and the value of these gridded 

data could be potentially related to climate state (Daly et al. 2002). 

Dependent Variable: NDVI 

Detection of vegetation was built on characteristics of NDVI. NDVI is closely 

related to the level of photosynthetic activities of plants (Yang et al. 2010). As one of the 

primary indicators measuring vegetation coverage, NDVI can be applied to observe 

trends of forest variations. The MODIS on board the NASA Terra satellite provides the 

250-m resolution NDVI product which was utilized as a base to extract vegetation 

information from March (2012) to February (2013). The MODIS NDVI data were 

originally aggregated to 16-day composites using maximum NDVI compositing 

techniques to minimize the effect of off-nadir pixels and cloud contamination (Swets et 
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al. 1999). All the data had already been geometrically corrected and provided by NASA 

(The National Aeronautics and Space Administration) on its website 

(http://modis.gsfc.nasa.gov/). For this research, monthly NDVI data were generated from 

the 16-day composites. 

Combined and Extended Dataset 

All the values of variables above were extracted from gridded data and compiled 

into an attribute table linked with point features. Point features were created by series of 

sampling points generated randomly and originally located within forests with NDVI 

larger than 0. Forested wetlands will not be considered in this research since their 

greening patterns were found insensitive to local precipitation change but more 

susceptible to water charge in the river system and overland runoff (Propastin et al. 

2008). NDVI values and corresponding precipitation and temperature of 12 months were 

assigned to each point firstly. As mentioned, NDVI will be regressed on precipitation and 

temperature in different temporal scales. However, the averaged value of precipitation 

across four seasons or the entire year might not necessarily result in the highest 

correlations, and most likely better result can be obtained when precipitation is 

accumulated over a season or a year (Propastin et al. 2008; Liu et al. 2013). For this 

reason, the attribute table was adapted by adding accumulated precipitation values over 

four individual seasons and 1 year, which were constructed based on the monthly data. 

Methodologically, meteorological data and NDVI data were managed and analyzed using 

ArcGIS (ArcMap, version 10.1 ESRI Inc., Redlands, CA, USA). 

http://modis.gsfc.nasa.gov/
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Statistical Analysis 

Modeling Methods 

The great interest of this research was to uncover the impact of both temperature 

and precipitation on GOM coastal forest dynamics. With regard to dealing with this 

subject, linear regression methods were utilized to regress NDVI against temperature and 

precipitation. Since it is unclear how spatial non-stationarity impacts on the relationship 

between NDVI and temperature/precipitation, there should be a consideration about the 

two cases, non-stationarity and stationarity, separately. To completely understand a 

relationship and its potential variations, by far the most common types of linear 

regression methods achieving this aim are GWR and OLS. GWR is defined as the use of 

regression models by accounting for the impacts of variables as a presence of spatial non-

stationarity in spatial data analysis (Foody 2003). OLS was utilized to observe how 

dependent variable responses to the alternation of explanatory variables from a regional 

perspective. 

Ordinary Least Squares 

Initially, attributed to its location independence and spatial stationarity, OLS 

model provides global relationship estimates. It could be written as follows: 

 y𝑖 = 𝛼 + ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
𝛽𝑗 + 𝜀𝑖 (2.1) 

Where, the two variables are y, the dependent variable, which represents NDVI, 

and x, the explanatory variables, which are climatic factors (precipitation and 

temperature). i indicates the ith observation in a dataset, while, j represents the jth 

explanatory variable. It was assumed that the same stimulus from either precipitations or 
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temperatures provokes the same variation of NDVI anywhere in the study area. 

Therefore, regression parameters α and β were treated to be stationary over the whole 

study region. εi is normally distributed.  

Geographically Weighted Regression 

The theoretical background and applicability of GWR to explore spatial 

relationship have been deeply explained by the previous studies (Fotheringham et al. 

2003; Brunsdon et al. 1998). The basic idea behind this regression method is to consider 

the variability of relationship spatially. The equation of GWR model is always proposed 

below. 

 y𝑖 = 𝛼(𝑢𝑖, 𝑣𝑖) + ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
𝛽𝑗(𝑢𝑖, 𝑣𝑖) + 𝜀𝑖 (2.2) 

By taking the superior aspect of GWR method, it was assumed that relationships 

between NDVI and climatic factors are not constant over analysis space. In other words, 

it is incorrect to hold that geographical areas occupied by vegetation respond identically 

to the same unit of precipitation or temperature at all study sites. Therefore, regression 

parameters α and β were estimated at each geographical location defined by two spatial 

coordinates u and v. Unlike conventional OLS, GWR method works in a way that each 

data point is assigned a weight inversely proportional to its distance from the regression 

point, thereby it can be written in matrix notation as follows: 

 𝛽̂𝑗(𝑢𝑖, 𝑣𝑖) = (𝑋𝑇𝑊𝑖(𝑢𝑖, 𝑣𝑖)𝑋)−1𝑋𝑇𝑊𝑖(𝑢𝑖, 𝑣𝑖)𝑦𝑖 (2.3) 

 𝑤𝑖 = [
𝑤𝑖1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑖𝑛

] (2.4) 
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Where, Wi is weighting matrix and given in Eq. (2.4), Among which wi refers to 

the weight of ith data point. Within a fixed distance, the near observation will be weighted 

a value of wi more heavily than more distant ones. wi could be calculated by the Gaussian 

weighting function which is given by the following: 

 𝑤𝑖𝑗 = 𝑒
−

1

2
(

𝑑𝑖𝑗

𝑏
)

2

 (2.5) 

Where dij is the distance between the ith data point and location j. b is the 

bandwidth. 

Where dij is the distance between the ith data point and location j. b is the 

bandwidth. 

R-squared value (coefficient of determination) runs from 0 to 1 and can be 

calculated to quantify how well the model could explain the variation of the dependent 

variable y, which performs as Eq. (2.6) and s𝑦𝑦 = ∑(𝑦 − 𝑦̅)2. 

 R2 =
𝑆2

𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
 (2.6) 

The p-value (t-test) for each estimated regression coefficients can be examined to 

determine if they are statistically significant or not. It is always set at a 5% significance 

level. The equation to get a t-test statistic is presented below: 

 T =
𝛽̂

𝑠
√𝑠𝑥𝑥

⁄
 (2.7) 

Where, 𝛽̂ =
𝑠𝑥𝑦

𝑠𝑥𝑥
, s𝑥𝑦 = ∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅), s𝑥𝑥 = ∑(𝑥 − 𝑥̅)2. 
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Results. 

Results of OLS Modeling 

The OLS approach was run for three rounds on the same dataset but with different 

variables, the first and second testing precipitation and average temperature against 

NDVI, respectively, and the third testing the joint effect of those two factors on NDVI. In 

each round, models were run 17 times for three different temporal scales, namely for 12 

individual months, four individual seasons, and 1 year separately. Results of modeling 

(R2 values) are summarized in Fig. 2.2. The statistical significant importance of all 

correlation statistics can be judged by a p-value of 0.05. The multicollinearity was not 

found in the explanatory variables while the variance inflation factor (VIF) indicated that 

two explanatory variables (i.e., precipitation and temperature) are not correlated (VIF < 

7.5) (Table 2.1). 

 

Figure 2.2 The R2 values from regression analyses  

In regression analyses, NDVI was regressed against precipitation, temperature, and joint 
effect from precipitation and temperature, respectively. All retained explanatory variables 
are significant at 5% level for calibration and validation 
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Table 2.1 Variance inflation factor (VIF) statistics for OLS regressing NDVI against 
precipitation and temperature 

 
VIF 

 
VIF 

 
VIF 

March 1.45  Spring 1.44  Year 2.29  
April 1.22  

  

May 1.01  
  

June 1.38  Summer 2.01  
 

July 1.92  
  

August 1.94  
  

September 1.03  Fall 1.55  
 

October 1.04  
  

November 1.53  
  

December 1.96  Winter 2.48  
 

January 2.05  
  

February 2.19  
  

The explanatory variables with VIFs larger than about 7.5 should be removed from the 
regression model. 

Relationship between NDVI and Precipitation in Regional Scale 

The R2 value was deemed as the major index indicating if there is a dependence 

of NDVI on meteorological parameters. The result (Fig. 2.2) shows that variability in 

precipitation was not effective in explaining the variance of NDVI given the relatively 

poor R2 values. R2 value peaks at 0.30 in December, whereas none of the other 11 months 

has a value above 0.30. The seasonal varying precipitation could account for more 

variance in summer (R2 value is 0.29) than in other three seasons. The R2 value, which 

was derived from regression analysis modeling annual precipitation, is 0.50. 

Relationship between NDVI and Temperature in Regional Scale 

When compared with models utilizing precipitation, temperature appeared to be 

more effectively explaining the variance of NDVI during the same period. It shows that 

seasonal vegetation activities occurred in synch with temperature changes, and there was 

a stronger correspondence between temperature and NDVI during a period from spring to 
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fall than in winter. It was also found that the continuously increasing temperature starting 

from spring did not drive R2 value up to its peak in July. The maximum value of R2 value 

(0.65) is associated with the second highest temperature (27.6 °C) of the year in August. 

This finding suggests that although being with the highest value of 28.0 °C, the 

temperature in July did not influence forests with the strongest magnitude. Actually, it 

has been clearly demonstrated that high temperatures of summer can cause plants to go 

dormant, which would be the most plausible explanation for the occurrence that the peak 

of temperature and R2 value were in different months (Wu et al. 2011; Yamori et al. 

2014). By contrast, photosynthesis slows at low temperatures, which may explain why 

temperature rarely impinges on plant growth in winter. Intuitively, R2 values in winter 

months fluctuating around 0.20 reflected this. 

Relationship between NDVI and Joined Effect of Temperature and Precipitation 

The result of the multivariate analysis revealed that vegetation is sensitive to 

meteorological changes in most months (Fig. 2.2). Monthly precipitation and temperature 

could explain variance with an R2 value of 0.65 (August) as the maximum and 0.06 

(January) as the minimum. It shows that the lowest R2 value (0.23) occurred during 

winter compared with spring (0.48), summer (0.64), and fall (0.41), which suggests that 

forests in the other three seasons were affected by rainfall and temperature much more 

than in winter. During winter, the air temperature lowers the temperature inside plants 

and causes all the process of photosynthesis to move slower, making it more difficult for 

rainwater (or possible snow water) to be absorbed by roots. Meanwhile, resulting from 

the absence of heat in molecular level, it is not easy for molecules to get involved in a 

biochemical reaction. These two processes are the main causes for photosynthesis 
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dropping to a very low level during winter, which was believed to be related to NDVI 

decreasing. Consequently, vegetation was insensitive to varying precipitation and 

temperature, which gave rise to the lowest value of R2 in winter. 

Results of GWR Modeling 

Theoretically, OLS regression method could reveal a relationship from a global or 

regional perspective but hides the local variability at the same time. It was believed that 

relationships would exhibit non-stationarity when the statistical analysis was “scaled 

down” to a local scale (Foody 2004; Propastin 2009). In order to find out what degree the 

observed trend of NDVI activity was driven by the effect of precipitation and temperature 

in a relationship characterized by non-stationarity, GWR method was employed on a 

local scale. By using GWR method, relationships observed by OLS models were 

amplified, which enabled a local examination of impacts of meteorological variables. 

Precipitation in Local Scale 

In order to find how much variance in NDVI can be explained by local variability 

in precipitation, I used GWR method when carrying out regression analysis on these two 

variables. Local R2 values were derived from GWR models and were mapped in Fig. 2.3. 

Over the entire spring, higher R2 values were mainly concentrated in a small part of 

Texas. The area with relatively higher R2 values tended to expand northward in summer. 

In fall, the distribution of higher R2 values did not vary distinctly but with an enormous 

decrease in magnitude. During winter months, more areas in Texas could be observed 

with higher R2 values. Generally, all the four seasons were characterized by clustering of 

higher R2 values which were mainly distributed in the west. 
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Figure 2.3 R2 map of modeling NDVI against precipitation  

The spatial changes of R2 values (NDVI against precipitation) in a year from March 
(2012) to February (2013). Here, I employed multiple-color scheme for R2 value 
displaying.  

Temperature in Local Scale 

It shows how fluctuations of NDVI were driven by local variation of temperature 

in Fig. 2.4. Higher R2 values were firstly found in part of south Texas during spring. The 

region located in south Texas, where NDVI was observably affected by temperature 

variations, scarcely changed its extent in summer and then underwent shrinkages during 

fall and winter. 
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Figure 2.4 R2 map of modeling NDVI against temperature 

The spatial changes of R2 values (NDVI against temperature) in a year from March 
(2012) to February (2013). Here, I employed multiple-color scheme for R2 value 
displaying.  

Joint Effect of Precipitation and Temperature 

Across the whole study area, only the western part responded continuously and 

sensitively to the variation of compound effect from precipitation and temperature (Fig. 

2.5). It indicates that the local variation of joined effect from meteorological change 

could explain generally more than half of the variance in NDVI of western part. 
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Figure 2.5 R2 map of modeling NDVI against precipitation and temperature 

The spatial changes of R2 values (NDVI against precipitation and temperature) in a year 
from March (2012) to February (2013). Here, I employed multiple-color scheme for R2 
value displaying.  

 Discussions 

This study focuses on the monthly, seasonal, and annual modeling between forest 

NDVI and precipitation and/or temperature. I used OLS and GWR to examine how 

precipitation and temperature impact on the forest dynamics that are characterized by the 

indicator NDVI. The R2 values are mainly used to explore the relationship that is fitted 

using models as summarized above. Although modeling performance is not an objective 

of this study, Table 2.2 is provided below, which shows typically higher R2 values are 

corresponding to lower AIC (Akaike information criterion) values and lower RMSE 

values. Residual plot and Q-Q plot are also checked for both OLS and GWR models, and 

assumptions of linear regression are satisfied. 
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Table 2.2  AIC, RMSE, and R2 for OLS and GWR modeling with annual data  

  R2 AIC RMSE 
OLS Precipitation 0.500 − 2008.26 0.0751 
 Temperature 0.485 − 1982.56 0.0762 
 Precipitation and temperature 0.563 − 2121.74 0.0702 
GWR Precipitation 0.741 − 2491.49 0.0541 
 Temperature 0.741 − 2491.99 0.0540 
 Precipitation and temperature 0.748 − 2500.76 0.0534 

AIC: Akaike information criterion; RMSE: root mean square error. 

Role of Different Explanatory Variables 

The nature of the regional effect of meteorological variables can be judged by 

inspection of R2 values from outputs of regression models. In general, monthly 

temperature appeared to be a more important explanatory variable than precipitation. 

OLS analysis revealed a relatively strong and significant relationship between NDVI and 

temperature (average R2 value equals to 0.41), while the variation of precipitation could 

only explain less NDVI variance (average R2 value equals to 0.25). This finding 

disagrees with result of the study by Balaghi et al. (2008), which indicated that compared 

to temperature, precipitation played a dominant role in the explanation of NDVI variance. 

Moreover, according to several studies, precipitation was believed to have a strong effect 

on variation of vegetation (Wang et al. 2003; Foody 2003; Paudel and Andersen 2010; 

Fensholt and Rasmussen 2011; Li et al. 2013; Wertin et al. 2015). Therefore, there is no 

particular reason to doubt that precipitation may exhibit a strong effect on forests within 

the study area. However, the connection between precipitation and NDVI seems 

counterintuitive in this study. This irregular finding can be attributed to the high 

proportion of forest coverage. Referring to the vegetation map derived from the national 

land cover database (Homer et al. 2012), a high occupation of forests is located in an area 
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extending from Florida to eastern Texas. Receiving more than 120 mm of rainfall and 

having a temperature of 15 to 30 °C in most months of a year, this richly vegetated area is 

rarely affected by large climate volatility. Additionally, tree root system is capable of 

holding a great deal of moisture that can be released over time, which makes trees grow 

without being immediately affected by varying precipitation and extremely dry seasons. 

Thirdly, impacts of rainfall were found to be weak in humid/sub-humid areas (Li et al. 

2004; Wang et al. 2003; Propastin et al. 2008; Fensholt and Rasmussen 2011; Richard et 

al. 2012; Wertin et al. 2015). Considering the fact that the study area is also mainly 

characterized by humid subtropical climate, it could explain why there was only a weak 

NDVI – precipitation relationship observed to explain the variance of NDVI. 

This study focuses on the effects on forest dynamics driven by the significantly 

changing temperature and precipitation under the global warming/climate changes. Using 

MODIS 1-year data products of NDVI with the PRISM temperature and precipitation 

data, I statistically and spatially model the impacts of temperature and precipitation on 

forest dynamics, which is measured by NDVI. NDVI is a relative and indirect measure of 

the amount of photosynthetic biomass and therefore is highly correlated to biophysical 

parameters such as vegetation biomass and the fraction of green vegetation cover that 

follows annual cycles of vegetation and forest activities (Goward et al. 1985; Sellers 

1987; Myneni et al. 1995; Birky 2001; Boelman et al. 2003; Meng et al. 2007; Verbesselt 

et al. 2010; Zhao et al. 2011; Li and Fox 2012). Birky (2001) used 1-year NDVI and a 

growth model with climate variables of light intensity, temperature, and moisture to 

analyze forest seasonal dynamics. 
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I analyze the monthly and seasonal forest dynamics caused by both precipitation 

and temperature. Monthly and seasonal forest dynamics plays a vital role in the Gulf 

Coast ecological conversation and natural resources management, since the Gulf Coast is 

experiencing significant physical and environmental changes driven by global warming 

and the severe weather in the Gulf region (Lott and Ross 2015). 

Spatial Heterogeneity of Relationships 

GWR models revealed spatial heterogeneities among relationships between NDVI 

and meteorological variables, which can be contributed to the diversity of patterns of 

precipitation and temperature. By regressing NDVI against annual temperature, it was 

found that samplings corresponding to high R2 values tend to be fallen approximately in a 

20.5 to 25 °C range (Fig. 2.6). It was believed that the chemical reaction of 

photosynthesis slows down at low temperatures and thus temperatures with low values 

presented weak capability to explain variance in their relationships with NDVI. A sharp 

decline around 900 mm of precipitation brought about two separate rainfall settings in 

plotting R2 value against precipitation (Fig. 2.6). Approximately, R2 was presented with 

larger values in a range from 300 to 900 mm than from 900 to 2300 mm. A similar 

finding has been illustrated quantitatively by a recent research, which suggested that this 

phenomenon could be explained by the diversity of vegetation rain-use efficiency and its 

high correlation with precipitation (Fensholt and Rasmussen 2011). Resulting from the 

distribution of precipitation and temperature, diversity of vegetation density also 

presented a correlation with observed spatial heterogeneity. Specifically, a large number 

of sampling sites were located within Texas, where higher R2 values were related to 

lower NDVI values (Fig. 2.3). It was believed that those sparsely vegetated areas 
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characterized by lower NDVI have small underground root systems, which may not hold 

moisture over a long time and result in strong sensitivities of their NDVI values to 

fluctuations in precipitation (Ferreira and Huete 2004). Vegetation was also found to be 

more sensitive to temperature in the late spring and summer; during which period, higher 

R2 values were observed more distinctively in the western part than the other study sites 

(Fig. 2.4). This finding could be explained by a dominant role of temperature when 

controlling evapotranspiration during spring and summer (Munson et al. 2011). 

 

Figure 2.6 The relationship between precipitation (mm) against R2 value 
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Figure 2.6 (continued) The relationship between temperature (°C) against R2 value 

 

Effect of Cumulative Precipitation 

The precipitation cumulative effect was defined as an impact from precipitation 

amounts in the immediate few months prior to and including that of data acquisition or on 

an annual scale (Foody 2003). When NDVI was first regressed against monthly 

precipitation, it only displayed a weak strength of the NDVI – precipitation relationship 

in regard to a relatively small R2 value (average equals to 0.14). As the time range was 

scaled down to a season or a year from a month, the question was then raised to what 

extent the accumulated precipitation might exert its effect on NDVI. The result shows 

that models, where NDVI was regressed against seasonal and annual cumulative 

precipitation, had some improvements in performance as R2 value increased to 0.25 

(seasonal level) and 0.50 (annual level). In other words, cumulative precipitation 

appeared to contain more information when explaining variations in forests. One possible 
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explanation for this is that infiltration is a much longer process to store abundant shallow 

groundwater especially after heavy rainfall and it always takes time for water to replenish 

subsurface aquifers before a plant could imbibe moisture through its roots. As a result, 

vegetation response to a precipitation decrease (or increase) takes some time lags to be 

observed, which has been demonstrated in some regions (Yahdjian and Sala 2006; 

Fensholt and Rasmussen 2011; Höpfner and Scherer 2011; Richard et al. 2012). 

Unexplained Variance 

Even though the maximum R2 value reached to 0.65 when regressing NDVI 

against monthly meteorological variables, a majority of derived R2 values were below 

0.5. It implies that the compound variability of precipitation and temperature could only 

explain a portion of the variance in NDVI. The remaining unexplained variance may be 

due to other factors which deserve more understanding. For instance, it has shown that 

plant growth is notably dependent on variations in soil type, soil moisture, rooting depth, 

and even topographic factors such as elevation or terrain orientation (Zhao et al. 2010; 

Piao et al. 2011; Richard et al. 2012; Peters et al. 2012; Lakshmi et al. 2013). 

In a forest stand level, spatial heterogeneity could also play important roles in 

forest growth dynamics. Besides the two main factors of temperature and precipitation, 

soils often make significant contribution to forest yield, and therefore geostatistics 

(Zawadzki et al. 2005) and spatial econometric regression modeling (Meng et al. 2009) 

could be more effective in assessing the environmental contribution to forest dynamics. 

Geostatistics and spatial econometric regression are not suitable for the very sparsely 

sampled locations across the large GOM coastal region. 
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I did not include soil variables, which could be the reason to explain the 

unexplained variance. Soil moisture is closely related to or determined by precipitation 

and temperature and soil types can potentially influence forest dynamics and the 

vegetation index assessment from remote sensing (Zawadzki et al. 2016; Zawadzki and 

Kedzior 2014). Given specific sites at certain times, the assumption is reasonable and 

acceptable that it could be assumed that the contribution from soil to forest dynamics is 

relatively stable, and thus soil variables would not significantly change the contribution 

assessment of monthly and seasonal temperature and precipitation to forest dynamics, 

which is the focus of this study. This study did not consider forest growth and yield 

management, such as forest harvesting cycling in the coastal region, which also could 

potentially impact forest dynamics modeled with NDVI. I am going to conduct a study 

that further implores the coastal forest dynamics by grouping forest ecosystems into 

deciduous forest, evergreen forest, mixed forest, and plantations. Nevertheless, this study 

improved the understanding of how the forest dynamics was driven by varying 

precipitation and temperature on monthly and seasonal scales. 

Conclusion 

In this study, I proposed a biometeorology modeling approach of coastal forest 

dynamics and modeled the impacts of monthly, seasonal, and annual averages of 

temperature and precipitation on forest dynamics. Statistical regression models were 

designed to quantify regional and local impacts of meteorological changes on GOM 

coastal forests. Precipitation impact was found explicitly stronger as time range was 

scaled down from a month to a season or a year. Temperature appeared to be an 

important meteorological factor influencing forest growth, which could explain about 
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48% of the variation of NDVI in a year. The joint effect of precipitation and temperature 

presented a capability to explain 56% of the NDVI variance in a yearly model with 

cumulative monthly NDVI measurements. This capability exhibited an observable 

importance to forest dynamics in some months, while in others it was not. 

Geographically weighted regression was proved to be a powerful tool for 

exploring spatial heterogeneity, and in this study, it offered the most locally explicit 

investigation of the spatially varying relationship between forest dynamics and 

meteorological changes. Precipitation and temperature presented a capability to explain 

74% of the NDVI variance in a yearly model with cumulative monthly NDVI 

measurements. It was revealed that relationships between NDVI and meteorological 

factors were not strictly grounded on an identical magnitude but with spatially 

heterogeneous structures across GOM coastal forests. This finding suggests that the 

degree of control on NDVI depended on spatial patterns of precipitation and temperature. 

This study supported the applicability of both classic linear regression and geographically 

weighted regression methods and provided robust empirical evidence that regional 

meteorological changes significantly drive forest dynamics across the GOM coastal 

region. 
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CHAPTER III 

DYNAMICS OF GULF COAST FORESTS IN RELATION TO METEOROLOGICAL 

FACTORS AND SOIL TEXTURE 

Submitted for publication to Agricultural and Forest Meteorology. 

Literature Review 

Climate was believed to be the dominant driver of spatial variation in forest 

growth (Toledo et al. 2011). Gómez‐Mendoza and Arriaga (2007) indicated that the long-

term vegetation changes in the temperate forests of Mexico were deemed as a 

consequence of climate change. Climate change triggers phenology change such as spring 

leaf unfolding and radial growth through fluctuations in precipitation and temperature. 

Hilker et al (2014) have found that the vegetation canopy of the Amazon rainforest was 

highly sensitive to fluctuation of precipitation. It was suggested that vegetation growth in 

mid to high latitudes of North America is very sensitive to temperature change (Wang et 

al. 2011). Relationships between precipitation and forest dynamics have also been 

demonstrated by some studies (Zhao et al. 2015; Richard et al. 2012; Hao et al. 2012; 

Omuto et al. 2010), but it is still not clear of the different roles of temperature and 

precipitation. Additionally, the relationship between forest dynamics and meteorological 

factors is complex.  
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Despite the well-demonstrated importance of meteorological factors, soil 

properties could be related to forest vegetation characteristics (Levine et al. 1994). The 

complication of soil characteristics might also contribute to the relationship changing. For

 instance, it was believed that the variation in the relationship between vegetation 

and precipitation could be disturbed due to the influence of soil background (Chen et al. 

2014; Kang et al. 2014). Forests depend on the availability of water and nutrients as 

essential resources for growth (Toledo et al. 2011). The soil condition plays an important 

role in the forest’s ability to extract water and nutrients. Water and nutrient availability 

are likely to promote the formation of forest and tree growth (Murphy and Bowman, 

2012). Soil water availability can be a major limiting factor for forest growth by 

influencing growth rates (Michelot et al. 2012; Toledo et al. 2011). Soil texture is one of 

the most fundamental qualitative soil physical properties that has the potential to 

influence water and nutrient availability (Schoenholtz et al. 2000; Epstein et al. 1997). 

The role of soil texture to soil quality is retention and transport of nutrients and water 

(Schoenholtz et al. 2000; Doran and Parkin. 1994). Soil texture influences the soil water 

flow, availability, storage and soil moisture (Kreutzweiser et al. 2008; Prepas et al. 2006; 

Bronick and Lal, 2005; Pachepsky and Rawls, 2003), which is a basic soil quality 

indicator used for comparing soil quality and a master soil property that influences most 

other properties and processes of soil (Schoenholtz et al. 2000). For example, soil texture 

strongly influences on many hydrologic and biogeochemical processes in forest 

ecosystems through its effects on belowground carbon storage, water availability and 

nutrient retention (Silver et al. 2000; Epstein et al. 1997; Jenny 1980). 
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Although the general relationship of forest dynamics and its explanatory variables 

has been widely studied, its spatial characteristics have not been modeled in the Gulf 

Coast. I proposed to use the geographically weighted regression (GWR) method 

incorporating multivariate into spatial modeling to quantify spatial relationships, as it can 

incorporate the spatial heterogeneity among data observations into parameter estimation 

(Zhang et al. 2009). Forest dynamics was influenced by individual or combined effects 

from meteorological factors (e.g., precipitation and temperature) and soil properties (Li 

and Meng, 2016; Kang et al. 2014; Usman et al. 2013; Di et al. 1994). For instance, it 

was found that rainfall, temperature, and soil fertility generally have positive effects on 

forest tree growth (Toledo et al. 2011).  

Forests differ in their tolerance of and requirements from the environment so that 

their associations with underlying factors might vary as a function of environmental 

conditions (Swaine 1996). For instance, variations in the relationship between vegetation 

and its explanatory variables were known to be caused by spatial variations in surface 

properties such as vegetation type, soil type and land use (Usman et al. 2013). The 

variation in a relationship could be caused by the forest types. It has been demonstrated 

that temperature-vegetation relationship could vary with vegetation types (Chuai et al. 

2013; Karnieli et al. 2010; Omuto et al. 2010). It was found by Michelot et al. (2012) that 

in a study area with three dominant forest types: beech, pine and oak, forest types 

differed in their dynamics to meteorological and soil conditions. Specifically, the beech 

growth was observed to be negatively correlated with maximal temperatures in June and 

July and positively correlated with precipitation from May to July; pine growth was 

sensitive to maximal temperatures and soil water deficits from June to August as well as 
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positively correlated with precipitation from May to August; oak growth was strongly 

affected by June and July precipitations and positively correlated with the precipitation of 

the whole growing season. 

By referring previous studies, it was known that climate has long been identified 

as the main factor that impacts on forest activities (Forman 1964; Box 1981; McKenney 

et al. 2007; Gómez‐Mendoza and Arriaga. 2007; Toledo et al. 2011). Specifically, Mather 

and Yoshioka (1968) believed that climate impacts on vegetation directly through 

climatic factors such as precipitation and temperature, and indirectly through the effects 

that climatic factors have on soil conditions. Therefore, the hypothesis is that forest 

dynamics responds to both meteorological and soil, especially precipitation, temperature, 

and soil clay and silt in this study. Therefore, the objectives of the study are first, to 

understand the extent of dependence of forest dynamics on precipitation, temperature and 

soil texture, and second, to understand the differences in forest dynamics among 8 forest 

type groups in the Gulf Coast.  

Study Area 

The study was conducted in the Gulf of Mexico (GOM) coastal forest, which is an 

inland area situated within 160.9 km (i.e., 100 miles) of the Gulf Coast of the United 

States (Fig. 3.1). This region is mainly characterized by a wide range of forest types and 

extending from Florida to east Texas. The warm temperature and equatorial climate 

(Kottek et al. 2006) are mainly distributed over the study area, with an average annual 

temperature of 19.0 ° C and an average annual precipitation of 144 mm. The temperature 

amplitude is relatively not high: average February temperature is below 8.0 ° C and 

average July temperature is about 27.7 ° C.  
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Figure 3.1 Study area: the Gulf of Mexico (GOM) coastal forests. 

The study area consists of 11 distinct forest type groups. The forest type group was 
defined by the national forest type dataset 
(https://data.fs.usda.gov/geodata/rastergateway/forest_type/), and each of which was 
coded with a three-digital number (e.g., ‘700’ represents a forest type group of 
Elm/Ash/Cottonwood). 

Data Source 

Normalized Difference Vegetation Index (NDVI) 

The NDVI is commonly utilized based on the contrast between vegetation and 

soil, and it was used in this study as a phenology indicator of forest growth. The NDVI 

was demonstrated well-correlated with biophysical parameters (e.g., vegetation biomass 

and the fraction of green vegetation cover) and photosynthetic forest activities (Myneni et 

al. 1995; Birky 2001; Boelman et al. 2003; Meng et al. 2007; Verbesselt et al. 2010; de 

https://data.fs.usda.gov/geodata/rastergateway/forest_type/
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Jong et al. 2011; Leon et al. 2012; Li and Meng, 2016). The forest dynamics in this study 

was represented by remotely sensed data derived from MODIS NDVI (MOD13Q1) 

product 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1). The 

MODIS NDVI gridded data at 250-meter spatial resolution were acquired between March 

2009 and February 2010 from the Land Processes Distributed Active Archive Center (LP 

DAAC). By using a 3x3 moving-window function with a mean filter, I first removed 

noisy pixels that were anomalously characterized by high or low pixel values relatively to 

their neighboring pixels (Propastin and Kappas. 2008). The 16-day NDVIs were 

integrated to averaged values for each of the analysis months and seasons. Four 

meteorological seasons were defined as spring (March, April, May), summer (June, July, 

August), autumn (September, October, November) and winter (December, January, 

February) (Trenberth. 1983). The monthly and seasonal meteorological data was then 

resampled from its native 250m × 250m to a resolution of 4km × 4km. 

Meteorological Data 

The photosynthetic activity is a function of precipitation and temperature, which 

are necessarily important for the forest to convert carbon into biomass (Yamori et al. 

2014). Given to the fact that it is hard to fully determine and qualify all the 

meteorological factors potentially related to forest dynamics, the meteorological data in 

the study consist of monthly precipitation and temperature. Values of monthly 

precipitation and temperature were originally extracted from PRISM (parameter-

elevation regressions on independent slopes model, http://prism.oregonstate.edu/) dataset. 

The monthly PRISM climate data were originally collected and developed by the U.S. 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1
http://prism.oregonstate.edu/
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Department of Agriculture NRCS National Water and Climate Center (NWCC) 

partnering with Oregon State University (OSU). Preparation of seasonal temperature was 

made by averaging monthly data; while the seasonal precipitation was accumulated by 

monthly data over a three-month period. Seasons of both temperature and precipitation 

consists of four periods made up of three months each, which coincided with those of 

NDVI data.  

Soil Data 

Soil texture is one of the basic soil properties that would change little through 

time for a given soil (Schoenholtz et al. 2000). Therefore, in this study soil texture was 

taken as a relatively stable variable. The Gridded Soil Survey Geographic (gSSURGO) 

database provides a gridded map layer derived from the vector layer, tabular data 

containing information about soil properties and a value-added look up table. The soil 

texture is commonly determined by proportions of three components: sand, silt, and clay 

in the soil (van Breemen et al. 1997). Based on the gSSURGO dataset, soil texture 

information was extracted from attributes of ‘sandtotal_r’, ‘claytotal_r’ and ‘silttotal_r’, 

which were a series of ‘representative values’ representing the percentage of sand, clay 

and silt components, separately. The three measures of the soil texture are not 

independent (Swaine 1996). To avoid problems with multicollinearity, two components 

(silt and clay) will be used instead of the original three. 

Forest Type Groups 

The GOM coastal forests are described as 11 type groups, which was defined by 

the national forest type dataset 
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(https://data.fs.usda.gov/geodata/rastergateway/forest_type/). The dataset was developed 

by the USFS Forest Inventory and Analysis and Forest Health Monitoring programs and 

the USFS Remote Sensing Applications Center, and totally 28 forest type groups across 

the contiguous United States are mapped.I first randomly generated 500 sites for each 

forest type group. Temperature, precipitation, soil texture, and NDVI values at all 

sampled sites were organized by compiling them into an individual attribute table for 

each forest type group. 

Statistical Analysis 

A detailed description of the theoretical background and applicability of GWR 

have been given by previous studies (Li and Meng, 2016; Fotheringham et al. 2003; 

Brunsdon et al. 1998). As a local regression technique, GWR considers the variability of 

relationship spatially and could help to overcome the non-stationarity problem. By using 

GWR method, the relationship between response variable yi and its explanatory variable 

xi was calculated for every point. The models were developed as: 

 y𝑖 = 𝛼(𝑢𝑖, 𝑣𝑖) + ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
𝛽𝑗(𝑢𝑖, 𝑣𝑖) + 𝜀𝑖 (3.1) 

where u and v are two spatial coordinates; regression parameters α and β were 

estimated at each geographical location (ui, vi); εi is the random error term; n is the 

number of explanatory variables. 

In order to analyze the individual and compound effect of temperature, 

precipitation and soil texture on NDVI separately at the seasonal level, I fitted five simple 

or multiple regression models (Table 3.1) for every season from March 2009 to February 

2010. Simple linear regressions were performed between NDVI and precipitation, 

https://data.fs.usda.gov/geodata/rastergateway/forest_type/
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temperature and soil texture, respectively in model 1, model 2 and model 3. Both 

precipitation and temperature were then included in a multiple regression analysis against 

NDVI in model 4. To obtain a more comprehensive analysis of the compound effect of 

all explanatory variables, I related NDVI to four independent variables (precipitation, 

temperature, percentage sand, and percentage clay) in model 5. For each forest type 

groups, the simple and multiple linear regressions were performed.  

Table 3.1 Five fitted models by regressing NDVI (yi) against explanatory variables.  

1 Precipitation model xi1 = precipitation 

2 Temperature model xi1 = temperature 

3 Soil model xi1 = percentage of clay; xi2 = percentage of silt 

4 Meteorology model xi1 = precipitation; xi2 = temperature 

5 Meteorology-soil model xi1 = precipitation; xi2 = temperature; xi3 = 
percentage of clay; xi4 = percentage of silt 

 

 All the regression models worked in the way that all data points that located 

within the region defined around a regression point were weighted by their distances 

from that regression point. Therefore, the matrix form of parameter estimation for i was 

given as: 

 𝛽̂𝑖(𝑢𝑖, 𝑣𝑖) = (𝑋𝑇𝑊𝑖(𝑢𝑖, 𝑣𝑖)𝑋)−1𝑋𝑇𝑊𝑖(𝑢𝑖, 𝑣𝑖)𝑦𝑖 (3.2) 

 𝑤𝑖 = [
𝑤𝑖1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑖𝑛

] (3.3) 

where βi is the parameter at location i; wi is the weighting matrix whose diagonal 

element refers to the geographical weight associated with site j at which measurements 

were made for regression point i. 
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The weighting function used in this study is expressed as below: 

 𝑤𝑖𝑗 = 𝑒
−

1

2
(

𝑑𝑖𝑗

𝑏
)

2

 (3.4) 

where dij is the distance between locations of regression point i and site j (the 

surrounding points of i), and b is bandwidth. 

To properly reflect the relationship between NDVI and explanatory variables, I 

used R2 (coefficient of determination) values to evaluate the performance of models. The 

R2 value obtained from regression modeling accounted for the percent of the variations in 

NDVI explained by models. A general rule is that the higher the R2 value is, the more a 

model could explain the variation of the response variable. It performs as Eq. (3.5) 

 R2 =
𝑆2

𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
 (3.5) 

where s𝑦𝑦 = ∑(𝑦 − 𝑦̅)2. 

In addition to the R2, Akaike information criterion corrected (AIC) and residual 

sum of squares (RSS) are two measures of regression model performance. AIC is the 

relative measure of goodness of fit. RSS is the measure of discrepancy between observed 

data and the estimated model. Models characterized by lower AIC values and lower RSS 

values typically have better performances (Fotheringham et al. 2003; Brunsdon et al. 

1998). 

The P-value (t test) is statistically expressed as the examination of estimated 

regression parameters, which could be used to determine if regression parameters are 

statistically significant or not. It is always set at a 5% significance level. The equation for 

t-test statistic is expressed as: 
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 T =
𝛽̂

𝑠
√𝑠𝑥𝑥

⁄
 (3.6) 

where 𝛽̂ =
𝑠𝑥𝑦

𝑠𝑥𝑥
, s𝑥𝑦 = ∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅), s𝑥𝑥 = ∑(𝑥 − 𝑥̅)2. 

Results. 

Seasonal Modelling of Forest Dynamics 

The result showed that the R2 value varied within a wide range from 0.133 to 

0.952 (Table 3.2) and all the explanatory variables were linearly and significantly (p < 

0.05) correlated with NDVI.  
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Table 3.2 Coefficient of determination (R2) values for seasonal modeling of forest 
dynamics 

 
Longleaf 

Slash 

Pine 

Loblolly 

Shortleaf 

Pine 

Oak 

Pine 

Oak 

Hickory 

Oak 

Gum 

Cypress 

Elm 

Ash 

Cottonwood 

Tropical 

Hardwoods 

Exotic 

Hardwoods 

Model1 

 

Spring 0.251 0.256 0.280 0.319 0.224 0.623 0.515 0.528 

Summer 0.260 0.285 0.254 0.419 0.224 0.705 0.497 0.601 

Fall 0.198 0.133 0.208 0.212 0.134 0.417 0.456 0.292 

Winter 0.222 0.135 0.225 0.229 0.181 0.167 0.421 0.365 

Model2 

 

Spring 0.232 0.261 0.277 0.309 0.211 0.611 0.529 0.520 

Summer 0.302 0.294 0.292 0.422 0.223 0.707 0.494 0.577 

Fall 0.207 0.135 0.218 0.190 0.142 0.419 0.487 0.272 

Winter 0.238 0.137 0.251 0.206 0.181 0.174 0.404 0.407 

Model3 

 

Spring 0.258 0.307 0.348 0.328 0.276 0.653 0.550 0.546 

Summer 0.302 0.335 0.339 0.434 0.271 0.734 0.519 0.606 

Fall 0.253 0.196 0.289 0.224 0.209 0.477 0.505 0.287 

Winter 0.292 0.184 0.287 0.219 0.223 0.265 0.430 0.432 

Model4 

 

Spring 0.295 0.282 0.321 0.334 0.240 0.630 0.574 0.560 

Summer 0.351 0.310 0.313 0.441 0.251 0.721 0.542 0.605 

Fall 0.258 0.160 0.271 0.232 0.172 0.449 0.523 0.335 

Winter 0.263 0.164 0.276 0.254 0.203 0.201 0.495 0.425 

Model5 

 

Spring 0.350 0.358 0.427 0.364 0.315 0.673 0.640 0.598 

Summer 0.418 0.379 0.410 0.473 0.318 0.757 0.610 0.647 

Fall 0.334 0.252 0.405 0.280 0.253 0.512 0.619 0.380 

Winter 0.359 0.241 0.381 0.284 0.268 0.328 0.575 0.480 

Model 1: precipitation model; Model 2: temperature model; Model 3: soil model; Model 
4: meteorology model; Model 5: meteorology-soil model. 
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 The precipitation model (model1) was performed by regressing NDVI against 

precipitation. The R² ranged from 0.133 to 0.705 with the lowest value found in 

Loblolly/Shortleaf Pine forests, and the largest value found in Elm/Ash/Cottonwood 

forests. Summer appears to be a season with the largest R² value and winter appears to be 

with the lowest R² value. 

The R2 values obtained from temperature model (model2) with temperature as the 

only explanatory variable were observed to vary from 0.135 to 0.948. The seasonal 

values of R² exposed that spring and summer are the two seasons with relatively higher 

R2 values than fall and winter. 

In soil model (model3), R2 values were observed to vary significantly among 

forest type groups. Elm/Ash/Cottonwood group was characterized by the largest R2 value; 

while Loblolly/Shortleaf Pine group was characterized by the lowest R2 value. 

The ability of meteorology model (model4) to explain the variance of NDVI was 

changed by forest type groups. The variation of summer NDVI in Elm/Ash/Cottonwood 

forests was the best explained by the meteorology model (R2 = 0.721); while NDVI of 

fall Loblolly/Shortleaf pine forests was found to be least explained by the meteorology 

model (R2 = 0.160). The seasonal R2 derived from meteorology model was undergoing a 

slightly increase from spring to summer and a decrease from summer to winter. 

The R2 value was calculated for the meteorology-soil model (model5) considering 

the compound effect of precipitation, temperature and soil texture, with the largest value 

(0.757) found in Elm/Ash/Cottonwood forests and lowest value (0.241) found in 

Loblolly/Shortleaf Pine forests. Moreover, the meteorology-soil model exhibited higher 
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R2 values than model1, model 2, model3 and model4, which implies that the 

meteorology-soil model best fitted the data.  

Annual Modelling of Forest dynamics 

The R2 value obtained for modeling of annual forest dynamics was presented in 

Table 3.3. For most forest type groups, R2 values obtained from precipitation models 

approximately equal to values of R2 derived from temperature models, which suggests 

the relatively equivalent magnitude of changing precipitation and temperature for 

explaining NDVI variance in forests. Actually, there are several mechanisms by which 

meteorological factors could influence forest dynamics: the finding obtained by Zhao et 

al (2010) indicated an equivalent role of precipitation and temperature in explaining 

variation in NDVI. Within some vegetation systems, precipitation was identified as the 

dominant factor affecting forest dynamics, and the temperature may play a minor role 

(Zhao et al. 2015; Hilker et al. 2014; Pravalie et al. 2014; Hao et al. 2012); while in other 

cases, temperature was considered as the main driving factor related to vegetation 

activities (Pravalie et al. 2014; Piao et al. 2014; Chuai et al. 2013).  

The soil model exhibited relatively high R2 values (> 0.500) explaining the 

variance of NDVI in some forests type groups such as Elm/Ash/Cottonwood, Tropical 

Hardwoods and Exotic Hardwoods. It was believed that soil texture is an important factor 

correlated to forest dynamics by influencing water-holding capacities and water 

infiltration rates (Michelot et al. 2012). Soil texture could also affect soil inherent fertility 

which is a limiting factor for controlling tree growth rate (Toledo et al., 2011). For 

instance, fine textured soils always have low infiltration rates that can contribute to the 
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movement of nutrients adsorbed by soil particles (Kreutzweiser et al. 2008; Whitson et al. 

2003).  

In most forests, meteorology models explained the approximately equivalent 

variance of NDVI to soil models, according to a comparison of R2 values obtained from 

these two types of models. The meteorology-soil model best fitted the data for all the 

forest groups, which implies that the observed variation in NDVI could be attributed to 

variations in all three explanatory variables: precipitation, temperature and soil texture.  

Three groups of forests (Oak/Gum/Cypress, Longleaf/Slash Pine and 

Loblolly/Shortleaf Pine) occupying more than half of the study area, were found 

consistently with fewer variations of NDVI explained by all the designed models than 

other forest type groups. The forest-cover extent, forest distribution and decreases or 

increases in green biomass could be associated with forest harvest or regeneration 

(Drummond and Loveland, 2010; Wilson and Sader, 2002), and in other words, forest 

dynamics could be interrupted by human activities such as forest planting and timber 

harvesting; this might alter the forest species composition, structure, ecosystem 

processes, and landscape patterns (Chuai et al. 2013; Thompson et al. 2011; Bu et al. 

2008; Bossel and Krieger. 1991). As a result, models with meteorological factors and/or 

soil texture could have limited effects on forest dynamics. Moreover, the evergreen 

needle forests (e.g., pine forests) with deep rooting systems were found less sensitive to 

climatic conditions (Immerzeel et al. 2009; Piao et al. 2004), which could explain the 

finding that Longleaf/Slash Pine and Loblolly/Shortleaf Pine appeared to be with 

relatively lower R2 values in precipitation models, temperature models, and meteorology 

models. 
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Table 3.3 Comparison of annual model performance indicators (R2, AIC and RSS) 

 Longleaf 

Slash 

Pine 

Loblolly 

Shortleaf 

Pine 

Oak 

Pine 

Oak 

Hickory 

Oak 

Gum 

Cypress 

Elm 

Ash 

Cottonwood 

Tropical 

Hardwoods 

Exotic 

Hardwoods 

R2 Model 1 0.229 0.165 0.209 0.268 0.150 0.551 0.469 0.475 

Model 2 0.215 0.170 0.246 0.261 0.139 0.538 0.473 0.479 

Model 3 0.256 0.232 0.305 0.279 0.202 0.592 0.509 0.486 

Model 4 0.278 0.188 0.271 0.284 0.172 0.559 0.513 0.514 

Model 5 0.350 0.279 0.404 0.312 0.243 0.617 0.597 0.560 

AIC Model 1 -1211 -1379 -1296 -1403 -1277 -1182 -784 -710 
Model 2 -1207 -1381 -1319 -1399 -1275 -1173 -790 -712 
Model 3 -1209 -1402 -1332 -1394 -1290 -1210 -787 -710 
Model 4 -1227 -1383 -1320 -1404 -1281 -1184 -796 -725 
Model 5 -1242 -1413 -1377 -1397 -1296 -1222 -817 -741 

RSS Model 1 1.121 1.029 1.206 1.028 1.041 0.937 0.792 0.734 
Model 2 1.141 1.023 1.150 1.038 1.054 0.965 0.786 0.727 
Model 3 1.081 0.946 1.060 1.012 0.978 0.852 0.733 0.718 
Model 4 1.050 1.001 1.112 1.006 1.014 0.921 0.727 0.679 
Model 5 0.945 0.888 0.909 0.967 0.928 0.799 0.602 0.615 

Model 1: precipitation model; Model 2: temperature model; Model 3: soil model; Model 
4: meteorology model; Model 5: meteorology-soil model. 

 The R2 value map was then generated by model5 modeling annual NDVI of 

different forest type groups. R2 values were compared and which were observed to vary 

significantly in the space over the study area. As outlined in Fig. 3.2, the west of the 

study region is mainly vegetated by Elm/Ash/Cottonwood and Exotic Hardwoods groups, 

which was characterized by relatively high R2 values. Moreover, relatively high R2 values 

were also found in areas occupied by Tropical Hardwoods forests. Lower R2 values were 

found in forests dominated by Longleaf/Slash Pine, Loblolly/Shortleaf Pine and 

Oak/Gum/Cypress groups extending from east Texas to west Florida. Specifically, the 

western section of Oak/Pine and Oak/Hickory forests was featured by relatively higher R2 

values than the eastern section. 
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Figure 3.2 The spatial changes of R2 values obtained from the annual meteorology-
soil model. 

Here, I employed a multiple-color scheme for local R2 value displaying. The forest type 
group was coded with a three-digital number (e.g., ‘140’ represents a forest type group 
‘Longleaf/Slash Pine’). 

 The R2 value distribution presented by Fig.3.2 was characterized by a spatial drift 

over the study area, which implies a large difference in the capabilities of meteorology-

soil models explaining forest dynamics. This could be explained by the finding of 

previous analysis on forests showing that the forest types might differ in timing and 

magnitude of their correlations with meteorological variations (Zhao et al. 2015; Mette et 

al. 2013; Chuai et al. 2013; Michelot et al. 2012; Piao et al. 2004).  
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Discussions 

Model Performance And the Role of Explanatory Variables 

According to the observed higher R2, lower AIC and lower RSS values (Table 

3.3), soil models result in a better fit of data than precipitation models and temperature 

models for most forest type groups, which indicated that soil models could explain more 

of variance than precipitation and temperature models did. Similarly, as it was shown in 

Table 3.2, using soil as an explanatory variable in regression modeling resulted in 

slightly higher R2 values than considering precipitation or temperature in regression 

models, which suggested that soil is acting more importantly than precipitation or 

temperature when explaining forest dynamics. Mather and Yoshioka (1968) have pointed 

that climate influences vegetation not only through meteorological factors (directly), but 

also through the effects that meteorological factors have on soil conditions (indirectly). 

However, for most studies related to forests, the soil was rarely considered for explaining 

forest dynamics. By developing soil models and comparing them with other models, this 

study highlighted an important role of soil in forest dynamics modeling. 

R2 (from both Table 3.2 and Table 3.3), AIC and RSS values of soil models and 

meteorology models were examined and compared, and it showed that meteorology 

models are generally characterized by better performances than soil models in four forest 

type groups (e.g., Longleaf/Slash Pine, Oak/Hickory, Tropic Hardwoods and Exotic 

Hardwood), which suggested a more important role of the meteorological factor to forest 

dynamics modeling than soil. In contrast, the soil model presented a generally better 

performance than the meteorology model in four forest type groups: Loblolly Shortleaf 

Pine, Oak/Pine, Oak/Gum/Cypress and Elm/Ash/Cottonwood, where the explanation of 
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forest dynamics would have a higher dependence on soil than on meteorological factors. I 

speculated that the relative importance of soil and precipitation-temperature combination 

modeling forest dynamics varied by forest type groups. 

By examining seasonal R2 values (Table 3.2) and yearly R2, AIC and RSS (Table 

3.3) values, in all 8 forest type groups except for the Oak/Hickory, the meteorology-soil 

model showed the best overall fit with the highest R2, lowest AIC and the lowest RSS 

values, which revealed the stronger explanatory power of precipitation, temperature and 

soil texture. Therefore, the meteorology-soil model is preferred as the best means of 

regression modeling of forest dynamics. 

NDVI – An Indicator of Forest Dynamics 

In this study, I use NDVI as a measurement indicator of forest dynamics, referring 

to the dynamics of canopy structure and phenology of forests, and for a given type of 

forests, seasonal and yearly NDVI values are applied to the quantification of its growth 

across the Gulf Coast. The forest dynamics has been studied and interpreted from various 

perspectives. In a study conducted by Giri et al (2007), forest dynamics refers to the 

forest deforestation and degradation. Moreover, forest dynamics also refers to the forest 

gap formation and closure (Yamamoto 2000; Bossel and Krieger. 1991). Generally, the 

study of forest dynamics is focused on changes in forest structure and composition 

arising from natural or anthropogenic forces (Pretzsch. 2009). Seasonal variations of 

NDVI were demonstrated to be related to vegetation phenology (McCloy and Lucht, 

2004) and was used as a proxy for 'forest dynamics' (Soudani et al. 2012; Beck et al. 

2006). 
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Explanatory Data Selection 

Wang et al (2011) have conducted a research over a 9-years period (1989– 1997) 

in Great Plains of North America and found that during years with extreme climate 

conditions, the seasonal relations between meteorological factors (e.g., precipitation and 

temperature) and NDVI were quite different and complicated in different years. 

Additionally, variability in NDVI can be influenced by disturbances (e.g., hurricanes) 

(Neeti et al. 2012). Hurricane Katrina affecting Northern Gulf Coast region by landfall, 

flooding and the combination of both drought and increased salinity resulted in a 

reduction in NDVI (Rodgers et al. 2009), which might bring uncertainties into forest 

dynamics modeling. Therefore, I believed that studies conducted under extreme climate 

conditions might not reflect a general relationship between forest dynamics and its 

explanatory variables. By examining meteorological recordings ranging from 2002 to 

2016, I excluded all the years with temperature extremes or erratic rainfall and eventually 

the year of 2009 was identified as the study period due to its intermediate precipitation 

and temperature values when compared to other historical recordings.  

Conclusion 

Using GWR method, I included precipitation, temperature and soil texture in 

regression modeling of their individual and combined effects on 8 forest type groups 

within the Gulf Coast and to compare their relative contributions to NDVI variations. R2 

values for regression models showed that both meteorological factors and soil could 

significantly explain NDVI variation in the Gulf Coast forests. Meteorology-soil models 

performed on Elm/Ash/Cottonwood forest explained more variations of NDVIs than on 

NDVIs of other forest type groups: Tropical Hardwoods, Tropic Hardwoods, Exotic 
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Hardwood, Oak/Pine, Longleaf/Slash Pine, Loblolly Shortleaf Pine, and 

Oak/Gum/Cypress. The GWR modeling also implied that the presence of heterogeneity 

in relationships over the study area was related to forest types, meteorology, and soil.  

Model performance indicators (R2, AIC and RSS) indicated that the performance 

of model fit was found to differ by forest type groups with different combinations of 

explanatory variables. The meteorology-soil model was demonstrated to be the best 

means of regression modeling for all the forest type groups except for Oak/Hickory 

forests. The soil model presented a better performance when explaining forest dynamics 

in following groups: Loblolly/Shortleaf Pine, Oak/Pine, Oak/Gum/Cypress and 

Elm/Ash/Cottonwood. However, Longleaf/Slash Pine, Oak/Hickory, Tropical 

Hardwoods, and Exotic Hardwoods forest groups were characterized by a better 

performance of meteorology model than soil models. The soil model was fitted better 

than precipitation model and temperature models for almost all the forest type groups. 
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CHAPTER IV 

APPLICATION OF RANDOM EFFECTS TO EXPLORE DYNAMICS OF GULF 

COAST FORESTS IN RELATION TO METEOROLOGICAL FACTORS 

Literature Review 

A growing body of studies are carried out to explore climate change and its 

impact. Climate change is of fundamental importance to forest dynamics and there is a 

concerted effort to model spatial variations in vegetation caused by the changing climate 

(Propastin and Kappas. 2008). Vegetation systems are influenced by a massive amount of 

spatiotemporal contextual factors (Mather and Yoshioka, 1968; Cruz-Cárdenas et al. 

2016). Meteorological factors vary over space and time and forest dynamics vary 

accordingly (Cruz-Cárdenas et al. 2016; Pacheco et al. 2010). As numerous scholars have 

noted, meteorological factors have the potential to facilitate forest growth (Galván et al. 

2014; Babst et al. 2013; Prasad et al. 2008; Fekedulegn et al. 2003). Meteorological 

factors that drive forest dynamics were identified as two major variables: temperature and 

precipitation. Forest dynamics has been proved to be dependent on temperature (Wang et 

al. 2011; Vicente-Serrano et al. 2010). Karnieli et al (2010) have found that temperature 

is a significant independent variable relative to vegetation-cover variations and its impact 

varies with location, season, and vegetation type. Additionally, it was found that 

precipitation is a primary driver of forest dynamics (Vicente-Serrano et al. 2010). Under 

a changing climate, precipitation is predicted to be the most important environmental 
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factor influencing phonological patterns in arid and semiarid areas (Zhao et al. 2015; 

Gómez-Mendoza et al. 2008; Moore et al., 2005). Li and Meng (2016) have examined the 

effects of precipitation on forest dynamics and found that seasonality of precipitation can 

influence forest dynamics.  

In recent years, a variety of statistical techniques has been developed and utilized 

to quantify spatial relationships. The linear regression model is the most common form of 

statistical modelling and is applied in various fields of geographic applications (Propastin 

and Kappas. 2008). Some research have attempted to apply linear regression model to 

assess the relationship between vegetation system and meteorological factors (Li and 

Meng. 2016; Chuai et al. 2013; Piao et al. 2004). Much of this research is focused on 

detecting change patterns and trends by using fixed effect models such as OLS and 

GWR. For instance, Propastin and Kappas (2008) presented that the application of OLS 

regression model could provide an accurate estimation of the relationship between 

variables. However, OLS regression is not suitable for analyzing spatially correlated 

observation and measurements (Zhang et al. 2008). GWR models take spatial 

autocorrelation into account for estimating the model coefficients and better understand 

the non-stationarity in explanatory variables (Zhao et al. 2010; Zhao et al. 2015). 

The method considering both fixed and random effects for coefficient estimation 

is known as the linear mixed-effects model (LMM) (Zhang and Borders. 2004). LMM is 

applicable to a diverse set of applications and domains, and is fundamental to spatial data 

science. The LMM provides an appropriate basis for the investigations of the spatial 

relationship between response and explanatory variables, highlighting spatial dependence 

and variation in modeling processes, estimating model coefficients, and identifying 
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temporal changeability of the spatial relationship (Zhang et al. 2009; Zhang et al. 2008). 

The LMM is capable of characterizing the spatial covariance structures in the data with 

different geostatistical models, and obtaining more accurate predictions for the response 

variable than those derived from fixed-effects models (Littell et al. 2006; Breidenbach et 

al, 2007; Meng et al. 2007). Winter (2013) explains random effects as a factor that is 

usually nonsystematic and unpredictable, and would influence on the data. Therefore, it is 

necessary to understand how forest responses to explanatory variables were influenced by 

random-effects. 

The Gulf Coast forest around the Gulf of Mexico is one of the most biologically 

diverse ecosystems, and which relies on favorable temperatures and appropriate 

precipitation patterns (Barrow et al. 2005; Noel et al. 1998; Peet and Allard. 1993; 

Sherrod and McMillan 1985). Variation in either temperature or precipitation, including 

earlier warm days for temperature or increased occurrences of extreme variability in 

rainfall, could impact on forest dynamics. It was documented that coastal forests are 

especially vulnerable to climate change (Barrow et al. 2005). As such, changes in 

temperature and precipitation within the Gulf Coast are and will consistently affect 

coastal forests. However, to our knowledge, there is a relative dearth of focus on studies 

of coastal forest dynamics to changing climate within the Gulf Coast. The Gulf Coast 

were dominated by the temperate forest, which was believed to be an appropriate study 

site for measuring climate variability (Gómez-Mendoza et al. 2008). 

The aim of this study is to advance the spatial statistical thinking through 

utilization of the LMM. By using the precipitation, temperature and the normalized 

difference vegetation index (NDVI) data ranging from March (2009) to February (2010), 
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this study intended to determine the importance of random-effects in explaining forest 

dynamics within the Gulf Coast, and to explore how seasonal changes in meteorological 

factors render forest dynamics at county scales. Based on statistical analysis, I expected 

that fixed and random effects from meteorological variables could play important roles in 

the modeling of forest dynamics. Specifically, this study is interested in answering two 

following questions: 1) if precipitation and temperature influence forest dynamics 

through both fixed and random effects, and 2) if forest dynamics to meteorological 

conditions vary across four seasons. 

Study Area and Data Source 

Study Area 

The study was conducted within an inland buffer area located approximately 100 

miles from the coastline of the Gulf of Mexico (Fig. 4.1.). An average annual 

precipitation of 144 mm and average annual temperature of 19.0 ° C characterize the 

climate as temperate continental. Temperatures range from 8.0 ° C to 27.7 ° C in winter 

and summer, respectively. The majority of precipitation occurs as rain through the whole 

year. The study area is occupied by a large forest extending from eastern Texas to the 

Florida Keys, which varies greatly due to the influence factors such as climate change 

and human disturbance (Barrow et al. 2005). 
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Figure 4.1 Study area: The Gulf of Mexico coastal region 

 

Data Source 

I collected meteorological data during a period from March (2009) to February 

(2010), including monthly precipitation and temperature from the PRISM (parameter-

elevation regressions on independent slopes model, http://prism.oregonstate.edu/) dataset, 

which was produced by the NRCS National Water and Climate Center (NWCC) 

partnering with Oregon State University (OSU). The preparation of the seasonal (or 

yearly) temperature was made by averaging monthly temperatures over three months 

(over twelve months). The seasonal (or yearly) precipitation was generated by an 

accumulation of monthly precipitations over a corresponding season. 

http://prism.oregonstate.edu/
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The Normalized Difference Vegetation Index (NDVI) is one of the most widely 

used multispectral vegetation indices in Remote Sensing. NDVI is formulated based on 

reflectance measurements in the red and near-infrared (NIR) portion of the spectrum. 

Forest biomass and dynamics characteristics could be represented by NDVI at the 

landscape scale (Zhao et al. 2015; Propastin and Kappas. 2008; Meng et al. 2007). 

Therefore, this study employed NDVI to quantify forest greenness and biomass. The 

NDVI data were obtained ranging from March (2009) to February (2010), using MODIS 

NDVI (MOD13Q1) products at 250-meter spatial resolution.  

Both meteorological data (explanatory variables) and NDVI data (response 

variable) were originally raster layers and had to be converted to vector format of 

ArcMap to meet the requirement of regression modeling. Values of variables were 

extracted from original raster data layers to county-based polygons. In this study, a total 

of 244 polygons were used in regression analysis after removing invalid values. 

Statistical Analysis 

The linear mixed-effects model (LMM) is an expansion of the most basic 

statistical models, the linear regression model. In a mixed-effects model, the effects of the 

variable are assumed to be a random sample of a larger population that vary randomly 

around a population mean (Breidenbach et al, 2007). This is referred to as random-

effects. An LMM can be written as a single combined model with fixed and random 

effects. The combined model is expressed as: 

 𝑦𝑖 = (𝛽0𝑖 + 𝑏0𝑖) + ∑ (𝛽1𝑖𝑗 ∗ 𝑥𝑖𝑗)𝑛
𝑗=1 + ∑ (𝑏1𝑖𝑗 ∗ 𝑥𝑖𝑗)𝑛

𝑗=1 + 𝜀𝑖  (4.1) 

 εi~𝑁(0, σ2) 𝑖. 𝑖. 𝑑 (4.2) 
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 b0ij~𝑁 (0, σb0ij

2)  𝑖. 𝑖. 𝑑 (4.3) 

 b1ij~𝑁 (0, σb1ij

2)  𝑖. 𝑖. 𝑑 (4.4) 

Here β0i and β1ij are the fixed effect coefficients to be estimated from data; b0i 

and b1ij are the random effect coefficients; i is the ith observation; j is the jth variable. The 

random effects b0i and b1ij are assumed to be independent for different i; the εi of 

different i is assumed to be independent of the random effects. 

Fixed effects are constant across individuals, and random effects vary. In essence, 

each county has its own random regression line such that the intercept is β0i + b0i and 

the slope is β1ij + b1ij. The intercept and slope of the model could be assumed to vary 

randomly unit by unit (Meng et al. 2007; Hökkä 1997). Different types of models were 

developed: the random intercept model estimates separate intercepts for each unit at 

which the intercept is permitted to vary. Another type of random effect model, of which 

intercepts as well as slopes are allowed to vary, estimates separate slopes for each 

variable for each unit (Table 4.1.). 
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Table 4.1 Mixed Effects Modeling of Forest Dynamics 

 Model Name Fixed-effect Variable Random-effect Variable 

1 Random intercept and 
random meteorology-slope 
model 

precipitation and 
temperature 

precipitation and 
temperature 

2 Random intercept and 
random precipitation-slope 
model 

precipitation and 
temperature 

precipitation 

3 Random intercept and 
random temperature-slope 
model 

precipitation and 
temperature 

temperature 

4 Random intercept model precipitation and 
temperature 

NA 

 

To investigate relationships between NDVI and meteorological variables, 

seasonal and yearly NDVIs were regressed against precipitation and temperature. The 

mixed-effects approach allowed us to account for variation in NDVI by treating 

intercepts and slopes as random terms. Therefore, I proposed four options for the random 

configuration: (i) random intercept and random slopes of both precipitation and 

temperature; which included fixed coefficients, a random intercept and random slopes of 

both precipitation and temperature; (ii) random intercept and random slope of 

precipitation, which included fixed coefficients, a random intercept and a random slope 

of precipitation; (iii) random intercept and random slope of temperature, which included 

fixed coefficients, a random intercept and a random slope of temperature; (iv) random 

intercept, which included a fixed intercept, a random intercept and fixed slopes of both 

precipitation and temperature.  
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Results. 

LMMs were performed between NDVI and meteorological factors. I included 

both precipitation and temperature in a multiple regression analysis against NDVIs. An 

intercept and slopes with respect to precipitation and temperature for both random and 

fixed effects were estimated in model1; in model2, an intercept and a slope with respect 

to precipitation for both random and fixed effects were estimated; in model3, an intercept 

and a slope with respect to temperature for both random and fixed effects were estimated; 

only an intercept for both random and fixed effects was considered in model4. The 

forests were classified into three forest types. For each forest type, linear regressions 

were performed and examined.  

The overall model fitting was evaluated by three statistics including the 

coefficient of determination (R2), Akaike information criterion (AIC) and Bayesian 

information criterion (BIC), which are usually presented as model comparison tools for 

mixed-effects models (Nakagawa and Schielzeth, 2013; Meng et al. 2007). The 

information criteria (e.g., AIC and BIC) were used to select the best models by 

comparing models relative to one another. The R2 value obtained from regressions 

accounts for the percent of the variations in NDVIs explained by models. As the mixed-

effects model yields two variances: a variance associated with random-effects and a 

residual variance, it is not entirely clear which to use when calculating R2 values. 

Nakagawa and Schielzeth (2013) have derived two easily interpretable values of R2. The 

marginal R2 describes the proportion of variance explained by the fixed factor(s) alone, 

which is useful in identifying the most parsimonious model (Orelien and Edwards. 2008). 

The conditional R2 describes the proportion of variance explained by both fixed and 
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random factors (Orelien and Edwards. 2008). Table 4.2, 4.3 and 4.4 summarized the 

results of the linear mixed modeling softwood, hardwood and mixed forests NDVI 

against explanatory variables. 

Table 4.2 AIC, BIC and R2 for the fitted model of softwood forests 

Model Season AIC BIC R2c R2m p-Value 

Model1 Spring -595.8  -581.1  0.61  0.49  <.0001 

Summer -602.7  -588.0  0.57  0.48  

Fall -683.0  -668.3  0.56  0.40  

Winter -549.4  -534.7  0.41  0.04  

Year -656.9  -642.2  0.63  0.39  

Model2 Spring -595.0  -580.3  0.59  0.49  

Summer -601.6  -586.9  0.53  0.48  

Fall -679.4  -664.7  0.50  0.40  

Winter -547.2  -532.5  0.39  0.04  

Year -653.9  -639.2  0.60  0.39  

Model3 Spring -595.8  -581.1  0.61  0.49  

Summer -602.7  -588.0  0.57  0.48  

Fall -683.0  -668.3  0.56  0.40  

Winter -549.4  -534.7  0.41  0.04  

Year -656.9  -642.2  0.63  0.39  

Model4 Spring -595.0  -580.3  0.59  0.49  

Summer -601.6  -586.9  0.53  0.48  

Fall -679.4  -664.7  0.50  0.40  

Winter -547.2  -532.5  0.39  0.04  

Year -653.9  -639.2  0.60  0.39  
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Table 4.3 AIC, BIC and R2 for the fitted model of hardwood forests 

Model Season AIC BIC R2c R2m p-Value 

Model1 Spring -459.4  -444.6  0.67  0.36  <.0001 

Summer -537.4  -522.6  0.62  0.58  

Fall -505.9  -488.2  0.54  0.13  

Winter -405.8  -391.0  0.61  0.01  

Year -513.7  -498.9  0.63  0.27  

Model2 Spring -454.5  -439.7  0.63  0.36  

Summer -537.0  -522.1  0.59  0.58  

Fall -501.5  -486.6  0.48  0.13  

Winter -394.6  -379.7  0.54  0.01  

Year -506.9  -492.1  0.58  0.27  

Model3 Spring -459.4  -444.6  0.67  0.36  

Summer -537.4  -522.6  0.62  0.58  

Fall -505.9  -488.2  0.54  0.13  

Winter -405.8  -391.0  0.61  0.01  

Year -513.7  -498.9  0.63  0.27  

Model4 Spring -454.5  -439.7  0.63  0.36  

Summer -537.0  -522.1  0.59  0.58  

Fall -501.5  -486.6  0.48  0.13  

Winter -394.6  -379.7  0.54  0.01  

Year -506.9  -492.1  0.58  0.27  

 

  



 

66 

Table 4.4 AIC, BIC and R2 for the fitted model of mixed forests 

Model Season AIC BIC R2c R2m p-Value 

Model1 Spring -542.6  -527.4  0.38  0.27  <.0001 

Summer -608.2  -593.0  0.56  0.51  

Fall -615.7  -600.5  0.27  0.23  

Winter -444.7  -429.5  0.29  < 0.01  

Year -590.2  -575.0  0.31  0.24  

Model2 Spring -541.5  -526.3  0.32  0.27  

Summer -607.7  -592.5  0.53  0.51  

Fall -617.3  -605.2  0.23  0.23  

Winter -444.2  -429.0  0.23  < 0.01  

Year -589.4  -574.2  0.24  0.24  

Model3 Spring -542.6  -527.4  0.38  0.27  

Summer -608.2  -593.0  0.56  0.51  

Fall -615.7  -600.5  0.27  0.23  

Winter -444.7  -429.5  0.29  < 0.01  

Year -590.2  -575.0  0.31  0.24  

Model4 Spring -541.5  -526.3  0.32  0.27  

Summer -607.7  -592.5  0.53  0.51  

Fall -617.3  -605.2  0.23  0.23  

Winter -444.2  -429.0  0.23  < 0.01  

Year -589.4  -574.2  0.24  0.24  

 

 Table 4.2 showed that model1 provided lowest values in AIC and BIC and 

highest value in conditional R2, which suggested that model1 fitted the data of softwood 

much better than other models. Analyses were then performed on the seasonal variations 

of R² values which exposed that the variance of spring NDVI was most explained by 
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combined effects of precipitation and temperature, while the variance of winter NDVI 

was least explained by models. 

Table 4.3 revealed that in hardwood forests, the largest conditional R2 value was 

derived from model1. The lowest AIC and BIC obtained from model1 suggested that 

model1 best fitted the data. In all seasons, conditional R2 values obtained from all models 

were compared and it appeared that in hardwood forests the observed conditional R2 

value of spring was higher than values of other seasons. In spring, the largest conditional 

R2 value which was derived from model1 amounts to 0.67. 

Table 4.4 suggested that model1 provided the best fit of mixed forests data. The 

results showed that model1 had the highest conditional R2, which implies that the 

variation of NDVI could be explained most by model1. Model1 was with the smallest 

AIC, and the smallest BIC, which implies that model1 is better than other models. In all 

seasons, the conditional R2 value obtained from model1 was highest for the summer 

(0.56) and lowest for the fall (0.27). 

A significant p-value (at 5% level of significance) in table2, table3 and table4 

individually indicated that for each forest type, the fixed effects of meteorological 

variables significantly affects the seasonal and annual NDVIs. 

Discussion 

The goal of this research is to explore random and fixed effects on forest 

dynamics to meteorological factors. It was believed that the region-specific effect could 

be treated as a random effect in modeling (Lu and Zhang. 2012; Meng et al. 2007). 

Therefore, mixed-effects models containing different random coefficient configurations 

will be compared in a county scale. I fitted four types of LMMs for the purpose of 



 

68 

comparison and selection of the best random structure for the fitted model. Firstly, to 

determine the optimal random effects structure for random intercept and random slope 

models, the model selection was performed based on AIC and BIC for determining 

whether to incorporate random effects from meteorological factors (precipitation, 

temperature or both) for a slope (or slopes) in a given model. AIC and BIC indicated that 

models without random effects from precipitation for a slope are equivalent to models 

with random effects from precipitation for a slope, which indicated that precipitation does 

not give rise to any random effects on fitted models. the AICs and BICs of two distinct 

types of resulting models: the random intercept model (model4) and the random intercept 

and random slope model (model1) were then compared. This comparison indicated that 

random intercept and random slope model is the most plausible one in terms of lower 

AIC and BIC values. 

As a goodness of fit measure of models, I computed both the marginal and 

conditional R2 values. To quantify the variance accounted by fixed effects, I employed R2 

to examine the random intercept model and the random intercept and slope model. The 

value of conditional R2 derived from the random intercept and slope model was generally 

higher than the random intercept model indicating that the variance could be better 

explained by random-effects on both intercepts and slopes of models. This result has also 

been found by Meng et al (2007) that the LMM with both intercept and slope having 

random-effects best fits the data. This finding highlighted the random effects of 

temperature to explain forest dynamics in the Gulf Coast. Additionally, values of 

marginal R2 were found lower than the corresponding conditional R2, which was also 
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found by Orelien and Edwards (2008) suggesting that the fixed-effects model was fitted 

less adequately than the mixed-effects model. 

The importance of linear regression model in assessing relationship has been 

previously established, although most of the research has focused on the fixed-effects. 

The mixed-effects models incorporate spatial dependence in modeling the relationships 

between variables, and could consequently improve the estimates and reduced the bias 

which was present in the estimates of the fixed-effects models (Breidenbach et al, 2007; 

Meng et al. 2007; Zhang et al. 2008; Zhang et al. 2009). Mixed-effects models with 

forestry application were discussed by some scholars, most of which were conducted at 

the stand level (Galván et al. 2014; Breidenbach et al, 2007; Zhang et al. 2008; Zhang et 

al. 2005; Zhang and Borders. 2004; Hökkä 1997). An in-depth description of LMM 

application at the regional level is given for example by Meng et al (2007), which 

suggested that LMMs with random-effects on both intercepts and slopes best explained 

the variance of the surface area of NDVIs. In this study, it appeared that the largest R2 

value of model1 was 0.67 (spring) for the hardwood, 0.61 (spring) for the softwood, and 

0.56 (summer) for the mixed forest, and suggested that in all three forest types, NDVI 

correlated quite differently with meteorological variables, with obvious temporal 

heterogeneity, which has also been observed in other regions (Chuai et al. 2013). 

Conclusion 

This study investigated the random-effects from four distinct types of linear 

mixed models. The performance of the model depended on random effect configurations. 

Indicators of model performance implies that the random-effects impact on both the 

intercept and slope in regression models, which is in accordance with Meng et al (2007). 



 

70 

The random intercept and random slope model fitted the data better (i.e., larger 

conditional R2, smaller AIC, and smaller BIC) than other models, suggesting an 

improvement in model fitting by accounting for the combined effects of both fixed and 

random effects. This finding provided useful guidelines for choosing an appropriate 

model structure for using mixed linear model. 

The use of LMM provides an important tool to link forest dynamics to 

meteorological variables. Given the advantage of a mixed-effects model that compared to 

a fixed-effects model, the mixed-effects model can be utilized to reduce the bias 

(Breidenbach et al, 2007). This study utilized LMM to explore forest dynamics that 

occurred in response to meteorological factors. The result displayed a presence of time-

drift for the capability of the meteorological variables explaining forest dynamics. 

Actually, meteorological factors are observed to vary spatiotemporally and forest 

dynamics vary accordingly (Cruz-Cárdenas et al. 2016; Pacheco et al. 2010). The mixed-

effects of temperature and fixed effect of precipitation were identified as main drivers for 

variations in forests. This research presented insights that can improve our understanding 

of forest dynamics to the changing climate in the Gulf Coast. 
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CHAPTER V 

SUMMARY 

The meteorological change was interpreted differently from the climate change in 

following three perspectives: firstly, according to the intergovernmental panel on climate 

change (IPCC) report (2014), climate change is defined as a change in the state of the 

climate that can be identified (e.g., by using statistical tests) by changes in the mean 

and/or the variability of its properties, and that persists for an extended period, typically 

decades or longer; while this study only focused on temperature/precipitation fluctuations 

in a one year period.  Secondly, the framework convention on climate change (UNFCCC) 

makes defines climate change as a change of climate which is attributed directly or 

indirectly to human activity in addition to natural climate variability; while this study 

assumed the possible human disturbance as a constant effect to forest dynamics. Thirdly, 

this study placed focus on a general trend of meteorological variations not the changes in 

extreme weather and climate events. 

The impact of the climate change induced meteorological fluctuations is 

important and was considered in many climate change studies. The forest dynamics needs 

consideration in such studies, especially in Gulf of Mexico coastal region. However, the 

effect of changes in meteorological factors on forest dynamics was mostly discussed at a 

stand scale, while at a landscape scale is rarely quantified in studies. Understanding 

relationships between meteorological factors and forest dynamics is vital for addressing a 
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wide range of contemporary environmental issues such as biodiversity loss, deforestation, 

land/soil degradation, and climate change. I explored forest dynamics to spatiotemporal 

changes of temperature and precipitation across the GOM coastal region and obtained a 

comprehensive understanding about its spatiotemporal properties of each major forest 

type. 

In this study, the contributions of changes in meteorological parameters to forest 

dynamics were analyzed and quantified. The spatiotemporal heterogeneity in the 

response of forests to meteorological change was observed to exist in the GOM coastal 

region. From a temporal aspect, statistical regression modeling based approaches were 

used for comparing forest dynamics to meteorological changes of different seasons. 

Models were always characterized by better performances in spring and summer. From a 

spatial aspect, the complexity of forest types need to be considered when modeling forest 

dynamics. Forest community consists of numerous types, each of which has its own 

spatial and temporal signature. Therefore, to better understand how meteorological 

changes influence forest dynamics, this study also compared the differences between 

forest dynamics of different forest types and it showed that forest type results in distinct 

response to explanatory variables (e.g., precipitation, temperature and soil texture). 

Statistical regression methods provide a variety of possible means for finding the 

best fitted model in order to explore forest dynamics to meteorological changes. In this 

context, the development, assessment and selection of models have a great potential to 

study on, which was considered in this study. The fixed-effects method (e.g., OLS and 

GWR) have been proved to be an adequate tool to model relationships. However, spatial 

relationships often involve spatial dependence, with correlations exist between the values 
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of a random variable at a location and the values of the same variable at neighbors. This 

is caused by underlying spatial processes that give rise to a localized covariation among 

variables, and, consequently, clusters of similar or dissimilar values of the variables 

(Zhang et al. 2009). In order to avoid the estimation bias inherent in non-spatial models 

(e.g., OLS) and to consider spatial processes, GWR models were utilized and compared 

with OLS models. It was found that GWR models are better than global regression OLS 

models, which is in accordance with several other studies (Zhao et al., 2010; Gao et al., 

2012; Su et al., 2012; Zhao et al., 2014).  

Since results of this study indicate an explanatory power of models with 

explanatory variables (e.g., precipitation, temperature and soil texture) explaining forest 

dynamics, I conclude that the forest dynamics depends on the impact of changes in 

meteorological factors and soil texture in the Gulf of Mexico coastal region. In other 

regions, there might be other relationships, but especially with similar climatic 

conditions, the impact of meteorological factors or soil on forest dynamics is expected to 

be of a similar magnitude. This may indicate the importance of the results of this research 

revealing the important role of meteorological factors and soil texture. Therefore, further 

forest dynamics in GOM coastal region can be predicted by meteorological factor and 

soil texture. 

I have fitted fixed-effects and mixed-effects models to describe the forest 

dynamics to meteorological changes in GOM coastal region. There are still numbers of 

regression methods exist for determining spatial relationships. In future studies, more 

methods could be carried out to identify which model would best fit the data and have the 

strongest explanatory power. Moreover, it was believed that forest dynamics was 
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determined by resource-based factors such as radiation, nutrients supply, topography and 

drainage, and disturbance-based factors such as soil acidity, fire and air pollution 

(Murphy and Bowman 2012; Pretzsch 2009). The variance of the model must be further 

analyzed in order to identify the importance of other potential explanatory variables. 

Additionally, the time-series data have been proved to have a great potential to capture 

fluctuations of climate and forest dynamics in many studies (Li et al. 2013; Neeti et al. 

2012; de Jong et al. 2011; Höpfner and Scherer. 2011; Verbesselt et al. 2010; Powell et 

al. 2010; Omuto et al. 2010; McCloy and Lucht. 2004). Therefore, I will include data of 

many more years in future studies. 
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Table A.1 MODIS NDVI (MOD13Q1) from March (2012) to February (2013) 
 

File Name Acquisition 
Date 

1 MOD13Q1.A2013049.h11v06.005.2013067184209.hdf 2013/2/18 
2 MOD13Q1.A2013049.h09v06.005.2013067182827.hdf 2013/2/18 
3 MOD13Q1.A2013049.h11v05.005.2013067205911.hdf 2013/2/18 
4 MOD13Q1.A2013049.h10v05.005.2013067190714.hdf 2013/2/18 
5 MOD13Q1.A2013049.h09v05.005.2013067192706.hdf 2013/2/18 
6 MOD13Q1.A2013049.h10v06.005.2013067173711.hdf 2013/2/18 
7 MOD13Q1.A2013033.h10v05.005.2013051105127.hdf 2013/2/2 
8 MOD13Q1.A2013033.h11v06.005.2013051095411.hdf 2013/2/2 
9 MOD13Q1.A2013033.h09v05.005.2013051105915.hdf 2013/2/2 
10 MOD13Q1.A2013033.h11v05.005.2013051102500.hdf 2013/2/2 
11 MOD13Q1.A2013033.h10v06.005.2013051103057.hdf 2013/2/2 
12 MOD13Q1.A2013033.h09v06.005.2013051102946.hdf 2013/2/2 
13 MOD13Q1.A2013017.h10v05.005.2013039190155.hdf 2013/1/17 
14 MOD13Q1.A2013017.h11v05.005.2013039211440.hdf 2013/1/17 
15 MOD13Q1.A2013017.h10v06.005.2013042063745.hdf 2013/1/17 
16 MOD13Q1.A2013017.h09v06.005.2013039193536.hdf 2013/1/17 
17 MOD13Q1.A2013017.h11v06.005.2013039205306.hdf 2013/1/17 
18 MOD13Q1.A2013017.h09v05.005.2013039213645.hdf 2013/1/17 
19 MOD13Q1.A2013001.h11v06.005.2013018040941.hdf 2013/1/1 
20 MOD13Q1.A2013001.h10v05.005.2013018041412.hdf 2013/1/1 
21 MOD13Q1.A2013001.h09v06.005.2013018015806.hdf 2013/1/1 
22 MOD13Q1.A2013001.h09v05.005.2013018035349.hdf 2013/1/1 
23 MOD13Q1.A2013001.h11v05.005.2013018034942.hdf 2013/1/1 
24 MOD13Q1.A2013001.h10v06.005.2013018035929.hdf 2013/1/1 
25 MOD13Q1.A2012353.h11v05.005.2013009145647.hdf 2012/12/18 
26 MOD13Q1.A2012353.h10v06.005.2013009145928.hdf 2012/12/18 
27 MOD13Q1.A2012353.h10v05.005.2013009152629.hdf 2012/12/18 
28 MOD13Q1.A2012353.h09v05.005.2013009150640.hdf 2012/12/18 
29 MOD13Q1.A2012353.h09v06.005.2013009144953.hdf 2012/12/18 
30 MOD13Q1.A2012353.h11v06.005.2013009152242.hdf 2012/12/18 
31 MOD13Q1.A2012337.h10v06.005.2012355094444.hdf 2012/12/2 
32 MOD13Q1.A2012337.h11v05.005.2012355102736.hdf 2012/12/2 
33 MOD13Q1.A2012337.h09v06.005.2012355102110.hdf 2012/12/2 
34 MOD13Q1.A2012337.h10v05.005.2012355095743.hdf 2012/12/2 
35 MOD13Q1.A2012337.h09v05.005.2012355103424.hdf 2012/12/2 
36 MOD13Q1.A2012337.h11v06.005.2012355100616.hdf 2012/12/2 
37 MOD13Q1.A2012321.h11v06.005.2012339011955.hdf 2012/11/16 
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Table A.1 (Continued) 

38 MOD13Q1.A2012321.h09v06.005.2012339025804.hdf 2012/11/16 
39 MOD13Q1.A2012321.h10v06.005.2012339025709.hdf 2012/11/16 
40 MOD13Q1.A2012321.h09v05.005.2012339031137.hdf 2012/11/16 
41 MOD13Q1.A2012321.h10v05.005.2012339030953.hdf 2012/11/16 
42 MOD13Q1.A2012321.h11v05.005.2012339030726.hdf 2012/11/16 
43 MOD13Q1.A2012305.h10v06.005.2012322033113.hdf 2012/10/31 
44 MOD13Q1.A2012305.h11v05.005.2012322042608.hdf 2012/10/31 
45 MOD13Q1.A2012305.h10v05.005.2012322042823.hdf 2012/10/31 
46 MOD13Q1.A2012305.h09v06.005.2012322042117.hdf 2012/10/31 
47 MOD13Q1.A2012305.h09v05.005.2012322042054.hdf 2012/10/31 
48 MOD13Q1.A2012305.h11v06.005.2012322050522.hdf 2012/10/31 
49 MOD13Q1.A2012289.h10v05.005.2012311101834.hdf 2012/10/15 
50 MOD13Q1.A2012289.h09v05.005.2012311101002.hdf 2012/10/15 
51 MOD13Q1.A2012289.h10v06.005.2012311095925.hdf 2012/10/15 
52 MOD13Q1.A2012289.h09v06.005.2012311095606.hdf 2012/10/15 
53 MOD13Q1.A2012289.h11v06.005.2012311103424.hdf 2012/10/15 
54 MOD13Q1.A2012289.h11v05.005.2012311100624.hdf 2012/10/15 
55 MOD13Q1.A2012273.h11v06.005.2012299101346.hdf 2012/9/29 
56 MOD13Q1.A2012273.h09v05.005.2012299103301.hdf 2012/9/29 
57 MOD13Q1.A2012273.h10v06.005.2012299101827.hdf 2012/9/29 
58 MOD13Q1.A2012273.h10v05.005.2012299104545.hdf 2012/9/29 
59 MOD13Q1.A2012273.h11v05.005.2012299102523.hdf 2012/9/29 
60 MOD13Q1.A2012273.h09v06.005.2012299101746.hdf 2012/9/29 
61 MOD13Q1.A2012257.h09v05.005.2012275110740.hdf 2012/9/13 
62 MOD13Q1.A2012257.h10v06.005.2012275105013.hdf 2012/9/13 
63 MOD13Q1.A2012257.h11v05.005.2012275105939.hdf 2012/9/13 
64 MOD13Q1.A2012257.h10v05.005.2012275111116.hdf 2012/9/13 
65 MOD13Q1.A2012257.h09v06.005.2012275105037.hdf 2012/9/13 
66 MOD13Q1.A2012257.h11v06.005.2012275103928.hdf 2012/9/13 
67 MOD13Q1.A2012241.h11v06.005.2012258030419.hdf 2012/8/28 
68 MOD13Q1.A2012241.h10v05.005.2012258035120.hdf 2012/8/28 
69 MOD13Q1.A2012241.h09v06.005.2012258030806.hdf 2012/8/28 
70 MOD13Q1.A2012241.h09v05.005.2012258031758.hdf 2012/8/28 
71 MOD13Q1.A2012241.h11v05.005.2012258032539.hdf 2012/8/28 
72 MOD13Q1.A2012241.h10v06.005.2012258030636.hdf 2012/8/28 
73 MOD13Q1.A2012225.h10v05.005.2012242064616.hdf 2012/8/12 
74 MOD13Q1.A2012225.h09v05.005.2012242060651.hdf 2012/8/12 
75 MOD13Q1.A2012225.h09v06.005.2012242055028.hdf 2012/8/12 
76 MOD13Q1.A2012225.h11v06.005.2012242065341.hdf 2012/8/12 
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Table A.1 (Continued) 

77 MOD13Q1.A2012225.h10v06.005.2012242054010.hdf 2012/8/12 
78 MOD13Q1.A2012225.h11v05.005.2012242070320.hdf 2012/8/12 
79 MOD13Q1.A2012209.h11v06.005.2012228192404.hdf 2012/7/27 
80 MOD13Q1.A2012209.h11v05.005.2012228194514.hdf 2012/7/27 
81 MOD13Q1.A2012209.h10v05.005.2012228190929.hdf 2012/7/27 
82 MOD13Q1.A2012209.h09v05.005.2012228190117.hdf 2012/7/27 
83 MOD13Q1.A2012209.h10v06.005.2012228185311.hdf 2012/7/27 
84 MOD13Q1.A2012209.h09v06.005.2012228190101.hdf 2012/7/27 
85 MOD13Q1.A2012193.h09v05.005.2012212123942.hdf 2012/7/11 
86 MOD13Q1.A2012193.h10v06.005.2012212120453.hdf 2012/7/11 
87 MOD13Q1.A2012193.h11v05.005.2012212121120.hdf 2012/7/11 
88 MOD13Q1.A2012193.h10v05.005.2012212122053.hdf 2012/7/11 
89 MOD13Q1.A2012193.h09v06.005.2012212120335.hdf 2012/7/11 
90 MOD13Q1.A2012193.h11v06.005.2012212121055.hdf 2012/7/11 
91 MOD13Q1.A2012177.h11v06.005.2012209003614.hdf 2012/6/25 
92 MOD13Q1.A2012177.h09v06.005.2012209005357.hdf 2012/6/25 
93 MOD13Q1.A2012177.h10v06.005.2012209011146.hdf 2012/6/25 
94 MOD13Q1.A2012177.h09v05.005.2012209010459.hdf 2012/6/25 
95 MOD13Q1.A2012177.h10v05.005.2012209004358.hdf 2012/6/25 
96 MOD13Q1.A2012177.h11v05.005.2012209010343.hdf 2012/6/25 
97 MOD13Q1.A2012161.h09v06.005.2012178054835.hdf 2012/6/9 
98 MOD13Q1.A2012161.h11v06.005.2012178052425.hdf 2012/6/9 
99 MOD13Q1.A2012161.h11v05.005.2012178060853.hdf 2012/6/9 
100 MOD13Q1.A2012161.h09v05.005.2012178060930.hdf 2012/6/9 
101 MOD13Q1.A2012161.h10v05.005.2012178055956.hdf 2012/6/9 
102 MOD13Q1.A2012161.h10v06.005.2012178054214.hdf 2012/6/9 
103 MOD13Q1.A2012145.h10v06.005.2012166112539.hdf 2012/5/24 
104 MOD13Q1.A2012145.h11v06.005.2012166104819.hdf 2012/5/24 
105 MOD13Q1.A2012145.h09v06.005.2012166105111.hdf 2012/5/24 
106 MOD13Q1.A2012145.h10v05.005.2012166112540.hdf 2012/5/24 
107 MOD13Q1.A2012145.h09v05.005.2012166111623.hdf 2012/5/24 
108 MOD13Q1.A2012145.h11v05.005.2012166111707.hdf 2012/5/24 
109 MOD13Q1.A2012129.h11v05.005.2012146111034.hdf 2012/5/8 
110 MOD13Q1.A2012129.h09v06.005.2012146112301.hdf 2012/5/8 
111 MOD13Q1.A2012129.h10v06.005.2012146122535.hdf 2012/5/8 
112 MOD13Q1.A2012129.h11v06.005.2012146111906.hdf 2012/5/8 
113 MOD13Q1.A2012129.h10v05.005.2012146113451.hdf 2012/5/8 
114 MOD13Q1.A2012129.h09v05.005.2012146110302.hdf 2012/5/8 
115 MOD13Q1.A2012113.h09v05.005.2012130034738.hdf 2012/4/22 
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Table A.1 (Continued) 

116 MOD13Q1.A2012113.h10v06.005.2012130033204.hdf 2012/4/22 
117 MOD13Q1.A2012113.h09v06.005.2012130030636.hdf 2012/4/22 
118 MOD13Q1.A2012113.h11v06.005.2012130033729.hdf 2012/4/22 
119 MOD13Q1.A2012113.h10v05.005.2012130044938.hdf 2012/4/22 
120 MOD13Q1.A2012113.h11v05.005.2012130031329.hdf 2012/4/22 
121 MOD13Q1.A2012097.h11v05.005.2012114123208.hdf 2012/4/6 
122 MOD13Q1.A2012097.h09v05.005.2012114114524.hdf 2012/4/6 
123 MOD13Q1.A2012097.h10v05.005.2012114114223.hdf 2012/4/6 
124 MOD13Q1.A2012097.h10v06.005.2012114110338.hdf 2012/4/6 
125 MOD13Q1.A2012097.h09v06.005.2012114111649.hdf 2012/4/6 
126 MOD13Q1.A2012097.h11v06.005.2012114113315.hdf 2012/4/6 
127 MOD13Q1.A2012081.h11v05.005.2012107202420.hdf 2012/3/21 
128 MOD13Q1.A2012081.h10v06.005.2012107195131.hdf 2012/3/21 
129 MOD13Q1.A2012081.h11v06.005.2012107201758.hdf 2012/3/21 
130 MOD13Q1.A2012081.h10v05.005.2012107201259.hdf 2012/3/21 
131 MOD13Q1.A2012081.h09v05.005.2012107200459.hdf 2012/3/21 
132 MOD13Q1.A2012081.h09v06.005.2012107200414.hdf 2012/3/21 
133 MOD13Q1.A2012065.h09v06.005.2012082114844.hdf 2012/3/5 
134 MOD13Q1.A2012065.h11v06.005.2012082113628.hdf 2012/3/5 
135 MOD13Q1.A2012065.h10v05.005.2012082115842.hdf 2012/3/5 
136 MOD13Q1.A2012065.h09v05.005.2012082115239.hdf 2012/3/5 
137 MOD13Q1.A2012065.h11v05.005.2012082120948.hdf 2012/3/5 
138 MOD13Q1.A2012065.h10v06.005.2012082113904.hdf 2012/3/5 

Download from 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1 

  

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1
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Table A.2 MODIS NDVI (MOD13Q1) from March (2009) to February (2010) 
 

Local Granule ID Acquisition 
Date 

1 MOD13Q1.A2010049.h09v05.005.2010067030234.hdf 2010/2/18 
2 MOD13Q1.A2010049.h09v06.005.2010066235649.hdf 2010/2/18 
3 MOD13Q1.A2010049.h11v05.005.2010066164249.hdf 2010/2/18 
4 MOD13Q1.A2010049.h10v06.005.2010067103334.hdf 2010/2/18 
5 MOD13Q1.A2010049.h11v06.005.2010066144528.hdf 2010/2/18 
6 MOD13Q1.A2010049.h10v05.005.2010067114503.hdf 2010/2/18 
7 MOD13Q1.A2010033.h09v05.005.2010051210854.hdf 2010/2/2 
8 MOD13Q1.A2010033.h09v06.005.2010050205231.hdf 2010/2/2 
9 MOD13Q1.A2010033.h11v05.005.2010050124638.hdf 2010/2/2 
10 MOD13Q1.A2010033.h10v06.005.2010051020620.hdf 2010/2/2 
11 MOD13Q1.A2010033.h11v06.005.2010051152221.hdf 2010/2/2 
12 MOD13Q1.A2010033.h10v05.005.2010051080246.hdf 2010/2/2 
13 MOD13Q1.A2010017.h11v06.005.2010035144503.hdf 2010/1/17 
14 MOD13Q1.A2010017.h11v05.005.2010035154043.hdf 2010/1/17 
15 MOD13Q1.A2010017.h10v06.005.2010036141005.hdf 2010/1/17 
16 MOD13Q1.A2010017.h09v06.005.2010035211358.hdf 2010/1/17 
17 MOD13Q1.A2010017.h09v05.005.2010036011343.hdf 2010/1/17 
18 MOD13Q1.A2010017.h10v05.005.2010036162319.hdf 2010/1/17 
19 MOD13Q1.A2010001.h09v06.005.2010027024403.hdf 2010/1/1 
20 MOD13Q1.A2010001.h10v06.005.2010028005043.hdf 2010/1/1 
21 MOD13Q1.A2010001.h10v05.005.2010028005522.hdf 2010/1/1 
22 MOD13Q1.A2010001.h11v05.005.2010026183306.hdf 2010/1/1 
23 MOD13Q1.A2010001.h09v05.005.2010027084109.hdf 2010/1/1 
24 MOD13Q1.A2010001.h11v06.005.2010026161740.hdf 2010/1/1 
25 MOD13Q1.A2009353.h11v05.005.2010008003036.hdf 2009/12/19 
26 MOD13Q1.A2009353.h10v05.005.2010009082500.hdf 2009/12/19 
27 MOD13Q1.A2009353.h09v05.005.2010008125955.hdf 2009/12/19 
28 MOD13Q1.A2009353.h11v06.005.2010007193134.hdf 2009/12/19 
29 MOD13Q1.A2009353.h10v06.005.2010009072815.hdf 2009/12/19 
30 MOD13Q1.A2009353.h09v06.005.2010008051705.hdf 2009/12/19 
31 MOD13Q1.A2009337.h11v05.005.2009354214722.hdf 2009/12/3 
32 MOD13Q1.A2009337.h10v05.005.2009355133326.hdf 2009/12/3 
33 MOD13Q1.A2009337.h09v06.005.2009355010142.hdf 2009/12/3 
34 MOD13Q1.A2009337.h10v06.005.2009355125317.hdf 2009/12/3 
35 MOD13Q1.A2009337.h11v06.005.2009354200828.hdf 2009/12/3 
36 MOD13Q1.A2009337.h09v05.005.2009355043100.hdf 2009/12/3 
37 MOD13Q1.A2009321.h09v05.005.2009338234505.hdf 2009/11/17 
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Table A.2 (Continued) 

38 MOD13Q1.A2009321.h11v05.005.2009338075005.hdf 2009/11/17 
39 MOD13Q1.A2009321.h10v06.005.2009338185040.hdf 2009/11/17 
40 MOD13Q1.A2009321.h11v06.005.2009338150446.hdf 2009/11/17 
41 MOD13Q1.A2009321.h10v05.005.2009338195219.hdf 2009/11/17 
42 MOD13Q1.A2009321.h09v06.005.2009338143058.hdf 2009/11/17 
43 MOD13Q1.A2009305.h09v06.005.2009322170839.hdf 2009/11/1 
44 MOD13Q1.A2009305.h10v06.005.2009323052858.hdf 2009/11/1 
45 MOD13Q1.A2009305.h11v06.005.2009322090953.hdf 2009/11/1 
46 MOD13Q1.A2009305.h10v05.005.2009323053434.hdf 2009/11/1 
47 MOD13Q1.A2009305.h11v05.005.2009322114038.hdf 2009/11/1 
48 MOD13Q1.A2009305.h09v05.005.2009322223228.hdf 2009/11/1 
49 MOD13Q1.A2009289.h11v05.005.2009307202207.hdf 2009/10/16 
50 MOD13Q1.A2009289.h09v05.005.2009308060933.hdf 2009/10/16 
51 MOD13Q1.A2009289.h09v06.005.2009308011036.hdf 2009/10/16 
52 MOD13Q1.A2009289.h10v06.005.2009309044017.hdf 2009/10/16 
53 MOD13Q1.A2009289.h11v06.005.2009307183458.hdf 2009/10/16 
54 MOD13Q1.A2009289.h10v05.005.2009309073752.hdf 2009/10/16 
55 MOD13Q1.A2009273.h11v05.005.2009305230701.hdf 2009/9/30 
56 MOD13Q1.A2009273.h09v05.005.2009306035621.hdf 2009/9/30 
57 MOD13Q1.A2009273.h11v06.005.2009305182827.hdf 2009/9/30 
58 MOD13Q1.A2009273.h10v05.005.2009306035641.hdf 2009/9/30 
59 MOD13Q1.A2009273.h10v06.005.2009306001642.hdf 2009/9/30 
60 MOD13Q1.A2009273.h09v06.005.2009305201055.hdf 2009/9/30 
61 MOD13Q1.A2009257.h09v06.005.2009275220252.hdf 2009/9/14 
62 MOD13Q1.A2009257.h10v06.005.2009275181021.hdf 2009/9/14 
63 MOD13Q1.A2009257.h11v06.005.2009275195032.hdf 2009/9/14 
64 MOD13Q1.A2009257.h09v05.005.2009276010739.hdf 2009/9/14 
65 MOD13Q1.A2009257.h11v05.005.2009275202401.hdf 2009/9/14 
66 MOD13Q1.A2009257.h10v05.005.2009276034808.hdf 2009/9/14 
67 MOD13Q1.A2009241.h09v06.005.2009258230105.hdf 2009/8/29 
68 MOD13Q1.A2009241.h10v06.005.2009260060304.hdf 2009/8/29 
69 MOD13Q1.A2009241.h09v05.005.2009259044004.hdf 2009/8/29 
70 MOD13Q1.A2009241.h11v06.005.2009258154454.hdf 2009/8/29 
71 MOD13Q1.A2009241.h11v05.005.2009258180706.hdf 2009/8/29 
72 MOD13Q1.A2009241.h10v05.005.2009260071119.hdf 2009/8/29 
73 MOD13Q1.A2009225.h10v06.005.2009247052408.hdf 2009/8/13 
74 MOD13Q1.A2009225.h11v06.005.2009246225136.hdf 2009/8/13 
75 MOD13Q1.A2009225.h09v06.005.2009247064757.hdf 2009/8/13 
76 MOD13Q1.A2009225.h10v05.005.2009247064436.hdf 2009/8/13 
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Table A.2 (Continued) 

77 MOD13Q1.A2009225.h11v05.005.2009246231034.hdf 2009/8/13 
78 MOD13Q1.A2009225.h09v05.005.2009247133101.hdf 2009/8/13 
79 MOD13Q1.A2009209.h11v05.005.2009227205201.hdf 2009/7/28 
80 MOD13Q1.A2009209.h09v05.005.2009228063939.hdf 2009/7/28 
81 MOD13Q1.A2009209.h10v06.005.2009229000818.hdf 2009/7/28 
82 MOD13Q1.A2009209.h11v06.005.2009227185342.hdf 2009/7/28 
83 MOD13Q1.A2009209.h09v06.005.2009228020411.hdf 2009/7/28 
84 MOD13Q1.A2009209.h10v05.005.2009229014338.hdf 2009/7/28 
85 MOD13Q1.A2009193.h09v06.005.2009212015754.hdf 2009/7/12 
86 MOD13Q1.A2009193.h10v06.005.2009213133041.hdf 2009/7/12 
87 MOD13Q1.A2009193.h09v05.005.2009212090048.hdf 2009/7/12 
88 MOD13Q1.A2009193.h10v05.005.2009213150306.hdf 2009/7/12 
89 MOD13Q1.A2009193.h11v06.005.2009211111919.hdf 2009/7/12 
90 MOD13Q1.A2009193.h11v05.005.2009211175229.hdf 2009/7/12 
91 MOD13Q1.A2009177.h09v06.005.2009200003450.hdf 2009/6/26 
92 MOD13Q1.A2009177.h09v05.005.2009199001950.hdf 2009/6/26 
93 MOD13Q1.A2009177.h10v06.005.2009200010646.hdf 2009/6/26 
94 MOD13Q1.A2009177.h11v06.005.2009200023721.hdf 2009/6/26 
95 MOD13Q1.A2009177.h10v05.005.2009199045936.hdf 2009/6/26 
96 MOD13Q1.A2009177.h11v05.005.2009200014029.hdf 2009/6/26 
97 MOD13Q1.A2009161.h10v06.005.2009182221157.hdf 2009/6/10 
98 MOD13Q1.A2009161.h11v06.005.2009180035307.hdf 2009/6/10 
99 MOD13Q1.A2009161.h09v06.005.2009180163448.hdf 2009/6/10 
100 MOD13Q1.A2009161.h10v05.005.2009182213448.hdf 2009/6/10 
101 MOD13Q1.A2009161.h11v05.005.2009180053250.hdf 2009/6/10 
102 MOD13Q1.A2009161.h09v05.005.2009181033925.hdf 2009/6/10 
103 MOD13Q1.A2009145.h09v05.005.2009166085552.hdf 2009/5/25 
104 MOD13Q1.A2009145.h10v06.005.2009167024506.hdf 2009/5/25 
105 MOD13Q1.A2009145.h11v06.005.2009166025634.hdf 2009/5/25 
106 MOD13Q1.A2009145.h09v06.005.2009166133311.hdf 2009/5/25 
107 MOD13Q1.A2009145.h10v05.005.2009167045340.hdf 2009/5/25 
108 MOD13Q1.A2009145.h11v05.005.2009165083926.hdf 2009/5/25 
109 MOD13Q1.A2009129.h09v06.005.2009149020130.hdf 2009/5/9 
110 MOD13Q1.A2009129.h09v05.005.2009150034509.hdf 2009/5/9 
111 MOD13Q1.A2009129.h11v06.005.2009147143028.hdf 2009/5/9 
112 MOD13Q1.A2009129.h10v05.005.2009150190726.hdf 2009/5/9 
113 MOD13Q1.A2009129.h10v06.005.2009150154651.hdf 2009/5/9 
114 MOD13Q1.A2009129.h11v05.005.2009147182845.hdf 2009/5/9 
115 MOD13Q1.A2009113.h09v06.005.2009130193659.hdf 2009/4/23 
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Table A.2 (Continued) 

116 MOD13Q1.A2009113.h11v05.005.2009130213223.hdf 2009/4/23 
117 MOD13Q1.A2009113.h11v06.005.2009130161938.hdf 2009/4/23 
118 MOD13Q1.A2009113.h09v05.005.2009130203731.hdf 2009/4/23 
119 MOD13Q1.A2009113.h10v06.005.2009131181650.hdf 2009/4/23 
120 MOD13Q1.A2009113.h10v05.005.2009132042906.hdf 2009/4/23 
121 MOD13Q1.A2009097.h11v06.005.2009123092929.hdf 2009/4/7 
122 MOD13Q1.A2009097.h10v06.005.2009125072214.hdf 2009/4/7 
123 MOD13Q1.A2009097.h09v06.005.2009124012925.hdf 2009/4/7 
124 MOD13Q1.A2009097.h09v05.005.2009124093050.hdf 2009/4/7 
125 MOD13Q1.A2009097.h11v05.005.2009123112209.hdf 2009/4/7 
126 MOD13Q1.A2009097.h10v05.005.2009125092335.hdf 2009/4/7 
127 MOD13Q1.A2009081.h09v05.005.2009100062020.hdf 2009/3/22 
128 MOD13Q1.A2009081.h10v06.005.2009101000031.hdf 2009/3/22 
129 MOD13Q1.A2009081.h11v06.005.2009099112007.hdf 2009/3/22 
130 MOD13Q1.A2009081.h09v06.005.2009100004033.hdf 2009/3/22 
131 MOD13Q1.A2009081.h10v05.005.2009101013426.hdf 2009/3/22 
132 MOD13Q1.A2009081.h11v05.005.2009099135353.hdf 2009/3/22 
133 MOD13Q1.A2009065.h10v06.005.2009086073611.hdf 2009/3/6 
134 MOD13Q1.A2009065.h09v05.005.2009083231847.hdf 2009/3/6 
135 MOD13Q1.A2009065.h11v06.005.2009082230105.hdf 2009/3/6 
136 MOD13Q1.A2009065.h10v05.005.2009086094929.hdf 2009/3/6 
137 MOD13Q1.A2009065.h09v06.005.2009083132938.hdf 2009/3/6 
138 MOD13Q1.A2009065.h11v05.005.2009083002209.hdf 2009/3/6 

Download from 
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1 

  

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1
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Table A.3 Monthly and annual precipitation (from the year of 2002 to 2016) 
 

Year File Name 
1 2002 PRISM_ppt_stable_4kmM3_2002_all_bil.zip 
2 2003 PRISM_ppt_stable_4kmM3_2003_all_bil.zip 
3 2004 PRISM_ppt_stable_4kmM3_2004_all_bil.zip 
4 2005 PRISM_ppt_stable_4kmM3_2005_all_bil.zip 
5 2006 PRISM_ppt_stable_4kmM3_2006_all_bil.zip 
6 2007 PRISM_ppt_stable_4kmM3_2007_all_bil.zip 
7 2008 PRISM_ppt_stable_4kmM3_2008_all_bil.zip 
8 2009 PRISM_ppt_stable_4kmM3_2009_all_bil.zip 
9 2010 PRISM_ppt_stable_4kmM3_2010_all_bil.zip 
10 2011 PRISM_ppt_stable_4kmM3_2011_all_bil.zip 
11 2012 PRISM_ppt_stable_4kmM3_2012_all_bil.zip 
12 2013 PRISM_ppt_stable_4kmM3_2013_all_bil.zip 
13 2014 PRISM_ppt_stable_4kmM3_2014_all_bil.zip 
14 2015 PRISM_ppt_stable_4kmM3_2015_all_bil.zip 
15 2016 PRISM_ppt_stable_4kmM3_2016_all_bil.zip 

Download from http://www.prism.oregonstate.edu/ 

Table A.4 Monthly and annual mean temperature (from the year of 2002 to 2016) 
 

Year File Name 
1 2002 PRISM_tmean_stable_4kmM2_2002_all_bil 
2 2003 PRISM_tmean_stable_4kmM2_2003_all_bil 
3 2004 PRISM_tmean_stable_4kmM2_2004_all_bil 
4 2005 PRISM_tmean_stable_4kmM2_2005_all_bil 
5 2006 PRISM_tmean_stable_4kmM2_2006_all_bil 
6 2007 PRISM_tmean_stable_4kmM2_2007_all_bil 
7 2008 PRISM_tmean_stable_4kmM2_2008_all_bil 
8 2009 PRISM_tmean_stable_4kmM2_2009_all_bil 
9 2010 PRISM_tmean_stable_4kmM2_2010_all_bil 
10 2011 PRISM_tmean_stable_4kmM2_2011_all_bil 
11 2012 PRISM_tmean_stable_4kmM2_2012_all_bil 
12 2013 PRISM_tmean_stable_4kmM2_2013_all_bil 
13 2014 PRISM_tmean_stable_4kmM2_2014_all_bil 
14 2015 PRISM_tmean_stable_4kmM2_2015_all_bil 
15 2016 PRISM_tmean_stable_4kmM2_2016_all_bil 

Download from http://www.prism.oregonstate.edu/ 

http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
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Table A.5 Gridded Soil Survey Geographic (gSSURGO) by State 

 State File Name 
1 Alabama soils_GSSURGO_al_3319029_01.zip 
2 Florida soils_GSSURGO_fl_3316703_01.zip 
3 Georgia soils_GSSURGO_ga_3325011_01.zip 
4 Louisiana soils_GSSURGO_la_3320215_01.zip 
5 Mississippi soils_GSSURGO_ms_2585009_02.zip 
6 Texas soils_GSSURGO_tx_3325007_01.zip 

Download from https://gdg.sc.egov.usda.gov/ 
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