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Several hydraulic loadings impose earthen levees to time-dependent variably 

saturated seepage conditions. The main objective of this study is to improve the analysis 

of levees under transient seepage with the use of unsaturated soil mechanics. An extensive 

set of laboratory testing, field monitoring and numerical modeling are performed to analyze 

a silty sand setback levee located near Seattle, WA. In-situ data obtained from field 

monitoring are used to monitor suction and effective stress within the levee’s embankment 

and foundation over the past two years. Soil samples taken from the site are used to perform 

index, water retention, and unsaturated multi-stage triaxial tests in the laboratory. A finite 

element model of transient seepage under saturated-unsaturated conditions is then 

developed and calibrated to reasonably match the field data. The results highlight the need 

to consider unsaturated soil mechanics along with climatic variables and soil-atmosphere 

interaction when analyzing levees under transient seepage conditions.  
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CHAPTER I 

INTRODUCTION  

1.1 Overview 

Earthen levees form a critical component of the nation’s infrastructure system 

(NRC 2012). Over 160,000 km of earth levees provide flood protection in the U.S. (CRS 

2011) and their performance and reliability are crucial for homeland safety. Levee failures 

can cause catastrophic damage and loss of life, as seen in the Midwest and along the 

Mississippi River and in New Orleans during Hurricane Katrina in 2005. The majority of 

the nation’s existing levee infrastructure is now past its reasonable design life, and the long-

term sustainability of the network is a critical issue (ASCE, 2017). Moreover, 

unprecedented events like rising sea levels, ground subsidence and increasing storm 

severity resulting from global climate change are raising the level of stress on levees (e.g., 

NRC 2012; Vahedifard et al., 2016a, 2018). These facts altogether highlight the need to 

continuously improve the state of the practice for monitoring and analyses of levees under 

various loading conditions.   

Several short-duration and extreme hydraulic loadings impose earthen levees to 

time-dependent variably saturated seepage conditions. Transient seepage in variably 

saturated earth structures (e.g., levees, earthen dams) is a complex phenomenon due to 

temporal and spatial hydro-mechanical interactions in a 3-phase air-fluid-solid system. The 

intrinsic complexity of transient seepage under various flux boundary conditions warrants 
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using an advanced numerical method such as the finite element method to perform a fully 

coupled seepage-stability analysis. However, the level of expertise as well as several 

required input parameters have prevented the widespread use of numerical models in the 

common geotechnical engineering practice. Difficulty to assign appropriate input 

parameters and boundary conditions, and a lack of practical guidelines are among the main 

factors that have hindered the widespread application of numerical transient seepage 

analyses. Further, practicing engineers, in some cases, undermine the validity and accuracy 

of such numerical analyses due to lack of full-scale validation of the results and poor 

connection to field monitoring data. 

The majority of earthen structures, including earthen levees, are comprised of 

unsaturated soils (e.g., Fredlund and Rahardjo 1993; Lu and Likos 2004). Thus, employing 

unsaturated soil mechanics in the analyses of earthen levees can enhance the state of 

practice regarding the assessment of levees during their service life. The mechanics of 

unsaturated soils has been studied for over four decades (e.g., Fredlund and Morgestern 

1977; Fredlund and Rahardjo 1993; Lu and Likos 2004). Major research advances have 

been made in several areas including definition and measurement of stress state variables, 

factors affecting key engineering parameters (e.g., soil-water retention curve, strength, 

compressibility), numerical and analytical modeling, laboratory testing, and field 

monitoring of unsaturated soils (e.g., Lu and Likos 2004; Fredlund et al., 2012; Briaud 

2013; Ng and Menzies 2014). These researches have significantly improved the state of 

the art about the engineering behavior of unsaturated soils. However, such research 

advances have not been fully adopted in the practice.   
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This study is an attempt to address some of the above-mentioned gaps in the state 

of practice on the analyses of earthen levees subjected to transient unsaturated-saturated 

seepage conditions. Best practices needs new guidelines to provide instructions for where 

and when transient seepage can be applied in an effective and correct manner due to the 

uncertainty and inexperience of practicing engineers. The U.S Army Corps of Engineers 

(USACE) is responsible for analysis, monitoring and maintaining the largest network of 

the nation’s levee systems. The major guidance documents used for seepage analysis of 

levees and dams by the USACE are Engineer Manual (EM) 1110-2-1901 (USACE, 

Rev1993) and EM 1110-2-1913 (USACE, Rev2000). Although these EMs acknowledge 

the existence of transient seepage conditions, they do not provide any guidance regarding 

the use of transient unsaturated analyses in the engineering practice.  

1.2 Objectives and Scope 

The main objective of this study is to improve the analysis of levees under transient 

seepage with the use of unsaturated soil mechanics. An extensive set of laboratory testing, 

field monitoring and numerical modeling are performed to analyze a silty sand setback 

levee located near Seattle, WA. The levee is a part of the Qwuloolt Project, one of the 

nation’s largest ecosystem restoration projects, which includes restoration of 

approximately 162 hectares of estuarine land. The project site is located about 

64 kilometers north of Seattle, WA. As part of this project, a 1,219-meter-long setback 

levee was constructed using silty sand in 2014 to protect an industrial area behind it, while 

allowing for the site to be inundated with the Puget Sound water. This levee was 
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constructed of highly compacted silty sand material that was engineered using silt and 

gravelly sand material available in nearby sites. 

The laboratory testing part of the study primarily focuses on multistage and single-

stage triaxial testing of highly compacted unsaturated soil samples taken from the levee. 

This case study levee was constructed of highly compacted silty sand that was engineered 

using silt and gravelly sand material available in nearby sites. The silty sand was highly 

compacted and achieved a porosity (n) of 0.2 (void ratio e of 0.25). A modified unsaturated 

triaxial test equipment is used to test the shear strength response of the soil under different 

confining pressures and matric suction levels. Triaxial tests are commonly performed on 

three to four samples from the same soil depth and consolidated at different stress levels. 

However, in some projects, retrieving identical samples at the same depths is not possible 

and that is where multi-stage triaxial testing can become a viable option. In addition, if 

samples are limited for a specific project, multistage testing is recommended to reduce 

costs and time. In this work, a set of single stage and multi-stage triaxial testing are 

performed on high compacted silty sand samples. A testing procedure for multi-stage 

testing of unsaturated soil is proposed that can help toward the development of a 

standardized procedure for multistage triaxial testing on unsaturated soils. New features of 

this part of the study include experimental techniques to run multistage triaxial tests on 

highly compacted unsaturated soils and presentation of an equivalency between multistage 

and single-stage tests.  

The second focus area of this study is to demonstrate how to effectively integrate 

field monitoring data into numerical modeling of transient seepage to evaluate the 
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performance of the levee under climatic and tidal variations. Filed monitoring is performed 

using an array of tensiometers and soil moisture sensors installed within the levee’s 

embankment and foundation. A near real-time data acquisition system is employed to 

process the field data from various sensors over the past two and half years. Climatic and 

weather data including precipitation, temperature, humidity and solar radiation are 

collected from a weather station at the site whereas tidal water fluctuations are monitored 

using a water level sensor. The data collected from the sensors are used to monitor suction 

stress and effective stress versus time. A finite element model of transient seepage under 

saturated-unsaturated conditions is then developed and calibrated to reasonably match the 

measured pore water pressures and the piezometric surface, while illustrating which 

variables analyses are sensitive that can be used to estimate the transient seepage results. 

The calibrated numerical model is used in a set of parametric study.  

1.3 Structure of Thesis  

This thesis is divided into four chapters. Chapter 1 provides an overview, main 

objective and scope of this research. Chapter 2 presents results of laboratory testing to 

study the shear strength of highly compacted silty sand from the levee site using single-

stage and multistage triaxial testing. This chapter will cover discussion on highly 

compacted materials, single versus multistage information and procedures and techniques 

for multistage triaxial testing on unsaturated soils.   

Chapter 3 presents results of integrating field monitoring and numerical analysis to 

evaluate the performance of the earthen levee under climatic and tidal variations. This 

chapter will cover the background in transient seepage analysis, the need for guideline in 
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how to run a transient seepage model by practitioner engineers, and the importance to 

include the climate boundary conditions into the seepage analysis for better representation 

of field conditions. Chapter 4 provides the conclusions and recommendation for future 

works.  
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CHAPTER II 

SATURATED AND UNSATURATED SHEAR STRENGTH OF A HIGHLY 

COMPACTED SILTY SAND 

2.1 Introduction and Background 

During the last decades, unsaturated soil mechanics has shown relevance and 

significance in foundation engineering, slope stability of earthen embankments such as 

dams and levees,  underground pipelines, retaining structures, pavements and in geo-

environmental engineering, and mining engineering (Shen 2013). These structures are 

typically constructed using compacted engineered soils. With the availability of high 

efficiency modern compaction equipment and techniques, most earthen structures are 

highly compacted and exceed the project design specifications. Such highly compacted 

engineered soils used in roadways and embankments stay unsaturated most of the time. 

Levee and dam embankments are made of compacted or highly compacted materials that 

can experience accumulated deformation under cyclic wetting and drying (i.e. precipitation 

and drought periods), which affects their serviceability (Alonso 2006).  

There is limited information about the shear strength of highly compacted 

unsaturated soils which is important in evaluating the stability of the earthen structures 

which they are comprised of. It is known that highly compacted sands have a dilative 

behavior during shearing. Houlsby 1991 mentioned that the magnitude of the dilation 

depends very strongly on the density of the soil, with denser samples expanding more 
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rapidly.  The fact that a soil is dilating has an important effect on the solutions to problems 

where the soil is heavily constrained. There are still challenges on how to properly 

understand soils that are highly compacted and dilative, which is the main reason in 

studying these engineered soils.  

Khosravi et al. (2011) presented multistage triaxial testing to estimate the effective 

stress relationships for unsaturated compacted soils. A soil mixture of mortar and Bonny 

silt was used to demonstrate the capabilities of the multistage testing technique. The soil 

mixture is classified as SM according to the USCS. The soil specimen was compacted to a 

maximum unit density of 18.1 kN/m3 (115 lb/ft3), a void ratio of 0.44, and an optimum 

water content of 12%. Before performing the multistage triaxial testing, a series of 

consolidated-undrained triaxial tests with pore pressure measurements were performed on 

saturated soil specimens under effective stresses of 50, 100, 150, and 200 kPa. They found 

that the results from the multistage triaxial tests interpreted using a value of equal to the 

degree of saturation corresponded well with the critical state line obtained from 

independent tests on saturated specimens of the same soil. They concluded that even there 

are potential changes in soil structure in the specimen during loading, unloading, and 

reloading, the results indicate that the multistage testing method may be useful for 

estimating the soil-specific effective stress parameters for compacted soils in unsaturated 

conditions.  

Benerjee et al. (2018) presented a new approach that was validated by comparing 

the results obtained from multistage triaxial tests and those from single-stage triaxial tests 

varying suction states under drained conditions. The soil used in this study is classified as 
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Lean silt (ML) per the USCS from a site near the Red River in Denison, Texas. The 

maximum dry density of the soil obtained from Proctor tests was 1.7 g/cm^3 (106.13 pcf) 

at an optimum moisture content of 16%. Some additional properties of the compacted 

specimens were a void ratio (e = 0.60), porosity (n = 0.37), and a degree of saturation (Sr 

= 71%). Each multistage test was performed on an isotropically consolidated specimen at 

a constant matric suction (s =0 or 50 kPa) and varying net confining pressures of 100, 200, 

and 400 kPa. Their results showed variation from 5% to 12% of the multistage compared 

from the conventional single triaxial test results over a varying suction range.  

Patil et al. (2018) performed a series of hydrostatic compression, consolidated 

drained, and single stage triaxial compression tests on statically compacted specimens of 

unsaturated silty sand (SM) under suction-controlled conditions. They used the Barcelona 

basic model (BBM) to experimentally calibrated and used for prediction of the compacted 

silty sand response at matric suction states. The maximum dry unit density of the soil is 1.8 

g/cm3 (112.4 lb/ft3) at an optimum water content of 14.2% (2% more than the optimum). 

Some additional properties of compacted specimens were an initial void ratio between 0.46 

and 0.49, and a degree of saturation of 81%. The soil specimens were 71.2 mm (2.8 in) 

diameter and 142.24 mm (5.6 in) in height. The experimental program constituted of a fully 

automated double-walled triaxial test system, via the axis translation technique, for matric 

suctions varying from 50 to 750 kPa. The net confining pressures varied from 100 and 300 

kPa. Patil et al found that the predicted values of deviatoric stress at critical state are 

reasonably close to those experimentally assessed from the suction controlled conventional 
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triaxial compression tests; however giving that the test soil had a brittle and dilatant nature, 

the post peak softening behavior was not adequately captured by the model.  

Tripathy and Cleall (2018) explored the impact of net confining stress and suction 

on the volume change and shear strength behavior of collapsible soil. The triaxial shear 

tests were conducted in saturated and an unsaturated conditions. Consolidated drained tests 

were performed at confining pressures of 100, 250, and 400 kPa. The matric suction varied 

from 300 kPa to 0 kPa. The soil used in this study was a mix of M400 silt (40%), Leighton 

Buzzard sand (40%) and 20% Speswhite Kaolin. Their results shown an increased in peak 

strength with an increase in matric suction and confining pressures. With an increase in the 

applied suction, the failure envelopes on the Mohr coulomb circle for the unsaturated soil 

specimen were shifted in an upward direction. They found that the angle of friction for a 

matric suction range of 0 to 300 kPa were very similar, while the cohesion values varied 

from 4.8 and 61 kPa for the same range of matric suction.  

The objective of this study is to explore the impact of net confining pressure and 

matric suction on the shear strength behavior of a highly compacted dilative silty sand 

material. This study present procedures and techniques to conduct single and multistage 

triaxial test for saturated and unsaturated soils. Another focus is to study the differences in 

shear strength between single-stage and multistage test. The experimental results from this 

study add to the understanding of the shear strength behavior of a highly compacted dilative 

silty sand material. Innovative aspects of this paper include experimental techniques to run 

multistage triaxial tests on highly compacted unsaturated soils to be used by other 

researchers since there are no standard guidelines.  
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2.2 Soils Properties and Specimen Preparation 

The samples were retrieved from the study area, located in the city of Marysville, 

Snohomish County, Washington (Rivera-Hernandez et al. 2017). The test specimen were 

constituted from silty sand bulk samples retrieved from a depth of about 3 meters. The soil 

consisted of gravel (40.1%), sand (44.2%), and fines (15.7%). Soil specimens was sieved 

on 3/8-inch sieve prior to compaction and triaxial test. The soil is classified as silty sand 

(SM) as per the Unified Soil Classification System (USCS). From Proctor compaction 

tests, the maximum dry density of the soil was 21.05 kN/m3 at an optimum moisture content 

of 7.2%. This density resulted in a porosity of about 0.2. Before conducting the test, each 

soil sample is prepared to the optimum moisture content and compacted in four layer to 

about 95% of the maximum dry unit weight. The soil layers were scarified after each lift 

for better interlocking between soil particles. The soils samples were prepared for a 

diameter of 50.8 mm and a height of 101.6 mm.  

The soil water retention curve (SWRC) of the silty sand material was measured by 

running a multiple test using the Transient water Release and Imbibition Method (TRIM). 

Wayllace & Lu 2012 presented this new methodology to provide a fast, accurate, and 

simple testing tool for obtaining the SWRC for various soil types under wetting and drying 

states. The TRIM method uses an inverse modeling technique to develop the full curve 

from two matric suction (10 kPa and 95kPa) pressures that the sample is exposed.  

The SWRC’s shown in Figure 2.1 represent drying and wetting curves for silty sand 

samples retrieved from the same depth as the samples used in the triaxial test and performed 

on different dates. As part of running the TRIM test, a saturated hydraulic conductivity of 

3.9e-05 cm/s was determined and used in obtaining the SWRC.  
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Figure 2.1 Illustration of the SWRC for the TRIM 

2.3 Experimental Setup 

The axis translation technique was used in this study to control the suction in the 

specimen. This technique involves controlling the pore air and water pressures using a 

high-air entry (HAE) ceramic disc. Specifically, air pressure is applied to the top of the soil 

specimen through a porous stone disk while water pressure is applied to the bottom of the 

specimen through a HAE ceramic disk. The difference between the air pressure and the 

water pressure is the matric suction. The bottom end cap has a fixed HAE ceramic stone 

which had an air-entry suction of 100 kPa, a thickness of 7.62 mm and a diameter of 42 

mm and the top end cap has a fixed porous stone with the same dimensions. After preparing 

the specimen, the soil is enclosed within a latex membraned. Next, the confining pressure 

applied to the cell, provides a seal between the membrane and the specimen. One “O” ring 
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was placed on the top end cap and two “O” rings on the bottom to ensure a good seal on 

the soil specimen.  

In the saturation stage, water backpressure is applied to the top and bottom end 

caps. The use of backpressure eliminates the possibility for air bubbles during the test 

giving better readings on the burettes. When applying the matric suction, the backpressure 

is kept constant at the bottom end cap, and the air pressure is applied from the top end cap 

at a value equals to the matric suction plus the backpressure.  

Water movement from the specimen during: consolidation, application of matric 

suction and shearing stages was measured using a data acquisition software. To check the 

measurements, visual observation of the graduated burettes (1 ml precision) was used, this 

precision gave a reasonable means to check values. 

The apparatus used in this testing program is a GeoTac triaxial system modified for 

measuring unsaturated soil properties. The system consists of two DigiFlow air pumps, a 

pressure panel modified for automated volume change measurements, a triaxial cell 

modified for volume change measurements, and a GeoJac for controlling the vertical stress.  

The system is manufactured by Trautwein Soil testing Equipment in Houston, Texas. All 

the triaxial tests were conducted in a temperature controlled room.  

The double cell walls eliminate the compliance errors associated with single cell 

when measuring overall specimen volume changes. The triaxial cell is constructed of 

transparent Plexiglas material and accommodates cylindrical specimens up to 50-mm in 

diameter with length to diameter ratio between 2 to 2.5.  The system includes differential 

pressure sensors mounted on the air pumps to allow for automatically recharge the pressure 
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controllers. The system software provides real time display and/or control of testing 

parameters including stresses, strains, etc.  

2.4 Testing Procedures 

The multistage testing methodology performed for this research involves loading-

unloading a soil specimen prepared at same conditions (compaction energy and optimum 

water content) while applying a constant matric suction under successively higher net 

confining pressures. Three values of matric suction ψ of 20, 50, 95 kPa and three different 

net confining pressure σ3 of 50, 100, 200 kPa were used to evaluate the shear strength for 

different suction and net confining pressure levels using a consolidated drained (CD) 

triaxial test.   

After preparing the sample, all lines are flushed from air and/or water. Per the 

equipment setup, a minimum seating confining pressure σ3, of 13 kPa was applied to the 

cell. Water was then introduced into the top and bottom endcaps to saturate the ceramic 

disk, soil specimen, and lines. Then, the confining pressure was increased to 70 kPa and 

the back pressure (manually applied from the panel to both top and bottom of the specimen 

at this point) was increased to 40 kPa, corresponding to a net confining stress of 30 kPa. 

The confining pressure and water backpressure is then increased in increments and checked 

until a Skempton’s B-value of 0.95 was achieved. The Skempton’s B value parameter is 

checked during the process to evaluate the saturation of the soil specimen. After completing 

the saturation process, the confining pressure was then increased to reach the desired initial 

effective confining pressure of 50 kPa in 5 kPa increments per hour. The consolidation 

stage is conducted for a minimum of 24 hours until no water movement is observed.  
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After consolidation was reached, and before applying air pressure, the top and 

bottom valves are closed to maintain a constant pressure in the sample. Then, the air 

pressure is applied from the top endcap at a value equals to the backpressure (zero matric 

suction). At the same time, air is applied to flush the top endcap and drainage lines 

connected to the top of the specimen. In each test, for example; for 20 kPa matric suction 

test, the air pressure was increased by 20 kPa difference between the top (air pressure) and 

bottom (water pressure). The same procedure was used for the other two matric suction 

values (50, 95 kPa). The water outflow (pore volume) from the specimen was recorded 

during the application of the matric suction using both, the data acquisition software and 

burettes and sufficient time was permitted to reach equilibrium (or no water outflow).  

After equilibrium is reached for the matric suction stage, the CD triaxial test is 

started. For the saturated and unsaturated tests, a constant shearing rate of 0.28 and 0.10 

mm/hour was used, respectively. These values where selected using the equations 

presented by Ho and Fredlund (1982) for strain rates for unsaturated soil shear strength 

testing. The pore water pressure were monitored during shearing to confirm that the shear 

rates were low enough for pore water pressure to dissipate. At each step, drainage of both 

air and water was permitted. The shear stress was evaluated at the peak principal stress 

ratio 𝜎1/𝜎3. 

2.5 Results and Discussion 

The shear strength of single stage and multistage CD triaxial tests for saturated and 

unsaturated soil specimens has been analyzed at an introduced matric suction of 20, 50, 95 

kPa and net confining pressures of 50, 100, 200 kPa. The purpose of the analysis is to 
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compare the multistage triaxial test to conventional single stage triaxial test as well as 

unsaturated to saturated conditions on a highly compacted silty sand material. The single 

stage tests have been denoted in the legend as solid lines, whereas the multistage tests have 

been represented by dotted lines. The net confining pressure “σ3n” equals to (𝜎3 − 𝑢𝑎) and 

is labeled on each particular test. The matric suction (𝜓 = 𝑢𝑎 − 𝑢𝑤) is presented as 

constant during the tests and is labeled in the top left of the plot.  

2.5.1 Multi-stage Triaxial Testing 

The principal stress difference is plotted as a function of axial strain in Figure 2.2 

for the CD multistage shear tests for saturated and unsaturated specimens subjected to 

different, matric suction (ms=20, 50, 95 kPa) and net confining pressure (𝜎3 − 𝑢𝑎 =50, 

100, 200 kPa). 

As observed in Figure 2.2, when increasing both the matric suction and the 

confining pressure, the deviatoric stress and hence the shear strength increases. In general, 

the behavior was as expected since increasing the matric suction results in an increasing in 

the effective stress. The saturated tests peak strengths were lower than the unsaturated tests.  

Also, as observed in Table 1, in the saturated test the axial strain corresponding to 

maximum stress ratio (MSR) increased as the net confining pressure is increased. As 

observed, the axial strain from the saturated at the corresponding MSR is 0.8% at the 50 

kPa net confining while for the unsaturated test at 20 kPa matric suction, a 2.03% of axial 

strain at the MSR was obtained.  
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Figure 2.2 Principal stress difference versus cumulative axial strain of (a) saturated, 

(b) ms= 20 kPa, (c) ms= 50 kPa and (d) ms = 95 kPa from single stage and 

multistage tests 

On the other hand, for the unsaturated test at a constant matric suction, as the net 

confining increases from 50 to 100 kPa the axial strain decreases. In general, for most of 

the matric suction tests at the next two increments of net confining pressure the axial strains 

were decreased. It seems that the sample undergoes into a more plastic behavior after the 

first stage which results in reducing the axial strain at which the peak strength occurs in the 

following stage. 
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Table 2.1 Multistage tests Results at the Maximum Stress Ratio (MSR) 

Type of 

Test 

Matric 

Suction (kPa) 

Net 

Confining 

Stress (kPa) 

Axial Strain 

at MSR (%) 

Deviatoric 

Stress at MSR 

(kPa) 

Multi 

Stage 
0 

50 0.80 244.69 

100 1.08 504.00 

200 2.31 749.16 

Multi 

Stage 
20 

50 2.03 470.42 

100 1.58 818.76 

200 1.79 1348.97 

Multi 

Stage 
50 

50 2.06 531.74 

100 1.28 760.48 

200 2.20 1268.58 

Multi 

Stage 
95 

50 1.95 650.28 

100 1.27 965.61 

200 1.84 1465.92 

Single 0 200 2.94 914.59 

Single 50 100 2.40 764.70 

Single 50 200 3.55 1124.81 

Single 95 100 2.33 828.59 

Single 95 200 3.04 1313.00 

 

Figure 2.3 shows the shear stress for saturated and unsaturated conditions at 

different matric suctions and different net confining pressures. The slope of each of these 

lines provides the effect of the matric suction on the increase of the shear stress; tan ϕb. As 

observed, ϕb equals to ϕ’ at saturation (ms = 0 kPa). ϕb is not constant and decreases at 

higher matric suction. These results are consistent with the finding presented by Leong et 

al 2013, were there results showed that ϕb is not constant, but decreases as matric suction 

is increased. In other words, as the ϕb increases the effect in shear strength of the material 

in the unsaturated zone will be increased. At certain value of matric suction, the shear 

strength of the material will not increase, and will remain constant or decrease.  
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Figure 2.3 Shear Stress at different matric suction to determine ɸb 

2.5.2 Single Stage Triaxial Testing 

The single stage triaxial tests were conducted at a net confining pressure of 200 kPa 

at three different matric suctions ms = 0, 50, 95 kPa, and at a net confining pressure of 100 

kPa at two matric suctions ms = 50, 95 kPa. The first stage of the multistage triaxial test at 

a net confining pressure of 50 kPa were also considered in this discussion as single stage 

tests.  The results of the deviatoric stress versus axial strain for single stage are shown in 

Figure 2.4, as observed the shear strength of the soil increased with the increase in matric 

suction. As observed on the Figure 2.4a, the axial strain for the saturated test at 200 kPa 

net confining is reached before 3% compared to the partially saturated soils where the peak 

axial strain reaches more than 3%. Also, on Figure 2.4b, the deviatoric stress versus axial 

strain for 50 kPa net confining pressure is presented. As observed, the stress increases with 

an increment in matric suction. The peak axial strain also increases as the matric suction 



 

 

20 

increases. For 50 kPa net confining pressure, the axial strain of the saturated test at the 

maximum stress ratio was around 1% in compared to the partially saturated tests were the 

maximum stress ratio was reached at 2%. The change in axial strain is substantial when 

using a lower net confining pressure (50 kPa) in compared to a higher net confining 

pressure (200 kPa) where there is some minimum difference.  

 

 

Figure 2.4 Stress-strain curves of single stage triaxial tests for saturated and 

unsaturated specimens 

Also, Figure 2.4 shows a variation in the modulus of elasticity of the material, as 

the matric suction increases the slope of the stress versus strain curve, i.e. the modulus of 

elasticity increases. This is consistent with the observations of other investigators in the 

literature (Fredlund and Rahardjo, 1993; Costa et al., 2003; Inci et al., 2003; Lu and Likos, 

2006; Yang et al., 2005, 2008; Oh et al., 2009; Vanapalli and Oh, 2010). 
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Figure 2.5 Stress-strain curves of single stage triaxial tests for: (a) 0 kPa, (b) 50 kPa 

and (c) 95 kPa matric suction in respect to the net confining pressures of 

50, 100, 200 kPa. 

For constant 50 kPa matric suction, the higher net confining pressure results in 

higher shear stress, it increases from 532 to 765 to 1225 kPa, when net confining pressure 

increases from 50 to 100 and  200 kPa, respectively. The corresponding axial strain also 

increases from 2.06% to 2.40% to 3.55%. For constant 95 kPa matric suction, the higher 

net confining pressure results in higher shear stress, it increases from 650 to 834 to 1313 
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kPa, when net confining pressure increases from 50 to 100 and  200 kPa, respectively. The 

corresponding axial strain also increases from 1.95% to 2.33% to 3.04%.  

2.5.3 Single versus Multistage Triaxial Testing 

Figure 2.2 shows the comparison between the deviator stress response obtained 

from single-stage and multistage triaxial tests at a saturated condition and at a matric 

suctions of 50 and 95 kPa. The multistage test were performed at confining pressures of 

50, 100, 200 kPa while the single stage tests were performed at a net confining pressures 

of 100 and 200 kPa.  

It is evident that for 50 and 95 kPa matric suction levels, the deviatoric responses 

obtained from multistage test at 200 kPa net confinement are slightly less compared to the 

results from single stage. On the other hand, for the single stage test of 50 kPa matric 

suction at 100 kPa net confinement the deviatoric response is similar to the multistage at 

the same net confining pressure and matric suction. Also, for the saturated specimen the 

200 kPa net confinement single-stage was about 200 kPa higher than the third stage of the 

multistage test at 200 kPa net confinement.  It seems that at higher confining pressure the 

single stage peak is below the multistage, but for lower confining pressures the peak is 

higher or at the same response. For saturated tests the peaks behave the opposite to the 

unsaturated soils, where the peak value is higher than multistage test.   

Figure 2.6 shows the volume change comparison between single stage and 

multistage for unsaturated soils. The plot shows the results from multistage at 95 kPa matric 

suction with variations in the net confining pressures (50, 100, 200 kPa). Also, the single 
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stage volume change results from 100 kPa and 200 kPa for the same matric suction (95 

kPa) are shown.  

 

 

Figure 2.6 Volumetric strain for multistage and single stage test 

Figure 2.7 shows the peak state lines (PSL) obtained from the single and multistage 

triaxial tests in the p’-q plots. The MIT formula was used to generate the p’-q plots. The 

slope of the saturated PSL, M is 0.67 corresponding to an “a” of 0 kPa. The shear strength 

parameters obtained from the saturated test are the following: c’ = 0.0 kPa and a ɸ’ = 41.3°.  
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Figure 2.7 PSLs for low to medium suction states 

In general, the slopes of the PSL for low to medium suction states are similar. The 

only test that does not follow a constant slope is the suction equal to 50 kPa. On the other 

hand, the 20 and 95 kPa suctions seems to have a similar slope as the saturated test. Also, 

an increment parallel to the saturated line is observed as the matric suction is increased, 

that can be possible due to the apparent cohesion in unsaturated specimens. 
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CHAPTER III 

CASE STUDY: INTEGRATING FIELD MONITORING AND NUMERICAL 

MODELING TO EVALUATE PERFORMANCE OF A LEVEE UNDER 

CLIMATIC AND TIDAL VARIATIONS  

3.1 Introduction and Background 

Assessing the performance and stability of earthen structures during their service 

life warrants an improved understanding of the behavior of variably saturated soils under 

transient seepage conditions. The need is more pronounced considering recent climatic 

trends, which have led to more frequent and severe extreme events. Climate change has 

caused considerable changes in intensity, frequency, and duration of extreme precipitation 

events in several parts of the world (IPCC, 2013; USGCRP, 2009). In the United States, an 

increase of 20% in the amount of heavy precipitation is reported from 1958 to 2007 

(USGCRP, 2009). In several regions, heavier rainfalls occur over shorter periods of time, 

posing a real flash flood threat to the levees in that region due to the huge quantity of runoff 

produced in a short time. Ragno et al. (2018) employed a non-stationary model and showed 

that major cities in the United States might experience extreme precipitation events up to 

20% more intense and twice as frequent compared to historical records. Aforementioned 

changes in the statistics of extreme precipitations and flood probability can affect the 

stability of earthen structures through changes in degree of saturation (e.g., Vahedifard et 

al., 2016a; Robinson et al., 2017; Jasim et al., 2017; Vahedifard 2017a,b). 



 

 

26 

Several short-duration and extreme hydraulic loadings (e.g., flooding, extreme 

precipitations, rapid drawdown) can impose earthen slopes and embankments to time-

dependent seepage conditions. Numerical modeling of an earthen structure subjected to 

such scenarios warrants performing transient seepage analysis under variably saturated 

conditions. Earlier attempts in this area primarily involve transient saturated seepage 

analyses of rapid drawdown in earthen dams (e.g., Freeze, 1971; Stark et al., 1987). 

Improved understating of the theory along with continuous advances in numeral modeling 

of flow in porous media have extended the realm of transient seepage analyses to 

unsaturated soils. Some example applications include modeling rainfall-triggered 

landslides in natural slopes (e.g., Godt et al., 2012; Leshchinsky et al., 2015), analysis of 

saturated-unsaturated rapid drawdown in earthen dams (e.g., Stark et al., 2016), and 

simulation of the hydro-mechanical behavior of unsaturated earthen structures under 

extreme precipitation and flood events (e.g., Jasim et al., 2016; Vahedifard et al., 2018).  

A group of previous transient seepage analyses are performed through solving the 

governing equation of unsaturated flow (i.e., Richards’ equation) using an analytical 

solution or numerical method (e.g., finite element, finite difference) and then incorporating 

the seepage analysis results into a limit equilibrium or limit analysis of the earthen structure 

(e.g., Godt et al., 2012; Stark et al. 2017). Alternatively, coupled hydro-mechanical 

simulations are also performed using more advanced numerical models to account for the 

two-way interaction between solids and fluid (e.g., Jasim et al., 2016; Vahedifard et al., 

2017b). The former group requires fewer input parameters and computational resources 

but is still shown to provide reasonable results for several applications. The latter group 
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involves more rigorous molding efforts, but with appropriate input parameters and model 

setting, can lead to more accurate results. This observation becomes particularly important 

for models where the soil compressibility is considerable and/or the change in total stress 

is significant.  

 Considerable research advances have been made in various aspects of 

variably saturated transient seepage. Some of these research findings have been translated 

to the state of the practice. For example, several commercial software programs have been 

developed that are designated to facilitate variably saturated transient seepage analyses. 

However, the geotechnical engineering community has been relatively hesitant to fully 

embrace transient seepage analysis in practice. Difficulty to assign appropriate input 

parameters and boundary conditions, and lack of practical guidelines are among the main 

factors that have hindered the widespread application of numerical modeling of transient 

seepage in the state of the practice. Further, lack of full-scale validation of the results and 

poor connection to field monitoring data undermine the validity and accuracy of such 

numerical analyses to practicing engineers. Best practices need new guidelines to provide 

instructions for where and when transient seepage can be applied in a useful and correct 

manner due to the uncertainty and inexperience of practicing engineers. For instance, the 

main guidance documents used for seepage analysis of levees and dams for the U.S. Army 

Corps of Engineers (USACE) projects are Engineer Manual (EM) 1110-2-1901 (USACE, 

1993) and EM 1110-2-1913 (USACE, 2000). Although these EMs acknowledge the 

existence of transient seepage conditions, they do not provide any guidance regarding the 

use of transient analyses for partially saturated soils in engineering practice.  
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This case study paper aims to demonstrate how to effectively employ field-

monitoring data to improve the numerical analysis of a levee under climatic and tidal 

variations. The case study includes a silty sand setback levee located near Seattle, 

Washington (WA). The study area, levee section, and instrumentation plan are discussed. 

The data collected from the sensors are used to monitor suction stress and effective stress 

versus time. A finite element model of transient seepage under saturated-unsaturated 

conditions is then developed and calibrated to reasonably match the measured pore-water 

pressures and the piezometric surface. The application of the numerical model is illustrated 

by modeling the seepage and stability of the levee during a 100-year flood.  

3.2 Study Site: Qwuloolt Levee  

3.2.1 Study Area 

Approximately 162 hectares (400 acres) of estuarine restored land in WA form one 

of the largest ecosystem restoration projects in the United States. The project site is located 

about 64 kilometers (40 miles) north of Seattle, WA. As part of this project, a 1,219-meter 

(4,000 feet) long setback levee, named Qwuloolt levee, was constructed using silty sand in 

2014 to protect an industrial area behind it, while allowing for the site to be inundated with 

the Puget Sound water. Figure 3.1 shows the study area, located in the city of Marysville, 

Snohomish County, WA with the Puget Sound and the Central Cascade mountain range 

bounding it to the east and west, respectively. The project borders include the city’s sewage 

treatment plant to the west, an industrial park to the northwest, residential neighborhoods 

along 61st Street NE, and Sunnyside Boulevard to the north and east, respectively. 
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Figure 3.1 Map of Study Area and Levee Section (source: Google Maps). 

In general, the regional ground surface elevation gradually slopes from 48 meters 

(160 feet) in the north to 1.5 meters (5 feet) in the southern parts of Marysville. The study 

area has an average ground surface elevation of about zero. The climate is defined as 

temperate/mesothermal, with an average rainfall of 1043 mm (41 inches). The topsoil 

extends down to 1 meter (3.3 feet), is classified as a hydric Puget silt loam (Anderson, 

1947), and is representative of the levee and the surrounding area. The initial soil horizon 

extends to 152 mm (6 inches) depth and is a brownish gray to gray smooth friable silt loam 

with relatively high organic matter content (Anderson, 1947). The subsoil has a noticeable 

laminated structure and is a light gray silt loam to a depth of 508 mm (20 inches). Between 

508 mm to 1016 mm (20 to 40 inches), the soil is a brownish-gray silty clay loam with a 

layered structure. Stratified layers of yellowish-brown colored sandy loams and fine sands 

with a greenish-gray tint underlie the silty clay loam horizon (Anderson, 1947). 
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Figure 3.2 Instrumented Section of Levee (station 36+10). 

3.2.2 Field Instrumentation Plan  

Figure 3.2 depicts a cross section of the levee (station 36+10), which is 

instrumented with different sensors made by METER Group, Inc. for field monitoring 

purposes. As shown in Figure 3.2, the levee is instrumented to measure water content, 

electrical conductivity, suction, temperature, and tidal water level. Figure 3.3 provides 

further details about the location and depth of the sensors.  

Two tensiometer types are used in this study: T8 and MPS-6. The T8 tensiometer, 

shown in Figure 3.4b, consists of a combined sensor for matric potential and temperature 

for long-term monitoring purposes. This type of tensiometers has a working range from -

85 kPa to 100 kPa of water pressure with a soil water tension accuracy of ± 0.5 kPa 

(METER Group, 2018). A porous ceramic cup filled with water is in direct contact with 

the soil water. The soil water tension is measured by a pressure transducer. The MPS-6 

tensiometer, shown in Figure 3.4c, has measurement range from  -100,000 kPa (air dry) to 

-9 kPa with an accuracy of ± (10%+2kPa) (METER Group, 2018). The GS3 moisture 
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sensor, shown in Figure 3.4d, measures the water content, electrical conductivity, and 

temperature of soil. The GS3 sensor uses an electromagnetic field to measure the dielectric 

permittivity of the surrounding medium, which is converted to water content by a 

calibration equation. The CDT-10 sensor measures the tidal water level, electrical 

conductivity, and temperature in both ground water and surface water. The water depth 

resolution is about 2 mm, and accuracy is ±0.05% of full scale at 20°C (METER Group, 

2018). In addition, a weather station at the site is used to obtain the precipitation in the 

study area as well as other weather parameters like temperature, humidity, and wind speed. 

Precipitation data is used to evaluate the changes in pore pressure and volumetric water 

content due to rainfall events.  

 

 

Figure 3.3 Location of Sensors within the Levee Embankment. 

The construction of the levee started in 2012 and ended in 2014. The instruments 

were installed during the week of August 10-17, 2015. To deploy the instruments at the 

designated depths, boreholes were drilled using hand auguring (Figure 3.5). Sensors were 

installed by placing them at the desired depth and then were surrounded by compacted soil. 
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A PVC pipe was used to keep the borehole stable. After installing the sensors, the boreholes 

were sealed with bentonite slurry and PVC caps. Soil samples were collected at different 

intervals from all the holes.  

During construction of the levee, two piezometers were installed in the levee 

foundation and have been monitored ever since then. After about one year from the sensors 

installation (September 7, 2016), a third piezometer (Piezo4.75) was installed as an open 

well to measure the water elevation (i.e., phreatic surface) within the embankment (Figure 

3.2). 

 

 

(a)                                                                           (b)                  (c)                  (d) 

Figure 3.4 Sensors Installed at Each Section: (a) Sensors diagram, (b) T8-tensiometer, 

(c) MPS6-tensiometer, and (d) GS3-moisture sensor. 

 

Figure 3.5 Hand Drilling of Instrumentation Holes. 
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The weather sensors collect data every 6 hours. The sensors and the data logger are 

powered by a solar panel. The soil sensors are connected to underground cables to protect 

them from any damage. The soil data loggers have their own solar-charged batteries, which 

help to maintain the power on the system. The water gauge CTD-10 is placed in a trench 

close to the levee toe on the water side. The water gauge was placed in a perforated 10-cm 

PVC pipe wrapped in a protective textile sleeve below the low water table. The trench was 

then backfilled with filter rock. METER’s Em50 modem is used to collect and transmit the 

data using METER’s software.  

3.2.3 Instrumentation Readings 

Figures 3.6 to 3.11 show instrumentation readings from September 7, 2016 to 

November 27, 2017. Figure 3.6 shows the pore pressure at stations Q2, Q5, and Q6. Tidal 

and piezometer readings are converted to total head for comparison. The water table on the 

downstream side is typically close to the ground surface most of the time. It is anticipated 

that the soil suction at location Q6 is not high due to the presence of the phreatic surface, 

which elevates the moisture content and pore pressures due to the proximity of the water 

table. At location Q2, suction is expected to be higher than Q5 and Q6, because Q2 has a 

higher elevation relative to the phreatic surface. The initial two months are considered the 

end of a drought period. Then, from October 2016 to June 2017, no substantial changes in 

suction were observed due to the rainy season (winter season).  

 As evident in Figure 3.6, one dry period is captured by the tensiometers from 

September 7 to October 19, 2016. For this period, the Q2 and Q6 pressure sensors show an 

increment in pore-water pressure in response to this change in moisture content (Figure 
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3.7) during October 12, 2016, as the same time. For the Q5 pressure sensor, the change is 

noticed in October 19, 2016 on both pore pressure and volumetric water content (Figure 

3.7).  After mid-October 2016 to June 2017, the pressure sensors were reading constant 

values while the changes in volumetric water content were minor.  

 

Figure 3.6 Pore Water Pressure versus Time for: (a) Q2, (b) Q5, and (c) Q6. 

Station Q2 has two different types of sensors at the same elevation: MPS-6 and T8. 

In general, the readings from these two sensors follow the same pattern, but MPS-6 is 

reading values higher in negative pore pressure. It is observed that a combination of 

changes in the water tides and precipitation does not directly influence the pore 

pressures/matric suction or the volumetric water content.  

(a) 

(b) 

(c) 
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During the monitoring period, two dry events were observed, the first is from 

September 2016 to October 2016, where a drop is observed in the matric suction for Q2, 

Q5, and Q6. The second dry event is from June 2017 to September 2017 were matric 

suction has drop for all stations. It is confirmed that minor to zero precipitation was 

observed during both periods. The time lag in the matric suction was observed for the 

monitored stations to be two to three weeks.   

 Figure 3.7 shows the volumetric water content at stations Q2, Q5, and Q6 versus 

time. For station Q2 and Q6, the GS3 sensors recorded a change in volumetric water 

content during the period between September 7, 2016 and November 27, 2017, when a 

precipitation event occurred having a change in volumetric water content from 0.22 to 0.38 

(m3/m3). The Q5 water content remain constant during that period until October 19, 2016, 

where a change is noticed from 0.21 to 0.38 (m3/m3). All volumetric water content stations 

experienced a drop during the drought period of June 2017 to September 2017.  

Figure 3.7 Volumetric Water Content versus time for: (a) Q2, (b) Q5, and (c) Q6. 

(a) 

(b) 

(c) 
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For all stations, the GS3 sensor recorded a nearly constant in volumetric water 

content during November and December 2016 months. The constant pattern confirms that 

station Q6 is close to the water elevation, which means that the soil is close to the saturated 

condition at that moment. For the period of study, the saturated volumetric content is the 

highest value observed by the sensors (0.39 m3/m3), and the residual volumetric water 

content observed is 0.20 m3/m3.  

Figure 3.8 shows the temperature, relative humidity, and piezometer data for the 

levee during the period of September 2016 to November 2017. As observed in Figure 3.8a, 

the temperature overall fluctuates, decreases, and increases in the time period. The relative 

humidity in Figure 3.8b fluctuates substantially during the day but goes back to the same 

baseline. The Piezo el. -0.152 m and Piezo el. -1.68 m do not change substantially with the 

changes of the tide and precipitation. These events seem to be disconnected from the 

embankment due to the silt layer. The Piezo 4.75 (Piezo el. 1.44 m) seems to be affected 

substantially after December 7, 2016.  
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Figure 3.8 Temperature, Relative Humidity and Piezometer Water Level for the 

Period of Study. 

As shown in Figure 3.9, CDT-10 data show that the tidal elevations varied during 

the day but follow a constant pattern during the 15-month period (from September 2016 to 

November 2017) with a high tide ranging from 2.5 to 2-m, and low tide was approximately 

1 m.  

Figure 3.9 Tidal Hydrograph with 6-hr and 24-hr Data for Qwuloolt Levee 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3.10 depicts the precipitation at of the site. As shown in Figure 3.10, the 

precipitation data shows that the rainfall events started during the period of September 

2016 to November 2017; no rainfall was recorded for the rest of the period. Peak recorded 

precipitation ranged from 7 mm to 4 mm in 6 hours. 

 

Figure 3.10 Precipitation Data for the Levee Site 

Solar radiation, defined as the radiant energy emitted by the sun (measured in 

Watts/m2), is one of the climatic parameters required by SEEP/W 2018 to complete the 

land-climate interaction boundary condition. The installed instruments at the site do not 

record solar radiation. The data used in this study was obtained from a publicly available 

database operated by Washington State University (WSU) from the Langley weather 

station, located in Whidbey Island about 15 miles away from the site.  

As shown in Figure 3.11, the solar radiation was also considered in the Climate 

Boundary Condition (CBC), and the modeling period started in September 7, 2016. As 

observed, the radiation varied from 1000 W/m2 to 300 W/m2 on the higher range and a 

lower value of 100 W/m2. The ASCE Standardized Reference for Evapotranspiration 

(Allen et al. 2005) recommends an albedo reflection coefficient value of 0.23 to calculate 

the net radiation from the measured short-wave radiation presented in Figure 3.11. 
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Figure 3.11 Solar Radiation 

One can calculate the net radiation using the net solar or net short-wave radiation 

Rns, resulting from the balance between the incoming and reflected solar radiation given 

by:  

                                              𝑅𝑛𝑠  =  𝑅𝑠  −  𝛼 𝑅𝑠 = (1 −  𝛼 )𝑅𝑠                                             [3.1] 

where: 

𝑅𝑛𝑠= net solar or short-wave radiation. 

𝛼 = albedo or canopy reflection coefficient, is fixed at 0.23 for the standardized short and 

tall reference surfaces [dimensionless], and 

𝑅𝑠= incoming solar radiation. 

Allen et al. (1994) concluded that albedo varies somewhat with time of day, time 

of season, and latitude due to change in sun angle. However, because the solar intensity is 

less during these periods, the error introduced in fixing albedo at 0.23 is relatively small 

(Allen et al. 1994). 
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3.2.4 Laboratory Testing 

Representative soil samples were collected from different locations of the levee’s 

embankment and foundation and were shipped to the U.S Army Engineer Research and 

Development Center (ERDC) in Vicksburg, MS, for testing. Table 3.1 presents a summary 

of index properties of five soil samples retrieved from the two locations of interest within 

the levee body: Q2 and Q6. The soil is classified as silty sand (SM) as per the Unified Soil 

Classification System (USCS).  

Table 3.1 Index properties of soil samples retrieved. 

 

The soil water characteristic curve (SWCC) of the silty sand material was measured 

by running a multiple test using the Transient water Release and Imbibition Method 

(TRIM). Wayllace and Lu (2012) presented this methodology to provide a fast, accurate, 

and simple testing tool for obtaining the SWCC for various soil types under wetting and 

drying states. The TRIM method uses an inverse modeling technique to develop the full 

curve from two matric suction pressures (10 kPa and 290 kPa for this study) that are 

exposed to the soil.  

The SWCCs shown in Figure 3.12 represent drying and wetting curves for silty 

sand samples retrieved from the same depth where the instruments were installed. As part 

Property T2 T3 T4 T5 T6 

Passing #4 (%) 87.5 73.5 59.9 80.2 69 

Passing #200 (%) 24.7 20.7 15.7 21.8 17.6 

Specific gravity 2.73 -- -- -- 2.76 

USCS 
Silty Sand 

(SM) 

Silty Sand 

(SM) with 

Gravel 

Silty Sand 

(SM) with 

Gravel 

Silty Sand 

(SM) with 

Gravel 

Silty Sand 

(SM) with 

Gravel 
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of running the TRIM test, a saturated hydraulic conductivity of 3.9e-05 cm/s was determined 

and used in obtaining the SWCC using the van Genuchten (1980) SWCC model. From the 

TRIM results, an average van Genuchten’s a of 64 kPa and n of 1.6 were obtained. An 

average hydraulic conductivity of 3x10^-5 cm/s was also obtained and used in this study.  

 

Figure 3.12 SWCCs of the Tested Soils under Drying and Wetting Paths  

3.3 Monitoring Suction Stress and Effective Stress Using Field Data 

This section demonstrates how one can employ in situ data consisting of pore-water 

pressures and water content to compute effective stress versus time. Effective stress is a 

critical parameter that dominates the shear strength and, subsequently, the stability of 

earthen structures (e.g., Lu and Likos 2004; Vahedifard et al. 2016b). Pioneered by Bishop 

(1959), several researchers have tried to properly characterize effective stress of 
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unsaturated soils. In this study, we employ the suction stress-based effective stress 

representation, along with the measured field data, to directly obtain suction stress and 

effective stress time series within the unsaturated zone of the levee body under seasonal 

and tidal changes. 

Lu and Likos (2004) extended Bishop’s expression for the effective stress of 

unsaturated soils by adopting the suction stress concept. The unified effective stress for 

both saturated and unsaturated soil conditions can be shown as (Lu and Likos 2004): 

                                                    𝜎′ = (𝜎 − 𝑢𝑎) − 𝜎𝑠                                                                 [3.2] 

where 𝜎′is the effective stress, 𝜎 is the total stress, 𝑢𝑎is the pore-air pressure, and 𝜎𝑠is 

the suction stress. Suction stress for unsaturated soils can be determined by (Lu et al. 

2010):  

                             𝜎𝑠 = −
𝛳 − 𝛳𝑟

𝛳𝑠 − 𝛳𝑟

(𝑢𝑎 − 𝑢𝑤) = −𝑆𝑒(𝑢𝑎 − 𝑢𝑤)                                          [3.3] 

where 𝛳 is the volumetric water content, 𝛳𝑟 is the residual volumetric water content, 𝛳𝑠is 

the saturated volumetric water content, 𝑆𝑒 is the effective degree of saturation, and 𝑢𝑤is 

the pore-water pressure. 

The matric suction values recorded at Q2 and Q6 are used along with Equation 3.2 

to generate the suction stress time series from September 7, 2016 until November 27, 2017 

(Figure 3.13). The saturated volumetric content (porosity) is taken as the highest value 

recorded by the sensors (0.39 m3/m3). Due to the process of sensor installation, the material 

surrounding the sensors is looser in nature and has a higher porosity than the embankment, 

which is about 0.2 m3/m3.  The residual volumetric water content is obtained from the 

laboratory testing to be 0.10 m3/m3. The suction stress values at Q2 and Q6 are used along 
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with Equation 3.3 to generate the effective stress time series as shown in Figure 3.14. The 

total stress is calculated using the unit weight and the depth of the soil, which are 21.13 

kN/m3 and 0.91 m, respectively. 

 

Figure 3.13 Suction Stress Time Series for Stations Q2 and Q6. 

The results shown in Figures 3.13 and 3.14 reveal that the positive pore-water 

pressure in the beginning (from July 2015 to June 2016) generates a positive suction stress 

and, therefore, decreases or maintains a constant effective stress. In the first dry period, 

from June 2016 to the beginning of November 2016, the suction stress decreases 

substantially and, therefore, the effective stress increases from a value of approximately 20 

kPa to 80 kPa. The effective stress quadrupled in magnitude, contributing to an increase in 

the shear strength of the soil.  It should be noted here that in these calculations the total 

stress was assumed constant over the monitoring period. Both sensors showed a consistent 

response, given that they are located at similar depth from the ground surface. 
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Figure 3.14 Effective Stress Time Series for Stations Q2 and Q6. 

The same behavior was observed during the second dry period of June 2017 to the 

end of September 2017. In this event, Q2 showed similar stress values. However, Q6 

showed lower suction stress and higher effective stress in comparison to the first dry event. 

This could be related to the fact that this second dry period contains more days of no rain, 

and Q6 is further downstream compared to Q2. The effective stress difference is about 20 

kPa more than the first dry period.  

3.4 Numerical Modeling of Transient Seepage 

3.4.1 Model Setup 

The commercial 2D finite element software package SEEP/W, 2018 (GEO-SLOPE 

International, Ltd 2018) was used to develop the numerical model. SEEP/W is a general 

seepage analysis program that can model saturated-unsaturated transient with land-

atmospheric coupling at the ground surface. SEEP/W models unsaturated soils using the 

SWCC to predict the soil water content and corresponding suction under climate and tidal 

variations. As an initial attempt, a model time step of one month was set, but after looking 
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at the results, some of the initial values of the field data from the piezometer were still 

unstable and needed additional time to stabilize.  

Figure 3.15 shows the geometry of the model used in the simulation. Table 3.2 

presents the parameters used in the seepage analysis. For this study, a 15-month simulation 

period starting on September 7, 2016 and ending on November 27, 2017 was used. The 

starting date is when piezometer (Piezo4.75) was installed. The model uses the tidal 

variations and climate data from that period. The van Genuchten (1980) model is used to 

define the SWCC and HCF graphs.  

The model has three zones composed of three materials. The foundation of the levee 

is a silt layer, which is assumed to be saturated at all times due to the high ground water 

table elevation. The silty sand layer, which comprises the levee embankment, is assumed 

to be the only layer that has variable saturation conditions depending on the hydraulic 

loading and climatic conditions. The gravel layer between the silt and silty sand is to 

represent the gravelly road section built to support the construction equipment, shown in 

Figure 3.10. The values of alpha (a), the slope of the SWCC (n), the compressibility (mv), 

and the hydraulic conductivity (k) were varied only for the levee embankment  (silty sand 

layer) to calibrate the model to the field measurements. Table 3.2 shows the soil properties 

that were used in the seepage analysis. 

Table 3.2 Parameters used in the seepage analysis 

Material kh (cm/s) kh/kv mv (kPa-1) θs θr a (kPa) 
n 

Silt  10.0x10-6 1 2.1x10-4 0.4 --- --- --- 

Silty Sand 

(embankment) 
Varies 1 Varies 0.2 0.08 Varies 1.6 
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Gravel  10.0x10-8 1 1x10-6 0.3 --- --- --- 

 

3.4.2 Initial Conditions 

The transient seepage model uses a steady state “parent”. This steady state seepage 

analysis is used to predict the initial pore pressures/matric suctions and the piezometric 

surface for the levee cross section, as shown in Figure 3.16, for the transient seepage 

analyses. The upstream side was assigned a total head of 1.68 m, which reflects the water 

tide level on September 7, 2016. Also, the piezometer located in the core of the levee 

(piezo4.75) is assigned a total head of 1.46 m at the same time as the water tide boundary 

condition. The downstream toe is set to a total head of 0 m, which is the ground surface 

elevation. The bottom boundary of the model is set to a no flow condition. The Ky/Kx ratio 

was assumed to be 1. 

 

Figure 3.15 Geometry and Boundary Conditions of Numerical Model  

Climate BC 

Q = 0 

m3/s 

Hydrograph 

Silt  

Silty Sand 

Layer 
Gravel 

Layer 

ht = 0 m 
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Figure 3.16 Initial Pore-Pressures Generated using Steady State Seepage Analysis 

3.4.3 Transient Hydraulic Loading 

The steady state seepage analysis provided the initial conditions of ground water 

pressures and defined a starting point for the transient seepage analysis. The boundary 

conditions applied in SEEP/W are shown in Figure 3.16. Similar to steady state, the bottom 

boundary condition is a no-flow boundary via a zero-unit flux condition.  

Figure 3.9 shows the levee hydrograph from September 2016 to November 2017. 

The 6-hour data and 24- hour data is shown in the figure. The 24-hour data is presented as 

a clearer trend line of the water tide. As observed in Figure 3.9, the water tide cycled every 

5-9 days, with a maximum of 2.5-m and a minimum of 1-m total head. The 6-hour data 

was used in this study as a hydraulic boundary condition. Climatic data including 

precipitation, temperature, wind speed, relative humidity, and net solar radiation were used 

as land-climate boundary conditions as described in the following section. The pore-water 

pressure generated by the transient seepage analysis was used to calibrate the model 
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parameters based on measured data from piezometer (Piezo4.75) and tensiometers at Q2, 

Q5, and Q6. 

3.5 Calibration of Numerical Model 

In an unsaturated transient seepage analysis, four soil properties are important: the 

SWCC properties (θs, θr, a, and n), the hydraulic conductivity in the x-direction (kh), soil 

compressibility (mv), and the initial conditions (Stark et al., 2017). The foundation silt and 

gravel layers were modeled as saturated-only materials, and the properties were obtained 

from field testing during construction.  For the silty sand layer, the properties were obtained 

from TRIM testing as described above.  

The model calibration process varied the van Genuchten curve fitting parameters, 

a and n along with the soil compressibility, mv, and saturated hydraulic conductivity, k such 

that the model predicted pore-water pressures matched the measured data. Adjustments to 

the parameters to achieve accurate calibration was based on engineering judgment. The 

transient seepage model runs for about 10 months (7000 hours). The measured data from 

September 7, 2016 to July 7, 2017 were used for model calibration purposes. The meshing 

in this model used a four-node element composed of a square with over 7,011 elements.  

Before starting the calibration, different boundary conditions were used to show the 

effect of each on the predicted pore-water pressures as discussed in the following section. 

The results presented in Figure 3.17a show the piezometer measured pore-water pressure 

compared to the model estimated pore-water pressure using variations in different 

boundary condition scenarios.  These scenarios consisted of: considering the tide only, the 

tide plus the precipitation, and the tide plus climate boundary conditions (precipitation, 
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temperature, net radiation and wind speed). The same comparison is presented in Figure 

3.17b, 3.17c, and 3.17d for the model predicted pore-water pressure with the measured data 

from tensiometers Q2, Q5, and Q6 located in other areas of the levee (Figure 3.2). The 

pore-water pressures were estimated from the field volumetric water content measured at 

Q2, Q5, and Q6 using Equation 3.4. These pore pressure data are plotted and added for 

comparison in Figure 3.17. Equation 3.4 can be used to estimate the pore-water pressure 

(matric suction) from a known volumetric water content using the van Genuchten (1980) 

model (Ellithy 2017): 

                                             𝜓 = 𝑎 [(
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
)

−1

𝑚
− 1]

1

𝑛

                                                   [3.4]  

Figure 3.17 Effect of different boundary conditions for: a) piezometer4.75, b) 

tensiometer at Q2, c) tensiometer at Q5, and d) tensiometer at Q6 (from 

September 7, 2016 to July 7, 2017). 

(a) 

 

(b) 

 

(c) 

 

(d) 
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As shown in Figure 3.17, the inclusion of the precipitation, as well as the climate 

boundary conditions, resulted in pore-water pressure values closer to the measured than 

when considering tide loading only. Model results begin to conform to the field 

measurements after approximately three months (2000 hours). The piezometer (piezo4.75) 

was installed in the beginning of the modeling period, and it took this period to acclimate 

to the levee embankment conditions. Also, Figure 3.14 shows there was a dry event before 

the beginning of the modeling period, which resulted in an initially high matric suction 

measurements by the tensiometers. The model prediction did not match the tensiometer 

readings in the first 1000 hours (41 days), which was primarily the result of the selected 

initial pore-water pressure. However, the comparison between predicted and measured 

pore-water pressure improved significantly toward the latter part of the simulation. This 

emphasizes the importance of selecting the model duration period for calibration. Towards 

the end of the calibration period, there is a longer dry period, which resulted in a significant 

drop in the pore-water pressure in all monitored locations. The simulation starting time was 

set to the day piezometer was installed. It took about 2000 hours (82 days) until the 

piezometer reading acclimated to the surrounding soil at which point the measured and 

computed pore pressures agreed.  

Tide+CBC was selected as the boundary condition for performing the calibration. 

In Figure 3.18, the average value of the van Genuchten fitting parameter n of 1.6) per TRIM 

results was used together with porosity s and residual volumetric water content r of 0.2 

and 0.08, respectively. A saturated hydraulic conductivity k of 3e10-5 cm/s was used in the 
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model. Figure 3.18 provides a comparison of pore-water pressure generated from the model 

to measured values when changing the van Genuchten fitting parameter a. 

 

Figure 3.18 Effect of the van Genuchten (1980) parameter a for: a) piezometer, b) 

tensiometer at Q6, c) tensiometer at Q2, and d) tensiometer at Q5 (from 

September 7, 2016 to July 7, 2017). 

As shown, the a parameter affects the estimated pore-water pressure. A value of a 

= 13 kPa seems to give a reasonable matching with the field measurements. Higher a 

values: 150 kPa and 64 kPa indicate a less drainable material results are below the 

measured most of the time. In general, the field measurements give higher matric suction 

values and higher positive pore-water pressure than predicted, in that they are more 

extreme than what the model predicts. 

 

(b) 

 

(d) 

 

(c) 

 

(a) 
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Figure 3.19 Effect of Hydraulic Conductivity for: a) piezometer, b) tensiometer at Q6, 

c) tensiometer at Q2, and d) tensiometer at Q5 (from September 7, 2016 to 

July 7, 2017). 

 

Figure 3.19 shows the effect of the saturated hydraulic conductivity on the predicted 

pore-water pressures for Piezo 4.75, Q2, Q5, and Q6. The calibration showed no significant 

difference in predicted pore-water pressure. A value of 3x10-5 cm/s was selected to be used 

in the validation period, which is close to the measured value by TRIM. 

3.6 Validation of Numerical Model 

The model validation involves using the selected parameters from the calibration 

analysis during the initial period (0 to 7000 hours) to predict the measured field data during 

the following period (7000 to 10,704 hrs). The validation is done to ensure the model 

applicability.  

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 3.20 shows the validation results for the selected parameters. The calibration 

results are also plotted for comparison purposes with the verification results. The validation 

process was performed from 7,000 hours to 10,704 hours (June 7, 2017 to November 27, 

2017). The selected validation parameters are the following: a = 13 kPa, k =3x10-5 cm/s, n 

=1.6, and mv = 2.09x10-5 1/kPa. Figure 3.20a shows the verification for Piezo 4.75. The 

measured data shows a higher value than predicted by the model during the verification 

period. The model is considering the climatic condition for the dry period where the Piezo 

4.75 does not read below zero and stays closer to the zero value. Figure 3.20b shows the 

model prediction matching with the measured pore-water pressure but with some time lag 

to match the peaks during the drought period. Figure 3.20c shows the model very close to 

the measured values obtained from sensor Q5. Figure 3.20d shows the model under-

predicting the measured values from Q6. The high suctions measured by Q6 are possibly 

due to a drainage layer (gravel layer) under the sensor that may be draining the water away 

from the sensor. As a consequence, the soil around the sensor seems to have a very high 

suction during the dry period. 

In general, the model predictions were found to closely match the measured data.  

From the measured data,  the Piezo4.75 does not measure values below zero due to the 

sensor location, also, measured suction at Q6 location seem to be affected by a possible 

drainage layer below the sensor causing very high suctions values during the drought 

period. The model seems to match the trend and the approximate value of suction drop 

during dry period. However, measured suction shows a lag and sudden decrease trend over 
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a short period of time which is not matched by the gradual response of the model predicted 

PWP. 

 

Figure 3.20 Model Validation Results (from June 7, 2017 to November 27, 2017). 

3.7 Application: Modeling Levee Under a 100-Year Flood 

The application of the calibrated model is illustrated by modeling the seepage and 

stability of the levee during a 100-year flood. Transient seepage analysis is first performed 

with the flood hydrograph. The pore pressure values obtained from the seepage analysis 

are then used in a set of limit-equilibrium analysis to obtain the factor of safety of the levee. 

3.7.1 Transient Seepage Analysis 

A Combined stage hydrograph model is a combination the data reported in Tetra 

Tech (2013) for Snohomish County and the FEMA Flood Maps. Tetra Tech (2013) 

resented a 100-year Stage Hydrograph for an area close to the site. Based on their 

(a) 

 

(c) 

 

(b) 

 

(d) 
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hydrographs, the time to peak does not change (62 hrs). Using the FEMA flood maps, we 

were able to get the peak stage for a 100-year event (2.68 m (8.8-feet NGVD29) = 3.81 m 

(12.5 –feet in NAVD88).  Using the suggestions from Tetra Teach (2013) , 0.46 m (1.5-

feet) was added to the 3.81 m (12.5-feet). A total of 4.27 m (14-feet) was used as the peak 

stage. The 0.46 m (1.5-feet) considers the backwater effect coming from the I5-Bridge.  

Figure 3.21 a) 100-year Flood Hydrograph, b) FEMA Flood Map 2005 for the Study 

Area (100-year flood).  

The 100-year event hydrograph (Figure 3.21) brings the tide to an elevation of 4.25 

m within 62 hrs. Whereas, the regular hydrograph used in the model has a high elevation 

2.5 m. A 100-year precipitation depth of about 165 mm (6.5 in) was used for the event 

period, which was about 4 days. 
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Figure 3.22 Predicted Pore Pressures Before and During Flood at Different Locations.  

The 100-year event was started in the model right after the 15-month calibration 

and verification periods. A sudden increase in the pore-water pressure in all the monitored 

locations including the piezometer was observed. This increase is a result of the high 100-

year event tide, which is in addition to a moderate precipitation of about 1.8 mm/hour for 

the duration of the event of 93-hours. 

3.7.2 Stability Analysis 

For this study, a limit-equilibrium slope stability model was built in SLOPE/W to 

analyze the stability of the levee upstream and downstream slopes under different 

conditions using Spencer method. For each condition, the pore-water pressure results were 

imported from the SEEP/W model and used in the stability analyses to determine the factor 
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of safety (FOS) The shear strength parameters for the three layers of the model used in the 

slope stability analysis are presented in Table 3.3. 

Table 3.3 Slope stability parameters 

Soil Property Embankment Levee (SM) Foundation (Silt) Gravel 

Unit weight (γ) 21.1 kN/m3 18.1 kN/m3 20.4 kN/m3 

Cohesion (c’) 0 kPa 0 kPa / 21.5* kPa 0 kPa 

Friction angle (ϕ’) 38° 25°/ 0°* 32° 

*Shear strength parameters used for undrained loading of the 100 year extreme event. 

Figure 3.23 shows the variation of factor of safety for the entire modeling period 

for the upstream and downstream slopes. For the upstream slope, the factor of safety varies 

from 2.2 to 3. For the 100-year event, there is not a significant increase in factor of safety. 

For the downstream slope, the value of factor of safety up to 6,000 hrs varies during the 

wet period (winter period) from a value of 2.15 to 1.75. During the drought period, the 

value of factor of safety increases from 1.75 to 2.5. In general, the factor of safety increases 

for both slopes. The extreme event is plotted at the end of the modeling period, which 

produced a factor of safety of 1.55 for the downstream slope. The sudden increase in pore-

water pressure in a short period of time during extreme 100-year event produced a 

substantial decrease in the factor of safety after a drought event. The upstream slope 

increases during the extreme event to a factor of safety of 3. The model seems to be 

successfully capturing the behavior of the levee during the extreme event modeled. This 

confirms the importance of incorporating the climatic conditions into the numerical models 

to represent the actual conditions during extreme events. 
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Figure 3.23 Factor of Safety for Upstream and Downstream Slopes.  
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CHAPTER IV 

CONCLUSIONS 

The main objective of this research was to improve the analysis of levees under 

transient seepage with the use of unsaturated soil mechanics. The work included a set of 

laboratory testing, field monitoring and numerical modeling performed to analyze a silty 

sand setback levee located near Seattle, WA. Soil samples taken from the site were used to 

perform index, water retention, and unsaturated multi-stage triaxial tests in the laboratory. 

A finite element model of transient seepage under saturated-unsaturated conditions was 

then developed and calibrated using the field data. 

4.1 Summary and conclusions of work accomplished on single stage and 

multistage triaxial testing of a highly compacted silty sand 

A series of unsaturated CD triaxial tests was carried out on high density compacted 

silty sand material retrieved from a setback levee in the Seattle area. The results presented 

in this paper showed that modified multistage unsaturated triaxial test procedures can be 

used to obtain the unsaturated shear strength parameters. This study demonstrate the 

possibility and convenience of performing unsaturated multi-stage triaxial testing on silty 

sand soils over the conventional triaxial testing.  The comparison presented in this paper 

was based on a total of nine tests, five single stage triaxial tests compared to four multi-

stage tests. The soils sample for all the tests were compacted to almost the same porosity 
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of 0.2. However, during consolidation and shearing at different confining pressures, the 

pore size distribution may have changed.  

Unsaturated multistage test results showed that increasing the matric suction and 

the net confining pressure, the deviatoric stress and hence the shear strength increases. 

Increasing the matric suction results in an increment in effective stress, which confirms the 

increment in shear strength. For the saturated tests, the deviatoric stress were lower than 

the unsaturated tests. On the other hand, for unsaturated test at a constant matric suction, 

as the net confining pressure increases at the first stage, the axial strain decreases. On the 

second stage, the axial strain behaved randomly, either higher or lower than the second 

stage. It seems that the sample undergoes into a more plastic behavior after the first stage 

which results in reducing the axial strain at which the peak strength occurs in the following 

stage. For the ϕb parameter, the slope of each of the p’-q plots increases with the increase 

of matric suction. In conclusion, ϕb is not constant and decreases at higher matric suction. 

Also, the matric suction increases the slope of the stress versus strain curve, i.e. the 

modulus of elasticity increases. For a constant matric suction, the higher the net confining 

pressure results in a higher shear stress and axial strain. The comparison between single 

stage and multistage tests showed that for saturated tests the single stage is higher than 

multistage by 200 kPa, while for the unsaturated soil the single stage was less or equal to 

the multistage tests results. The volumetric strain results showed a variation in behavior 

which there is not a clear pattern on the volume change response. The peak state lines (PSL) 

obtained from the p’-q plots using the MIT formula showed that as you increase the matric 

suction the slope of p’-q increases and did not follow the saturated peak state line.  
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A methodology is presented for standardizing the multistage stage testing for 

unsaturated soils to be used by the advanced geotechnical laboratories. It is demonstrated 

that using multistage testing for unsaturated soils is a cost-effective alternative comparing 

it with the conventional single stage triaxial tests of unsaturated specimens. This method 

is not only economically feasible over the single stage, because the test time is shorter than 

the conventional, but also the error is significantly reduced by using just one sample during 

the manual preparations and during testing of the sample. 

4.2 Summary and conclusions of work on integrating field monitoring and 

numerical analysis  

The aim of this case study was to demonstrate how to effectively integrate field 

monitoring data and numerical analysis to better evaluate the performance of a levee during 

normal and extreme hydraulic loading conditions. The in situ data collected from an array 

of field instruments and a weather station were used along with a finite element model to 

study the response of a silty sand setback levee near Seattle under seasonal and tidal 

changes. The numerical model was calibrated and validated against field data. The 

calibrated model was used to simulate the evolution of pore pressure and factory of safety 

during a 100-year flood event.  

Field measurements showed positive pore pressures during winter, which is 

considered the wet season for the area of study, and an increase in matric suction in drought 

events during the summer. It was found that including the precipitation as well as the other 

climatic boundary conditions such as temperature, solar radiation, humidity and wind 

speed, is essential for prediction of the pore-water pressures in the levee which resulted in 

a close match to the field measured values during the different seasons. Including only the 
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precipitation as a boundary condition resulted in a close match during wet periods, 

however, in dry events, the drop in PWP could be matched when considering the climatic 

boundary conditions. 

The pore-water pressure obtained from the model showed a gradual change in 

response to the wet and dry periods whereas the field instruments showed a more abrupt 

change. This change could possibly depend on where the instruments are installed. For 

example, the upper layers in the levee are more affected by the climatic variations; while 

the lower layers are more affected by the piezometric line, which the model uses to estimate 

the pore-water pressures. Soil hydraulic conductivity anisotropy, looser soil density around 

sensors, or layers with higher hydraulic conductivity (none of which was considered in the 

model) could be contributing factors to less poorer agreement, especially in the cases where 

sudden drop in the pore-water pressure was observed. 

4.3 Recommended Future Works 

Based on the completed study and literature, the following areas of future research 

are recommended: 

 Additional triaxial testing for clay material.  

 Investigate changes in pore pressure and matric suction during drought and 

rainy seasons.  

 Run numerical model for longer periods.  

 Investigate the effect of volumetric strain on pore-water pressures in 

unsaturated soils. 
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