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Computational analysis and design has become a fundamental part of product 

research, development, and manufacture in aerospace, automotive, and other industries.  

In general the success of the specific application depends heavily on the accuracy and 

consistency of the computational model used.  The aim of this work is to reduce the time 

needed to prepare geometry for mesh generation.  This will be accomplished by 

developing tools that semi-automatically repair discrete data.  Providing a level of 

automation to the process of repairing large, complex problems in discrete data will 

significantly accelerate the grid generation process.  The developed algorithms are meant 

to offer semi-automated solutions to complicated geometrical problems—specifically 

discrete mesh intersections and isolated boundaries. 

The intersection-repair strategy presented here focuses on repairing the 

intersection in-place as opposed to re-discretizing the intersecting geometries.  

Combining robust, efficient methods of detecting intersections and then repairing 

intersecting geometries in-place produces a significant improvement over techniques 

used in current literature.  The result of this intersection process is a non-manifold, non-



intersecting geometry that is free of duplicate and degenerate geometry.  Results are 

presented showing the accuracy and consistency of the intersection repair tool. 

Isolated boundaries are a type of gap that current research does not address 

directly.  They are defined by discrete boundary edges that are unable to be paired with 

nearby discrete boundary edges in order to fill the existing gap.  In this research the 

method of repair seeks to fill the gap by extruding the isolated boundary along a defined 

vector so that it is topologically adjacent to a nearby surface.  The outcome of the repair 

process is that the isolated boundaries no longer exist because the gap has been filled.  

Results are presented showing the precision of the edge projection and the advantage of 

edge splitting in the repair of isolated boundaries. 
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CHAPTER I 

INTRODUCTION 

Computational analysis and design has become a fundamental part of product 

research, development, and manufacture in aerospace, automotive, and other industries.  

The process typically begins with the construction of a computational model to use as a 

virtual representation of a real-world geometry.  For many downstream applications, such 

as computational fluid dynamics, computer graphics, structural analysis, or simulation of 

manufacturing processes, this is often performed with a Computer Aided Design (CAD) 

system.  Thus the computational model is commonly called a CAD model.  This 

computational model is a starting point from which simulation or analysis can be 

performed.  Each application has a field-specific set of requirements based on the physics 

and numerical processes involved.  In general, the success of the specific application 

depends heavily on the accuracy and consistency of the computational model used. 

Unfortunately, the creation of a computational model can be a difficult and time 

consuming task.  The creation process includes geometry preparation, repair, clean-up 

and mesh generation and each of these steps can require a significant amount of man-

time.  If an application involves a complex geometry, the geometry preparation can be a 

time consuming.  If a geometry has not been prepared for simulation purposes or exhibits 

errors that originate from numerical inaccuracies, then the geometry repair process can be 

time consuming.  Also, the process of removing unwanted or unnecessary geometry can 

be a long process.  In addition, most volume-mesh generators require that the discrete 
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input geometry be clean, i.e. watertight and manifold.  A watertight discrete geometry is 

one that contains no free or boundary edges, and manifold discrete geometry contains no 

edges that have more than two topologically attached elements. 

The choice between CAD based repair techniques and discrete-geometry based 

repair techniques was made by recognizing the context in which developed techniques 

would be used.  Repairing CAD-based geometry can generate many numerical 

inaccuracies due to non-linear operations, such as intersections and projections using 

high-order non-uniform rational b-splines (NURBS).  However, performing intersections 

or projections using discrete geometry involves linear operations using linear elements—

at least for this research.  A discrete representation can also be used as an underlying 

geometric representation for downstream applications such as mesh generation.  The 

purpose of this research is to accelerate the process of generating a watertight, manifold 

grid no matter its origin.  This will be accomplished by accelerating the discrete-

geometry repair and clean-up processes through discrete-geometry based repair 

techniques.  Some of the issues related to efficiently producing accurate and consistent 

computational models will be discussed in the next section. 

Issues with Computational Models 

The process of performing a computational simulation includes creating a 

computational (CAD) model, simulation, and post-processing the results from the 

simulation.  With the ever-increasing power of modern computers and the relatively 

automatic nature of mesh generation and computational field simulation, the less 

automated, user-intensive CAD model generation and model repair has begun to 

dominate the amount of time required for performing a computational simulation.  By 
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some accounts, it is estimated that seventy-five percent of the man-time for an overall 

numerical simulation is spent during the geometry preparation, repair, clean-up, and mesh 

generation [1]. 

In recent years, many tools for repairing CAD models have been developed.  

Since the field of CAD model repair is so vast, the tools developed are usually quite 

specific in their application—only solving one problem in a certain number of cases.  

This method of progress in this field is justified since a developing a tool that is general 

enough to solve most problems has been impossible.  This is primarily due to the infinite 

arrangements of geometry, relative scales of geometric components, and requirements of 

the geometry based on its intended application.  However, many researchers have offered 

solutions for simple, ubiquitous problems whose repair can be automated [1],[2],[3],[4].  

Some of the common problems that can be present in CAD models are gaps, overlaps, 

duplicate geometry, degenerate geometry, and intersecting geometry.  Due to varying 

length scales present in CAD models and the lack of topology relations [5], problems 

such as these have to be repaired by using discrete geometry repair techniques which 

directly alter the topology through the addition or removal of elements or by gluing of 

edges or vertices.  These operations can be performed manually; however methods or 

algorithms that offer some degree of automation have, in some cases, significantly 

reduced the amount of time needed to create watertight geometry. 

The aim of this work is to reduce the man-time needed to prepare geometry for 

mesh generation.  Much progress has been made in recent years towards applying simple 

tools to repair simple problems.  However, this research seeks to accelerate the process of 

preparing geometry for mesh generation by offering solutions to complex problems that 

cannot, in general, be automated.  This will be accomplished by developing tools that 
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semi-automatically repair discrete data.  The aspect of these complex problems that 

restricts the extent of automation in the repair process is the reliable and accurate 

classification of not only where to apply the tools but what to do with the results.  The 

most prevalent problems, small gaps and overlaps, can in most cases already be repaired 

automatically without user intervention.  However, larger, more complex problems, such 

as large gaps and intersections, have been found to be difficult to repair automatically due 

to differing length scales that may be present in a model.  For example, a gap that needs 

to be repaired could be the same relative size as a necessary feature present elsewhere in 

the model.  Repairing the gap automatically could also inadvertently remove the 

necessary feature.  Therefore, large gaps and intersections must be identified manually 

and repaired semi-automatically using tools that are developed here.  Providing a level of 

automation to the process of repairing these large, complex problems in discrete data will 

significantly accelerate the grid generation process.  It will also remove the need for most 

CAD cleanup since a watertight, manifold, discrete representation can be generated from 

non-watertight, non-manifold CAD geometry using the developed tools. 

Contributions 

In this work, algorithms were developed to repair CAD models that exhibited 

specific problems which are unable to be fully automated—specifically intersections and 

isolated boundaries.  Techniques that re-mesh the problem areas via volumetric 

techniques or consistent boundary application will not be considered here.  These 

methods offer a large amount of automation at the potential expense of mesh accuracy 

and repair time.  Instead, methods of repair have been developed that directly alter 

existing topology to remove intersections and isolated boundaries.  The developed 



 

5 

algorithms are meant to offer semi-automated solutions to complicated geometrical 

problems.  These techniques were developed to be controlled by a user because the 

problems that are addressed are not minor, but major imperfections that cannot be 

repaired automatically. 

Repair of Discrete Mesh Intersections 

Since collision detection is so widely used in areas such as video games, efficient 

and accurate methods of detecting intersections in various types of meshes have been 

developed.  However, once the intersections are detected current methods of repairing the 

intersecting geometry focus mainly on re-discretizing the areas found to intersect.  In 

addition, current methods are usually restricted to geometries that are already watertight. 

The work presented here focuses on repairing the intersection in-place as opposed 

to re-discretizing the intersecting geometries.  This removes the potentially large expense 

associated with the re-discretization process and lifts the requirement of the input mesh 

being watertight.  Repairing the mesh in-place entails directly altering the geometry 

topology.  Intersections are detected through the use of an octree data structure, in which 

the discrete elements are stored.  This significantly reduces the amount of discrete 

element-element tests required to detect intersections.  Once detected, the intersections 

are repaired by calculating lines of intersection between intersecting discrete elements 

and inserting them into the geometry through element or edge splitting.  The topology 

present in the model is then used to find intersections of elements that are topologically 

adjacent to the originally detected intersection.  This further reduces the amount of 

discrete element-element intersection tests. 
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Accurate and reliable calculation of the lines of intersection is also vital to the 

success of the tool.  The intersection tests and subsequent edge insertions are performing 

using localized tolerances and topological primitives.  This not only increases the 

robustness of the algorithm, but also does not require user intervention.  Combining the 

robust, efficient methods of detecting intersections and then repairing intersecting 

geometries in-place produces a significant improvement over techniques used in current 

literature [6],[7],[8].  The result of this intersection process is a non-manifold, non-

intersecting geometry that is free of duplicate and degenerate geometry.  Some results 

demonstrating the various aspects of the tool will be presented in CHAPTER VII. 

Repair of Isolated Boundaries 

Isolated boundaries are a type of gap that current literature does not address 

directly.  They are defined by discrete boundary edges that are unable to be paired with 

nearby discrete boundary edges in order to fill or repair the existing gap.  In addition, 

these types of gaps are in general not able to be repaired by adapting existing techniques.  

Therefore, the tool developed here solves a problem that previously had no general 

solution.  Other discrete repair techniques require the presence of a hole, a pair of 

boundaries, or use volumetric techniques.  By definition, isolated boundaries cannot be 

paired since they are isolated, and cannot typically be reduced to a hole and then filled.  

Also, as stated before, volumetric techniques will not be used here due to the prohibitive 

computational cost and inability to retain small features in a discrete geometry. 

In this research the method of repair seeks to fill the gap by extruding the isolated 

boundary along a defined vector so that it is topologically adjacent to a nearby surface.  

The method presented here begins by projecting the isolated boundaries onto the nearest 
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surface along a defined normal vector.  The projection is accomplished by inserting the 

isolated boundary edges at the point where the defined normal vector pierces the nearest 

surface.  The pierce points are calculated through the use of ray-casting within the octree 

data structure—which significantly reduces the number of ray-element intersection tests 

required to project the edges.  At this point the edges could be wholly inserted, or 

recovered, into the nearby surface.  However, a method of splitting the projected edge, 

which was found to preserve discrete element quality around the projection, was 

developed and is demonstrated to be superior to whole-edge projection and recovery in 

this application.  The gap between the isolated boundary and the projected-upon surface 

is then filled by creating new discrete elements.  The outcome of repair process is that the 

isolated boundaries no longer exist because the gap has been filled.  Results 

demonstrating the various aspects of the tool will be presented in CHAPTER VII. 

Supporting Data Structures 

Although these contributions are not original, their combination and application 

as used here is unique—and essential to the success of this research.  Because these 

processes are designed to be controlled by a user during the repair process, much effort 

has been made to reduce the time required to repair the selected portions of the model.  

The supporting data structures have been designed to be light-weight both 

computationally and on storage so they can be implemented inside a typical CAD or 

mesh generation system.  This ensures that the procedures do not hinder the repair 

process through long repair times. 

A hierarchical data structure was chosen to represent the mesh because of the 

flexibility with respect to building and maintaining mesh maps as well as the algorithmic 
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efficiency associated with the most commonly used mesh operations.  Building and 

maintaining the mesh maps is done automatically when any topological entities, 

elements, vertices, or edges, are created or destroyed.  All repair processes are defined at 

the fundamental level as element creation or destruction.  Therefore, before and after any 

operation the integrity of the mesh maps is maintained and they do not have to be rebuilt 

at any point after their creation.  This not only makes the repair processes efficient it also 

accelerates the process of software development by removing the responsibility of 

maintaining mesh-map integrity from the user. 

The intersection and ray-casting routines present in this work rely on a spatial-

subdivision data structure, the octree, to reduce the algorithmic complexity of finding 

intersections and projections from O(n
2
) to approaching O(log(n)).  The octree is also 

used to increase the efficiency and accuracy of the edge projection routines.  Finally, the 

octree itself was optimized for both memory requirements and query efficiency.  This 

was accomplished by only splitting the octree in areas where the geometry is relatively 

dense, i.e. the octree is not resolved as finely in areas where very little geometry is 

present.  This saves both space and makes the queries more efficient since there are fewer 

octants to query. 

Organization of Dissertation 

Chapter II presents background information and a literature review of the issues 

related to unstructured mesh repair.  Chapter III and Chapter IV present the current 

implementations of supporting data structures that were essential to this research.  The 

intersection repair algorithm is presented and explained in Chapter V.  The isolated-

boundary repair algorithm is presented and explained in Chapter VI.  Chapter VII 
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presents results of both mesh repair algorithms developed in previous chapters.  Finally a 

summary of contributions and possible future work are presented in Chapter VIII. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

The need for tools to repair both discrete data and CAD models is obvious.  

However, since their means of representing geometry are fundamentally different, the 

methods of repairing common problems also differ.  To repair CAD models, there are 

two choices: repair the CAD definition itself using simple CAD operations or discretize 

the dirty CAD and repair the resulting discretization.  Attempts to automate the former 

approach have had success with relatively simple geometries, but have had limited 

success with more complex geometries [5],[9],[10].  For reasons of robustness, the latter 

approach will be reviewed here. 

Discrete data repair is done by changing the topology through the addition or 

subtraction of elements from the data or manipulation of existing elements to arrive at a 

desired result—in this case watertight, manifold geometry.  Since most portable CAD 

model formats do not provide inherent topology information, it has to be derived by 

simple CAD operations such as projecting curves (NURBS), creating trimmed surfaces, 

and splitting/gluing surface edges, etc. [1].  In practice, the aforementioned simple CAD 

operations often are unable to be automated because of the varying length scales present 

in CAD models and the lack of topology relations [5].  For this reason, the current 

research will focus on the development of discrete repair techniques for discrete data and 

then the application of those techniques to mesh generation from dirty CAD models.  
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Discrete repair techniques can be generalized into at least three categories that will be 

considered here: hole-filling based, volumetric based, and vertex-pair based. 

General Mesh Repair Techniques 

Mesh Repair via Hole Filling 

Hole-filling techniques are a good tool to have because they deal with a common 

problem.  Many options are available to fill holes, from simply collapsing boundary 

elements to adding triangles with a unit disk.  The interior geometry of the hole can even 

be extrapolated from the elements surrounding the hole in an effort to add curvature in 

the interior or to enforce a boundary condition around the hole.  In general, gaps can 

often be made into holes, which can then be filled.  Hole filling is a simple, robust 

technique to repair geometry and can be useful since many more complex problems can 

often be simplified to include the filling of a hole. 

Holes in discrete data can arise from tolerance differences between CAD models 

and the mesh generator, missing information from using range scanners, etc.  Holes are 

defined here as a set of connected free boundary edges that form a closed loop that do not 

define the perimeter of a surface.  Since holes are a closed loop, it follows that the 

addition of elements to the discrete data to fill the hole is appropriate.  An algorithm 

involving the numerical optimization scheme from probability calculus called simulated 

annealing was developed by Wagner, et al. [11].  This involves a preprocessing step 

(removing ―bad‖ triangles around the perimeter of the hole) and the random changing of 

the topology (adding triangles and swapping edges) until all of the holes are closed. 

J. P. Pernot, et al. [12] developed an algorithm that fills holes by first clearing the 

free boundary of undesirable triangles.  Next, the hole is filled with the use of a unit disk, 
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which has the same number of boundary vertices as the hole boundary, that is placed at 

the centroid of the hole.  Generating the new surface patch is now straightforward since 

the unit disk and the boundary of the hole have a one-to-one matching on vertex count.  

The new surface patch is given curvature by the addition of new vertices whose position 

is determined by a curvature-variation-minimization scheme.  Another algorithm 

developed by Liepa [13] is based on element subdivision:  A hole is originally 

triangulated using an extended version of an existing algorithm [14].  Then the interior is 

refined via edge swapping to approach a specified mesh quality.  Finally, the interior is 

faired through element subdivision to shape the newly generated elements to match the 

surrounding mesh.  A similar approach is taken by Levin [15]: the hole is filled using 

quadrilateral elements that are then subdivided based on free boundary conditions placed 

on the edges that define the hole. 

Finally, a more general algorithm was developed by Guo, et al. [16] that 

addresses general gaps that do not have to be closed.  Voxel diffusion was used to 

advance the boundaries of the surfaces into space until collisions were detected.  The 

gaps were then filled with triangles and refined to a specified limit.  Curvature was given 

to the new geometry in the hole during the diffusion process by using the Marching 

Cubes Algorithm [17]. 

Hole filling and, more generally, gap filling seeks to repair discrete data by 

generating new elements to fill the hole/gap.  In current research these methods have 

been applied to small gaps instead of the large ones that this research aims to repair.  

However, generalizing the fundamental components of small gap filling and then 

applying them to large gap seems to be a promising approach to generating a solution. 
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Volumetric Techniques for Mesh Reconstruction 

Another rich field is mesh reconstruction using volumetric techniques.  These 

completely rebuild the input mesh and produce a guaranteed watertight, manifold 

triangulation.  Two common volumetric techniques are either to use a space filling data 

structure, such as an octree or k-d tree [18], or to convert the surfaces to a signed distance 

function [19].  The data structure or distance function is then resolved to a tolerance, ε, 

away from the original geometry.  This process generally results in a loss of sharp 

features since the conversion from mesh data to volumetric representation and back acts 

as a low-pass filter [1].  In this case, the ―low frequencies‖ that are allowed to pass 

through the conversion process, which acts as the filter, are the large features in the 

model.  The sharp features in the model are treated as ―high frequencies‖ by the 

conversion filter and can be lost.  The resulting mesh from this technique can also be 

overly tessellated to a large degree [1] and may need to be decimated [20].  Bischoff, et 

al. [21] developed an algorithm that uses an octree that is intersected with the input data 

to produce watertight, manifold model.  The octree used in the aforementioned algorithm 

is completely resolved to the tolerance ε, which can be very memory intensive. 

Bischoff, et al. [1] later developed an algorithm that uses an octree to satisfy the 

tolerance ε locally by identifying ―critical grid vertices‖ and applying the volumetric 

repair techniques to only these areas.  It is stated that this does not have the same 

performance penalties associated with globally reconstructing the data.  Volumetric 

techniques are attractive from an automated mesh repair point of view because they are 

guaranteed to produce clean geometry in one step that is a finished mesh.  However, 

these techniques can destroy most of the structure of the discrete data from the global 

resampling inherent in this method.  Experimental results, [1], [21], show that mesh 
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repair via volumetric techniques can also be a time-consuming and resource intensive 

process. 

Vertex of Edge Based Mesh Repair 

Next is the general field of repairing a mesh by modifying the geometry and 

topology directly.  These methods do not assume the presence of a closed hole, only that 

the model has free boundary edges that have to be repaired.  Many different names are 

applied to the operations that either glues free boundary vertices together or fills in the 

gap between them.  Patel, et al. [2] labeled them ―stitching‖ and ―filling‖ respectively, 

and developed algorithms that applied a distance-based tolerance to repairing dirty 

meshes.  Any free boundary vertices that do not belong to the same surface are paired if 

the distance between them is below a tolerance α.  A glue tolerance, γ, is used to 

determine if the pair was to be glued together or the space between them filled with the 

addition of elements. 

Chong, et al. [3] improved upon these simple operations and applied them to 

more complex geometrical problems.  Vertex pairs are still used as the basis for repairing 

the geometry, but if the gap needs to be filled with elements, a new operation is used.  

The gap is turned into a hole by bridging the gap with elements which changes the 

topology to create a simply-connected region, as illustrated in Figure 2.1. 
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Figure 2.1 (a) Filling a ring hole by bridging two loops; (b) Creating elements on the 

bridge; (c) Filling the ring hole with elements 

 

Then a hole filling technique similar to those discussed in earlier is used to repair the 

geometry.  A feature that Chong [3] and Patel [2] use to make the gluing process more 

robust is the addition of edge splitting.  If the edge of a triangle attached to a paired 

vertex, a, is closer than the complimentary vertex in the pair, b, then the edge is split by 

projecting the vertex, b, onto the edge and forming a new pair with the new vertex as 

seen in Figure 2.2 and Figure 2.3. 
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Figure 2.2 Vertex-Pair contraction operation: (a) without edge split operation; (b) with 

edge split operation 

 

 

Figure 2.3 Vertex-Pair expansion operation: (a) without edge-split operation; (b) with 

edge-split operation 
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Edge splitting operations lessen the possibility that many skewed elements could be 

formed or many triangles could be removed due to edge collapse.  The advantage of these 

vertex-pair based methods is the low performance overhead associated with these 

relatively simple operations.  Because of their simplicity, these methods are hard to apply 

to problems that are more complex.  However, these methods can form a solid basis from 

which to develop more complicated tools. 

Specific Mesh Problems 

Intersecting Mesh 

In many cases, the geometrical problems present in data do not fit in the above 

categories (simple holes, small gaps, and small overlaps).  Intersecting elements can be 

present in geometry that is completely valid and watertight as shown in Figure 2.4. 

 

 

Figure 2.4 Mesh intersection between right wing (yellow) and fuselage (purple) 
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Many researchers have presented robust and efficient intersection tests for discrete data 

elements [6], [7], [8], [22].  For example, Cartesian mesh generation necessarily involves 

the intersection of the regular Cartesian grid with the existing free boundary elements or 

edges.  However, the implementation of repairing the intersection is very sensitive to 

round-off error and is therefore difficult to develop and implement.  In addition, if some 

method to reduce the number of intersection tests is not employed, then the process of 

searching for intersections becomes an O(n
2
) operation in the number of triangles. 

Park, et al. [6] developed a method to separate the data into groups that are not 

self-intersecting using visibility maps.  This method drastically reduces the frequency of 

computationally expensive triangle-triangle intersection tests when compared to the 

O(n
2
), brute-force method.  Aftosmis, et al. [7] developed a three-dimensional Cartesian 

mesh generator that featured an intersection routine of generally positioned triangles 

whose aim was to combat the negative effects of round-off error.  The intersection tests 

that were developed involved only multiplication and addition and were found to be 

robust.  The effects of round-off error were diminished through the use of exact 

arithmetic, when necessary, and the establishment of tie-breaking routines for 

degeneracies using virtual perturbations.  Lo, et al. [8] presented an algorithm for 

generating finite element meshes from intersecting curved surfaces.  The number of 

triangle intersection tests is reduced by the use of ―neighbor tracing.‖  ―Neighbor tracing‖ 

involves attempting to create a chain of intersecting edges through intersection tests of 

topological neighbors of intersecting triangles.  The chain of edges was then used to re-

mesh the intersecting geometry.  It must be noted that the current research referenced 

above began from watertight, manifold geometry and since the wetted area of intersecting 

geometries was the goal of the research, the geometry ―inside‖ the model could be 
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removed automatically.  This research has the goal of repairing intersecting geometry in-

place instead of re-meshing.  Also, the input geometry need not be watertight or 

manifold. 

 

Isolated Boundary 

The other problem to be addressed here is repairing a gap or overlap that does not 

have a pair of boundaries (isolated boundary).  No current research was found that 

directly addresses this problem.  The general repair techniques discussed above could be 

used in certain situations, but a more general solution must be developed.  A brief 

explanation of the problem follows:  In Figure 2.5 the left wing (pink) of a discrete model 

has an obvious gap between it and the fuselage (purple).  The yellow lines in Figure 2.5 

represent free boundary edges.  As seen in Figure 2.6, the fuselage has no free boundary 

edges near the left wing, which is floating in space near the fuselage.  Vertex-pair based 

algorithms are unable to fill this gap since only one of the components has free boundary 

edges.  Hole filling algorithms are also unable to repair this problem because they would 

just place a cap on the end of the wing.  This would remove the free boundary edges but 

not fix the problem. 
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Figure 2.5 Discrete model with gap present between fuselage (purple) and left wing 

(pink) 

 

 

Figure 2.6 Discrete model from the left side showing the fuselage with no boundary 

edges 
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Conceptually, the solution is simple.  If this were a CAD model, it could be 

repaired by projecting the NURBS-curves onto the fuselage (NURBS-surface), trimming 

the fuselage surface, filling the gap between the wing and fuselage, and then deleting the 

unnecessary fuselage surface inside of the trimming loop.  However, the associated 

discrete operation of projecting edges onto discrete data is sensitive to round-off error 

similar to self-intersecting meshes.  Once the edges are projected, the gap between the 

wing and fuselage could be filled with triangles using any of the vertex-pair based repair 

techniques.  However, non-manifold geometry has now been created and must be 

repaired.  If the projected edges form a closed loop, then the region ―inside‖ the projected 

edges can be identified and removed to form manifold geometry.  However, if the edges 

do not form a closed loop, then nothing further can be done because the concept of 

―inside‖ and ―outside‖ cannot be applied. 
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CHAPTER III 

MESH DATA STRUCTURE 

Introduction and Brief Overview 

The selection of a data structure in any computational project is of utmost 

importance, as the algorithmic complexity of a given algorithm can be made worse 

simply because of a poor choice.  Therefore, the selection should be delayed until it is 

determined what will be required of the data structure.  In the case of mesh repair, data 

structures often take on one of two forms: array based (contiguous memory) and list 

based (non-contiguous memory).  Array based implementations are generally used when 

the primary use of the data structure is element access, which for arrays is O(1).  List 

based implementations are generally used when the primary use of the data structure is 

element insertion and removal, which for lists is O(1).  Even though this is a simple 

generalization, it serves as the basis for the fundamental choice of data structure in this 

research. 

Representing the to-be-repaired mesh is not the only requirement of the chosen 

data structure.  Since the represented mesh will necessarily be changing throughout the 

repair process, adding and removing elements must be considered.  Adding and removing 

elements from both an array and a list can be made to be an amortized O(1) operation.  

With the use of a system that can flag elements in an array as invalid, the need to remove 

the data from an array can be delayed.  Therefore, the addition of elements only need be 

on an end.  This operation, along with the addition of clever timing and size of 
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reallocation of an array, makes element addition and removal an amortized O(1) 

operation.  Inserting and removing elements from a list is also a O(1) operation.  

Therefore, either data structure could achieve the optimal algorithmic complexity of O(1) 

for adding and removing elements. 

A mesh is classified as non-manifold if an edge in the mesh has more than two 

elements attached.  Both array-based mesh representations and list-based mesh 

representation have no fundamental problems representing non-manifold meshes.  The 

problem comes when contemplating how to create and represent mesh maps—which 

support adjacency queries. 

Adjacency queries are also required and are perhaps the most demanding 

requirement of the data structure.  Adjacency queries are achieved through the use of 

maps.  To query all of the elements that are topologically adjacent to a vertex, a map 

from vertices to elements is needed.  To query the elements that are topologically 

adjacent to an element, a map from elements to elements is needed.  In addition, the 

integrity of these maps must be maintained since generating them for the entire mesh for 

every query is impractical.  Generating the maps should ideally only be done once, and 

the incremental maintenance can be very expensive if proper care is not taken in the 

representation of the maps. 

The subject of mesh data structures and maps that support associated queries is 

well documented.  Therefore, only the conclusion that was reached after research will be 

presented.  A hierarchical data structure was chosen to represent the mesh as it leads to a 

straightforward representation of the maps and supports non-manifold meshes.  Nodes 

have a list of topologically attached edges and a list of topologically attached elements.  

Edges are defined by two nodes and have a list of attached elements.  Elements are 
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defined by a list of nodes and a list of edges.  These lists are filled during mesh creation 

and destruction.  By defining mesh operations through the use of element creation and 

destruction instead of directly altering the data structures, the integrity of the maps is 

guaranteed before and after all mesh operations. 

Hierarchical Mesh Data Structure Implementation 

A hierarchical mesh data structure works by defining mesh entities, e.g. nodes, 

edges, and elements, in a hierarchy of increasing complexity.  Nodes are at the bottom of 

the hierarchy as they are defined by a three-dimensional coordinate.  Edges are next up in 

the hierarchy and are defined by two nodes.  Two-dimensional elements are next up in 

the hierarchy and are defined by a list of nodes and a list of elements.  Volume elements 

are not implemented in this research but could be by defining volume elements by a list 

of nodes, a list of edges, and a list of facet elements.  Note that the specific facet element 

does not matter for mesh representation.  Figure 3.1 is a graphical representation of the 

mesh hierarchy.  Red arrows represent a hierarchy direction and black arrows represent 

mesh maps.  This mesh in this research is implemented as an exclusively triangular mesh.  

A mixed element mesh could be supported with the limitation that all modified or new 

elements will be triangles. 
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Figure 3.1 Hierarchical Mesh Data Structure 

 

Hierarchical data structures also lend themselves well to mesh maps.  For 

instance, classical mesh maps, which are used to represent manifold meshes, store 

adjacency information from element to element.  This becomes complicated if the mesh 

is non-manifold because determining which edge to cross to get to an adjacent element 

becomes non-trivial.  However, through the use of hierarchical data structures element 

adjacency for non-manifold meshes is simplified through the use of a hierarchy.  Instead 

of creating map of adjacent elements for each element, a map of elements that are 

topologically adjacent to individual edges is created.  This is then used to determine the 

elements that are topologically adjacent to each element.  Non-manifold meshes pose no 

problem to this representation of mesh maps. 

Mesh Maps and Queries 

Through the use of a hierarchical data structure, hierarchical maps can be created 

and maintained in a straightforward manner.  At the bottom of the hierarchy, the node, a 

map that contains the topologically attached elements for each level of entity above is 

created.  The node class has two explicit maps: a list of topologically attached edges, 
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Map 3, and a list of topologically attached elements, Map 1.  At the edge level of the 

hierarchy, one explicit and one implicit map exist.  The edge class has a list of 

topologically attached elements, Map 2.  Implicitly, the map of nodes that are 

topologically attached to the edge is present since two nodes define an edge.  At the 

element level of the hierarchy, two implicit maps exist.  Implicitly the map of nodes that 

are topologically attached to the element is present since the element is defined by a list 

of nodes.  Also, the map of edges that are topologically adjacent to the element is present 

since the element is defined by a list of edges.  Note that an explicit map that defines the 

elements that are topologically adjacent is not defined.  However, this map is defined 

implicitly since each edge that defines an element each have a list of topologically 

adjacent elements. 

 

1. Edges attached to a Node: This map is defined for each node independently and is 

updated whenever an edge is created or destroyed. 

 

2. Elements attached to a Node: This map is defined for each node independently 

and is updated whenever an element is created or destroyed. 

 

3. Elements attached to an Edge: This map is defined for each edge independently 

and is updated whenever an element is created or destroyed. 

 

4. Element Neighbors: This map is not defined explicitly but can be inferred most 

efficiently from either the elements-attached-to-a-node map, or the elements-

attached-to-an-edge map. 
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Mesh Operations 

Since the mesh and all maps are presumed valid before the mesh operations, the 

mesh operations should not violate that condition.  These operations are all defined so 

that they will not invalidate any pointers or make any mesh maps incorrect.  The 

following operations are used in the research presented here to repair meshes. 

 

1. Creating Node: Creating a node does not involve the construction or update of 

any maps since it is the fundamental data structure.  However, a node would not 

usually created without subsequently creating an edge(s) or element(s). 

 

2. Creating Edge: Creating an edge requires two existing nodes and this operation 

adds the newly created edges to the edges-attached-to-a-node map for each of the 

nodes. 

 

3. Creating Element: Creating an element requires at least three existing nodes.  The 

edges required might exist in the mesh but will be created if needed.  The element 

will be inserted in the elements-attached-to-a-node map for each node and the 

elements-attached-to-an-edge map for each edge. 

 

4. Destroying Node: A node can only be destroyed if it is not topologically adjacent 

to any edges or any elements—that is no edges or elements are defined by the to-

be-destroyed node.  Otherwise, the edges and elements that are topologically 

adjacent to the node will have corrupted maps.  Therefore, destruction of a node 

involves destruction of attached entities, edges and elements, to maintain map 

integrity. 

 

5. Destroying Edge: An edge can only be destroyed if it is not topologically adjacent 

to any elements.  Otherwise, the elements that are topologically adjacent to the 

edge will have corrupted maps—that is no elements are defined by the to-be-

destroyed edge.  Therefore, destruction of an edge involves destruction of 

attached elements.  If the edge is not topologically adjacent to any elements, then 

the edge only needs to be removed from the maps of the defining nodes before 

being deleted. 

 

6. Destroying Element: In the current implementation, only facet elements are 

supported.  When destroying an element, first remove the element from each map 



 

28 

of each defining entity: remove element from elements-attached-to-an-edge map, 

and remove element from elements-attached-to-a-node map.  Then check the 

lower dimensional entities to see if they should be destroyed.  If any of the 

defining edges have an empty list of topologically adjacent elements, it should be 

deleted.  If any of the defining nodes have an empty list of topologically adjacent 

elements, it should be deleted. 

 

7. Gluing Nodes: Gluing nodes can be accomplished by destroying the elements 

attached to the from-node and creating new elements with the from-node replaced 

with the to-node.  Care must be taken to create the new geometry before 

destroying the old geometry.  Since orphaned nodes and edges will be destroyed 

automatically when elements are destroyed, creating the new geometry first 

ensures that all of the nodes needed by the new geometry will be present. 

 

8. Collapsing Edge: Edge collapse can be seen as gluing two nodes together.  

However, the elements that are topologically attached to the to-be-attached have 

to be destroyed before gluing the nodes. 

 

9. Surface Painting: Surface painting is an algorithm for using existing topology to 

extract portions of a mesh satisfying a certain criterion.  For example, if a portion 

of a mesh is non-manifold, one could specify that the painting algorithm not travel 

across non-manifold edges.  This would effectively ―break out‖ portions of the 

mesh that are exclusively bounded by non-manifold edges.  A queue data 

structure is used as the fundamental data structure for this algorithm.  Let the 

queue be the SEARCHING_STRUCTURE, and any container can represent the 

STORING_STRUCTURE, which will contain the desired elements.  Let top() be 

the next element in the STORING_STRUCTURE, and pop() be a function that 

removes the element first in the STORING_STRUCTURE.  Finally, let 

EDGE_TEST() be a predicate that takes an edge and returns true if it can be 

travelled across, and false if it cannot.  The painting algorithm is as follows: 

 

1. Supply seed_element 

2. SEARCHING_STRUCTURE.push(seed_element) 

3. while(SEARCHING_STRUCTURE is not empty) 

a. current_element = SEARCHING_STRUCTURE.top() 

b. SEARCHING_STRUCTURE.pop() 

c. mark_visited(current_element) 

d. loop through list of defining_edges_ 

i. EDGE_TEST(current_edge) == true 

ii. if element on other side of edge is not visited 

iii. SEARCHING_STRUCTURE.push(element) 
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e. STORING_STRUCTURE.push(currernt_element) 

 

The result of the painting algorithm is a fully populated 

STORING_STRUCTURE.  The STORING_STRUCTURE is populated with 

elements that are bounded by edges for who EDGE_TEST() == false.
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CHAPTER IV 

OCTREE DATA STRUCTURE 

Static Resolution vs Dynamic Resolution Octree 

The purpose of an octree is to reduce the algorithmic complexity of spatial 

queries, e.g. nearest-node search and element intersection candidates [18].  One way to 

implement an octree is to refine the whole tree to a certain depth based on the desired 

number of nodes in an octant.  In practice this can lead to a large number of empty 

octants.  The current implementation of an octree attempts to increase the efficiency of 

the search by reducing the total number of octants.  Instead of splitting the whole tree to a 

certain depth, only the octants that have more than the desired number of nodes are split.  

This means that areas in the tree that do not have very many nodes are not resolved fully 

and there are far fewer terminal or leaf octants.  By reducing the number of octants that 

needs to be searched, the octree occupies less memory and is possibly more efficient. 
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Figure 4.1 Uniformly Split Octree 

 

The octree shown in Figure 4.1 is a uniformly split octree.  This octree is split 

down to five levels; therefore it contains 8
5
 or 32768 octants.  It is constructed around 

half of a grill of an automobile.  The domain has been normalized to the longest 

dimension.  The longest dimension has length 1 and the other two dimensions have 

length 0.25.   So the octree in Figure 4.1 is resolved down to 0.25 / 2
5
 or 0.0078125.  

Certainly this octree is fully capable of performing all of the tasks required; however, the 

ratio of storage requirement to number of empty octants is high because of the large 

number of empty octants. 
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Figure 4.2 Non-Uniformly Split Octree 

 

Consider the octree shown in Figure 4.2.  It was formed around the same 

geometry but was not split uniformly.  Instead octants were split only when an octant 

contained more than 5 nodes.  The result is an octree with 64,996 octants with 12 levels.  

A similarly refined, uniformly split octree would require O(10
10

) octants.  The 

significance of the different colors is that each level was rendered is rendered in a unique 

color. 
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Figure 4.3 Non-Uniformly Split Octree, Wire Frame 

 

Figure 4.3 shows the non-uniformly split octree rendered with a wire-frame 

instead of wire-fill so that the non-uniformity of the splits can be seen more easily.  It is 

easily seen that there are far fewer octants in areas where no geometry is present.  The 

octree is denser where the geometry resides. 

 

 

Figure 4.4 Close-up of end-on view of Non-Uniformly Split Octree 
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Figure 4.5 Close-up of end-on view of terminal octants in Non-Uniformly Split Octree 

 

In Figure 4.4 an end of view of the whole tree is shown.  The view is zoomed into 

the tree so that the geometry of the non-uniform splits can be seen.  In Figure 4.5 only the 

terminal octants, those who have no children, are shown.  It is easily seen that the octree 

has been split based on point density and it closely matches the geometry of the half-grill.  

Figure 4.6 and Figure 4.7 show the same octree from the front of the grill. 
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Figure 4.6 Close-up of front view of Non-Uniformly Split Octree 

 

 

Figure 4.7 Close-up of front view of terminal octants of Non-Uniformly Split Octree 

 

The dynamically split octree contains 64996 octants and 12 levels.  The uniformly 

split octree contains 32768 octants.  The dynamically split octree obviously contains 

about twice as many octants.  However, the dynamically split octree resolves the space 

around the geometry to a much smaller level than the statically split octree.  At 12 levels 
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of splits, the dynamically split octree has a minimum dimension of 0.25 / 2
12

 or 

0.0006103.  The dynamically split octree resolves the space around the octree two orders 

of magnitude more than the statically split octree.  In order for the statically split octree to 

represent the same minimum dimension as the dynamically split octree the statically split 

octree would contain 8
12

 or 68,719,476,736 octants.  That is a decrease of five orders of 

magnitude, ~10
5
 octants for the dynamically split octree and ~10

10
 octants for the 

statically split octree, in the number of octants for the dynamically split octree. 

If the statically split octree is a pointer-based octree, i.e. each level has 8
n
 octants, 

then the case against using statically split octrees grows worse.  An octree split 5 times in 

each dimension has 8
0
 or 1 octant on the zeroth level, 8

1
 or 8 octants on the first level, 8

2
 

or 64 octants on the second level and so on for a total of 37,449 octants.  The growth of 

the number of octants can be expressed by Equation 1.  Splitting the octree one more 

level would require the 37,449 octants on the previous levels and would result in an 

octree with 299,593 octants.  If split down to 12 levels, like the dynamically split octree, 

the number of octants required sky-rockets to 78,536,544,841. 

 




levelsplit

n

n
_

0

8

     Eq. 1 

 

The worst-case storage requirements for a dynamically split octree approaches 

that of the statically split octree.  The goal of this addition to the octree was to decrease 

the storage footprint for the octree.  Reducing the storage requirements for the octree 

reduces the overall storage requirements for the supporting data structure.  And, reducing 

the storage requirements for the supporting data structures frees memory for other uses, 
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e.g. repairing larger meshes.  In terms of efficiency, the octree with fewer octants can 

only perform better than the octree with a greater number of octants, simply because 

there are fewer octants to search.  Again, the worst-case performance in terms of number 

of octants searched approaches that of a statically split octree. 

Octree Searching 

Octree searches can be implemented with recursion.  However, simulated 

recursion with the use of a stack or queue data structure can be used.  A depth first search 

can be made using a stack to store visited octants.  A breadth first search can be made 

using a queue to store visited octants.  The stack data structure is used in this 

implementation because of the C++ implementation was faster.  In fact, recursion is not 

present in this implementation of the octree.  Whether a stack or a queue is used, the 

following algorithm is used here to search the octree.  SEARCHING_STRUCTURE will 

be used in the algorithm listing to represent either data structure.  The front of the queue 

and the top of the stack will be denoted as top().  A test for which octants to return or 

check is needed; in the following algorithm this will be stated as OCTANT_TEST.  The 

container used to store the desired octants will be denoted as STORING_STRUCTURE. 

 

1. Push root of octree into the SEARCHING_STRUCTURE. 

2. While SEARCHING_STRUCTURE is not empty 

a. Current octant = SEARCHING_STRUCTURE.top() 

b. SEARCHING_STRUCTURE.pop() 

c. For each child of current_octant—skipped if octant is terminal 

i. If OCTANT_TEST(child) == true 

1. Push child on SEARCHING_STRUCTURE 

ii. Else 

1. Do nothing 

d. If current_octant is terminal 

i. Push current_octant on STORING_STRUCTURE 

3. Return STORING_STRUCTURE 
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Storing Nodes in Octree 

In order to insert a node, start at the top of the tree and determine which child 

would contain the node.  Move to that octant, and repeat until a terminal octant is 

encountered.  Put the node into the node bin of the octant.  If the number of nodes in the 

octant is more than the threshold, then split the octant and distribute the contents of the 

recently split octant among the children of the octant.  This method forms the tree around 

the geometry for optimal searches. 

In order to remove a node from the Octree, find the containing octant with the 

above algorithm for finding the containing octant of a point.  Remove the node from the 

node bin of the octant.  If the number of nodes contained in the parent octant falls below 

the threshold for octant splitting then it needs to be consolidated into one octant with the 

nodes that are in the children.  This method keeps the number of empty terminal octants 

minimized by consolidating children octants when the split no longer serves a purpose. 

Storing Elements in Octree 

One way to store elements in an octree is to store the elements in the smallest 

octant that contains all of the nodes.  Since the larger octants will usually intersect a large 

number of elements, many elements will be stored in the largest octant, or root, or the 

tree.  A query for intersection would involve returning all of the elements contained in an 

octant, both below and above the octant in the tree.  Couple the method of storage with 

the method of querying and the tree no longer performs as O(log(n)); it would approach 

O(n
2
). 
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Another way to store elements is in terminal octants that intersect the element or 

more simply the bounding box around the element.  A query for intersection candidates 

will to return the elements that are stored in the octants that intersect the bounding box of 

an element.  This storage and query method performs much better and is implemented 

here instead of storing elements in the smallest octant containing all of the nodes. 

Queries 

Near Node List 

This query will return a list of nodes that are within a tolerance given to the 

searching routine.  The OCTANT_TEST for this query involves constructing a bounding 

box with the tolerance and testing for overlap between octants and the bounding box 

defined with the tolerance around the node.  The nodes stored in the octants in the 

STORING_STRUCTURE returned from the query are then tested to determine if they 

are within the given tolerance.  The list of nodes that passes this test is then returned from 

the octree. 

Nearest Node 

This query will return the closest node to a given node.  Note, if nodes are 

equidistant from the queried node, the first one in the list is returned.  This query is a near 

node query with the addition of a step that returns the closest node in the list of nodes 

returned from a near node list query.  The tolerance used is first set as the longest 

dimension of the octant that contains the queried node.  If nothing is found within that 

tolerance, the tolerance is doubled until either something is returned, or the search fails 

because the queried node is the only one in the tree. 
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Element Intersection Candidates 

Element queries from the current implementation of the octree only return 

candidates that potentially pass a test, e.g. element intersection.  Element-intersection-

candidates query returns the elements that might intersect the query element.  The 

OCTANT_TEST for this query involves constructing a bounding box around the element 

and testing for overlap between octants and the bounding box around the element.  A list 

of elements that intersect the octants returned in the STORING_STRUCTURE from the 

octree search is returned as intersection candidates from the octree. 

Ray Intersection Candidates 

Ray-intersection-candidates query returns the elements that might intersect the 

query ray, or edge.  The test for intersection (OCTANT_TEST) includes testing the six 

sides of each octant to determine if the ray pierces.  It also includes a test to determine if 

the ray originates in the octant.  A list of elements that intersect the octants returned in the 

STORING_STRUCTURE from the octree search is returned as intersection candidates 

from the octree.  The ray-octant intersection routine implemented here was developed by 

[23] and the source code for this can be found in APPENDIX A.4. 
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CHAPTER V 

MESH INTERSECTION 

Introduction and Brief Overview 

As stated in Chapter CHAPTER II, intersecting discrete geometry can be difficult 

to repair if care is not taken to effectively and efficiently lessen or remove the effects of 

round-off and truncation error.  Also, some method of reducing the algorithmic 

complexity of testing for intersections from O(n
2
) must be developed.  The repaired 

geometry must also be a valid mesh free of degenerate and duplicate geometry.  

Repairing intersecting triangles is a rich topic with much research [6],[22],[7],[8]; 

however the method implemented here for repairing intersecting, discrete meshes in place 

(without re-meshing) does not appear in the related literature.  This section is organized 

as follows: discussion of triangle-triangle intersection tests, application of neighbor 

tracing to this problem, and local repair process. 

Triangle Intersection Tests 

Two triangle-triangle intersection (TTI) tests were found to be the most widely 

used in relevant literature [22],[7] and therefore will be discussed here.  For the purposes 

of describing TTI tests, let us denote the two triangles T0 and T1, and the nodes of the T0 

and T1 as N00, N10, N20, and N01, N11, N21, respectively.  Also let us state that for two 

triangles to intersect in three dimensions, the following two conditions must exist: two 

edges of each triangle must cross the plane of the other, and if so, then two edges must 

intersect the aforementioned planes within the boundaries of the triangles. 
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One type of TTI, first developed by Moller [22] and used by Lo and Wang [8], 

tests for intersections using planes and signed distances.  This intersection test takes 

advantage of the fact that the intersection of two planes is a line [24].  Triangles are also 

planar objects, so this test computes the plane of T0, denoted P0, and the plane of T1, 

denoted P1.  The line segments that define the intersection of T0 and P1 and the 

intersection of T1 and P0 are first calculated.  If the two line segments overlap, then the 

triangles intersect.  An example of this can be seen in Figure 5.1.  On the left, the 

intervals along line L overlap; therefore, the triangles intersect.  On the right, the intervals 

do not overlap; therefore, the triangles do not intersect. 

 

 

Figure 5.1 Triangle/plane intersection, with intersection line overlap(left) and without 

intersection line overlap(right) 

 

Moller [22] developed optimizations for this method that make it quite cheap 

computationally.  However, the problems that exist with this method include the need to 

trap out zeros—which can be caused by large differences in scale, nearly degenerate 

geometry, or nearly coplanar geometry.  The floating-point division required by this 
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approach may result in overflow and subsequently cause serious problems with 

robustness. 

The other type of TTI, demonstrated by Aftosmis [7], involves a Boolean check 

for intersection that only involves multiplication and division and does not involve 

expensive operations like square roots and trigonometric functions.  Once the triangles 

are found to be intersecting, the end points of the line segment defining the intersection 

can be calculated.  This approach lessens or eliminates the problems with the 

aforementioned method since the intersection line-segments are only calculated for 

geometry that is known to intersect.  The aforementioned Boolean test involves the 

calculation of the signed volume of a tetrahedron, Tabcd, where a, b, c, and d are the nodes 

that define the tetrahedron and ai, bi, ci, and di are the node coordinates.  This signed 

volume is calculated using Equation 2. 
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  Eq. 2 

 

The result is six times the volume of the tetrahedron used to construct the 

equation.  The sign of the volume, Tabc, is negative when the triangle formed by nodes 

abc forms a clockwise circuit when viewed from the observation point of node d.  This 

Boolean test constitutes a topological primitive and is the fundamental building block for 

all TTI tests performed in this research. 

Recall that for two triangles to intersect in three dimensions, the following two 

conditions must exist: two edges of each triangle must cross the plane of the other, and if 
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so, then two edges must intersect the aforementioned planes within the boundaries of the 

triangles.  To determine if two edges of each triangle cross the plane of the other, the 

following is done. 

 

 

Figure 5.2 Triangle-Edge intersection test using topological primitive 

 

Above in Figure 5.2, an example of using signed tetrahedral volumes to determine 

if a line segment pierces a plane is shown [7].  The signed volume defined by (0,1,2,a), 

V(T0,1,2,a), is compared to the signed volume (0,1,2,b), V(T0,1,2,b).  If they are of opposite 

sign then the line segment pierces the plane of the triangle.  This must be done for each 

edge to check to make sure that at least two edges from each triangle pass this check.  

Next, it must be determined if the line segment found to intersect the plane of the triangle 

pierces within the boundaries of the triangle. 
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Figure 5.3 Triangle-Edge Intersection, Edge within boundary of Triangle 

 

    [V(Ta,1,2,b) < 0  and  V(Ta,0,1,b) < 0  and  V(Ta,2,0,b) < 0] or    

  [V(Ta,1,2,b) > 0  and  V(Ta,0,1,b) > 0  and  V(Ta,2,0,b) > 0]  Eq. 3 

 

In Figure 5.3, an example of using signed tetrahedral volumes to determine if a 

line segment pierces a plane within the boundaries of a triangle is shown [7].  Three 

volumes must be checked to determine if the line segment pierces within the boundary of 

the triangle.  The volumes are denoted V(Ta,1,2,b), V(Ta,0,1,b), V(Ta,2,0,b).  If all of these 

volumes have the same sign, Equation 3, then the edge pierces within the boundaries of 

the triangle and the pair of triangles intersects. 

A topological primitive is defined in [7] as, ―an operation that tests an input and 

results in one of a constant number of cases.‖  It is further stated that, ―Such primitive can 

only classify, and constructed objects (like the actual locations of the pierce points…) 

cannot be determined without further processing.  These primitives do, however, provide 

the intersections implicitly, and this information suffices…‖  In this case, the constant 

number of cases that can be returned from the volume calculation is three: positive (+), 

negative (-), or zero.  Positive and negative results represent non-degenerate cases and 

zero represents some degeneracy involved with the geometry.  By defining ―zero‖ locally 
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for each pair of triangles tested for intersection, this tool becomes very robust and does 

not need computationally-expensive, exact-arithmetic routines.  See the section on 

robustness later in this chapter for a more detailed explanation on how computational 

errors associated with degenerate geometries are handled. 

Neighbor Tracing 

Lo and Wang [8] presented a method for further reducing the cost of repairing 

intersecting triangular meshes.  The intersection between discrete surfaces is defined by a 

set of connected line segments.  Each pair of triangles that intersect contributes one line 

segment to this set.  Instead of relying solely on a spatial subdivision scheme to reduce 

the number of TTI tests performed, Lo and Wang [8] proposed that once a pair of 

intersecting triangles was found that the topology of the mesh be used to construct the set 

of line segments defining the intersection.  They denoted this process ―Tracing Neighbors 

of Intersecting Triangles (TNOIT).‖  TNOIT involves first finding a pair of intersecting 

triangles, and then the topological relations in the mesh can be used to move along the 

lines of intersection in the mesh—further reducing the number of TTI tests required to 

repair the mesh. 

The determination of how to move through the mesh is determined on the type of 

intersection present.  In Figure 5.4, three different types of intersections can be seen.  

Type 1 is a general intersection where one edge from each triangle intersects the other 

triangle.  Type 2 is a special case of a general intersection where two edges from one 

triangle pierce the other triangle.  Type 3 has only one edge that pierces.  This means that 

of the two points that define the line segment that defines the intersection, one is a node 

in the existing geometry. 



 

47 

 

 

Figure 5.4 Three fundamental types of triangle intersections 

In Figure 5.5 the three different types of intersections can be seen in place in a 

local mesh.  This demonstrates how TNOIT can be used to construct the chain or loop of 

line segments that define an intersection.  Starting with, as indicated in Figure 5.5a, 

triangles F1 and T1, if the intersection point, P, lies on the edge of F1, then the next pair 

to be tested for intersection should be T1 and F2—which is topologically adjacent to F1 

across the edge.  In Figure 5.5b, a similar process is used to move from the pair T1 and 

F1 to F1 and T2.  However, in Figure 5.5c, the next intersection point is a node and 

therefore all of the topologically adjacent elements, T1-T5, must be tested for intersection 

with F1 before moving on. 

 

 

Figure 5.5 Three possibilities of how to move through a mesh using neighbor tracing 
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In addition to the above three intersection types, others which include degenerate 

geometries have been developed.  As can be seen in Figure 5.6, an edge might not pierce 

within the boundaries of a triangle.  If it does not, then it either must pierce an edge of the 

triangle, or an edge pierces a node of the triangle.  Each of these requires different 

methods of moving to the next pair of intersecting triangles.  In Figure 5.6a, an edge of 

T1 intersects an edge of F1.  This means that both edges would have to be traversed in 

order to move to the next pair of intersecting triangles.  In Figure 5.6b, an edge of T1 

intersects a node of F1.  This means the element topologically adjacent to T1 would have 

to be tested against every element attached to the intersecting node, P, in order to move to 

the next pair of intersecting triangles. 

 

 

Figure 5.6 Degenerate possibilities of intersections 

 

Local Repair 

While tracing the segments through the mesh, the segments that lie in each 

triangle are stored for later use.  These line segments represent the intersection between 

the two surfaces.  In order to remove the intersection, the line segments must be inserted 
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into both surfaces.  This would leave a set of non-manifold edges shared by the 

intersecting surfaces, but the intersection would be removed.  The process of inserting 

these line segments into the surfaces is simplified by the realization that each triangle has 

a set of edges that need to be inserted locally.  This means that instead of a global set of 

edges to insert into the mesh, the problem can be broken into many smaller sets of edges 

inserted into one triangle locally.  Inserting edges in a triangle is strictly a two 

dimensional task and no attempt to make a three dimensional generalization of this 

procedure is made here.  A temporary, two-dimensional mesh is constructed out of the 

triangle and the nodes that define the edges.  This local, two-dimensional transformation 

is accomplished by rotating the geometry into the x-y plane using the equations given in 

the source code in APPENDIX A.3. 

By rotating the geometry, instead of projecting it, or using any other means, the 

undistorted geometry is transformed into two-dimensional space.  This is important 

because if the wrong geometry were created in two-dimensional space because of an 

incorrect transformation, the resulting three-dimensional geometry would also be 

incorrect.  An example of the rotated geometry, including the triangle and the to-be-

inserted edges can be seen in Figure 5.7a. 
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Figure 5.7 Local repair view edge insertion 

 

The edges are inserted individually by first inserting the defining nodes and then 

recovering the edge, Figure 5.7b.  A local min-max reconnection pass is then performed 

until no more edges fail the min-max test, Figure 5.7c.  Each of these steps, node 

insertion, edge recovery, and local reconnection will now be discussed in more detail. 

 

Node Insertion 

In order to put edges into the triangulation, the nodes that define the edges must 

first be inserted.  The process of finding the triangle that contains the node involves 

another topological primitive.  Let the vector from node N0 to node N1, and node N0 to 

node N2 be denoted as follows in Equation 4a and Equation 4b. 

 

 zzyyxx
NNNNNNN 01010101 ;; 

 a.
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 zzyyxx NNNNNNN 02020202 ;;   b. 

 02012,1,0
2

1
NNA   c 

Eq. 4 

 

This topological primitive in this case is the area of a triangle.  Equation 4b is 

used to calculate the area of a triangle.  In two dimensions, the absolute value is removed 

because the only non-zero component will be the z component.  The z component, along 

with its sign, is taken to be the area of the two dimensional triangle.  The calculated area 

is positive if the nodes form a counter-clockwise circuit, i.e., the resulting vector is in the 

positive (+) z direction.  In order to test if a node is within the boundaries of a triangle, 

three areas must be checked. 

 

 

Figure 5.8 Containing triangle area check 

 

In Figure 5.8a, the three areas that must be checked are the triangles formed by 

(0,1,P), (1,2,P), and (2,0,P).  If all of these areas are positive, the node, P, is in the 
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interior of the triangle, (01,2).  However, in Figure 5.8b, all three areas are not positive.  

The area of triangle (2,0,P) is negative.  Therefore the edge, (02) is considered to be 

―associated with‖ the negative area.  Because of negative area formed by (2,0,P), the 

node P is not in the interior of triangle (0,1,2).  The two dimensional node-in-triangle 

check is used as a path finding mechanism for finding the containing triangle of a node.  

Consider Figure 5.9, in which the search for the containing triangle begins in the seed 

face.  Since the node does not reside in the seed face, the edge that is associated with the 

negative area is traversed.  For example, in Figure 5.8b, the searching algorithm would go 

to the element that is topologically adjacent to edge (02). 

 

 

Figure 5.9 Two-dimensional, containing triangle search example 
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This process, calculating areas and traversing edges, is repeated until the 

containing triangle is found or the search fails because the node lies on an edge.  If a 

containing triangle is found, it is split into three triangles, as seen in Figure 5.10a.  If the 

node is found to lie on an edge, the edge is split as seen in Figure 5.10b. 

 

 

Figure 5.10 Triangle splitting and edge splitting example. 

 

It is possible to not include the edge splitting option and rely on the local 

reconnection routine to improve mesh quality.  However, the creation of nearly 

degenerate geometry by inserting nodes that are close to edges might cause the 

subsequent node insertions or containing-triangle searches to fail.  Nearly degenerate 

geometry could also cause incorrect results from numerical inaccuracies.  Therefore, the 

edge-split option was included. 
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Edge Recovery 

Once the defining nodes of an edge are successfully inserted into the 

triangulation, the edge itself must be recovered.  It has been proven that the recovery of 

an edge in two dimensions is always guaranteed through a topological operation called 

edge swapping (Figure 5.14) [24].  In order to recover the edge, a list of edges that should 

be swapped needs to be constructed.  The equations used to determine if two edges 

intersect within some tolerance can be found in the source in APPENDIX A.5.  It should 

be noted that the equations in APPENDIX A.5 do not calculate the point of intersection 

directly.  They instead calculate the closest point on an edge to the other edge.  The list of 

edges that should be swapped contains only the edges that intersect the to-be-recovered 

edge.  An example of this can be seen in Figure 5.11.  Starting at the node on the left, 

each edge that intersects the to-be-recovered edge is traversed—and stored—until the 

node on the right is found. 

 

 

Figure 5.11 Finding edges that intersect the to-be-recovered edge using edge tracking 

 



 

55 

Once the list has been constructed, the following algorithm can be used to recover 

the desired edge [23]. 

 

1. Each edge of the set is swapped if 

a. First Contraint: its new swapped configuration does not create 

intersections 

b. Second Contraint: its new swapped configuration does not intersect 

the to-be-recovered edge. 

2. If there are edge left unswapped in the list due to the constraints of 1(a) and 

1(b) then the following strategy is performed. 

a. Relax the second constraint for the first unswapped edge and try to 

perform the swaps of the rest of unswapped edges. Flag the first 

relaxed edge still unswapped for the secong visit. 

b. A sweep of edges with both of the constraints being in effect is 

followed for swap. 

c. This trial scheme is continued until the edge is recovered or no swap 

could be performed due to geometrical validity, i.e. first constraint. 

d. If the edge is not recovered due to the first constraint then it is replaced 

with a set of edges forming a path between its end vertices. These edge 

pieces are recursively tried to be recovered. 

Figure 5.12 Edge swapping algorithm 

 

This process is demonstrated in Figure 5.13.  The list of swappable edges includes 

edge, 1, 2, 3, and 4.  Looping through the edges on Figure 5.13 the first pass we see that 

edges 1 and 2 can be swapped.  Edge 3 cannot be swapped because it violates condition 

1a from Figure 5.12.  Once edge 4 is swapped, then edge 3 can be swapped in the second 

pass to arrive at the desired geometry.  It is worth noting again that this process is 

guaranteed to converge to the desired result in two dimensions. 
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Figure 5.13 Edge recovery process via edge swapping 

 

Local Reconnection 

Once all of the required edges have been recovered in the temporary mesh, a 

constrained min-max (minimize the maximum angle) reconnection algorithm is used to 

improve the element quality is the mesh.  The aforementioned constraints are the inserted 
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edges.  These edges must be present for the final geometry to repair the intersection.  For 

a local edge to be reconnected, its reconnected state must reduce the maximum angle of 

the current state.  An example of this can be seen in Figure 5.14. 

 

 

Figure 5.14 Local reconnection example using Min-Max criterion 

 

In addition to the reconnection criterion, a stopping criterion was needed to ensure 

that the process did not reconnect geometry needlessly.  If the maximum angle in the 

current or reconnected geometry is near ninety degrees, then the edge is left alone—since 

this can cause endless reconnections to be made while trying to improve the element 

quality.  The loop that reconnects this geometry, since it avoids infinite reconnections, is 

guaranteed to converge [26]. 

Translating Local to Global 

As stated previously, a two dimensional mesh was created for the purposes of 

simplifying the process of inserting nodes and subsequent edges into individual triangles.  

After all of the nodes have been inserted and edges recovered in the two-dimensional 
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mesh, the topology of the two-dimensional mesh is used to update the topology of the 

three-dimensional mesh without any further transformations.  This is accomplished 

through the use of ―parent‖ nodes.  The node class has a data member called a 

parent_GRX_NODE_ which is a pointer to a node.  Since all of the geometry exists in 

three dimensions and then is transformed to two dimensions, each of the ―two-

dimensional‖ nodes has a ―parent‖ from which it is derived or created.  Creating the 

three-dimensional topology from the two dimensional, temporary mesh is as simple as 

creating all of the triangles that exists in the two dimensional mesh using the ―parent‖ 

nodes instead of the ―child‖ nodes for the connectivity.  No additional calculations are 

used to transform the temporary mesh back to three dimensions—only the connectivity 

from the two dimensional mesh. 

Post Processing Intersecting Mesh 

The process of inserting the line segments, or edges, defining the intersection into 

all of the appropriate discrete surfaces necessarily creates non-manifold meshes.  The 

purpose of this tool is to aid in the production of watertight, manifold meshes.  Therefore, 

some way of removing these non-manifold meshes needed to be developed, otherwise the 

intersection has removed one problem, intersecting geometry, and created another, non-

manifold edges.  One solution is to use the surface painting algorithm in described 

CHAPTER III with the EDGE_TEST() returning false for non-manifold, free-boundary, 

and surface-boundary edges.  This post-processing step of surface painting would, if 

possible, ―break-out‖ the surface defined in part or in whole by the non-manifold edges 

just created by the mesh intersection routines.  These surfaces that have been ―broken-

out‖ can be removed or kept by the user based on the desired results. 
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Robustness 

Triangle Intersection Test 

In an attempt to increase the robustness of this tool, tolerances for determining 

degenerate geometry are determined locally.  This method not only allows the mesh to be 

of any scale or order that is representable, but also prevents the user from having to enter 

a tolerance or even know anything about the scale or order of the mesh.  For each TTI 

test, a number of volumes must be calculated.  Instead of comparing the volumes to 

machine-zero for the purposes of determining geometric degeneracies, they are compared 

to an idealized volume that is calculated for each pair of triangles.  In this 

implementation, this idealized volume is a bounding box, a cube in this case, formed by 

the longest edge of the six that are present in the triangle pair.  A volume calculation is 

determined to be degenerate if it falls below a set fraction of the idealized volume.  The 

purpose of this is that, in this case, a global tolerance is meaningless unless it is given 

some scale.  This is because the use of a global tolerance could lead to very poor quality 

triangles being created because geometry that is locally degenerate may or may not be 

based on a global tolerance. 

A degenerate volume will be treated differently depending on when it is 

encountered.  For example, the TTI test consists of basically two steps: for two triangles, 

T0 and T1, test edges of T0 to see if they pierce the plane of T1 and, test edges of T0 to see 

if they pierce within the boundaries of T1.  If a degeneracy is encountered while testing 

for edges piercing a plane, it indicates that the edge might not pierce the plane and 

subsequently the TTI test would fail.  If a degeneracy is encountered when testing if the 

edges of T0 pierce within the boundaries of T1, the edges might intersect.  In the first case, 

a solution was sought to determine if the triangles intersected—to ―break‖ the 



 

60 

degeneracy, or tie.  In the second case, the edges are considered to intersect and this 

information is used to continue the TNOIT process. 

The topological primitive used to determine if two triangles intersect will return 

one of three values, positive (+), negative (-), or zero (0).  The zero-value threshold is the  

local tolerance—which is a fraction of the volume of the aforementioned bounding box.  

In the case of degenerate volumes for intersecting edges, the degeneracy offers useful 

information—the edges intersect.  However, for determining if an edge pierces a plane, 

degeneracy offers no useful information.  A technique called ―Simulation of Simplicity‖ 

[7], [27]  is used to ―break‖ the degeneracy, or tie.  This technique virtually perturbs the 

topological primitive with a unique perturbation dependent on node index and coordinate 

dimension.  No changes are made to the actual geometry since the perturbation is applied 

to the result of the volume calculation.  The virtual perturbation consists of components 

of decreasing magnitude that are considered one by one to ―break‖ the degeneracy or tie. 

Since the tolerance used for determining intersecting edges is not zero, the edges 

will most likely not intersect.  Therefore, an equation for finding the point of intersection 

is not applicable.  The solution to this problem is to instead calculate the closest point on 

an edge.  It does not matter on which edge the point resides since they will both be split 

with the same point.  The addition of edge splitting produces higher quality elements 

along the line segments of intersection. 

Neighbor Tracing 

In an effort to make the neighbor tracing as accurate and robust as possible, the 

triangle pairs that are intersected are stored so that pairs are not intersected multiple 
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times.  Edge-triangle pairs are kept as well as node-triangle pairs.  These maps ensure 

that nodes and edges are not placed in triangles multiple times. 

Edge Recovery 

The edge recovery process involves two steps that need robustness, node insertion 

and edge swapping.  Node insertion requires robustness so that the node is placed in the 

correct triangle or on the correct edge.  This ensures that the geometry created is not self-

intersecting.  The containing triangle search takes place in two dimensions and an 

example of the check can be seen in Figure 5.8.  A local tolerance similar to the one used 

for volume calculations is implemented here.  In this case, a degenerate area means that 

the edge associated with the degenerate area should be split instead of the triangle.  This 

effectively puts a buffer on each triangle that does not allow intersecting geometry to be 

created by placing a node in an incorrect triangle. 

Edge swapping requires that two-dimensional line segments be tested for 

intersection.  Instead of calculating whether edges exactly intersect, the closest points are 

calculated on each edge.  The distance between these points is then compared to the 

longest of the potentially intersecting edges.  If the distance falls below a set fraction of 

the ―ideal‖ edge length, the edges are considered to intersect.  This is another example of 

a tolerance being implemented locally instead of globally. 
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CHAPTER VI 

ISOLATED BOUNDARIES 

Introduction and Brief Overview 

As discussed in CHAPTER II, current methods of mesh repair that are either 

node-pair based, or hole-filling algorithms are unable to repair isolated boundaries.  Node 

projection is a process in which care must be taken to effectively and efficiently lessen or 

remove the effects of round-off and truncation error.  Also, some method of reducing the 

algorithmic complexity of the node projection, specifically ray casting, from O(n
2
) must 

be developed.  The repaired geometry must also be a valid mesh, free of degenerate and 

duplicate geometry.  The following section is organized as follows: discussion and 

development of a node projection technique onto discrete surfaces, path finding and edge 

recovery, and gap filling and possible post-processing. 

Edge Projection 

Projection of nodes and NURBS curves onto NURBS surfaces is a standard 

operation in many CAD/CAE systems.  However, to repair discrete geometry, a discrete 

analog to NURBS projection had to be developed.  In order to repair the gap near the 

isolated boundaries, the edges had to be first projected onto the nearby discrete surface.  

This requires that the nodes defining the edges have to be projected onto the nearby 

discrete surface.  In order to determine which direction to project the nodes, a projection 

direction had to be calculated.  Then, a method of determining if that ray intersected any 

geometry was needed.  The following sections describe each of these issues. 
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Node Projection Direction Calculation 

In order to calculate a projection direction for each node, the surrounding 

geometry must be considered.  Since the nodes being projected are boundary nodes, they 

necessarily have boundary edges topologically attached.  These edges can each be said to 

have a normal direction that is perpendicular to both the edge and the normal vector of 

the attached element. 

 

 

Figure 6.1 Free-boundary node-normal determination 

A two-dimensional example of node and edge normals can be seen in Figure 6.1.  

The green normals attached to the edge are normals for the red boundary edges.  The 

longer black normals attached to the nodes are the average of the topologically adjacent 
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boundary edge normals.  Each boundary node has a unique normal associated with it.  A 

least squares fit of all of the normals is used as a projection direction for the set of 

boundary nodes.  The capability for each node to have its own projection direction exists, 

but the risk of intersecting normals is present.  Projecting all of the nodes using the same 

projection direction guarantees that the geometry produced by filling the gap will not be 

self-intersecting. 

Ray Casting 

Ray casting is implemented here as a solution to the general problem of 

determining the first object intersected by a ray.  This indirectly solves the problem of 

finding the closest discrete surface to a node in a defined direction.  In CHAPTER IV, the 

octree query for determining the elements that potentially intersect the ray is discussed.  

Once a list of candidates for intersection is returned from the tree, the list is reduced to 

only those that the ray actually intersects.  The element whose intersection point is closest 

to the node is then selected as the element into which the node is projected.  The 

equations for determining if a ray intersects a triangle can be found in the source in 

APPENDIX A.2. 

Node Projection 

Once a projection direction is calculated, the node can be projected into the 

closest surface.  The element the node is projected into is split into three small triangles.  

An example of this splitting can be seen in Figure 5.7.  It is possible for the ray to 

intersect the discrete surface on an edge or a node.  If a ray intersects an edge, then it is 

split at the intersection point—which is returned from the projection routine.  If a ray 

intersects a node, then the existing node is returned from the projection routine.  These 
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possibilities were incorporated so that nearly degenerate geometry was not created.  Poor 

quality elements around the projected nodes could degrade the robustness of algorithms 

that rely on mesh quality. 

Path Finding 

Once the defining nodes of the to-be-projected edge are present in the projected-

upon discrete surface, the edge must be recovered.  This process is similar to the task 

discussed in CHAPTER V except here it is implemented in three dimensions.  A direct 

three-dimensional implementation of the edge swapping algorithm presented in 

CHAPTER V cannot be implemented here because the to-be-recovered edge will not 

necessarily intersect any edge in the projected-upon surface.  The task of finding edges 

that the projected edge would cross still exists but now another method of the ―edge-

tracking‖ procedure discussed above is needed.  Karamete, et.al, [23] developed a method 

of finding a path of edges between the defining nodes of a to-be-recovered edge that is 

found by point-line projections and intersection checks. 
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Figure 6.2 Projection of node into plane 

 

Given the geometry shown in Figure 6.2 of a plane defined by an origin, origin, 

and a normal, plane_normal, find the projection of the vector pointing from origin to 

node.  This projected vector will be defined by origin and the projected_node.  In 

Equation 5 the equations used to accomplish this task are given.  The plane_normal must 

be normalized before this calculation is done.  The vector, vec, is projected onto 

plane_normal via a dot product.  With this information, the coordinates of 

projected_node can be found by traveling from node in the direction of plane_normal a 

distance of vec_dot.  Note, vec_dot is a negative value since the projection is towards the 

plane, plane. 

 

originnodevec   a. 

normalplanevecdotvec __   b. 
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  dotvecdotvecdotvecif __0_   c. 

dotvecnormalplanenodenodeprojected ___   d. 

Eq. 5 

 

For each point-line projection seen in Figure 6.3, the origin of the plane is defined at the 

last point of intersection calculated on the edges in the projected-upon mesh, and the to-

be-recovered edge.  The plane_normal is the normal of the current triangle. 

 

 

Figure 6.3 Limited point-line projections 

 

Figure 6.3 is an example of the use of controlled point-line projections to find the 

path of edges between nodes.  In order to accomplish this, the edge is projected into the 

current triangle and then that projected edge is checked for intersection with the edges of 
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the triangle.  The newly intersected is edge is then traversed to arrive in a new triangle.  

The edge is projected into the plane of this triangle and the process is repeated until the 

end node is found.  The result is a list of edges that would intersect the to-be-projected 

edge. 

Whole Edge Recovery vs. Edge Recovery with Edge Splitting 

Once a list of edges that the to-be-projected edge would intersect is constructed, 

the issue of how to recover the edge is raised.  The algorithm in Figure 5.12 is the 

solution of choice in [23].  However, this can lead to highly skewed results—similar to 

the results seen in Figure 6.4. 

 

 

Figure 6.4 Skewed geometry resulting from 3D edge recover algorithm. 

 

The edge that was recovered in Figure 6.4 traversed a relatively large number of edges 

and a relatively large amount of curvature.  The result of recovering the whole edge is a 

distorted geometry that destroyed the original shape of the model.  This can be seen in the 
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center and right cylinders in Figure 6.4—which are from the right and left sides of the 

cylinder respectively. 

Instead of recovering the whole edge, the proposed solution was to split the to-be-

recovered edge into as many pieces as the number of entries in the list of swappable 

edges.  Also, each edge that is in the list of swappable edges is split where the to-be-

recovered edge intersected while projected into the plane of a triangle.  This process 

would not recover the whole edge, but it would retain the curvature of the projected-upon 

surface.  A two dimensional example of this can be seen in Figure 6.5. 

 

 
a                                                b                                               c 

Figure 6.5 Edges split instead of swapped 

 

The red edges in Figure 6.5a are the edges that intersect the to-be-recovered edge.  

They have been split instead of swapped to arrive at the results shown in Figure 6.5b.  

The projected edge is also split as can be seen in Figure 6.5c.  The purpose of splitting the 

edges on the projected-upon surface is to retain the curvature and prevent the 

unintentional creation of distorted or poor quality triangles.  The purpose of splitting the 

original edge is to arrive at a state where all of the points created in the projected-upon 
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surface have a pair on the original edge.  This makes filling the gap near the isolated 

boundary a straightforward process.  It should be noted that the original edge can still be 

recovered after all of the splits have been performed, if desired, by simply gluing the 

interior nodes together on the projected-upon surface and the original edge. 

Filling the Gap 

After the node projection, and subsequent edge splitting, the geometry resembles 

Figure 6.5c.  The only thing left to do in order to repair the isolated boundary is fill the 

gap.  If only the set of edges that comprise the projected edge and the original edge is 

considered, then the problem becomes a mesh generation problem with the boundaries 

defined by the aforementioned edges, Figure 6.6a. 

 

 

Figure 6.6 Filling Gap Defined by Isolated Boundary and Surface 
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There is no need to place any nodes in the interior of the gap since a triangulation that 

fills the gap is all that is required.  Therefore, since the nodes on the surface all form a 

pair with a node on the original edge, filling the gap is straightforward (Figure 6.6b). 

Post Processing 

Now that the gap has been filled with new triangles, a post-processing step can be 

added.  If the distance between the nodes on the original edge and the projected edge fall 

below a given tolerance, the edge that is defined by those two nodes can be collapsed.  

This step is not necessary to repair the gap since it is already filled at this stage.  

However, it could be useful if the desired result was actually the edges glued to the 

discrete surface instead of merely projected. 

The process of inserting the line segments, or edges, defining the projection into 

all of the appropriate discrete surfaces necessarily creates non-manifold meshes.  The 

purpose of the isolated-boundary repair tool is to aid in the production of watertight, 

manifold meshes.  Therefore, some way of removing these non-manifold edges needed to 

be developed, otherwise the intersection has removed one problem, isolated boundaries, 

and created another, non-manifold edges.  One solution is to use the surface painting 

algorithm defined in CHAPTER III with the EDGE_TEST() returning false for non-

manifold, free-boundary, and surface-boundary edges.  This post-processing step of 

surface painting would, if possible, ―break-out‖ the surface defined in part or in whole by 

the non-manifold edges just created by the edge extension.  These surfaces that have been 

―broken-out‖ can be removed or kept by the user based on the desired results. 
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Robustness 

Node Projection/Ray Casting 

In an attempt to increase the robustness of this tool, the ability for a projected ray 

to intersect a node, edge or triangle was added.  This improves mesh element quality 

around the projected node.  It also ensures that the path finding algorithm, which relies on 

controlled point-line projections, is not hindered by the node projection process due to 

poor quality elements.  In the ray-element intersection routine seen in APPENDIX A.2, 

the return value is non-zero if the edge intersects the triangle.  The parameters returned 

are t, u, and v.  The first parameter, t, is the length along the normalized direction vector, 

dir, along which the intersection point lies.  The next two parameters, u and v, are the 

coordinates of the intersection point in the local u-v space of the triangle defined by vert0, 

vert1, and vert2.  An example of the u-v space formed by a triangle can be seen in Figure 

6.7. 

 

 

Figure 6.7 Triangle in local u-v space 
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The values that are returned for u and v define where on the triangle the ray 

intersects.  Given a tolerance, tol, if u<tol or v<tol that would indicate that the ray 

intersects an edge or a node.  If the last statement were true, then the following conditions 

would indicate that the ray intersects a node: 

 

if{(u < tol  and  1.0 - v < tol)  or  (v < tol  and  1.0 – u < tol)  or  (u + v < tol)} 

 

If the above check fails to indicate that the ray intersects the node, then the ray 

intersects an edge.  Using the u-v map returned from the ray-triangle intersection test, a 

robust method of determining if the ray intersects a triangle on the interior or on an 

exterior entity was developed.  In addition, since the values of u, v, and t are on the order 

of 1, some multiple of round-off error can be easily implemented as a tolerance—this is 

was implemented here. 

Path Finding 

Path finding between nodes is an integral part of the isolated boundary repair tool.  

The original edge cannot be projected onto a surface if a path between the projections of 

the defining nodes cannot be found.  Because the edge line is projected into the triangle’s 

plane as opposed to rotated, the projected edge line might not intersect any of the edges 

of the triangle.  This could happen, for instance, if the edge is nearly perpendicular to the 

plane of the intersecting triangle.  One specific instance of this would be that the points 

defining the projected edge are on nearly opposite sides of a cylinder (Figure 6.4).  A 

solution to this problem is to extend the line out to infinity before projection to make sure 

that the projected edge line intersects at least one of the intersecting triangle’s edges.  
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However, the solution implemented here is to first project the line onto the plane and then 

to extend it at least three times the length of the longest edge of the intersecting triangle.  

Again, a local tolerance is felt to be superior to a global tolerance.  Also, since this tool 

might be implemented on different hardware, a hard-coded number representing infinity 

could prove problematic. 

Another issue that was addressed is that during the edge-line projection step of the 

path-finding algorithm the edge line, once projected into the plane of the triangle, might 

be parallel to an edge and therefore does not properly intersect any of the edges.  If a 

parallel edge is found, then the other node defining the edge is used as the next point in 

the process of finding edges that intersect the to-be-recovered edge.  However, in this 

case all of the elements topologically attached to the node have to be searched for edge 

intersection.  If instead of using the opposite node of a parallel edge an intersection point 

were calculated on an edge, the resulting point would be coincident to one of the end 

points of the parallel edge.  If this edge were then split as usual, degenerate geometry 

would be created.  Therefore, the ability to use an opposite node of an edge instead of 

calculating an intersection point with a nearly parallel edge prevents the unintentional 

creation of degenerate geometry. 

The final issue addressed is the possibility of creating intersecting geometry.  The 

edge-projection process begins with node projections.  Nodes will be projected into the 

closest element along a defined vector.  A path between these nodes will be found and 

then the edge can be recovered.  However, if the path between the nodes travels through a 

part of the mesh that the original edge cannot see then the edge cannot be projected and 

the algorithm moves on to the next edge in the list.  This concept is demonstrated below 

in Figure 6.8.  On the left is an example geometry where the edge can see the entire 
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projection path between vertices.  In Figure 6.8, right the edge cannot see the entire 

projection path using the projection vector (blue arrows) and therefore cannot be 

projected onto the surface.  For if it were projected onto the surface the geometry 

generated to fill the gap would intersected the projected-up surface. 

 

 

Figure 6.8 Edge Projection Failure Condition Comparison 
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CHAPTER VII 

RESULTS 

In previous chapters, the algorithms for repairing mesh intersections and isolated 

boundaries are described in detail.  This chapter demonstrates results from using these 

algorithms to repair three-dimensional geometry.  All of the tests present in these results 

were run on a laptop with a 2.33GHz Intel® Core™2 CPU with 4.00 GB of RAM.  The 

operating system used was 64-bit, Ubuntu Linux 9.10. 

Intersecting Mesh 

The following examples show various results from different size meshes. 

Nearly Parallel Geometry 

The following example demonstrates the robustness of triangle intersection 

routines.  The geometry seen in Figure 7.1 is nearly parallel.  The pink surface is one 

degree rotated from the flat plane that is defined by the purple triangle.  A deviation of 

less than one degree could not be visually demonstrated well enough to make an effective 

example.  The two geometries present in Figure 7.1 can be seen individually in  
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Figure 7.1 Intersection of Nearly parallel Geometry 

 

  

Figure 7.2 Individual Surfaces of Nearly Parallel Geometry 

 

In Figure 7.3, Figure 7.4, and Figure 7.5 the nearly parallel geometry can be seen 

after the intersection process.  The lines of intersection form a closed loop on the triangle 



 

78 

and that surface has subsequently been separated into two distinct, topologically adjacent 

surfaces.  These can be seen in Figure 7.4, left.  A close-up of the lines of intersection 

inserted into the curved surface can be seen in Figure 7.4, right.  In Figure 7.5, a close-up 

of the small gap formed by the one degree rotation of the curved surface can be seen.  

This figure best demonstrates how close these surfaces are to being parallel. 

 

 

Figure 7.3 Intersection Nearly Parallel Geometry, Repaired 
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Figure 7.4 Isolated Surfaces of Nearly Parallel Geometry, Repaired 

 

 

Figure 7.5 End-on view of Intersection of Nearly Parallel Geometry, Repaired 
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Many Edges in One Triangle—Simple 

The following example demonstrates the local repair functionality discussed in 

CHAPTER V.  Figure 7.6 shows the finer mesh intersecting the large triangle.  424 edges 

were inserted into the large triangle by intersecting it with a finer mesh.  The results from 

the intersection create 720 triangles from the large triangle and can be seen in Figure 7.7.  

Cases such as this demonstrate the robustness of the edge insertion and recovery 

algorithm. 

 

s 

Figure 7.6 Example of inserting many edges into one triangle 
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Figure 7.7 Results from inserting many edges into one triangle 
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Many Edge in One Triangle—Complex 

In this example, the purpose is to show a real-world test case that demonstrates 

the robustness of the intersection tool through intersecting many, smaller triangles with 

two, larger triangles.  Figure 7.8 shows the rear under-carriage of an SUV [29] where it 

intersects the under-body plate.  This model was created for graphical purposes and only 

exists in discrete form.  In order to repair the intersections and create a watertight 

geometry the discrete surfaces must be intersected.  In addition there is no possibility of 

improving the quality of the elements defining the intersection. 

 

 

Figure 7.8 SUV Suspension, Intersection Example 

 

In Figure 7.9, a close-up view of the intersecting geometry can be seen.  The 

suspension assembly (purple surface, Figure 7.10) intersects the under-body plate (blue 

surface, Figure 7.11) with ten individual components.  These figures also show that the 

plate, since it is flat, is defined by very few triangles. 
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Figure 7.9 Close up View of Intersecting  SUV Suspension and Under-body Plate 

 

 

Figure 7.10 SUV Suspension Assembly 
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Figure 7.11 SUV Under-body Plate 

 

In Figure 7.12 and Figure 7.13 the under-body plate of the SUV after intersection 

can be seen.  The plate has been intersected with the ten individual components of the 

suspension assembly to arrive at this result.  This figure shows that the two triangles that 

formed the under-body plate (Figure 7.11) have been split into 318 triangles to complete 

the intersection.  The multi-colored shapes in the middle of the under-body are distinct 

surfaces formed by the edges that define the intersections and were broken out using the 

surface painting algorithm discussed in CHAPTER III. 
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Figure 7.12 SUV Under-body Plate After Intersection 

 

 

Figure 7.13 Close-up of SUV Under-body Plate After Intersection 

 

In Figure 7.14 and Figure 7.15 the SUV suspension assembly can be seen after 

intersection.  The multi-colored surfaces (except for purple) were broken out of the 
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assembly using the aforementioned surface-painting algorithm.  The line of intersection 

with the flat plate can easily be seen in the following figures and is consistent and 

accurate for each component. 

 

 

Figure 7.14 Close-up of SUV Suspension Assembly After Intersection, Head-on 

 

 

Figure 7.15 Close-up of SUV Suspension Assembly After Intersection, Isometric Left 

(left) and Isometric Right (right) 
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In Figure 7.16 and Figure 7.17 the result of removing the surfaces that were 

created during the surface painting can be seen.  These figures show the consistent 

intersection formed with the flat plate.  Figure 7.18 shows a close-up of the underside of 

the under-body plate where the suspension assembly intersected it.  In this figure, the 

large number of triangles created during the intersection can be seen.  After the 

intersection, surface painting, and removal of the interior/undesired geometry the 

suspension assembly is topologically adjacent to the under-body plate and no free-

boundary edges were created. 

 

 

Figure 7.16 Close-up of SUV Suspension Assembly After Intersection with 

Interior/Undesired Geometry Removed 

 

 

Figure 7.17 SUV Suspension Assembly and Under-body Plate After Intersection 
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Figure 7.18 Close-up of SUV Suspension Assembly and Under-body Plate After 

Intersection 
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Loop Formed 

The following example demonstrates a less severe example of inserting many 

edges into one triangle.  However, the feature of interest in this example is the formation 

of a closed loop through the intersection process.  In Figure 7.19, a cylindrical mesh is 

shown to intersect a coarse, triangular mesh.  The closed loop formed by intersecting the 

surfaces, as seen in Figure 7.20 and Figure 7.21, is not defined by nodes that existed in 

the original geometry.  The loop is formed completely by nodes that were calculated. 

 

 

Figure 7.19 Cylinder Intersecting Coarse Triangular Mesh 

 

In Figure 7.20 the coarse triangular mesh is shown after intersection.  The lines of 

intersection have formed a closed loop in the surface.  This allowed the surface-painting 

algorithm discussed in CHAPTER III to ―break out‖ the surface bounded by the lines of 

intersection (purple).  The lines of intersection also formed a closed loop in the 

cylindrical mesh (Figure 7.21 and Figure 7.22).  The surface-painting algorithm was used 
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to separate the cylindrical surface into two surfaces, yellow and pink, bounded by free 

boundaries and the lines of intersection. 

 

 

Figure 7.20 Coarse Triangular Mesh after Intersection, Loop Formed 

 

 

Figure 7.21 Cylinder after Intersection, Loop Formed 
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Figure 7.22 Close-up of Loop Formed 
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Circles, Big Loop Formed 

The purpose of this example is to show the efficiency of the intersection tool and 

that it can be used for intersecting large meshes of differing resolutions.  The mesh in 

Figure 7.23 is two intersecting spheres, blue and green.  The green sphere has 56,324 

nodes 112,644 triangles and the blue sphere has 108 nodes and 216 triangles.  All of the 

fundamental types of intersections discussed in CHAPTER V were encountered during 

the intersection.  The process of initializing the mesh, calculating the lines of intersection, 

inserting the lines into each mesh, and an application of the surface-painting algorithm 

took 1.2 second. 

 

 

Figure 7.23 Intersecting Spheres 

 

In Figure 7.24 and Figure 7.25 the results from the intersection and subsequent 

surface-painting can be seen.  Both circles have had a closed loop of lines of intersection 

successfully inserted into the mesh. 
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Figure 7.24 Results from Intersecting Spheres 1 

 

 

Figure 7.25 Results from Intersecting Spheres 2 

 

If the desired result of the intersection was the whetted surface, the result would 

appear similar to the original geometry seen in Figure 7.23.  In Figure 7.26 the result of 
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the intersection is shown where the desired geometry is the interior of the spheres.  The 

results shown here, both above and below, exhibit no free-boundary edges. 

 

 

Figure 7.26 Interior of Spheres after Intersection 
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Flying Minnow 

This example seeks to demonstrate all of the features of the intersection tool.  In 

Figure 7.27 a sample model used to test mesh repair tools is shown.  In this case, all of 

the geometry not relevant to this example has been removed to simplify the picture.  

What remains is the fuselage (purple) and the right wing (yellow).  These two surfaces 

have different resolutions and while the fuselage’s geometry is nearly isotropic around 

the intersection, the wing does not exhibit this quality.  Near the leading edge, bottom 

right in Figure 7.28, some poor quality elements can be clearly seen.  These elements 

were left as-is to demonstrate the robustness of the intersection tool.  The fuselage has 

2,138 nodes and 4,066 triangles and the wing has 936 nodes and 1,746 triangles. 

 

 

Figure 7.27 Right Wing Intersecting Fuselage of Flying Minnow 

 

Figure 7.28 and Figure 7.29 shows the right wing alone in the frame and the 

fuselage alone in the frame, respectively, in order to demonstrate that these surfaces were 

not topologically adjacent before intersection. 
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Figure 7.28 Right Wing of Flying Minnow 

 

 

Figure 7.29 Fuselage of the Flying Minnow 

 



 

97 

Figure 7.30 shows the result of the intersection with both the wing and fuselage in 

the frame.  The fuselage alone can be seen in Figure 7.31.  The right wing alone can be 

seen in Figure 7.32.  In each figure, it can be seen that the lines of intersection form a 

closes loop on the surface and therefore the surface-painting algorithm was able to 

separate the fuselage into three surfaces and the wing into two surfaces.  The orange 

surface in these results is a discrete surface that is not topologically adjacent to the rest of 

the fuselage.  Therefore the surface-painting algorithm, for which the EDGE_TEST() 

returns false for free-boundary edges, separated this surface from the rest of the fuselage.  

It is not an artifact of the intersection process. 

 

 

Figure 7.30 Results of Intersection, Flying Minnow 
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Figure 7.31 Result of Intersection, Fuselage of Flying Minnow 

 

 

Figure 7.32 Result of Intersection, Right Wing of Flying Minnow 

 

In Figure 7.33 an interior view of the model is given to show that the wing 

intersects the fuselage into the interior.  Also, in both Figure 7.33 and Figure 7.34 the 
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free-boundary edges have been shaded bright yellow—as opposed to the yellow-green of 

the right wing.  After the intersection process, the superfluous geometry on the wing and 

fuselage were deleted to produce the results seen in Figure 7.34.  The free-boundary 

edges seen on the wing in Figure 7.33 are no longer present in Figure 7.34 and the wing 

is now topologically adjacent to the fuselage.  167 nodes and 668 triangles were added by 

the intersection of the two surfaces. 

 

 

Figure 7.33 Interior view of Flying Minnow before Intersection 
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Figure 7.34 Interior view of Flying Minnow after Intersections 
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Isolated Boundary 

In this section, the results from the repair of isolated boundaries are presented. 

Edge Recovery 

In this example, an open box (orange) with the opening toward an undulating 

surface (blue) is shown in Figure 7.35.  First, results from the method of simply inserting 

an edge whole into a mesh are presented and discussed.  Then results from the addition of 

edge splitting are shown. 

 

 

Figure 7.35 Open Box and Undulating Surface, Isolated Boundary 

 

Whole Edge Recovery 

In this example the results of whole edge extension and recovery are shown in 

Figure 7.36.  The edges that were projected (orange surface) are large relative to the edge 

length present in the undulating surface (blue).  When the large edge is recovered, the 

underlying shape of the undulating surface was distorted severely.  In Figure 7.36 and 
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Figure 7.37 the undulating surface has large, distorted, self-intersecting, low-quality 

elements that do not follow the shape of the original mesh, which was nearly isotropic.  

In Figure 7.38 the open box and the surface created from the extended edges is shown.  

The quality of the elements of the extended-surface with respect to the open box is quite 

similar.  Therefore, it can be concluded the whole-edge extension and recovery preserves 

the quality of the highest order, or longest edge present in the projected edges.  However, 

with whole-edge extension and recovery there is the risk of creating large, distorted, self-

intersecting, low-quality elements.  The results shown in this example are unacceptable 

from a mesh repair point of view because the process intended to repair the model has 

instead created problems not associated with the tool. 

 

 

Figure 7.36 Results from whole-edge extension and recovery, Open Box and 

Undulating Surface 

 



 

103 

 

Figure 7.37 Results from whole-edge extension and recovery, Undulating surface 

 

 

Figure 7.38 Results from whole-edge extension and recovery, Open Box and Surface 

produced from edge extension 
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Split Edge Recovery 

In this example, the results from edge extension with splitting are presented.  

Figure 7.39 shows the results of projecting the edges of the open box (orange) onto the 

undulating surface below (blue).  In Figure 7.40 and Figure 7.41 the individual 

components are show to demonstrate the advantage of the addition of edge splitting.  The 

undulating surface no longer has large, distorted, self-intersecting, low-quality triangles 

that do not follow the shape of the original geometry.  Instead, the only changes to the 

mesh are the splitting of edges.  No edges were collapsed or reconnected.  Since the 

relatively large edges of the open box were projected onto a surface with relatively small 

edges, the edges of the box were split many times.  This effectively reduces the order, or 

length, of the largest edges present in the projection while maintain the lower order, or 

smaller, edges.  The addition of edge splitting is seen as superior to whole-edge recovery 

due to the guarantee of topologically valid results.  If the desired result were whole-edge 

recovery, the results from edge splitting could be altered by gluing nodes to achieve the 

results seen in Figure 7.36. 
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Figure 7.39 Results from edge splitting, Open Box and Undulating Surface 

 

 

Figure 7.40 Results from whole-edge extension and recovery, Undulating Surface 
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s  

Figure 7.41 Results from whole-edge extension and recovery, Open Box and surface 

produced from edge extension 
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Large Edge, Fine Surface/Closest Surface 

The following example is shown to demonstrate two aspects of the isolated 

boundary repair tool: the tool only projects onto the nearest surface and the extension of a 

relatively large edge onto a finely meshed surface.  The projection of a relative large edge 

onto a finely meshed surface demonstrates the robustness of the edge-tracking/edge-

splitting aspect of the isolated boundary repair tool.  In Figure 7.42, the wedge airfoil 

(green) has free-boundary edges that are to be projected onto the outer wall of the 

fuselage (pink, center).  The inner wall of the fuselage (pink, left) shall remain 

unchanged, as it should, through the process of edge projection/splitting and recovery. 

 

 

Figure 7.42 Wedge Airfoil and Outer/Inner Fuselage, Flying Minnow 

 

The results from the projection, split, and subsequent filling of the gap can be seen in 

Figure 7.43.  The wedge (green) airfoil’s free-boundary edges have been projected onto 

the outer wall of the fuselage (yellow, center).  The interior wall (pink, left) of the 

fuselage remains unchanged, as it should, since the outer wall is closer to the airfoil’s 
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free-boundary edges.  In Figure 7.44, the outer fuselage is shown alone in the frame.  The 

edges that were projected onto the surface form a closed loop so the surface-painting 

algorithm was able to split the outer fuselage into to surfaces, the inner (blue) and outer 

(yellow).  These surfaces are topologically adjacent, but distinct. 

 

 

Figure 7.43 Results from edge projection, Wedge Airfoil and Outer/Inner Fuselage, 

Flying Minnow 

 

 

Figure 7.44 Results from edge projection, Outer Fuselage, Flying Minnow 
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The wedge airfoil (green) and the surface produced from the edge projection 

(blue) can be seen in Figure 7.45.  The edges on the airfoil have been split many times to 

accommodate the smaller mesh resolution present on the surface of the fuselage.  Also, it 

should be noted that the surface produced from the edge projection follows the curvature 

of the fuselage exactly.  Since the mesh resolution is so fine, a close-up of the leading 

edge can be seen in Figure 7.46. 

 

 

Figure 7.45 Results from edge projection, Wedge Airfoil, Flying Minnow 
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Figure 7.46 Results of edge projection, Wedge Airfoil and Outer Fuselage, Flying 

Minnow, leading edge close-up 
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Sports Utility Vehicle 

This example seeks to demonstrate all of the aspects of the isolated boundary 

repair tool.  In Figure 7.47 a model of a sports utility vehicle [29] is shown.  This model 

was created for the purposes of graphical rendering and therefore is not watertight.  One 

of the major imperfections present in this model is the gap near the driver’s side mirror 

(Figure 7.48 and Figure 7.49). 

 

 

Figure 7.47 SUV Model 
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Figure 7.48 Close-up View of Problem Area in SUV Model 

 

In Figure 7.48, a close-up of the driver’s side rear-view mirror can be seen.  In 

order to simplify presentation, all of the geometry not relevant to this tool has been 

removed.  In Figure 7.49 and Figure 7.50, the gap between the rear-view mirror and the 

body (purple surface in Figure 7.48) of the SUV can be seen. 
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Figure 7.49 Isolated Rear view Mirror and Vehicle Trim of SUV Model 

 

 

Figure 7.50 Isometric View of Vehicle Trim (left-blue) and Rear-view Mirror (right-

green) 

 

In Figure 7.51, the results of the isolated boundary repair tool can be seen.  The free-

boundary edges on the mirror (yellow) have been projected onto the nearby body (blue) 

and split.  These edges were then used to create the surface that fills the gap (orange). 
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Figure 7.51 Result of Isolated Boundary Repair, Rear-view Mirror and Vehicle Body 

Near Mirror 

 

In Figure 7.52, the nearby body is shown alone in the frame (blue) and the surface 

now defined by the projected edges (yellow-green) can be seen.  In Figure 7.53, the 

mirror (yellow) and the surface created to fill the gap (orange) can be seen alone in the 

frame.  The edges of the mirror that were projected onto the body create a closed loop.  

This allowed the surface-painting algorithm to separate the body panel into two surfaces, 

interior (yellow-green) and exterior (blue).  These two surfaces are distinct but remain 

topologically adjacent. 
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Figure 7.52 Results of Isolated Boundary Repair, Nearby Body, SUV Model 

 

 

Figure 7.53 Result of Isolated Boundary Repair, Rear-view Mirror and Additional 

Surface, SUV Model 

 

In Figure 7.51, Figure 7.52, and Figure 7.53 the results of the isolated boundary 

repair tool can be seen.  These figures show the surface that is generated to repair the gap 
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present near the isolated boundaries as well as the affected, nearby geometry.  The 

surface created by the edges of the mirror and their projections is now topologically 

adjacent to the vehicle trim and the mirror so that no free-boundary edges are created 

through the process of repairing the geometry.  Many of these types of gaps or 

intersections, of widely varying scale, are present in this model.  However, only the few 

that could be visually demonstrated have been presented here.  For example, the driver’s 

side window behind the mirror in Figure 7.48 has gaps and intersections with the trim 

around the window.  These could be repaired, but the resulting geometry was unable to 

effectively shown here due to the size of the intersection and gaps, which are orders of 

magnitude smaller than the length scale on the window or trim. 
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Combined Application 

In this section, examples that cannot be repaired using solely the intersection tool 

or solely the isolated-boundary repair tool will be presented.  These examples will show 

that the tools can be used together to repair imperfect geometry. 

SUV Steering Column and Dash 

In Figure 7.54 the driver’s side of the interior of the SUV [29] in Figure 7.47 can 

be seen.  The geometry relevant to this example, the dash and steering column, can be 

seen alone and isolated in Figure 7.55 and Figure 7.57 respectively—where all of the 

irrelevant geometry has been removed to simplify presentation.  In Figure 7.55 and 

Figure 7.56, the steering column can be seen intersecting the dash.  However, the 

intersection is only partial and a gap is present between the bottom of the steering column 

and the dash (Figure 7.56, right). 

 

 

Figure 7.54 SUV Driver’s Side 
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Figure 7.55 SUV Steering Column and Dash, Alone; Isometric (left), Side (right) 

 

 

Figure 7.56 SUV Steering Column and Dash, Alone; Close-up of Intersection (left) and 

Gap (right) 
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Figure 7.57 SUV Steering Column (right) and Dash (left), Isolated 

 

To start the repair process, the dash and the steering column must first be 

intersected.  Once that is complete, the undesired geometry will be removed and then the 

isolated boundaries will be repaired.  Then the remainder of the undesired geometry will 

be removed to arrive at a fully repaired state.  First, the results from the intersection:  they 

can be seen in Figure 7.58 and Figure 7.59.  Since the intersection was only partial, the 

dash surface was not broken into any further pieces by the surface painting algorithm 

(Figure 7.59, left).  However, the steering column was broken into two surfaces since the 

intersection formed a closed loop with the free-boundary of the steering column (Figure 

7.59, right).  Once the undesirable geometry on the steering column (yellow surface, 

Figure 7.59, right) was removed and then the process of repairing the isolated boundaries 

(seen in Figure 7.56, right) could begin. 
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Figure 7.58 SUV Steering Column and Dash, Intersection Results 

 

 

Figure 7.59 SUV Steering Column and Dash, Intersection Results, Isolated 

 

In Figure 7.60 the results from the isolated-boundary repair can be seen.  The 

small gap at the bottom of the steering column has been filled with elements (blue 
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surface, Figure 7.60) that are topologically adjacent to both the dash and steering column.  

In Figure 7.61 the dash and steering column can be seen isolated from each other.  This 

figure shows the closed loop formed on the dash by the combination of the intersection 

and edge projection.  Since a closed loop is formed, the dash was broken into two 

surfaces using the surface painting algorithm.  The results from this removal can be best 

seen in Figure 7.60, right, which shows the repair location from the rear. 

 

 

Figure 7.60 SUV Steering Column and Dash, Alone, Isolated Boundary Repaired, 

Front Isometric (left), Rear Isometric (right) 
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Figure 7.61 SUV Steering Column and Dash, Isolated; Isolated-Boundary Repaired; 

Dash (left), Steering Column (right) 

 

This example shows the combined results of the repair of a partial intersection 

and isolated boundaries.  The result is topologically valid and exhibits no free-boundary 

edges at the intersection location or at the edge-projection location.  Once the undesired 

geometry is removed, the result is also manifold and the steering column is now 

topologically adjacent to the dash. 
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CHAPTER VIII 

CONCLUSIONS 

Methods for semi-automated repair of intersecting triangular meshes and isolated 

free-boundaries were designed, developed, implemented, and validated for three-

dimensional meshes.  Results show that the tools repair the models while maintaining 

small features and curvature present in the original data.  The tools were shown to be 

robus by demonstrating correct results even when the meshes were of varying resolution 

and element size.  It is evident from the results that these tools could substantially reduce 

the time and cost associated with manual mesh repair. 

Summary of Contributions 

The primary contributions of this work are: 

Repair of Discrete Mesh Intersections 

A tool to repair intersecting triangular meshes was developed.  The intersection 

was found through the use of an octree.  This particular spatial subdivision strategy 

offered the advantage of reducing the number of intersection candidates possible for each 

triangle.  Once an intersection was found, topology information was used to calculate a 

set of connected line segments that forms the intersection between two discrete surfaces.  

These calculations, intersection tests, etc., were performed using robust topological 

primitives that were implemented with a local tolerance that is specific to each 

calculation.  The line segments forming the intersection were subsequently inserted into 
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the intersecting meshes.  Instead of inserting the edges globally in a three-dimensional 

mesh, the edges were inserted into each triangle individually.  This process of local repair 

simplified the process of inserting the edges into the mesh by transforming the repair 

process into two dimensions.  The subsequent node insertion and edge recovery are 

guaranteed in two dimensions.  After all of the nodes and edges were successfully 

inserted into the mesh the intersection was considered repaired, i.e. the intersection was 

removed by replacing it with non-manifold edges. 

A surface-painting algorithm that is bounded by surface boundary edges, free-

boundary edges, and non-manifold edges was used to ―break out‖ the surfaces that are 

bounded in whole or in part by the newly created non-manifold edges.  The non-desired 

geometry can then be removed to arrive at fully repaired geometry that is manifold and 

free of boundary edges at the intersection.  This tool repairs intersecting discrete 

geometry in-place, i.e. without having to re-mesh the intersecting surfaces.  Results show 

that this tool effectively, efficiently, and accurately captures and repairs the intersection 

of discrete surfaces. 

Repair of Isolated Boundaries 

Methods for projecting isolated free-boundaries onto nearby discrete surfaces 

were developed.  An octree was used for the purposes of casting rays from the isolated 

free-boundaries.  The rays represent a projection direction and are used to find the nearest 

surface in order to fill the gap between the isolated free-boundary edges and the nearest 

surface.  The use of the octree once again reduced the number of candidates required to 

consider for intersection with the ray.  Robust methods for determining the intersected 

entity (node, edge or triangle) were also implemented.  Once an intersection was found, 
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the proper entity was split, if needed.  An edge-tracking algorithm that implements 

controlled point-line projections is used to find the edges that are to be split in order to 

recover the original edge as a set of connected line-segments.  After the edges were 

projected onto the surface, they were split for the purposes of maintaining the curvature 

in the projected-upon surface as well as small features.  This addition of edge splitting to 

the process of edge recovery is seen as an improvement over whole-edge recovery.  Once 

the edges in the projected-upon surface were split, the edge being projected is split so that 

it has the same number of nodes required to represent it in the projected-upon surface due 

to the required edge splitting.  With this set of nodes a straightforward method was 

implemented to fill the gap between the free-boundary edges and the nearby surface. 

A surface-painting algorithm that is bounded by surface boundary edges, free-

boundary edges, and non-manifold edges was used to ―break out‖ the surfaces that are 

bounded in whole or in part by the newly created non-manifold edges.  The non-desired 

geometry can then be removed to arrive at fully repaired geometry that is manifold and 

free of boundary edges at the projected edges.  Additionally in areas where the distance 

between the free-boundary edges and the projected-upon surface is small, edges can be 

collapsed.  This allows the final product to resemble the free-boundary edges being glued 

to the surface instead of projected.  Results show that this tool effectively, efficiently, and 

accurately repairs isolated boundaries by filling the gap after projecting edges onto a 

nearby surface. 

Future Directions/Work 

This work is a step towards automated mesh repair and addresses two specific 

problems not previously addressed.  Further research should include methods in which 
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these fundamental operations are applied automatically to repair geometry.  This could 

include applying these tools in cases where the desired result of the tool is known, but the 

number of applications is impractical for semi-autonomous repair.  Applying these tools 

in this fashion could be done presently with the existing API.  However, the most useful 

development would be a set of algorithms that could automatically remove unwanted 

geometry after the intersections or isolated boundaries are repaired.  Since the step of 

manually removing the unwanted geometry is the only step in the process that requires 

user intervention, some level of automation in this area would significantly reduce the 

time required to repair geometries with a large amount of imperfections. 

Repairing intersections and isolated boundaries can now be complete semi-

autonomously; however further research could improve the results of the intersections 

and projections.  For example, once the intersection/projection has been performed the 

mesh might contain a large amount of high-aspect-ratio triangles and very small edges.  

Since the surfaces that were once distinct are topologically adjacent, mesh smoothing 

could be used along the lines of intersection/projection to improve the quality of the mesh 

near the intersection/projection.  This would be useful if the user desired to use the 

repaired mesh as a background mesh for mesh generation purposes.  Increasing the 

element quality would improve any mappings created and therefore higher quality 

meshes could be generated from the repaired and then improved mesh. 

Even though the use of the octree has severely decreased the number of required 

number of candidates to test for intersection, a space and time complexity analysis could 

be done.  This would allow comparisons for other types of spatial subdivision data 

structures like k-d trees and ADT’s (alternating digital tree).  However, for development 
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and simplicity’s sake, having the elements and the nodes in one data structure proved 

useful and efficient. 
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APPENDIX A 

SUPPLEMENTARY C++ SOURCE CODE 
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MATH UTILITIES 

 

These utilities use the #define pre-processing directive available in C++.  These utilities 

are used to make code more readable. 

 

//Useful #defines 

#define GRX_CROSS(dest,v1,v2)    \ 

  dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ 

  dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ 

  dest[2]=v1[0]*v2[1]-v1[1]*v2[0]; 

 

#define GRX_DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) 

 

#define GRX_ADD(dest,v1,v2)   \ 

  dest[0]=v1[0]+v2[0];    \ 

  dest[1]=v1[1]+v2[1];    \ 

  dest[2]=v1[2]+v2[2]; 

 

#define GRX_SUB(dest,v1,v2)   \ 

  dest[0]=v1[0]-v2[0];    \ 

  dest[1]=v1[1]-v2[1];    \ 

  dest[2]=v1[2]-v2[2]; 

 

#define GRX_MUL(dest,v,t)   \ 

  dest[0] = v[0] * t;    \ 

  dest[1] = v[1] * t;    \ 

  dest[2] = v[2] * t; 

 

#define GRX_DIV(dest,v,t)   \ 

  dest[0] = v[0] / t;    \ 

  dest[1] = v[1] / t;    \ 

  dest[2] = v[2] / t; 

 

#define GRX_NORM2(v1)    \ 

  (v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]) 

 

#define GRX_NORM(v1)    \ 

  sqrt(GRX_NORM2(v1)) 

 

#define GRX_NORMALIZE(dest,v1)       \ 

  dest[2] = sqrt(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]); \ 

  dest[0] = v1[0] / dest[2];       \ 

  dest[1] = v1[1] / dest[2];       \ 

  dest[2] = v1[2] / dest[2]; 

 

#define GRX_SET(dest,v1)   \ 

  dest[0] = v1[0];    \ 

  dest[1] = v1[1];    \ 

  dest[2] = v1[2]; 

 

#define GRX_TRAVEL(dest,orig,dir,t)  \ 
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  dest[0] = orig[0] + t*dir[0];   \ 

  dest[1] = orig[1] + t*dir[1];   \ 

  dest[2] = orig[2] + t*dir[2]; 

 

#define GRX_ZERO(dest)    \ 

  if(dest[0] < epsilon && dest[0] > -epsilon) \ 

    dest[0] = 0.;    \ 

  if(dest[1] < epsilon && dest[1] > -epsilon) \ 

    dest[1] = 0.;    \ 

  if(dest[2] < epsilon && dest[2] > -epsilon) \ 

    dest[2] = 0.; 

 

#define GRX_PI 3.14159265358979323846264338327950288419716939937510 

 

#define GRX_TRANSFORM(dest,t,x)    \ 

  dest[0] = t[0][0]*x[0] + t[0][1]*x[1] + t[0][2]*x[2]; \ 

  dest[1] = t[1][0]*x[0] + t[1][1]*x[1] + t[1][2]*x[2]; \ 

  dest[2] = t[2][0]*x[0] + t[2][1]*x[1] + t[2][2]*x[2]; 

#endif 
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RAY TRIANGLE INTERSECTION C++ SOURCE CODE 

 

Adapted from [40] 
int 

intersect_triangle 

(double orig[3], double dir[3], 

 double vert0[3], double vert1[3], double vert2[3], 

 double *t, double *u, double *v) 

{ 

  double edge1[3], edge2[3], tvec[3], pvec[3], qvec[3]; 

  double det,inv_det; 

  double epsilon = numeric_limits<double>::epsilon(); 

 

  //find vectors for two edges sharing vert0 

  GRX_SUB(edge1,vert1,vert0); 

  GRX_SUB(edge2,vert2,vert0); 

 

  //begin calculating determinant - also used to calculate U parameter 

  GRX_CROSS(pvec,dir,edge2); 

 

  //if determinant is near zero, ray lies in plane of triangle 

  det = GRX_DOT(edge1,pvec); 

 

  if(det > -epsilon && det < epsilon) 

    return 0; 

 

  inv_det = 1.0/det; 

 

  //calculate distance from vert0 to ray origin 

  GRX_SUB(tvec,orig,vert0); 

 

  //calculate U parameter and test bounds 

  *u = GRX_DOT(tvec,pvec) * inv_det; 

  if(*u < 0.0 || *u > 1.0) 

    return 0; 

 

  //prepare to test V parameter 

  GRX_CROSS(qvec,tvec,edge1); 

 

  //calculate V parameter and test bounds 

  *v = GRX_DOT(dir,qvec) * inv_det; 

  if(*v < 0.0 || *u + *v > 1.0) 

    return 0; 

   

  //calculate t, ray intersects triangle 

  *t = GRX_DOT(edge2,qvec) * inv_det; 

 

  return 1; 

} 
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ROTATION TRANSFORMATION MATRIX CALCULATION C++ SOURCE 

CODE 

 
void 

grx_construct_transformation_matrix 

(double *axis, 

 double angle, 

 double *origin, 

 double transformation[][3], 

 double epsilon) 

{ 

  //This function will construct a transformation matrix that will 

  // rotate something about the "axis" a total of "angle" at "origin" 

  double norm_axis[3]; 

  GRX_NORMALIZE(norm_axis,axis); 

   

  double c, s, ux, uy, uz, uxx, uxy, uxz, uyy, uyz, uzz; 

 

  double dc1 = 1.; 

 

  c = cos(angle); 

  s = sin(angle); 

  ux = norm_axis[0]; 

  uy = norm_axis[1]; 

  uz = norm_axis[2]; 

  uxx = norm_axis[0]*norm_axis[0]; 

  uxy = norm_axis[0]*norm_axis[1]; 

  uxz = norm_axis[0]*norm_axis[2]; 

  uyy = norm_axis[1]*norm_axis[1]; 

  uyz = norm_axis[1]*norm_axis[2]; 

  uzz = norm_axis[2]*norm_axis[2]; 

 

  transformation[0][0] = uxx + (dc1 - uxx)*c; 

  transformation[0][1] = uxy*(dc1 - c) - uz*s; 

  transformation[0][2] = uxz*(dc1 - c) + uy*s; 

  transformation[1][0] = uxy*(dc1 - c) + uz*s; 

  transformation[1][1] = uyy + (dc1 - uyy)*c; 

  transformation[1][2] = uyz*(dc1 - c) - ux*s; 

  transformation[2][0] = uxz*(dc1 - c) - uy*s; 

  transformation[2][1] = uyz*(dc1 - c) + ux*s; 

  transformation[2][2] = uzz + (dc1 - uzz)*c; 

 

  GRX_ZERO(transformation[0]); 

  GRX_ZERO(transformation[1]); 

  GRX_ZERO(transformation[2]); 

} 
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RAY-BOX PIERCE TEST C++ SOURCE CODE 

 

Adapted from [23] 
#define RIGHT 0 

#define LEFT 1 

#define MIDDLE 2 

 

int 

grx_raybox_pierce_test 

(double minB[3], double maxB[3],  /* box */ 

 double orig[3], double dir[3],   /* ray */ 

 double coord[3]) 

{ 

  char inside = true; 

  char quadrant[3]; 

  register int i; 

  int whichPlane; 

  double maxT[3]; 

  double candidatePlane[3]; 

  /* Find candidate planes; this loop can be avoided if 

     rays cast all from the eye(assume perpsective view) */ 

  for (i=0; i<3; i++) 

    if(orig[i] < minB[i]) { 

      quadrant[i] = LEFT; 

      candidatePlane[i] = minB[i]; 

      inside = false; 

    }else if (orig[i] > maxB[i]) { 

      quadrant[i] = RIGHT; 

      candidatePlane[i] = maxB[i]; 

      inside = false; 

    }else { 

      quadrant[i] = MIDDLE; 

    } 

  /* Ray orig inside bounding box */ 

  if(inside) { 

    coord = orig; 

    return (2); 

  } 

  /* Calculate T distances to candidate planes */ 

  for (i = 0; i < 3; i++) 

    if (quadrant[i] != MIDDLE && dir[i] !=0.) 

      maxT[i] = (candidatePlane[i]-orig[i]) / dir[i]; 

    else 

      maxT[i] = -1.; 

  /* Get largest of the maxT's for final choice of intersection */ 

  whichPlane = 0; 

  for (i = 1; i < 3; i++) 

    if (maxT[whichPlane] < maxT[i]) 

      whichPlane = i; 

  /* Check final candidate actually inside box */ 

   

  if (maxT[whichPlane] < 0.) return (0); 

  for (i = 0; i < 3; i++) 

    if (whichPlane != i) { 

      coord[i] = orig[i] + maxT[whichPlane] *dir[i]; 
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      if (coord[i] < minB[i] || coord[i] > maxB[i]) 

 return (0); 

    } else { 

      coord[i] = candidatePlane[i]; 

    } 

  return (1); /* ray hits box */ 

} 

 

#undef RIGHT 

#undef LEFT 

#undef MIDDLE 
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CLOSEST POINTS ON LINE SEGMENTS C++ SOURCE CODE 

 
int 

line_segment_intersect 

(GRX_NODE *node0, 

 GRX_NODE *node1, 

 GRX_NODE *node2, 

 GRX_NODE *node3, 

 double *isect_pt, 

 bool bounds_check_override) 

{ 

  double orig0[3], orig1[2], dir0[3], dir1[3]; 

  double p2mp1[3], p2mp1xv2[3], LHS[3], RHS[3]; 

  double a, dx, dy, dz, length, length0, length1, max_length; 

  double isect_pt0[3], isect_pt1[3]; 

  double zero_edge_length = 1.e-12; //1.e-6 ^2 

  GRX_SET(orig0,node0->x_); 

  GRX_SET(orig1,node2->x_); 

  GRX_SUB(dir0,node1->x_,orig0); 

  GRX_SUB(dir1,node3->x_,orig1); 

 

  GRX_SUB(p2mp1,orig1,orig0); 

  GRX_CROSS(p2mp1xv2,p2mp1,dir1); 

  GRX_CROSS(LHS,dir0,dir1); 

  GRX_CROSS(RHS,p2mp1,dir1); 

  a = GRX_NORM(RHS) / GRX_NORM(LHS); 

  if(GRX_DOT(LHS,RHS) < 0) 

    a = -a; 

  if(bounds_check_override) { 

    GRX_TRAVEL(isect_pt,orig0,dir0,a); 

    return 1; 

  } 

  if(a >= 0. && a <= 1.) {     

    GRX_TRAVEL(isect_pt0,orig0,dir0,a); 

    GRX_SUB(p2mp1,orig0,orig1); 

    GRX_CROSS(p2mp1xv2,p2mp1,dir0); 

    GRX_CROSS(LHS,dir1,dir0); 

    GRX_CROSS(RHS,p2mp1,dir0); 

    a = GRX_NORM(RHS) / GRX_NORM(LHS); 

    if(GRX_DOT(LHS,RHS) < 0) 

      a = -a; 

    if(a >= 0. && a <= 1.) { 

      GRX_TRAVEL(isect_pt,orig1,dir1,a); 

      GRX_TRAVEL(isect_pt1,orig1,dir1,a); 

      length0 = distance2_between_GRX_NODEs(node0,node1); 

      length1 = distance2_between_GRX_NODEs(node2,node3); 

      max_length = length0 < length1 ? length1 : length0; 

      dx = isect_pt0[0] - isect_pt1[0]; 

      dy = isect_pt0[1] - isect_pt1[1]; 

      dz = isect_pt0[2] - isect_pt1[2]; 

      length = dx*dx + dy*dy + dz*dz; 

      if(length / max_length > zero_edge_length) { 

   return 0; 

      } 

    } 
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    else { 

      return 0; 

    } 

  } 

  else { 

    return 0; 

  } 

 

  return 1; 

} 
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