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Continuum robots are biologically inspired robots that capture the extraordinary 

abilities of biological structures such as elephant trunks, octopus tentacles, and mamma-

lian tongues. They are given the term continuum robots due to their ability to bend conti-

nuously rather than at specific joints such as with traditional rigid link robots. They are 

used in applications such as search and rescue operations, colonoscopies, minimal inva-

sive surgeries, and steerable needles. In this thesis, a model that predicts the shape of a 

continuum robot is presented and verified. A verification system to verify the validity and 

accuracy of the model is presented which allows easy and accurate measurement of a 

continuum robot tip position. The model was verified against a flexible rod resulting in 

an accuracy of 0.61%. Finally, this thesis introduces a novel robot design, consisting of a 

single rod for the backbone which can be manipulated by applying external forces and 

torques.

Key words:  Biologically inspired robots, Continuum robots, Continuum, Biological, Ve-
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CHAPTER 1 

INTRODUCTION

Much advancement has been made in traditional rigid link robotic systems and re-

cently in another area of robotics known as continuum robotics [1-5]. Continuum robots 

are based on biological structures such as tongues, trunks, and tentacles. They are de-

signed to capture the amazing characteristics of these remarkable structures. For example, 

continuum robot applications in the areas of nuclear [6], medical [7-12], and search and 

rescue [5] has become increasingly popular because robots with these capabilities can 

search inside confined spaces much easier than traditional rigid link robots, explore un-

derneath and inside holes, and contort around an object without the shape or size being an 

obstacle. Just like and elephant can pick up a log with its trunk, a continuum robot can 

pick up an object by wrapping itself around it. 

Unlike traditional rigid link robots, continuum robots are more difficult to model, 

design, and construct due to their lack of rigidity. Unlike rigid-link robots, their bodies 

can extend, bend continuously, and in some instances expand. This thesis presents 

achievements in the field of continuum robotics in areas of modeling, verification, and 

building.

The second chapter discusses a model for a continuum robot. This model is based 

on special Cosserat rods which when compared to other models such as the constant cur-

vature model is more accurate in predicting the shape of a rod, because it makes few 
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geometrical approximations and no mechanical assumptions. The model is split into three 

sections. The first section is the kinematics section and introduces the linear and angular 

velocities referenced in the global frame. The second section is the mechanics section. It 

develops equations for both the forces and the moments. The force balance equation is a 

summation of all forces acting on the rod. The moment balance equation is a summation 

of all torques acting on the rod. The third section presents the constitutive equations and 

initial conditions section. The constitutive equations combine the mechanics and kine-

matics sections and the initial conditions describe the static physical system being mod-

eled. An ODE solver is then used to solve the set of equations given the derivatives of the 

position, orientation, shear, and bending. The initial bending is guessed and a torque is 

calculated based on the tip position. This torque is compared to the known torque calcu-

lated from the tip mass and the length of the rod. The guess is changed until the two con-

verge.

The third chapter describes how the model presented in chapter two is verified 

and details the verification system. In order to verify the model, actual measurements 

from a physical system must be compared to the results of the model. A verification sys-

tem was designed to obtain actual measurements. The system consists of four main com-

ponents: a laser-etched grid, rod clamps, levels, and weights. The laser-etched grid is the 

main component of the verification. It consists of a 1 mm grid which is used to easily 

measure the tip position. The rod clamps were laser-etched to have different mounting 

angles for the purpose of orienting the rod for verification. For example, the rod can ac-

curately be placed horizontal or at other angles such as 45 degrees. The two levels allow 

alignment of the grid with the vertical axis, while the weights are used to apply a force on 
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the tip of the rod for different tip loading verification. Using the verification system to 

obtain accurate results for comparison, the model predicts the shape of the rod with accu-

racy of .61%. This proves that the model presented is viable for predicting the shape as 

well as controlling a continuum robot. 

The fourth chapter presents a continuum robot design which improves on existing 

designs. The robot is designed with simplicity and functionality in mind. It is composed 

of a single rod as a backbone which allows the simplest form of the model to be verified 

before adding complexity to it such as additional robot components and multisection 

functionality. Several robot designs are discussed and the reasons for not choosing them. 

For example, one design called The Elephant’s Trunk uses a similar approach. It has mul-

ti-cable actuation system which is composed of 8 cables and a spring for each pair of 

cables. It also requires a dc motor for each cable as well as encoders to keep track of ca-

ble lengths. The design presented takes a three cable approach and uses three stepper mo-

tors; therefore, it reduces the complexity of the entire robot and because of the compo-

nents used and the design approach taken, which is discussed in detail in the chapter, 

there is minimal loss in accuracy. This design is also allows easier verification of our 

model due to the backbone of the robot being a single rod. Since the model is based on 

special Cosserat rods, the verification is more straight forward with a correctly design 

verification system. The model is discussed in the following chapter. 
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CHAPTER 2 

THREE-DIMENSIONAL STATICS MODEL 

2.1 Introduction 

Tongues [13], trunks [13], and tentacles [1-3] are biological structures [13] 

termed muscular hydrostats [1-3, 13], have unsurpassed grasping abilities. They can 

grasp objects of various shapes and sizes [2, 3, 14]. Their compliancy and dexterity are 

both remarkable characteristics. For instance, an elephant can easily pick up a log with its 

trunk, yet with grace and ease it can pick up a single piece of grass. These biological 

structures also have extensive sensory abilities which along with mentioned characteris-

tics allow them to easily and efficiently explore in confined areas, under objects, and 

reach into areas that would be more difficult for a rigid link robot. 

For many years now, researchers have been attempting to capture these amazing 

characteristics in biologically-inspired robots called continuum robots [1-5]. These robots 

can be used in a wide variety of applications ranging from remote exploration to nuclear 

applications. In [6] the design for a robot called the CT Arm is proposed for a nuclear 

reactor maintenance robot. Continuum robots are becoming widely used in the medical 

applications such as colonoscopies [8, 9], steerable needles [7, 10], and minimally inva-

sive surgeries [11, 12]. In [8] the author describes a semi-autonomous robot, COLOBOT, 

for colonoscopies. In [10] the author introduces a new approach for designing steerable 

needles based on curved concentric tubes. 
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2.2 Background

There have been several approaches to predicting the shape and controlling conti-

nuum robots. The most widely used and accepted model, called the constant-curvature 

model [1, 8, 10, 15-18], applies a constant arc assumption in order to predict the shape; 

however, due to the exclusion of gravitational loading in the model [3], the results ob-

tained severely limit the accuracy of the model. This results in significant error in the 

predicted shape of the robot [3, 10, 19] and when used for controlling a continuum robot 

[14, 19]. 

Another model is based on the theory of Cosserat rods [2] from Antman [2, 20]. 

The popularity of this model has grown because there are few geometrical approxima-

tions or mechanical assumptions made about the applicable system [20], leading to a 

much more accurate model. Accuracy is very important when predicting the shape or 

controlling of a continuum robot. The special Cosserat rods approach was taken in order 

to obtain maximum accuracy in tip control and continuum robot shape control. The fol-

lowing summarizes our IROS paper. 

2.3 Overview

In this approach, our continuum robot is created using a rod and is characterized 

by its reference unstretched length. The rod is represented as a curve in three-dimensional 

space and parameterized by variable s, see Error! Reference source not found.. A local 

coordinate frame located at each point along the rod keeps track of the shape and orienta-

tion of the rod. Local vectors, denoted with a superscript l throughout this thesis, lv  (an-
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thermore, the initial conditions are used to describe and define the starting shape and 

orientation of the rod. 

2.4 Kinematics 

To provide the shape and orientation of a rod, the global angular and linear ve-

locities are needed. As previously discussed, a curve representing a rod is characterized 

by its reference unstretched length and parameterized by variable s. Representing the lo-

cation of a point on the rod sr  is chosen, see Error! Reference source not found.. Al-

so, sR  is a rotation matrix that specifies the orientation of the curve with respect to a 

global coordinate system, thereby a local coordinate frame is attached at each point. 

In order obtain the global angular and linear velocities, they are first found in their 

respective local frames for each discretized point on the curve and then simply multiplied 

by the rotation matrix. For example, any local vector la  can be represented globally by 

multiplying it by the rotation matrix R so that la Ra . Likewise, a global vector a can be 

represented locally by multiplying it by the transpose rotation matrix TR , giving l Ta R a.

Note that the local angular velocities are placed in a skew symmetric matrix. The shear 

and strain vectors lv  and lu  define the change in the position and orientation of the rod so 

that  

ls s sr R v , and (3) 

ˆ ls s sR R u . (4) 
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2.5 Mechanics 

2.5.1 Force Balance Equation 

A free body diagram allows easily determination of the force balance equation 

needed for our model; see Error! Reference source not found..

Figure 2 Free body diagram showing contact forces (n(c) and n(s)) and body forces (f) 

The force balance equation is composed of all forces acting on the rod from sec-

tion c to s.  Internal forces due to stretching and shearing, called contact forces, are de-

noted as cn  and sn . The vector cn  represents the force applied on the segment of 

interest by the rest of the rod from the base to that point; likewise, sn  represents the 

force applied on the segment by the rest of the rod from that point to the end of the rod. 

All other external forces on applied or acting on the rod are called body forces; for exam-

ple, a body force created by gravitational loading is one such external force. In Figure 2, 

these external forces are represented as f  and are summed together in (5) and setting the 

result to 0, indicate a static equilibrium. The force balance equation, (6), is obtained by 

summing these forces together. 
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s

c
df  (5) 

0
s

c
s c dn n f  (6) 

2.5.2 Moment Balance Equation 

The moment balance equation is composed of all force applied at a distance and 

applied torques. Similar to the force balance equation, one moment, (7) results from 

bending of the rod. There also exists moments created by forces in the rod applied at a 

distance. They are described in (8) below. 

s cm m  (7) 

s s c cr n r n  (8) 

 Distributed moments also known as body torques can also be included in the 

model through the following integral, in (9). 

0
s

c
dl  (9) 

 In the model presented and for the purpose of the verification performed for the 

model, body torques are not included and are therefore set to zero. 

Distributed forces at a distance, such as the torques created by gravity on each in-

dividual point of the rod, are also included in the model through the following integral in 

(10).

s

c
dr f  (10) 

The moment balance equation, (11), is found by summing (7)-(10) and equating 

the summation to zero: 

0
s

c
s c s s c c dm m r n r n r f . (11) 



10

2.6 Constitutive Equations 

As stated, the constitutive equations combine the kinematics and mechanics by 

defining the deformation of a specific material resulting from an applied moment or force 

[21]. The relationship between the deformation and the applied force or moment for some 

materials obeys a Hookean, linear relationship. One familiar Hookean, linear relationship 

is F kx, where F  is the force applied, k is the spring constant, and k is the displacement 

of the object of interest. The material used in the verification of this model, Nitinol, obeys 

a Hookean, linear relationship when at constant temperature and at strains of less than 

one percent. In order for the model to predict the shape of the rod, constitutive equations 

along with initial conditions are needed for both forces as well as moments.  

The constitutive equation, (13), for the forces consist of the Hookean constant ma-

trix D in (12). and the shear displacement matrix in (2). Note that ee  denotes the axis of 

rod extension and D is a matrix composed of  

1 2 3,T TD D GA D EA  (12) 

l l
es sn D v e  (13) 

Likewise, the constitutive equation, (15), for the moments consists of the Hoo-

kean constant matrix C in (14). and the bending displacement matrix in (1). Note that C is 

a diagonal matrix composed of  

1 1 2 2 3C EI C EI C GJ  (14) 

l ls sm Cu  (15) 

To convert the force and moment constitutive equations to the global reference 

frame, they are multiplied by R  and are (16) and (17) respectively. 
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lm RCu  (16) 

l
en RD v e  (17) 

2.7 Combining Equations 

There are four derivates that must be provided to the ODE in order to solve for the 

shape of the rod. Two are provided in (3) and (4). The last two are the derivatives of the 

linear and angular velocities. 

The derivative of the linear velocity, v , is found by taking the partial derivative 

with respect to s  of (6), substituting the constitutive equation for the forces for n as well 

as the result of the body force integral in (18), and solving for v, (19). 

s

gc
d Agf e  (18) 

1 ˆl T l l
g eAgv D R e u D v e  (19) 

The derivative of the angular velocity, u , is found by taking the partial derivative 

with respect to s  of (11), substituting the constitutive equation for the forces and moments 

for n and m as well as rfrom (3), and solving for u, (20). 

1 ˆ ˆl l l l l
eu C u Cu v D v e  (20) 

2.8 Initial conditions 

As stated in the above section, initial conditions are needed along with the consti-

tutive equations to solve for the shape of the rod. Initial conditions are the variables that 

define the initial configuration of the rod. For the model presented, there are four initial 

conditions. The origin location and initial orientation of the rod must be provided. There 

is also an initial condition for initial bending which is found iteratively and this process 



12

will be described in the next section. The last initial condition describes the initial shear 

of the rod and is found analytically using (21). It is derived from the force balance equa-

tion by substituting F , the mass applied at the tip, for sn  , the constitutive equation for 

n, and the body force from (18). 

10 0l T
f g eAgsv D R F e e  (21) 

2.9 Matlab Implementation 

The model is developed using Matlab, a software package developed for perform-

ing calculations using matrixes and vectors. The model presented is developed using an 

ordinary differential equation solver called ode45 which is available in the Matlab opti-

mization toolbox. 

To solve the boundary value problem our model presents, there are several things 

needed. Initial conditions define the starting conditions for the model and represent, eve-

rything about the initial configuration of the system. As previously described, there are 

four initial conditions. They can be seen in Error! Reference source not found.. Initial 

bending is found iteratively and requires an initial guess. The ODE solver uses the pro-

vided initial conditions including this guess and the derivatives to predict a shape for the 

rod. This bending associated with this shape gives a calculated tip torque, a boundary 

condition. The torque for the actual system is known based on the mass applied to the tip 

of the rod and the length of the rod. The two are compared and initial bending is conti-

nuously changed until the error between the calculated torque and the actual torque is 

significantly small. Once the error is small enough, the shape predicted is taken as the 

correct predicted shape. Verification is then performed on the model by applying multiple 
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masses to the tip of the actual rod, recording data, and then predicting the shape of the 

rod with the model by using the same tip masses as detailed in the following chapter. 

Table 1 

ODE Application 

Initial Condition Meaning Derivative to Integrate 

r(0) (x, y, z) of rod origin r

R(0) Initial Orientation R

0lu Initial bending lu

0lv Initial stretch and 
shear

lv

2.10 Conclusion

Continuum robots are designed to mimic the amazing characteristics of biological 

structures. There are several models used to control and predict the shape of these robots. 

One model which uses the constant curvature approximation ignores the significant ef-

fects of gravity and thus results for accurate tip control and positioning are very difficult 

to obtain. Another model based on special Cosserat rods makes few geometrical approx-

imations and no mechanical assumptions. As will be seen in the next Chapter, results 
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from this approach show that accuracy of the tip position as well as control of the overall 

continuum robot shape can be obtained using this approach. 

 A simple free body diagram of the rod provides all information necessary to con-

struct the force and moment balance equations needed for the model presented.  Combin-

ing the two equations using constitutive equations and along with the initial conditions 

for the configuration, the initial conditions, and the material parameters, the model can 

accurately predict the shape of a rod. The model is verified in the Chapter 2. 
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CHAPTER 3 

TWO-DIMENSIONAL MODEL VERIFICATION 

3.1 Introduction 

As discussed in the previous chapter, special Cosserat rods provide an accurate 

model which describes the shape of an elastic rod. However, verification of this model 

must be performed because many applications of a continuum robot, such as minimally 

invasive surgeries [11], search and rescue operations [5], and colonoscopies [8, 22], re-

quire accurate control of the robot tip as well as controlling the physical shape of the ro-

bot. Applications of interest to the proposed design include those in which accurate tip 

position and shape prediction is required. One such design requires the continuum robot 

to be scaled to a smaller size and used as fingers for a prosthetic hand. Another applica-

tion for the robot presented in this thesis is a teaching apparatus and a research platform 

which anyone can construct and use easily in order to teach the fundamentals of conti-

nuum robotics. Once verified, the model can be extended to control and verify other con-

tinuum robot designs due to its flexibility in parameters. 

Verification is the process of using accurate measurements to ensure a designed 

component works within the specifications given. In this thesis, accurate rod shape and 

tip coordinates are obtained from a verification setup by attaching a rod to a grid. Tip 

coordinates are also obtained from the model presented in this work using parameters 

which match the verification setup, such as material properties, rod orientation, and initial 
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conditions. Verification of the model is performed by comparing the two data sets. In this 

chapter, verification of the model proposed in the previous chapter is discussed and re-

sults are presented. 

3.2 Background

Verification has been performed on the constant curvature models and most re-

sults have not been very accurate. In [3], the authors performed verification on the con-

stant curvature model and results show that since the model does not incorporate the sig-

nificant effects of gravity, poor accuracy is obtained when predicting tip coordinates and 

rod shape. The model presented in this work incorporates the significant effects of gravity 

and thus more accurately predicts the shape and tip position of a continuum robot. In [2], 

the author verifies a model based on special Cosserat rods on OctArm [14]. The results 

obtained with their model when compared to the constant curvature model were 10 times 

more accurate [2]. However, Octarm was a mechanically complex continuum robot. It 

has three pneumatic actuators and has three sections allowing the robot to bend and ex-

tend. In contrast, the single section robot to be verified allows bending but not extension. 

Therefore, Octarm is overly complex compared to what is presented in this work and 

what is needed for verifying our model. 

3.3 2-Dimensional Verification Overview 

Verification is the process of using accurate measurements to ensure a designed 

component works within the specifications given. Tip coordinates are obtained from the 

proposed model using parameters which match the verification setup, such as material 

properties, rod orientation, and initial conditions. In this thesis, accurate rod shape and tip 
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coordinates are obtained from a verification setup by attaching a rod to a grid and lading 

the tip with a mass. The tip coordinates are recorded and compared to the coordinates 

from the model. This is comparison is the verification. In this chapter, verification of the 

model proposed in the previous chapter is discussed and results are presented. 

As stated, the model predicts the shape of a robot based on parameters passed to it 

by the user. The parameters include initial conditions, material properties for the rod, and 

the mass applied to the rod tip. It is critical that the parameters passed to the model be the 

same as the physical parameters in order to obtain an accurate prediction of the rod 

shape; as essential portion of the verification includes determining some of the unknown 

parameters. 

The verification system is as shown in Figure 3, composed of a grid, rod clamps, 

levels, precision weights, and the rod of interest. The grid is the main component and is 

what the rod is attached to. The rod is attached using the rod clamps which have different 

mounting angles etched into them. This allows verification using different initial condi-

tions for orientation. The levels help align the grid to the vertical axis and the precision 

weights are used to apply the mass to the tip of the rod of interest. 

The model is verified using a single rod instead of the actual robot because it sim-

plifies the verification process. This is because if the base model results in erroneous re-

sults, it is easier to locate the source of the errors in the model; likewise, there could be 

errors introduced from the more complex robot (when compared to a single rod), but us-

ing a single rod instead drastically minimizes the chances of this because it is the only 

object that is included in the model whereas with a more complex robot there would be 

additional complexities that would have to be taken into consideration. In addition, since 
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the model itself is based on rod theory, instead of complicating the process by changing 

the base model to incorporate other features of a robot, such as disk guides or cables, first 

the main component of the robot, a rod, is verified. After verifying the single rod, future 

work includes extending the model to incorporate a more complex robotic design. 

As stated previously, verification of this model must be performed because many 

applications of a continuum robot require accurate control and precise tip movement. 

Since the accuracy needed for applications of interest to our research group, the verifica-

tion is performed using a verification system which has a mm scale grid giving maximum 

accuracy. This allows the tip position to be read easily and accurately. 

As presented in Chapter 4, the material chosen for the backbone of the robot, the 

rod is a nickel-titanium alloy termed Nitinol (NiTi). NiTi was chosen for its memory 

shape properties which give it the ability to be very flexible without easily deforming. It 

is non-deforming as long as strains are less than 1% and the temperature of the rod re-

mains constant. For all verifications, the rod maintained a constant temperature and 1% 

strains were never reached. 
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Figure 3 The figure shows the verification system with a mass applied to the tip of a 
rod. It also shows the components of the verification system which include the 
grid, levels, clamps, and weights. 

3.4 Model Requirements 

The model requires parameters associated with the configuration of the robotic 

system. These parameters include initial conditions and material properties for the rod. 

Parameters that describe the initial conditions are inputs into the model and as stated in 

the previous chapter include, location of the origin, robot orientation (axis of extension, 

which in the verification performed is along the x axis since verification was performed 

in two dimensions). In all experiments, the rod’s base was placed at 0,0 m; orientation of 

0 , 30 , and 60  from the x axis were also used. 

The model requires certain characteristics about the rod material to accurately 

predict the shape and tip position of a continuum robot. These characteristics include the 

following: modulus of elasticity, length, diameter and density of the rod material. As 

stated, the rod chosen for the robot designed and used for verification is NiTi. NiTi was 
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chosen for its shape memory properties which give it the ability to be very flexible with-

out easily deforming. However, NiTi also has a range for its modulus of elasticity and so 

the modulus was found by experimentation. The rod length was chosen to be 40 cm and it 

has a diameter of 1.56 mm. The density was calculated to be 6.80 g/mm^3.

The modulus of elasticity for NiTi changes depending on the temperature. To 

eliminate errors due to guessing, its modulus of elasticity was experimentally found to be 

54 GPa. The process used to find the modulus is as follows. First, the rod is attached to 

the verification system at an initial orientation of 0  and several masses are applied to the 

tip. The tip coordinates of the deformed rod are recorded. Secondly, the mass used in the 

setup is entered into the model and 3C from (14) is modified until the tip coordinate 

matches the measured tip coordinates. This process is repeated for the other masses. No 

discrepancies were obtained between any of the masses and the modulus was then calcu-

lated using

10 0l T
f g eAgsv D R F e e  (22) 

where E is the modulus of elasticity and I is a constant called the second moment of iner-

tia. For all verifications, the rod maintained a constant temperature and 1% strains were 

never reached. 

3.5 Verification Setup Requirements 

It is critical to have a very precise verification system to verify the shape and tip 

predicted by the model. In order to verify the shape and tip positions accurately, one ap-

proach is to use a grid, attach the rod or material to it and apply the same parameters to 

the physical rod as those used in the model, allowing fast, accurate measurement of the 
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tip position of the rod. Specifically, a 1mm grid was laser-etched on a 80cm x 40cm area, 

providing 0.5mm accuracy in measuring tip position. The following sections describe 

the components of the experimental setup and how they were created to help in obtaining 

fast and accurate measurements. 

The verification system has four main components other than the rod itself. The 

main component of the system is a laser-etched grid. This grid serves two main purposes. 

One use is to securely hold the rod during the verification test. The grid was etched with a 

1mm grid using a laser cutter. This allows us to easily obtain the tip coordinates of the 

rod, which is the second purpose of the grid. There are also rod clamps with laser-etched 

angles. These are used to hold the rod at specified angles which give the rod its orienta-

tion. There are two levels mounted at the top of the grid which allow grid alignment with 

the vertical axis. The last component is the tip mass. The tip mass is a set of precision 

measured weights which can be applied easily using a small clamp at the tip of the rod. 

Figure 4    The verification grid is the main component of the verification system. In this 
figures, a corner is shown with some mounting places for the rod clamps. As 
you can see, there are etches which create the actual grid. There is 1mm be-
tween each and there are a slightly thicker etches every 1cm. 
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3.5.1 Laser-Etched Grid 

The grid is the main component of the verification system. It is used to visually 

compare the physical rod’s deformation to the model’s predicted deformation and also to 

obtain the coordinates for the tip of the rod for comparison with that of the model’s. Ac-

curate readings of both are essential in the verification process and are achieved by using 

a precision cut laser-etched grid. The grid itself is made of acrylic which is a strong, dur-

able, etchable, and easily obtainable material. It is a 45.72 cm x 60.96 cm sheet which is 

larger than our rod and allows verification of different mounting angles to be performed 

through the use of rod clamps which are described in the next section. The grid is laser-

etched at 1mm increments allowing for maximum resolution when visually obtaining the 

tip position. There are also seven sets of holes laser-cut to locate them precisely with re-

spect to the grid which are used to attach the rod clamps to the grid. Depending on the 

orientation of the rod (i.e., mounted at 0 degrees vs. 45 degrees), the rod clamps can be 

moved accordingly in order to keep the rod tip within the scope of the grid. 

Figure 5    The verification grid can be seen here labeled as 1mm laser etched grid. All 
components of the verification system are attached to it. 



23

3.5.2 Rod Clamps with Laser-Etched Angles 

The rod clamps are used to firmly hold the rod in the chosen orientation during 

the verification process. This firm hold is essential in obtaining the accurate shape and a 

tip position reading. A small error in the orientation of the rod amplifies the error be-

tween the model and the physical system. Due to the rod orientation being an initial con-

dition for the model, the orientation of the physical system should be exactly, or as close 

to possible, aligned with the chosen angle. If not the predicted shape from the model can-

not account for the discrepancies in orientation and the results will not be accurate. In or-

der to minimize this error, acrylic was chosen and a laser-cutter was used to etch mount-

ing angles into the rod clamps. In addition, the rod is compressed into the chosen mount-

ing angle by placing a non-etched rod clamp on top of the etched rod clamp and then 

placing screws through threaded holes in the clamps, compressing the rod between the 

two rod clamps. While it is important to clamp the rod tightly, it is also important that the 

grid is parallel to the vertical axis to reduce error. 
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Figure 6    The rod clamping system is shown here. The screws are screwed into tightly 
tapped holes which compresses the rod into the desired orientation. The clamp 
shown has 3 orientations etched into it, 0 degrees, 30 degrees, and 60 degrees. 
Let it be noted that 1cm of the rod length is used for holding the rod in the 
clamps and this is taken into ac-count in the model. 

3.5.3 Levels

It is important that the verification grid is perfectly vertical. Any tilt in the x-y 

plane or in the y-z plane will introduce directional components which are unaccounted 

for in the model; therefore, the tip measurements would be inaccurate when compared to 

the model results. One level is placed parallel to the grid for rotational alignment about 

the z axis and the other level is placed perpendicular to the grid for rotational alignment 

about the x axis. Aligning both of these will result in a perfectly vertical, parallel to the y 

axis, grid which can then be used for accurate verification. 
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Figure 7    The levels seen here are used to align the verification grid parallel with the 
ver-tical axis. Two levels are used because the grid can rotate about the x and 
the z axes; therefore, it must be leveled about two planes. 

3.5.4 Precision Measured Weights 

During verification of the model, a mass is applied to the model and the resulting 

coordinates of the predicted shape’s tip position is recorded. This is repeated for various 

weights. These results are then verified by performing the same procedure but with the 

verification system. One at a time a mass of the same value applied to the model is ap-

plied to the physical rod and the result in a tip position for each mass is recorded. If the 

tip force entered into the model does not correspond to the actual force applied to the 

physical system then the physical system will not produce results that are comparable to 

the model. The masses were measured using a pen scale with accuracy of .1 grams and 

ranged from 13.8 to 41.7 grams. 

3.6 Verification Process 

In order to verify our model, the following 3-step process was used. The first step 

in the verification process is to obtain results from the model using various tip masses. 

Secondly, results from the actual physical system are obtained for the same masses which 

were used in the model. Lastly, the results from the model and the physical system are 

compared. 
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3.6.1 Obtaining Model Results 

The objective of this section is to describe the process which was used in obtain-

ing model results. The process begins by entering the necessary parameters into the mod-

el. These parameters include initial bending, initial stretch and shear, the axis of exten-

sion, the rod mounting angle, the modulus of elasticity E , the rod length l , the rod di-

ameter d , and rod density . The values used were 54E GPa, 40l cm, .0445 1.13d in mm ,

and 36.80 g
mm

The four of most concern when using the same rod for multiple verifica-

tions and setup orientations are rod origin and initial orientation. They can be seen in Er-

ror! Reference source not found. in Chapter 2.With these parameters the model predicts 

the corresponding rod shape and output the tip position. The results are shown in Error!

Reference source not found.. 

3.6.2 Obtaining Actual Results 

The objective of this section is to describe the process which was used in obtain-

ing actual results. The process begins by notching on the tip of the rod in a way that al-

lows a string to be tied. Note that these components were also weighed and added as ad-

ditional tip force, as shown in Figure 5. This string holds the weights during the verifica-

tion process. The rod of interest is then clamped at the preferred mounting angle on the 

verification grid, illustrated in Error! Reference source not found.. The grid must be 

vertically aligned using the levels before any verification can begin; see Error! Refer-

ence source not found.. One at a time, precision weights are added to the string and the 

resulting tip positions are recorded. 



27

3.6.3 Comparison of Results 

After the results are obtained from both the model and the experimental setup, 

they are compared. The method used compares the difference in the y offset between the 

predicted and the observed rod tip coordinates. This value is also represented as a percen-

tage of error compared to the overall length. The results of the predicted model and the 

actual experimental results are compared and shown in Error! Reference source not 

found.. The average tip error between the predicted rod shape and the actual rod shape is 

2.1 mm which equates to 0.61% of the rod’s length [21]. 

Table 2 

Results of Model vs Actual 

3.6.4 Sources of Error 

There are several means by which error can be introduced into the verification 

system or model. One way that errors can be introduced is from the verification grid not 
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being perfectly parallel to the y axis. This will induce error because the mass will not ap-

ply a tip force completely in the -y direction. Also, if the rod is not held in the exact ini-

tial orientation as initialized in the model there will be errors induced. The length of the 

rod should be carefully measured using a mm scale in order to minimize measurement 

errors. It is very important that the masses used when applying the tip forces be exactly 

the same mass that is entered into the model. Any discrepancies between the mass values 

will induce error into the model. Material property values, such as the modulus of elastic-

ity or density, should be verified to prevent errors also. Lastly, human error can induce 

inaccuracies into the results of the experimental results by misreading the tip coordinates 

from the verification grid. 

3.7 Conclusion

This chapter shows how important verification is and what approach was taken to 

verify the model presented in Chapter 2. Given that many of the applications for conti-

nuum robots require accurate tip position and control of the entire shape of the body, the 

model proposed needs to be verified accordingly. Verification was performed on a single 

rod rather than an entire robot in order to take advantage of the simplest case the model. 

The model is verified in 2-D and verified by comparing model results to actual experi-

mental results.  

The model requires parameters associated with the configuration of the rod in-

cluding initial conditions which describe the origin location, rod orientation, initial bend-

ing, and initial shears. In addition, rod material characteristics are needed for the model 

accurately predict the physical rod shape. 
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A verification system was designed in order to obtain the experimental results 

which were in turn used for verification of the model. The verification system was de-

signed to reduce as many errors as possible and provide consistent experimental result 

readings with the ease of both in mind. A laser-cutter was utilized in the prototyping of 

components for precision fabrication and other components (Figure 5), such as precision 

measured weights and levels, were utilized to reduce errors in the results. The compari-

sons between predicted and observed results, shown in Error! Reference source not 

found., show an error of only .61%. Thus, the 3-Dimensional model based on special 

Cosserat Rods is a viable model for a continuum robot. The following chapter describes 

the design and construction of a small continuum robot called SCR. 
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CHAPTER 4 

DESIGN AND CONSTRUCTION 

4.1 Introduction 

This chapter introduces the design for a continuum robot which is used for verify-

ing the model presented in chapter 2. In addition, the model can be used for controlling 

the robot. As discussed in the previous chapter, the robot design should be simple in or-

der to simplify the verification process. Using a simple rod as the backbone for the robot 

allows the base model to be verified before it is built upon by adding additional robot 

components, such as cables and cable guides.  

The applications of interest for SCR determined the design in this chapter. First, 

the application of most importance was to design a continuum robot which could be used 

as a teaching device. It should be easily assembled and be able to provide a concise un-

derstanding, though operation and visualization, of how a continuum robot is different 

from a rigid link robot. Another application that SCR is designed for is research. This in-

cludes verifying a more complex model based on special Cosserat rods derived by ex-

tending the current model which was verified in the previous chapter to accurately model 

the shape of the rod. For example, the model could be extended to 2 or more sections and 

with this simple design, SCR can also be extended to 2 or more sections. It is a good plat-

form to build upon, which is another consideration that was taken into account when it 

was designed. Another application includes a scaled-multisection version of SCR used as 
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fingers for a prosthetic hand. The simple design and the dexterity make the design a via-

ble alternative for prosthetic fingers. 

4.2 Background

There are many continuum robot designs that feature excellent control and mani-

pulatibility [2, 10-12, 15]. One design proposed for steerable needles which would be 

used in minimally invasive surgeries uses curved concentric tubes [10]. By rotating and 

extending the tubes the shape and length of the continuum robot can be controlled. In ad-

dition, by rotating and extending the tubes, the tip position and orientation can be con-

trolled. While highly effective, this design is not feasible for the approaches SCR will is 

designed for. For instance, SCR is intended to be a platform for research and teaching. It 

is necessary that the design capture the dexterity of a continuum robot as well as provide 

a platform for future work and development. The robot is needed to help understand and 

visualize the basic concepts of a continuum robot for new students, for learning and 

teaching new concepts, and for continuum robot model verification. 

Another continuum robot used for minimally invasive surgery in [11] is designed 

for laryngeal surgeries. It is a multi-backbone snake like manipulator and has high tip 

dexterity which enables it to be used for suturing. The design of it uses three snake-like 

distal dexterity units. This design, while similar to SCR, uses push/pull actuation for ma-

nipulating the tip. This introduces complexity into the design that is not wanted because 

an actuator must be able to push as well as pull. The design of SCR has a single actuator 

which pulls. 
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Another design, OctArm V [14, 19] uses pneumatic actuators which require an air 

source, usually a compressor which is loud and makes the robot bulky. Each section of 

OctArm is composed of 3 extensible rubber tubes which are actuated by the pneumatic 

actuators. It would be very difficult to verify our model with OctArm due to its mechani-

cal complexity which would have to be included in the model since the model presented 

in its simplest form describes a rod.  

SCR itself is a modified design of the high-degree of freedom robot (HDOF) con-

tinuum trunk proposed and modeled in [23, 24]. The robot in [23, 24], called The Ele-

phant’s Trunk, uses a cable servo system similar to the designed proposed in this work; 

however, one difference is the number of cables and the number and type of actuation 

mechanisms. While The Elephant Trunk design uses DC motors which need encoders, 

the robot in this work uses stepper motors for the actuation which provides accurate ma-

nipulation without encoders. In addition, manipulation of the robot is performed using 8 

cables in addition to springs. While this design is effective, it is also overly complicated 

and suffers from binding. The chapter introduces a modified design approach to this 

hyperredundant continuum robot. 

The design proposed maintains the overall operation of The Elephant Trunk; 

however, the complexities are eliminated. By using stepper motors the tip position can be 

easily and accurately controlled by manipulating the length of the cables and keeping 

track of the steps. While there can be error introduced to the calculations of cable length 

it is minimal. Also, the proposed design has only three cables and the springs are elimi-

nated, while full control of the robot of the robot and robot tip was maintained. 
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4.3 Robot Components 

SCR is designed to be used as a research platform for continuum robotics as well 

as a teaching device for classrooms. In addition, the design is being looked at for pros-

thetic hand applications. SCR can be easily scaled down, extended to a two section conti-

nuum robot, and used as fingers on a prosthetic hand. Given the simplicity of the robot, 

the model can be easily changed to accommodate another section of SCR. 

Figure 8    The figure shows the four components of SCR which include a rod, actuation 
cables, three stepper motors, a base, and cable guides. 
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The design for SCR is composed of five basic components shown in Figure 8. 

They include a nickel-titanium (NiTi) rod, actuation cables, three high-torque stepper 

motors, a base, and acrylic cable guides. Another component of the robot is used in as-

sembly and it’s called the assembly device. The main component of SCR is the NiTi rod. 

It is the backbone of the robot and must be able to support the weight of the cable guides, 

the control cables, and itself. The cable guides are attached to it at 1cm increments and 

the cables are passed through the cable guides. The acrylic cables guides are used to en-

sure that the actuation cables are held parallel to the rod. The actuation cables are used to 

apply a moment to the tip of the rod for controlling the robot as well as performing tip 

manipulation. The stepper motors are used to actuate the cables and to help keep track of 

the length of the cables during operation. A base is used to mount the robot on and house 

the stepper motors and wiring. Each component is described in more detail in the follow-

ing sections. 

4.3.1 NiTi

As stated, the main component of SCR is the NiTi rod, Figure 9. It is should be 

able to support itself, the weight of the cable guides, and the actual cables as well as any 

object that is picked up. Therefore a strong and durable material is needed for the back-

bone. NiTi is a very strong and flexible metal and is used in many applications such as 

orthodontics, orthopaedics, medical procedures (i.e., colonoscopies), steerable needles 

[15], cardiovascular stents, and antennas. NiTi is a shape memory alloy which is excel-

lent for a continuum robot due to its ability to bend without deformation.  
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4.3.2 Actuation Cables 

The actuation cables are used to apply a moment to the tip of the rod for control-

ling the robot as well as for tip manipulation. These cables must be strong enough to not 

break when the stepper motors are applying large forces on them. They must also be 

maintained parallel to the rod in order to create a force perpendicular to the rod. 

The cables are made of fiber called Dyneema. It is made from polyethylene and is 

considered to be the world’s strongest fiber [25]. It is widely used in fishing, bullet-

resistant composites, and medical applications. The fiber is up to 15 times stronger than 

steel and extremely resistant to abrasion and for these reasons it is used as actuation 

cables for SCR [25]. The cables are terminated at the tip of SCR on the last cable guide.

The cables are terminated at the tip of SCR on the last cable guide as shown in 

Figure 11. In order to accurately predict the shape of the rod, the force applied by the 

cables must be perpendicular to the rod in order to create pure moments. 
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Figure 11 The figure shows the termination of the cables as well as the cable guides 
which guide the cables from the motors to the tip in order to apply the tip tor-
que.

4.3.3 Cable Guides 

Cable guides are used to ensure the cables are parallel to the rod. They are preci-

sion cut by a laser cutter from 1/8 inch acrylic sheets and are designed to press-fit onto 

the rod. Acrylic was chosen because of its strength. The cable guides are spaced 1cm 

apart in order to create an overall distribution of the cable guides parallel to the rod. The 

cables are passed through the holes cut in the cable guides as can be seen in Figure 12. 

Initially, the cable guides are approximately placed and then aligned after the 

cables are passed through all cable guides. There are three actuation cables that are used 

to manipulate the tip of SCR and likewise, there are three actuation cable holes in each 

cable guide. The cables are passed through these holes located at 120 degree intervals. 

An assembly device is then used to space each disk guide 1 cm apart starting with 

the tip of the rod. 
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Figure 12 The figure shows the holes located in the cable guides which the cables pass 
through from the base to the tip. 

4.3.4 Assembly Device 

In order to place the cable guides at accurate 1cm spaced increments, an assembly 

device was designed. Like the cable guides, the assembly device is also precision cut by a 

laser cutter from 1/8 inch acrylic sheets. At 1cm intervals, the assembly device has rec-

tangular cutouts as seen in Error! Reference source not found. that are used for accurate 

positioning of the cable guides.  

Figure 13 The figure shows a CAD drawing of the assembly device used to space the 
cable guides at 1 cm increments along the rod. 
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4.4 Robot Assembly 

The assembly of SCR begins with the NiTi rod and the cable guides. The cable 

guides are press fit into their approximate locations with attention being paid to the 

alignment of cable holes. After approximate placement of the cable guides, each cable is 

passed through the appropriate hole in each cable guide from the tip of the robot to the 

base. When adding the second and third cable, special attention should be given to which 

hole the cable is being passed through. This is to prevent crossing the actuation cables. 

After the cables are in place, the cable guides need to be precisely placed. This 

means that each disk should be placed 1cm apart and all cable guide holes should be lined 

up evenly. As stated earlier, this is performed using an assembly device. The assembled 

rod is placed in the assembly device and each disk is positioned in a corresponding 1 cm 

spaced rectangular cutout. One cable should be ran across the bottom of the assembly de-

vice to help in aligning the cable guide holes. 

As stated earlier, the base encases the stepper motors. They are attached to the 

base using brackets along with screws. The configuration chosen for the stepper motors 

maximizes the current base size for future development of a two section robot by creating 

space for additional stepper motors in the same housing, see Error! Reference source not 

found..
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Figure 14 The figure shows the placement of the stepper motors in the base for SCR. 
The placement is such that pulleys can be used to guide the cables directly 
from the last cable guide to the stepper motor shafts. 

The robot is now ready to be attached to the base. The end of the NiTi rod which 

does not have the cables terminated is inserted into the center hole on the top of the base, 

as seen in Error! Reference source not found.. The cables are ran through their corres-

ponding holes, placed in the appropriate pulley and terminated at the stepper motor des-

ignated for that cable.

The NiTi rod must also be rigidly attached to the base. This is achieved by using 

epoxy glue to attach extra disk guides to the end of the rod above the base and repeating 

this procedure on the underside of the base. 
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Figure 15 The figure shows the base which SCR is attached to. The stepper motors are 
also housed in this and can be seen. 

4.5 Conclusion

This chapter discussed the design for a continuum robot which is used for verify-

ing the model presented in chapter 2. The robot design is simple in order to simplify the 

verification process. A single NiTi rod is used for the backbone of the robot because of 

its memory shape ability. Cable guides are press-fit onto the rod and are used to run the 

actuation cables through. The actuation cables are used to apply a force on the tip which 

creates a moment for tip manipulation. The cable guides are placed 1cm apart and are 

done so using an assembly device. The assembled robot is attached to the base which 

houses three stepper motors used for actuation. 
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The design of SCR is a viable solution for the applications presented in the work. 

This design would make an excellent teaching utensil in the area of continuum robotics. 

It is simple to build and it would be feasible for the entire robot to be built by each stu-

dent in a class. The design can also be implemented by research groups who have little to 

no understanding of continuum robots, but who are interested in starting in the area; in 

contrast, a research group who has worked with continuum robotics for some time, can 

easily use the robot for new and perhaps more complex model verifications, continuum 

robot applications, and proof of concept research. In conclusion, the robot designed and 

proposed in this chapter is a viable design which can be used in many applications in the 

continuum robot community, especially those of interest to the MSU Robotics Research 

group.
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion

Continuum robots are remarkable creations with inspirations coming from many 

biological structures. This thesis presents a contribution to the modeling of continuum 

robots, the verification of this model, and discusses a verification platform for verifying 

continuum robots, in addition to presenting a simple and controllable continuum robot 

which demonstrates dexterity and compliancy. The disadvantage of existing models is 

analyzed and the proposed model was presented. The model presented makes few geome-

trical approximations or mechanical assumptions and therefore includes the significant 

effect of gravity on a robotic system.  

A verification system was presented and verification of the model was performed. 

The system was designed for quick, easy, and most importantly accurate tip position 

coordinate readings. Accuracy was achieved by using a laser-cutter to etch a 1mm grid 

onto a sheet of acrylic and to create mounting angles in the rod clamps. These rod clamps 

allows accurate rod mounting at desired angles. These accurate tools used to create the 

system solved many issues which were present in previous versions of the verification 

system.  The process provides for the experimental determination of the modulus of elas-

ticity of the rod of 54GPa. Using this result, low model errors of 0.61% demonstrate the 

validity of the model. 
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Finally, the robot presented in the final chapter is a modification of an existing 

design. The design was simplified without sacrificing the most important aspects of the 

robot which include accuracy and controllability. For example, one design was overly 

complex with pneumatic actuators and remote compressors used for actuating the robot 

trunk. Another design, the one which was modified, reduces the complexity by removing 

DOF achieved by additional cables and springs. While reducing the number of cables and 

springs, controllability was maintained and the robot was simplified. This robot is an ex-

cellent design which can be used for a research group interested in working with conti-

nuum robotics, professors interested in teaching robotics, and design engineers looking to 

add dexterity to an existing design, such as a prosthetic hand.

5.2 Future Work 

The work presented is the foundation for much more work that needs to be per-

formed. Future work includes a control system for the single-section continuum robot 

designed and expanding the robot design to a multisection robot. There will also be a 

need for a control system for a multisection robot once the single section robot is finished 

and controllable.

The model is in the process of being expanded to incorporate all components of 

the robot, including disk guide and cable weights. Predicting dynamics of a continuum 

robot is the next important step for the model and once completed, the model should be 

extended to a multisection static and then multisection dynamic model. 

Finally extension of the verification procedure to provide verification in three-

dimensions will be performed. A setup called visual servoing uses a pair of cameras to 
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determine the robot shape or robot tip position based on geometry. The system can also 

be used for controlling the robot.
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