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A three-dimensional computational tool was developed that simulates the heat and 

mass transfer interaction in a soil-root-stem system (SRSS) for a tree in a seasonally 

varying deciduous forest.  The development of the SRSS model involved the 

modification and coupling of existing heat and mass transport tools to reproduce the 

three-dimensional diurnal internal and external temperatures, internal fluid distribution, 

and heat flow in the soil, roots, and stems.  The model also required the development of a 

parallel Monte-Carlo algorithm to simulate the solar and environmental radiation regime 

consisting of sky and forest radiative effects surrounding the tree.  The SRSS was tested, 

component-wise verified, and quantitatively compared with published observations.   

The SRSS was applied to simulate a tree in a dense temperate hardwood forest 

that included the calculations of surface heat flux and comparisons between cases with 

fluid flow transport and periods of zero flow.  Results from the winter simulations 

indicate that the primary influence of temperature in the trunk is solar radiation and 

radiative energy from the soil and surrounding trees.  Results from the summer 

simulation differed with previous results, indicating that sap flow in the trunk altered the 
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internal temperature change with secondary effects attributed to the radiative energy from 

the soil and surrounding trees.  Summer simulation results also showed that with sap 

flow, as the soil around the roots become unsaturated, the flow path for the roots will be 

changed to areas where the soil is still saturated with a corresponding increase in fluid 

velocity. 



 

ii 

DEDICATION 

To my lovely wife, Elizabeth, without her support none of this would have been 

possible.



 

iii 

ACKNOWLEDGEMENTS 

The author would like to express his gratitude to his major professor, Dr. Pasquale 

Cinnella, for his guidance, understanding, and willingness to work with a non-traditional 

graduate student.  Dr. Cinnella was always available to discuss plans and guidance 

essential to the completion of this work.  Next, the author would like to thank Dr. Stacy 

E. Howington for providing entertaining discussions regarding modifying fluid flow in 

porous media.  Next, the author would like to thank his long-time mentor, Dr. James A. 

Smith, for sharing his deep interest of the thermal physics of trees and instilling the 

confidence to pursue this problem.  Finally, the author would also like to thank his 

committee members for their advice and encouragement during the development of this 

work.  Funding and data for this research was provided by the U. S. Army Engineer 

Research and Development Center. 

The author expresses his thanks to his family and the sacrifices that they have 

made during this endeavor.  He could not have finished this program without their love 

and support. 
 



 

iv 

TABLE OF CONTENTS 

 Page 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

NOMENCLATURE ........................................................................................................ xiv 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

1.1 Motivation ..............................................................................................1 
1.2 Objectives ..............................................................................................3 
1.3 Description of the Soil-Root-Stem-System ...........................................4 
1.4 Technical Contributions of the Proposed Study ....................................5 
1.5 Dissertation Outline ...............................................................................6 

II. BACKGROUND AND LITERATURE REVIEW ...........................................7 

2.1 Background and Terminology ...............................................................7 
2.1.1 Radiation in the Forest Environment ...............................................7 
2.1.2 Soil Physiology ................................................................................8 
2.1.3 Plant Physiology ..............................................................................9 

2.2 Literature Review...................................................................................9 
2.2.1 Tree Temperature Experiments and Measurements ......................10 
2.2.2 Tree Hydraulic Experiments and Measurements ...........................11 
2.2.3 Tree Thermal Simulations ..............................................................12 
2.2.4 Tree Hydraulic Simulations ...........................................................14 
2.2.5 Soil Thermal Simulations ..............................................................15 
2.2.6 Thermal Conductivity Theoretical Models ....................................15 

III. GOVERNING EQUATIONS AND NUMERICAL METHODS ...................24 

3.1 Governing Equations ...........................................................................25 



 

v 

3.1.1 Fluid and Heat Flow Governing Equations ...................................25 
3.1.2 Radiative Heat Transfer .................................................................26 

3.2 Material Mixing Functions ..................................................................27 
3.3 Numerical Methods ..............................................................................28 

3.3.1 Fluid Flow and Conductive Heat Transfer Numerical 
Method ...........................................................................................28 

3.3.2 Thermal Radiation Heat Transfer Numerical Method ...................29 

IV. VERIFICATION OF THE SRSS COMPONENTS ........................................31 

4.1 Longwave Thermal Infrared Heat Transfer Verification .....................32 
4.2 Downwelling Longwave Sky Radiance Verification ..........................36 

4.2.1 Backward Monte Carlo Simulation for the Sky Longwave 
Radiance .........................................................................................38 

4.2.2 Backward Monte Carlo Results .....................................................39 
4.3 Shortwave Thermal Infrared Radiance Verification ............................42 

4.3.1 Direct Shortwave Radiation Simulation Method ...........................44 
4.3.2 Verification of the Direct Shortwave Radiation Simulation ..........44 

4.4 Conductive Heat Transfer through Porous Media ...............................45 
4.5 Convective Heat Transfer in Porous Media .........................................47 

V. APPLICATIONS OF THE SRSS TO HISTORICAL SIMULATIONS .........52 

5.1 Herrington (1964) ................................................................................52 
5.1.1 Computational and Material Properties Description for the 

Herrington Simulation ...................................................................53 
5.1.2 Results for the Herrington Simulation ...........................................54 
5.1.3 Herrington Simulation Discussion .................................................54 

5.2 Derby and Gates (1965) .......................................................................56 
5.2.1 Computational and Material Properties Description for the 

Derby and Gates Simulation ..........................................................58 
5.2.2 Results for the Derby and Gates Simulation ..................................58 

VI. TEMPERATE FOREST COMPUTATIONAL DESIGN AND 
RESULTS ........................................................................................................62 

6.1 Computational Design .........................................................................62 
6.1.1 Background ....................................................................................62 
6.1.2 Geometric Design ..........................................................................64 
6.1.3 Material Properties .........................................................................68 
6.1.4 Boundary Conditions .....................................................................70 
6.1.5 Meteorological Conditions.............................................................76 

6.2 Simulation Matrix ................................................................................79 
6.3 Winter Simulation Results ...................................................................81 

6.3.1 Winter Solar Radiation ..................................................................81 
6.3.2 Tree Trunk Winter Temperature History .......................................81 



 

vi 

6.3.3 Winter Soil Temperature History...................................................83 
6.4 Summer Simulation Results .................................................................91 

6.4.1 Early Summer Solar Radiation SRSS Results ...............................91 
6.4.2 Fluid Flow and Moisture Distribution Results for Early 

Summer ..........................................................................................95 
6.4.3 Tree Trunk Early Summer Temperature History .........................104 

6.5 Summary ............................................................................................118 

VII. SUMMARY AND FUTURE WORK ...........................................................119 

REFERENCES ................................................................................................................122 



 

vii 

LIST OF TABLES 

TABLE Page 

 4.1 Monte-Carlo results for simple enclosed tetrahedron (e=2.592e-03) with 
1 0.9ε = , 2 3 4 0.4ε ε ε= = =  and 19,999,998eN =  ............................................35 

 4.2 Monte-Carlo results for simple enclosed tetrahedron (e=3.410e-03) with  
1 2 3 4 1.0ε ε ε ε= = = = and 19,999,997eN =  ......................................................35 

 4.3 Triangulated sky hemisphere mesh refinement results   ......................................41

 4.4 Corrugated surface mesh refinement results for the 1120 element sky 
hemisphere mesh   ................................................................................................42

 4.5 Material properties for thermal convection simulation   ......................................49

 4.6 Approximated thermal entry length for porous media in a heated 
cylinder with slug flow using Equation(4.16).   ...................................................49

 5.1 Material properties for the Herrington simulation   .............................................54

 5.2 Material properties for the Derby and Gates simulation   ....................................58

 6.1 Physical and thermal properties of the materials in the temperate forest 
simulation   ...........................................................................................................70

 6.2 Hydraulic properties of xylem and soil in the temperate forest 
simulation   ...........................................................................................................70

 6.3 Spectral properties of surface materials in the temperate forest 
simulation   ...........................................................................................................70

 6.4 Simulation matrix for the temperate forest   ........................................................80
 



 

viii 

LIST OF FIGURES 

FIGURE Page 

 1.1 Schematic of the Soil-Root-Stem System (SRSS) Model   ....................................4

 2.1 Water transport path as described by Cowan [71]   .............................................14

 2.2 Structure of southern pine softwood from Siau [83]   ..........................................16

 2.3 An example found in Hiraiwa and Kasubuchi [93] of the soil thermal 
conductivity variation as a function of temperature and water content   .............20

 4.1 Illustration of the variability in the net radiative exchange for surface 1 
of the unit tetrahedron as eN increases   ...............................................................36

 4.2 Example meshed unit surface   .............................................................................37

 4.3 Corrugated mesh used in verification of the longwave sky radiation   ................37

 4.4 Example triangulated hemisphere used for the distribution of the 
longwave sky radiation   .......................................................................................39

 4.5 Sky radiance simulation results on both the flat and corrugated surfaces  ..........41

 4.6 Simulation results for net longwave radiation for the flat and corrugated 
surfaces.  Net longwave flux for the flat and corrugated surfaces are -
155.2 W/m2 and -165.0 W/m2, respectively   .......................................................41

 4.7 Effect of mesh refinement of the sky hemisphere on the net longwave 
radiation for the corrugated surface   ...................................................................42

 4.8 Example meshed unit sphere   ..............................................................................43

 4.9 Results of simulation of the direct shortwave radiation on to the meshed 
unit sphere   ..........................................................................................................45

 4.10 Plane-wall transient analytical and computational solution for non-
dimensional times of 0.0138, 0.05, 0.10, and 0.25   .............................................47

 4.11 Diagram of the convective heat transfer example   ..............................................48



 

ix 

 4.12 Thermal entry lengths for fluid velocities of 0.0001 (top) and 0.0008 
m/s (bottom).  Legend units are in degrees C   ....................................................50

 4.13 Simulated and Estimated Thermal Entry Lengths for Convective Heat 
Transfer in Porous Media   ...................................................................................51

 5.1 Red pine simulation results (1000 hrs and 1300 hrs) with material 
properties described by Herrington [54]   ............................................................55

 5.2 Herrington’s stem temperature plots [54]  and SRSS simulated stem 
temperatures   .......................................................................................................56

 5.3 From Derby and Gates [40], finite element mapping for the aspen tree 
trunk   57

 5.4 Computational domain used for the comparison of the observed 
temperatures from Derby and Gates   ...................................................................59

 5.5 Measured and simulated temperatures for the Derby and Gates 
simulation   ...........................................................................................................60

 5.6 Temperature contours from the Derby and Gates pine log simulation.  
Time is in hours and temperature is deg C   .........................................................61

 6.1 Excavated root system of the Vicksburg tree   .....................................................63

 6.2 Side view of the excavated root system of the Vicksburg tree   ..........................63

 6.3 Root LIDAR data overlaid with root centerlines   ...............................................65

 6.4 Completed trunk and root mesh shell before intersection with the soil   .............66

 6.5 The stem and root mesh geometry.  The different colors indicate 
different material types (bark, xylem layers, and heartwood)   ............................66

 6.6 Cross section of the trunk at different heights in the computational 
domain.  The layers shown are bark, three xylem layers, and heartwood  ..........68

 6.7 Complete meshed domain used in the study.  Part of the stem is cut-
away to show the different layers inside the stem and root system and 
part of the soil is hidden to show the root structure   ...........................................69

 6.8 Soil saturation as a function of soil depth for the simulated soil   .......................72

 6.9 Capillary head as a function of the simulated soil saturation   .............................72

 6.10 Sap velocity function imposed on the upper boundary of the stem   ...................72



 

x 

 6.11 Summer (left) and winter (right) hemispherical images used for 
radiative transfer calculations   .............................................................................74

 6.12 Corresponding direct solar radiation calculations using the summer and 
winter hemispherical images.  For purposes of comparison, the external 
solar radiation flux and angle are held constant for both scenes   ........................75

 6.13 May 2010 Air temperature and relative humidity   ..............................................77

 6.14 May 2010 Solar radiation and precipitation   .......................................................77

 6.15 May 2010 Soil temperature   ................................................................................78

 6.16 January 2009 Air temperature   ............................................................................78

 6.17 January 2009 Relative humidity   .........................................................................78

 6.18 January 2009 Solar radiation and precipitation   ..................................................79

 6.19 January 2009 Soil temperature   ...........................................................................79

 6.20 SRSS results for the simulated shortwave radiation temporal distribution 
from 8 Jan 2009, 0900 – 1700 hrs   ......................................................................84

 6.21 Cross-section of the trunk at 0.6m above the ground.  The numbers 
along each cardinal axis indicate distance in centimeters from the trunk 
surface.  These distances correspond with distances shown in the 
following temperature history charts   ..................................................................85

 6.22 SRSS temperature history of the trunk at 0.6 m along the north radius 
for 8 Jan 2009 (simulation Alpha)   ......................................................................86

 6.23 SRSS temperature history of the trunk at 0.6m along the east radius for 
8 Jan 2009 (simulation Alpha)   ...........................................................................86

 6.24 SRSS temperature history of the trunk at 0.6m along the south radius for 
8 Jan 2009 (simulation Alpha)   ...........................................................................87

 6.25 SRSS temperature history of the trunk at 0.6m along the west radius for 
8 Jan 2009 (simulation Alpha)   ...........................................................................87

 6.26 Temperature difference in the trunk at 0.6m between the east and west 
radius for 8 Jan 2009 (simulation Alpha)   ...........................................................88

 6.27 Temperature difference in the trunk at 0.6m between the north and south 
radius for 8 Jan 2009 (simulation Alpha)   ...........................................................88



 

xi 

 6.28 SRSS temperature history of the trunk along the south radius at 1.3, 0.6, 
and 0.3m above the soil surface 8 Jan 2009 (simulation Alpha).   .......................89

 6.29 SRSS simulated surface temperatures for the winter unsaturated (Bravo) 
and saturated (Alpha) soil conditions   .................................................................90

 6.30 SRSS simulated soil temperatures at depth for the winter saturated soil 
conditions (simulation Alpha)   ............................................................................90

 6.31 SRSS results of total shortwave radiation for 0800-1300 hrs, 2 May 
2010 for simulations Charlie, Delta, and Echo.   .................................................92

 6.32 SRSS results of total shortwave radiation in open canopy for 0800-1300 
hrs, 2 May 2010 for simulation Foxtrot   .............................................................93

 6.33 SRSS results of total shortwave radiation for 1400 – 1700 hrs, 2 May 
2010 for simulation Charlie, Delta, and Echo.   ...................................................94

 6.34 SRSS results of total shortwave radiation in open canopy for 1400-1700 
hrs, 2 May 2010 for simulation Foxtrot   .............................................................95

 6.35 Spatial distribution of flow velocity across the trunk at 0.6m for 1300 
hrs 2 May 2010 for simulations Echo and Foxtrot   .............................................97

 6.36 Flow velocity history along the south radius of the trunk at 0.6m for 
early summer for simulations Echo and Foxtrot   ................................................97

 6.37 Fluid flow lines and velocity for saturated soil conditions 0930 hrs, 2 
May 2010 for simulation Echo   ...........................................................................98

 6.38 Fluid flow lines and velocity for saturated soil conditions 1030 hrs, 2 
May 2010 for simulation Echo   ...........................................................................98

 6.39 Fluid flow lines and velocity for saturated soil conditions 1130 hrs, 2 
May 2010 for simulation Echo   ...........................................................................99

 6.40 Fluid flow lines and velocity for saturated soil conditions 1230 hrs, 2 
May 2010 for simulation Echo   ...........................................................................99

 6.41 Fluid flow lines and velocity for saturated soil conditions 1330 hrs, 2 
May 2010 for simulation Echo   .........................................................................100

 6.42 Fluid flow lines and velocity for saturated soil conditions 1430 hrs, 2 
May 2010 for simulation Echo   .........................................................................100

 6.43 Fluid flow lines and velocity for saturated soil conditions 1530 hrs, 2 
May 2010 for simulation Echo   .........................................................................101



 

xii 

 6.44 Fluid flow lines and velocity for saturated soil conditions 1630 hrs, 2 
May 2010 for simulation Echo   .........................................................................101

 6.45 SRSS results of the development of unsaturated soil area indicated by a 
negative pressure head from 1000 – 1500 hrs, 2 May 2010 for 
simulation Echo.   ...............................................................................................102

 6.46 SRSS results of the development of unsaturated soil area from 1600-
2100 hrs, 2 May 2010 for simulation Echo   ......................................................103

 6.47 SRSS results of the development of unsaturated soil area from 2200-
2500 hrs, 2-3 May 2010 for simulation Echo   ...................................................104

 6.48 SRSS temperature history of the trunk at 0.6m along the north radius 
with flow for 2 May 2010 for simulations Charlie and Delta   ..........................107

 6.49 SRSS temperature history of the trunk at 0.6m along the east radius with 
flow for 2 May 2010 for simulations Charlie and Delta   ..................................108

 6.50 SRSS temperature history of the trunk at 0.6m along the south radius 
with flow for 2 May 2010 for simulations Charlie and Delta   ..........................108

 6.51 SRSS temperature history of the trunk at 0.6m along the west radius 
with flow for 2 May 2010 for simulations Charlie and Delta   ..........................109

 6.52 Temperature difference in the trunk at 0.6m between the east and west 
radius for 2 May 2010 for simulations Charlie and Delta   ................................109

 6.53 Temperatures difference in the trunk at 0.6m between the north and 
south radius for 2 May 2010 for simulations Charlie and Delta   ......................110

 6.54 SRSS Temperature difference history between the flow (Echo) and no 
flow (Charlie) simulations along the north radius at 0.6m for 2 May 
2010. (shown: flow – no flow)   .........................................................................110

 6.55 Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the east radius at 0.6m for 2 May 2010. 
(shown: flow – no flow)   ...................................................................................111

 6.56 Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the south radius at 0.6m for 2 May 2010. 
(shown flow – no flow)   ....................................................................................111

 6.57 SRSS Temperature difference history between the flow (Echo) and no 
flow (Charlie) simulations along the west radius at 0.6m for 2 May 
2010. (shown flow – no flow)   ..........................................................................112



 

xiii 

 6.58 SRSS Temperature history of the trunk along the south radius at 1.3, 
0.6, and 0.3m with fluid flow for 2 May 2010 for simulation Echo.   ...............113

 6.59 SRSS Temperature history of the trunk along the south radius at 1.3, 
0.6, and 0.3m above the ground with no fluid flow for 2 May 2010 for 
simulation Charlie.   ...........................................................................................114

 6.60 Temperature difference history between south radius temperatures at 
1.3, 0.6, and 0.3m above the ground with fluid flow for 2 May 2010 
(simulation Echo)   .............................................................................................115

 6.61 SRSS Temperature difference history between south radius 
temperatures at 1.3, 0.6, and 0.3m above the ground with no fluid flow 
for 2 May 2010 (simulation Charlie)   ................................................................115

 6.62 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the north radius for 2 May 2010   .............116

 6.63 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the east radius for 2 May 2010   ................116

 6.64 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the south radius for 2 May 2010   .............117

 6.65 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the west radius for 2 May 2010   ...............117



 

xiv 

NOMENCLATURE 

 

Variables 
A  area, (m2) 

jA  surface area of surface j, (m2) 
a square root of porosity, (%) 
b weighting bridge factor, (0-1) 
c  specific heat ( 1 1J kg K− − ) 

pC  specific heat at a constant pressure ( 1 1J kg K− − ) 

bjE  blackbody emissive power of surface j,  (W/m2) 

e  energy associated with each packet in the Monte-
 Carlo method (W) 

,i jF  view factor from surface i to surface j, (%) 
G specific gravity (dimensionless) 
I total radiative energy received on a surface, (W/m2) 

bi  total blackbody intensity, (W) 
Kε  Kersten number, (dimensionless) 

k 
thermal conductivity, ( W/(m K) ),  
 also permeability (m2) 

rk  normalized soil thermal conductivity, (dimensionless) 
M  volumetric moisture content, ( 3 3m m− ) 

eN  total number of discrete energy packets simulated in 
 Monte-Carlo method 

jn  number of discrete energy packets emitted by a surface 
in the Monte-Carlo method 

*
jn  number of discrete energy packets received by a 

surface in the Monte-Carlo method 
Pex  Péclet number, (dimensionless) 

jq  heat flux of surface j, (W/m2) 
R  distance between two surfaces, (m) 

MS  normalized soil water content, (dimensionless) 

rS  residual saturation of the soil, ( 3 3m m− ) 

sS  soil specific storage, (m-3) 



 

xv 

T  temperature, (K) 
jT  temperature of surface j, (K) 

t  time 
V  volume, ( 3m ) 
v volumetric content of a medium, ( 3 3m m− ) 
W source or sink flux 

iw  weighting factor, (0-1) 
, ,x y z  Cartesian coordinates 

  
Greek symbols  
α  thermal diffusivity, (%), also soil texture parameter 
ε  emissivity, (%) 

rκ  relative permeability, (%) 
λ  spectral wavelength, (nm) 
ν  kinematic viscosity, ( 2 -1m s ) 
ξ  porosity, (%) 
Π  osmotic potential, (MPa) 
ρ  density, ( 3kg/m ), also spectral reflectance, (%) 
σ  Stefan-Boltzman constant, ( 2 4W/(m K ) ) 
ψ  water potential, (MPa), also pressure head (m) 
  
Subscripts  
 parallel 
⊥  perpendicular 
B  bark 
dry  dry 
eff  effective 
ext external 
gas  gas 

2H O  water 
rad radiative energy 
S  soil, also water storage 
sat  saturated 
solid  solid 
wet  wet 
W wood 
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CHAPTER I 

INTRODUCTION 

Forests have significant effects on the earth’s energy balance, hydrologic cycle, 

and carbon balance.  The forests impact the local meteorological conditions by the 

exchange of water and carbon dioxide through evapotranspiration and respiration 

processes [1-7] and heat storage [8].  They alter the earth’s surface albedo by the 

reflection and absorption of different wavelengths of the solar radiation spectrum [9-11].   

At a global scale, forests play an important part in the earth’s carbon balance: they 

sequester carbon and release it [12-13].  At regional scales, the spatial and temporal 

variation of near-surface air flow is altered by the geometry and shape of the tree crowns 

[14-17].  And at a local scale, forests and trees impact the movement of water and 

contaminants in the soil, where now specific tree species are used in phytoremediation 

studies to absorb and degrade organic contaminants and certain heavy metals from the 

soil [18-22]. To facilitate our understanding of the importance and impact of these 

effects, modeling and simulation of these processes is often used in both large- and small-

scale studies. 

1.1 Motivation 

For more than 100 years, researchers have observed that the temperature and 

moisture regimes are important components in forest ecosystem dynamics.  For example, 

the distribution of temperature and moisture content within the tree influences its growth 

and development [23], the onset and cessation of cambial activity [24], its capability to 
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prevent insect predation [25-27], and the population dynamics of the parasitic insects [28-

29].  Moreover, temperature directly affects the uptake and metabolism of pollutants from 

the soil into the tree tissue [19, 21].   For certain avian species and bats, the orientation of 

tree cavities used for nesting and the selection of tree size for excavating such cavities are 

crucial for success of the population [30-32].  Specifically, studies showed that the 

microclimate of the south-facing nesting cavities is warmer than similar north-facing 

cavities, and thus the adult birds and nestlings expend less energy to keep warm and 

improve their survival [32].   With respect to tree growth and survival, observations 

showed that soil and atmospheric temperatures are significant parameters that limit the 

growth of trees and set treeline elevation limitation [33-36]. 

In addition to forest growth and affected fauna, the moisture content of the soil 

and forest is also important during forest fires.  The ability of the tree bark to protect the 

inner cambial layer from fire determines the survival of the individual tree [37].  In the 

late 1950s and early 1960s, researchers began to study and measure the heating of tree 

trunks during forest fires [37-38] and explored modeling trunk temperatures [39-40].  

These measurements are used as guidelines today to determine the mortality rates of 

different tree species.   

Throughout these studies, the individual thermal and hydraulic processes that 

occur in the soil, roots, and tree were measured and modeled.  Simulations typically 

consisted of simple one- and two-dimensional abstractions.  These processes are rarely 

modeled in a coupled centimeter-scale three-dimensional environment.  Where high- 

resolution computations are reported in literature [41-44], they either focus on heat 

transport or fluid flow, but not both.  Throughout the literature, researchers [40-41, 43, 

45] indicated a desire to simulate a coupled heat and moisture flow three-dimensional 
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system, but the computational technology to do so was unavailable.  To address this need, 

this dissertation documents the development of a computational tool that provides current 

and future researchers the capability to simulate the three-dimensional spatial and 

temporal interaction of thermal and hydraulic processes among the soil, roots, and tree. 

1.2 Objectives 

This research has two principal objectives.  One objective is to develop a three-

dimensional computational tool that simulates the radiative energy, conductive heat, and 

mass transfer interaction in a soil-root-stem system (SRSS).  A simplistic diagram of the 

interacting processes is shown in Figure 1.1.  The development of the SRSS model 

involved modifying and coupling existing heat and mass transport tools to create a 

specific application capable of reproducing the three-dimensional diurnal, internal, and 

external temperatures, internal fluid distribution, and heat flow in the soil, roots, and 

stems (tree trunk1

The second objective of this research is to verify the components of the SRSS 

through comparisons with published and newly measured field data, ultimately 

presenting the simulation results applied to a seasonally varying deciduous forest in a 

temperate environment. 

).  Additionally described is a technique developed to account for and 

simulate the varying external radiation regime within the forest that surrounds the SRSS.   

 

 

 

 

                                                 
1 Tree trunk and stem will be used interchangeably in this document.  Basically, trunks are large stems. 
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The purpose of the SRSS model is to answer these questions. 

1. Is the SRSS model sufficiently accurate to simulate the physics of thermal 

radiation without explicitly modeling the entire forest? 

2. During periods of high mass transfer, how much heat is transported by the 

fluid flow in the stem compared to conduction and radiative effects? 

3. What is the effect of the root system on the spatial and temporal distributions 

of temperature and moisture content in the soil? 

 

 

Figure 1.1 Schematic of the Soil-Root-Stem System (SRSS) Model 

1.3 Description of the Soil-Root-Stem-System 

The Soil-Root-Stem-System (SRSS) is a three-dimensional, unsteady simulation 

solving simultaneous heat and mass transfer in porous media.  The SRSS considers all the 

properties of the materials in the simulation to be time-varying and dependent on 

moisture content and temperature.  The soil, root, and stem materials are treated as a 
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continuum with effective hydraulic and thermal properties based on the composition of 

solids, water, and air in the material.  Fluid movement through these materials occurs as 

bulk fluid flow driven by pressure gradients.  For radiative heat calculations, all external 

surfaces are treated as spectrally diffuse grey black bodies. 

1.4 Technical Contributions of the Proposed Study 

The governing equations for thermal and mass transport used in this research are 

well described and analyzed in the literature.  Therefore, it is not the purpose of this 

research to develop new equations but to provide a robust computational engineering tool 

that will advance the science of tree physiology and forest ecology, and to apply this tool 

to explore the relative importance of the many fluid flow and thermal processes in a 

SRSS.  Several examples are in the literature [40-41, 46, 45] where researchers expressed 

a strong interest in modeling the complete system in three dimensions at centimeter 

scales but were unable to accomplish this task, due in part to a lack of computational 

tools.  Therefore, the main technical contributions of the proposed research are: 

• A computational tool that simulates the heat and moisture interactions for a 

soil-root-tree system at a discretization scale of a few centimeters. 

• Application of this tool to: 

o Three-dimensional convective heat transport by sap flow in the living 

wood tissue; 

o Diurnally and spatially varying soil moisture due to the evaporative 

demand by the root-tree system; 

o Three-dimensional radiative energy budget for the surface soil and stem 

with interaction to the surrounding forest and canopy. 
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1.5 Dissertation Outline 

This document is organized in three parts.  The first part is the introduction of the 

work and literature review discussed in Chapters 1 and 2.  The second part (Chapters 3 

and 4) is the description of the SRSS and verification of the SRSS subcomponents.  The 

final part (Chapters 5 and 6) is the numerical simulation of the SRSS and analysis of the 

results of the simulation applied to a conceptual system of a deciduous tree in a mature 

canopy forest.  Finally, some conclusions are drawn in Chapter 7, including 

recommendations for future work. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

The purpose of this chapter is to introduce the background of the research, 

describe the terminology used throughout this document, and provide a historical context 

of published literature pertaining to this subject. 

2.1 Background and Terminology 

This section provides a descriptive framework of the three main study areas 

explored in the SRSS, i.e., radiation in the forest environment, soil science, and plant 

physiology.   

2.1.1 Radiation in the Forest Environment 

All matter in nature emits electromagnetic radiation.  This emitted 

electromagnetic radiation spans the full electromagnetic spectrum, but 99% of the 

terrestrial radiation is confined between 0.2 and 100.0 μm.  The maximum peak of the 

emitted spectral radiation is determined by the temperature of the matter and is described 

by Planck’s Law.   

In discussions of this research, the radiative flux from the continuous spectral 

solar and environmental radiation is divided into two regions; shortwave and longwave 

radiation.  The shortwave radiation covers the 0.2 to 3.0 μm wavelengths and is 

significant for plant development and growth.  The longwave radiation, spanning from 

3.0 to 100.0 μm, describes the visible to near-infrared wavelengths. 
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Efficiency of radiation flux into an object is affected by the spectral absorption, 

transmission, and reflection of the surface properties.  Radiation power is defined as the 

amount of radiant energy emitted, transmitted, or absorbed per unit time.  Radiative flux 

is defined as the amount of energy transferred per unit area of a surface.   The spectral 

absorption (or absorptivity) of a surface is defined as the fraction of incident radiation 

flux at a given wavelength that is absorbed by the surface.  The spectral reflectivity, ρ , 

of a surface is defined as the fraction of incident radiation flux at a given wavelength that 

is reflected by the surface.  The spectral transmission (transmissivity) of a surface is 

defined as the fraction of incident radiation flux at a given wavelength that is transmitted 

by a surface. 

In the forest environment, solar radiation is the principal source of shortwave 

radiation while the longwave sources are about equally distributed between solar, 

atmospheric, and environmental sources [47].  For all of these sources, the primary 

receptors of the radiative flux are the soil, wood, and foliage.  Of these three, only foliage 

has a transmission fraction that is greater than zero. 

2.1.2 Soil Physiology 

The soil is modeled as a macroscopic porous medium that can be both saturated 

and unsaturated with fluid.  The Darcian flux through this porous medium is defined as 

the volume of fluid passing through a unit cross-sectional porous area per unit of time 

[48] and is determined by the fluid pressure gradient, fluid viscosity, fluid density, 

hydraulic conductivity, and gravity.  

Soil has three primary interrelated thermal properties: thermal conductivity, 

thermal diffusivity, and heat capacity.   Thermal conductivity is defined as the property of 
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a material to conduct heat, thermal diffusivity is the rate at which heat flows through a 

material, and heat capacity is defined as the property of a material to store internal 

energy.  Common to each of these properties for soils is that the property is determined 

by the porosity, moisture content, and thermal conductivity of the solid matter in the soil 

volume.  In a dynamic unsaturated soil environment, these properties can vary 

significantly during a 24-hour cycle. 

2.1.3 Plant Physiology 

In a vascular plant system, the xylem and phloem cell structures are present 

throughout the plant and are responsible for most of the fluid transport in the system.  

Primarily, the xylem transports water and nutrients from the soil up through the roots to 

the rest of the plant [49-50].  Similarly in a reverse manner, the phloem transports 

nutrients down from the photosynthetic members (primarily leaves) through the plant and 

eventually to the root system.  Located between these two vascular systems is meristemic 

tissue that is called the vascular cambium.  The vascular cambium tissue is one of the 

growth regions of the plant and produces both xylem and phloem cells.  In the trunk and 

root region of a plant, the continued growth in the cambium tissue increases the 

circumference of the plant.  Depending on the seasonal growth, the cambium tissue 

produces large or small xylem cells that appear as annual growth rings [49]. 

2.2 Literature Review 

Because of the interdisciplinary nature of this research, the following literature 

review consists of published work conducted within both the engineering and biological 

disciplines.  The literature review is divided by the nature of the work, i.e., experiments 

and their resulting measurements and theoretical and analytical models. 
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2.2.1 Tree Temperature Experiments and Measurements 

Early studies of heat flow through trees were primarily focused on mortality rates 

of trees during forest fires or severe freezing events.  Forest fire events were of particular 

importance to forest managers and botanists for the determination of tree resistance to 

fire damage.  

In 1964, Fahnestock and Hare [37] instrumented live longleaf pine trees and 

measured cambium temperatures of trees exposed to prescribed burning.  One of their 

conclusions from their experiments indicated that the leeward side (facing away from the 

fire) of the tree was subjected to more intense heating than the windward side (facing the 

fire) due to natural convection processes.  Thermal measurements under the bark during a 

controlled burn ranged from an average of 380 deg C windward and 700 deg C leeward. 

Vines [38] studied fire resistance in Australian eucalypts trees in 1968 and made 

several measurements of cambium temperatures of living trees in different fire settings.  

Vines noted that the rate of change in cambium temperature was related to the bark’s 

thermal diffusivity, bark structure, and bark moisture content.  Within the same time 

period, Gill and Ashton [51] conducted a laboratory study in 1968 to observe fire 

resistance of three different types of Victorian eucalypts that possessed different types of 

bark.  Their laboratory approach used radiant heaters and measured the rise and fall of 

temperatures in the bark, phloem, and xylem.     

Studies of the thermal conductivity and diffusivity of live fruit trees was 

conducted by Turrell et al. [52-53] between 1962 and 1967 to explore the effects of 

freezing temperatures on crop citrus trees. Their measurements and subsequent analysis 

provided tables and functions to estimate the time required for various diameters of citrus 

tree branches to reach to -8 deg C and develop permanent tissue damage.   
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Similarly, Derby and Gates [40] in 1964 measured normal diurnal temperatures of 

apple and peach trees in orchards and aspen trees at high elevations to observe the 

freezing and thawing effects on cambial temperatures and compared these data with the 

results from a two-dimensional finite difference model.  The observed temperature in the 

wood ranged from 10 – 12 deg C. 

From 1964-1969, Herrington [39, 54] developed specific techniques for internal 

temperature measurements of softwood and hardwood trees using carefully placed 

thermocouples.  Using these measurements, he developed an analytical model that 

predicted the diurnally varying temperatures in the trunks.   

From the mid-1960’s to the present time, the procedures and overall purposes for 

observing internal tree temperatures have not significantly changed.  In examples of 

recent work by Li [30] in 1991 and Wiebe [32] in 2001, both authors use internal tree 

temperature measurements to characterize the suitability of tree cavities for nesting by 

various boreal animals.  Observations by Wiebe showed daily cavity temperatures 

ranging from 2.2 to 22.1 deg C during July 1998 in British Columbia. 

2.2.2 Tree Hydraulic Experiments and Measurements 

Since before the 1900’s, the scientific community has studied and analyzed fluid 

(sap) flow through plants and trees for various purposes such as syrup production and 

understanding the significance of transpiration [55].  In 1933, Woodhouse [56] coined the 

term “sap hydraulics” which describes the study of entrance of water into the roots, 

passage of fluid through the plant, and exit of water through the leaves.  Water uptake by 

the plant roots is determined by several factors [42].  Some of these factors include the 

hydraulic conductivity of the soil, hydraulic conductivity of the wood, root system 



 

12 

architecture, moisture content of the soil, and absorption capability of the roots.  Accurate 

measurements of plant water use were difficult to obtain and were not commonly 

conducted until recently.  Swanson [57] has an excellent description of the historical 

techniques used to determine plant water use and mentions that the first reported use of 

heat as a tracer to indicate flow was conducted by Huber in 1932.  Huber placed a heat 

source on the stem and measured temperature changes upstream and downstream in the 

sap flow.  The distance between the heated probe and the temperature measurement 

(thermocouple) was divided by the measured time to obtain fluid velocity.  In 1958, 

Marshall [58] conducted similar studies but used an implanted heater rather than a 

surface heater.  Additionally, Marshall conducted a theoretical analysis and calculated the 

sap flux and the rate of sap flow per unit area of xylem.  This heated pulsed probe method 

became popular in the mid-1980s and is now commonly used.   Using this method or 

similar methods (steady diffusive techniques), researchers frequently measure water 

uptake from roots and radial spatial distribution throughout individual trees [59-65]. 

2.2.3 Tree Thermal Simulations 

Early interest in the temperature distribution within trees came partly because of 

the difficulty in the ability to effectively measure the spatially varying nature of the 

problem.  In these early studies, the common approach to thermal simulation included the 

classical equations of heat transfer.  In 1964, as previously metioned, Herrington [39, 54] 

conducted measurement studies but also developed an analytical model that predicted 

temperature and heat flow variations with time as sinusoidal waves or sums of sinusoidal 

waves.  The two-dimensional simulation was represented as a circular cylinder with no 

radiation heat exchange on the surface, and the temperature at any point in the trunk was 
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specified by its axial, radial, and angular coordinates.  Near the same time, Derby and 

Gates [40] developed a finite difference model in 1966 based on Dusinberre’s [66] finite 

difference heat transfer calculations in two dimensions.  From that time until the early 

1990’s, there appears to be little progress in the literature with regard to thermal 

modeling of trees.  In 1990, Rego and Rigolot [67] developed a one-dimensional 

simulation to calculate the heat flow into a trunk to predict cambium damage by a fire.  

One year later in 1991, Hummel et al. [41] extended Derby and Gates method into three 

dimensions and changed the solver method to a Crank-Nicholson finite difference 

method.  In this method, a branch or trunk was represented by a cylinder composed of 

single prisms that spanned the length.  Their simulations were not coupled to the soil or 

roots and did not include fluid flow.  In 2002, Potter and Andresen [68] described a two-

dimensional finite difference model of a horizontal section of a tree stem that closely 

duplicates the work by Derby and Gates but included sensitivity analyses of the model 

parameters. 

Finally, some of the recent work reported in the scientific literature was 

conducted by Jones in 2003.  In Jones’ thesis [46] and later publication [45], a one-

dimensional temperature simulation of a tree trunk during a forest fire is described.  This 

work is notable because it is the first simulation to simultaneously account for bark and 

wood swelling, devolitization, charring, desiccation, and moisture variability during 

burning.  Additionally, this work includes the temperature and moisture dependence of 

the thermal conductivity and the heat capacity of the wood and bark as described by 

Simpson and TenWolde [69] and Martin [70]. 
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2.2.4 Tree Hydraulic Simulations 

Water uptake and transport in trees is a hydraulic flow process that is controlled 

by resistances in the flow system and hydraulic gradients.  Understanding the hydraulic 

resistances in a soil and tree system is one of the more important aspects of the SRSS.  In 

a 1965 paper published by Cowan [71], the pathways of water transport in the soil and 

plant are represented by electrical analogues (Figure 2.1). 

 
 

 

Figure 2.1 Water transport path as described by Cowan [71] 

In work by Farnum and Carey [72] in 1981, the two-dimensional water transport 

in a soil-plant was modeled through finite element analyses.  The resulting model 

analyzed the diffusion rates between the different components of the soil-plant system 

and was solved using a Galerkin semi-discrete finite element method. 
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With recent advances in the ability to measure and monitor plant fluid flows and 

resistances, the traditional view of plant hydraulics is expanding to include the dynamic 

response of xylem flow resistance to environmental conditions.  The most recent work by 

Sperry et al. [73-75] improved our understanding of how these hydraulic resistances 

change with soil and plant water content, thus also improving our ability to predict how 

the plant water use responds to environmental conditions. 

2.2.5 Soil Thermal Simulations 

One of the most widely cited and referenced work in soil thermal simulations is 

the work conducted by Deardorff in 1978, where he presents the framework of a one-

dimensional surface temperature model coupled with a layer of vegetation [76].  In this 

paper, Deardorff presents a time-dependent equation for predicting the surface and 

subsurface temperatures of a 12-layer soil model and compares its results with those from 

five other approximate models.  The energy balance method used also includes the 

presence of a layer of vegetation to account for changes in the evaporation and radiation 

regime.  Oke [47], Campbell [77-78], and Buchan [79] presented variations in the mid-

1980’s on the soil energy balance model and increased the complexity of the simulation 

by coupling in atmospheric conditions, vegetation canopies, and improved forced 

convection conditions.  Since these model and simulation studies, most current research 

is focused on global coupled soil-water-atmosphere transfer models [80-82]. 

2.2.6 Thermal Conductivity Theoretical Models 

In this subsection, two types of thermal conductivity models are discussed: wood 

thermal conductivity models and soil thermal conductivity models.  Because both are 
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modeled as porous media, models typically share common properties such as moisture 

content, density, and porosity. 

To correctly model the heat flow and effects of moisture in heterogeneous wood, 

the thermal properties of the material must be quantified.  Of these properties, thermal 

conductivity ( k ), moisture content (M), density ( ρ ), and porosity (ξ ) are considered to 

be the most important. 

Since wood has a heterogeneous structure (Figure 2.2 for example), the thermal 

characteristics are significantly anisotropic with regard to heat flow perpendicular, 

tangent, or parallel to the growth axis of the wood.  As a general rule, the parallel thermal 

conductivity is typically 1.5 to 2.5 times greater than the perpendicular thermal 

conductivity. 

 
 

 

Figure 2.2 Structure of southern pine softwood from Siau [83] 
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In 1941, MacLean [84] measured the thermal conductivity of wood with varying 

moisture contents by the hot-plate (steady-state) method.  From these measurements, two 

different empirical equations were developed based on moisture content and the porosity 

of the wood.  For wood moisture content (M) of < 40%, the first empirical equation is 

 4[ (5.18 0.096 ) 0.57 )] 10 cal/(cm K sec)Wk G M ξ −
⊥ = + + ×  (0.1) 

For a wood moisture content of > 40%, the second empirical equation is 

 4[ (5.18 0.131 ) 0.57 )] 10 cal/(cm K sec)Wk G M ξ −
⊥ = + + ×  (0.2) 

where Wk ⊥ is the thermal conductivity perpendicular to the wood grain, and G is the 

specific gravity of the wood.  The increased coefficient for M in Equation (2.2) accounts 

for the increased thermal conductivity of “free water” as opposed to bound water in the 

cells.  To calculate thermal conductivity parallel to the wood grain, MacLean 

approximated that it increased roughly 2.5 times so that it becomes 

 2.5W Wk k ⊥=  (0.3) 

In one of the first studies of the thermal properties of tree bark, Martin [70] 

developed in 1963 empirical moisture and temperature relationships for the thermal 

properties of tree bark using a heated probe method for three pine and seven hardwood 

species.  The empirical equation for thermal conductivity of bark ( Bk ) (converted to SI 

units[46]) is 

0.0419 0.005026 0.013241 0.0078( 273.15) 0.397B Bdry Bwet Bk Tρ ρ = + + − −   (0.4) 

where Bdryρ is the density of the dry bark ( -3kg m ), Bwetρ  is the bark moisture density, and 

BT is the bark temperature (K).  In this study, the difference in thermal conductivity 

between parallel and perpendicular to the wood grain was not as significant.  About the 

same time, Siau developed a wood thermal conductivity model based on the cellular 
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geometry of the wood [85-86, 83] and compared its results  with previously published 

measurements [84].  This model is 
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solid solid
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− + − +
 (0.5) 

where the parameter a is equal to the square root of porosity ( )a ξ= .  Siau [87] also 

refined MacLean’s [84] empirical model for the perpendicular thermal conductivity such 

that 

                (0.2 0.0038 ) 0.024Wk G M⊥ = + + . (0.6) 

Siau’s development was a departure from empirical models to a model that considered 

the physiology of the wood.   

In recent times, the majority of thermal models in the literature use the physiology 

of wood as a basis.  Examples of this are the works by Suleiman et al. [88] and Gu [89-

92].  In 1999, Suleiman et al. [88] published a wood thermal conductivity model that used 

a weighting bridge-factor between two limiting cases.  The effective thermal conductivity 

( Beffk ) is modeled as 

 (1 )Beff B Bk bk b k ⊥= + −  (0.7) 

where b is the weighting bridge factor (0-1), Bk  is the parallel thermal conductivity, and 

Bk ⊥ is the perpendicular thermal conductivity.  The parallel thermal conductivity is 

defined as 

                ( )(1 )
solidB B gas radk k k kξ ξ= − + +  (0.8) 

and the perpendicular thermal conductivity is defined as 

 
1

(1 )

solid

B
B gas

k
k k

ξ ξ
−

⊥

 −
= +  
 

 (0.9) 
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where 
solidBk is the solid thermal conductivity (i.e., no voids), and gask is the air thermal 

conductivity. 

In several publications from 2001-2005, Gu [89-92] describes a microscopic 

cellular two-dimensional geometric model for wood that incorporated anisotropic thermal 

properties.  This model represents the most recent description of geometric cellular 

modeling of thermal conductivity where the two-dimensional model includes the cell 

walls, voids, and free water in the heat flow calculations.  In summary, a review of the 

literature related to the estimation of thermal conductivity of the wood shows that models 

historically have progressed from empirical equations to physiological models down to 

cellular simulations.  For the proposed work, the cellular model described by Gu [89] is 

too detailed for the proposed simulation resolution.  Thus the effective thermal 

conductivity model for wood described and subsequently matured by Siau [85-87] 

(Equation 2.7) is used in this study. 

The thermal conductivity of soil varies as a function of temperature, composition, 

porosity, and moisture content.  An example of this is shown in Figure 2.3 from a study 

by Hiraiwa and Kasubuchi [93].  The soil thermal property theoretical models reviewed 

in this section are similar to the thermal property models of wood and bark, where the 

effective thermal conductivity is defined by the individual parts of the medium, i.e., solid, 

air, and water fraction. 
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Figure 2.3 An example found in Hiraiwa and Kasubuchi [93] of the soil thermal 
conductivity variation as a function of temperature and water content 

As identified by Cosenza et al. [94], there are four commonly used mathematical 

expressions to describe the thermal behavior of a mixed porous medium.  The first is the 

simple mixing law, 

 
1

N

i i
i

k k v
=

=∑  (0.10) 

where ik is the thermal conductivity of the ith component, iv is the volumetric content, 

and N is the number of components in the medium.  Similarly, a “series” equation 

(described by de Vries [95] in 1963) can be used. 
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The third equation is the “geometric” equation, 
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where this type of equation is used in thermal conductivity of two-phase saturated media.  

The fourth equation, referred to as the “quadratic parallel” is 
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The soil thermal conductivity model described by Ochsner et al. [96] in 2001 uses 

a modified “series” equation described by de Vries [95] described as 

 0
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n
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=

=

=
∑

∑
 (0.14) 

where the thermal conductivity of the soil is calculated as the weighted average of the 

conductivities of the various soil components with the addition of weighting factors.  The 

weighting factors depended on the shape and orientation of the granules of the soil 

components and on the ratio of the conductivities of the components. 

Work published by Cosenza et al. [94] in 2003 proposes that there exists no 

simple and general relationship between thermal conductivity of a soil and the volumetric 

water content because of the internal geometry of the porosity and the thermal 

conductivity of the soil components.  They describe several models and polynomial 

fitting functions that were compared with published experimental data.  Of these 

comparisons, the polynomial fitting and quadratic parallel consistently performed the 

best. 

In 2005, Côté and Konrad [97-98] presented a generalized thermal conductivity 

model for moist soils that is based on the concept of a normalized thermal conductivity 

with respect to the dry and saturated states.  The model represents the effects of porosity, 

fluid saturation, mineral content, grain-size distribution, and particle shape.  The 

normalized soil thermal conductivity proposed by Johansen [99] in 1975 is  

 dry

sat dry

S S
r

S S

k k
k

k k
−

=
−

 (0.15) 
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where k , dryk , and satk represent actual, dry, and saturated thermal conductivity of the 

soil, respectively.  Côté and Konrad rewrite the normalization as 

  ( )sat dry dryS S S r Sk k k k k= − +  (0.16) 

and improved the estimation of saturated, dry, and relative thermal conductivity using 

thermal conductivity of the solid particles and generalized empirical relationships with 

soil types which are either frozen or unfrozen. 

Most recently in 2007, Lu et al. [100] describe a thermal conductivity model 

defined as 

    ( )sat dry dryS S S e Sk k k K k= − +  (0.17) 

where the soil thermal conductivity ( Sk ) is defined by the saturated and dry soil thermal 

conductivity and modified by the Kersten number.  The saturated soil thermal 

conductivity is defined as a combination of solid soil and water thermal conductivity 

modified by the porosity (ξ ), 

    1
sat solidS S waterk k kξ ξ−=  (0.18) 

the dry soil thermal conductivity is an empirical function defined as 

  0.56 0.51
drySk ξ= − +  (0.19) 

while the empirically derived Kersten number is redefined by Lu et al. as 

    ( ){ }1.33exp 1e MK S αα − = −   (0.20) 

where α is the soil texture parameter, and MS is the normalized soil water content 

( /M satS M M= ).  The soil texture parameter, as estimated by Lu et al. [100] by fitting 

measured thermal conductivity and moisture content for multiple types of soils, is 0.96 

for coarse-textured soils and 0.27 for fine-textured soils. 
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This model was compared with a wide range of soils and moisture contents and 

the results indicated that this model provided improved approximations of soil thermal 

conductivity compared to other models [100].  Thus equation (2.17) was selected for the 

soil thermal conductivity model in the SRSS. 
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CHAPTER III 

GOVERNING EQUATIONS AND NUMERICAL METHODS 

In this chapter, the governing equations for heat, fluid flow, and radiative heat 

transfer for the SRSS are presented.  Additionally, the material mixing functions for 

specific heat capacity and thermal conductivity are discussed.  Finally, some details on 

the numerical methods employed are provided. 

There are several assumptions that are made in the simulations that affect the 

governing equations.  They are: 
 

• The fluid in the system is considered to be of a constant viscosity, density, 

and slightly compressible throughout the simulation;   

• All fluid movement occurs through a porous medium, either in the soil or 

plant material; 

• The simulated velocities within the above assumptions constitute a 

creeping flow with Reynolds’ numbers below 1;   

• The soil and plant material are anisotropic and heterogeneous with regard 

to thermal and hydraulic conductivity;   

• Air is always considered to be at atmospheric pressure;   

• There is no internal heat generation;   

• No radiative heat transfer occurs in the pore space in the solids;   
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• Within a discretized element of porous media, the temperatures of the 

water and solid are the same; 

• All surfaces are diffuse and are treated as radiative grey diffuse; 

• Because of the relatively short distances between surfaces, the air between 

surfaces neither attenuates nor emits thermal radiation. 

3.1 Governing Equations 

In the SRSS, there are two groups of governing equations that correspond to heat 

and fluid flow in porous media and radiative energy of surfaces in the system.  The heat 

and fluid flow in porous media equations are centered on the mixed form of Richards’ 

equation, and the radiative energy equations are based in radiation transfer theory. 

3.1.1 Fluid and Heat Flow Governing Equations 

The governing equations of fluid and heat flow in the stem, roots, and soil are 

based on the conservation principles of mass, momentum, and energy.  Because the 

temperature and water content of the system are time-varying, the use of non-isothermal 

equations is necessary.  The conservation of mass and momentum equations are 

represented by Richards’ equation [101].  The mixed form Richards’ equation can be 

written as 

 ( )( ) [ ( ) ( )]S S r
SS S K z W

t t
∂ψ ∂ ψψ ξ κ ψ ψ
∂ ∂

+ = ∇⋅ ∇ + +  (0.21) 

where sS is the specific storage term that accounts for storage and elasticity of the water  

and medium in the soil and stem.  Water saturation, ( )S ψ , is the volumetric portion of the 

pore space filled with water at a pressure head ( )ψ .  The rest of the variables are 

porosityξ , sK the water hydraulic saturation conductivity tensor, ( )rκ ψ  the relative 
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permeability function of the media, and W  the source term.  The unknown term for this 

equation is pressure head.  The water saturation function is described as 

 ( )
( )
1

( )
1

r
r mn

S
S Sψ

αψ

−
= +

 + 

 (0.22) 

where rS is the residual saturation in the media, and ,nα , and m are parameters 

specifically related to the porous media determined experimentally.  The water saturation 

function is only valid if 0ψ ≤ .  From results by van Genuchten [102], the value of m  is 

assumed to be 1 1/m n= − .  The relative permeability function, ( )rκ ψ , is defined as 

 
( ) ( )

( )

2
1

/2

1 1
( )

1

mn n

r mn

αψ αψ
κ ψ

αψ

−−  − +   =
 + 

 (0.23) 

For a representative control volume, the governing equation for energy is as 

follows [103]. 

 ( ) ( ) ( ),i jm m w w m mCp T Cp vT k T q
t
ρ ρ∂

= − ∇⋅ +∇ ⋅ ∇ +
∂

 (0.24) 

where mρ is the density of the mixture, mCp is the specific heat capacity of the mixture, v 

is the velocity of the pore space water, 
,i jmk is a symmetric tensor of the thermal 

conductivity of the mixture, and mq is the source of energy. 

3.1.2 Radiative Heat Transfer 

Any surface whose temperature is above absolute zero Kelvin emits 

electromagnetic radiation in the form of thermal energy.  For a black body, the peak of 

this spectral thermal energy is described by Planck’s law [104].  The total hemispherical 

grey body radiative energy emitted by a surface is calculated as 

 4E Tεσ=  (0.25) 
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The net heat flux of a surface i may be expressed as 

 
1

n

i i i j ji j ext
j

q E A F q qρ
=

= − + +∑  (0.26) 

where jq is the total radiative energy of visible external surfaces emitting into the surface 

i.  Since all the surfaces are assumed to be diffuse emitting and absorbing radiation, the 

view factor, ,i jF , can be defined as the ratio of radiation leaving surface j and received by 

surface i and is expressed as [105] 

 , 2

cos cos1

j i

j i
j i i j

j A A

F dAdA
A R

θ θ
π

= ∫ ∫  (0.27) 

As defined by the reciprocity theorem for radiative transfer [105], the view factors 

between the two surfaces are related as , ,j j i i i jA F A F= . 

3.2 Material Mixing Functions 

Because a heterogeneous porous media is simulated, the effect of that 

heterogeneity on the thermal properties must be considered.  At any point during the 

simulation, an element can be composed of a mixture of solid, water, and air.  

Specifically, mixing functions for the material properties of thermal conductivity and 

specific heat capacity are provided.  For the thermal conductivity, the simple quasi-

empirical mixing model of Lu et al. described in the previous chapter is used as 

 ( )sat dry dryS S S e Sk k k K k= − +  (0.28) 

where sk is the soil thermal conductivity, 
satSk and 

drySk are the saturated and dry thermal 

conductivities of the soil, and eK is the Kersten number.  For the SRSS, the Kersten 

number as derived by Johansen [99] is 
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 ( )0.7 log ( ) ( ) 0.05eK S Sψ ψ= >  (0.29) 

for coarse grained soils and 

 ( )log ( ) ( ) 0.10eK S Sψ ψ= >  (0.30) 

for fine grained soils.  The saturated and dry soil thermal conductivities may be 

determined from either laboratory measurements or approximated.  Examples of these 

approximations have been shown previously in Chapter 2. 

The specific heat capacity is calculated as a mass-weighted average and defined 

as 

 ( ) ( )
( ) ( )

( ) 1 ( ) 1
( ) 1 ( ) 1
w w a a a s s

m
w a s

S Cp S Cp Cp
Cp

S S
ψ ϕρ ψ ϕ ρ ϕ ρ

ψ ϕρ ψ ϕρ ϕ ρ
+ − + −

=
+ − + −

 (0.31) 

where mCp is the specific heat capacity of the mixture (subscripts w,a,s indicate water, 

air, solid, respectively), ϕ  is the porosity, and ρ is the density.  Studies by Howington et 

al. [106] indicate reasonable results compared to specific heat capacity measurements 

from field measurements of soils.  

3.3 Numerical Methods 

In this section, the numerical methods to solve the governing equations for fluid 

and heat flow and for radiative transfer are described.  The fluid and heat flow equations 

are solved iteratively by Newton’s method and the bi-conjugate gradient method [107].  

The radiative heat transfer equations are solved by a Monte Carlo method [108-109].  

3.3.1 Fluid Flow and Conductive Heat Transfer Numerical Method 

Richards’ equation and the heat flow equation are solved using a Newton-Krylov 

method.  Both sets of equations form a system of nonlinear equations that are solved with 

a standard Newton’s method.  Given the nonlinear equation 
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  ( ) 0F X =  (0.32) 

an approximation to X is made ( 0X ) and an improved approximation (Newton iteration) 

is calculated as 

   ( ) ( )1
1 0 0 0X X F X F X−′= − . (0.33) 

This approximation continues iteratively until the difference between each successive 

approximation reaches some predefined small tolerance.  During each of these iterations 

rather than direct calculation of the inverse Jacobian matrix in Equation (3.13) at each 

nonlinear iteration, an approximation of this matrix is calculated as a linear equation 

where 

       ( )( ) ( )1i i i iF X X X F X+′ − = −  (0.34) 

and is solved with the Krylov method BiCGSTAB [107] with a point Jacobi 

preconditioner.  Additional details and implementation of these numerical methods have 

previously been described [110-111]. 

3.3.2 Thermal Radiation Heat Transfer Numerical Method 

In the simulation of a forest environment, the surface geometry of the soil, trunk, 

and foliage will be complex.  To calculate the radiative transfer between these surfaces, 

view factors must be calculated from each surface to all the other surfaces [105].  For 

simulations where the surfaces can number in the millions, direct calculation of the view 

factors (Equation 3.8) may not be practical.  Additionally, for complex surface 

geometries, there is no exact analytical solution to the radiative transfer equation [108].  

Fortunately, the Monte Carlo technique can be applied to simulate the radiative heat 

transfer equation and provide an approximation to the exact solution. 
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The basis for using the Monte Carlo method [112] is illustrated with the 

calculation of an integral 

        ( )
D

I g x dx= ∫  (0.35) 

where D is a region in n-dimensional space, and ( )g x  is any continuous arbitrary 

function.  The solution for the integral may be approximated if a set of independent 

randomly distributed samples ( )1, , mx x  are selected from D and applied as 

 ( ) ( ){ }1
1

m mI g x g x D
m

= + +   (0.36) 

and mI  becomes an approximation to the exact solution I.  Applying the law of large 

numbers [113], as the number of m samples is greatly increased, the approximation will 

approach the exact answer as 

 lim mm
I I

→∞
→ . (0.37) 

Following this approximation method, the Monte Carlo technique is applied to Equation 

3.7.  The total grey body flux from each surface is calculated, discretized into a large 

number of energy packets, and the packets are randomly emitted from the surface into the 

domain.  The discretized energy packets are either absorbed or reflected until they are 

absorbed or exit the computational domain.  Details of the Monte Carlo method applied 

to radiative transfer are described elsewhere [108, 114, 109], and implementation details 

for the SRSS are provided in Chapter 4. 
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CHAPTER IV 

VERIFICATION OF THE SRSS COMPONENTS 

The interaction between the processes (radiation, fluid flow, thermal conduction, 

and thermal convection) in the SRSS system is complex.  Due to the unsteady nature of 

the problem, it is problematic to determine if the processes are performing as expected.  

Verification of the individual simulation components of the SRSS is a simpler task and 

can provide confidence that the complete simulation is working correctly.    

“Verification” in this research is used as defined by the U.S. Department of Defense, 

Instruction Number 5000.61 for DoD Modeling and Simulation Verification, Validation, 

and Accreditation, which states that verification is “the process of determining that a 

model or simulation implementation and its associated data accurately represents the 

developer’s conceptual description and specifications.”  The verification as provided in 

this research is accomplished by comparison of results with analytical solutions and for a 

few cases, empirical approximations to a solution. 

In this chapter, the following SRSS components examined: 

• Longwave thermal infrared  radiative heat transfer; 

• Longwave downwelling sky radiative heat transfer; 

• Shortwave thermal infrared direct illumination; 

• Heat conduction through porous unsaturated media; 

• Convective heat transfer in porous media. 
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4.1 Longwave Thermal Infrared Heat Transfer Verification 

Consider a closed regular equilateral tetrahedron with edge lengths of 2 2 m and 

whose vertices lie on a unit circumsphere centered at the origin.  Assume that all four 

surfaces of the tetrahedron are thermally spectrally gray, diffuse, and emit, reflect, and 

absorb so that 1ε α ρ= = − .  Let the temperature of the first wall be 1 1000T = K 

with 1 0.9ε = , the remaining walls at 2 3 4 600T T T= = = K with 2 3 4 0.4ε ε ε= = = .  Due to 

the symmetry of this tetrahedron, all surface areas are equal (0.866 m2), and the view 

factor ( ,i jF ) between any two different surfaces is 1/3. 

For comparison of results, the net radiative flux is computed for each surface of 

the enclosure using an analytical method and the Monte Carlo simulation.  For an 

analytical solution, the radiosity equation described by Modest [104] is applied.  For an 

enclosed surface with no external radiation sources and known surface temperatures, the 

radiosity equation for the radiation interchange between surfaces may be represented as 

 , ,
1 1

1 1
N N

i
i j j bi i j bj

j ji j

q F q E F E
ε ε= =

 
− + − = − +  

 
∑ ∑  (0.0) 

where biE  and bjE  are the black body radiative flux emitted from surfaces i and j, 

respectively.  Applying Equation (4.1) for i =1 to N surfaces yields the solution for the 

net radiative exchange for each surface  

 

1

2

3

4

-26,530.02
8,843.34
8,843.34
8,843.34

q
q
q
q

   
   
   =
   
   

  

. (0.39) 

Now consider the results if the enclosure is treated as if all surfaces are perfect 

blackbodies ( 1 2 3 4 1.0ε ε ε ε= = = = ) and repeating the processes (Equation (4.1)), the 

result is 
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1

2

3

4

-42,742.81
14,247.60
14,247.60
14,247.60

q
q
q
q

   
   
   =
   
   

  

. (0.40) 

Next the net radiative exchange is computed for each surface using the Monte-

Carlo method [108, 115] as developed and implemented in the SRSS.   The Monte Carlo 

technique for simulating radiative heat transfer in the enclosure consists of tracking 

discrete energy packets emitted from each of the surfaces and reflected until they are 

absorbed.  The total radiative flux from all surfaces is derived by summing the fluxes 

from each ith surface.  The energy associated with each discrete energy packet is 

calculated by dividing the total radiative flux by number of energy packets ( eN ) to be 

simulated. 

        bii

e

E
e

N
= ∑  (0.41) 

The number of packets ( in ) emitted from each surface is calculated by dividing the total 

energy of each surface i by the amount of energy in the energy packet, 

 bi
i

En
e

=  (0.42) 

which will maintain consistent energy conservation.  For example, a large surface with 

significant radiative flux will have more energy packets emitted from it compared to a 

small surface with lesser radiative flux.   

In the implementation of the method in the SRSS, eN is represented as an integer, 

and because of round-off errors, it is frequently the case that   

   e bii
N e E≠∑  (0.43) 
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For large values of eN  (>10M) simulated with domains of a few surfaces, this is a 

small (1.0e-06%) error.  But in order to maintain total radiative energy balance, e  is 

recalculated as 

        bii

ii

E
e

n
= ∑
∑

 (0.44) 

and then eN recalculated again as 

   e ii
N n=∑  (0.45) 

During the SRSS simulation, an energy packet is emitted from a surface i at a 

random zenith (0-90 deg) and azimuth angle (0-180 deg) from the surface normal in  

different times.  That packet is traced through the enclosure until it intersects another 

surface.  At that time another random number is compared to the absorption of that 

surface.  If the random number is greater, the energy packet is re-emitted from the center 

of the surface back into the enclosure.  If the random number is less than the absorption 

of the surface, the packet is absorbed, and the number of packets absorbed by the surface, 

*
in , is incremented.  Once the simulation of packet emission and bouncing is complete, 

the net radiative exchange of the surface ( iq ) is given by 

           ( )*
i i iq e n n= −  (0.46) 

Results from the Monte-Carlo technique applied to the closed regular equilateral 

tetrahedron are summarized in Table 4.1.  For a large number of packets (~20M) and 

with the total emitted gray body radiance, e is small (2.592e-03).  Compared to the results 

from the radiosity method (Equation (4.2)), the Monte-Carlo results differ uniformly by 

less than 0.001 percent. 
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Applying this method for the black-body case (Equation (4.3)), again assigning  

1 2 3 4 1.0ε ε ε ε= = = = and keeping the surface temperatures the same, the Monte-Carlo 

results differ from the radiosity method by less than 0.001 percent (Table 4.2). 

As stated previously, the number of total energy packets in the simulation affects 

the variability of the result.  But as the number of packets increase then variance becomes 

smaller, and the result approaches the correct answer.  In Figure 4.1 this effect is 

illustrated as the net radiative exchange was calculated for surface 1 of the tetrahedron 

and eN increased.  As eN is increased, the variability in net radiative exchange decreases 

and converges to the exact solution. 

Table 4.1 Monte-Carlo results for simple enclosed tetrahedron (e=2.592e-03) with 
1 0.9ε = , 2 3 4 0.4ε ε ε= = =  and 19,999,998eN =  

Surface 

Number Temperature (K) Rays Emitted Rays Received 

Net Radiative 

Exchange 

1 1000 17,053,204 85.27% 6,815,062 34.07% -26,530.12 
2 600 982,264 04.91% 4,395,802 21.98% 8,843.79 
3 600 982,264 04.91% 4,399,293 22.00% 8,844.61 
4 600 982,264 04.91% 4,389,839 21.95% 8,841.72 

 

Table 4.2 Monte-Carlo results for simple enclosed tetrahedron (e=3.410e-03) with  
1 2 3 4 1.0ε ε ε ε= = = = and 19,999,997eN =  

Surface 
Number Temperature (K) Rays Emitted Rays Received 

Net Radiative 
Exchange 

1 1000 14,400,920 72.00% 1,866,893 09.34% -42,741.00 
2 600 1,866,359 09.33% 6,045,676 30.23% 14,251.46 
3 600 1,866,359 09.33% 6,046,272 30.21% 14,253.49 
4 600 1,866,359 09.33% 6,041,156 30.22% 14,236.04 
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Figure 4.1 Illustration of the variability in the net radiative exchange for surface 1 of 
the unit tetrahedron as eN increases 

4.2 Downwelling Longwave Sky Radiance Verification 

Consider a meshed planar surface with edge lengths of 1 m (Figure 4.2) oriented 

with the surface normal aligned to the vertical axis.  Assume that all surfaces of this plane 

are spectrally gray, emit, reflect, and absorb so that 1ε α ρ= = − .  Let the integrated 

hemispherical downwelling longwave radiance of the sky to the surface be 500 W/m2 , 

and the surface temperature of the surfaces be uniform at 330nT = K and with 0.9nε = .   

For this trivial example, the net radiative flux of the surface can be calculated as 

the difference between the outgoing and inbound longwave radiance.  The grey body 

(outgoing) emissive flux ( L ↑ ) of the surface is defined as  

 ( ) ( )4 4 20.9 330 605.218 W/mnTεσ σ= = , (0.47) 

and the inbound flux ( L ↓ ) is the integrated flux from the sky (500 W/m2).  Thus the net 

radiative flux of the surface, ( )*L L L= ↓ − ↑ , is (.9)(500) - 605.218  = -155.218 W/m2. 
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Figure 4.2 Example meshed unit surface 

For an additional verification, the same meshed surface was used and alternatively 

decreased or increased to develop a corrugated mesh surface (Figure 4.3) containing 2048 

triangular elements.  The corrugation angle for the mesh is 136.4 degrees and calculating 

the view factors [104] in two dimensions for two infinite surfaces, the view factor for one 

side surface to the sky is 93%.   Assuming the properties of the previous flat meshed 

surface and applying view factors for the wedge-like grooves, the net radiative flux of a 

simple non-meshed surface is -114.1 W/m2.  This result is approximately 93% of the net 

radiative flux of the flat surface which corresponds to the view factor of the surfaces to 

the sky. 

 

 

Figure 4.3 Corrugated mesh used in verification of the longwave sky radiation 
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4.2.1 Backward Monte Carlo Simulation for the Sky Longwave Radiance 

The simulation of the downwelling longwave sky radiance is calculated in the 

SRSS using a backward (or reverse) Monte Carlo method [104, 109] .  The backward 

Monte Carlo method is the preferred method used in a situation where the receiving 

surface facets are relatively small in comparison to the emitting facets.  In the forward 

method, the number of emitted energy bundles required for some statistically significant 

results would be several orders of magnitude greater, computationally inefficient, than 

compared to the amount required for this backward method [109]. 

In the backward implementation, a triangulated hemisphere representing the 

distribution of downwelling longwave radiation from the sky is used for the sky 

simulation (Figure 4.4).  This hemisphere is normalized, centered on each facet of the 

ground surface, and each of the hemisphere facets is labeled with the appropriate 

radiative flux from the sky.  During simulation, photons are emitted from the center of 

the mesh element through the center of each sky facet.  If the photon (energy bundle) 

exits the domain without intersecting another ground mesh element, then the mesh 

element accumulates the energy assigned to the sky facet.  Otherwise if the photon 

intersects another mesh element, then no energy is added from the sky.  Energy added to 

the mesh element is divided into two parts, absorbed and reflected energy.  After each of 

the mesh elements have calculated total sky radiance, and then the reflected energy is 

radiated throughout the domain using the standard (forward) Monte Carlo method. 
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Figure 4.4 Example triangulated hemisphere used for the distribution of the longwave 
sky radiation 

4.2.2 Backward Monte Carlo Results 

To verify the results for the backward Monte Carlo technique in the SRSS, the 

simulation was conducted on the 1 m2 flat surface (Figure 4.2).  The surface is equally 

divided into 2,048 triangular mesh elements so that each mesh element area is 

44.8828 10−× m2.  The triangulated sky hemisphere composed of 70 triangular mesh 

elements (Figure 4.4) was assigned so that the integrated radiance of the hemisphere 

equaled 500 W/m2.  Using the backward Monte Carlo method with a total of 2 million 

energy packets, each of the mesh elements emitted energy bundles backward up into the 

hemisphere and gathered the energy received if they were not intercepted.  The resulting 

radiation of the sky onto the surface was 450 W/m2.  The radiation exiting the surface 

was calculated using the forward Monte Carlo method for a net radiation flux ( L ↑ ) of 

605.218 W/m2.   Thus the total net longwave flux for the flat surface was -155.219 W/m2.   

The same method was conducted on the corrugated mesh surface, where the 

projected length of the sides is 1 m and the surface divided into 2,048 triangular faces 
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(Figure 4.3).   Using the backward Monte Carlo method, the average downwelling 

longwave radiation intercepted was 384.0 W/m2, and the average net emittance was 605.3 

W/m2.  Thus the average total net longwave flux for the corrugated surface was -165.0 

W/m2.  Images for both the flat and corrugated simulation results are provided in Figure 

4.5 and Figure 4.6. 

Next, the triangulated sky hemisphere was successively refined to examine the 

effect of mesh refinement on the total net longwave flux.  Using a simple refinement 

method, the triangulated sky hemisphere was refined from 70 elements to 280, 1120, and 

4480 mesh elements.  Each of these meshes was used with the backward Monte Carlo 

technique using the same parameters described previously.  The results of the mesh 

refinement on the net longwave radiation for the corrugated surface are provided in Table 

4.3 and in Figure 4.7.  As the sky hemisphere is successively refined, the net longwave 

surface flux asymptotically approaches -172.3 W/m2.  These results suggest that the 

coarser resolution hemisphere can underestimate the magnitude of the total surface flux.  

Similarly, the corrugated surface was successively refined to examine the effect of 

surface mesh refinement on the total net longwave flux.  Using a simple refinement 

method, the surface was progressively refined from 320 elements to 81,920 mesh 

elements.  A triangulated sky hemisphere containing 1120 mesh elements was used with 

the backward Monte Carlo radiative transfer technique and the results are provided in 

Table 4.4  
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Figure 4.5 Sky radiance simulation results on both the flat and corrugated surfaces 

 

 

Figure 4.6 Simulation results for net longwave radiation for the flat and corrugated 
surfaces.  Net longwave flux for the flat and corrugated surfaces are -155.2 
W/m2 and -165.0 W/m2, respectively 

Table 4.3 Triangulated sky hemisphere mesh refinement results 

Hemisphere Mesh 
Elements 

Sky Inbound Flux 
(W/m2) 

Surface Emissive Flux 
(W/m2) 

Total Surface Net Longwave Flux 
(W/m2) 

70 384.0 -605.3 -165.0 
280 380.2 -605.3 -168.8 

1120 377.3 -605.3 -171.7 
4480 376.6 -605.3 -172.3 
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Table 4.4 Corrugated surface mesh refinement results for the 1120 element sky 
hemisphere mesh 

Surface Mesh 
Elements 

Sky Inbound Flux 
(W/m2) 

Surface Net Flux 
(W/m2) 

Total Surface Net Longwave Flux 
(W/m2) 

320 377.18 -546.79 -169.61 
5120 375.11 -544.98 -169.87 

20480 375.57 -544.84 -169.27 
81920 375.59 -544.65 -169.06 

 
 

 

Figure 4.7 Effect of mesh refinement of the sky hemisphere on the net longwave 
radiation for the corrugated surface 

4.3 Shortwave Thermal Infrared Radiance Verification 

Consider a meshed unit spherical surface with a radius of 0.5 m (Figure 4.8) 

arranged so that the normal of the faces are oriented outward.  Assume that all mesh 

elements of this sphere are spectrally gray in the shortwave (0.3 - 3.0μm ) spectral region 

with an average shortwave reflectance of 30%.  Let the direct shortwave solar radiation to 
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the surface be 1000swE = W/m2 and the diffuse (scattered) shortwave radiation be 50.0 

W/m2.  The direct shortwave solar illumination geometry is set to a solar azimuth of 

120.0 degrees measured clockwise from north and zenith of 61.0 degrees measured from 

vertical. 

 

 

Figure 4.8 Example meshed unit sphere 

To verify the simulation of the shortwave radiation in the SRSS, the distribution 

of energy is calculated over the surface.  The distribution of radiant incident energy on 

the spherical surface will vary according to Lambert’s cosine law [47, 116]:  the amount 

of incident energy on the surface is directly proportional to the cosine of the angle 

between the surface normal and the illumination vector.  A continuous perfect sphere 

illuminated with the given parameters will contain a uniform distribution of incidence 

angles from 0 to 90 degrees.  For the example of a meshed sphere, a similar discrete set 

of angles will also exist.  Thus, the expected range of incident direct shortwave radiation 

will be spherically distributed from 0 to ( )1 swEρ− .  In this example the maximum range 

will be ( )1 700swEρ− = W/m2. 
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4.3.1 Direct Shortwave Radiation Simulation Method 

To simulate the direct shortwave radiation on to the surface of the sphere, the 

backward Monte-Carlo method is applied.  As described previously in section Figure 4.3, 

the method emits a ray from the center of a mesh element in the direction of the 

illumination source.  If the ray intersects any neighboring mesh element, then that face is 

obscured from direct radiation by the neighbor mesh element and receives only the 

diffuse shortwave radiation.  Otherwise if the mesh element does not intersect any other 

face, the radiation received on the mesh element is calculated as 

 ( )1 cossw swq Eρ θ= −  (0.48) 

The angle θ  is calculated as the angle between the mesh element normal and the 

illumination source vector. 

4.3.2 Verification of the Direct Shortwave Radiation Simulation 

To verify the results for the backward Monte-Carlo technique for the direct 

shortwave radiation, the simulation was conducted on the meshed sphere (Figure 4.8) 

composed of triangular faces each having a gray diffuse reflectance of 30%.  The radius 

of the meshed sphere is 0.5 m.  The surface of the sphere is divided into 1,314 mesh 

elements with an area average of 2.4e-03 m2.  Applying the described simulation method 

for direct shortwave resulted in a uniform distribution of incident radiation from 0 to 700 

W/m2 (Figure 4.9).  These results correspond to the expected values in the analytical 

solution. 
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Figure 4.9 Results of simulation of the direct shortwave radiation on to the meshed 
unit sphere 

4.4 Conductive Heat Transfer through Porous Media 

Consider a plane wall consisting of porous media of thickness L, thermal 

diffusivityα , and a uniform initial temperature iT .  Next consider that the wall is 

exposed suddenly on both surfaces to a fluid at temperature T∞ .  Assume that the 

dimensions of the wall in the y and z directions are large enough to consider this problem 

as a one-dimensional in the x-axis.  Further assume that the properties of the wall are 

thermally invariant.  The temperature history of the wall during the transient time period 

can then be found analytically and numerically, and the results compared. 

The analytical solution is provided by Myers [117], and involves separation and 

normalization of variables.  The governing partial differential equation for the wall is 

 
2

2

1 T T
t xα

∂ ∂
=

∂ ∂
. (0.49) 

This equation is normalized by defining 
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−
 (0.50) 

and using separation of variables, the analytical solution is obtained as a series solution as 

 ( ) 2 * 2 *
*

* * * 94 sin 3, sin
3

t txu x t x e eπ πππ
π

− − 
= + + 

 
 . (0.51) 

The computational solution is addressed by constructing a wall made of 40,633 

tetrahedral elements with a total thickness of 2.0 m.  The wall has a porosity of 42.6 %, 

saturation of 53.0 %, dry thermal conductivity of 0.271 -1 -1W m  K , quartz content of 

58%, density of 1397.2 3kg m− , and specific heat capacity of 1040.7 1 1J kg  K− − .  The 

calculated bulk thermal conductivity at 53% saturation is 1.509 -1 -1W m  K  and calculated 

thermal diffusivity is 1.038e-06 2 1m  s−  using the soil thermal conductivy model described 

by Lu et al. [100].  The numerical results are provided in Figure 4.10 for the same non-

dimensional time periods as the analytical solutions.  The L2-norm of the error between 

the numerical solution and the analytical solution at non-dimensional times of 0.05, 0.10, 

and 0.25 are 0.013, 0.013, and 0.006, respectively. 
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Figure 4.10 Plane-wall transient analytical and computational solution for non-
dimensional times of 0.0138, 0.05, 0.10, and 0.25 

4.5 Convective Heat Transfer in Porous Media 

Consider a fluid of uniform temperature and laminar uniform slug flow velocity 

entering a cylinder filled with porous media.  Assume that the surface of the cylinder is 

heated at a constant temperature that is greater than the entering fluid temperature 

( wT T∞> ) so that as the fluid passes through the cylinder, thermal convection occurs and a 
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thermal boundary layer develops (Figure 4.11).  The boundary extent of the thermal 

boundary layer region is generally determined by the equation [118] 

 0.99w f

w

T T
T T∞

−
=

−
 (0.52) 

where wT  is the cylinder wall temperature, fT is the fluid temperature, and T∞ is the far 

field fluid temperature.  The length starting at the entrance of the cylinder to where the 

thermal boundary layer reaches the longitudinal axis of the cylinder is called the thermal 

entrance length.  The thermal entrance length is a function of fluid velocity, diameter of 

the cylinder, porosity of the medium, Reynolds number, and Prandtl number and is 

approximated by [119] 

 0.05Re PrTEL
D

x
D

≈  (0.53) 

where TELx is the thermal entrance length, and D  is the cylinder diameter. 

 

 

Figure 4.11 Diagram of the convective heat transfer example 

This approximation is only valid when convection overwhelms conduction in the 

downstream wake (u∞x / α ≫ 1), which is also Pex ≫ 1.  If this condition is not satisfied, 
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then the temperature field is dominated by the thermal conduction of the medium and not 

the convection of the fluid flow.  Additionally for this example, the fluid velocity in the 

medium is a function of the pressure gradient of the fluid, hydraulic conductivity, and 

porosity of the media.  Applying the material properties shown in Table 4.5, an 

approximation can be made for a thermal entry length for a given velocity (Table 4.6). 

Table 4.5 Material properties for thermal convection simulation 

Property Fluid Solid 
Density (kg m-3) 998.30 1550.00 

Thermal Conductivity (W m-1 K-1) 0.605 0.271 
Dynamic Viscosity (kg m-1 s-1) 9.77E-04 - 
Kinematic Viscosity (m2 s-1) 9.79E-07 - 

Specific Heat (J kg-1 K-1) 4183.00 800.00 
Hydraulic Conductivity (m s-1) 1.16E-04 - 

Thermal Diffusivity (m2 s-1) 1.49E-07 2.19E-07 
 

Table 4.6 Approximated thermal entry length for porous media in a heated cylinder 
with slug flow using Equation(4.16). 

Velocity (m/s) Thermal Entry Length (m) 
0.0001 0.029 
0.0002 0.058 
0.0003 0.087 
0.0004 0.116 
0.0005 0.145 
0.0006 0.174 
0.0007 0.203 
0.0008 0.232 

 

The verify the convective heat transfer in the SRSS, a cylinder of 0.1-m diameter 

and 1-m length was constructed and meshed as an unstructured mesh with 477,289 

tetrahedral elements.  In this mesh, the elements had an average length of 0.005 m.  The 

medium in the cylinder was assigned properties described in Table 4.5 and set to a 
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porosity of 45%.  The far-field fluid temperature was set to 20 deg C, and the wall 

temperature of the cylinder was set to 30 deg C.  The thermal boundary layer threshold 

was calculated from Equation (4.15) to be 20.1 deg C. 

Simulations were conducted for a set range of fluid velocities ranging from 

0.0001 m/s to 0.0008 m/s.  The Reynolds numbers for these velocities indicated that the 

flow was laminar.  Examples of these simulations are shown in Figure 4.12 as two-

dimensional cross sections of the cylinder. 

 

 

Figure 4.12 Thermal entry lengths for fluid velocities of 0.0001 (top) and 0.0008 m/s 
(bottom).  Legend units are in degrees C 

A summary of these simulations with the incremental fluid velocity changes is 

shown in Figure 4.13.  The average error observed in the simulation is about 0.01 m, 

which could be attributed to several factors; the discretization of the domain, sensitivity 

of Equation (4.16) to diameter size, and averaging of temperature across elements at the 

narrowest part of the thermal entrance region.  A higher resolution (3,091,204 tetrahedral 

elements), second computational domain was constructed by refining the elements of the 

previous domain to determine if the error was mesh related.  Analysis of the results from 

the higher resolution mesh showed that the results were the same as the original 

resolution mesh. 
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Figure 4.13 Simulated and Estimated Thermal Entry Lengths for Convective Heat 
Transfer in Porous Media 
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CHAPTER V 

APPLICATIONS OF THE SRSS TO HISTORICAL SIMULATIONS 

In the previous chapter, each of the components of the SRSS was verified against 

analytical solutions.  In this chapter, the SRSS is applied and compared with historical 

simulations.  In most of these historical simulations, the properties of the materials and 

fluxes involved are not characterized in detail, and subsequently the properties are 

approximated.  As a consequence, the comparison of SRSS results will be qualitative 

rather than quantitative 

Next the published studies and simulations conducted by Herrington [39, 54] and 

Derby and Gates [40] will be quantatively compared with the SRSS.  In each of these two 

applications, the computational domain and material properties are described, and the 

assumptions and limitations explained. 

5.1 Herrington (1964) 

 In 1964, Herrington conducted a study to investigate the role of tree stems in the 

thermal energy budget of a closed forest stand. Herrington’s research addressed the 

coupling of tree surface temperatures to air temperature in dense canopy.  In this study, a 

48-year-old red pine (Pinus resinosa) in a mature pine plantation was selected for 

measurement and simulation.  This selected tree in the dense canopy had a full crown, 

diameter at breast height of 30 cm, and average bark thickness of 1 cm. 

There are a few assumptions that are considered in the Herrington study.  First, 

because of the dense canopy, the direct shortwave radiation was blocked, and only the 
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diffuse or indirect shortwave radiation was considered to reach the trunk.  Second, 

because of the diffuse shortwave radiation regime and the similar size neighboring trees, 

the tree would roughly be in thermal equilibrium with its environment, and subsequently 

the net longwave radiation balance would be zero.   Finally, the last assumption is that 

because of the diffuse nature of the radiation, the internal temperatures would be similar 

in the radial direction, and the trunk could be approximated with a one-dimensional 

simulation.  With these simplifying assumptions, Herrington developed a solution for the 

internal temperatures using the Fourier series relating the sinusoidal heating pattern of the 

surface to internal temperatures lagged by the thermal properties and diameter of the 

wood. 

5.1.1 Computational and Material Properties Description for the Herrington 
Simulation 

A computational domain was constructed (20-cm thick and 30-cm in diameter) to 

match the measurements and physical properties of the materials as described in 

Herrington’s study.  The average element size for this unstructured tetrahedral mesh was 

0.5-cm.  The mesh consisted of 140,064 elements and 26,721 nodes.  The domain was 

divided into three distinct materials; bark, sapwood, and heartwood.  The inner 

heartwood, sapwood, and bark radii measured from the center were 4.0, 14.0, and 15.0 

cm respectively.    

The properties for these materials used in the simulation are shown in Table 5.1.  

The shortwave reflectance and the longwave emissivity of the bark were not described in 

the Herrington study, so these properties were calculated from other sources of bark 

measurements [120].   None of the elements in the domain were designated as 

hydraulically active for this example.  The Herrington study observed and simulated the 
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internal temperatures at 81.0 cm above the ground to avoid ground conduction effects and 

assumed that the fluid flow through the system was not sufficient to affect the internal 

temperatures.  For this computational setup, the only boundary condition was the time-

varying radiative flux at the bark surface. 

Table 5.1 Material properties for the Herrington simulation 

Material Specific Heat 
(J / kg K) 

Thermal 
Conductivity 

(W/m K) 

Specific Gravity 
(%) 

Shortwave 
Reflectance 

(%) 

Longwave 
Emissivity 

(%) 
Bark 1364 0.23 0.30 0.55 0.95 

Sapwood 1420 0.35 0.46 N/A N/A 
Heartwood 1200 0.38 0.37 N/A N/A 

5.1.2 Results for the Herrington Simulation 

The SRSS was applied to the conditions and geometry described for the 

Herrington simulation with no fluid flow conditions.   The diffuse shortwave radiative 

energy varied diurnally and was applied uniformly on each surface element which was 

varied according to the reflectance of the material.  Diurnal air temperature was obtained 

from the Herrington study, and the diffuse shortwave radiation and relative humidity 

were estimated as average clear sky conditions typically found in the northeastern United 

States [121].  Wind velocities were held constant at 1.0 m/s and barometric pressure at 

1000 mb.  The three-dimensional results from the SRSS are provided in Figure 5.1, and 

the one-dimensional comparison is shown in Figure 5.2.  

5.1.3 Herrington Simulation Discussion 

This simulation test shows that the SRSS can reproduce the qualitative 

temperature changes and characteristics that Herrington observed and simulated.  The 

simulated and observed temperature changes within the tree match in timing and 
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magnitude throughout the diurnal cycle.  This is not surprising given the number of 

assumptions and careful selection of the study site.  By limiting the solar radiative effect 

to strictly the shortwave diffuse radiation, the simulation is simpler because of a lack of 

calculations of the spatially varying direct solar radiation.  Similar studies have shown 

that these types of simulations are most sensitive to solar flux [68]. 

 

 

Figure 5.1 Red pine simulation results (1000 hrs and 1300 hrs) with material 
properties described by Herrington [54] 
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Figure 5.2 Herrington’s stem temperature plots [54]  and SRSS simulated stem 
temperatures 

5.2 Derby and Gates (1965) 

In 1965, Derby and Gates [40] provided two different sets of observed internal 

temperatures from different trees.  One set of temperatures was observed from a 2.44-m 

pine log (Pinus contorta) 0.18 m in diameter placed vertically in a large open field in 

Boulder, CO, USA.  The other set of temperatures was observed from a living aspen tree 

(Populus sp.) 0.15 m in diameter growing on an edge of a forest near Blackhawk, CO, 

USA (2 April 1964, latitude. 39.8 deg N, longitude. 105.5 deg W). 

In their simulations, the tree trunk was represented as a two-dimensional cylinder 

perpendicular to the surface of the earth.  The cylinder was divided into 12 radial sectors 

and five concentric rings giving the finite element domain a total of 60 trapezoidal 

elements (Figure 5.3).  Each element center point represents an average value for 
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temperature, density, specific heat, and thermal conductivity.  At each hourly time step in 

their simulation, a first-order forward difference in time and a central difference scheme 

in space were used to compute a solution.  To control stability of the calculations, the 

time steps were kept equal to or smaller than 0.005 hr per step.  Potter and Andresen [68] 

revisited the Derby and Gate simulation and used a second-order finite difference scheme 

with temporal derivatives using a centered leapfrog scheme.  These simulation results 

were similar to the original simulation results. 

 

 

Figure 5.3 From Derby and Gates [40], finite element mapping for the aspen tree trunk 
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5.2.1 Computational and Material Properties Description for the Derby and 
Gates Simulation 

A computational domain was constructed to match the size and dimensions of the 

described pine log.  The log was 0.18 m in diameter, 0.3-m high, and contained 71,750 

unstructured tetrahedral elements (see Figure 5.4).  As described by Derby and Gates, the 

domain was divided into two distinct materials; bark and sapwood.  The bark thickness 

was 0.01-m and sapwood radius was 0.16-m.  The properties for these materials are 

shown in Table 5.2.  The shortwave and longwave properties were not described in the 

study, so these properties were calculated from other sources of measurement.  The 

placement of the log in the wide open field allows for the simulation of the shortwave and 

longwave contributions to be regarded from only the sky or the ground but not any other 

surrounding trees or foliage.  Consequently for this simulation, complex radiative transfer 

calculations are not required.  Air temperature history was provided in the original paper, 

but all other meteorological conditions were calculated for similar meteorological 

conditions encountered during October in Boulder, Colorado [122]. 

Table 5.2 Material properties for the Derby and Gates simulation 

Material Specific Heat 
(J / kg K) 

Thermal 
Conductivity 

(W/m K) 

Specific Gravity 
(%) 

Shortwave 
Reflectance 

(%) 

Longwave 
Emissivity 

(%) 
Pine Bark 1364 0.23  0.30 0.27  0.95  

Pine Sapwood  2470 0.46  0.686  N/A   N/A 
 

5.2.2 Results for the Derby and Gates Simulation 

The SRSS was applied to the conditions and geometry described for the Derby 

and Gates simulation with no fluid flow conditions and no radiative transfer.  Results 

from the simulation along the north radius are provided in Figure 5.5.  The simulated 



 

59 

temperatures show good agreement until after 1400 hrs, when the near surface simulated 

temperature (Sim 13) is cooler than the observed temperature (Obs 13 in Figure 5.5).  In 

contrast the simulated center temperature (Sim 04) corresponds well with the observed 

temperature after 1700 hrs. 

Figure 5.6 provides the cross-section simulated temperature history of the pine log 

from 0800 hrs to 1900 hrs.  In this figure the temperature at 1 cm on the south radius of 

the log ranges from 4 deg C to 44 deg C.  This simulated temperature range matches the 

observed temperature ranges at the same position.  These ranges of temperatures are not 

unexpected, since the log was placed in an open field and received full direct illumination 

at a time of the year (October) when the solar incidence angle is greater for a vertical 

surface of the trunk than in the summer. 

 

 

Figure 5.4 Computational domain used for the comparison of the observed 
temperatures from Derby and Gates 
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Figure 5.5 Measured and simulated temperatures for the Derby and Gates simulation 
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Figure 5.6 Temperature contours from the Derby and Gates pine log simulation.  
Time is in hours and temperature is deg C 
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CHAPTER VI 

TEMPERATE FOREST COMPUTATIONAL DESIGN AND RESULTS 

This chapter describes the computational design, development, simulation test 

matrix, and results of the SRSS as applied to a tree with a root system in a seasonally 

varying temperate forest. 

6.1 Computational Design 

To fully exercise the capability of the SRSS, a simulation of a tree with a root 

system in a soil is constructed.  The simulated tree contains three different functional 

materials: the bark, xylem, and heartwood.  The simulated soil is a porous medium that 

has the thermal and hydraulic properties of a sandy soil.  The following describes the 

computational design and specifications of the simulation domain. 

6.1.1 Background 

In March of 2010, an oak tree was selected in Vicksburg, MS for root geometry 

analysis.  A light detection and ranging (LIDAR) system was used to collect surface soil, 

trunk, and branches geometry.  The LIDAR system scans the surfaces and calculates 

discrete three-dimensional locations of points on the surfaces which are later used for 

generation of the mesh.  After the surface data were collected, the soil surrounding the 

roots was excavated using high pressure compressed air.  This method allows efficient 

removal of the soil without significantly disturbing the larger roots of the system.  After 

the roots were exposed (Figures 6.1 and 6.2), an additional LIDAR scan was collected for 
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the roots (Figure 6.3).  These data were merged with the previous LIDAR data and used 

to construct the mesh geometry for the temperate forest simulation. 

 

 

Figure 6.1 Excavated root system of the Vicksburg tree 

 

Figure 6.2 Side view of the excavated root system of the Vicksburg tree 
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6.1.2 Geometric Design 

The computational domain was developed in three sections.  The trunk, roots, and 

soil were divided because of the complexity of the construction of the root system.  First 

the external mesh of the trunk was derived directly from the LIDAR point data.  The 

trunk section starts at the soil surface and extends approximately 2-m above the soil.  The 

point data were cleaned of errors and redundant points.  The cleaned data set was meshed 

as a triangular mesh with an average element size of 0.01-m. 

The root mesh was developed independently from the trunk mesh.  The LIDAR 

data of the roots contained some noise, and direct meshing of the point data was not 

successful.  Instead, the point data was used to determine the centerline, width, and length 

of the roots (Figure 6.3).  From the root centerline data, the roots were constructed as 

solid geometry segments then merged and meshed as a triangular mesh.  The average 

mesh element size was 0.01m.  Once the root mesh was completed, it was merged with 

the trunk mesh and formed into a watertight composite mesh (Figure 6.4).  This merged 

mesh was cleaned of intersecting and overlapping triangles.  Next the soil mesh was 

constructed using a LIDAR scan of a soil surface.  The surface contains a variety of 

heights ranging from -0.01 to 0.2 m.  This surface was meshed into a soil volume to a 

depth of 6.0 m below ground surface.  The tree and root surface meshes were merged into 

the soil mesh shell.  The tree depth was set to a similar soil depth as observed in the 

original measurements.  The area intersected by the trunk on the soil surface mesh was 

removed, and the edges of that area of the soil mesh were stitched to the trunk mesh 

surface. 
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Figure 6.3 Root LIDAR data overlaid with root centerlines 

Inner root and trunk meshes were developed last.  The first inner layer, which is 

used to delineate the bark, was generated by extending the trunk and root surface mesh 

inward (0.006 m) from the surface normal of each of the mesh elements.  The inner 

xylem layers were generated similarly but using only the trunk mesh (Figure 6.5).  These 

inner surfaces were subsequently smoothed and decimated to reduce the computational 

requirements.  This method was chosen so that the inner surfaces matched the shape of 

the external surface, similar to how the growth rings in the trunk also conform to the 

external trunk surface (Figure 6.6). 
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Figure 6.4 Completed trunk and root mesh shell before intersection with the soil 

 

 

Figure 6.5 The stem and root mesh geometry.  The different colors indicate different 
material types (bark, xylem layers, and heartwood) 
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The final volume mesh was generated using TetGen[123].  In the meshing 

process, each of the functional material areas (soil, bark, and xylem areas) was given a 

maximum region constraint.  This allowed control over the tetrahedral sizes for each 

material region.  The meshing was executed on a Cray XT3 with an execution time of 

approximately 5 hours, and the resulting mesh contained approximately 4.3 million 

tetrahedral elements (Figure 6.7).  The stem of the trunk extends above the surface for 2 

m, which is the top of the domain for the simulation.   The roots of the simulation extend 

down into the soil to a depth of 3 m.   The stem diameter is 0.4 m, bark thickness is 0.006 

m, total xylem thickness is 0.12 m, and heartwood thickness is 0.08 m.  The roots in the 

soil are smaller than the trunk and roughly 2 to 3 m in length with a minimum diameter of 

0.05 m.  Sections of the roots near the tips of the roots were constructed to allow the 

passage of fluid from the soil by the fine roots into the root structure.  The fine root 

structure is not modeled at this scale. 
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Figure 6.6 Cross section of the trunk at different heights in the computational domain.  
The layers shown are bark, three xylem layers, and heartwood 

6.1.3 Material Properties 

To correctly simulate the spectral, thermal, and fluid processes of the simulation, 

the physical, hydraulic, thermal, and spectral properties of the material must be correct.  

This section describes all the material properties used in the simulation and are consistent 

with properties of a typical hardwood tree and of a silty sand soil (Table 6.1 and Table 

6.2).  Physically and thermally, the tree materials are distinct from the soil.  The specific 

gravity of the soil is roughly 3-4 times the specific gravity of the wood and bark.  At 

-0.4m -0.3m -0.2m 

0.0m 0.3m 0.6m 

0.9m 1.3m 1.6m 
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saturation, the soil has twice the specific heat capacity of the wood, but porosities are 

similar. 

 

 

Figure 6.7 Complete meshed domain used in the study.  Part of the stem is cut-away to 
show the different layers inside the stem and root system and part of the 
soil is hidden to show the root structure 

Table 6.3 provides the spectral properties used for the external surfaces in the 

simulation.  These spectral properties are derived from measured samples of oak bark and 

bare silt soil.  The radiative energy calculations in the SRSS are specified as broadband 

calculations with the distinction made between the shortwave and longwave infrared 

spectra. 
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Table 6.1 Physical and thermal properties of the materials in the temperate forest 
simulation 

Material Specific Heat 
(J kg-1 K-1) 

Thermal Conductivity 
(W m-1 K-1) 

Porosity 
(%) 

Specific Gravity Quartz Fraction 
(%) 

Bark 1364.0 0.205 0.0 0.48 0.0 
Xylem1-3 1172.0 0.350 55.0 0.36 0.0 
Heartwood 1172.0 0.350 10.0 0.36 0.0 
Soil (dry) 1040.7 0.271 42.6 1.40 58.0 
Soil (saturated) 2671.0 1.904 42.6 1.83 58.0 

 

Table 6.2 Hydraulic properties of xylem and soil in the temperate forest simulation 

Material 

Saturated 
Hydraulic 

Conductivity  
(m hr-1) 

Residual 
Saturation 
Fraction 

Alpha[102] 
(m-1) N[102] 

Xylem1 6.16E-03 - - - 
Xylem2 6.16E-03 - - - 
Xylem3 0.33E-04 - - - 

Heartwood 1.33E-06 - - - 
Soil (saturated) 6.59E-04 0.0223 0.36 1.425 

 

Table 6.3 Spectral properties of surface materials in the temperate forest simulation 

Material Shortwave Broadband 
Reflectance (%) 

Longwave Infrared 
Emissivity (%) 

Bark 36.8 98.0 
Soil 42.0 90.0 

 

6.1.4 Boundary Conditions 

Boundary conditions for the simulation include both thermal energy and moisture.  

The bottom of the domain is set to Dirichlet boundary conditions.  For unsaturated soil 

conditions, the water table is set to 17.0 m below the soil surface, and the soil 

temperature is held to a constant temperature at 6.0 m below the soil surface for the 
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duration of the simulation.  The sides of the domain are set, by default, to no-flow and 

no-heat flux exchange. 

An evaporative exchange boundary condition is specified for the surface of the 

soil with the atmosphere in the form of evaporation and rainfall interception. The surface 

of the trunk is not hydraulically conductive, and no moisture exchange occurs.  Both the 

soil and stem surfaces intercept thermal radiation. 

Within the soil column, the soil water pressure is initially assumed to be 

hydrostatic, with the soil moisture depending on the local pressure. Figure 6.8 provides 

the initial computed soil saturation as a function of elevation calculated by Equation 3.2.  

As the depth increases, the saturation increases until it reaches the depth of the soil water 

table.  As the pressure field evolves, the local saturation is updated using the constitutive 

data in Figure 6.9 derived by laboratory measurements of the soil. 

For this simulation, it is assumed that the upward transport of fluid is caused by 

evapotranspiration in the foliage.  The xylem cell radii for deciduous trees in a temperate 

environment can range from 20 - 100 μm in thickness.  Observed sap velocity magnitudes 

for healthy trees in bright solar conditions can range from 0.2 to 0.5 m/h.  Using 

measured sap flow rates, an average velocity rate was developed for full sun conditions.  

Figure 6.10 illustrates the flow function imposed on the upper boundary of the stem. 

Considering these flow rates and assuming that the fluid in the xylem has a kinematic 

viscosity similar to water, Reynolds numbers are approximately 0.03 indicating smooth 

laminar flow through the sieve-tube cells of the wood. 
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Figure 6.8 Soil saturation as a function of 
soil depth for the simulated 
soil 

 
Figure 6.9 Capillary head as a function of 

the simulated soil saturation 

 

 

Figure 6.10 Sap velocity function imposed on the upper boundary of the stem 
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To account for the surrounding forest canopy radiation effects and direct solar 

radiation, a hemispherical projection image of the surrounding stems and foliage is used. 

This image projection reduces the computational requirements of the simulation 

compared to an explicit model of the surrounding forest.  The hemispherical image is 

converted into a two-valued map using image segmentation (simple thresholding [124] ) 

and removing small gaps resulting in a gap fraction map.  The map is then projected back 

into a three-dimensional hemisphere. For each time step in the simulation, the solar 

position is calculated and projected through the canopy image hemisphere.  If the solar 

vector intersects an opaque pixel of the image, then no direct solar radiation will reach 

the surface element of the mesh for that solar position.  The surface element instead 

receives the diffuse part of the solar radiation.  

In the simulation, synthetic canopy images generated from a previously validated 

hardwood forest simulation [125] are used.  The viewer is positioned under the center 

tree, and the surrounding vegetation is mapped 180 degrees into a hemispherical 

projection.     Figure 6.11 illustrates both the summer and winter canopy images used for 

this method.  Figure 6.12 provides simulation examples of each image applied to the 

computational domain.  To complete the radiative transfer processes and to calculate the 

within-domain radiative transfer between surfaces, the Monte Carlo method described 

previously in Chapter 4 is used. 
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Figure 6.11 Summer (left) and winter (right) hemispherical images used for radiative 
transfer calculations 
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Figure 6.12 Corresponding direct solar radiation calculations using the summer and 
winter hemispherical images.  For purposes of comparison, the external 
solar radiation flux and angle are held constant for both scenes 
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6.1.5 Meteorological Conditions 

The SRSS requires external meteorological and solar data to drive the 

simulations.  The driving meteorological parameters are air temperature, relative 

humidity, solar radiation (direct, diffuse, downwelling longwave infrared), wind speed, 

and precipitation.  These parameters used in the simulation are typically collected by 

instruments in-situ. 

For the temperate forest simulation, two distinct seasonal time periods are 

selected to illustrate the seasonal effects on the system.  The time periods selected are 

early summer and winter. 

The early summer time period is 2-23 May 2010.  These data were collected in 

Vicksburg, MS, USA at approximately 32.0 latitude and 32.304 longitude.  The 

minimum air temperature during that period was 10 deg C, and the maximum was 33 deg 

C (Figure 6.13).  Peak solar radiation was 900 W/m2 (Figure 6.14).  Daily near surface 

temperatures averaged 23 deg C with daily temperature variability of ±10 deg C.  

Average soil temperature at 1.0-m depth in the soil was 25 deg C with total temperature 

variability of ±2.6 deg C (Figure 6.15) for the time period. 

The winter time period selected for the simulations spans 7 – 21 Jan 2009.  These 

data were collected at the same location as the early summer data and used the same 

instruments.  The minimum air temperature during that period was -5 deg C, and the 

maximum air temperature was 25 deg C (Figure 6.16).  Relative humidity varied 

diurnally having a typical range from 30 to 90% (Figure 6.17).  Peak solar radiation 

under clear sky conditions was 550 W/m2 (Figure 6.18).  Average daily near surface soil 

temperature was 10.9 deg C with daily temperature variability of ±8.6 deg C.  Average 
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daily soil temperature at 1.0 m depth was 11.3 deg C with a variability of ±4.1 deg C for 

the time period (Figure 6.19). 

 

 

Figure 6.13 May 2010 Air temperature and relative humidity 

 

Figure 6.14 May 2010 Solar radiation and precipitation 
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Figure 6.15 May 2010 Soil temperature 

 

Figure 6.16 January 2009 Air temperature 

 

Figure 6.17 January 2009 Relative humidity 
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Figure 6.18 January 2009 Solar radiation and precipitation 

 

Figure 6.19 January 2009 Soil temperature 

6.2 Simulation Matrix 

This section describes the simulation test matrix used to examine the effects of the 

stem-root system on the spatial and seasonal distributions of temperature and moisture 

content in the soil.  A combination of seasons, transpirational flow, soil state, and solar 

environment are varied for each simulation (Table 6.4).  In the simulations, a solar 

dependent time step strategy is specified.  When no solar illumination is present, the time 

step is one hour.  But when solar illumination is present, the time step is shortened to 15 

minutes.   In previous simulations, not presented here, larger time steps during solar 

illumination created artificial, discontinuous thermal patterns on the external surfaces. 
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Table 6.4 Simulation matrix for the temperate forest 

Name Seasonal Setting Fluid Flow Soil State Solar Conditions 

Alpha Winter N Saturated Winter Canopy 
Bravo Winter N Unsaturated Winter Canopy 

Charlie Early Summer N Saturated Summer Canopy 
Delta Early Summer N Unsaturated Summer Canopy 
Echo Early Summer Y Saturated  Summer Canopy 

Foxtrot Early Summer Y Saturated Open Canopy 
 

First the winter simulations (Alpha and Bravo) are considered.  During the winter, 

the transpirational demand by the leaves on the tree is stopped, and subsequently the 

diurnal flow within the tree and roots is diminished to a zero flow condition.  Therefore 

the main aspect of the winter simulation is the examination of the temperature history of 

the trunk, the temperature differences between the saturated and unsaturated soil, and 

solar radiative effects.  The external solar environment for the winter simulation is the 

winter sky map image (Figure 6.11b) which contains more sky exposure than the summer 

sky map image due to the lack of foliage.  

The summer simulation set (Charlie, Delta, Echo, and Foxtrot) is larger as a result 

of the presence of fluid flow in the stem caused by actively transpiring leaves.  Table 

6.4illustrates the combination of fluid flow with saturated and unsaturated soils.  The 

fluid flow is turned on and off so any thermal convective effects in the simulation can be 

isolated from the thermal conduction effects.  The external solar environment for the 

canopy is the summer fully leaved canopy (Figure 6.11a) with the exception for the open 

canopy simulation where it is an unobstructed sky similar to conditions encountered 

when a tree is isolated in an open field or after a clear cutting harvest of a forest. 

These simulations were all executed on a Cray XT3 using 1072 processors.  The 

Monte-Carlo radiative model of the SRSS used 1024 processors, and the ADH soil model 
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used 48 processors.  Walltime for each time step of the simulation was approximately 55 

minutes. 

6.3 Winter Simulation Results 

This section of the chapter presents the results of the winter simulations.  First, the 

analysis includes description of the diurnal solar radiation patterns and magnitude.  

Second the temperature history of the trunk at various heights and along cardinal radius 

points in the trunk is presented and discussed.  Finally for this section, the soil 

temperature history is compared between the saturated and unsaturated soils.  

6.3.1 Winter Solar Radiation 

Figure 6.20 illustrates the dynamic range of total shortwave radiation in the scene 

for the simulated day of 8 Jan 2009.  At 0900 hrs the total shortwave radiation range was 

15.6 to 20.0 W/m2, and at solar noon (1300 hrs) the range increased to 33.0 to 356.6 

W/m2.  The seasonal lower solar zenith angle of the sun causes the longer shadows during 

the day.  With a leafless tree canopy, the trunk surface receives a significant amount of 

shortwave radiation flux. 

6.3.2 Tree Trunk Winter Temperature History 

The group of Figures 6.22 – 6.27 presents the internal temperature history of the 

trunk at a height of 0.6m above the ground for both the Alpha and Bravo simulations.  

The 0.6m above ground height is the standard height for basal measurements used in the 

forest industry.  The internal trunk temperature history in both Alpha and Bravo are 

identical since there is no fluid flow, and the external thermal radiation is the same.  For 

the analyses, points are selected along the cardinal axis from the trunk surface to the 

center of the trunk (Figure 6.21).  The temperatures of the north radius (Figure 6.22) 
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show a moderate increase, and the near surface temperature tracks closely with air 

temperature.  This is the north side of the trunk surface that is not directly illuminated, 

and the surface energy flux is primarily from longwave thermal radiation and scattered 

shortwave radiation.  The other internal temperatures follow the classic expected 

sinusoidal pattern over time. 

The east radius of the trunk at 0.6m (Figure 6.23) is similar to the north radius 

except that the east surface receives some early direct solar radiation (Figure 6.20) as 

demonstrated by the elevated temperature at the 0.034 m depth.  The south radius (Figure 

6.24) is drastically different as expected.  The near surface temperatures are 10 deg C 

greater than the north or east radius at solar noon.  The penetration of the heating is also 

evident into a 0.12m depth in the wood.  Also noticeable at the near surface temperature 

is the effect of shading on the surface of the trunk.  The neighboring trees cast shadows 

over the surface of the tree (Figure 6.20 1200 hrs for example) and cause a rapid change 

in incident shortwave radiation and near-surface temperatures. 

The west radius (Figure 6.25) illustrates the afternoon heating of the tree.  Peak 

temperature in the afternoon (1700 hrs) is indicative of the radiative heating also 

combined with the increase in air temperature.  Both of these factors contribute to 

increased temperatures in the trunk as compared to the east radius.  Figure 6.26 is a 

temperature difference history between the east and west radius.  West nodes from the 

mesh along the axis were compared to east nodes at a similar distance from the surface of 

the trunk.  So when the temperature difference is negative, the west temperature is 

warmer than the same location along the east axis.  At solar noon, the east near surface is 

2 deg C warmer than the west side, and later during the day at 1500 hrs, the west side is 5 

deg C warmer than the east side. 
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Similarly for Figure 6.27, the temperature differences between the north and south 

cardinal axes are shown.  Throughout the 24 hour period, the south is 1 deg C warmer 

than the north side, and at solar noon the south is 10 deg C warmer.  Subsequent 

conduction of the heat is observed in the deeper positions of the trunk.  Late in the 

evening (2000 hrs) after the sun has set, the deeper wood (0.18-m) is still 5 deg C warmer 

than the same position on the north axis. 

Next the conductive and radiative effects of the ground on the trunk are analyzed.  

Figure 6.28 presents the temperature history for a south radius at three different heights 

referenced from the ground surface.  These heights are 0.3, 0.6, and 1.3-m.  The lowest 

south radius (0.3-m) receives relatively more radiative energy from the soil surface 

because of the increased view factor geometry with the soil than with the lower radiative 

energy from the sky and surrounding trees.  The total effect of this is an increase of a 

maximum 1.0 deg C at solar noon when the soil surface reaches a maximum of 15 deg C.  

The uppermost radius (1.3m) has the cooler temperature of the near surface, influenced 

by the larger view factor geometry with the sky than with the ground. 

6.3.3 Winter Soil Temperature History 

Figures 6.29 – 6.30 provide the temperature history for the soil in both the 

saturated (Alpha simulation) and unsaturated conditions (Bravo simulation).  By 

definition, a saturated soil has all the void space completely filled with fluid, and the 

unsaturated soil has a combination of both fluid and air in the void space.  The bulk effect 

of this is an effective change in thermal conductivity and specific heat of the soil.  

Consequently a change is expected in thermal response between the two different states 

of the soil as illustrated in Figure 6.29.  For the temperatures in the figure, several nodes 



 

84 

of the surface mesh were selected and the temperatures averaged over the nodes.  The 

unsaturated soil has an increased temperature magnitude compared to the saturated soil.  

The unsaturated soil has a lower specific heat and subsequently loses and gains heat more 

quickly than the saturated soil.  At 40% saturation, the unsaturated soil has a thermal 

conductivity of 0.271 W m-1 K-1, and the saturated soil has a thermal conductivity of 

1.904 W m-1 K-1.  Figure 6.30 provides the temperature history of the soil (Alpha 

simulation) for several depths.  At 0.6-m, there are no significant diurnal temperature 

changes.  At the surface depth, the surface reaches a maximum of 15 deg C, and some 

temperature variation is observed from shadows on the surface. 

 

0900 hrs 1000 hrs 1100 hrs 

1200 hrs 1300 hrs 1400 hrs 

1500 hrs 1600 hrs 1700 hrs 

Figure 6.20 SRSS results for the simulated shortwave radiation temporal 
distribution from 8 Jan 2009, 0900 – 1700 hrs 
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Figure 6.21 Cross-section of the trunk at 0.6m above the ground.  The numbers along 
each cardinal axis indicate distance in centimeters from the trunk surface.  
These distances correspond with distances shown in the following 
temperature history charts 
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Figure 6.22 SRSS temperature history of the trunk at 0.6 m along the north radius for 8 
Jan 2009 (simulation Alpha) 

 

 

Figure 6.23 SRSS temperature history of the trunk at 0.6m along the east radius for 8 
Jan 2009 (simulation Alpha) 
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Figure 6.24 SRSS temperature history of the trunk at 0.6m along the south radius for 8 
Jan 2009 (simulation Alpha) 

 

 

Figure 6.25 SRSS temperature history of the trunk at 0.6m along the west radius for 8 
Jan 2009 (simulation Alpha) 
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Figure 6.26 Temperature difference in the trunk at 0.6m between the east and west 
radius for 8 Jan 2009 (simulation Alpha) 

 

 

Figure 6.27 Temperature difference in the trunk at 0.6m between the north and south 
radius for 8 Jan 2009 (simulation Alpha) 
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a) 1.3m  

b) 0.6m  

c) 0.3m  

Figure 6.28 SRSS temperature history of the trunk along the south radius at 1.3, 0.6, 
and 0.3m above the soil surface 8 Jan 2009 (simulation Alpha). 
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Figure 6.29 SRSS simulated surface temperatures for the winter unsaturated (Bravo) 
and saturated (Alpha) soil conditions 

 

 

Figure 6.30 SRSS simulated soil temperatures at depth for the winter saturated soil 
conditions (simulation Alpha) 
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6.4 Summer Simulation Results 

This section of the results presents the four early summer simulations as described 

in Table 6.4.  Three of the simulations (Charlie, Delta, and Echo) concern the 

permutations of fluid flow and soil state.  The remaining simulation (Foxtrot) is an open 

canopy that is used to examine the effects of neglecting the radiative energy of the 

surrounding forest canopy.  The temporal span of the simulations is 2-4 May 2010.  This 

temporal span represents days of clear skies with high solar radiation and no 

precipitation. 

6.4.1 Early Summer Solar Radiation SRSS Results 

Figure 6.31 and Figure 6.33 illustrate the simulation results of the total shortwave 

radiation under a fully leafed deciduous forest canopy (Figure 6.11a) for the Charlie, 

Delta, and Echo simulations.  The mapping represents the dense foliage coverage of the 

forest during early summer.  The gaps in the forest canopy produces the speckled patterns 

observed on the ground and on the trunk.  For most of the time, 0800-1700 hrs, the trunk 

is shaded and receives only diffuse radiation.  Incidentally, this is similar to the 

assumptions of the simulations conducted by Herrington [54].  Exceptions to this are 

during 1000-1100 hrs where a gap in the overhead canopy allows for direct radiation to 

reach the trunk. 

As a contrast, Figures 6.32 and 6.34 provide the total shortwave radiation 

simulation results of an open canopy for the same time period.  In this open canopy 

simulation (simulation Foxtrot), all the surrounding trees and foliage are removed, 

leaving only the foliage of the center tree that produces self-shadowing.  Differences 

between the two simulations are an increase of solar radiation incident to the soil and 

trunk surfaces. 
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Figure 6.31 SRSS results of total shortwave radiation for 0800-1300 hrs, 2 May 2010 
for simulations Charlie, Delta, and Echo. 
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Figure 6.32 SRSS results of total shortwave radiation in open canopy for 0800-1300 
hrs, 2 May 2010 for simulation Foxtrot 
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Figure 6.33 SRSS results of total shortwave radiation for 1400 – 1700 hrs, 2 May 2010 
for simulation Charlie, Delta, and Echo. 
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Figure 6.34 SRSS results of total shortwave radiation in open canopy for 1400-1700 
hrs, 2 May 2010 for simulation Foxtrot 

 

6.4.2 Fluid Flow and Moisture Distribution Results for Early Summer 

The boundary conditions for fluid flow due to transpiration have been previously 

described and shown in Figure 6.10.  The velocity demand is converted into a pressure 

head that is imposed on the top of the stem.  The pressure gradient begins at 0800 and 

ends at 2000 hrs with the peak occurring at 1300 hrs.  This specified pressure gradient is 

determined by using Darcy’s law and applied uniformly to the nodes at the top of the 

computational domain.  The boundary condition at the root tips is designed to allow the 

passage of fluid from the soil into the roots but not conversely. 

Figure 6.35 illustrates the spatial distribution of velocity across the trunk at 0.6m 

at 1300 hrs for simulation Echo.  The low or zero velocities shown are expected in the 

bark and in the heartwood region.  The velocity is attenuated by the hydraulic 
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conductivity and porosity of the wood.  All the observed velocity are in the three layers 

of xylem.  Over time the velocities increase and decrease as shown in Figure 6.36 for 

fluid velocity along the south axis.  

Ultimately the fluid flowing through the trunk and roots is extracted from the soil.  

For the described simulation, the soil is initially saturated to represent the ideal conditions 

for fluid flow in the soil (Figure 6.37).  The saturated soil has the highest hydraulic 

conductivity, and the boundary conditions at the bottom of the soil provide a limitless 

supply of water to the system.  As the demand for fluid in the tree increases, water is 

removed from the soil.  The tree begins to draw fluid from the soil, and depending on the 

hydraulic characteristics of the soil, the fluid withdrawal rate from the soil exceeds the 

rate of replenishment from the surrounding soil making the soil unsaturated.  The 

hydraulic conductivity in these soil regions decreases, and the fluid uptake is shifted to 

roots that are still surrounded by saturated soil and altering the fluid velocity in the roots 

(Figures 6.37-6.44).  Figures 6.45-47 provide the results of this desaturation and spread 

of the unsaturated soil over time from 0800 to 2500 hrs.  For the first 24 hrs from a fully 

saturated state, there exist areas that do not recover full saturation.  Over a period of time, 

these areas will grow until they reach a quasi-steady state in the soil.  Consequences for 

the unsaturated regions are twofold.  First, the hydraulic conductivity of the soil drops 

significantly (see Figures 6.8-6.9) causing the root system to draw fluid from other 

surrounding saturated areas and also increasing velocity in those parts of the roots.  The 

second consequence is that the unsaturated soil will have differing thermal properties 

(specific heat capacity, thermal diffusivity, and thermal conductivity) from the 

surrounding soil, resulting in different thermal responses and temperature history. 
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Figure 6.35 Spatial distribution of flow velocity across the trunk at 0.6m for 1300 hrs 2 
May 2010 for simulations Echo and Foxtrot 

 

 

Figure 6.36 Flow velocity history along the south radius of the trunk at 0.6m for early 
summer for simulations Echo and Foxtrot 
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Figure 6.37 Fluid flow lines and velocity for saturated soil conditions 0930 hrs, 2 May 
2010 for simulation Echo 

 

 

Figure 6.38 Fluid flow lines and velocity for saturated soil conditions 1030 hrs, 2 May 
2010 for simulation Echo 
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Figure 6.39 Fluid flow lines and velocity for saturated soil conditions 1130 hrs, 2 May 
2010 for simulation Echo 

 

 

Figure 6.40 Fluid flow lines and velocity for saturated soil conditions 1230 hrs, 2 May 
2010 for simulation Echo 
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Figure 6.41 Fluid flow lines and velocity for saturated soil conditions 1330 hrs, 2 May 
2010 for simulation Echo 

 

 

Figure 6.42 Fluid flow lines and velocity for saturated soil conditions 1430 hrs, 2 May 
2010 for simulation Echo 
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Figure 6.43 Fluid flow lines and velocity for saturated soil conditions 1530 hrs, 2 May 
2010 for simulation Echo 

 

 

Figure 6.44 Fluid flow lines and velocity for saturated soil conditions 1630 hrs, 2 May 
2010 for simulation Echo 
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Figure 6.45 SRSS results of the development of unsaturated soil area indicated by a 
negative pressure head from 1000 – 1500 hrs, 2 May 2010 for simulation 
Echo. 
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Figure 6.46 SRSS results of the development of unsaturated soil area from 1600-2100 
hrs, 2 May 2010 for simulation Echo 
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Figure 6.47 SRSS results of the development of unsaturated soil area from 2200-2500 
hrs, 2-3 May 2010 for simulation Echo 

 

6.4.3 Tree Trunk Early Summer Temperature History 

Figures 6.48 – 6.51 present the temperature history of the trunk at a height of 0.6-

m above the ground for both flow (simulation Echo) and no-flow (simulation Charlie) 

early summer conditions in a saturated soil.  Similar to the discussion in Section 6.3.2, 

the temperatures presented in these figures are from nodal temperatures in the mesh along 

the cardinal axis radius from the trunk surface towards the center of the trunk (Figure 

6.21).  Temperatures of the north radius (Figure 6.48) are similar to the simulated 

temperatures of the east radius (Figure 6.49) except for the times between 1130 – 1500 

hrs at depths shallower than 0.06-m when the temperatures along the east radius are 0.5 
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deg C warmer.  In contrast, the temperature history of the south and west radii are slightly 

different, specifically around 1500 hrs when a gap in the forest canopy increases the solar 

illumination on the west side of the trunk (Figure 6.33, 1500 hrs).  The effect of this 

illumination and subsequent heating of the surfaces is evident in the temperature spike at 

1500 hrs on the west radius at a depth of 0.06-m (Figure 6.51).  A time history of the 

temperature differences (north – south and east - west) are detailed in Figure 6.52 and 

Figure 6.53.  In all these cases, the temperature differences are considered small (less 

than 1 deg C), a result of the dense canopy blocking the majority of the direct short-wave 

solar radiation. 

Next the temperature history is examined for the same cardinal directions in the 

trunk at the same height, but for this case the fluid flow is stopped.  All boundary 

conditions are kept the same for the no flow simulations except that no flow occurs 

during the day.  Comparing the results of the no flow simulations along the same axis to 

the flow conditions, significant temperature differences are observed.  Figure 6.54 - 

Figure 6.57 provide the difference history plots of the temperatures along the cardinal 

axis subtracting the no flow temperature (simulation Charlie) from the flow temperature 

(simulation Echo).  In Figure 6.54, from the beginning of the flow at 0800 hrs, by 1200 

hrs an increase in temperature of more than 1 deg C occurs in the flow conditions than in 

the no-flow conditions.  This trend continues up to 1700 hrs, when the flow rate starts 

diminishing.  The majority of the heating occurs from 0.03 – 0.05-m in the trunk, which 

is the same distance from the surface as the maximum velocity in the sap wood (Figure 

6.35).  Fifteen hours later (Figures 6.54 – 6.57), the temperature difference in the flow 

region of the trunk is reduced to near 1 deg C.  As this diurnal trend continues, the center 

of the trunk is warmed to near the same temperature as the soil at roughly a 0.5-m depth 
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below ground surface.  Along all four axes, this significant warming of the trunk is 

occurring. 

The results for temperatures at three different heights along the south axis are 

shown in Figure 6.58 and Figure 6.59.  Figure 6.58 for flow reveals a general decrease in 

temperature the farther the point is from the ground.  The results are similar for the no 

flow conditions (Figure 6.59) although overall the temperatures are cooler compared to 

the flow conditions.  Figure 6.60 and Figure 6.61 further illustrates the decrease in 

temperature as a function of heights for the mesh nodes just within the bark surface.  The 

temperatures also appear to continue to decrease over time out to 30 hrs in the simulation 

where the difference between the 0.3m and 1.3m is over 5 deg C.  But vertically 

increasing the height to the 0.6m position, the difference is only approximately 3-4 deg 

C.  Radiative heating from the soil is apparent in the 0.3m temperatures. 

Lastly, the results for the open canopy (Foxtrot) simulation are compared with the 

full canopy (Echo) simulation.  Both of these simulations include flow conditions, so any 

temperature differences observed can only be attributed to the shortwave and longwave 

changes.  For Figures 6.62 – 6.65, the results of the temperature difference between the 

flow and open canopy simulations are provided for all four cardinal axes.  In these 

figures, a negative temperature indicates that the open canopy simulation is warmer, and 

a positive temperature indicates that the full canopy simulation is warmer.  The north and 

east radii show small differences, and all are less than 1 deg C.  The south radius 

temperature differences are larger than the north and east, and most of the temperatures 

are negative indicating that the open canopy temperatures are warmer.  The west radius 

temperature differences show the largest differences compared to the other radii 

directions.  As shown in Figure 6.34 at 1700 hrs, these west radius temperature 
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differences are caused by continuous solar radiative heating for the open canopy (Foxtrot) 

simulation compared to the closed canopy (Echo) simulation.  Ultimately, these solar 

radiation conditions simulated in the open canopy (Foxtrot) simulation show persistent 

warmer temperatures in the soil, and in the trunk. 

 

 

Figure 6.48 SRSS temperature history of the trunk at 0.6m along the north radius with 
flow for 2 May 2010 for simulations Charlie and Delta 
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Figure 6.49 SRSS temperature history of the trunk at 0.6m along the east radius with 
flow for 2 May 2010 for simulations Charlie and Delta 

 

 

Figure 6.50 SRSS temperature history of the trunk at 0.6m along the south radius with 
flow for 2 May 2010 for simulations Charlie and Delta 
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Figure 6.51 SRSS temperature history of the trunk at 0.6m along the west radius with 
flow for 2 May 2010 for simulations Charlie and Delta 

 

 

Figure 6.52 Temperature difference in the trunk at 0.6m between the east and west 
radius for 2 May 2010 for simulations Charlie and Delta 
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Figure 6.53 Temperatures difference in the trunk at 0.6m between the north and south 
radius for 2 May 2010 for simulations Charlie and Delta 

 

 

Figure 6.54 SRSS Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the north radius at 0.6m for 2 May 2010. 
(shown: flow – no flow) 
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Figure 6.55 Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the east radius at 0.6m for 2 May 2010. 
(shown: flow – no flow) 

 

 

Figure 6.56 Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the south radius at 0.6m for 2 May 2010. 
(shown flow – no flow) 
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Figure 6.57 SRSS Temperature difference history between the flow (Echo) and no flow 
(Charlie) simulations along the west radius at 0.6m for 2 May 2010. 
(shown flow – no flow) 
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a) 1.3m  

b) 0.6m  

c) 0.3m  

Figure 6.58 SRSS Temperature history of the trunk along the south radius at 1.3, 0.6, 
and 0.3m with fluid flow for 2 May 2010 for simulation Echo. 
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a) 1.3m  

b) 0.6m  

c) 0.3m  

Figure 6.59 SRSS Temperature history of the trunk along the south radius at 1.3, 0.6, 
and 0.3m above the ground with no fluid flow for 2 May 2010 for 
simulation Charlie. 
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Figure 6.60 Temperature difference history between south radius temperatures at 1.3, 
0.6, and 0.3m above the ground with fluid flow for 2 May 2010 (simulation 
Echo) 

 

Figure 6.61 SRSS Temperature difference history between south radius temperatures at 
1.3, 0.6, and 0.3m above the ground with no fluid flow for 2 May 2010 
(simulation Charlie) 
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Figure 6.62 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the north radius for 2 May 2010 

 

 

Figure 6.63 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the east radius for 2 May 2010 
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Figure 6.64 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the south radius for 2 May 2010 

 

 

Figure 6.65 SRSS temperature difference history between the flow (Echo) and open 
canopy (Foxtrot) simulations along the west radius for 2 May 2010 
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6.5 Summary 

This chapter describes the SRSS predictions of the thermal and hydraulic 

behavior of a tree in a deciduous forest during winter and early summer seasons.  Results 

from the winter simulations indicate that the primary influence of temperature in the 

trunk is solar radiation and radiative energy from the soil and surrounding trees.  Diurnal 

temperature ranges of 17 deg C were observed on the south axis of the trunk contrasted 

with temperatures ranges of 7 deg C on the north axis of the trunk.  Results from the 

summer simulations differed from previous results indicating that the flow of fluid in the 

trunk was the primary influence of temperature change with secondary effects attributed 

to the radiative energy from the soil.  Comparing flow and no flow simulations in the 

summer, the SRSS showed up to a 2 deg C internal wood temperature difference for a 0.3 

m/hr flow rate.  Other early summer simulation results show that with sap flow, as the 

soil around the roots became unsaturated, the flow path for the roots was changed to areas 

where the soil was still saturated, and also the velocity in those root areas increased. 
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

This document described the development of a three-dimensional computational 

tool that simulates the radiative energy, conductive heat, and mass transfer interaction in 

a soil-root-stem system (SRSS).  The completion of the SRSS required the development 

of a Monte-Carlo radiative transfer code (MCRT), modification of a ground water flow 

code, and verification of the individual components of the simulation.  The end result is 

the creation of a tool that was shown to predict the three-dimensional diurnal, internal 

and external temperatures, internal fluid distribution, and heat flow in the soil, roots, and 

trunk in a seasonally varying deciduous forest.  The individual components of the SRSS 

were validated with analytical solutions, and the composite results of the SRSS were 

compared with published measured and simulation studies. 

The development and addition of the Monte-Carlo radiative transfer code 

combined with a hemispherical mapping of the surrounding trees and foliage was 

sufficiently accurate to simulate the entire spectrum of radiative effects of the 

surrounding forest without explicit modeling of the entire forest.  Simulations during the 

early summer (May 2010) indicated that, in the presence of low to moderate sap flow 

velocities (0.3 m/hr), the internal temperatures of the stem can vary as much as 2.5 deg C 

at 0.6 m above the ground surface when compared with the same conditions during no 

flow.  The magnitudes of the internal stem temperature differences are correlated to the 

current soil temperature at depth and are small when compared to radiative fluxes.  
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Winter simulations (Jan 2009) of the SRSS indicate that incident solar radiation on the 

trunk results in dramatically larger observed temperature ranges than those found during 

the early summer simulations.  These simulation results are consistent with observations.  

The root system and subsequent uptake of fluid from the soil were shown in 

simulation to develop an unsaturated soil region.  This soil region had a distinct 

development, starting at the surface of the soil and gradually growing down into the soil, 

and expanded continually while the uptake occurred.  Recovery from the unsaturated soil 

region back to saturated conditions during the evening was slow, and the rate depended 

on the hydraulic conductivity of the soil media.  The change from saturated to 

unsaturated soil altered the thermal properties of the soil and consequently exhibited 

differing temperature histories.  It is observed that as areas of unsaturated soil developed, 

the soil hydraulic conductivity decreased, and fluid demand was increased to those roots 

in areas of saturated soil.  The change in fluid demand also increased the fluid velocity in 

the same roots. 

There exist several main areas for future work with the SRSS: inclusion of dense 

vegetation in the simulation, long-term full season studies, drought simulations, and 

additional validation studies using experimental studies.  Inclusion and simulation of 

dense understory surface vegetation on the surface and around the tree will alter the 

external thermal and radiative energy budget of the system.  It is unclear if the 

surrounding foliage significantly affects the internal temperature of the stem.  For the 

area of long-term full season simulations, a simulation from early summer to late summer 

would be required to fully examine the growth and extent of the unsaturated soil zone 

around the tree and subsequent effects on moisture uptake by the system.  As the SRSS is 

presently configured, this long-term simulation would require significant computational 
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resources (90 simulated days = ~60M CPU hours) mainly dedicated to the Monte-Carlo 

radiative transfer code.  For this particular type of simulation, the thermal radiative 

transfer calculations could be simplified, reducing the computational requirements down 

to a reasonable level.  Simulation of a drought or prolonged periods of little rainfall is one 

of the other areas of future study that pose a computational challenge.  During a drought 

as the soil saturation decreases, the pressure required to extract moisture from the soil 

increases exponentially (see Figure 6.9 as an example) causing steep pressure gradients 

between the root tips and the soil.  Solving these steep pressure gradients can cause 

numerical instability.  Data and studies addressing these pressure gradients during 

unsaturated soil conditions are rare.  Additionally, simulation studies are required to 

determine if the steep pressure gradients are caused by the macroscale modeling of a 

microscale event.  Finally, more validation studies using experimental and measured data 

are required to improve the confidence in the SRSS results.  Above-ground 

measurements (sap velocity, surface radiation distribution, solar radiation energy budgets, 

and stem temperatures) are expensive but readily obtainable.  Subsurface measurement 

methods such as nondestructive temporal and spatial measurement of soil moisture 

content under and around the root system are extremely difficult to obtain.  

Consequently, full validation of the SRSS subsurface processes may have to wait until 

the measurement technology improves. 

 



 

122 

REFERENCES 

 
[1]   R. K. Dixon, A. M. Solomon, S. Brown, R. A. Houghton, M. C. Trexier and J. 

Wisniewski, "Carbon Pools and Flux of Global Forest Ecosystems," Science, 263, 
no. 5144, 1994, pp. 185-190. 

 
[2]   T. J. Griffis, T. A. Black, D. Gaumont-Guay, G. B. Drewitt, Z. Nesic, A. G. Barr, 

K. Morgenstern and N. Kljun, "Seasonal Variation and Partitioning of Ecosystem 
Respiration in a Southern Boreal Aspen Forest," Agricultural and Forest 
Meteorology, 125, no. 3-4, 2004, pp. 207-223. 

 
[3]   J.-A. Subke and J. D. Tenhunen, "Direct Measurements of Co2 Flux Below a 

Spruce Forest Canopy," Agricultural and Forest Meteorology, 126, no. 1-2, 2004, 
pp. 157-168. 

 
[4]   M. Kondo, H. Muraoka, M. Uchida, Y. Yazaki and H. Koizumi, "Refixation of 

Respired Co2 by Understory Vegetation in a Cool-Temperate Deciduous Forest in 
Japan," Agricultural and Forest Meteorology, 134, no. 1-4, 2005, pp. 110-121. 

 
[5]   B. D. Amiro, A. G. Barr, T. A. Black, H. Iwashita, N. Kljun, J. H. McCaughey, K. 

Morgenstern, S. Murayama, Z. Nesic, A. L. Orchansky and N. Saigusa, "Carbon, 
Energy and Water Fluxes at Mature and Disturbed Forest Sites, Saskatchewan, 
Canada," Agricultural and Forest Meteorology, 136, no. 3-4, 2006, pp. 237-251. 

 
[6]   D.-X. Guan, J.-B. Wu, X.-S. Zhao, S.-J. Han, G.-R. Yu, X.-M. Sun and C.-J. Jin, 

"Co2 Fluxes over an Old, Temperate Mixed Forest in Northeastern China," 
Agricultural and Forest Meteorology, 137, no. 3-4, 2006, pp. 138-149. 

 
[7]   J. H. McCaughey, M. R. Pejam, M. A. Arain and D. A. Cameron, "Carbon 

Dioxide and Energy Fluxes from a Boreal Mixedwood Forest Ecosystem in 
Ontario, Canada," Agricultural and Forest Meteorology, 140, no. 1-4, 2006, pp. 
79-96. 

 
[8]   C. J. Moore and G. Fisch, "Estimating Heat Storage in Amazonian Tropical 

Forest," Agricultural and Forest Meteorology, 38, no. 1-3, 1986, pp. 147-168. 
 
[9]   C. A. Federer, "Solar Radiation Absorption by Leafless Hardwood Forests," 

Agricultural Meteorology, 9, 1971, pp. 3-20. 



 

123 

[10]   D. D. Baldocchi, D. R. Matt, B. A. Hutchison and R. T. McMillen, "Solar 
Radiation within an Oak--Hickory Forest: An Evaluation of the Extinction 
Coefficients for Several Radiation Components During Fully-Leafed and Leafless 
Periods," Agricultural and Forest Meteorology, 32, no. 3-4, 1984, pp. 307-322. 

 
[11]   G. B. Bonan, D. Pollard and S. L. Thompson, "Effects of Boreal Forest 

Vegetation on Global Climate," Nature, 359, no. 6397, 1992, pp. 716-718. 
 
[12]   P. J. Crutzen and M. O. Andreae, "Biomass Burning in the Tropics: Impact on 

Atmospheric Chemistry and Biogeochemical Cycles," Science, 250, no. 4988, 
1990, pp. 1669-1678. 

 
[13]   M. Génard, J. Dauzat, N. Franck, F. Lescourret, N. Moitrier, P. Vaast and G. 

Vercambre, "Carbon Allocation in Fruit Trees: From Theory to Modelling," Trees 
- Structure and Function,  2008,  

 
[14]   C. P. A. Bourque, P. A. Arp, R. B. B. Dickison and R. E. Mickle, "Destabilization 

of the Lower Atmosphere above a Forest: A Model," Agricultural and Forest 
Meteorology, 47, no. 1, 1989, pp. 49-74. 

 
[15]   K. T. Paw U, Y. Brunet, S. Collineau, R. H. Shaw, T. Maitani, J. Qiu and L. 

Hipps, "On Coherent Structures in Turbulence above and within Agricultural 
Plant Canopies," Agricultural and Forest Meteorology, 61, no. 1-2, 1992, pp. 55-
68. 

 
[16]   M. Mölder and A. Lindroth, "Thermal Roughness Length of a Boreal Forest," 

Agricultural and Forest Meteorology, 98-99, 1999, pp. 659-670. 
 
[17]   A. Venäläinen, H. Zeng, H. Peltola, A. Talkkari, H. Strandman, K. Wang and S. 

Kellomäki, "Simulations of the Influence of Forest Management on Wind Climate 
on a Regional Scale," Agricultural and Forest Meteorology, 123, no. 3-4, 2004, 
pp. 149-158. 

 
[18]   Y. Ouyang, "Phytoremediation: Modeling Plant Uptake and Contaminant 

Transport in the Soil-Plant-Atmosphere Continuum," Journal of Hydrology, 266, 
no. 1-2, 2002, pp. 66-82. 

 
[19]   Y. Ouyang, "Phytoextraction: Simulating Uptake and Translocation of Arsenic in 

a Soil-Plant System," International Journal of Phytoremediation, 7, no. 1, 2005, 
pp. 3 - 17. 

 
[20]   J. T. Bushey, S. D. Ebbs and D. A. Dzombak, "Development of a Plant Uptake 

Model for Cyanide," International Journal of Phytoremediation, 8, no. 1, 2006, 
pp. 25 - 43. 

 



 

124 

[21]   X.-Z. Yu, S. Trapp, P.-H. Zhou and L. Chen, "Effect of Temperature on the 
Uptake and Metabolism of Cyanide by Weeping Willows," International Journal 
of Phytoremediation, 9, no. 3, 2007, pp. 243 - 255. 

 
[22]   Y. Ouyang, "Modeling the Mechanisms for Uptake and Translocation of Dioxane 

in a Soil-Plant Ecosystem with Stella," Journal of Contaminant Hydrology, 95, 
no. 1-2, 2008, pp. 17-29. 

 
[23]   D. H. Greer, J. N. Wünsche, C. L. Norling and H. N. Wiggins, "Root-Zone 

Temperatures Affect Phenology of Bud Break, Flower Cluster Development, 
Shoot Extension Growth and Gas Exchange of 'Braeburn' (Malus Domestica) 
Apple Trees," Tree Physiology, 26, 2005, pp. 105-111. 

 
[24]   J.-w. Seo, D. Eckstein, R. Jalkanen, S. Rickebusch and U. Schmitt, "Estimating 

the Onset of Cambial Activity in Scots Pine in Northern Finland by Means of the 
Heat-Sum Approach," Tree Physiology, 28, no. 1, 2007, pp. 105-112. 

 
[25]   L. M. Hanks, T. D. Paine, J. G. Millar, C. D. Campbell and U. K. Schuch, "Water 

Relations of Host Trees and Resistance to the Phloem-Boring Beetle Phoracantha 
Semipunctata F. (Coleoptera: Cerambycidae)," Oecologia, 119, no. 3, 1999, pp. 
400-407. 

 
[26]   C. A. Geiger and A. P. Gutierrez, "Ecology of Heteropsylla Cubana (Homoptera: 

Psyllidae): Psyllid Damage, Tree Phenology, Thermal Relations, and Parasitism 
in the Field.," Environmental Entomology, 29, no. 1, 2000, pp. 76-86. 

 
[27]   J. Sivinski, T. Holler, R. Pereira and M. Romero, "The Thermal Environment of 

Immature Caribbean Fruit Flies, Anastrepha Suspensa Diptera:Tephritidae)," 
Florida Entomologist, 90, no. 2, 2007, pp. 347-357. 

 
[28]   B. Wermelinger and M. Seifert, "Analysis of the Temperature Dependent 

Development of the Spruce Bark Beetle Ips Typographus (L.) (Col., Scolytidae)," 
Journal of Applied Entomology, 122, no. 4, 1998, pp. 185-191. 

 
[29]   H. Chen and M. Tang, "Spatial and Temporal Dynamics of Bark Beetles in 

Chinese White Pine in Qinling Mountains of Shaanxi Province, China," 
Environmental Entomology, 36, no. 5, 2007, pp. 1124-1130. 

 
[30]   P. Li and T. E. Martin, "Nest-Site Selection and Nesting Success of Cavity-

Nesting Birds in High Elevation Forest Drainages," The Auk, 108, no. 2, 1991, pp. 
405-418. 

 
[31]   M. C. Kalcounis and R. M. Brigham, "Secondary Use of Aspen Cavities by Tree-

Roosting Big Brown Bats," Journal of Wildlife Management, 62, no. 2, 1998, pp. 
603-611. 



 

125 

[32]   K. L. Wiebe, "Microclimate of Tree Cavity Nests: Is It Important for 
Reproductive Success in Northern Flickers?," The Auk, 118, no. 2, 2001, pp. 412-
421. 

 
[33]   C. Körner, "A Re-Assessment of High Elevation Treeline Positions and Their 

Explanation," Oecologia, 115, no. 4, 1998, pp. 445-459. 
 
[34]   C. Körner and G. Hoch, "A Test of Treeline Theory on a Montane Permafrost 

Island," Artic, Antarctic, and Alpine Research, 38, no. 1, 2006, pp. 113-119. 
 
[35]   S. Mayr, G. Wieser and H. Bauer, "Xylem Temperatures During Winter in 

Conifers at the Alpine Timberline," Agricultural and Forest Meteorology, 137, 
no. 1-2, 2006, pp. 81-88. 

 
[36]   M. Y. Bader, M. Rietkerk and A. K. Bregt, "Vegetation Structure and 

Temperature Regimes of Tropical Alpine Treelines," Artic, Antarctic, and Alpine 
Research, 39, no. 3, 2007, pp. 353-364. 

 
[37]   G. R. Fahenstock and R. C. Hare, "Heating of Tree Trunks in Surface Fires," 

Journal of Forestry, 62, 1964, pp. 799-805. 
 
[38]   R. G. Vines, "Heat Transfer through Bark, and the Resistance of Trees to Fire," 

Australian Journal of Botany, 16, 1968, pp. 499-514. 
 
[39]   L. P. Herrington, A Theoretical and Experimental Investigation of the 

Temperature Field in Tree Stems. Ph. D. thesis, Yale University, 1964. 
 
[40]   R. W. Derby and D. M. Gates, "The Temperature of Tree Trunks - Calculated and 

Observed," American Journal of Botany, 53, no. 6, 1966, pp. 580-587. 
 
[41]   J. R. Hummel, J. R. Jones, D. R. Longtin and N. L. Paul, "Development of a 3-D 

Tree Thermal Response Model for Energy Budget and Scene Simulation Studies," 
LTR 91-002, SPARTA, Inc., Lexington, MA, 1991. 

 
[42]   C. Doussan, G. Vercambre and L. Page, "Modelling of the Hydraulic Architecture 

of Root Systems: An Integrated Approach to Water Absorption--Distribution of 
Axial and Radial Conductances in Maize," Annals of Botany, 81, no. 2, 1998, pp. 
225-232. 

 
[43]   J. R. Jones, "User's Guide for Treetherm: A 3-D Thermal Model for Single 

Trees," SCI-RPT 9, Sparta, Inc., Lexington, MA, USA, 1998. 
 
 
 



 

126 

[44]   L. Wu, M. B. McGechan, N. McRoberts, J. A. Baddeley and C. A. Watson, 
"Spacsys: Integration of a 3d Root Architecture Component to Carbon, Nitrogen 
and Water Cycling--Model Description," Ecological Modelling, 200, no. 3-4, 
2007, pp. 343-359. 

 
[45]   J. L. Jones, B. W. Webb, D. Jimenez, J. Reardon and B. Butler, "Development of 

an Advanced One-Dimensional Stem Heating Model for Application in Surface 
Fires," Canadian journal of forest research, 34, 2004, pp. 20-30. 

 
[46]   J. L. Jones, Development of an Advanced Stem Heating Model. Master of Science, 

Brigham Young University, 2003. 
 
[47]   T. R. Oke, Boundary Layer Climates, (London ; New York: Routledge), 1992. 
 
[48]   S. E. Howington, Discrete Network Modeling for Field-Scale Flow and Transport 

through Porous Media. Ph. D. thesis, University of Colorado, 1997. 
 
[49]   T. T. Kozlowski and S. G. Pallardy, Physiology of Woody Plants, (San Diego, 

CA: Academic Press), 1997. 
 
[50]   N. M. Holbrook and M. A. Zwieniecki, Vascular Transport in Plants, 

(Burlington, MA: Elsevier Academic Press), 2005. 
 
[51]   A. M. Gill and D. H. Ashton, "The Role of Bark Type in Relative Tolerance to 

Fire of Three Central Victorian Eucalypts," Australian Journal of Botany, 16, 
1968, pp. 491-498. 

 
[52]   F. M. Turrell and S. W. Austin, "Comparative Nocturnal Thermal Budgets of 

Large and Small Trees," Ecology, 46, no. 1/2, 1965, pp. 25-34. 
 
[53]   F. M. Turrell, S. W. Austin, D. McNee and W. J. Park, "Thermal Conductivity of 

Functional Citrus Tree Wood," Plant Physiology, 42, no. 8, 1967, pp. 1025-1034. 
 
[54]   L. P. Herrington, On Temperature and Heat Flow in Tree Stems, (New Haven,: 

Yale University), 1969. 
 
[55]   C. R. Barnes, "The Significance of Transpiration," Science, 15, 1902, p. 460. 
 
[56]   E. D. Woodhouse, "Sap Hydraulics," Plant Physiology, 8, no. 2, 1933, pp. 177-

202. 
 
[57]   R. H. Swanson, "Significant Historical Developments in Thermal Methods for 

Measuring Sap Flow in Trees," Agricultural and Forest Meteorology, 72, no. 1-2, 
1994, pp. 113-132. 

 



 

127 

[58]   D. C. Marshall, "Measurement of Sap Flow in Conifers by Heat Transport," Plant 
Physiology, 33, 1958, pp. 385-396. 

 
[59]   M. R. Kaufmann and P. J. Kramer, "Phloem Water Relations and Translocation," 

Plant Physiology, 42, no. 2, 1967, pp. 191-194. 
 
[60]   J. Cermak, E. Cienciala, J. Kucera and J.-E. Hallgren, "Radial Velocity Profiles of 

Water Flow in Trunks of Norway Spruce and Oak and the Response of Spruce to 
Severing," Tree Physiology, 10, 1992, pp. 367-380. 

 
[61]   A. Granier, T. Anfodillo, M. Sabatti, H. Cochard, E. Dreyer, M. Tomasi, R. 

Valentini and N. Breda, "Axial and Radial Water Flow in the Trunks of Oak 
Trees: A Quantitative and Qualitative Analysis," Tree Physiology, 14, 1994, pp. 
1383-1396. 

 
[62]   A. Granier and D. Loustau, "Measuring and Modelling the Transpiration of a 

Maritime Pine Canopy from Sap-Flow Data," Agricultural and Forest 
Meteorology, 71, no. 1-2, 1994, pp. 61-81. 

 
[63]   A. Granier, P. Biron and D. Lemoine, "Water Balance, Transpiration and Canopy 

Conductance in Two Beech Stands," Agricultural and Forest Meteorology, 100, 
no. 4, 2000, pp. 291-308. 

 
[64]   N. Nadezhdina, H. Tributsch and J. Cermak, "Infra-Red Images of Heat Field 

around a Linear Heater and Sap Flow in Stems of Lime Trees under Natural and 
Experimental Conditions," Annals of Forest Science, 61, 2004, pp. 203-213. 

 
[65]   F. C. Meinzer, J. R. Brooks, J. C. Domec, B. L. Gartner, J. M. Warren, D. R. 

Woodruff, K. Bible and D. C. Shaw, "Dynamics of Water Transport and Storage 
in Conifers Studied with Deuterium and Heat Tracing Techniques," Plant, Cell & 
Environment, 29, no. 1, 2006, pp. 105-114. 

 
[66]   G. M. Dusinberre, Heat Transfer Calculations by Finite Differences., (Scranton, 

PA: International Textbook Co.), 1961. 
 
[67]   F. C. Rego and E. Rigolot 1990 Heat Transfer through Bark: A Simple Predictive 

Model. In: In Proceedings of the Third International Symposium on Fire Ecology, 
ed J G Goldammer and M J Jenkins (Freiburg, Germany: SPD Academic 
Publishing) pp 157-161. 

 
[68]   B. E. Potter and J. A. Andresen, "A Finite-Difference Model of Temperatures and 

Heat Flow within a Tree Stem," Canadian journal of forest research, 32, no. 3, 
2002, pp. 548-555. 

 



 

128 

[69]   W. Simpson and A. TenWolde, "Physical Properties and Moisture Relations of 
Wood," Wood Handbook - Wood as an Engineering Material, (Madison, WI: 
U.S. Department of Agriculture, Forest Service, Forest Products Laboratory) 
1999. 

 
[70]   R. E. Martin, "Thermal Properties of Bark," Forest Products Journal, 13, no. 10, 

1963, pp. 419-426. 
 
[71]   I. R. Cowan, "Transport of Water in the Soil-Plant-Atmosphere System," The 

Journal of Applied Ecology, 2, no. 1, 1965, pp. 221-239. 
 
[72]   P. Farnum and G. F. Carey, "Moisture Transport in a Soil-Plant System: A 

Mathematical Model and Finite Element Analysis," Advances in Water 
Resources, 4, no. 2, 1981, pp. 67-76. 

 
[73]   J. S. Sperry, U. G. Hacke, R. Oren and J. P. Comstock, "Water Deficits and 

Hydraulic Limits to Leaf Water Supply," Plant, Cell & Environment, 25, no. 2, 
2002, pp. 251-263. 

 
[74]   K. A. McCulloh, J. S. Sperry and F. R. Adler, "Water Transport in Plants Obeys 

Murray's Law," Nature, 421, no. 6926, 2003, pp. 939-942. 
 
[75]   J. S. Sperry, V. Stiller and U. G. Hacke, "Xylem Hydraulics and the Soil-Plant-

Atmosphere Continuum: Opportunities and Unresolved Issues," Agronomy 
Journal, 95, no. 6, 2003, pp. 1362-1370. 

 
[76]   J. W. Deardorff, "Efficient Prediction of Ground Surface Temperature and 

Moisture, with Inclusion of a Layer of Vegetation," Journal of Geophysical 
Research, 83, no. C4, 1978, pp. 1889-1903. 

 
[77]   K. L. Bristow, G. S. Campbell, R. I. Papendick and L. F. Elliott, "Simulation of 

Heat and Moisture Transfer through a Surface Residue--Soil System," 
Agricultural and Forest Meteorology, 36, no. 3, 1986, pp. 193-214. 

 
[78]   G. S. Campbell and J. M. Norman, An Introduction to Environmental Biophysics, 

(New York: Springer-Verlag), 1998. 
 
[79]   G. D. Buchan, "Predicting Bare Soil Temperature. I. Theory and Models for the 

Multi-Day Mean Diurnal Variation," European Journal of Soil Science, 33, no. 2, 
1982, pp. 185-197. 

 
[80]   I. Braud, A. C. Dantas-Antonino, M. Vauclin, J. L. Thony and P. Ruelle, "A 

Simple Soil-Plant-Atmosphere Transfer Model (Sispat) Development and Field 
Verification," Journal of Hydrology, 166, no. 3-4, 1995, pp. 213-250. 

 



 

129 

[81]   I. Braud, N. Varado and A. Olioso, "Comparison of Root Water Uptake Modules 
Using Either the Surface Energy Balance or Potential Transpiration," Journal of 
Hydrology, 301, no. 1-4, 2005, pp. 267-286. 

 
[82]   C. L. Wu, K. W. Chau and J. S. Huang, "Modelling Coupled Water and Heat 

Transport in a Soil-Mulch-Plant-Atmosphere Continuum (Smpac) System," 
Applied Mathematical Modelling, 31, no. 2, 2007, pp. 152-169. 

 
[83]   J. F. Siau, Transport Processes in Wood, (New York: Springer-Verlag), 1984. 
 
[84]   J. D. MacLean, "Thermal Conductivity of Wood," Heading, piping, and air 

conditioning, 13, 1941, pp. 380-391. 
 
[85]   J. Siau, "A Geometrical Model for Thermal Conductivity," Wood and Fiber 

Science, 1, no. 4, 1970, pp. 302-307. 
 
[86]   J. F. Siau, Flow in Wood, (Syracuse, New York: Syracuse University Press), 

1971. 
 
[87]   J. F. Siau, Wood: Influence of Moisture on Physical Properties, (Virginia Tech.: 

Department of Wood Science and Forest Products), 1995. 
 
[88]   B. M. Suleiman, J. Larfeldt, B. Leckner and M. Gustavsson, "Thermal 

Conductivity and Diffusivity of Wood," Wood Science and Technology, 33, no. 6, 
1999, pp. 465-473. 

 
[89]   H. Gu, Structure Based, Two-Dimensional, Anisotropic, Transient Heat 

Conduction Model for Wood. Dissertation, Virginia Polytechnic Institute and 
State University, 2001. 

 
[90]   H.-m. Gu and A. Zink-Sharp, "Geometric Model for Softwood Transverse 

Thermal Conductivity. Part I," Wood Science, 37, no. 4, 2005, pp. 699-711. 
 
[91]   H. Gu and J. Hunt, "Two-Dimensional Finite Element Heat Transfer Model of 

Softwood. Part Ii. Macrostructural Effects," Wood and Fiber Science, 38, no. 4, 
2006, pp. 599-608. 

 
[92]   H. Gu and J. Hunt, "Two-Dimensional Finite Element Heat Transfer Model of 

Softwood. Part Iii. Effect of Moisture Content on Thermal Conductivity," Wood 
and Fiber Science, 39, no. 1, 2007, pp. 159-166. 

 
[93]   Y. Hiraiwa and T. Kasubuchi, "Temperature Dependence of Thermal 

Conductivity of Soil over a Wide Range of Temperature (5-75 Deg C)," European 
Journal of Soil Science, 51, no. 2, 2000, pp. 211-218. 

 



 

130 

[94]   P. Cosenza, R. Guérin and A. Tabbagh, "Relationship between Thermal 
Conductivity and Water Content of Soils Using Numerical Modelling," European 
Journal of Soil Science, 54, 2003, pp. 581-587. 

 
[95]   D. A. de Vries 1963 Thermal Properties of Soils. In: Physics of plant 

environment., ed W R van Wijk (Amsterdam: North-Holland Publishing 
Company) pp 210-235. 

 
[96]   T. E. Ochsner, R. Horton and T. Ren, "A New Perspective on Soil Thermal 

Properties," Soil Science Society of America Journal, 65, no. 6, 2001, pp. 1641-
1647. 

 
[97]   J. Côté and J.-M. Konrad, "A Generalized Thermal Conductivity Model for Soils 

and Construction Materials," Canadian Geotechnical Journal, 42, 2005, pp. 443-
458. 

 
[98]   J. Côté and J.-M. Konrad, "Thermal Conductivity of Base-Course Materials," 

Canadian Geotechnical Journal, 42, 2005, pp. 61-78. 
 
[99]   O. Johansen, Thermal Conductivity of Soils. Ph.D., University of Trondheim, 

1975. 
 
[100]   S. Lu, T. Ren, Y. Gong and R. Horton, "An Improved Model for Predicting Soil 

Thermal Conductivity from Water Content at Room Temperature," Soil Science 
Society of America Journal, 71, no. 1, 2007, pp. 8-14. 

 
[101]   L. Richards, "Capillary Conduction of Liquids through Porous Mediums," 

Physics, 1, no. 5, 1931, pp. 318-333. 
 
[102]   M. T. van Genuchten, "A Closed-Form Equation for Predicting the Hydraulic 

Conductivity of Unsaturated Soils," Soil Science Society of America Journal, 44, 
1980, pp. 892-898. 

 
[103]   J. C. Tannehill, D. A. Anderson and R. H. Pletcher, Computational Fluid 

Mechanics and Heat Transfer, (New York: Taylor & Francis), 1997. 
 
[104]   M. F. Modest, Radiation Heat Transfer, (New York: Academic Press), 2003. 
 
[105]   R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, (Taylor and 

Francis, New York), 2002. 
 
 
 
 



 

131 

[106]   S. E. Howington, J. F. Peters, J. R. Ballard, Jr., O. J. Eslinger, J. R. Fairley, R. V. 
Kala, R. A. Goodson, S. J. Price, A. M. Hines and L. D. Wakeley, "Using 
Computer Simulation to Explore the Importance of Hydrogeology in Remote 
Sensing for Explosive Threat Detection," Military Aspects of Hydrogeology:  Past 
and Present, ed J D Mather and E P F Rose (London, UK: Geological Society of 
London, Special Publications) 2011. 

 
[107]   H. A. Van der Vorst, "Bi-Cgstab: A Fast and Smoothly Converging Variant of Bi-

Cg for the Solution of Nonsymmetric Linear Systems," SIAM Journal on 
scientific and Statistical Computing, 13, 1992, p. 631. 

 
[108]   J. R. Howell, "The Monte Carlo Method in Radiative Heat Transfer," Journal of 

Heat Transfer, 120, 1998, pp. 547-560. 
 
[109]   M. F. Modest, "Backward Monte Carlo Simulations in Radiative Heat Transfer," 

Journal of Heat Transfer, 125, no. 1, 2003, pp. 57-62. 
 
[110]   J. E. Jones and C. S. Woodward, "Newton-Krylov-Multigrid Solvers for Large-

Scale, Highly Heterogeneous, Variably Saturated Flow Problems," Advances in 
Water Resources, 24, no. 7, 2001, pp. 763-774. 

 
[111]   D. A. Knoll and D. E. Keyes, "Jacobian-Free Newton-Krylov Methods: A Survey 

of Approaches and Applications," Journal of Computational Physics, 193, no. 2, 
2004, pp. 357-397. 

 
[112]   J. S. Liu, Monte Carlo Strategies in Scientific Computing, (New York: Springer 

Verlag), 2008. 
 
[113]   P. Hsu and H. Robbins, "Complete Convergence and the Law of Large Numbers," 

Proceedings of the National Academy of Sciences of the United States of America, 
33, no. 2, 1947, p. 25. 

 
[114]   S. A. Dupree and S. K. Fraley, A Monte Carlo Primer : A Practical Approach to 

Radiation Transport, (New York: Kluwer Academic/Plenum), 2002. 
 
[115]   Y. Jaluria and K. E. Torrance, Computational Heat Transfer, (New York: Taylor 

& Francis), 2003. 
 
[116]   J. R. Ballard, Jr., J. A. Smith and G. G. Koenig, "Towards a High Temporal 

Frequency Grass Canopy Thermal Ir Model for Background Signatures," 
Proceedings of the SPIE. Orlando, FL, USA, 2004. 

 
[117]   G. E. Myers, Analytical Methods in Conduction Heat Transfer, (New York: 

McGraw-Hill), 1971. 
 



 

132 

[118]   A. Bejan, Convection Heat Transfer, (Hoboken, New Jersey: John Wiley & 
Sons), 2004. 

 
[119]   F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of 

Heat and Mass Transfer, (Hoboken, NJ: John Wiley & Sons), 2007. 
 
[120]   J. H. Gruninger, D. C. Robertson and M. M. Pervaiz, "Data Analysis for Bark and 

Leaf Reflectance Measurements," PL-TR-92-2151, Spectral Sciences, Inc., 
Burlington, MA, 1992. 

 
[121]   Harvard Forest. 2010. Fisher Meteorological Station. 

http://harvardforest.fas.harvard.edu/hfmet/. Oct. 4, 2010. 
 
[122]   National Renewable Energy Laboratory, Solar Radiation Research Laboratory. 

2010. Baseline Measurement System. http://www.nrel.gov/midc/srrl_bms/. Oct. 4, 
2010. 

 
[123]   H. Si 2006 On Refinement of Constrained Delaunay Tetrahedralizations. In: 

Proceedings of the 15th International Meshing Roundtable, (Birmingham, AL, 
USA: Springer) pp 509-528. 

 
[124]   M. Sezgin and B. Sankur, "Survey over Image Thresholding Techniques and 

Quantitative Performance Evaluation," Journal of Electronic imaging, 13, 2004, 
p. 146. 

 
[125]   J. R. Ballard, Jr. and J. A. Smith, "Hyperspectral Canopy Reflectance Modeling 

and Eo-1 Hyperion," SPIE Conference 4725 on Algorithms and Technologies for 
Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. Orlando, FL, 2002. 

 

 

http://harvardforest.fas.harvard.edu/hfmet/�
http://www.nrel.gov/midc/srrl_bms/�

	A three-dimensional heat and mass transport model for a tree within a forest
	Recommended Citation

	August 2011
	1.1 Motivation
	1.2 Objectives
	1.3 Description of the Soil-Root-Stem-System
	1.4 Technical Contributions of the Proposed Study
	1.5 Dissertation Outline
	2.1 Background and Terminology
	2.1.1 Radiation in the Forest Environment
	2.1.2 Soil Physiology
	2.1.3 Plant Physiology

	2.2 Literature Review
	2.2.1 Tree Temperature Experiments and Measurements
	2.2.2 Tree Hydraulic Experiments and Measurements
	2.2.3 Tree Thermal Simulations
	2.2.4 Tree Hydraulic Simulations
	2.2.5 Soil Thermal Simulations
	2.2.6 Thermal Conductivity Theoretical Models

	3.1 Governing Equations
	3.1.1 Fluid and Heat Flow Governing Equations
	3.1.2 Radiative Heat Transfer

	3.2 Material Mixing Functions
	3.3 Numerical Methods
	3.3.1 Fluid Flow and Conductive Heat Transfer Numerical Method
	3.3.2 Thermal Radiation Heat Transfer Numerical Method

	4.1 Longwave Thermal Infrared Heat Transfer Verification
	4.2 Downwelling Longwave Sky Radiance Verification
	4.2.1 Backward Monte Carlo Simulation for the Sky Longwave Radiance
	4.2.2 Backward Monte Carlo Results

	4.3 Shortwave Thermal Infrared Radiance Verification
	4.3.1 Direct Shortwave Radiation Simulation Method
	4.3.2 Verification of the Direct Shortwave Radiation Simulation

	4.4 Conductive Heat Transfer through Porous Media
	4.5 Convective Heat Transfer in Porous Media
	5.1 Herrington (1964)
	5.1.1 Computational and Material Properties Description for the Herrington Simulation
	5.1.2 Results for the Herrington Simulation
	5.1.3 Herrington Simulation Discussion

	5.2 Derby and Gates (1965)
	5.2.1 Computational and Material Properties Description for the Derby and Gates Simulation
	5.2.2 Results for the Derby and Gates Simulation

	6.1 Computational Design
	6.1.1 Background
	6.1.2 Geometric Design
	6.1.3 Material Properties
	6.1.4 Boundary Conditions
	6.1.5 Meteorological Conditions

	6.2 Simulation Matrix
	6.3 Winter Simulation Results
	6.3.1 Winter Solar Radiation
	6.3.2 Tree Trunk Winter Temperature History
	6.3.3 Winter Soil Temperature History

	6.4 Summer Simulation Results
	6.4.1 Early Summer Solar Radiation SRSS Results
	6.4.2 Fluid Flow and Moisture Distribution Results for Early Summer
	6.4.3 Tree Trunk Early Summer Temperature History

	6.5 Summary


