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Hundreds of wetland bird species use ricelands annually in the Gulf Coast Prairie
region of Louisiana and Texas. Much of the original ecosystem was transformed for rice
and other crops, cattle ranching, flood control, and other human uses. Flooded
production and idled ricelands provide critical foraging habitat for breeding, migrating,
and wintering wetland birds. Ricelands in coastal Louisiana and Texas provide
approximately 42% of the estimated habitat carrying capacity for wintering waterfowl in
this region. In 2010, the Deepwater Horizon oil spill in the Gulf of Mexico prompted
enactment of the Migratory Bird Habitat Initiative (MBHI) by USDA Natural Resources
Conservation Service. The MBHI provided avian habitat, including flooded ricelands,
inland from oil impacted areas. My objectives were to: 1) estimate and model variation
in biomass of waste rice and natural seeds as potential waterfowl forage in Gulf Coast
Prairie ricelands, 2) estimate and model variation in wetland bird use of ricelands, and 3)
conduct sensitivity analyses of bioenergetics models by varying foraging thresholds and
true metabolizable energy (TME) values. A growing season of ~270 days allows Gulf

Coast rice producers to grow two rice crops (i.e., the second termed ratoon). Waste rice



was greatest in production fields with harvested and standing ratoon crops, and natural
seed biomass was greatest in idled fields with standing vegetation. Wetland bird species
richness and waterbird abundance were greatest in shallowly flooded (1-15 cm) ricelands
with sparse vertical vegetation (1-20 cm), and duck abundance was greatest in shallow—
intermediately (1-30 cm) flooded ricelands with short vegetation (1-15 cm). Shallowly
flooded rice fields containing harvested or standing ratoon crops, and shallowly flooded
idled fields with standing vegetation provided abundant potential foods for waterfowl and
waterbirds. Bioenergetics models indicated that planners in the Gulf Coast Prairie region
may be underestimating riceland habitat requirements for waterfowl by 10,000 ha.
Models were most sensitive to changes in seed biomass estimates, and less sensitive to
changes in foraging thresholds and TME values. Collectively, these results will facilitate
conservation partners to refine models for conserving habitats for waterfowl and other

waterbirds in the Gulf Coast Prairie.
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CHAPTER I

INTRODUCTION

Hundreds of wetland bird species that include waterfowl, wading birds, and
shorebirds annually use nutrient rich interior and coastal wetlands in the Gulf Coast
Prairie (GCP) region of Louisiana and Texas (Esslinger and Wilson 2001, Wilson and
Esslinger 2002, Eadie et al. 2008, Marty et al. 2015). Pristine habitats of the GCP
included extensive coastal marshes and prairies, freshwater wetlands, and savannas
(Esslinger and Wilson 2001). However, much of this original ecosystem was lost or
transformed for rice and other commercial crops, flood control, and other land uses (Dahl
2011). The region has an impervious clay pan, long growing season, mild climate,
abundant rainfall (77-113 cm annually; Gosselink et al. 1979, Hobaugh et al. 1989), and
an abundance of land that provides optimal rice producing conditions. The modern rice
industry in the GCP began in the late 1800s. Rice agriculture continued to expand within
the GCP through the 1900s to >400,000 ha, but has declined to approximately 140,000 ha
in 2015 (USDA 2016). Despite recent declines, rice remains among the dominant crops
in the GCP landscape.

Although ricelands are not considered as diverse and productive as natural
wetlands, vegetation structure of rice is dense herbaceous, similar to some seasonal
wetlands. Production and idled ricelands provide critical wetland habitat for breeding,
migrating, and wintering wetland birds, and are an important source of dietary energy

1



(Meanley 1956, Remsen et al. 1991, Rettig 1994, Elphick and Oring 1998, Eadie et al.
2008, Stafford et al 2010). Flooded ricelands typically provide abundant energy through
waste rice, natural seeds, tubers, and invertebrates (Low and Bellrose 1944, Fredrickson
and Taylor 1982, Kross et al. 2008, Hagy and Kaminski 2012, Schummer et al. 2012,
Marty et al. 2015). The Gulf Coast Joint Venture (GCJV), a partnership around which
collaborative conservation for migratory bird habitats is based in the Western Gulf Coast,
endeavors to provide habitat for millions of wetland birds annually during winter (U.S.
Department of the Interior and Environmental Canada 1986, Esslinger and Wilson 2001,
Wilson and Esslinger 2002, U.S. Department of the Interior et al. 2012). Ricelands in
coastal Louisiana and Texas provide approximately 42% of the estimated carrying
capacity for wintering waterfowl in the GCJV region (Petrie et al. 2014).

In 2010, the Deepwater Horizon oil spill in the Gulf of Mexico affected vast
hectarage of coastal wetland bird habitats along the Gulf Coast, which prompted natural
resource agencies to develop programs for enhancing inland habitats for migratory birds
(Davis et al. 2014, Kaminski and Davis 2014). One of these programs was the Migratory
Bird Habitat Initiative (MBHI), which was implemented through the Natural Resources
Conservation Service (NRCS) and led to cooperative efforts among conservation
organizations, agricultural producers, and a variety of other landowners to enhance
habitat for migratory birds on private lands (Davis et al. 2014, Kaminski and Davis
2014). In the GCP, one of the primary objectives was to flood production and idled
ricelands and other wetland habitats during autumn and winter.

Because ricelands are a major component of the carrying capacity for waterfowl

wintering in the GCJV, precise contemporary estimates of waste-rice and natural seed

2



biomass are necessary for effective habitat conservation planning and implementation.
Current estimates of waste-rice and natural seed biomass used in GCJV carrying capacity
models were derived from studies that were relatively limited in temporal and spatial
replication, and therefore likely did not fully capture the variability in food resources
across space and time within the GCJV region (T. C. Michot and W. Norling, U. S.
Geological Survey, unpublished data).

The need for precise and contemporary food resource estimates, and the initiation
of the MBHI both afforded me the opportunity to investigate waste-rice and natural seed
biomass, and wetland bird use of GCP production and idled ricelands. The objectives for
my dissertation research were to: (Chapter II; 1) estimate waste-rice and natural seed
biomass in production, seed-rice, and idled rice fields with an acceptable level of
precision (CV <15%; Stafford et al. 2006a,b); 2) model variation in field-level rice and
natural seed biomass in production and idled rice fields in November, relative to weather,
soil, and field classifications for comparison with similar research conducted in the MAV
(Stafford et al. 2006a,b); and 3) estimate and compare November waste-rice and natural
seed biomass by seed variety (i.e., Clearfield® and conventional); (Chapter III; 4)
estimate and model variation in duck and other waterbird (i.e., waders, shorebird, rails,
and other birds) species richness and abundance in relation to habitat characteristics and
rice-seed varieties of production rice fields, and habitat characteristics of idled rice fields;
(Chapter 1V; 5) investigate effects that applying GUDs and FATs at different ecological
scales, and using average versus species-specific TME values, have on available
metabolizable energy (AME) estimates; and subsequent habitat requirements necessary to

support LCP waterfowl populations from August—March; and 6) compare estimates of

3



habitat requirements from my study to current GCJV estimates. Previously published
data collected in 2010 as a part of my Masters pilot study are included in Chapter II, III,

and IV (Marty 2013, Marty et al. 2015)
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CHAPTER II

SPATIO-TEMPORAL EVALUATION OF WASTE-RICE AND NATURAL SEED
BIOMASS IN PRODUCTION AND IDLED RICE FIELDS IN THE

GULF COAST PRAIRIES OF LOUISIANA AND TEXAS

The North American Waterfowl Management Plan (NAWMP) was implemented
in 1986 to increase continental waterfowl populations that declined during the early
1980s from widespread drought and anthropogenic land uses in Prairie Pothole and
Parkland Regions of the northern United States and southern Canada (U.S. Department of
Interior and Environment Canada 1986). The NAWMP established habitat and
population goals for species in North America, and charged Joint Ventures (JV) with
implementing NAWMP recommendations at regional scales. Since inception, the
NAWMP has adapted and evolved as new scientific information has become available to
support waterfowl conservation decisions (Humburg and Anderson 2014).

The food-limitation hypothesis has been conceived and supported by scientific
literature indicating that habitat conditions (i.e., food biomass, habitat and food
availability, cover, etc.) and diet quality (i.e., seeds, vegetation, and invertebrates) can
influence body condition, survival, migration phenology, and clutch size in birds (Lack
1947; Heitmeyer 1988, 2006; Loesch and Kaminski 1989; Moon et al. 2007; Osnas et al.
2016). During non-breeding periods, habitat and resource use is essential for successful
completion of spring migration and subsequent breeding (Paulus 1988, Davis et al. 2014).
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Diet composition and access to high quality foraging habitats influence body condition,
including nutrient reserves for migrating and wintering waterfowl (Delnicki and Reinecke
1986, Jorde et al. 1995, Ballard et al. 2006). Wetland habitat conditions encountered by
waterfowl, particularly in late winter and early spring, may influence subsequent
reproduction and recruitment (Heitmeyer and Fredrickson 1981, Kaminski and Gluesing
1987, Raveling and Heitmeyer 1989, Osnas et al. 2016). Williams et al. (1999) suggested
availability of food resources as a factor with potential to influence survival of waterfowl
populations during non-breeding periods. Bioenergetics models, which represent a class
of resource depletion models, are used to integrate the food-limitation hypothesis with
conservation plans for migrating and wintering waterfowl. Generally, JVs in non-
breeding areas for waterfowl presume that food abundance and availability during non-
reproductive seasons can influence waterfowl body condition and survival (i.e., the food-
limitation hypothesis; Williams et al. 2014). The Gulf Coast Joint Venture (GCJV) of
NAWMP endeavors to provide foraging habitat for approximately 14 million ducks and
1.6 million geese (Anatidae) annually during winter, emphasizing the importance of the
Gulf Coast Prairies (GCP) ecoregion of Louisiana and Texas for sustainment of North
American waterfowl and waterbird populations (U.S. Department of the Interior and
Environmental Canada 1986, Esslinger and Wilson 2001, U.S. Department of the Interior
et al. 2012). Given the need to support 17-19% of the continental waterfowl population
during winter, the GCJV prioritizes conservation actions that enhance food availability
within the GCP ecoregion.

The Chenier Plain (CP) of Louisiana (LCP) and Texas (TCP) and Texas Mid-
Coast (TMC) are GCJV initiative areas (i.e., conservation planning regions) where
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migrating and wintering waterfowl commonly consume energy rich food resources such
as waste rice (3.34 kcal/g; Reinecke et al. 1989) and natural seeds (2.47 kcal/g; Kaminski
et al. 2003). Rice is an important agricultural seed used by wetland birds and is often
grown in areas where natural wetlands previously occurred because of hydric soils (Eadie
et al. 2008). Most rice grown in the United States is produced in the Central Valley of
California, the Mississippi Alluvial Valley (MAV), and the GCP (Petrie et al. 2014).
Although commercial agriculture and other anthropogenic activities have altered the
natural biotic communities of these landscapes, rice and other croplands provide
important habitats for diverse guilds of waterfowl and waterbirds (Hobaugh et al. 1989,
Reinecke et al. 1989, Elphick et al. 2010, Dahl 2011, Marty et al. 2015). In the
southeastern United States, rice agriculture extends across southeastern Missouri, eastern
Arkansas, western Mississippi, and northern Louisiana, south and westward into the CP
and TMC,; these latter two regions formed the core areas of my research.

The rice growing region is one of the most important waterfowl habitats in the
GCP ecoregion, yet numbers have declined since the 1980’s. In the late 1960’s,
producers planted approximately 429,993 ha of rice in southwest Louisiana and along the
upper coast of Texas (U.S. Department of Agriculture [USDA] 2017). However, low
commodity prices, high productions costs, farm policy, urban development, and
restrictions on water supplies have reduced rice production in the GCP, with only
140,000 ha of rice planted in 2015 (USDA 2017). In addition to the aforementioned
commercial rice production, seed rice (i.e., rice grown and harvested for subsequent
planting) is produced in the GCP ecoregion. Seed-rice production in Louisiana decreased
63% from 6,074 ha in 2005 to 2,221 ha in 2015. Conversely, during 20082011, seed-
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rice production in Texas increased 109% from 8,036 ha to 16,796 ha. However, seed-rice
production in Texas has steadily declined since 2011 with only 1,171 ha planted in 2015.
Seed-rice production has declined of late because, 1) the commercial rice price has not
followed other commodities and has been suppressed for a long period of time causing
growers to rotate to other crops, 2) the seeding rate of rice has been significantly reduced,
and 3) yields of the newly developed rice varieties is increasing (L. Cannon, Louisiana
Department of Agriculture and Forestry, personal communication). Thus, a more
complete understanding of food resource dynamics provided by riceland systems is
needed to support programs, policies, and management actions that encourage the
sustainability of rice production with respect to waterfowl and other wetland birds.

Spatio-temporal dynamics of rice lost during harvest (i.e., waste rice) and natural
seeds for foraging waterfowl have been studied extensively in some of the rice growing
regions of the United States (Miller et al. 1989; Reinecke et al. 1989; Loughman and
Batzer 1992; Manley et al. 2004; Stafford et al. 2006a,b; Kross et al. 2008a,b; Greer et al.
2009; Havens et al. 2009; Hagy and Kaminski 2012). Abundance of waste rice is
variable and influenced by region, sampling month, harvester type (i.e., conventional or
stripper header), and post-harvest farming practices including, burning, disking, rolling,
flooding, or those remaining dry and with standing stubble (Stafford et al. 20065, Kross
et al. 2008a, Havens et al. 2009). Increased harvester efficiency and early planting and
harvest result in marked decomposition of waste rice during fall (Manley et al. 2004,
Stafford et al. 2006b). Over a 71% decline in waste-rice biomass from time of harvest
(271 kg [dry]/ha; mid-late September) through late fall (78.4 kg [dry]/ha; late November-
early December) has been documented in the MAV (Stafford et al. 20060). By
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comparison, managed emergent wetlands in the MAV may contain natural seed biomass
of 556 kg [dry]/ha (Kross et al. 2008b). These results have important implications for
waterfowl habitat conservation planning and implementation, because rice fields that are
winter flooded account for 11% and 44% of the estimated habitat carrying capacity for
wintering ducks in the MAV and Central Valley of California, respectively (Petrie et al.
2014). Production and idled ricelands in coastal Louisiana and Texas provide
approximately 42% of the estimated carrying capacity for wintering waterfowl in the
GCJV region (Petrie et al. 2014). Thus, precise and contemporary estimates of waste-rice
and natural seed biomass, and an understanding of their temporal dynamics, are necessary
for effective habitat conservation planning and implementation.

Agricultural practices for rice production differ among the three primary growing
regions of the United States and are influenced by climate (i.e., length of the growing
season), economics, water resources, soil characteristics, and other factors (Manley et al.
2004, Eadie et al. 2008, Stafford et al. 2010, Marty et al. 2015). In the CP and TMC,
producers regularly grow and harvest a second rice crop (i.e., ratoon [Spanish origin from
the word retono, meaning a sprout]) in November from the first rice crop that is harvested
in July—August. This practice is generally not possible in the MAV or Central Valley of
California because of shortened growing seasons (Bollich and Turner 1988, Hobaugh et
al. 1989, Eadie et al. 2008, Havens et al. 2009, Stafford et al. 2010). Planting and harvest
practices for seed rice include a single harvest in autumn, followed by an idle period
through winter and spring. Additionally, crop rotation strategies differ among rice
growing regions of the United States. Growing rice in the same field during consecutive

years would increase disease and weed prevalence, and decrease soil fertility resulting in
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reduced yields (Hohman et al. 2014). In the Central Valley of California and the MAV,
rice fields are commonly rotated between years with other crops such as soybean, wheat,
or corn. However, in the GCP, rotational options are limited, and producers typically idle
rice fields for 1-2 years. In idle rice fields, natural vegetation (i.e., moist-soil plants)
such as grasses (Poaceae), sedges (Cyperaceae), rushes (Juncaceae), and forbs
(Polygonaceae) will typically grow and produce abundant seeds and tubers, as well as
provide substrates for aquatic invertebrates (Low and Bellrose 1944, Fredrickson and
Taylor 1982, Kross et al. 20085, Hagy and Kaminski 2012, Schummer et al. 2012, Marty
et al. 2015). During idle years, some producers will graze cattle to aid in the reduction of
prevalent weeds and grasses, which provides an economic return from idled land
(Craigmiles 1975; Hobaugh et al. 1989).

Rice producers plant different rice varieties. Clearfield® rice varieties provide
superior weed control compared to traditional rice varieties, and hence have become
increasingly popular for agriculture since 2002 (Wilson et al. 2010). More than 60% of
all rice hectares in the United States are now planted in Clearfield® varieties (Wilson et
al. 2010). Clearfield® is a non-genetically modified crop technology that provides
selective herbicide resistance to rice plants, thereby enabling increased control of
broadleaf and grass plants in rice fields (Croughan 2003). Despite apparent advantages
for producers, there is growing speculation among waterfowl hunters that traits related to
Clearfield® rice (e.g., more effective weed control) are leading to decreased use, or
avoidance, of fields by waterfowl. If waterfowl and other granivorous waterbirds avoid

fields planted with Clearfield® rice varieties, there could be implications for waterfowl
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and other avian foraging strategies, body condition, and subsequent survival of
waterfowl.

The GCJV region provides essential habitat to large concentrations of wintering
waterfowl and other wetland birds. However, our lack of a current understanding of
spatial and temporal dynamics of waste-rice and natural seed biomass justifies need for a
region-wide study to estimate abundances of these important foods. Previous biomass
estimates of waste rice and natural seeds in the GCJV region were derived from studies
with limited temporal and spatial replication, and existing information is outdated (T. C.
Michot and W. Norling, U.S. Geological Survey, unpublished data).

My objectives were to: 1) estimate waste-rice and natural seed biomass in
production, seed-rice, and idled rice fields with an acceptable level of precision (CV
<15%; Stafford et al. 2006a,b), 2) model variation in field-level rice and natural seed
biomass in production and idled rice fields in November, relative to weather, soil, and
field classifications for comparison with similar research conducted in the MAV
(Stafford et al. 2006a,b), and 3) estimate and compare November waste-rice and natural
seed biomass by seed variety (i.e., Clearfield® and conventional). Ihypothesized that
waste-rice and natural seed biomass in production, seed-, and idled rice fields would vary
temporally and among field classifications. I predicted that waste-rice biomass would
increase from August—-November in fields with harvested and standing ratoon crops,
because of the increase of waste rice resulting from the ratoon cropping practices in the
GCP in contrast to the MAV. Additionally, I predicted that waste-rice and natural seed
biomass would decline from August-November in seed-rice fields, similar to MAV
patterns (Manley et al. 2004 Stafford et al. 20065), because no ratoon crops are produced
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in seed-rice fields. Finally, I hypothesized that biomass of natural seeds would be lower
in Clearfield® fields due to superior weed control, and there would be no discernable
difference in rice between rice varieties. My study provides needed contemporary spatial
and temporal estimates of waste-rice and natural seed biomass for GCJV waterfowl
conservation planning and is an important contribution for use in bioenergetics models to

refine potential carrying capacity estimates for the regions.

Study Area

I conducted my study in agricultural landscapes of the CP of Louisiana and Texas
and the TMC. The CP encompasses areas of southwest Louisiana and southeast Texas,
roughly spanning from Lafayette, Louisiana, westward to Houston, Texas, and extending
inland 130-160 km from the coastline (Figure 2.1). The TMC extends from Galveston
Bay to Corpus Christi, Texas, and inland from the coastline approximately 170 km
(Figure 2.1). My specific study area included the Louisiana parishes of Acadia, Allen,
Calcasieu, Cameron, Evangeline, Jefferson Davis, St. Landry, and Vermilion, and the
Texas counties of Brazoria, Chambers, Colorado, Jackson, Jefferson, Liberty, Matagorda,
and Wharton. These counties aligned closely with the GCJV’s Chenier Plain and Texas
Mid-Coast Initiative Areas.

Historically, these regions contained extensive coastal marshes and prairies,
freshwater wetlands, and savannahs. Today, the CP and TMC contain coastal marshes
along the Gulf of Mexico, but many of the historic coastal prairies and savannas have
been converted for cultivation of rice and other crops (Esslinger and Wilson 2001). The
climate is sub-tropical and humid with an average growing season of 270 days, 13 freeze-

days per year, and temperatures ranging from 14° C in December—January to 30° C July—
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August (Chabreck et al. 1989). Average annual precipitation decreases east to west in the
CP from 144 cm near Lafayette, Louisiana, to 113 cm per year near Houston, Texas and
77 cm per year near Corpus Christi, Texas (Gosselink et al. 1979, Hobaugh et al. 1989).
The CP and TMC regions are subject to frequent and sometimes intense weather
disturbances; on average, tropical storms make landfall approximately once every 1.6

years and hurricanes every 3.3 years (Roth 1999).

Methods

Sampling Design

I randomly collected soil cores based on a stratified, multi-stage survey design
with primary, secondary, and tertiary sampling strata: 1) rice farms; 2) production and
idled rice fields within farms; and 3) soil cores collected within fields (Stafford et al.
2006a,b; Marty et al. 2015). I derived my sampling universe of GCP farmers from
Louisiana rice producers who enrolled in the USDA Natural Resources Conservation
Service Migratory Bird Habitat Initiative (MBHI; Kaminski and Davis 2014) and Texas
producers who cooperated with Ducks Unlimited, Inc. through private land wetland
restoration programs (i.e., the Texas Prairie Wetlands Project). The MBHI and Texas
Prairie Wetlands Project are incentive-based habitat management programs which
promote conservation and flooding of natural and agricultural habitats for waterfowl. I
considered these databases representative of ricelands and producers within my study
region, because local agronomists advised that agricultural practices employed by
producers were typical of the population of commercial rice producers within my study
area (S. D. Linscombe, Louisiana State University Agricultural Center [LSUAC],

personal communication). I selected producers randomly, and stratified samples into
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LCP, TCP, and TMC regions. In 2010, I selected a total of 25 producers and allocated
selections between regions roughly in proportion to average area planted to rice in each
region (LCP [60%], n = 15; TMC [40%], n = 10). During each year 2011-2013, I
randomly selected 25 producers across the LCP, TCP, and TMC regions, and I allocated
my selection among regions in proportion to planted rice acreage as measured in 2011
(LCP [64%], n = 16 producers; TCP [12%], n = 3 producers; TMC [24%],n =6
producers). I randomly selected and sampled two production and two idled rice fields for
each producer. I defined fields as areas of varying size surrounded by exterior levees that
contained rice or were temporarily idled. I sampled seed-rice fields only during 2012—
2013 in the TMC and TCP due to limited access of these producers. In the TMC in 2012,
I selected four seed-rice producers. From these I sampled three fields each from two
producers and two fields each from the other two producers (n = 10 fields). In 2013, I
sampled three producers from the TMC and one from the TCP (n =9 fields, n = 3 fields,

respectively).

Field Sampling

Field classifications of production and idled rice fields included: 1) July—August
harvest only (first harvest, FH); 2) fields harvested in August and again in November for
a ratoon crop (harvested ratoon, HR); 3) fields in which a second crop was grown but not
harvested and left standing, generally for crawfish aquaculture or waterfowl habitat
(standing ratoon, SR); 4) fields harvested in July—August but with no ratoon crop grown
(no ratoon, NR); 5) idle fields with standing natural vegetation (standing idle, SI); and 6)
disked idled fields (disked idle, DI). Application of these field classifications was not

mutually exclusive. For example, all production rice fields were harvested July—August,
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but each was subject to one of several unique practices (e.g., classifications 2—4) that
affected field dynamics (e.g., food dynamics, water depth, vegetation conditions) during
autumn. Thus, some of my identified field classifications are best viewed as a
combination of farming activity and sampling period.

During the 2010 and 2011 field seasons, I established in each selected field a
single random directional (1-180°) transect and extracted 10 soil cores (10 cm diameter
and depth), each spaced ~25 m apart (Manley et al. 2004, Stafford et al. 20065). 1 used
data from 2010 and 2011 to calculate optimal sample sizes by field classification for the
remainder of my study. Therefore, during 2012 and 2013 field seasons, I collected 10
soil cores from FH, SI, and DI fields, 15 cores in SR and NR fields, and 6 cores in HR
fields (J.R. Marty, unpublished data). Additionally, during August and November 2012—
2013, I collected 15 soil cores from each randomly selected seed-rice field, using the
same sampling protocol as for conventional production and idled fields. I selected 15
August and 1 November as my target sampling dates because these corresponded to the
beginning of the early and late conservation planning periods identified by the GCJV
(Esslinger and Wilson 2001). For both sampling periods, I collected soil cores from
production rice fields 1-7 days after harvest or, for the November sampling period,
immediately after farmers indicated the ratoon crop would not be harvested and left as a
forage base for crayfish (Procambarus spp.), or as waterfowl habitat. In addition to
August and November collection periods, I collected soil cores from idled rice fields in
early October 2010 (n = 10 cores/field) and in early October 2012 from SI (n = 6 cores)
and DI fields (n = 10 cores), because seeds of many moist-soil plants had not matured

and dehisced by mid-August. This allowed me to examine temporal dynamics of moist-

17



soil seed biomass in idled fields on a finer scale (2010, n = 15 fields, n = 250 cores;

2012, n =50 fields, n = 378 soil cores).

Laboratory Procedures

I replicated core sample processing procedures from previous and related studies
(Manley et al. 2004; Stafford et al. 2006a,b; Kross et al. 2008a,b; Hagy et al. 2011; Hagy
and Kaminski 2012). I stored soil cores at -13° C to preserve seed biomass and deter
germination and decomposition (Murkin et al. 1994, Stenroth and Nystrom 2003). 1
randomly selected soil cores for processing from the freezer regardless of collection date
to minimize bias resulting from potential storage degradation. Once thawed, I used a
mixture of 3% solution of hydrogen peroxide (H202), a mixture of <250 cm® baking soda
and approximately 1L water, or a combination of these to oxidize clay and facilitate
sediment transport through sieves (Bohm 1979; Kross et al. 2008a,b). 1 washed the cores
through a series of sieves containing mesh sizes 4 (4.75 mm), 10 (2.0 mm), and 50 (300
pum) to remove rice and natural seeds containing whole or partially intact endosperm (i.e.,
>50% of seed remaining; Stafford et al. 20065). I allowed samples to air dry before
sorting. When dry, I extracted rice and natural seeds with endosperm (i.e., >50% of seed
remaining). I considered germinated seeds to be potential waterfowl food if the primary
shoot was less than or equal to the length of the seed, and if the endosperm was firm
(Stafford et al. 2006b, Marty et al. 2015). I dried seed samples to constant mass (& 0.5
mg) at 87°C before weighing to the nearest 0.0001g (Manley et al. 2004, Stafford et al.

2006b, Marty et al. 2015).
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Statistical Analysis
Seed Biomass in Production, Seed- and Idled Rice Fields

Using data collected during August—-November, 2010-2013, I used PROC
SURVEYMEANS in SAS v9.4 (SAS Institute 2015) to estimate means for waste-rice
and natural seed biomass for each field classification within GCP production, seed-rice,
and idled fields. Additionally, I used SURVEYMEANS to estimate mean waste-rice and
natural seed biomass for each field classification and within each ecoregion in production
and idled rice fields (i.e., LCP, TCP, TMC; Stafford et al. 2006b; Marty et al. 2015). 1
analyzed and reported natural seed biomass using only seeds considered waterfowl foods
(Hagy and Kaminski 2012; Table 2.1). Furthermore, I estimated means for waste-rice
and natural seed biomass for Clearfield® and conventional seed varieties and field
classification within the GCP. I tested for differences in waste-rice and natural seed
biomass between rice seed varieties using PROC TTEST in SAS v9.4 (SAS Institute
2015).

I applied size-specific seed bias correction factors to account for rice and natural
seed loss during sieving and non-detection or non-recovery of seeds by technicians (Hagy
etal. 2011; Hagy and Kaminski 2012). I partitioned seeds into small (<18 mm?),
medium (18-40 mm?), and large (>40 mm?) size classes and applied correction factors of
1.35, 1.10, and 1.07, respectively (Hagy et al. 2011, Marty et al. 2015). I applied
correction factors at the core sample level, because it was the level at which most bias
was generated (Hagy et al. 2011, Marty et al. 2015). I analyzed data collected under the
multi-stage survey design by incorporating appropriate weights and selection

probabilities corresponding to the three levels of sampling (Stafford et al. 20065, Marty
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et al. 2015). The probability of selecting a producer was pi/P;, where p; and P; were
numbers of producers selected and enrolled each year in each stratum i (i.e., GCIV
initiative area), respectively. The probability of selecting a field was fi/F;, where f; was
the number of fields (1-3) randomly selected among F; fields farmed by producer i.
Finally, the probability of selecting a soil core within a field was (n cores)/(C;;/8.107
107), where n cores was the number of cores collected in each field and the potential
number of cores was the area (Cj; ha) of field; within a producer; divided by the area of a
core sample (8.107 x 107"ha; Stafford et al. 2006b). The inverse of the product of the
three selection probabilities is the sampling weight used in the SURVEYMEANS
procedure. The SURVEYMEANS procedure uses Taylor series linearization to estimate

variances for multi-stage surveys (SAS Institute 2015).

Modeling Variation in November Seed Biomass

I evaluated for differences in November waste-rice and natural seed biomass in
production rice fields and total seed biomass (i.e., waste rice and natural seed combined)
in idled rice fields in relation to various explanatory variables. The GCJV identified 1
November as the starting date of their late planning period, which generally coincides
with large increases in waterfowl abundance in the GCP region. Although August
estimates of seed biomass are important, November estimates are the primary estimates
used by the GCJV to estimate winter carrying capacity. Therefore, I identified potential
fixed effect influences on November seed biomass as 1) field classification (FC), 2) soil
type (SOIL), 3) precipitation (PRECIP), and 4) seed variety (VAR). 1did not include a
year effect to avoid potential cofounding with precipitation, and as my goal was to

evaluate models representative of all years of my study.
20



I obtained precipitation data from the National Oceanic and Atmospheric
Administration’s Applied Climate Information System (NOAA 2016). Precipitation
likely created favorable germination conditions for rice and moist-soil seeds in idled rice
fields. Idid not include a precipitation variable for production rice fields because fields
were already flooded. I calculated precipitation as cumulative precipitation from time of
first sampling in August until the time of second sampling in November. I did not
include a temperature variable because temperature was above 10° C >99% of days
following the first sampling period through the ratoon harvest, which is the threshold
temperature for rice seed germination (Yoshida 1981, Miller and Street 2000). Using
USDA’s Web Soil Survey, I categorized soil as either clay or loam (USDA 2016). 1
surveyed rice producers and categorized rice seed variety as either conventional rice or
Clearfield®. 1developed a set of a priori candidate models, each representing a possible
biological scenario for waste-rice and natural seed biomass in production rice fields and
total seed biomass (i.e., waste rice and natural seeds) in idled rice fields.

In evaluating November, 20102013 waste-rice and natural seed biomass in
production and idled rice fields, I used linear mixed models in R (Ime4; Bates and
Maechler 2016; R Development Core Team 2016). 1 used mixed effects models because
models included the aforementioned fixed effects in addition to a random effect of
landowner. I included landowner as a random effect because I sampled only a subset of
landowners from a much larger population of GCP rice producing landowners.
Inspection of residual plots and histograms indicated that seed biomass were not normally
distributed. Subsequently, I natural log transformed seed biomass prior to analysis. |

compared models which were selected subsets of the global model using Akaike’s
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Information Criterion adjusted for small sample size (AICc; Burnham and Anderson
2002), and considered models with AAICc < 2 units from the top model as competitive
(Burnham and Anderson 2002). I developed models using plausible combinations rice
production effects (FC, VAR) and ecological effects (PRECIP, SOIL). When calculating
K, I considered fixed and random effects as parameters. I calculated marginal and
conditional R? statistics as a means to assess the fit of each candidate model (Nakagawa
and Schielzeth 2013). I back-transformed estimates from only the most explanatory
model. For my top model, I performed pair-wise comparisons of least-squared means
(Ismeans, Lenth 2016) to test for differences in seed biomass among fixed effects. |
considered results statistically significant at o <0.05. I did not model average because my
goal was to investigate parameter estimates from each supported model, and models

contained a random variable of landowner.

Results
Soil Core Sampling Summary Statistics

From August-November, 2010-2013, I analyzed 8,896 soil cores from 196
production, 22 seed-rice, and 200 idled rice fields within the GCP of Louisiana and
Texas. I analyzed 5,183, 749, and 2,331 soil cores from production and idled ricelands in
the LCP, TCP, and TMC, respectively, during this same time. I also analyzed 633 soil

cores from seed-rice fields within the TCP and TMC regions.
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Gulf Coast Prairie Seed Biomass Estimates
Production Rice Fields

In 20102013 first harvest (FH) production rice fields, waste-rice and natural seed
biomass in August were 252.8 kg[dry]/ha (CV = 11%) and 140.0 kg/ha (CV = 13%),
respectively (Table 2.2; Figure 2.2). After first harvest, some producers elected to grow
and harvest a ratoon crop in November (HR), while others left the ratoon crop standing
for subsequent crawfish production (SR), or they did not grow a ratoon crop (NR). In
November, 2010-2013 HR production rice fields, waste-rice biomass was 212.2 kg/ha
(CV =21%; 16% decrease), and natural seed biomass increased 31% to 183.5 kg/ha (CV
= 16%; Table 2.2; Figure 2.2). In November, 2010-2013 SR production rice fields,
waste-rice biomass increased 231% to 837.7 kg/ha (CV = 17%), and natural seed biomass
increased 78% to 249.0 kg/ha (CV = 28%; Table 2.2; Figure 2.2). In November, 2010—
2013 NR production rice fields, waste-rice and natural seed biomass was 119.3 kg/ha
(CV =19%, 1.e., 53% decline) and 103.6 kg/ha (CV = 18%; i.e., 26% decline; Table 2.2;
Figure 2.2), respectively. Among ecoregions (i.e., LCP, TCP, TMC) from 2010-2013,
waste-rice and natural seed biomass in production rice fields ranged from 32.5 kg/ha (CV
=84%) to 1,022.5 kg/ha (CV = 76%), and 54.9 kg/ha (CV =49%) to 260.0 kg/ha (CV =

28%), respectively (Appendix A).

Idled Rice Fields

From August—October, 2010-2013, rice biomass in SI fields declined from 15.5
kg/ha (CV =80%) to 0.3 kg/ha (CV = 97%) and remained negligible from October—
November (9.0 kg/ha; CV = 41%; Table 2.2; Figure 2.3). In SI fields, natural seed

biomass was 187.2 kg/ha (CV = 12%) in August, 268.9 kg/ha (CV = 24%; i.e., 44%
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increase) in October, and 304.8 kg/ha in November (CV = 17%; i.e., 13% increase; Table
2.2; Figure 2.3). In DI fields rice biomass was 3.4 kg/ha (CV = 49%) in August, 0.6
kg/ha (CV = 89%) in October, and 25.5 kg/ha (CV = 69%; Table 2.2; Figure 2.3) by
November. In DI fields, natural seed biomass was 162.0 kg/ha (CV = 21%) in August,
477.3 kg/ha (CV = 25%; i.e., 195% increase) in October, and 210.9 kg/ha (CV = 21%;
i.e., 56% decline; Table 2.2; Figure 2.3) in November. Among ecoregions from, rice and
natural seed biomass in idled fields ranged from 0 kg/ha to 30.7 kg/ha (CV = 72%), and

129.6 kg/ha (CV = 7%) to 521.3 kg/ha (CV = 22%), respectively (Appendix A).

Seed-Rice Fields

In seed-rice fields in Texas (i.e., TMC and TCP) following the first and only
harvest (i.e., late July—August, 2012-2013), waste-rice and natural seed biomass were
127.6 kg/ha (CV = 14%) and 45.9 kg/ha (CV = 33%), respectively (Table 2.3; Figure
2.4). In November, waste-rice biomass declined to 54.0 kg/ha (CV =39%, i.e., 58%
decline), and natural seed biomass increased 12% to 51.4 kg/ha, CV = 43%; Table 2.3;

Figure 2.4).

Modeling Variation in November Rice and Natural Seed Biomass

Variation in waste-rice biomass in GCP production rice fields during November,
2010-2013 was best explained by the interaction of field classification and seed variety.
This model had a w; 0f 0.53, and there were no competing models (Table 2.4). The
interaction of field classification and seed variety explained 27% of the variation in
waste-rice biomass, while the combination of field classification and seed variety as

random effects explained 43%. Waste-rice biomass for no ratoon (NR) did not differ
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between conventional (65.6 kg/ha, 95% CI = 34.7-124.0) and Clearfield® rice varieties
(131.2 kg/ha, 95% CI =89.1-193.1; z = 1.873, P = 0.419; Table 2.5; Figure 2.5). For
harvested ratoon (HR), waste-rice biomass did not differ between conventional (189.8
kg/ha, 95% CI = 135.0-267.0) and Clearfield® rice varieties (116.3 kg/ha, 95% CI =
88.7-152.3; z=-2.312, P = 0.189; Table 2.5; Figure 2.5). Waste-rice biomass did not
differ between conventional (708.4 kg/ha, 95% CI = 385.5-1,301.6) and Clearfield® rice
varieties in standing ratoon (SR; 581.7 kg/ha, 95% CI=351.2-963.7;z=0.495, P =
0.996; Table 2.5; Figure 2.5). For Clearfield® varieties, waste-rice biomass in SR fields
(581.7 kg/ha, 95% CI =315.2-963.7) was 5.0 times greater than HR fields (116.3 kg/ha,
95% CI=88.7-152.3; z=-5.717, P <0.001) and 4.4 times greater than NR fields (131.2
kg/ha, 95% CI = 89.1-193.1; z = -4.788, P <0.001; Table 2.5; Figure 2.5). Moreover, for
Clearfield® varieties, waste-rice biomass did not differ between HR and NR fields (z =
0.522, P = 0.995). When producers planted conventional rice varieties, waste-rice
biomass in SR fields (708.4 kg/ha, 95% CI = 385.5-1,301.6) was 3.7 times greater than
HR fields (189.8 kg/ha, 95% CI=135.0-267.0; z =-3.724, P <0.001), and 10.8 times
greater than NR fields (65.6 kg/ha, 95% CI = 34.7-124.0; z = -5.496, P = <0.001; Table
2.5; Figure 2.5). Additionally, for conventional varieties, waste-rice biomass was 2.9
times greater in HR fields than NR fields (z =-2.886, P = 0.045; Table 2.5; Figure 2.5).
Variation in natural seed biomass in GCP production rice fields was best
explained by soil type (Table 2.6). This model had a w; of 0.23. Other competing models
included the null model, an interaction model of field classification and precipitation, an

additive model of field classification and soil type, and singular variable models
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including field classification and rice seed variety. Soil type only explained 2% of the
variation in natural seed biomass, and fit for all models was poor (R <0.10).

Variation in total seed biomass (i.e., waste rice and natural seeds combined) in
idled rice fields in the GCP was best explained by field classification. This model had a
w;of 0.65 (Table 2.7). Field classification explained only 6% of the variation in total
seed biomass in idled rice fields, and fit for all models was poor (R’ <0.10). Total seed
biomass was 2.2 times greater in SI fields (175.8 kg/ha, 95% CI = 117.6-262.8) than DI
fields (78.9 kg/ha, 95% CI =55.1-112.9; z = -3.583, P = <0.003; Table 2.8; Figure 2.6).
Additionally, an additive model containing field classification and precipitation was
considered a supporting model, and had a w;of 0.27. 1 detected a negative relationship
between total seed biomass and precipitation, where seed biomass declined 2% for every

2.54 ¢cm of rainfall.

Gulf Coast Prairie Seed Biomass by Rice Seed Variety

Waste-rice biomass in production rice fields was 2.1 times greater when planted
with conventional rice varieties (474.3 kg/ha; CV = 21%) than when planted with
Clearfield® varieties (226.0 kg/ha; CV = 18%; tiges = -7.28, P <0.001; Table 2.9; Figure
2.7). Moreover, I detected a significant difference in November natural seed biomass in
production rice fields planted with conventional (221.9 kg/ha; CV =20%) and
Clearfield® rice varieties (154.3 kg/ha; CV = 14%; tioes = -5.59, P = <0.001; Table 2.9;

Figure 2.7).
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Discussion
Seed Biomass: Gulf Coast Prairie
Production Rice Fields

Rice farming practices differ among regions of the United States, which
subsequently influence dynamics of waste rice and natural seeds. In the MAV, growing
seasons are shorter and generally one crop of rice is harvested per season (Manley et al.
2004, Stafford et al. 20065). Stafford et al. (20065) reported that waste-rice biomass
declined >71% after harvest in July-August to mid-November in the MAV, mostly due to
decomposition. Among GCP production rice fields harvested once and not managed to
grow a ratoon crop during autumn after initial harvest, waste-rice and natural seed
biomass declined 56% and 33%, respectively, from August-November, similar to trends
for the MAYV (Stafford et al. 2006b). However, a 270-day growing season in the GCP is
a primary factor affording producers an opportunity to grow a ratoon crop. Both
harvested and standing ratoon field classifications influenced November waste-rice and
natural seed biomass. Because producers cannot grow a ratoon crop in the MAV, waste-
rice biomass remaining in rice fields (78 kg/ha; Stafford et al. 20065) is much lower
when compared to harvested and standing ratoon crops in the GCP (212-838 kg/ha; this
study).

McGinn and Glasgow (1963) investigated seed loss in rice fields in southwest
Louisiana and reported that from mid-September to mid-November 69% and 98% of rice
seeds decomposed in dry and flooded fields, respectively. In the MAV, Manley et al.
(2004) suggested that earlier maturing rice varieties, resulting in earlier harvest, exposed

rice seeds to the environment for longer periods of time in autumn, exacerbating
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decomposition, germination, and granivory. Stafford et al. (20065) placed enclosures
with rice seed into production rice fields in the MAV and found that 20% of the seeds
remained intact, 8% germinated, and 14% were consumed. The remaining 58% was
unaccounted for and assumed decomposed. Similarly, I placed 40 sealed packets made
of window screen, each containing 20 whole rice seeds in GCP production rice fields (n
= 2 packets per field) following first harvest in August 2013. I collected rice packets
prior to the second harvest in early November. Results indicated that in fields which had
not been flooded to produce a ratoon crop (i.e., dry, no ratoon fields; n = 3), 66% of rice
seeds decomposed, 22% germinated, and 12% remained intact as potential waterfowl
food. Idid not observe any tears or openings in packets, which might have indicated
granivory. In fields which had been flooded to produce a ratoon crop (i.e., harvested
ratoon and standing ratoon, flooded fields; n = 17), 90% of rice seeds decomposed, 7%
germinated, and 3% remained intact as potential waterfowl foods. Regardless of field
classification, from August-November, in the GCP little seed remained intact and
available for waterfowl, which was possibly attributable to decomposition and warmer
ambient temperatures compared to that of the MAV. As previously noted, ambient
temperatures were above 10° C 299 % of days following the first sampling period
through the ratoon harvest, which is the threshold for rice seed germination (Yoshida
1981, Miller and Street 2000).

The extended growing period in the GCP, coupled with advancement of earlier
maturing rice varieties that began in the mid-late 1960s, have allowed rice producers to
successfully grow and harvest ratoon crops (Santos et al. 2003). Ratoon crops apparently

mitigate much of the decline in waste-rice biomass that occurs from August-November
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through decomposition, germination, and granivory. When production fields are flooded,
the waste rice that remains following harvest of the ratoon crop provides abundant high
energy seed for migrating and wintering waterfowl.

Production rice fields classified as standing ratoon typically contained erect
mature rice plants that resulted from fertilizing and irrigation following the first harvest
in July—August. Producers typically leave ratoon crops standing if the yield was
forecasted as unprofitable, or if they intend to produce crayfish. During the 2013-2014
season, production rice fields accounted for 69% of crayfish pond hectares in the CP
(1,165 ha; Foley 2015). The stubble or stalk of rice provides the foundation for the
detritus-based food web for crayfish (McClain and Romaire 2004). Production rice fields
in the GCP with a standing ratoon crop contained 7 times more rice and 2.4 times more
natural seed than fields with no ratoon, and 4 times more rice and 1.3 times more natural
seed than fields with a harvested ratoon. Additionally, waste-rice biomass in GCP fields
with a standing ratoon was nearly 11 times greater than single harvested rice fields in the
MAV. Following the first harvest, if a rice producer elected to grow a ratoon crop, the
waste rice remaining in fields would have been available to early migrating and resident
waterbirds in fall (e.g., blue-winged teal [Anas discors]) during the growing period of the
ratoon crop (McClain and Romaire 2004). As the ratoon crop grows and matures, fields
are typically flooded to 20-40 cm during winter for crawfish production; these depths
could render some waste grain inaccessible to waterfowl. However, rice panicles
containing intact rice would likely be available to waterfowl, and conditions found in
crayfish fields support aquatic invertebrate communities which are essential protein

sources for many waterbird species (Delnicki and Reinecke 1986, Manley et al. 2004,
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Stafford et al. 2010). In CP rice fields, invertebrate density (40-63 inverts/m?) can
actually be greater than in natural wetlands (17-47 inverts/m?; Kang 2011, Foley 2015).

Production rice fields are a valuable source of abundant natural seeds (i.e., moist-
soil seeds) and tubers, despite significant efforts to control natural vegetation growth.
Many natural seed species are consumed by waterfowl and are valuable sources of
dietary energy and other nutrients during the non-breeding period. Seeds and tubers
persist in the seed bank until germination conditions are favorable. Conditions are
typically most favorable during idle (i.e., non-production years) periods, when soils are
disked and precipitation creates moist-soil conditions.

Manley (2004) reported a natural seed biomass of 7 kg/ha in the Mississippi
MAV, whereas in the previous studies in Louisiana reported variable seed biomass
ranging from 42 kg/ha (McAbee 1994) to 973 kg/ha (Hohman et al. 1996). Results from
my study indicated that natural seed biomass estimates fell within the aforementioned
range among all survey periods and field classifications (104-249 kg/ha). Perhaps natural
seed biomass estimates from McAbee (1994) were less than those from my study because
of shorter growing seasons and different farming practices in northern Louisiana.
Moreover, natural seed biomass estimates reported by Hohman et al. (1996) were likely
greater than those derived from my study because of advancements in weed control (e.g.,

herbicides, rice varieties, water management techniques, etc.).

Idled Rice Fields

In the GCP, ricelands not in rice production during a given year are considered
idled and are typically either disked (DI) or contain standing natural vegetation (SI).

Rice seed biomass in idled fields was low (i.e., <30 kg/ha) among all field classifications
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and sampling periods. The presence of rice in idled fields likely originated from plants
that grew from waste-rice seeds remaining from the previous production year. Natural
seeds (i.e., moist-soil seeds) were the most common seeds observed in idled fields. In
idled rice fields, Davis et al. (1961) reported a natural seed biomass of 364 kg/ha in
southwest Louisiana, which was greater than most estimates in standing natural
vegetation and disked fields among all time periods from my study. Reduction in natural
seed biomass could have resulted through increased control efforts through the use of the
Clearfield® rice system and other more effective herbicide treatments and weed control
techniques than those employed >50 years ago. I observed a general increasing trend in
natural seed biomass from August—November in both standing idled and disked idled
fields, particularly as seeds matured and dehisced (Reinecke and Hartke 2005, Kross et
al. 2008b). Many idled fields with standing natural vegetation were disked from August—
October, which may have incorporated substantial amounts of natural seed shallowly into
the seed bank (Hagy and Kaminski 2012). Rice producers actively disked idled fields to
reduce growth of natural vegetation and future competition with subsequent plantings of
rice. However, in some cases where farmers did not continue disking fields in fall and
winter, disking in summer and early fall may have actually promoted growth of early
successional natural plant communities where adequate soil moisture existed
(Fredrickson and Taylor 1982, Gray et al. 1999, Kross et al. 20080). In disked fields,
natural seed biomass increased from August—October and then declined from October—
November. The decline in natural seed biomass in disked fields in late fall was
presumably a result of decomposition, granivory, and germination, similar to that which
occurred in production rice fields (Stafford et al. 20065).
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Seed-Rice Fields

To my knowledge, no research of seed dynamics in seed-rice fields had been
conducted in the GCP. In Texas, area of planted seed-rice increased during the early
2000s, peaked in 2011 at 16,796 ha, and has declined to <2,000 ha in 2015. In Louisiana,
areas of planted seed-rice has been declined from 6,074 ha in 2005, to 2,221 ha in 2015.
However, in the advent of an increase in seed rice production, my study will provide
baseline results for conservation planners. Field classifications in seed-rice fields
resemble those of a single harvest in the MAV and GCP, where no ratoon crop is grown
and the field is idled following the first harvest in August. This contrasts with the more
common practice for standard rice production in the GCP ecoregion of growing a ratoon
crop following first harvest. I observed a 58% decline in waste-rice biomass and a 12%
increase in natural seed biomass in seed-rice fields from August-November. Seed-rice
fields were rarely flooded post-harvest, which mostly restricted waterfowl from accessing
the limited food resources in these fields by November. Among field classifications and
time periods, waste-rice and natural seed biomass in seed-rice fields were always less
than in standard production rice fields. After subtracting a giving-up density of 50 kg/ha
from biomass estimates in November seed-rice fields, approximately 4 kg/ha of seed
biomass would remain as potential waterfowl foods. Thus, an increase in production of
seed rice in the GCP would be a cause for concern among conservation planners, as these
fields contain less seed biomass and are therefore presumably of less value to foraging

waterfowl.
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Estimates of Precision

My goal was to estimate waste-rice and natural seed biomass in production, seed-,
and idled rice fields with an acceptable level of precision (i.e. CV =<15%). Generally,
with the exception of waste-rice biomass estimates in FH production and seed-rice fields,
and natural seed biomass estimates in FH and August SI fields, I did not achieve that
goal. Perhaps lower than desired levels of precision can be attributed to the variability in
farming methods within each field classification (i.e., FH, SR, HR, NR, SI, and DI). In
other words, within a field classification, rice producers may plant different seed
varieties, apply different herbicides or pesticides, use different farming machinery, or
apply different levels of treatment intensity. For example, in DI fields, farmers may disk
fields once or multiple times per season. Presumably those fields disked multiple times
will contain less natural vegetation growth and seed production. Moreover, precision in
seed-rice fields in August and November was lower than desired levels likely because of

a small sample size (300 soil cores in August, 333 soil cores in November).

Implications for Waterfowl

The GCJV is tasked with providing foraging resources for 14 million ducks and
>1.6 million geese annually during the non-breeding period (Esslinger and Wilson 2001.
My results indicated that waste-rice and natural seed biomass was greater in production
and idled rice fields in the GCP than the MAV (Stafford et al. 20065). Waste-rice and
natural seed biomass in GCP production rice fields are as much as 1.5-11 and 15-35
times greater than rice fields in the MAV, respectively (Stafford et al. 20065, Manley et

al. 2004). Thus, the normal agriculture practice of producing a ratoon crop in the GCP is
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a tremendous advantage, which provides abundant waste-rice seed for non-breeding
waterfowl that is less attainable in the MAV given current field classifications there.

The GCJV currently estimates that production and idled ricelands account for
44% of the waterfowl carrying capacity in this region (Petrie et al. 2014). The potential
to over- or under-estimate energetic carrying capacity is affected greatly by the precision
of seed biomass estimates used in bioenergetics models. If current energetic carrying
capacity estimates are substantially underestimated, conservation organizations could
unnecessarily spend significant amounts of limited funds to meet waterfowl energetic
needs. In contrast, if energetic carrying capacity is over-estimated, waterfowl habitat
conservation activities may be inappropriately scaled back, leading to a landscape that is
insufficient to satisfy the energetic needs of target waterfowl populations. My results
indicated that waste-rice and natural seed biomass in FH fields was 85 kg/ha greater, and
18 kg/ha less than estimates currently used in GCJV bioenergetics models, respectively.
For HR fields, my results indicated that waste-rice and natural seed biomass was 161
kg/ha less, and 59 kg/ha greater than current GCJV estimates, respectively. For SR
fields, my results indicated that waste-rice biomass 644 kg/ha less than estimates used by
the GCJV. Current GCJV bioenergetics models do not incorporate a natural seed
biomass estimate for SR fields. Additionally, the GCJV aggregates all idled field types
into one “idle” classification. My results indicated that August waste-rice and natural
seed biomass in SI fields was 127 kg/ha and 115 kg/ha less than current GCJV idle field
estimates, respectively. Finally, my results indicated that August waste-rice and natural
seed biomass in DI fields was 139 kg/ha and 140 kg/ha less than current GCJV idle field
estimates, respectively. Thus, I recommend the GCJV use estimates from this study in
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their bioenergetics models, as these more contemporary estimates differ from previous
GCJV estimates, and are much more representative and precise than my 2010 pilot study

(Marty et al. 2015).

Modeling Variation in November Seed Biomass

The interaction between field classification and seed variety best explained
variation in November waste-rice biomass in production rice fields in Louisiana and
Texas. Waste-rice biomass between rice varieties did not statistically differ within a field
classification. Although I was unable to collect the information, harvester age, harvester-
operator variation, harvester type, speed at which a field was harvested, field conditions
and topography, grain moisture, or moisture on plant surface may have further influenced
harvester efficiency and November waste-rice biomass (Wilson et al. 2001, Stafford et al.
2006b).

Models predicting natural seed biomass in production rice fields had little
explanatory power (i.e., R* <0.10). Therefore, I could not reconcile influences of
measured variables on November variation in natural seed biomass. Poor model fit
supported my findings of no detectible difference in November natural seed biomass
between soil types (i.e., the best approximating model). Models presumably had poor fit
because the selected variables (e.g., soil type, field classification, etc.) were not the
dominant factors influencing variation in natural seed biomass. Other non-quantified
variables likely influenced November natural seed biomass in production rice fields,
including fertilization and herbicide treatments, rice seed varieties, and field planting
techniques (i.e., aerial or drill). Development of better models to account for variation in

natural seed biomass may potentially be achieved by intensively monitoring a sample of
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fields prior to the time of planting through November to attain information regarding
prior field classifications implemented in the selected field, past and present fertilizer and
herbicide treatments, more precise weather data, and any other field classifications which
may be applied during the growing season.

The best approximating model predicting variation in November total seed
biomass (i.e., waste rice and natural seed combined) in idled rice fields was field
classification. Idled rice fields in the GCP which were not planted with row crops, such
as soybean, typically contained standing vegetation or were actively disked throughout
the year to inhibit natural vegetation. My top model predicted that if producers allowed
natural vegetation to grow in idled fields, seed biomass would be significantly greater
than in actively disked fields. The growth and development of seeds, and subsequent
seeds shattering from the panicle during autumn presumably were what drove the
differences in seed biomass differences between idled fields with standing vegetation and
disked fields. Repeated disking likely inhibited growth and maturation of natural

vegetation, and or buried seeds beneath the zone of sampling (10 cm).

Variety Effect on Gulf Coast Prairie Waste-Rice Biomass

In recent years, anecdotal reports have emerged suggesting ducks and geese may
be avoiding ricelands planted with Clearfield® rice varieties. Hypotheses included
reduced natural seed abundances because of the more effective weed control afforded by
Clearfield® varieties or other traits (e.g., greater pubescence of rice hull associated with
hybrid varieties) that may cause them to be less palatable food items. From 2010-2013,
>60% of all planted rice in the United States was of a Clearfield® variety. Results from

the SURVEYMEANS procedure indicated a statistically greater waste-rice (248.23
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kg/ha) and natural seed (67.58 kg/ha) biomass in rice fields containing conventional vs.
Clearfield® rice varieties. For both Clearfield® and conventional varieties, waste-rice
biomass remained greater than the giving-up density of 50 kg/ha (Greer et al. 2009). For
conventional varieties, November, 2010-2013 natural seed biomass was greater than the
forage availability threshold of 170 kg/ha (Hagy and Kaminski 2015). However,
November, 2010-2013 natural seed biomass in fields planted with Clearfield® rice was
below the forage availability threshold of 170 kg/ha. Therefore it is plausible that
waterfowl may be avoiding rice fields planted with Clearfield® rice because of reduced
waste-rice and natural seed biomass. Clearfield® rice was developed to control and
reduce red rice and natural seed production, therefore detecting a difference in natural
seed biomass between varieties was not surprising. Perhaps differences in waste-rice
biomass was attributed to producer or harvester efficiency, undocumented field
treatments (e.g., herbicides, fertilizers, etc.), undocumented use of specific seed varieties
within the overarching categories of conventional and Clearfield®, or a sampling
anomaly. If the apparent deficit that I detected is real, then perhaps a significantly lesser
amount of waste rice and natural seed occurs in Clearfield® fields, which could decrease
waterfowl foraging efficiency and overall available energy. Hypothetically, waterfowl
would be relegated to increase their time searching for fields planted with conventional
rice varieties. If there is additional search time needed to find food resources, there may
be possible negative implications related to birds’ body mass or survival, which has been
discussed in the food-limitation hypothesis (Williams et al. 2014). An expanding

landscape of Clearfield® rice might hypothetically impose some of these negative
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consequences. Partly to this end, I investigated waterfowl use of rice fields planted with

Clearfield® and conventional rice varieties (Chapter III).

Research and Management Implications

Aside from fields where no ratoon crop was grown, waste-rice and natural seed
biomass remained >200 kg/ha (212—838 kg/ha) among field classifications and sampling
periods, which contrasts trends for MAYV rice fields (Manley et al. 2004, Stafford et al.
2006b). These trends will undoubtedly become increasingly important as restrictions on
water usage in the GCP will likely only increase in the future, especially in the Texas
growing regions where recent droughts and substantial urban expansions from Houston
have occurred (LCRA 2013). For waterfowl, access to abundant rice and natural seeds in
GCP ricelands will provide critical foraging resources needed during the non-breeding
periods. Irecommend that conservation, state, federal, and non-governmental
organizations continue to implement and develop programs that help producers become
more conservation oriented and efficient (e.g., install more energy efficient water pumps
and water control structures). Without financial incentives from conservation programs,
rice producers may be less inclined to flood ricelands for waterfowl conservation. I
recommend that conservation partners promote programs and policies such as MBHI,
which provided valuable wetland habitat for migrating and wintering wetland birds
during the nonbreeding period, and subsequently one of the most severe droughts in GCP
history. Within GCP rice producing regions, I recommend partners encourage the
practice of ratoon cropping, and possibly offering incentives to leave ratoon crops (or
portions of them) unharvested. Opportunities to produce ratoon crops are generally not

afforded to producers in the MAV or the Central Valley of California because of a shorter
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growing season in these regions. I also recommend that conservation partners encourage
producers to allow early successional vegetation and grasses to grow in idled rice fields
as it provides the most natural seed for waterfowl in November. Although disking idled
fields hinders the development and maturation of early succession vegetation to produce
seed resources for waterfowl, when combined with shallow flooding, this practice may
provide valuable invertebrate resources for many shorebirds and wading birds species
during the non-breeding period. If disking is necessary, conservation programs should
incentivize producers to wait until late October, when natural seeds have matured and
dehisced. Importantly, conservation programs should emphasize the importance of, and
incentivize producers to shallowly flood (e.g., 1-30 cm) both production and idled rice
fields in autumn and winter to provide forage resources for migrating and wintering
waterfowl and other waterbirds (Reinecke et al. 1989, Elphick and Oring 1998; Elphick
et al. 2010). When shallowly flooded (e.g., <15 cm), the aforementioned practices may
allow for economic opportunities in the form of hunting and crayfish aquaculture (Grado
etal. 2001, 2011; McClain and Romaire 2004; Stafford et al. 2010).

To further increase profits and conserve natural resources, | advocate for
conservation programs and policies that encourage implementation of water conservation
practices such as closing water control structures, using tail water recovery systems
(where feasible), and cost efficient irrigation pumps (Bouldin et al. 2004). Flooding post-
harvest and idled ricelands may have economic, environmental, and agronomic benefits.
For example, Manley et al. (2009) reported a decrease in export of suspended solids from
Mississippi rice fields when farmers flooded standing stubble, versus fields tilled post-

harvest. Moreover, Manley et al. (2005) reported that winter flooding could save farmers
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$22—63/ha (USD 2002) in subsequent field preparation costs by reducing stubble biomass
by 43-68% and natural vegetation by 24-83%. Interspersion of stubble and open water
may be a proximate cue attracting waterfowl to production and idled rice fields
(Kaminski and Weller 1992, Havens et al. 2009). Results from Van Groenigen et al.
(2003) indicated that foraging waterfowl increased residue decomposition and reduced
weed pressure in the rice-growing region of northern California. Furthermore, Bird et al.
(2000) reported that intensive foraging by waterfowl in flooded plots decreased straw
biomass by 72-76%.

My results indicated that field classification and seed variety best predicted waste-
rice biomass for production rice fields in the GCP. I recommend that conservation
partners promote programs and policies that encourage rice producers to plant
conventional rice varieties because they contained greater biomass of waste rice and
natural seed than fields with Clearfield® varieties. I was however, unable to determine if
rice varieties were hybrids. Hybrid rice varieties were developed to attain desirable
production traits such as improved yield (Linscombe 2015). There is speculation among
hunters that waterfowl avoid fields planted with hybrid rice varieties because of
pubescent hulls that may be irritating when consumed. Therefore, I recommend that
future research investigates potential differences among seed varieties, and how variables
such as fertilizer and herbicide treatments affect natural seed biomass in production rice
fields, as none of my a priori candidate models explained substantial amounts of the
variation.

My spatially and temporally comprehensive study investigating waste-rice and

natural seed biomass in GCP ricelands is an important step toward helping conservation
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planners make necessary amendments to bioenergetic carrying capacity models. Results
from my study will allow conservation planners to more precisely estimate carrying
capacity, which will enable refinement of habitat objectives and ensure more effective
use of limited conservation resources. My results will be of great importance to policy
makers, especially given that ricelands, natural wetlands, and marsh ecosystems are
becoming increasingly threatened in GCP regions. My results may encourage policy
makers to direct funds and promote policies that conserve and promote rice agriculture,
and or the restoration of non-rice producing land to native wetlands and prairies.
Furthermore, it is clear that the valuable riceland ecosystem in the GCP of Louisiana and
Texas provide nutrient rich resources for millions of migrating and wintering waterfowl

and other waterbirds annually during the non-breeding season.
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Table 2.4 Results of linear mixed models predicting waste-rice biomass in production
rice fields in the Gulf Coast Prairies during November, 2010-2013.

Models? AICc AAICc w; K LL R*nag R%ond
FC*VAR 5429 00 052 8 -263.0 0.27 043
FC 5455 26 0.14 5 -267.6 0.24 0.39
FC+VAR 5462 33 0.10 6 -266.8 0.24 0.42
FC+SOIL 546.5 3.6 0.09 6 -267.0 0.24 0.40
FC+VAR 546.7 3.8 0.08 7 -266.0 0.25 0.43
FC+VAR+SOIL+FC*SOIL+FC*VAR 5472 43 0.06 11 -261.8 0.28 0.43
FC*SOIL 550.6 7.7 0.01 8 -266.9 0.24 0.39
VAR 588.7 458 0.00 4 -290.3 0.02 0.28
VAR+SOIL 588.8 459 0.00 5 -289.2 0.03 0.28
NULL 589.3 464 0.00 3 -291.6 0.00 0.24
SOIL 590.0 47.1 0.00 4 -290.9 0.01 0.24
VAR*SOIL 590.9 480 0.00 6 -289.2 0.03 0.28

Results of linear mixed models predicting November waste-rice biomass® in production
rice fields in the Gulf Coast Prairies of Louisiana and Texas, November, 2010-2013.

4 Field classification (FC); Soil (SOIL); Variety (VAR); Precipitation (PRECIP); Null
model (NULL).

® Waste-rice biomass (kg[dry]/ha).
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Table 2.5 Estimates of mean waste-rice biomass in Gulf Coast Prairie production rice
fields during November by field classification and seed variety, 2010—

2013.
Mean seed biomass
Seed variety® Eield . b x 95% LCL 95% UCL
classification
Clearfield® NR 131.18 89.1 193.1
HR 116.25 88.7 152.3
SR 581.73 351.2 963.7
Conventional NR 65.55 34.7 124.0
HR 189.84 135.0 267.0
SR 708.36 385.5 1301.6

Seed variety, field classification, predicted gross November bias corrected estimates® of
mean (X) waste-rice (kg[dry]/ha) biomass, and 95% confidence limits from linear mixed
models for production rice fields in the Gulf Coast Prairies of Louisiana and Texas,
November, 2010-2013.

2 Blanks denote same seed variety.

> NR, no ratoon; HR, harvested ratoon; SR, standing ratoon.

¢ Estimates corrected for seed loss during sieving and non-detection or non-recovery of
seeds by technicians (Hagy et al. 2011).
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Table 2.6 Results of linear mixed models predicting natural seed biomass in
production rice fields in the Gulf Coast Prairies during November, 2010—

2013.
Models? AICc AAICc w; K LL R’marg R’cond
SOIL 6632 0.0 020 4 -327.50.02 0.32
NULL 663.2 0.0 020 3 -3285 0.00 0.30
FC 6640 0.8 0.13 5 -326.8 0.02 0.31
FC+SOIL 6642 1.0 0.12 6 -3259 0.03 0.33
VAR 6652 2.0 0.07 4 -32850.00 0.30
VAR+SOIL 6653 2.1 007 5 -327.50.02 0.32
FC+VAR 6658 2.6 005 6 -326.7 0.02 0.32
FC+VAR+SOIL 666.2 3.0 004 7 -325.8 0.03 0.34
FC*SOIL 6664 32 004 8 -3248 0.05 0.35
FC*VAR 6665 33 004 8 -3248 0.04 0.33
VAR*SOIL 666.7 3.5 003 6 -327.1 0.02 0.33

FC+VAR+SOIL+FC*SOIL+FC*VAR 6694 6.2 0.01 11 -323.0 0.07 0.38

Results of linear mixed models predicting November natural seed biomass® in production
rice fields in the Gulf Coast Prairies of Louisiana and Texas, November, 2010-2013.

2 Field classification (FC); Soil (SOIL); Variety (VAR); Precipitation (PRECIP); Null
model (NULL).

® Natural seed biomass (kg[dry]/ha).
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Table 2.7 Results of linear mixed models predicting total seed biomass in idled rice
fields in the Gulf Coast Prairies during November, 2010-2013.

Models? AICc AAICc wi K RZnarg RZcond
FC 7284 0.0 041 4 006 044
FC+PRECIP 7282 08 027 5 0.07 045
FC*PRECIP 731.0 25 0.12 6 0.07 045
FC+PRECIP+SOIL 7313 28 0.10 6 0.07 045
FC*SOIL 7321 36 007 6 0.06 0.44
FC+SOIL+PRECIP+FC*PRECIP+FC 733.4 49 004 9 0.09 046
*SOIL+SOIL*PRECIP

NULL 738.1 9.6 0.00 3 0.00 047
PRECIP 7394 109 0 4 0.00 0.47
SOIL 7399 114 0 4 0.00 047
SOIL*PRECIP 741.1 126 0 6 0.02 047
SOIL+PRECIP 741.1 127 0 5 0.01 047

Results of linear mixed models predicting November total seed biomass® in idled rice
fields in the Gulf Coast Prairies of Louisiana and Texas, November, 2010-2013.

4 Field classification (FC); Soil (SOIL); Precipitation (PRECIP); Null model (NULL).
® Total seed biomass (i.e., waste rice and natural seed combined; kg[dry]/ha).
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Table 2.8 Estimates of mean total seed biomass in Gulf Coast Prairie idled rice fields
during November by field classification, 2010-2013.

Mean seed biomass

Field — ¥ 95%LCL 95% UCL
classification

DI 78.90 55.1 112.9
SI 175.79 117.6 262.8

Field classification, November estimates® of mean (X) total seed® (kg[dry]/ha), and 95%
confidence limits from linear mixed models for idled rice fields in the Gulf Coast Prairies
of Louisiana and Texas, November, 2010-2013.

2 DI, disked idle; SI, standing idle.

® Estimates corrected for seed loss during sieving and non-detection or non-recovery of
seeds by technicians (Hagy et al. 2011).

¢ Waste rice and natural seed combined.
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CHAPTER III

WETLAND BIRD USE OF RICELANDS IN THE GULF COAST PRAIRIES OF

LOUISIANA AND TEXAS

Since early-20'" century, tall-grass prairie and wetlands in the Gulf Coast Prairie
(GCP) regions of Louisiana and Texas were converted to agricultural lands, especially for
rice production. Rice is grown on irrigated or flooded land, hence this agriculture creates
wet croplands that provide breeding, migration, and wintering habitats for waterbirds,
including anhingas (Anhingidae); coots, rails, and gallinules (Rallidae); cormorants
(Phalacrocoracidae); grebes (Podicipedidae); gulls (Laridae); kingfishers (Cerylidae);
pelicans (Pelecanidae); shorebirds (Charadriidae, Recurvirostridae, Scolopacidae); terns
(Sternidae); waders (Ardeidae, Threskiornithidae); and waterfowl (Anatidae; Hohman et
al. 1994, Elphick 2000, Huner et al. 2002, Eadie et al. 2008, Marty 2013). Thus, previous
research has provided a basis for the habitat importance of ricelands to birds worldwide
(Elphick et al. 2010a).

For example, an estimated 335 bird species (i.e., 169 aquatic and 166 land-bird
species) use rice fields in ten world countries (Acosta et al. 2010). In North America,
hundreds of bird species use rice fields, which include 28 species of conservation concern
(Eadie et al. 2008, Dittmann et al. 2015). Within the GCP region of the United States, the
Chenier Plain (CP) of Louisiana (LCP) and Texas (TCP) and the Texas Mid-Coast
(TMC) are major rice producing regions that provide habitat for millions of wetland birds
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annually (Chabreck et al. 1989, Hobaugh et al. 1989, Stafford et al. 2010, Marty et al.
2015). Remsen et al. (1991) observed 260 species of waterbirds using GCP ricelands as
wintering habitat in south-central Louisiana. The Gulf Coast Joint Venture (GCJV)
endeavors to provide foraging habitat for approximately 14 million ducks, 1.6 million
geese, and over 12 million shorebirds annually during autumn-winter, which emphasizes
the importance of the GCP to sustain North American waterfowl and wetland bird
populations (U.S. Department of the Interior and Environmental Canada 1986, Esslinger
and Wilson 2001, U.S. Department of the Interior et al. 2012, Vermillion 2012).
Although ricelands contain rice and some other natural grasses, these croplands
are structurally similar to emergent wetlands (Elphick et al. 2000). In the GCP, ricelands
uniquely are used often for rice and crayfish (Procambarus clarkii) production. These
seasonally sequential agricultural practices (i.e., rice followed by crayfish production)
create habitats used by resident and migratory wetland birds (Nassar et al. 1988,
Reinecke et al. 1989, Fasola and Ruiz 1996, Eadie et al. 2008, King et al. 2010, Stafford
et al. 2010). For instance, values of ricefields span from providing nesting substrates for
some species (e.g., purple gallinule, Porphyrio martinicus; king rail, Rallus elegans;
fulvous whistling duck, Dendrocygna bicolor; Pierluissi et al. 2010), to provision of high
energy grain for birds and other wildlife (Kaminski et al. 2003; Elphick et al. 20105,
Stafford et al. 2010). Importantly, ricelands provide valuable nesting and brood-rearing
habitat for mottled ducks (4nas fulvigula), fulvous whistling ducks, and black-bellied
whistling ducks (D. autumnalis; Durham and Afton 2003, Pickens and King 2012,
Baldassarre 2014). Worldwide, approximately 86% of ricelands are shallowly flooded
(i.e., <30 cm) at least part of the year (Elphick et al. 20105). Flooded ricelands provide
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abundant foraging opportunities for wetland birds, because they yield waste rice, natural
seeds, tubers, and aquatic invertebrates, as well as habitat for loafing and courtship (Rave
and Cordes 1993, Manley et al. 2004, Eadie et al. 2008, Stafford et al. 2010). For
example, diurnal activities of northern pintails (Anas acuta) in non-hunted rice fields in
southwest Louisiana included 21% feeding, 52% resting, 16% comfort movements, and
4% courtship (Rave and Cordes 1993).

Avian community structure and optimal foraging by birds are influenced by food
diversity and availability, both of which influence avian life histories (Lack 1954,
Hutchinson and MacArthur 1959, Hairston et al. 1960, Emlen 1966, MacArthur and
Pianka 1966, Martin 1987). Production and idled rice fields typically contain food
resources, access to which may vary dynamically, based on water depth, vegetation
height and density, disturbance (e.g., farming and hunting), weather events such as
drought, floods, and temperature, seed decomposition, other landscape and local factors
(Newton 1998; Schummer et al. 2010; Hagy and Kaminski 2012a,b; Hagy et al. 2014).
Moreover, seed position for avian exploitation in relation to water depth or burial in
substrates, naturally renders potential food items unavailable, which influences
differences between actual food density and food availability (Boutin 1990, Gawlik
2002).

Across many parts of North America, agricultural lands may be dominant
landscape features, but wetlands and uplands form habitat complexes that influence
abundance and distribution of wetland birds (Pearse et al. 2012). Gulf coastal rice
landscapes generally contain an interspersion of production and idled rice fields, other

agricultural lands, natural wetlands, pastures, forest patches, and urban areas that
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cumulatively also may influence wetland bird abundance and distributions. Developing
conservation initiatives and incentives for landowners to promote spatial and temporal
flooding of wetlands and production or idled ricelands is an important strategy by
conservation partners in the GCP. These directed efforts are needed to meet desired
population goals for priority avian and other wildlife species. Sometimes, opportunities
to enhance local and regional wetland and agricultural habitat conditions emerge
unexpectedly. For example, following the April 2010 Deepwater Horizon Oil Spill in the
Gulf of Mexico, the United States Department of Agriculture, Natural Resources
Conservation Service (NRCS) established the Migratory Bird Habitat Initiative (MBHI).
Part of MBHI’s goal was to incentivize private landowners in eight states (Alabama,
Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, and Texas) to flood
production and idled rice fields and managed wetlands to increase availability of habitats
for wetland birds away from potential oil affected areas (Davis et al. 2014). Specifically
for ricelands, the primary management practice was to shallowly flood harvested and
idled rice fields during autumn and winter in coastal areas of Louisiana and Texas (Davis
et al. 2014). Flooding post-harvest production and idled rice fields enrolled in MBHI
increased available habitat in the GCP of Louisiana and Texas from 2010-2013
(Kaminski and Davis 2014, Davis et al. 2014). Thus, MBHI created a unique opportunity
to assess wetland bird use of riceland management practices promoted by MBHI.
Another unique aspect of my research involved assessment of waterfowl use of
production fields planted to Clearfield® Rice. Over 60% of all rice hectares in the United
States are planted in Clearfield® rice varieties (Wilson et al. 2010). Clearfield® is non-

genetically modified rice that provides selective herbicide resistance to plants, thereby
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enabling increased control of broadleaf and grass plants in rice fields (Croughan 2003).
Despite apparent advantages for producers, there is growing speculation among
waterfowl hunters that traits related to Clearfield® (e.g., more effective weed control) are
leading to decreased use or avoidance of fields by waterfowl. Although possible, results
presented in Chapter I indicate natural seed biomass did not differ between rice seed
varieties. When I analyzed for differences in waste-rice biomass between rice varieties, |
detected that mean waste-rice biomass was significantly less in fields planted to
Clearfield® rice than non-Clearfield varieties. If waterfowl and other granivorous
wetland birds use less or avoid fields planted with Clearfield® rice, there could be
landscape-scale, carrying capacity implications related to food availability.

Beyond these implications, lingering research needs in the GCP include
investigating relationships between wetland bird use of ricelands during autumn and
winter and factors such as field classifications, water depths, vegetation height and
density, seed variety, and agricultural wetland size. These factors could influence the
landscapes capacity to meet needs of millions of wetland birds of conservation interest to
the Gulf Coast Joint Venture (GCJV). To address these uncertainties, I conducted diurnal
surveys of waterbirds in production, seed-, and idled rice fields in the LCP, TCP, and
TMC regions to estimate species richness and abundance of these birds from August—
March, 2010-2013. This period was selected because it spanned the rice-harvest, fall-
migration, wintering, and spring-migration periods for which MBHI data were desired.
My objective was to estimate and model variation in duck and other waterbird (i.e.,
waders, shorebird, rails, and other birds) species richness and abundance in relation to

habitat characteristics and rice-seed varieties of production rice fields, and habitat
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characteristics of idled rice fields. I hypothesized that diurnal wetland bird species
richness would best be predicted by time periods (i.e, month), vegetation characteristics,
and water depths. I predicted that variation in duck and waterbird abundances would best
be explained by vegetation characteristics, water depth, and time periods; and would
occur in shallowly flooded (<15 cm) ricelands which contained sparse vegetation.
Elphick and Oring (1998) indicated that median water depths used by wetland birds
ranged from 3-13 cm for shorebirds, and 9-20 cm for herons and ibis. Besides water
depth, vegetation characteristics in differently-treated post-harvest rice fields affected
wetland bird density (Elphick and Oring 1998, 2003). For example, density was greatest
in flooded fields where no vegetation manipulations occurred, and in fields where
vegetation was incorporated into the soil by disking (Elphick and Oring 2003). Lastly
and specifically pertaining to ducks, I hypothesized that duck abundance in production
rice fields would not differ among rice seed varieties. Understanding how this
community of wetland birds uses ricelands amid variable seed dynamics and other field
treatments (i.e., Chapter I) will improve the overall vision for identifying bottlenecks in

habitat needs for conservation planning in the GCP.

Study Area
I conducted my study in agricultural landscapes of the CP of Louisiana and Texas
and the TMC. The CP encompasses areas of southwest Louisiana and southeast Texas,
roughly spanning from Lafayette, Louisiana, westward to Houston, Texas, and extending
inland 130-160 km from the coastline (Figure 2.1). The TMC extends from Galveston
Bay to Corpus Christi, Texas, and inland from the coastline approximately 170 km

(Figure 2.1). My specific study area included the Louisiana parishes of Acadia, Allen,
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Calcasieu, Cameron, Evangeline, Jefferson Davis, St. Landry, and Vermilion, and the
Texas counties of Brazoria, Chambers, Colorado, Jackson, Jefferson, Liberty, Matagorda,
and Wharton. These counties aligned closely with the GCJV’s Chenier Plain and Texas
Mid-Coast Initiative Areas.

Historically, these regions contained extensive coastal marshes and prairies,
freshwater wetlands, and savannahs. Today, the CP and TMC contain coastal marshes
along the Gulf of Mexico, but many of the historic coastal prairies and savannas have
been converted for cultivation of rice and other crops (Esslinger and Wilson 2001). The
climate is sub-tropical and humid with an average growing season of 270 days, 13 freeze-
days per year, and temperatures ranging from 14° C in December—January to 30° C July—
August (Chabreck et al. 1989). Average annual precipitation decreases east to west in the
CP from 144 cm near Lafayette, Louisiana, to 113 cm near Houston, Texas, and 77 cm
near Corpus Christi, Texas (Gosselink et al. 1979, Hobaugh et al. 1989). The CP and
TMC regions are subject to frequent and sometimes intense weather disturbances; on
average, tropical storms make landfall approximately once every 1.6 years and hurricanes

every 3.3 years (Roth 1999).

Methods

Wetland Bird Surveys

[ initially surveyed wetland birds from December—March 2010-2011 in response
to the MBHI (Marty 2013). Subsequently, I conducted avian surveys from August—
March, 2011-2013 to acquire data from bird migration and winter periods important to

GCP conservation planning. My populations of surveyed fields included those enrolled
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in MBHI, the GCJV Texas Prairie Wetlands Project (TPWP), and agricultural fields
managed similarly to practices promoted by MBHI. Specifically, I conducted wetland
bird surveys in the same randomly selected production, idled, and seed-rice rice fields
from which I collected soil cores (Chapter II). The combination of these fields and
potential food resources were believed to be representative of common agricultural land
management practices in the GCP (S. Linscombe, Louisiana State University Agricultural
Center, personal communication). Field classifications of production and idled rice fields
included: 1) July—August harvest only (first harvest, FH); 2) fields harvested in August
and again in November for a ratoon crop (harvested ratoon, HR); 3) fields in which a
second crop was grown but not harvested and left standing, generally for crawfish
aquaculture or waterfowl habitat (standing ratoon, SR); 4) fields harvested in July—
August but with no ratoon crop grown (no ratoon, NR); 5) idle fields with standing
natural vegetation (standing idle, SI); and 6) disked idled fields (disked idle, DI).
Application of these field classifications was not mutually exclusive. For example, all
production rice fields were harvested July—August, but each was subject to one of several
unique practices (e.g., classifications 2—4) that affected field dynamics (e.g., food
dynamics, water depth, vegetation conditions) during autumn. Thus, some of my
identified field classifications are best viewed as a combination of farming activity and
sampling period.

I surveyed birds from one or multiple vantage points, following guidelines from
the Integrated Waterbird Management and Monitoring Program ([IWMMP]; IWMMP
2010, 2015). I estimated abundance of wetland birds (total birds/species/survey), because
ricelands typically contained vegetation and levees, which in some instances created

75



visual obstructions preventing me from detecting all birds present. To minimize multiple
counting of individual birds, I visually followed flushed birds and noted their location if
they alighted in areas yet to be surveyed (Kaminski and Prince 1981, Fleming et al.
2015). I conducted surveys from sunrise to sunset and only in favorable weather (i.e., not
on days with fog, rain, and winds >20 mph; O’Neal et al. 2008, Fleming et al. 2015).
Immediately after conducting a survey, I measured water depth, vegetation height, and
vertical vegetation density at two randomly selected sites within each field (Robel et al.
1970). I created classes for water depth and vegetation height and density (sensu
IWMMP 2010, 2015). Water depth classes included saturated soil (<1 cm), shallow (1—
15 cm), intermediate (15-30 cm), and deep flooded (>30 cm). Vegetation height classes
included none, short (1-15 cm), intermediate (16—40 cm), and tall (>40 cm). Vertical
vegetation density classes included none, sparse (1-20 cm), intermediate (2140 cm), and
dense (>40 cm). I visually estimated percent coverage of water in each field during each

visit and used ArcMap10 to calculate wet area (ha) of each field.

Statistical Analysis

Modeling Variation in Wetland Bird Richness

I evaluated for differences in seasonal wetland bird (Ducks and Waterbirds)
species richness across production and idled rice fields in the GCP in relation to various
explanatory variables. Iincluded variables that may explain variation in wetland bird
species richness. My objective was to explain variation in wetland bird species richness
in saturated—flooded wetland areas, thus I excluded portions of fields during surveys that

were dry and the entire survey if a field was completely dry for this and subsequent
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analyses. In evaluating wetland bird species richness, I used linear mixed models in R
(Ime4; Bates and Maechler 2016; R Development Core Team 2016). I used mixed
effects models because models included fixed and random effects. I identified the
following covariates as fixed effects for wetland bird species richness: 1) month, 2) water
depth, 3) vegetation height, 4) vegetation density, and 5) wetland size (i.e., area of field
surveyed). Iincluded year as a random effect because of yearly variability in bird
migration and distribution within the Mississippi Flyway. I natural log transformed
species richness data prior to analysis, because inspection of residual plots and
histograms indicated data were not normally distributed. Iincluded year as a random
effect, because evidence (i.e., lowest AICc) suggested it increased explanatory power of
my models (Zuur et al. 2009). 1 developed a set of a priori candidate models, each
representing a possible biological scenario for wetland bird species richness. I did not
include precipitation variable because all survey fields included in the analysis contained
flooded agricultural wetlands, and I reasoned that if rainfall created ephemeral wetlands
in fields, my surveys would capture birds using these and be categorized in saturated soil
or shallowly flooded categories. I compared models using Akaike’s Information
Criterion adjusted for sample size (AICc; Burnham and Anderson 2002), and considered
models with AAICc <2 units from the top model as competitive (Burnham and Anderson
2002). I calculated R statistics as a means to assess the fit of each candidate model
(Nakagawa and Schielzeth 2013). I calculated back-transformed estimates from only the
best supported model. I did not model average because my goal was to investigate
parameter estimates from each supported model, and models contained a random variable

of year.
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Modeling Variation in Duck and Waterbird Abundance

I separated wetland birds into two guilds: 1) Ducks and 2) Waterbirds (waders,
shorebirds, rails, and other [e.g., Grus americana, Larus spp., Podilymbus sp.]). 1did not
separate shorebirds from wading birds because of sample size limitations. I excluded dry
areas of fields and the entire survey if the field was completely dry, as described above. I
excluded geese from analyses because they were observed infrequently (i.e., 2% of all
surveys across years, n = 5,002). Additionally, I excluded seed-rice fields from analyses,
because they were dry in 80% of all surveys across years (n = 338) and never flooded >1
cm.

Because birds were not detected in all fields during many surveys, I used zero-
inflated Poisson, zero-inflated negative binomial models and Hurdle models. I compared
AlCc and Bayesian information criterion (BICc) values from the null model for both
Ducks and Waterbirds. Results indicated that a zero-inflated negative binomial model
was most appropriate for my Duck count data, and a negative binomial Hurdle model was
best suited for the Waterbird data. Therefore, I used zero-inflated negative binomial
regression model (pscl; Jackman 2015) to assess variation in Duck abundance and a
negative binomial Hurdle regression model (psc/; Jackman 2015) for Waterbird
abundance.

Zero-inflated and Hurdle regression models combine a standard discrete
distribution (e.g., negative binomial; count data), with the binomial distribution (zeros
present in greater number than predicted by the discrete distribution; Ridout et al. 1998).
Multiple processes such as false negatives (zeros; e.g., when habitat is suitable and the
observer fails to detect an organism that is actually present, or when the habitat is suitable
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but the organism is not present), and true zeros (e.g., when habitat is not suitable, thus the
organism is not observed) are responsible for zeros in the response variable (Zuur et al.
2009). Zero-inflated regression models (i.e., mixture models), model false zeros
separately from non-zero counts and true zeros (Zuur 2009). Whereas, a Hurdle model
contains two processes; the first, models the occurrence of a zero (true and false) vs. non-
zero counts; the second, the relationship between non-zero counts and covariates (Zuur et
al. 2009).

I identified the following factors or covariates as potential influences on wetland
bird abundance: 1) year, 2) month, 3) water depth, 4) vegetation height, 5) vegetation
density, and 6) wetland size (i.e., area of field surveyed). I developed a set of a priori
candidate models, each representing a possible biological scenario for Ducks and
Waterbirds. I compared models using Akaike’s Information Criterion adjusted for
sample size (AICc; Burnham and Anderson 2002), and considered models with AAICc <
2 units from the top model as competitive (Burnham and Anderson 2002). I calculated
back-transformed estimates from the best supported model. To assess variation in duck
abundance in relation to rice seed variety (Clearfield® vs conventional varieties), I back-

transformed estimates from the “variety” model as described above.

Results
Wetland Bird Species Richness
I conducted 5,002 wetland bird surveys in 142 fields in the LCP, TCP, and TMC
regions during August—-March, 2010-2013 (i.e., production [2010, n = 10; 2011-2013, n
= 50], idled [2010, » = 10; 2011-2013, n = 50], and seed-rice rice fields [2012, n = 10;

2013, n = 12]). Ofthe 5,002 surveys, 60% (2,996, [DI, n = 632; SI, n = 610; NR, n =
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419; HR, n = 540; SR, n = 384]) contained wet ricelands and the remaining 40% (2,006)
were dry. I observed the following number of species by taxon: 20 waterfowl, 9
shorebirds, 14 waders, 3 rails, and 7 species of other birds (Table 3.1). Greatest
encountered wetland bird species richness (13) during all surveys occurred in idled (n = 4
surveys) and production (n = 1 survey) rice fields. Among all surveys, greatest
waterfowl (ducks and geese) species richness (9) observed was in a rice field with no
ratoon crop, and greatest Waterbird species richness (10) occurred in first harvest (n = 2
surveys) and harvested ratoon (n = 1 survey) rice fields.

Variation in wetland bird (Ducks and Waterbirds) species richness across my
GCP survey region was best explained by an additive model containing vertical
vegetation density, water depth, and wetland size (Table 3.2). The combination of
vegetation density, water depth, and wetland size explained 10% of the variation in
wetland bird species richness. When holding wetland size constant at the computed
average of 17.9 wet ha (hereafter ha), species richness was greatest in ricelands with
shallow water depth and sparse vertical vegetation density (3.5 wetland birds/survey,
95% CI =3.1-3.8) and least in saturated ricelands with dense vertical vegetation (1.8
wetland birds/survey, 95% CI = 1. 6-1.9; Table 3.3). Species richness increased ~1% for

each 1 ha increase in wetland size (Figures 3.1-3.4).

Wetland Bird Summary Statistics

I detected 456,565 wetland birds across all species during the aforementioned
2,996 surveys of wet ricelands. Despite great wetland bird abundance, I did not detect
any birds in 31% of these surveys. Lesser snow geese (Chen caerulescens) was the most

abundant bird species observed among dry and flooded ricelands (n = 65,546). This
80



species was observed only in 66 (1%) of the 5,002 total surveys. Ducks and geese
collectively accounted for 62% (281,070) of all wetland bird observations (456,565),
while waders, shorebirds, rails, and others represented 17% (79,166), 17% (77,004), 3%
(12,491), and 1% (6,834), respectively. Greatest duck density for an individual survey
occurred in mid-February, in a LCP disked idled field with intermediate water depths
(601 ducks/ha). This field contained 7,200 American green-winged teal (4nas crecca),
515 northern pintail (4. acuta), and 6 mallards (4. platyrhynchos). Greatest density of
waders (223 birds/ha) for an individual survey occurred in mid-January, in a LCP
production rice field with a standing ratoon crop of tall, dense rice flooded to an
intermediate depth. This field contained 1,240 white ibis (Eudocimus albus). Moreover,
greatest shorebird density for an individual survey was (312 birds/ha) in mid-December,
in a saturated TMC disked idled field without vegetation. This field contained an
estimated 100 sandpipers (Calidris spp.) and 1,500 dowitchers (Limnodromus spp.).
Wetland bird abundance in seed-rice fields remained low among all surveys (0-1.4
birds/ha) as seed-rice fields were seldom flooded during winter. Thus, I did not include

seed-rice fields in abundance analyses.

Variation in Duck Abundance

Variation in Duck abundance was best explained by an additive model that
included vegetation height, water depth, and wetland size. This model had a weight (w;)
of 0.75 (Table 3.4). Holding wetland size constant at the computed average of 17.9 ha
for all modeling analyses, duck abundance was greatest in ricelands with intermediate
water depths and short vegetation (447.3 ducks, 95% CI =264.0-757.7), and least in

ricelands with saturated soils and intermediate vegetation height (14.6 ducks, 95% Cl =
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7.0-30.5; Table 3.5). In shallowly flooded ricelands, greatest duck abundance occurred
with short vegetation (360.0 ducks, 95% CI =216.8-597.9; Table 3.5). Duck abundance
in deeply flooded and saturated ricelands remained low, but within deeply flooded
ricelands was greatest in fields with short vegetation (i.e., vegetation height extending
above the surface of the water) 73.3 ducks (95% CI = 39.4-136.4; Table 3.5). Duck
abundance decreased 0.86% for each 1 ha increase in wetland size (Figure 3.5-3.8).

The probability of measuring a false negative (false zero), versus counts of
detected birds and true zeros was greatest in ricelands with saturated soils and tall
vegetation height (97%, 95% CI = 95-98%), but least in ricelands with shallow water and
short vegetation height (20%, 95% CI = 9-40%; Table 3.6). The probability of
measuring a false negative decreased 1.8% for each 1 ha increase in wetland size (Figures

3.9-3.12).

Variation in Waterbird Abundance

Variation in abundance Waterbirds was best explained by an additive model that
contained field classification, water depth, and wetland size. The weight (w;) of this
model was 0.88 (Table 3.7). Waterbird abundance at the average wetland area (17.9 ha)
was greatest in shallowly flooded fields with sparse vegetation (83.3 Waterbirds, 95% CI
=56.4-122.9) and least in saturated fields with dense vegetation (17.3 Waterbirds, 95%
CI=12.4-24.0; Table 3.8). Waterbird abundance increased ~1% for each 1 ha increase
in wetland size (Figures 3.13 — 3.16).

The probability of a riceland (e.g., production or idled rice field) being used by
Waterbirds was greatest in shallowly flooded fields with no vegetation (76%, 95% CI =

72—01%) and least in saturated fields with dense vegetation (56%, 95% CI = 52-61%;
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Table 3.9). The probability of a riceland being used by waterbirds increased ~2% for

each 1 ha increase in wetland size (Figures 3.17-3.20).

Variation in Duck Abundance Relative to Rice Seed Variety

Duck abundance did not differ between Clearfield® (65.4 ducks, 95% CI = 42.8-
99.8) and conventional rice varieties (73.1 ducks, 95% CI =43.8-122.1; Table 3.10;
Figure 3.21). Moreover, the probability of measuring a false negative did not differ and
was 51% (95% CI = 35-68) and 49% (95% CI = 31-67) for Clearfield® and conventional

rice varieties, respectively (Table 3.11; Figure 3.22).

Discussion
Wetland Bird Species Richness

Shallow water (<20 cm) provides foraging opportunities for the greatest number
of wetland bird species (Elphick and Oring 1998, 2003), and fields devoid of or
containing intermediate levels of vertical vegetation may have been important for
foraging efficiency and predator detection or avoidance. Elphick and Oring (1998, 2003)
suggested that water depths ranging from 10-20 cm are preferred for wetland bird
management, with the lower end of the range excluding fewer wetland bird species than
the upper end. Additionally, Hagy and Kaminski (2012b) reported ~90% of dabbling
ducks foraged in managed moist-soil wetlands flooded <16 cm deep in western
Mississippi. In Louisiana, Rettig (1994) found that 70% of shorebirds and 50% of
wading birds used wet fields with less than 50% vegetation cover. Vegetation
manipulations, such as disking, rolling, chopping, or mowing, are potential sources of

variation in wetland bird use of ricelands. My results indicated that species richness was
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lowest when fields contained dense vertical vegetation. Some avifauna utilize flocking to
increase their feeding efficiency or decrease their vulnerability to predators (Powell 1974,
Morse 1977, Cresswell 1994). Perhaps dense vegetation precluded use for many
flocking shorebird, wader, and waterfowl species because of visual and mobility
obstructions. However, because of the secretive nature of many wetland birds which
inhabit dense vegetation (e.g., bitterns, rails, etc.), detection is often difficult even when
suitable habitat is surveyed and birds are present (Allen 2004, Conway 2005, Valente
2009). Therefore, some species may have been present but I could not detect them.
Wetland bird species richness increased ~1% for every hectare increase in
wetland size. Larger agricultural wetlands likely contained a greater diversity of foraging
habitats and food resources, facilitating use by a greater number of wetland bird species.
Numerous hypotheses and theories have been posited to explain the species-area
relationship. The species-area relationship, originally proposed by Arrhenius (1921),
suggests that more species occur in larger than smaller areas. MacArthur and Wilson
(1967) advanced this concept by developing the equilibrium model of species-area
relationships on islands (i.e., the theory of island biogeography), postulating that smaller
islands support fewer species than larger islands. Additionally, the habitat diversity
hypothesis states that large areas have greater habitat diversity than small areas, and thus
should contain more species (Williams 1943). The passive sampling hypothesis argues
that larger areas should be greater ‘targets’ for immigration and subsequently contain
more species (Coleman et al. 1982). Relating the habitat diversity and passive sampling
hypotheses to my study, the diversity of agricultural practices and resulting habitat
mosaics created by rice and crayfish production, and waterfowl and other wetland bird
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conservation create a diversity of important habitats for diversity of wetland avifauna.
Below, I discuss avian communities more specifically as they relate to different types of

field classifications, vegetation structure, and water depths in my study.

Duck Abundance

Duck abundance was best explained by an additive model containing vegetation
height, water depth, and wetland size. Greatest duck abundances occurred in ricelands
with shallow or intermediate water depths and short vegetation. My results approximate
those for other rice agricultural systems in California and the Mississippi Alluvial Valley,
where median water depths used by dabbling ducks in California rice fields ranged from
14-22 cm (Elphick and Oring 1998), and most dabbling ducks in the Mississippi Alluvial
Valley foraged in <16 cm (Hagy and Kaminski 2012b). Shallow water depths allow
ducks to access important food resources, such as waste rice, natural seeds, tubers, and
aquatic invertebrates present in production and idled rice fields and managed moist-soil
wetlands (Manley et al. 2004; Stafford et al. 2006; Kross et al. 2008a,b; Stafford et al.
2010, Hagy and Kaminski 2012a,b; Marty et al. 2015).

Idled ricelands which are frequently disked, and ricelands flooded for extended
periods, often contain little to no vegetation. Additionally, disking incorporates plant
biomass into the soil. Furthermore, harvesting a rice field involves clipping the rice stalk,
which often reduces vegetation height across the entire field. During harvesting of
production rice fields, openings are created when rice stalks are flattened by farm
machinery. Flooding of production and idled ricelands promotes decomposition of plant
biomass and provides landowners economic and agronomic benefits (Manley et al. 2005,

Anders et al. 2008). Moreover, foraging actions by ducks in flooded ricelands exacerbate
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straw decomposition in winter (Smith 1992, Brouder and Hill 1995, Bird et al. 2000).
My results revealed that ricelands with intermediate and tall vegetation typically attracted
fewer ducks than those with no or short vegetation. Ducks tend to avoid fields with tall,
dense vegetation until it decomposes, topples, or openings are otherwise created because
of reduced predatory detection, mobility, and access to food resources (Kaminski and
Prince 1981, 1984; Anderson and Smith 1999; Gray et al. 1999; Havens et al. 2009;
Stafford et al. 2010; Hagy and Kaminski 2012b). In my study area, ricelands with tall
dense vegetation generally were either SI or SR fields.

Duck abundance was greatest within deeply flooded ricelands when vegetation
height was short or absent. Although SR fields typically used for crayfish production
contained unharvested rice crops, once flooded, above water vegetation height typically
ranged from 0—15 cm. In southwest Louisiana and parts of southeastern Texas, crayfish
production is an important commercial enterprise (McClain and Romaire 2004).
Flooding for crayfish production, associated aquaculture practices, and straw
decomposition reduced above-water height of vegetation. Absent or short vegetation
above the water surface may facilitate greater use by ducks in fields where crawfish are
being harvested, especially during times of minimal disturbance when harvesting
machinery is not in use. Additionally, dense vegetation persisting below the surface of
the water is critical for the production of crayfish and aquatic invertebrates which are
important food resources for waterfowl.

Flooding rice stubble establishes the detritus-based food web for crayfish and
other aquatic invertebrates (McClain and Romaire 2004, Alford 2014). Aquatic

invertebrates provide essential nutrients, such as proteins and their constituent amino
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acids that are important to pre-breeding waterfowl, especially female ducks in pre-basic
molt during winter and early spring (Heitmeyer 1988, Richardson and Kaminski 1992,
Barras et al. 2001). Foley (2015) reported that rice fields flooded for crayfish production
in the LCP and TCP supported diverse aquatic invertebrate assemblages and contained 40
invertebrates/m2 in canal irrigated rice fields and 63 invertebrates/m2 in well irrigated
rice fields. Albeit lower than estimates in the Central Valley of California, where
Loughman and Batzer (1992) reported chironomid larvae densities of 50—>400
invertebrates/m2, waterfowl likely used deeply flooded rice fields in part to forage on
aquatic invertebrates.

The probability of measuring false zeros versus true counts and zeros was greatest
(84-97%) in saturated ricelands (i.e., water depths <1 cm) regardless of vegetation height.
However, saturated soils were not frequently used by ducks in GCP ricelands; thus, I
cannot infer why probabilities were so large. Furthermore, probabilities of observing a
false negative were also large for shallowly (57%), intermediately (68%), and deeply
(66%) flooded ricelands with tall vegetation. These results may indicate that waterfowl
may have been present, but went undetected because of visual obstruction from tall
vegetation. To reduce the probability of observing a false negative, an observer could
walk or ride an all-terrain vehicle though fields to flush birds. Alternatively, ducks
actually were not present because the majority of them foraged in ricelands nocturnally

(Miller 1987, McNeil and Rodriguez 1996, Cox and Afton 1997).

Waterbird Abundance

Variation in waterbird abundance in GCP ricelands was best explained by

vegetation density, water depth, and wetland size. Abundance of waterbirds was
87



generally lowest in fields with dense vegetation regardless of water depth. Fields
containing dense vegetation likely precluded use by avifauna who typically utilize
flocking strategies to increase predator avoidance and foraging efficiency (Powell 1974,
Morse 1977, Cresswell 1994). Moreover, greatest waterbird abundances generally
occurred in fields with sparse vegetation regardless of water depth. Crayfish fields, and
fields flooded for recreational purposes typically contained sparse above-water vegetation
density. Sparse above-water vegetation density likely increased predator detection.
Although above-water vegetation density may be sparse, below-water density is often
dense and promotes the production of crayfish and other aquatic invertebrates (McClain
and Romaire 2004).

Wetland birds use a diversity of available foods in production and idled rice fields
including aquatic invertebrates, fish, and amphibians for essential nutrients during the
non-breeding period (Krapu and Reinecke 1992, Gonzalez-Solis et al. 1996, Richardson
2001, Kosteke et al. 2005, Baldassarre and Bolen 2006, Ma et al. 2009). Wading and
shorebirds vary greatly in body size and partition their foraging patches across water
depths in wetlands and agricultural fields; these strategies theoretically may reduce intra-
and interspecific competition for food (Nudds and Kaminski 1984, Davis and Smith
2001). Gawlik (2002) suggested that wading bird feeding constraints can be viewed as a
continuum with searchers (e.g., white ibis, wood storks [Mycteria americana], snowy
egrets [ Egretta thula]) and exploiters (e.g., great blue heron [Ardea herodias], great egret
[Ardea alba]) occupying opposite ends of behavioral foraging regimes. Searchers forage
primarily in shallow and intermediate water depths and abandon foraging plots quickly

when prey density begins to decrease, whereas exploiters persist in wetlands and forage
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in all water depths because of adaptations that mitigate the effects of decreasing prey
density (e.g., morphology, behavioral plasticity; Maurer 1996, Gawlik 2002). During
surveys, | observed “searchers,” such as white ibis and snowy egrets, exploiting newly
flooded ricelands, possibly exploiting emerging foods including crayfish from their
boroughs. Furthermore, I witnessed exploiters such as great blue herons and great egrets
using freshly flooded fields; however, they continued to use fields over successive
surveys.

Although I did not directly investigate water depth gradients used by individual
species of waterbirds, I observed birds with shorter legs (i.e., shorebirds, rails, ibis,
snowy egrets, little blue heron, etc.) generally occupying shallower depths (1-15 cm),
while birds with longer legs, such as great egrets and great blue herons, foraged in
shallow and deep water (1—>30 cm). Furthermore, the probability that waterbirds used
ricelands was greatest for shallow (<15 cm) and deep water depths (=30 cm), regardless
of field classification. Wading bird foraging depth is primarily partitioned by body
morphology such as bill and leg length, and ranges from adjacent dry uplands to water
depths ~40 cm (Kushlan 1986, Bancroft et al. 2002, Gawlik 2002). Elphick and Oring
(1998) reported that median water depths used by wading birds ranged from 9-20 cm.
Longer leg lengths provide opportunities to forage amid deeper water depths, whereas
those with shorter legs (e.g., sandpipers) are more restricted in foraging opportunities.
Bill morphology is also related to birds’ diet and prey foraging success (Kushlan 1978,
Gawlik 2002). Smith (1977) reported that little blue herons and great egrets, which have
thicker bills than snowy egrets, switched prey types as hydrological conditions changed

in foraging areas, whereas snowy egrets did not switch. Additionally, behavioral
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plasticity permits birds to exploit a wider range of water depths, such as tricolored herons
that forage atop floating vegetation and also in amid deep water (Smith 1995, Gawlik
2002). While conducting surveys, I witnessed white ibis, white-faced ibis, snowy egret,
and little blue heron perching on crayfish traps, perhaps using these structures as an
extension “ladder” to access prey near traps that otherwise would not be inaccessible due
to water depths. Similar to wading birds, shorebird foraging depth generally ranges from
moist adjacent uplands to water depths of 15 cm, and is primarily constrained by culmen
and tarsus lengths (Baker 1979, Elner and Seaman 2003, Colwell 2010). Elphick and
Oring (1998) found that median water depths used by shorebirds in California rice fields
ranged from 3—13 cm. The probability that waterbirds used ricelands was generally
greatest in shallowly flooded fields regardless of vegetation density. Elphick and Oring
(2003) reported that shorebirds avoided fields with tall or dense vegetation, and used
fields which had been disked in greater numbers. During spring migration in Louisiana,
Rettig (1994) observed 70% of shorebirds in rice fields with <50% vegetation, although

only 19% of fields contained <50% vegetative cover.

Duck Abundance in Relation to Rice Seed Variety

Anecdotal observations have led to speculation among local waterfowl hunters
that ducks may be avoiding rice fields planted with Clearfield® rice varieties because of
forage limitations. I detected a statistically greater waste-rice and natural seed biomass in
fields planted with conventional rice varieties (Chapter I). For both Clearfield® and
conventional varieties, waste-rice biomass remained greater than the giving-up density of
50 kg/ha (Greer et al. 2009). For conventional varieties, November, 2010-2013 natural

seed biomass was greater than the forage availability threshold of 170 kg/ha (Hagy and
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Kaminski 2015). However, November, 2010-2013 natural seed biomass in fields planted
with Clearfield® rice was below the forage availability threshold of 170 kg/ha.
Nonetheless, a zero-inflated negative binomial regression model indicated that duck
abundance did not differ between Clearfield® and conventional rice seed varieties.
Although there was no statistical difference in duck abundance between rice seed
varieties, results indicated slightly fewer ducks in fields planted with Clearfield® rice
than conventional rice, consistent with less seed biomass in the former than the latter. I
also investigated the possibility that measuring a false negative existed, but did not find
any differences between rice varieties. The probability of measuring a false negative was
high (~50%) regardless of seed variety indicating that habitat was suitable and birds were
not present, birds were present and I failed to detect them, or birds potentially foraged in
fields nocturnally. Thus, I conclude that although a difference in waste-rice and natural
seed biomass may exist between seed varieties, my surveys did not reveal any significant

differences in duck use between rice varieties.

Importance of MBHI for Wetland Birds in the Gulf Coast Prairies

In 2010 and 2011, in response to the Deep Water Horizon Oil Spill and
subsequently the beginning of one of the largest droughts in GCP history, the MBHI
provided incentives for landowners to flood production and idled rice fields and other
wetland habitats during autumn and winter (Davis et al. 2014, Kaminski and Davis 2014).
Financial incentives from MBHI enabled farmers to pump and flood ricelands in
Louisiana and Texas; the NRCS signed contracts and obligated approximately 93,388 ha
of land in this effort (U.S. Department of Agriculture 2010a,b). Conservation programs

such as MBHI provided critical wetland habitat for millions of wetland birds across
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southern Gulf of Mexico states (Borrow et al. 2013, Davis et al. 2014, Kaminski and
Davis 2014). During my research, I observed 53 wetland bird species using fields
enrolled in MBHI and those with similar management practices promoted by MBHI. The
MBHI flooding regimes provided habitats attractive to diverse wetland bird guilds which
migrate through and winter in the GCP regions during the nonbreeding period. I rarely
observed wetland birds using dry rice fields, but, when observed, birds used dry fields
adjacent to flooded fields. Similarly, Elphick and Oring (2003) found that wetland bird
richness and density were greater in flooded than unflooded rice field in California. The
most common species observed in MBHI fields were lesser snow geese, greater white-
fronted geese (Anser albifrons), blue-winged teal (4Anas discors), American green-winged
teal, northern shoveler (4. clypeata), white-faced ibis (Plegadis chihi), dowitchers, and
sandpipers. Additionally, I observed one whooping crane (Grus americana) in a LCP
production rice field, and bald eagles (Haliaeetus leucocephalus) in TMC production rice
fields, the latter of which prey on waterfowl on migration and wintering grounds

(McWilliams et al. 1994).

Management Implications

Models explaining variation in wetland bird use varied among guilds. Duck use
of ricelands was best predicted by vegetation height, water depth, and wetland size, while
abundance of other waterbirds was best predicted by field classification, water depth, and
wetland size. Water depth and wetland size influenced habitat use for all wetland bird
guilds. In my study, wetland birds required variable water depths within ricelands
ranging from saturated to >30 cm of water. Habitat complexes containing wetlands and

agricultural resources are attractive and promote diverse guilds of wetland birds (Elphick
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and Oring 2003, Hagy and Kaminski 2012b, Pearse et al. 2012). I suggest conservation
planners and policy makers create conservation programs that encourage landowners, rice
producers, and complex managers to flood both production and idled rice fields during
autumn—early spring for migrating, wintering, and locally breeding wetland birds.
Management practices within programs should emphasize closing water control
structures to capture rainfall following the first and ratoon harvests in production rice
fields and in idled rice fields (Manley et al. 2004, Eadie et al. 2008). In addition to
creating valuable shallow water and mudflat habitats, captured rainfall might save
producers money through reduced pumping or canal water costs, as well as benefitting
aquifer rejuvenation. I recommend conservation programs accommodate a suite of
flooding regimes to promote habitat complexes with variable water depths to meet the
needs of multiple wetland bird guilds, including 1-15 cm for shorebirds, 9-20 cm for
herons and ibis, 14-22 cm for dabbling ducks, 18-26 cm for geese, and 24-34 cm for
diving waterfowl species (Elphick and Oring 1998, 2003; Hagy and Kaminski 2012b).
Furthermore, height and density of vegetation in production and idled rice fields will
subsequently be reduced through the use of program flooding. Flooding fields eventually
creates natural openings through decomposition, and immigrating wetland birds will
further accelerate vegetation toppling (Anders et al. 2008). The hemi-marsh concept is a
classic wetland paradigm, originally conceived in northern prairie wetlands (Kaminski
and Prince 1981, Murkin et al. 1982), but can be extended to non-breeding habitats to
benefit wetland birds (Smith et al. 2004, Havens et al. 2010, Hagy and Kaminski 2012b).
In addition to providing valuable wetland habitat, winter flooding of ricelands can

save producers significant amounts of money annually. The costs of post-harvest field
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manipulations can range from $6.65/ha for burning to $197/ha for chopping, rolling,
tilling, or disking (Brouder and Hill 1995, Horwath and van Kessel 2001). Compounding
these costs across whole farms could be significant for some producers. Flooding rice
fields to attract foraging waterfowl can reduce red rice and other weeds. Red rice, also
Oryza sativa, is similar to commercial rice, but reduces yield and quality of commercial
crops in the southern United States (Khodayari et al. 1987). Previous research has
estimated that winter water management reduced red rice by as much as 97% and
potentially saved the rice industry more than $290 million in 1997 (Smith et al. 1977,
Smith and Sullivan 1980, Hobaugh et al. 1989). Furthermore, retaining some straw and
flooding fields during winter can improve nitrogen uptake in subsequent crops, reduce
water volume runoff, and reduce suspended and dissolved solids (Anders et al. 2008,
Manley et al. 2009).

Market prices for rice and other alternative crops, such as soybean, are a
significant determinant for the extent of rice planted each year in the GCP. With
potential for rising input costs associated with seed, fuel, fertilizers, and herbicides,
producers may elect to grow alternative crops or stop farming altogether. If many
producers stop farming or find it more profitable to grow alternative crops, abundance of
wetland bird habitat in the form of ricelands could substantially decrease in the GCP.
One of the greatest concerns for rice farmers and conservation organizations has been
recent droughts and subsequent water restrictions implemented by the Lower Colorado
River Authority (LCRA) in Texas. The LCRA controls the water supply for most of the
TMC and supplies about 60% of total irrigation demands for agriculture (LCRA 2010,
2013). From 2011-2015, the LCRA either restricted or eliminated irrigation water for

94



rice producers in the region, seemingly hindering the TMC rice producing industry.
Recent rainfall has since replenished LCRA reservoirs and the supply of irrigation water
resumed in 2016. For future considerations, conservation programs such as MBHI may
be necessary to promote flooding of agricultural lands, especially if restrictions on
irrigation water resume or rice productions costs continue to rise.

Loss of species and changes in community structure can sometimes be attributed
to fragmentation and habitat loss (Diamond 1976). As fragmentation occurs, habitats
become smaller and increasingly isolated (Farina 1998, Wiens 1995). Research supports
that this process selects species better adapted to small, isolated wetlands, and affects the
movement of individuals through a landscape, reducing alpha-diversity (i.e., local
diversity; Brown and Dinsmore 1986, Fahrig and Merriam 1994, Farbairn and Dinsmore
2001, Whited et al. 2000). As a result, beta-diversity, or the difference in species
diversity between habitats, is expected to increase in fragmented landscapes because of
isolation effects (Harrison 1997, Kneitel and Chase 2004). Gamma diversity, or regional
diversity, is then determined by the alpha and beta components affected by habitat loss
and fragmentation (Cody 1993). The understanding of species composition and
abundance patterns among sites is a central question in community ecology, but is poorly
documented for wetland birds in fragmented wetlands (Cox et al. 2000, Gaudagnin et al.
2005). More than 99% of the prairie ecosystem in the Gulf Coast has been lost to
urbanization, agriculture and range improvement, and the remaining 1% persists in highly
fragmented patches (USGS 2000). I recommend future research investigating
fragmentation and consequential avian community structure at regional and landscape
scales in GCP agricultural and coastal marsh habitats. I hypothesize that as habitats
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become increasingly fragmented by an urban landscape, alpha avian diversity will
decrease, beta diversity will increase, and gamma diversity will remain similar.

One of the greatest knowledge gaps in the GCP pertains to nocturnal wetland bird
use of ricelands. Wetland bird species such as northern pintail, plovers (Pulvialis,
Charadrius), sandpipers, stilts (Himantopus), and most other Scolopacidae regularly
forage diurnally and nocturnally (Miller 1987, McNeil and Rodriguez 1996, Cox and
Afton 1997). I recommend future wetland bird research that investigates nocturnal use of
ricelands, and monitoring bird movements within and between ricelands and coastal
marshes. Recent advancements in unmanned aerial drones, night vision, radar, and
thermal imaging techniques could enhance our ability to quantify diurnal and nocturnal
use of wetland birds in the GCP. Recent research has used drones and thermal imaging
to locate nesting ducks in the Prairie Pothole Region of the United States (Delta
Waterfowl 2016). Additionally, research investigating effects of disturbance should be
high priority for conservation planners in the GCP. For example, crayfish is harvested
daily from many of the flooded production and idled rice fields, especially in the LCP.
Furthermore, many flooded fields are subjected to frequent waterfowl hunting activities
from September—January. Quantifying effects of disturbance and ensuring that wetland
birds have access to undisturbed habitats may be important to future conservation
planning, especially if flooded areas are reduced, or habitat fragmentation occurs, all of
which may cause greater densities of wetland birds on fewer habitats in this regional
landscape. Although researchers have identified complexes of wetlands that attract
greatest abundances of dabbling ducks in winter (e.g., Pearse et al. 2012), wetland

complexes, including sanctuary components, have not been identified for waterfowl and
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other waterbirds to my knowledge. Moreover, complexes attractive to greatest
abundances of wetland birds, although important for conservation of habitat landscapes,
may invoke density dependent effects on individuals. Thus, studies that relate habitat use
to demographic metrics (e.g., daily survival; Lancaster 2013) are needed to identify most
suitable habitat complexes and incorporate this knowledge into local-landscape and

reserve designs (sensu Fretwell 1972, Van Horne 1991).
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Table 3.

1 Wetland bird species encountered during surveys of Gulf Coast Prairies
ricelands, August—March, 2010-2013.

Common

name Scientific name n

Waterfow

1
Snow goose Chen caerulescens 65,546
White-fronted goose  Anser albifrons 35,147
Canada goose Branta canadensis 1,256
gﬁerlcan green-winged A. crecca carolensis 73,251
Blue-winged teal Anas discors 42,910
Northern shoveler A. clypeata 28,172

21,05

Northern pintail A. acuta 0
Gadwall A. strepera 7,842
Mallard A. platyrhynchos 2,182
Mottled duck A. fulvigula 2,082
American wigeon A. americana 371
Wood duck Aix sponsa 436
Lesser scaup Aythya affinis 283
Redhead A. americana 118
Ring-necked duck A. collaris 43
Ruddy duck Oxyura jamaicensis 133
Black-bellied whistling
duck Dendrocygna autumnalis 183
Fulvous whistling duck D. bicolor 51
Bufflehead Bucephala albeola 10
Hooded merganser Lophodytes cucullatus 4

Waders
White-faced ibis Plegadis chihi 47,431
White ibis Fudocimus albus 15,904
Cattle egret Bubulcus ibis 6,890
Great egret Ardea alba 3,921
Great blue heron A. herodias 544
Little blue heron Egretta caerulea 3,508
Snowy egret E. thula 597
Tricolored heron E. tricolor 122
Green heron Butorides virescens 97
Roseate spoonbill Platalea ajaja 86
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Table 3.1 Continued

American bittern Botaurus lentiginosus 28
Yellow-crowned
night-heron Nyctanassa violacea 23
Black-crowned night-
heron Nycticorax nycticorax 8
Wood stork Mycteria americana 7
Shorebirds
Dowitchers Limnodromus spp. 31,928
Sandpipers Calidris spp. 23,133
Killdeer Charadrius vociferus 9,691
Yellowlegs Tringa spp. 5,554
Black-necked stilt ~ Himantopus mexicanus 5,403
Wilson’s snipe Gallinago delicata 813
Long-billed curlew  Numenius americanus 207
Black-bellied plover Pluvialis squatarola 206
American avocet Recurvirostra americana 69
Rails
American coot Fulica americana 12,459
Purple gallinule Porphyrio martinicus 18
Other rails Coturnicops spp.; Porzana spp.; Rallus spp. 14
Others
Sandhill crane Grus canadensis 3,531
Whooping crane G. americana 1
Gulls Larus spp. 2,931
Pied-billed grebe Podilymbus podiceps 185
Double-crested
cormorant Phalacrocorax auritus 172
Gull-billed tern Gelochelidon nilotica 10
Belted kingfisher Megaceryle alcyon 4

Common and scientific names and total detections (7) of wetland birds encountered
during surveys of production and idled rice fields in the Gulf Coastal Prairies of
Louisiana and Texas, August—-March, 2010-2013.
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Table 3.3 Estimated mean wetland bird species richness in Gulf Coast Prairie
ricelands, August—March, 2010-2013.

95% Confidence interval

Water depth®® Vegetation density® x LCL UCL
Saturated No vegetation 2.15 2.0 2.3
Sparse 2.26 2.1 2.5
Intermediate 1.97 1.8 2.2
Dense 1.77 1.6 1.9
Shallow No vegetation 3.28 3.0 3.6
Sparse 3.46 3.1 3.8
Intermediate 3.02 2.8 33
Dense 2.70 2.5 2.9
Intermediate No vegetation 2.69 24 3.0
Sparse 2.83 2.5 3.2
Intermediate 2.47 2.2 2.7
Dense 2.21 2.0 2.4
Deep No vegetation 243 2.2 2.7
Sparse 2.56 2.3 2.9
Intermediate 2.24 2.0 2.5
Dense 2.00 1.8 2.2

Back-transformed estimated mean species richness (wetland bird species/survey) for
wetland birds® and 95% confidence intervals (LCL, UCL) from linear mixed models by
water depth and vertical vegetation density for the average wetland size of 17.9 ha, in
ricelands in the Gulf Coast Prairies of Louisiana and Texas during August—March, 2010—
2013.

aBlanks denote same water depth.

b Saturated (<1 cm); Shallow (1-15 c¢m); Intermediate (16-30 cm); Deep (>30 cm).

“No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

4 Waterfowl, wading birds, and shorebird species combined.
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Table 3.5 Estimated mean duck abundance in Gulf Coast Prairie ricelands, August—
March, 2010-2013.

95% Confidence interval

Water depth®  Vegetation height* Count LCL UCL
Saturated None 19.59 94 40.7
Short 50.96 23.0 113.0

Intermediate 14.56 7.0 30.5

Tall 19.48 9.5 40.0

Shallow None 138.38 84.8 2259
Short 360.04 216.8 597.9

Intermediate 102.89 65.4 161.8

Tall 137.61 92.0 205.9

Intermediate None 171.90 93.1 317.5
Short 447.26 264.0 757.7

Intermediate 127.81 68.9 237.1

Tall 170.94 99.4 293.9

Deep None 28.17 15.1 52.6
Short 73.30 394 136.4

Intermediate 20.95 12.3 35.6

Tall 28.01 17.1 46.0

Estimated mean duck abundance and 95% confidence intervals (LCL, UCL) from zero-
inflated negative binomial regression models by water depth and vegetation height for the
average wetland size of 17.9 ha, in ricelands in the Gulf Coast Prairies of Louisiana and
Texas during August—March, 2010-2013.

? Blanks denote same water depth.

® Saturated (<1 cm); Shallow (1-15 cm); Intermediate (16—-30 cm); Deep (>30 cm).
“None (0 cm); Short (1-15 cm); Intermediate (16-40 cm); Tall (>40 cm).
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Table 3.6 Estimated mean probability of measuring a false negative for ducks in Gulf
Coast Prairie ricelands, August—March, 2010-2013.

95% Confidence interval

Water depth®®  Vegetation height®  Probability LCL UCL
Saturated None 0.92 0.87 0.95
Short 0.84 0.75 0.91

Intermediate 0.89 0.83 0.94

Tall 0.97 0.95 0.98

Shallow No None 0.34 0.21 0.50
Short 0.20 0.09 0.39

None 0.28 0.15 0.47

Tall 0.57 0.45 0.68

Intermediate None 0.45 0.30 0.61
Short 0.29 0.14 0.49

Intermediate 0.39 0.23 0.57

Tall 0.68 0.58 0.76

Deep None 0.43 0.27 0.60
Short 0.27 0.13 0.47

Intermediate 0.37 0.21 0.56

Tall 0.66 0.54 0.76

Estimated mean probability of measuring a false negative for ducks and 95% confidence
intervals (LCL, UCL) from zero-inflated negative binomial regression models by water
depth and vegetation height for the average wetland size of 17.9 ha, in ricelands in the
Gulf Coast Prairies of Louisiana and Texas during August—March, 2010-2013.

? Blanks denote same water depth.

® Saturated (<1 cm); Shallow (1-15 cm); Intermediate (16—-30 cm); Deep (>30 cm).

¢ None (0 cm); Short (1-15 cm); Intermediate (16-40 cm); Tall (>40 cm).
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Table 3.8 Estimated mean waterbird abundance in Gulf Coast Prairie ricelands,
August—March, 2010-2013.

95% Confidence interval

Water depth®  Vegetation density® Count LCL UCL
Saturated No vegetation 32.25 23.4 44 .4
Sparse 45.77 30.6 68.4

Intermediate 30.17 20.3 44.8

Dense 17.27 12.4 24.0

Shallow No vegetation 58.66 41.8 82.3
Sparse 83.25 56.4 122.9

Intermediate 54.89 36.7 82.0

Dense 31.42 23.1 42.8

Intermediate No vegetation 44.93 29.3 68.9
Sparse 63.77 41.4 98.3

Intermediate 42.04 27.6 64.0

Dense 24.06 16.6 34.8

Deep No vegetation 42.66 27.4 66.3
Sparse 60.55 37.9 96.7

Intermediate 39.92 274 58.2

Dense 22.85 15.2 34.2

Estimated mean waterbird abundance and 95% confidence intervals (LCL, UCL) from
negative binomial Hurdle regression models by vegetation density and water depth for
the average wetland size of 17.9 ha, in ricelands in the Gulf Coast Prairies of Louisiana
and Texas during August—March, 2010-2013.

a Blanks denote same field classification.

b FH-first harvest, NR-no ratoon, HR-harvested ratoon, SR-standing ratoon, SI-standing
idle, DI-disked idle.

¢ Saturated (<1 cm); Shallow (1-15 cm); Intermediate (16-30 cm); Deep (>30 cm).
4Shorebirds and wading birds combined.

106



Table 3.9 Estimated mean probability of waterbirds using Gulf Coast Prairie
ricelands, August—March, 2010-2013.

95% Confidence interval

Water depth®  Vegetation density®  Probability LCL UCL
Saturated No vegetation _ 0.61 0.69
Sparse ! 60?63 0.57 0.69

Intermediate 0.57 0.52 0.63

Dense 0.56 0.52 0.61

Shallow No vegetation 0.76 0.72 0.80
Sparse 0.75 0.69 0.79

Intermediate 0.70 0.65 0.75

Dense 0.69 0.65 0.72

Intermediate No vegetation 0.69 0.63 0.75
Sparse 0.67 0.60 0.74

Intermediate 0.62 0.56 0.68

Dense 0.61 0.55 0.66

Deep No vegetation 0.69 0.62 0.74
Sparse 0.67 0.60 0.73

Intermediate 0.61 0.55 0.67

Dense 0.60 0.55 0.66

Estimated mean probability of waterbirds using Gulf Coast Prairie ricelands and 95%
confidence intervals (LCL, UCL) from negative binomial Hurdle regression models by
vegetation density and water depth for the average wetland size of 17.9 ha, in ricelands in
the Gulf Coast Prairies of Louisiana and Texas during August-March, 2010-2013.

? Blanks denote same field classification.

® Saturated (<1 cm); Shallow (1-15 cm); Intermediate (16-30 cm); Deep (>30 cm).

¢ Shorebirds and wading birds combined.
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Table 3.10  Estimated mean duck abundance in Gulf Coast Prairie ricelands by rice
seed variety, August—-March, 2010-2013.

95% Confidence interval

Seed variety Count LCL UCL
Clearfield® 65.39 42.8 99.8
Conventional 73.14 43.8 122.1

Estimated mean duck abundance and 95% confidence intervals (LCL, UCL) from zero-
inflated negative binomial regression models by rice seed variety, in ricelands in the Gulf
Coast Prairies of Louisiana and Texas during August—March, 2010-2013.
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Table 3.11  Estimated mean probability of measuring a false negative for ducks in Gulf
Coast Prairie ricelands by rice seed variety, August—March, 2010-2013.

95% Confidence interval

Seed Variety Probability LCL UCL
Clearfield® 0.51 0.35 0.68
Conventional 0.49 0.31 0.67

Estimated mean probability of measuring a false negative for ducks and 95% confidence
intervals (LCL, UCL) from zero-inflated negative binomial regression models by seed
variety, in ricelands in the Gulf Coast Prairies of Louisiana and Texas during August—
March, 2010-2013.
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Figure 3.1  Mean wetland bird species richness (wetland bird species/survey) and 95%
confidence intervals, by vertical vegetation density® and wetland size for
ricelands with saturated soils®.

Back-transformed mean wetland bird species richness (wetland bird species/survey;
indicated by solid lines) and 95% confidence intervals (dashed lines) from linear mixed
models by vegetation density® and wetland size for ricelands with saturated soils®, in the
Gulf Coast Prairies of Louisiana and Texas, August—-March, 2010-2013.

4 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

® Water depth <1 cm.
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Figure 3.2  Estimated mean wetland bird species richness (wetland bird
species/survey) and 95% confidence intervals, by vertical vegetation
density* and wetland size for ricelands for shallowly® flooded ricelands.

Back-transformed estimates of mean wetland bird species richness (wetland bird
species/survey; indicated by solid lines) and 95% confidence intervals (dashed lines)
from linear mixed models by vegetation density® and wetland size for shallowly® flooded
ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August—March, 2010-2013.
3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 1-15cm.
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Figure 3.3  Estimated mean wetland bird species richness (wetland bird
species/survey) and 95% confidence intervals, by vertical vegetation
density* and wetland size for ricelands for intermediately® flooded
ricelands.

Back-transformed estimates of mean wetland bird species richness (wetland bird
species/survey; indicated by solid lines) and 95% confidence intervals (dashed lines)
from linear mixed models by vegetation density® and wetland size for intermediately®
flooded ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August—March,
2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 15-30 cm.
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Figure 3.4  Estimated mean wetland bird species richness (wetland bird
species/survey) and 95% confidence intervals, by vertical vegetation
density® and wetland size for ricelands for deeply® flooded ricelands.

Back-transformed estimates of mean wetland bird species richness (wetland bird
species/survey; indicated by solid lines) and 95% confidence intervals (dashed lines)
from linear mixed models by vegetation density® and wetland size for deeply® flooded
ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August—-March, 2010-2013.
#No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

®Water depth >30 cm.
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Figure 3.5  Estimated mean duck abundance and 95% confidence intervals by
vegetation height® and wetland size for ricelands with saturated soils®.

Back-transformed estimates of mean duck abundance (indicated by solid lines) and 95%
confidence (dashed lines) intervals from zero-inflated negative binomial regression
models by vegetation height® and wetland size for ricelands with saturated soils®, in the
Gulf Coast Prairies of Louisiana and Texas, August—March, 2010-2013.

@ Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

® Water depth <1 cm.
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Figure 3.6  Estimated mean duck abundance and 95% confidence intervals by
vegetation height® and wetland size for ricelands with shallow water
depths®.

Back-transformed estimates of mean duck abundance (indicated by solid lines) and 95%
confidence (dashed lines) intervals from zero-inflated negative binomial regression
models by vegetation height® and wetland size for ricelands for shallowly® flooded
ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August—March, 2010-2013.
@ Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

® Water depth 1-15 cm.
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Figure 3.7  Estimated mean duck abundance and 95% confidence intervals by

vegetation height® and wetland size for ricelands with intermediate water
depths®.

Back-transformed estimates of mean duck abundance (indicated by solid lines) and 95%
confidence (dashed lines) intervals from zero-inflated negative binomial regression
models by vegetation height® and wetland size for ricelands for intermediately® flooded
ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August-March, 2010-2013.?
Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

® Water depth 16-30 cm.
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Figure 3.8  Estimated mean duck abundance and 95% confidence intervals by

vegetation height® and wetland size for ricelands with deep water depths®.

Back-transformed estimates of mean duck abundance (indicated by solid lines) and 95%
confidence (dashed lines) intervals from zero-inflated negative binomial regression
models by vegetation height* and wetland size for ricelands for deeply® flooded
ricelands, in the Gulf Coast Prairies of Louisiana and Texas, August-March, 2010-2013.*
Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40

cm).

> Water depth >30 cm.
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Figure 3.9  Estimated mean probability of measuring a false negative for ducks and
95% confidence intervals by vegetation heighta and wetland size for
ricelands with saturated soils’.

Back-transformed estimated mean probability of measuring a false negative for ducks
(indicated by solid lines) and 95% confidence intervals (dashed lines) from zero-inflated
negative binomial regression models by vegetation height* and wetland size ricelands
with saturated soils® in the Gulf Coast Prairies of Louisiana and Texas, August—March,
2010-2013.

 Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

® Water depth <1 cm.
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Figure 3.10 Estimated mean probability of measuring a false negative for ducks and
95% confidence intervals by vegetation heighta and wetland size for
ricelands with shallow water depthsb.

Back-transformed estimated mean probability of measuring a false negative for ducks
(indicated by solid lines) and 95% confidence intervals (dashed lines) from zero-inflated
negative binomial regression models by vegetation height* and wetland size for
shallowly® flooded ricelands in the Gulf Coast Prairies of Louisiana and Texas, August—
March, 2010-2013.

 Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

> Water depth 1-15 cm.

119



No vegetation Short vegetation

1.0
1.0

0.8
0.8

0.8

0.8

02 04
02 04

0.0
|
0.0
|

Probability of measuring a false negative
Probability of measuring a false negative

20 40 60 BO 100 20 40 60 BO 100
Wetland size (ha) Wetland size (ha)
Intermediate vegetation Tall vegetation

1.0
1.0

0.8
0.8

0.8
0.8

02 04
02 04

0.0
|
0.0
|

Probability of measuring a false negative
Probability of measuring a false negative

20 40 60 B0 100 20 40 60 B0 100
Wetland size (ha) Wetland size (ha)

Figure 3.11 Estimated mean probability of measuring a false negative for ducks and
95% confidence intervals by vegetation height* and wetland size for
ricelands with intermediate water depths®.

Back-transformed estimated mean probability of measuring a false negative for ducks
(indicated by solid lines) and 95% confidence intervals (dashed lines) from zero-inflated
negative binomial regression models by vegetation height* and wetland size for
intermediately® flooded ricelands in the Gulf Coast Prairies of Louisiana and Texas,
August-March, 2010-2013.

 Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

> Water depth 15-30 cm.
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Figure 3.12 Estimated mean probability of measuring a false negative for ducks and
95% confidence intervals by vegetation height* and wetland size for
ricelands with deep water depths®.

Back-transformed estimated mean probability of measuring a false negative for ducks
(indicated by solid lines) and 95% confidence intervals (dashed lines) from zero-inflated
negative binomial regression models by vegetation height* and wetland size for deeply®
flooded ricelands in the Gulf Coast Prairies of Louisiana and Texas, August-March,
2010-2013.

 Short vegetation (1-15 cm); Intermediate vegetation (16-40 cm); Tall vegetation (>40
cm).

> Water depth >30 cm.
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Figure 3.13  Estimated mean waterbird abundance and 95% confidence intervals, by
vertical vegetation density” and wetland size for ricelands with saturated
soils®.

Back-transformed estimated mean waterbird abundance (indicated by solid lines) and
95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density? and wetland size for ricelands with saturated soils®, in the Gulf Coast
Prairies of Louisiana and Texas, August—-March, 2010-2013.

4 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

® Water depth <1 cm.
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Figure 3.14 Estimated mean waterbird abundance and 95% confidence intervals, by
vertical vegetation density” and wetland size for ricelands with shallow
water depths®.

Back-transformed estimated mean waterbird abundance (indicated by solid lines) and
95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density® and wetland size for shallowly® flooded ricelands, in the Gulf Coast
Prairies of Louisiana and Texas, August-March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 1-15cm.
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Figure 3.15 Estimated mean waterbird abundance and 95% confidence intervals, by
vertical vegetation density” and wetland size for ricelands with intermediate
water depths®.

Back-transformed estimated mean waterbird abundance (indicated by solid lines) and
95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density? and wetland size for intermediately® flooded ricelands, in the Gulf
Coast Prairies of Louisiana and Texas, August—March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 15-30 cm.
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Figure 3.16 Estimated mean waterbird abundance and 95% confidence intervals, by
vertical vegetation density® and wetland size for ricelands with deep water

depths®.

Back-transformed estimated mean waterbird abundance (indicated by solid lines) and
95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density? and wetland size for deeply® flooded ricelands, in the Gulf Coast
Prairies of Louisiana and Texas, August—-March, 2010-2013.
3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).
> Water depth >30 cm.
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Figure 3.17 Estimated mean probability of waterbird use and 95% confidence intervals,
by vertical vegetation density® and wetland size for ricelands with saturated
soils®.

Back-transformed estimated mean probability of waterbird use (indicated by solid lines)
and 95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density® and wetland size for ricelands with saturated soils®, in the Gulf Coast
Prairies of Louisiana and Texas, August-March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

® Water depth <1 cm.
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Figure 3.18 Estimated mean probability of waterbird use and 95% confidence intervals,
by vertical vegetation density® and wetland size for ricelands with shallow
water depths®.

Back-transformed estimated mean probability of waterbird use (indicated by solid lines)
and 95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density® and wetland size for shallowly® flooded ricelands, in the Gulf Coast
Prairies of Louisiana and Texas, August-March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 1-15cm.
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Figure 3.19 Estimated mean probability of waterbird use and 95% confidence intervals,
by vertical vegetation density® and wetland size for ricelands with
intermediate water depths®.

Back-transformed estimated mean probability of waterbird use (indicated by solid lines)
and 95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density? and wetland size for intermediately® flooded ricelands, in the Gulf
Coast Prairies of Louisiana and Texas, August—March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth 15-30 cm.
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Figure 3.20 Estimated mean probability of waterbird use and 95% confidence intervals,
by vertical vegetation density® and wetland size for ricelands with deep
water depths®.

Back-transformed estimated mean probability of waterbird use (indicated by solid lines)
and 95% confidence intervals (dashed lines) from negative binomial Hurdle models by
vegetation density? and wetland size for deeply® flooded ricelands, in the Gulf Coast
Prairies of Louisiana and Texas, August-March, 2010-2013.

3 No vegetation; Sparse (1-20 cm); Intermediate (21-40 cm); Dense (>40 cm).

> Water depth >30 cm.
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CHAPTER 1V

ESTIMATING SENSITIVITY TO ERROR IN WATERFOWL ENERGETIC
CARRYING CAPACITY MODELS: AN INVESTIGATION OF
FORAGING THRESHOLDS AND TRUE METABOLIZABLE

ENERGY VALUES

The food-limitation hypothesis posits that nutrients may be limiting to organisms
during a phase(s) of their life cycle. This hypothesis is rooted in classical studies of avian
clutch size in relation to food availability (Lack 1946, Skutch 1949, Ashmole 1963).
These and other studies broadened the knowledge of the nutrient-limitation hypothesis,
centered on clutch size and other life history characteristics (Stearns 1976, Zammuto
1985), such as how nutrients influence longevity of life (Pianka 1970, Abrams 1983). By
the late 1970s and 1980s, researchers began to realize that winter habitat conditions could
influence recruitment of waterfowl on the breeding grounds (Heitmeyer and Fredrickson
1981, Kaminski and Gluesing 1987, Anderson and Batt 1983, Weller 1988, Smith et al.
1989). Since these initial studies, the potential effects of winter resource conditions (e.g.,
food and habitat) have been further explored (Raveling and Heitmeyer 1989, Shaeffer et
al. 1998), and additional studies focused on how food influenced female body condition
and nesting ecology, and subsequently duckling ecology (Arnold and Rohwer 1991, Batt
et al. 1992). To further explore the effects of winter conditions on duck recruitment, a

recent and more rigorous analysis confirmed previous work, again linking winter habitat
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conditions and waterfowl recruitment, specifically for midcontinent mallards (4nas
platyrhynchos) and northern pintail (4. acuta; Osnas et al. 2016). Despite difficulty in
establishing cause-and-effect of winter habitat conditions and recruitment in ducks, cross-
seasonal effects seemingly have some degree of influence on populations of breeding
waterfowl (Sedinger and Alisauskas 2014).

Studies linking winter resource conditions to waterfowl recruitment were an
important impetus to developing a more holistic North American Waterfowl Management
Plan NAWMP) in 1986. The NAWMP established habitat and population goals for
waterfowl species in North America, and charged Joint Ventures (JV) with implementing
NAWMP recommendations at regional scales (U.S. Department of the Interior and
Environmental Canada 1986, U.S. Department of the Interior et al. 2012). The Gulf
Coast Joint Venture (GCJV) for example, seeks to provide foraging habitat capable of
supporting approximately 14 million migrating and wintering waterfowl annually.
Energetic carrying capacity of habitats for waterfowl is a fundamental concept used to
prioritize habitat conservation efforts and improve planning, which could have
implications for some populations of avian species (Pearse and Stafford 2014, Williams
et al. 2014).

The food-limitation hypothesis is the primary guiding premise for conservation
planning of JVs that occur in geographies of importance to waterfowl during migration
and winter (i.e., the non-breeding periods; synthesized in Williams et al. 2014). Most
JVs, including the GCJV, use bioenergetics models to estimate carrying capacity and
project habitat needs for waterfowl during the non-breeding season. Daily ration models

(DRM) are a type of resource depletion model used to estimate the theoretical carrying
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capacity of a given area (Miller and Newton 1999; Goss-Custard et al. 2002, 2003).
Former (Reinecke et al. 1989) and contemporary (Williams et al. 2014) iterations of this

model include waterfowl carrying capacity expressed in duck energy-days (DED):

(Food available (kg [dry]/ha) x 1,000 g)x True metabolisable energy of each food (kcal/g [dry])

4.1
Waterfowl daily energy expenditure kcal/day

While all DRMs require estimates of energy supply and demand, actual models
used by JVs are far more complicated than this DED equation. For example, most JVs
model energy supply and demand in time and space (e.g., Pacific Coast JV 2004, Central
Valley JV 2006). Briefly, energy supplies may be influenced by natural or intentional
flooding of habitats, and energy demand of birds may vary temporally based on
population size, migration chronology, changes in species composition, physiological
needs, weather, and other endogenous or exogenous factors (Williams et al. 2014).
Nonetheless, all DRMs use some estimate of dietary energy available in waterfowl
habitats (i.e., energy supply) and energy demands of target waterfowl populations. Thus,
understanding abundance and dynamics of food on the landscape for non-breeding birds
remains a viable contemporary research theme (Stafford et al. 2006; Hagy and Kaminski
2012a,b; Williams et al. 2014; Marty et al 2015).

Several studies have suggested that giving-up densities (GUD) and/or forage
availability thresholds (FAT) of food may serve as a suitable foraging threshold for use in
energetic carrying capacity models (Brown 1988, Reinecke et al. 1989, Greer et al. 2009,
Hagy and Kaminski 2015). A GUD is a threshold of food abundance at which foragers
cease eating in a patch to balance the metabolic costs of foraging, predation risk, and the
missed opportunity costs of not foraging elsewhere (Brown 1988, Hagy and Kaminski

2015). In a simple environment where foragers are free to move among patches, a GUD
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of prey would be reached when intake rates decrease below those in other accessible
habitats (Hagy and Kaminski 2015). A GUD of 50 kg/ha is used in most daily ration
models when estimating waterfowl carrying capacity derived from mallard use of rice
fields (Greer et al. 2009). Hagy and Kaminski (2015) found little evidence of a GUD for
dabbling ducks wintering in the Mississippi Alluvial Valley; instead, they reported a food
availability threshold (FAT) where predators (e.g., ducks) continued foraging but
apparently did not acquire measurable food resources because food biomass remained
relatively stable. A FAT occurs when food becomes functionally unavailable and
predators fail to remove food despite active foraging (Hagy and Kaminski 2015). Hagy
and Kaminski (2015) concluded that abundance of residual millet and other natural seeds
and tubers was 3—4 times the GUD of waste rice with notable differences in residual seed
biomass of natural seed taxa (i.e., 170.1 kg/ha; Range = 23.7-386.8 kg/ha). Estimates of
residual foods remaining after foraging by dabbling ducks vary considerably (i.e.,
California, 30-163 kg/ha, Naylor 2002; Missouri, 43—56 kg/ha, Greer et al. 2009;
Mississippi Alluvial Valley, 24-387 kg/ha, Hagy and Kaminski 2015). If GUD or FAT
values for a given habitat type are not accurate estimates of food availability, subsequent
habitat needs to meet desired bird objectives could be underestimated, or otherwise be
unreliable (Hagy and Kaminski 2012b, Hagy and Kaminski 2015).

Pearse and Stafford (2014) investigated error propagation in waterfowl energetic
carrying capacity models in the Mississippi Alluvial Valley and suggested that adjusting
seed-biomass estimates was more complicated than previously described for currently
accepted models (e.g., Reinecke and Loesch 1996, Esslinger and Wilson 2001, Wilson
and Esslinger 2002, Central Valley Joint Venture 2006). Users of these models subtract a
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foraging threshold from an overall mean food biomass estimated by sampling multiple
foraging patches (i.e., the mean-subtraction method; Pearse and Stafford 2014). Each
patch with a food-biomass value below the foraging threshold is included in the data set
as a negative number. Because fields cannot have negative amounts of food, Pearse and
Stafford (2014) suggested recording negative and actual zero values as zero. For
example, in the Mississippi Alluvial Valley, Stafford et al. (2006) estimated and reported
a waste-rice biomass of 78 kg/ha. After subtracting a foraging threshold of 50 kg/ha
(Greer et al. 2009) using the mean-subtraction method, they concluded that rice available
to waterfowl averaged 28 kg/ha (Pearse and Stafford 2014). Inspection of field-specific
estimates of waste-rice biomass revealed that 48% of fields contained less rice than the
foraging threshold, and were included as negative numbers after subtracting the foraging
threshold value (Pearse and Stafford 2014). Pearse and Stafford (2014) recommended
applying a foraging threshold at the patch-level (i.e., field level). This approach
increased the overall estimate of waste-rice biomass by 59%, to 45 kg/ha, because waste-
rice biomass in fields equal to or below the foraging threshold were set to zero (Pearse
and Stafford 2014). Moreover, these results suggest the importance of applying foraging
thresholds at the correct ecological scale (Pearse and Stafford 2014).

True metabolizable energy value (TME; kcal/g) is the estimated amount of energy
an individual bird derives from a specific food item, after accounting for metabolic fecal
and urinary losses and endogenous metabolized energy (Miller and Reinecke 1984). A
number of TME values for common waterfowl foods found in important waterfowl
wintering areas have been estimated (Hoffman and Bookhout 1985, Reinecke et al. 1989,
Sherfy 1999, Sherfy et al. 2001, Checkett et al. 2002, Kaminski et al. 2003, Ballard et al.
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2004, Dugger et al. 2006). However, there is uncertainty associated with applying TME
values to seed species other than the one from which it was derived (Williams et al.
2014). True metabolizable energy values are used to calculate available metabolizable
energy by multiplying the mass of food items by its TME value and extrapolating the
resulting energy value across an area of interest (Williams et al. 2014). Because limited
TME values exist and species-specific seed-biomass estimates are likely not available,
researchers are sometimes forced to apply a mean seed TME value derived from a related
plant taxa (e.g., moist-soil plants; 2.47 kcals/g [Kaminski et al. 2003]). Little if any
research investigating effects of incorporating species-specific TME values for natural
seeds in carrying capacity models has been conducted. Current GCJV bioenergetics
carrying capacity models use an average TME value for natural seeds (2.47 kcal/g; M. G.
Brasher, GCJV, personal communication). Applying species-specific TME values to
natural seed biomass may affect landscape scale estimates of available metabolic energy
and habitat requirements. If TME values for abundant seeds are greater or less than the
average TME value, the available metabolizable energy on a landscape may be
accordingly over- or underestimated.

Application of foraging thresholds and TME values may be potential sources of
bias in metabolizable energy and carrying capacity estimates (Williams et al. 2014). The
ecological level at which a foraging threshold is applied, as well as the TME values of
waterfowl foods used to estimate available metabolizable energy in ricelands, may result
in discrepancies and gross over- or underestimation of energetic carrying capacity.
Therefore, using contemporary waste-rice and natural seed-biomass estimates (Chapter

I), my objectives in this dissertation were to: 1) investigate the effects that applying
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GUDs and FATs at different ecological scales, and using average versus species-specific
TME values have on available metabolizable energy (AME) estimates, and subsequent
habitat requirements necessary to support LCP waterfowl populations from August—
March; and 2) compare estimates of habitat requirements from my study to current GCJV

estimates.

Study Area

I conducted my study in agricultural landscapes of the Chenier Plain (CP) of
Louisiana and Texas and the Texas Mid-Coast (TMC; Chapters 2 and 3). The CP
encompasses areas of southwest Louisiana and southeast Texas, roughly spanning from
Lafayette, Louisiana westward to Houston, Texas and inland 130-160 km from the
coastline of both states (Figure 2.1). The TMC extends from Galveston Bay to Corpus
Christi, Texas and inland from the coastline approximately 170 km (Figure 2.1). My
specific study area included the Louisiana parishes of Acadia, Allen, Calcasieu,
Cameron, Evangeline, Jefferson Davis, St. Landry, and Vermilion, and the Texas
counties of Brazoria, Chambers, Colorado, Jackson, Jefferson, Liberty, Matagorda, and
Wharton. These counties aligned closely with the GCJV’s Chenier Plain and Texas Mid-
Coast Initiative Areas.

Historically, these regions contained extensive coastal marshes and tall grass
prairies, freshwater wetlands, and savannahs. Today, the CP and TMC contain coastal
marshes along the Gulf of Mexico, but coastal prairies and savannas have been converted
largely to rice and other croplands (Esslinger and Wilson 2001). The climate is sub-
tropical and humid with an average growing season of 270 days, 13 freeze-days per year,

and temperatures ranging from 14° C in December—January to 30° C July—August
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(Chabreck et al. 1989). Average annual precipitation decreases east to west in the CP
from 144 cm near Lafayette, Louisiana, to 113 cm near Houston, Texas, and 77 cm near
Corpus Christi, Texas (Gosselink et al. 1979, Hobaugh et al. 1989). The CP and TMC
regions are subject to frequent and sometimes intense weather disturbances; on average,
tropical storms make landfall approximately once every 1.6 years and hurricanes every

3.3 years (Roth 1999).

Methods
Sampling Design, Field Sampling, and Laboratory Procedures

I detailed sampling design, field sampling methods, and laboratory procedures in

Chapter 2 (Pages 29-32).

Foraging Thresholds and True Metabolizable Energy Values

I subtracted a GUD of 50 kg/ha (Greer et al. 2009) and a FAT of 170 kg/ha (Hagy
and Kaminski 2015) for production and idled rice fields, respectively. Additionally, I
conducted a literature review to develop a database of species-specific TME values for

natural seeds (Table 4.1)

Estimating Seed Biomass and Available Energy in Production and Idled Rice Fields

I used PROC MEANS in SAS v9.4 (SAS Institute 2015) to calculate mean
biomass for waste rice and each taxon of natural seeds considered potential waterfowl
food (Hagy and Kaminski 20124, J. R. Marty, unpublished data, Chapter 1 [Table 1.1])
for each production and idled rice field sampled in the GCP, November, 2010-2013. I
calculated functional seed biomass for each seed taxa and field by subtracting 50 kg/ha

for production fields (Greer et al. 2009) and 170 kg/ha for idled fields (Hagy and
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Kaminski 2015). A functional seed biomass is calculated by reducing raw density
biomass for each seed species by a level equal to the proportional reduction in total raw
biomass resulting from subtracting the foraging threshold from the total raw biomass. I
applied foraging thresholds in two ways, similar to Pearse and Stafford (2014): 1) using
the mean-subtraction method, where a foraging threshold is subtracted from the pooled
(i.e., overall) mean food biomass, and 2) using the patch-level method, where each seed
taxon within a field with a raw biomass value less than the foraging threshold was
included in the dataset as a zero. For the mean-subtraction method, the foraging
threshold is subtracted from the mean, which is equivalent to subtracting that constant
from each observation and then averaging the resulting values (Pearse and Stafford
2014). Additionally, if subtracting the foraging threshold value from the estimated seed
biomass of fields resulted in a value less than zero, the negative value was included in the
dataset. However, when using the patch-level method, I truncated negative seed
biomasses to zero because negative quantities of food are illogical (Pearse and Stafford
2014). Both methods yield identical results if all sampled fields contained food
biomasses at or above the foraging threshold. However, when a portion of the sampled
patches contained less seed than the foraging threshold, the patch-level method will yield
a greater mean food biomass than the mean-subtraction method (Pearse and Stafford
2014).

After subtracting foraging thresholds using the mean-subtraction and patch-level
methods, I used PROC MEANS to calculate a mean seed biomass for each seed taxon
within each field classification for production and idled fields. Field classifications

included: 1) fields harvested in August and again in November for a ratoon crop
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(harvested ratoon, HR); 2) fields in which a second crop was grown but not harvested and
left standing, generally for crawfish aquaculture or waterfowl habitat (standing ratoon,
SR); and 3) idle fields (standing or disked). Importantly, application of these field
classifications were not mutually exclusive. For example, all production rice fields were
harvested July—August, but each was then subjected to one of several unique practices
(e.g., classifications 2—4) that impacted land use and vegetation conditions during
autumn. Thus, some fields maybe viewed as a combination of farming activity and
sampling period. Current GCJV models do not separate idled fields into disked and
standing vegetation classifications, thus I pooled seed-biomass estimates from these two
field classifications to derive estimates for a singular idled field classification.
Additionally, GCJV models do not include energetic estimates for the field classification
of no ratoon (i.e., fields harvested in July—August but with no ratoon crop grown),
therefore I did not include any of my data from no ratoon fields. I developed two
separate data sets containing functional seed biomasses for each field classification; one
was derived using the mean-subtraction method and the other using the patch-level
method.

Furthermore, for each of the two aforementioned data sets, I calculated an
available metabolizable energy estimate per hectare for each field classification by: 1)
using average TME values,

Y. FFD; x TME; 4.2
where FFD; was the available functional food biomass of each specific seed (g/ha), and
TME; was the TME value of rice (3.34 kcal/g; Kaminski et al. 2003) or the average value
for natural seeds (2.47 kcal/g; Kaminski et al. 2003); and 2) using species-specific TME
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values, where FFD; was the available functional food biomass of a specific seed (g/ha),
and TME; was the species-specific TME value which corresponded with FFD;. If a
species-specific TME value was not available for a natural seed species, I applied the
average TME for natural seeds. Thus, I calculated four estimates of AME for each field
classification derived using: 1) The mean-subtraction method and species-specific TME
values (SMS), 2) the mean-subtraction method and the average TME value for natural
seeds (AMS), 3) the patch-level method and species-specific TME values (SPL), and 4)
the patch-level method and the average TME value for natural seeds (APL). I repeated
all statistical analyses while varying the raw baseline seed biomass of each seed species

within in each field +10-50% (Miller and Newton 1999, Miller and Eadie 2006).

Estimating Habitat Requirements

I used calculation frameworks from existing GCJV bioenergetics habitat carrying
capacity models to estimate area of flooded ricelands needed to support GCJV Louisiana
Chenier Plain (LCP) waterfowl populations from August-March. Furthermore, I
converted all metabolizable energy estimates from my study to kcal/ac estimates to align
with GCJV methods and models. I converted habitat estimates back to hectares upon
completion of statistical analyses. Current GCJV LCP models assume a 5-year mean
riceland area of 129,553 ha, and a normal rice-idle field rotation of 2 years, where 10% of
riceland area are idled, 40% of rice is ratooned, and 50% of ratooned rice is harvested.
Additionally, GCJV bioenergetics models incorporate species-specific daily energy
demands as calculated from equations in Miller and Eadie (2006). Tused GCJV energy
demands (kcal) for ducks and geese in LCP agricultural regions from August—March,

derived from species-specific population objectives for the agricultural region. I
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considered LCP waterfowl energy demands baseline if unaltered (i.e., not varied +10—
50%; Table 4.2). Furthermore, I substituted GCJV energetic estimates (kcal/ac) from
each field classification (i.e., I, HR, and SR) with energetic estimates derived from my
study. Thus, I estimated required riceland habitat necessary to support GCJV waterfowl
population from August—March (i.e., ~137days), while varying raw baseline seed
biomass and LCP waterfowl energy demands £10—50% (Miller and Newton 1999,

Esslinger, and Wilson 2001, Miller and Eadie 2006).

Results
Mean-Subtraction and Patch-Level Seed-biomass estimates

November seed biomass (i.e., waste rice and natural seeds combined) in GCP
ricelands was 262.8 kg/ha, 396.5 kg/ha, and 1,088.6 kg/ha for field classifications of I,
HR, and SR, respectively (Table 4.3). After applying a foraging threshold using the
mean-subtraction method (i.e., 170 kg/ha for I fields [Hagy and Kaminski 2015] and 50
kg/ha for HR and SR [Greer et al. 2010]), seed biomass estimated available to waterfowl
averaged 92.8 kg/ha, 346.5 kg/ha, and 1,038.6 kg/ha for the aforementioned field
classifications (Table 4.3). When correcting for a foraging threshold using the patch-
level method, seed potentially available to waterfowl averaged 146.7 kg/ha, 347.6 kg/ha,
and 1,038.6 kg/ha for the same field classifications, (Table 4.3). Only three HR fields
(3%) and zero SR fields contained a seed biomass below the foraging threshold of 50
kg/ha. As aresult, in HR fields, seed biomass differed by only 1.1 kg/ha between mean-
subtraction and patch-level methods, and did not differ in SR fields (Table 4.3).
However, 27% (n = 200) of idled fields contained a seed biomass below the foraging

threshold of 170 kg/ha. Thus, when applying foraging thresholds using the patch-level
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method, the overall estimate of seed availability for idled fields increased 58% from 92.2

kg/ha to 146.7 kg/ha (Table 4.3).

Estimates of Available Metabolizable Energy

When using baseline (unaltered; not varied £10-50%) seed biomass estimates
from my study, AME was 239,733 kcal/ha, 1,020,346 kcal/ha, and 3,264,533 kcal/ha for
I, HR, and SR, respectively when using AMS methodology (Table 4.4). When using
SMS methods, AME was 3% (232,591 kcal/ha), 5% (973,830 kcal/ha), and 1%
(3,236,405 kcal/ha) less than AMS methods for I, HR, and SR classifications,
respectively (Table 4.4). When using APL methodology, AME was 374,485 kcal/ha,
1,023,206 kcal/ha, and 3,264,533 kcal/ha for field classifications of I, HR, and SR,
respectively (Table 4.4). When using SPL methods, AME was 6% (357,204 kcal/ha), 5%
(976,453 kcal/ha), and 1% (3,236,405 kcal/ha) less than APL methods for I, HR, and SR
classifications, respectively (Table 4.4).

When reducing seed biomass estimates from my study by 50%, AME was -93,459
kcal/ha, 437,254 kcal/ha, and 1,554,670 kcal/ha for I, HR, and SR, respectively when
using AMS methodology (Table 4.5). When using SMS methods, AME was 12% greater
(-82,405 kcal/ha), 5% (417,180 kcal/ha) less, and 1% less (1,541,350 kcal/ha) than AMS
methods for I, HR, and SR classifications, respectively (Table 4.5). When using APL
methodology, AME was 96,740 kcal/ha, 443,133 kcal/ha, and 1,555,781 kcal/ha for field
classifications of I, HR, and SR, respectively (Table 4.5). When using SPL methods,
AME was 3% (93,538 kcal/ha), 5% (422,614 kcal/ha), and 1% (1,542,450 kcal/ha) less

than APL methods for I, HR, and SR classifications, respectively (Table 4.5).
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When increasing seed biomass estimates from my study 50%, AME was 572,920
kcal/ha, 1,603,442 kcal/ha, and 4,974,399 kcal/ha for I, HR, and SR, respectively when
using AMS methodology (Table 4.6). When using SMS methods, AME was 4%
(547,583 kcal/ha), 5% (1,530,484 kcal/ha), and 1% (4,931,465 kcal/ha) than AMS
methods for I, HR, and SR classifications, respectively (Table 4.6). When using APL
methodology, AME was 676,234 kcal/ha, 1,606,233 kcal/ha, and 4,974,399 kcal/ha for
field classifications of I, HR, and SR, respectively (Table 4.6). When using SPL
methods, AME was 5% (643,301 kcal/ha), 5% (1,533,032 kcal/ha), and 1% (4,931,465
kcal/ha) less than APL methods for I, HR, and SR classifications, respectively (Table

4.6).

Estimation of Habitat Requirements

Regardless of methods used to calculate AME estimates, and while holding
waterfowl energy requirements constant, estimated area of ricelands required to support
LCP waterfowl populations from August-March decreased exponentially as seed
biomass increased up to 50% in production and idled ricelands (Figures 4.2-4.5).
Regardless of methods used to calculate available metabolizable energy estimates, and
while holding seed biomass constant, estimated area of ricelands required to support LCP
waterfowl populations from August—March increased linearly as waterfowl energy
demands increased up to 50% (Tables 4.7—4.10; Figures 4.6—4.9).

When holding seed biomass and energy demand estimates at baseline levels,
regardless of using the mean-subtraction or patch-level methods, approximately 475
additional hectares of ricelands were necessary to support targeted baseline LCP

waterfowl populations when using species-specific TME values instead of the average
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natural seed value (Figure 4.10). This trend increased to an additional 866 ha hectares as
seed biomass was reduced up to 50% and decreased to an additional 314 ha as seed
biomass was increased 50% (Figure 4.10). Lastly, the GCJV currently estimates that
16,305 ha of production and idled rice fields are required to support current LCP
waterfowl population objectives. Estimates from my study were 10,029 ha (38%) greater
than GCJV estimates, and indicated that as many as 26,334 ha of flooded production and
idled rice fields could be required to support current LCP waterfowl population

objectives from August—March when holding seed biomass constant.

Discussion
Estimates of Seed Biomass and Available Metabolizable Energy

Similar to simulations by Pearse and Stafford (2014), when I applied foraging
thresholds at the patch (i.e., field) level as opposed to using the mean subtraction method,
estimates of seed biomass in idled rice fields increased 58%. Seed biomass estimates in
HR and SR fields rarely fell below the rice field foraging threshold of 50 kg/ha; thus,
estimates for HR (347.7 kg/ha) and SR fields (1038.6 kg/ha) remained unchanged
regardless of the scale of which foraging thresholds were applied. My results and those
of Pearse and Stafford (2014) indicate the importance of applying foraging thresholds at
the proper scale. Similar to results and recommendations from Pearse and Stafford
(2014), foraging thresholds used in this study were derived at the patch level (Greer et al.
2009; Hagy and Kaminski 2015). Inaccurate habitat objectives may result from adjusting
food biomass across an entire landscape, which is common practice in some
bioenergetics models (Esslinger and Wilson 2001, Wilson and Esslinger 2002).

Nonetheless, our understanding of waterfowl foraging is limited, and foraging patches in
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reality may be smaller or larger than individual production or idled rice fields. Research
investigating how, and at what spatial scale waterfowl perceive, evaluate, select, exploit
foraging patches and derive nutrient rewards from them would be beneficial for
developing reliable carrying capacity models. Regardless of how foraging thresholds are
integrated into bioenergetics models, if there is not consistency across conservation
planning regions, landscape-scape scale conservation planning efforts may be tenuous
(Pearse and Stafford 2014, Williams et al. 2014).

If seeds with TME values less or greater than the average account for a large
proportion of biomass estimates, available energy in each field or across an entire
landscape may be over- or under-estimated. Although my results were not terribly
sensitive to this issue, the magnitude of sensitivity depends on the composition the
natural seed community. True metabolizable energy values for some seeds included in
models for this study were as much as 80% less (i.e., Eleocharis spp.; 0.50 kcal/g;
Dugger et al. 2006) and 22% greater (Sagittaria spp.; 3.04 kcal/g; Hoffman and
Bookhout 1985) than the average estimate of 2.47 kcal/g (Kaminski et al. 2003). In my
study, AME in production and idled rice fields was 1-4.6% less when using species-
specific TME values than when using the average TME value for both mean subtraction
and patch level methods among all field classifications. Prior to this study, Gulf Coast
Joint Venture planners, and likely other JV planners, did not have access to species-
specific seed-biomass estimates to incorporate into bioenergetics models. When using
species-specific TME values, seed biomass must be known for each individual seed
species. This is a potential drawback and limiting factor, because deriving species-

specific biomass estimates is costly and labor intensive.
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Estimation of Habitat Requirements

The amount of flooded ricelands required to satisfy energy demands of GCJV
LCP waterfowl population objectives decreased exponentially as seed biomass (waste
rice and natural seeds combined) increased from -50% to +50%, regardless of estimation
methods (i.e., SMS, AMS, SPL, and APL). This result occurred because, as seed
biomass increased from -50% up to +50%, the number of production and idled rice fields
with seed biomass less than foraging thresholds was reduced. As seed biomass increased
up to 50%, nearly all production and idled rice fields contained a biomass above foraging
thresholds, and the mean subtraction and patch level methods indicated that required
riceland habitat was practically identical. When population objectives and seed biomass
were held at baseline levels, the amount of necessary habitat was approximately 350 ha
greater when using mean-subtraction than patch-level methods, similar to results by
Pearse and Stafford (2014). Thus, current bioenergetics models are likely overestimating
habitat objectives by subtracting foraging thresholds from landscape scale estimates of
seed biomass. Holding population objectives and seed biomass constant, approximately
475 fewer hectares of habitat was required when using an average TME value for natural
seeds, than when using species-specific TME values, suggesting that use of an average
TME value in carrying capacity models may underestimate habitat requirements.

Results emphasized, that reducing seed biomass and increasing population
objectives of waterfowl would have major consequences for waterfowl energy demands
and habitat requirements. For example, approximately 97,000 ha of flooded ricelands
would be required to support LCP waterfowl populations if a 50% reduction in seed
biomass and a 50% increase in energy demands occurred. Indicating an additional
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71,000 ha of flooded ricelands would be required when compared to baseline habitat
requirements from this study; and an additional 81,000 ha would be required when
compared to current GCJV habitat requirements. Miller and Newton (1999) reported
similar results for California, where decreasing rice biomass 50% and doubling northern
pintail populations resulted in a required area of ricelands 4-5 times greater than if all
estimates remained at baseline levels. A future increase in harvester efficiency or
development of farming practices better adept to controlling natural seed growth and
production may be cause for concern among conservation planners. This may be
especially true if the coastal marsh loss crisis along the Gulf Coast continues, habitat
fragmentation occurs, area of planted rice declines, or water restrictions are implemented
in the LCP regions. Thus, conservation planners should endeavor to find strategies to
incentivize agricultural producers for flooding of idled and post-harvest production rice
fields, as was done through the Migratory Bird Habitat Initiative.

Estimated SPL flooded riceland habitat required to support baseline waterfowl
energy demands in the LCP was ~26,000 ha, which was approximately 10,000 ha greater
than that currently estimated by GCJV estimate. | observed this outcome, because seed-
biomass estimates derived from my study were less than those currently used in GCJV
bioenergetics models (Chapter I). Habitat estimates from my study indicated that
approximately 20% of all production and idled rice field hectarage would need be
flooded to support waterfowl populations from August—-March annually. This estimate
would even be larger, because other birds (e.g., American coots [Fulica americanal,

blackbirds [Agelaius spp.], doves [Zenaida spp.], and sandhill cranes [ Grus canadensis])
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often forage in these habitats (Crase and DeHaven 1978, Day and Colwell 1998, Eadie et

al. 2008).

Management Implications

Current GCJV bioenergetics models may underestimate area of flooded riceland
habitat necessary to support target waterfowl populations from August—-March annually.
Differences between contemporary seed biomass estimates (Chapter I) and estimates
currently employed in GCJV bioenergetics models are the driving force behind
differences in estimates habitat requirements. Other factors having a weaker affect
include the utilization of species-specific TME values, and the use of patch-level methods
to subtract foraging thresholds. Current methods employed in daily ration carrying
capacity models that subtract foraging thresholds from landscape scale seed-biomass
estimates and apply an average TME value to natural seed biomass may output biased
results. Thus, I recommend that GCJV conservation planners adopt the patch-level
method for applying foraging thresholds, because seed-biomass estimates were calculated
at the field level, and it is presumably the ecological scale at which waterfowl forage
(Pearse and Stafford 2014). Additionally, using average TME values may underestimate
habitat objectives. Therefore, I recommend that GCJV conservation planners only use an
average TME value for natural seeds when seed-specific values are not available. |
recommend use of species-specific TME values in bioenergetics models. Thus, use of
species-specific TME values in combination with patch-level methods of subtracting
foraging thresholds will result in increasingly accurate estimates of required habitat in

GCJV bioenergetics carrying capacity models.
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The cost associated with flooding wetland habitats is variable and dependent on
flooding techniques (e.g., electric vs. diesel pumps, rain water, etc.), depth, and
environmental conditions (temperature, rainfall, etc.). Manley et al. (2008) estimated the
cost of flooding one hectare of rice to be $12.72-25.45/ha (2016 USD). Therefore, the
cost of providing enough flooded riceland habitat to support annual LCP waterfowl
energetic needs would be approximately $330,720-635,700. Thus, conservation
organizations would need to dedicate an additional $127,200-244,500 annually toward
the flooding of LCP ricelands.

Additional factors that will likely need to be addressed if conservation planners
wish to develop more accurate carrying capacity models include the difficulty and error
associated with estimating area of wetland habitats correctly, in addition to the potential
impacts of human developments and disturbance which may cause waterfowl to avoid
wetlands, thus reducing carrying capacity (Williams et al. 2014). Furthermore, I
recommend continuity in carrying capacity models among habitat regions. This will
serve to help conservation planners understand conservation issues and priorities on a
broader scale going forward into the future.

The use of agent-based models for waterfowl and wetland conservation, a
technique that links behavior of individuals with population- or community-level
processes (a bottom-up approach), are potential alternatives to current daily-ration
models (Miller et al. 2013, Williams et al. 2014). A spatially explicit waterbird agent-
based model (SWAMP), developed by Miller et al. (2013) in the Central Valley of
California provides the framework for an attempt to use agent-based models as a decision

support tool to guide waterfowl conservation and management in North America. I
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recommend the GCJV conservation planers investigate the use of agent-based models as
an alternative to daily-ration bioenergetics models for estimating habitat carrying
capacity, and for wetlands conservation. Regardless of methods used (daily-ration or
agent-based models), an update to current GCJV conservation models seems justified and
would provide conservation planers with contemporary and seemingly more accurate

estimates of agricultural (and coastal marsh) habitat requirements.
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Table 4.3 Baseline seed-biomass estimates before and after subtraction of foraging
thresholds in Gulf Coast Prairie ricelands.

Seed
biomass®
Foraging threshold method®  Field classification® X
None | 262.82
HR 396.52
SR 1088.57
Mean-subtraction method | 92.82
HR 346.52
SR 1038.57
Patch-level method | 146.72
HR 347.65
SR 1038.58

Foraging threshold calculation methods, field classifications, and seed-biomass estimates
(kg[dry]/ha) before and after subtraction of foraging thresholds in production (50 kg/ha)
and idled rice fields (170 kg/ha) in the Gulf Coast Prairies of Louisiana and Texas,
August-November, 2010-2013.

? Blanks denote same field classification.

®1, Idled rice; HR, harvested ratoon; SR, standing ratoon.

¢ Waste rice and natural seeds combined (kg/ha).
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Table 4.4 Baseline available metabolizable energy estimates in Gulf Coast Prairie

ricelands.
AME estimation method®® Field classification® AME!

AMS | 239,733
HR 1,020,346
SR 3,264,533

SMS | 232,591
HR 973,830
SR 3,236,405

APL | 374,485
HR 1,023,206
SR 3,264,533

SPL | 357,204
HR 976,453
SR 3,236,405

Available metabolizable energy estimation methods, field classifications, and baseline
available metabolizable energy estimates (kcal/ha) before and after subtraction of
foraging thresholds in production and idled rice fields in the Gulf Coast Prairies of
Louisiana and Texas, August-November, 2010-2013.

? Blanks denote same available metabolizable energy (AME) estimation method.

® AMS-average true metabolizable energy (TME) values with means subtraction
methodology; SMS—species-specific TME values with mean-subtraction methodology;
APL-average TME values with patch-level methodology; SPL—species-specific TME
values with patch-level methodology.

1, Idled rice; HR, harvested ratoon; SR, standing ratoon.

4 Available metabolizable energy (kcal/ha).
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Table 4.5 Available metabolizable energy estimates in Gulf Coast Prairie ricelands
after a 50% reduction in raw seed biomass.

AME estimation method®® Field classification® AME!
AMS | -93,459
HR 437,254
SR 1,554,670
SMS | -82,405
HR 417,180
SR 1,541,350
APL | 96,740
HR 443,133
SR 1,555,781
SPL | 93,538
HR 422,614
SR 1,542,450

Available metabolizable energy estimation methods, field classifications, and baseline
available metabolizable energy estimates (kcal/ha) before and after subtraction of
foraging thresholds in production and idled rice fields in the Gulf Coast Prairies of
Louisiana and Texas, August-November 2010-2013.

? Blanks denote same available metabolizable energy (AME) estimation method.

® AMS-average true metabolizable energy (TME) values with means subtraction
methodology; SMS—species-specific TME values with mean subtraction methodology;
APL-average TME values with patch level methodology; SPL—species-specific TME
values with patch level methodology.

1, Idled rice; HR, harvested ratoon; SR, standing ratoon.

4 Available metabolizable energy (kcal/ha).
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Table 4.6 Available metabolizable energy estimates in Gulf Coast Prairie ricelands
after a 50% increase in raw seed biomass.

AME estimation method®® Field classification® AME!
AMS | 572,920
HR 1,603,442
SR 4,974,399
SMS | 547,583
HR 1,530,484
SR 4,931,465
APL | 676,234
HR 1,606,233
SR 4,974,399
SPL | 643,301
HR 1,533,032
SR 4,931,465

Available metabolizable energy estimation methods, field classifications, and baseline
available metabolizable energy estimates (kcal/ha) before and after subtraction of
foraging thresholds in production and idled rice fields in the Gulf Coast Prairies of
Louisiana and Texas, August-November 2010-2013.

? Blanks denote same available metabolizable energy (AME) estimation method.

® AMS-average true metabolizable energy (TME) values with means subtraction
methodology; SMS—species-specific TME values with mean subtraction methodology;
APL-average TME values with patch level methodology; SPL—species-specific TME
values with patch level methodology.

1, Idled rice; HR, harvested ratoon; SR, standing ratoon.

4 Available metabolizable energy (kcal/ha).
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APPENDIX A
ESTIMATES OF WASTE-RICE AND NATURAL SEED BIOMASS IN
PRODUCTION, SEED-, AND IDLED RICE FIELDS IN THE
LOUISIANA CHENIER PLAIN, TEXAS CHENIER

PLAIN, AND TEXAS MID-COAST
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