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Forests in the southern United States with diverse forest ownership entities are 

facing threats associated with climate change and natural disturbances. This study 

represented the relationship between climate and species dominance, predicted future 

species distribution probability under a changing climate, and projected forest dynamics 

under ownership-based management regimes. Correlative statistics and mechanistic 

modeling approaches are implemented. Temporal scale includes the recent past 40 years 

and the future 60 years; spatial scale downscaled from southern United States to the 

coastal region of the northern Gulf of Mexico. In the southern United States, dominance 

of four major pine species experienced shifts from 1970 to 2000; quantile regression 

models built on the relationships among pine dominance and climatic variables can be 

used to predict future southern pine dominance. Furthermore, multiple climate envelope 

models (CEMs) were constructed for nineteen native and one invasive tree species 

(Chinese tallow, Triadica sebifera) to predict species establishment probabilities (SEPs) 

on the various land types from 2010 to 2070. CEMs achieved both predictive consistency 



 

 

and ecological conformity in estimating SEPs. Chinese tallow was predicted to have the 

highest invasionability in longleaf/slash pine and oak/gum/cypress forests during the next 

60 years. Forest dynamics, in the coastal region, was projected by linking CEMs and 

forest landscape model (LANDIS) to evaluate ownership-based management regimes 

under climate change and natural disturbances. The dominance of forest species will 

diminish due to climate change and natural disturbances at both spatial scales—in the 

coastal region and non-industrial private forest (NIPF). No management on NIPF land 

was predicted to substantially increase the ratio of occupancy area between pines and 

oaks, but moderate and intensive management regimes were not significantly different. 

Pines are expected to be more resistant than oaks by maintaining stable age structures, 

which matched the forest inventory records. Overall, this study projected a future of 

southern forests on climate-species relationship, invasion risks, and forest community 

dynamics under multiple scenarios in the United States. Such knowledge could assist 

forest managers and landowners in foreseeing the future and making effective 

management prescriptions to mitigate potential threats.   
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CHAPTER I 

INTRODUCTION 

1.1 Research background 

Forest ecosystems are valuable to our planet; they absorb CO2 and release 

oxygen, prevent erosion, harbor a diversity of wildlife, and provide timber products.  In 

the United States, the thirteen southern states from Virginia to Texas are covered by over 

87 million hectares of forestland and produce nearly 60% of the nation’s timber products 

(Prestemon and Abt 2002, Rauscher and Johnsen 2004, Wear and Greis 2002). Forests in 

the northern Gulf of Mexico region are the most productive for timber and wood products 

in the United States (Harcombe et al. 1992). For example, thirteen southern states have 

nearly 28 million hectares forestland stretching from Virginia to Texas; of the thirteen 

southern states, five coastal States (Texas, Louisiana, Mississippi, Alabama, and Florida) 

produce half of the southern U.S. forest products (Twilley 2001). Five forest cover types 

dominate the northern Gulf of Mexico region including loblolly-shortleaf pine, longleaf-

slash pine, oak-gum-cypress, oak-hickory, and oak-pine (Figure 1). Loblolly (Pinus 

teada, L) and shortleaf (Pinus echinata, Mill) pines are cultivated the most in uplands, 

while slash pine (Pinus elliottii, Engelm) is planted in the coastal area (Twilley 2001). 

Meanwhile, hardwood forests are also highly productive located at bottomland along the 

floodplains of rivers and streams throughout the central and eastern United States (King 

and Keeland 1999). Besides providing wood products, coastal forests support great plant 



 

2 

biodiversity and a variety of habitats for wildlife. Alluvial and shoreline ecosystems 

support 5 million winter waterfowl and seasonal migratory birds use coastal forests as 

migration pathways. Coastal forests are of great importance in bird migration pathways 

within 100 km of the coast and usually occur on barrier islands, ridges, delta splays, and 

along river and bayou drainages (Barrow et al. 2005). Thus, southern forests have been 

playing an important role in providing ecosystem services for human beings and wildlife 

in the United States, especially along the northern Gulf region. 

Climatic conditions are primary influences on the growth and expansion of 

coastal forests. The northern Gulf of Mexico has mild winters and hot summers, 

supporting a humid sub-tropical and humid temperate climate that supports coastal 

grasslands, coastal marshes and swamps, pine forests, and mixed pine-hardwood forests. 

Similar to other regions of the world, over the past 100 years, the northern Gulf of 

Mexico region has experienced climatic variability in temperature, precipitation, and 

increasing extreme events. The air temperature of this region increased between the 

1920s and 1949, decreased slightly during the 1960s, and then increased after the 1960s; 

rainfall has been increasing from 1900 to the present, but the pattern of precipitation has 

varied geographically within the coastal states of Texas, Louisiana, Mississippi, and 

Alabama (Twilley 2001). For extreme climatic events, historical records of hurricane 

activities reveal that comparing the period between 1971 to 1994 hurricanes with high 

wind speeds (i.e. greater than 50 meters per second) have increased 2.5 times for the 

North Atlantic and fivefold in the Caribbean during 1995-2000 (Bove et al. 1998, 

Goldenberg et al. 2001). Future climate is commonly projected by GCMs (Global 

Climate Models or General Circulation Models) based on several scenarios. The Hadley 
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Center Model (HadCM2) and the Canadian Climate Centre Model (CGCM1) are widely 

used in temperature and precipitation predictions. In most of the northern Gulf of 

Mexico, as for predicted temperature, HadCM2 describes a warmer future climate with 

ca. 1.7°C increase in summer maximum temperature and winter minimum temperatures, 

while CGCM1 predicts ca. 3.9°C increases in summer maximum temperature and up to a 

2.8°C reduction in winter minimum temperatures. Most regions in the northern Gulf of 

Mexico are predicted to have slightly less rainfall, but precipitation patterns vary 

regionally (Twilley 2001).  

Forests along the northern Gulf of Mexico are affected by multiple disturbances 

which usually interact with climatic conditions. In the first place, tropical cyclones (i.e. 

hurricanes) are the most severe disturbance in the Coastal region. Hurricanes often bring 

heavy rainfall, storm surge, and high winds simultaneously, which can cause extensive 

damage in forests including swaying, twisting, shearing, and blowing down trees. As a 

hurricane makes landfall, it affects both coastal regions and inland regions up to hundreds 

of kilometers inland. For example, Hurricanes Katrina and Rita struck into the coast areas 

of Mississippi and Louisiana in August and September 2005 and damaged a total of 2.23 

million ha of timber land stretching from Texas to Alabama (Stanturf et al. 2007). 

Furthermore, wildfire is another common disturbance in southern forests. Before Euro-

American settlement, fire was ubiquitous across southeastern United States and had a 

return interval of less than 13 years in the Coastal Plain in all forest types (Frost 1998). 

Wildfire has played a positive role in maintaining southern ecosystems, especially for 

longleaf pine forests (Brown and Smith 2000, Outcalt and Brockway 2010). To some 

extent, fire risk is usually increased after severe hurricanes because of debris 
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accumulation (Myers and van Lear 1998); therefore, investigating hurricane-fire 

interactions in coastal forests of the south may be able to facilitate the long-term 

restoration in the areas impacted by hurricanes (Myers and van Lear 1998). Besides 

windstorms and fires, coastal forests in the northern Gulf face loss and degradation 

because of other natural and human-driven disturbances, such as sea-level rise, urban 

development/sprawl, agriculture, livestock grazing, fire suppression, lack of management 

activities (pulpwood production and pine plantation), and the spread of non-native 

species (Barrow et al. 2005).  

In sum, southern forests are facing threats not only from potential climate change 

but also from multiple disturbances which arouse the interest in assessing the future of 

forest ecosystems in the South (Wear and Greis 2012, Wear et al. 2009). However, 

traditional field experiment was not capable to handle ecological processes and spatial 

configuration shift at a regional scale. Meanwhile, altering climatic conditions are likely 

to change the frequency, intensity, and severity of disturbances across natural and 

managed landscapes (Dale et al. 2001). Ecologists, economists, and landowners are 

concerned that the impact on the health, composition, and productivity of southern forests 

(Cordell and Tarrant 2002, Rauscher and Johnsen 2004, Sharitz et al. 1992, Stanturf et al. 

2002). Thus, a comprehensive study should be carried out on forest ecosystems in the 

southern United States for sustainable management by incorporating climate change, 

natural disturbances, and human activities.  
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1.2 Literature review 

1.2.1 Potential impacts of global change on forest ecosystems 

Multifunctional services of ecosystems (e.g., goods production, recreation, and air 

purification) are likely to be widely impacted by a changing environment. Ecological 

impacts of recent climate change have been reported on both fauna and flora based on the 

evidence of the Earth’s climate warming over the past 100 years (Hughes 2000, Parmesan 

and Yohe 2003, Root et al. 2003, Walther et al. 2002). Birds, butterflies, and other 

wildlife have received intensive attention (McCarty 2001). Spring wildlife activities have 

been occurring progressively earlier since the 1960s, including earlier arrival of migrant 

birds, earlier appearance of butterflies, and earlier choruses and spawning in amphibians. 

The ephemeral plant, Brassica rapa, has shifted its flowering time in response to a 

regional multi-annual drought in southern California as evidence of evolutionary 

adaptation (Franks et al. 2007). Thus, climate dynamics interacts with biological trends 

resulting in potential change in ecology, physiology, phenology, and distributions across 

natural systems.  

Numerous concerns also focused on the response of forest ecosystems to global 

climate change. In the Northern Hemisphere, the ranges of terrestrial plants have moved 

on average 6.1 km northward, and the length of the growing season has extended on 

average 2.3-5.1 days per decade over the past 50 years (Thuiller 2007). In the 

Mediterranean region of Spain,  European beech (Fagus sylvatica) forests have shifted 

altitudinally upwards and holm oak (Quercus ilex) that originally grew at low elevations 

has replaced beech forest at medium elevations in Europe (Peñuelas and Boada 2003). In 

summary, a changing environment will potentially alter local water availability, tree 
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physiological processes, and competition between forest species, consequently affecting 

regional distribution of organisms due to increasing atmospheric CO2, altering 

temperature, and varying soil moisture.  

In addition, the warmer planet would experience more extreme weather events 

which accelerate disturbances, such as windstorms, fires, and exotic species invasion 

(Dale et al. 2001). Wind disturbance is expected to increase under climatic change 

(Blennow et al. 2010, Schelhaas et al. 2010, Seidl et al. 2014). Changing climate also 

alters fire occurrence frequency, timing, and influences fire behavior (i.e., ignition, 

spread, and extinction) which are strongly linked to weather (Brown and Smith 2000). 

Subsequently, ecological processes and spatial patterns on forest landscape are shifted by 

the interaction of wind and fire disturbances (Bergeron and Archambault 1993, Mouillot 

et al. 2002, Myers and van Lear 1998, Stocks et al. 1998). On the other hand, climate 

change also facilitated non-native species spread. The Southern Forest Future Project 

reported that 9% of forest land (about 19 million acres) in the southern United States has 

been infested with one or more non-native invasive plants. Though majority of invasive 

species are under great pressure to survive, projected climate conditions may provide 

more favorable locations and facilitate species establishment, growth, and spread so as to 

encourage further invasion to about 27 million acres in the next 50 years  (Wear and 

Greis 2012, Wear et al. 2009, Williamson 1999). Even though climate change has chronic 

impacts on forest succession over a long period of time, future climatic conditions raise 

numerous concerns for interdisciplinary and international communities. Forest 

ecosystems with regard to the structure, composition, and function will undergo a 

complex pathway due to potential climate change and associated disturbances.  
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1.2.2 Species distribution modeling under climate change  

Global warming is likely to have multiple impacts in physiology, phenology, and 

distributions on various ecological functional types, such as species, communities, and 

biomes (Hansen et al. 2001, Hughes 2000). Forest compositions have been found to be 

strongly affected by climatic conditions by comparing changes in climate, geology, and 

land-use to that of both the historical and modern forest composition (Hall et al. 2003). 

Thus, modeling relationships between climate change and species distributions have 

recently received much attention because species distributions are affected and even 

determined by environmental factors (Holdridge 1947, Kottek et al. 2006, Woodward 

1987).  

Climatic Envelope Model (CEM) is widely used among species distribution 

modeling with climatic variables. This approach assumes that the range of a given 

organism is constrained by selected factors which describe the limits to species’ spatial 

domain as an “envelope”. Temperature and precipitation related variables often 

representing general trend (mean), extreme conditions (maximum and minimum), and 

seasonal variation are commonly used in climate envelope models (Hijmans and Graham 

2006). CEM depicts current species distributions within a set of climate constraints so 

that future distribution range could be predicted according to those limiting conditions 

under projected climate conditions (Heikkinen et al. 2006). Recent studies on CEM have 

focused attention on model construction, application, evaluation, and integration with 

other technologies (Hijmans et al. 2012).  

Constructing CEMs is based on statistical techniques. Hijmans et al. (2012) 

classified species distribution modeling into three groups—profile, regression, and 
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machine learning. Profile methods only consider presence data, but no absence data are 

included in modeling. Regression and machine learning methods require both presence 

and absence data. Profile methods generally do not perform as well as other modeling 

methods (Elith et al. 2006), but are easy to understand and useful in teaching species 

distribution modeling. Commonly used regression models contain Generalized Linear 

Models (GLM) and Generalized Additive Models (GAM). Machine learning is a branch 

of artificial intelligence for data mining, which includes Artificial Neural Networks, 

Classification and Regression Trees (CART), Random Forest, Boosted Regression Trees, 

and Support Vector Machines. Machine learning methods have larger computation 

intensity and longer running time than regression models; however, most machine 

learning methods consider multicollinearity within model building procedure but 

regression methods need the user to analyze multicollinearity among predictor variables 

(Elith et al. 2011). 

Evaluation of CEMs is aimed to assess the fitness of selected models and test 

whether the models can be used for a specific purpose. Species-climate envelope 

modeling generally has multiple calibration and validation strategies (Araújo et al. 2005). 

Most modelers rely on cross-validation which consists of creating a model with one 

“training” data set, and access it with “testing” data set of known information. The area 

under curve (AUC) of the receiver operating characteristic (ROC) is commonly used to 

evaluate the agreement between observed and projected distributions (Hirzel et al. 2006, 

Lobo et al. 2008, Manel et al. 2001).  

Although CEMs are useful for describing fundamental limits of current climate 

conditions and predicting the future, they cannot reflect biotic interactions, evolutionary 
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changes in genetic adaptation, nor species dispersal processes (Pearson and Dawson 

2003). Thus, integrating other technologies with CEM modeling becomes necessary. In 

order to incorporate mechanistic links between functional traits of organisms and their 

environments, Kearney and Porter (2009) summarized physiological (mechanistic) and 

statistical (correlative) approaches in species distribution modeling. The 

physiological/mechanistic approach is spatially explicit, being able to consider 

evolutionary, geographical, and other processes; the statistical/correlative approach is 

based on the past evolution traits seemed implicit. Kearney et al. (2010) integrated 

biological parameters—body mass, shape, body temperature, digestive efficiency, and 

metabolism rate—with evolutionary theory to compare the performance between 

mechanistic models (Niche Mapper) and correlated CEMs (MaxEnt, BIOCLIM). It has 

been revealed that some CEMs performed as well as mechanistic models for hundreds of 

plant species (Hijmans and Graham 2006). However, some species may violate the 

assumption of equilibrium within their historical environment, especially for invasive 

species (Václavík and Meentemeyer 2009). Thus, it is not only necessary to validate 

individual approaches through statistical evaluation but also need integrate mechanistic 

parameters in modeling. After integrating physiological knowledge, more robust 

predictions of species composition and ecological processes will carry across larger 

spatial range and longer temporal extent (Franklin 2009). 

1.2.3 Hybrid models for studies in climate change and ecological processes  

Hybrid modeling in ecology is considered as an integration of multiple modeling 

techniques which are derived from interdisciplinary approaches to represent the 

composition, structure, and dynamics of ecosystems (Parrott 2011). Since CEM is limited 
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in presenting the interaction among biological, evolutionary, and ecological 

characteristics, many researchers are pursuing a linkage between statistical and 

mechanical models in order to further reveal the mystery within the climatic envelope. 

Hijmans and Graham (2006) applied a mechanistic model to evaluate the ability of 

climate envelope models in predicting the effects of climate change on species 

distributions. Thus, the mechanistic models often serve as a species’ physiology input so 

that CEM can be coupled and compared with ecological mechanism.  

Besides integrating CEM, many researchers have applied hybrid modeling 

framework to study ecological processes in forest ecosystems. Peng et al. (2002) 

integrated the forest production model (3-PG) and the soil-carbon-nitrogen model 

(CENTURY4.0) and created the TRIPLEX model to simulate monthly forest growth and 

carbon dynamics in northern Ontario, Canada. Another typical hybrid model is IBIS 

(Integrated Biosphere Simulator) which is a comprehensive computer model of the 

Earth’s terrestrial ecosystems coupling ecological, biological, and physiological 

processes occurring on different timescales (Kucharik et al. 2000). Furthermore, 

ecological modelers also applied hybrid process-based models to simulate the dynamic 

processes in complex ecosystems under climate change. He et al. (1999) linked the 

LINKAGES and LANDIS models to study forest species response to climate warming 

from ecosystem to landscape scales in northern Wisconsin in the United States. A similar 

approach was further carried out in northeastern China (He et al. 2005). However, forest 

succession and dynamics modeling related to climate change cannot avoid incorporating 

historical disturbances and management strategies (Running 2008). Thus, the next 



 

11 

generation of ecological process modeling in forest systems under climate change should 

integrate disturbance scenarios with fire, wind, pests, urbanization, and deforestation.  

On the other hand, forest ecosystem modeling has been approved to achieve more 

accuracy by involving field inventory data. Ground truth data from Forest Inventory and 

Analysis (FIA) have been applied to calibrate and validate current models so as to 

achieve more confidence in forest dynamic simulations. Prasad (2006) analyzed FIA data 

and determined tree species distributions. Furthermore, Iverson and Prasad (2001) 

calculated importance values of trees from FIA data and predicted species’ future suitable 

habitats via the DISTRIB and the SHIFT models upon the projected climate scenario. 

First, DISTRIB constructed a statistical model based on regression tree analysis 

approach; then, SHIFT model worked as a semi-mechanistic model estimating tree 

migration according to each individual species. Under hybrid modeling framework with 

field inventory validation, two models (DISTRIB and SHIFT) were able to accurately 

investigate species’ historical migration rates and predict potential habitat patterns under 

future environmental conditions. Thus, with the development of calibration and 

validation techniques for landscape models, the capability will be increasing when 

coupling niche-based (statistical) and process-based (mechanistic) models to explore the 

effect on changes of species range, forest composition and structure, as well as biomass 

under global warming at regional scale (Wang et al. 2014).  

In sum, it is technically possible to combine CEMs and landscape dynamic 

models in forest ecosystems. One key point of combination is to allow one model’s 

outputs serving as another model’s inputs. Another key point is to validate output from 

statistical model by ground truth with field inventory data. In this study, CEMs happen to 
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generate species distribution likelihood which serves as the input of LANDIS as species 

establishment probability. Additionally, CEMs evaluation procedure is possible following 

the literature (Araújo et al. 2005). Furthermore, LANDIS as an explicit landscape model 

has the capability to involve climate change, natural disturbances, and management 

activities in the simulation (http://landis.missouri.edu/). Thus, it is possible to couple a 

niche-based model (i.e. CEM) with a process-based model (i.e. LANDIS) to predict 

future forest composition and age structure bordering the northern Gulf of Mexico. 

1.3 Research objectives 

This study aims to forecast future status of forests in Southern United States under 

potential climate, natural disturbances, and management alternatives. From generalization 

to specification, several hypotheses are tested—1) major pine species distributions in the 

southern United States are related to climatic variables, 2) coastal tree species (pines, 

hardwood, and an invasive tree) will be influenced under a changing climate with respect 

to distribution range and occurrence probability, and 3) future of southern forest (e.g. age 

structures and spatial configurations) will have different trajectories when adopting 

management alternatives with climate change and natural disturbances (tornado and 

wildfire). This research was designed at multiple spatial scales of three study areas: 13 

southern states in the U.S. (Domain 1), the southeastern United States (Domain 2), and 

the outer coastal plain (Domain 3) (Figure 1.1). Meanwhile, more complex ecological 

processes will be considered with the spatial range contraction from 13 southern states in 

the South to the outer coastal plain. Table 1.1 summarizes study areas, data sources, focal 

species, and modeling methods throughout this study. Given the problems stressed above, 
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this dissertation consists of four independent but corresponding studies in chapters II to 

V.   

Chapter II determinates the relationship between southern pines distribution in the 

United States and climatic factors (i.e. maximum temperature, minimum temperature, and 

annual precipitation) based on the historical records from 1970 to 2009. The relationship 

is speculated among different levels of species dominance and climate variables. This 

chapter is the fundamental exploration for the following chapters because it demonstrates 

a general response of species to climatic conditions. Chapter III is about application of 

CEMs on major trees species along the northern Gulf of Mexico.  This chapter addresses 

the procedure of constructing models for major tree species under three CEM methods, 

projecting their occurrence probabilities under a future climate scenario, evaluating 

model performances, and comparing CEM predicted results by landtypes. Chapter IV is 

an application of climate envelope modeling on a non-native tree species (Chinese tallow: 

Triadica sebifera) and assessing the vulnerability to its invasion associated with various 

forest types. Chapter V applies the framework of integrating CEM with a spatially 

explicit model (LANDIS 6.0) to study dynamics of forest community age structures in 

response to potential climate change and interactive disturbances of winds and fires.  

Overall, the focal species not only include dominant tree species (pines and 

hardwood) along the northern Gulf of Mexico but also a non-native species. The temporal 

scales are across the most recent 40 years to the future 70 years (CEM projection and 

LANDIS simulation). The spatial scales involve three domains downscaling from 13 

southern U.S. states, southeastern United States to the coastal plain along the northern 

Gulf of Mexico of Texas, Louisiana, Mississippi, Alabama, and Florida. To integrate 
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climate conditions to species dominant status and forest succession, correlative 

approaches are first applied in Chapter II and Chapter III, and then process-based 

modeling approaches are adopted, as well. In other words, modeling methods include 

empirical statistical niche-based exploration and process-based simulation and mapping. 

Many ecological traits are involved in modeling procedure, i.e. species-climate 

relationship, species longevity, seed dispersal, light competition, forest succession, etc. 

Many ecological processes are also involved in this study, such as historical wind and fire 

occurrence and their interactions, non-native species invasion, and management 

alternative. Therefore, this study consists of a broad scope of issues to the future of 

southern forests in the United States.   
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Figure 1.1 Study areas designed at multi-spatial scales corresponding to three domains 
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CHAPTER II 

ASSOCIATIONS BETWEEN CLIMATE VARIABILITY AND DOMINANCE OF 

SOUTHERN PINE SPECIES IN THE UNITED STATES 

2.1 Introduction  

Pines are planted on over half of the commercial timberland and provide over 

70% of wood products output in the southern United States. Southern pines are 

economically important because they consist of nearly 37% of softwood saw timber in 

the United States (Gaby 1985, McNulty et al. 1996). Shortleaf pine (Pinus echinata, 

Mill), loblolly pine (Pinus taeda, L), slash pine (Pinus elliottii, Engelm), and longleaf 

pine (Pinus palustris, Mill) are the major four pine species in the South (considered as 

yellow pine group). Between 2007 and 2009, the South’s industrial timber product output 

of softwood roundwood was 4.97 billion cubic feet, while output of hardwood 

roundwood was only 1.59 billion cubic feet. However, Timber Product Output (TPO) 

reports reflected that the amount of softwood roundwood output declined 18 percent from 

2007 to 2009 even though output volume of timber product kept stable in the earlier three 

reports in 2003, 2005, and 2007 (6.1, 6.4, and 6.12 billion cubic feet, respectively) 

(Bentley 2003, Johnson et al. 2011). On the other hand, pine timberland in the South lost 

16 million acres since early 1950s and the rate of decrease for pines is about 3.6 million 

acres per decade  (South and Buckner 2003). For example, longleaf pine forests occupied 

over 60 million acres in the southeastern United States prior to European settlement; 
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since 1953, longleaf pine experienced the greatest decline of 77% reduction and longleaf-

grassland ecosystems only comprise 3 million acres today (Van Lear et al. 2005). Thus, 

the loss of timberland contributes to the decrease of pine wood output so it is necessary to 

evaluate contemporary stocking status of pines in the South. 

Multiple factors including suppression of wildfires, southern pine beetles, urban 

development, and an absence of natural regeneration have contributed to the loss of pine 

forest land (South and Buckner 2004). For instance, although the cones of the 

aforementioned four pines are not serotinous, wildfire helps to maintain population of 

pine species by suppressing competition with hardwood species. However, wildfires are 

promptly extinguished in order to protect human investments so that forest fires cannot 

reach natural equilibrium (South and Buckner 2004). Additionally, southern pine beetle 

(SPB; Dendroctonus frontalis Zimmerman) was the most destructive insect pest which 

doubled the mortality rate of southern pines between 1953 and 1999 (Gan 2004). 

Loblolly pine and shortleaf pine are more susceptible to SPB than longleaf pine (Nowak 

et al. 2008). Consequently, loss of pine forest land can have ecological effects. For 

example, federally endangered red-cockaded woodpeckers (Picoides borealis) frequently 

are identified with the longleaf pine ecosystems as well as with shortleaf pine habitats in 

the Daniel Boone National Forest in Kentucky (South and Buckner 2003, Van Lear et al. 

2005). Thus, the recent reduction of pine ecosystems could finally degrade wildlife 

suitability. To date, pine decline has been observed from Alabama to South Carolina in 

the Atlantic and East Gulf Coastal Plains, Piedmont Province, and Sandhill regions. 

Eckhardt et al. (2010) also noted that mature loblolly pine, mixtures of mature loblolly 
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and shortleaf pine have experienced major decline on lands where longleaf pine was 

historically dominant. 

Climatic constraints determine the distribution of plants and the types of plant 

community growing in a given area. Height, density, and species diversity decrease from 

warm, wet climates to cool, dry climates (Prentice et al. 1992). Loblolly pine would be 

replaced by other heat tolerant coastal-plain pines [i.e., longleaf pine, slash pine, and 

pond pine (Pinus serotina)] species due to the increased temperature (Urban and Shugrat 

1989). McNulty et al. (1997) predicted that loblolly pine in southern United States would 

experience a decrease of leaf area associated with an increase of water yield and a 

decrease of total evapotranspiration. This study indicated that water availability would 

have big impact on loblolly pine’s dominance. Iverson et al. (1999) estimated that the 

loblolly-shortleaf and longleaf-slash pine types have a potential decreasing trend under 

most climate change scenarios. Shortleaf pine along the northwest border of its natural 

range (Southern Missouri, Arkansas, and Eastern Oklahoma) is associated with Palmer 

Drought Severity Index (PDSI) (Hooten and Wikle 2007). Therefore, the dominance of 

pines is highly associated with climatic conditions. However, facing the problem of pine 

decline, it is still not well known whether pine decline is contemporary, periodical, or 

related to climate change (Eckhardt et al. 2010).  

Therefore, it is beneficial to estimate the current distribution of southern pines and 

their linkages to climatic condition in order to perform an assessment on their stocking 

status. The objectives of this study are (1) to display changes to the southern pines 

resources in the past four decades, and (2) to explore the relationship between climatic 

conditions (minimum temperature, maximum temperature, and annual precipitation) and 
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southern pines’ importance values (IV) at county level. These two objectives are essential 

for exploring associations between species dominance and climatic variability. 

Descriptive statistics and quantile regression were applied to illustrate above problems. 

This study aims to offer insight into the changing climate and solve potential problems of 

pine forests decline for the future management.   

2.2 Methods 

Distribution ranges of four southern pines overlap with each other. Previous 

studies delineated their historical distribution in the United States prior to the 1970’s 

(Burns and Honkala 1990, Little 1971). Shortleaf pine (Figure 2.1) is native to extreme 

southeastern New York and New Jersey west to Pennsylvania, southern Ohio, eastern 

Kentucky, southern Illinois and southern Missouri south to eastern Oklahoma and eastern 

Texas east to northern Florida and Georgia. Loblolly pine (Figure 2.2) is native to the 

Coastal Plain and Piedmont from southern New Jersey and Delaware south to central 

Florida and west to eastern Texas, and in the Mississippi Valley to extreme southeastern 

Oklahoma, central Arkansas and southern Tennessee. Slash pine (Figure 2.3) is native to 

the coastal plains from southern South Carolina to lower Florida Keys, west to southeast 

Louisiana. Longleaf pine (Figure 2.4) is native to the southeastern United States, in the 

Coastal Plain from southeastern Virginia to central Florida and west to eastern Texas. 

Digital representations of above four pines are derived from Geosciences and 

Environmental Change Science Center of USGS (http://esp.cr.usgs.gov/data/little/).  

This study selected 13 southern states under USDA Forest Service Southern 

Research Station, including Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, 

Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia.  
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Across the 13 southern states, each county is considered as a sample unit within which 

IVs and decadal climate are associated. The boundary map was downloaded from 

National Atlas (http://www.nationalatlas.gov/boundaries.html).  

  

Figure 2.1 Historical range of shortleaf pine (Pinus echinata, Mill) 

(Little 1971) 

 

Figure 2.2 Historical range of loblolly pine (Pinus taeda, L) 

(Little 1971) 

http://www.nationalatlas.gov/boundaries.html
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Figure 2.3 Historical range of slash pine (Pinus elliottii, Engelm) 

(Little 1971) 

 

Figure 2.4 Historical range of longleaf pine (Pinus palustris, Mill) 

(Little 1971) 

2.2.1 Calculating importance values (IVs) of southern pines 

Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service surveyed 

America’s forests prior to the 1970’s. This dataset enables us to evaluate historical and 

contemporary status about the extent, condition, status, and trends of forest resources 

across in the United States (USFS et al. 2012). Based on the historical distribution map 

(Little 1971), four pines are not evenly dominant across the 13 states in the South. 
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Dominance level of individual pine is represented by importance value (IV) which 

comprehensively reflects the total number of individuals of the species (frequency), the 

commonness of a species occurring across the entire forest community (density), and the 

occupation area relative to the forest area (dominance). In other words, IV is a synthesis 

index of frequency, density, and dominance to rank species contribution to forest 

composition. Generally, IVs are calculated by relative values in order to compare 

communities which may have different size. Because areas of forest land within counties 

are variable, relative dominance is more meaningful when comparing species 

contributions in each county across the heterogeneous landscape.  

Forest Inventory and Analysis (FIA) database (http://www.fia.fs.fed.us/tools-

data/) provides solid information for calculating IVs. For each individual county, IV 

comprehensively indicates relative frequency, relative density, and relative dominance of 

a given species. Relative frequency is the number of plots containing a given species as a 

percentage of the total plot number. Additionally, to account for multiple individual trees 

within the same plot, relative density is used for counting the number of individuals of a 

species as a percentage of the total number of individuals of all species within a county. 

Furthermore, relative dominance shows the relative area occupied by the given species by 

calculating total basal area of a species as a percentage of the total basal area of all 

species. Overall, IVs measure of species contribution in a forest community calculated by 

taking the average of above three indices. The formulas of calculating IVs are listed 

below.  

  (2.1) 

number of plots obtaining a given speciesrelative freqency
total plot number



http://www.fia.fs.fed.us/tools-data/
http://www.fia.fs.fed.us/tools-data/
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  (2.2) 

  (2.3) 

  (2.4) 

The IVs of each species were calculated by decades (the 1970s: 1970-1979, the 

1980s: 1980-1989, the 1990s: 1990-1999, and the 2000s: 2000-2009). There are two 

reasons to perform decadal calculation. First, FIA program has not adopted annual 

inventory before the 1990s, but has decadal records for most of the southern states. Thus, 

it is not possible to construct the annual relationship between ground truth and climatic 

variables. Secondly, trees have sufficient time for their physiological and morphological 

behaviors to be altered by climate conditions in that tree growth could have sensitivity to 

decadal variability of climate conditions (Peterson and Peterson 2001). Therefore, 

decadal time scale typically indicates potential productivity response to climate change.  

2.2.2 Climate data interpolation 

Climate data were obtained from the U.S. Historical Climatology Network 

(USHCN version 2: http://www.ncdc.noaa.gov/oa/climate/research/ushcn/). USHCN 

datasets were originally developed by National Oceanic and Atmospheric 

Administration’s (NOAA’s) National Climatic Data Center (NCDC) and Department of 

Energy’s Carbon Dioxide Information Analysis Center (CDIAC) for quantifying 

national- and regional-scale climate change in the conterminous United States. The 

adjusted USHCN data has an accurate measure of the U.S. temperature and precipitation. 

number of trees for a given speciesrelative density
total number of trees for all species



sum of BA for given speciesrelative basal area
total BA for all species



relative frequency+relative density+relative basal areaimportance value=
3

http://www.ncdc.noaa.gov/oa/climate/research/ushcn/
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In 2007, USHCN released the version 2 monthly data which were adjusted under 

automated pairwise bias algorithm with recent measurements from the U.S. Climate 

Reference Network (USCRN) datasets which was the highest standard for climate 

monitoring accounting for the impact of instrument and siting changes. In this study, 

annual mean maximum temperature, annual mean minimum temperature, and annual 

precipitation were processed from serial monthly data into decadal climatic variables for 

the 1970s, 1980s, 1990s, and 2000s.  

Observed meteorological data from the USHCN contains 562 sites within the 13 

southern states as well as their adjacent states from 1970 to 2009. Choosing adjacent 

stations outside the 13 states can reduce the errors from spatial interpolation caused by 

edge effect. After obtaining decadal climate observations at each site, spatial 

interpolation was implemented by Inverse Distance Weight (IDW) approach to predict a 

value for unmeasured locations. IDW assumes that observations that are close to one 

another are more alike than those that are farther apart. In ArcGIS desktop 10, IDW 

parameters were set with power of 2 and searching radius of 12. Furthermore, zonal 

statistics in ArcGIS was applied by setting interpolated climate surfaces as input layer 

and county boundaries as zonal layer and extracting mean values of each climatic 

variable in each decade. Lastly, the three climatic variables paired with importance values 

by each county and each decade.  

2.2.3 Regression analysis 

Quantile regression was used to evaluate how different parts of response variance 

are captured by different quantiles of predictors (Cade et al. 1999). Quantile regression 

does not only simply specify an important predictor in regression model, but also has 
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more ecologically rational without abrupt thresholds and unexpected shapes (Austin 

2007). The detailed explanation of quantile regression and its application can be found in 

previous articles (Cade et al. 1999, Koenker and Bassett 1978). In this study, quantile 

regression was performed between importance values and climatic predictors to estimate 

changes associated with different levels of responses under climate constraints. The 

flowchart (Figure 2.5) shows the whole design of data preparation and analysis.  

 

Figure 2.5 Flowchart of data preparation and analysis 

 

2.3 Results  

2.3.1 Southern pine IVs changes from the 1970s to the 2000s 

The importance of southern pines has been changing temporally and spatially 

across the 13 southern United States from the 1970s to the 2000s. The numbers of 

counties of pine occupation (Figure 2.6) over four decades indicated a general loss and 

gain for each species in the South. From the 1970s to the 1980s, shortleaf pine increased 

occupation from 788 counties to 823 counties but lost only 2 counties in the 1990s. 
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However, it suddenly decreased to 639 counties in the 2000s. As for loblolly pine, 

gradually increasing numbers indicated that loblolly pine was widely introduced and 

expanded its distribution range. The number of slash pine observations experienced a 

significant decrease from the 1970s of 827 counties to the 1980s of 599 counties, but it 

bounced up quickly to the 1990 of 719 counties and finally came back to 833 counties in 

the 2000s. Longleaf pine originally occupied 778 counties in the South in the 1970s. 

However, the number decreased to 653 in the 1980s. In the 1990s, the number of 

occupied counties bounced up to 668, but it decreased again by 649 in the 2000s.  

Different tendencies were shown by the four pines with respect to number of 

occupied counties from 1970 to 2009 in the South. Comparing the number of counties of 

pine occupation in the 1970s with the 2000s, shortleaf pine and longleaf pine decreased 

18.9% and 16.6%, respectively; loblolly pine gradually increased 5%; and slash pine kept 

almost the same number of counties of pine occupation. In the southern United States, 

longleaf-slash pine and loblolly-shortleaf pine are two forest types dominant by pines 

(Zhu and Evans 1994). However, there is a general decrease of longleaf (Figure 2.4) and 

shortleaf (Figure 2.1) and pines but an increase of slash (Figure 2.3) and loblolly (Figure 

2.2) pines from the 1970s to the 2000s. The results indicated a species composition 

change of the forest cover type. 

Figure 2.7 displays the changes of the IVs of the four southern pine species by 

box-and-whisker plots across four decades from the 1970s to the 2000s, respectively. 

Boxes denote interquartile ranges (IQR), central lines denote medians, and whiskers 

denote 10th and 90th percentiles. For example, upper whiskers indicated the 90th percentile 

of the IVs, shortleaf pine showed a continuous decrease trend from the 1970s to the 
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2000s, loblolly showed an increase-decrease-increase trend from the 1970s to the 2000s, 

slash showed a decrease-increase-increase trend from the 1970s to the 2000s, and 

longleaf pine showed a decrease-decease-increase trend from the 1970s to the 2000s. As 

for the median change, shortleaf was decreasing from the 1970s to the 2000s, loblolly 

was decreasing, slash decreased first in the 1980s and then increased during the 1990s to 

the 2000s, and longleaf kept decreasing from the 1970s to the 2000s. The maximum IVs 

of the four pines did not have many variations across the four decades. With respect to 

the IVs, shortleaf pine decreased from 0.52 to 0.49; loblolly pine increased from 0.54 to 

0.68; slash pine ranges from 0.96 to 1.0; and longleaf pine decreased from 0.34 to 0.28. 

Hollow points above the upper whiskers are suspected outliers (above 1.5 × IQR) but 

those points which indicate relative high values are associated with particular counties 

that could obtain higher dominance levels of pines. The counties obtaining the relatively 

larger IVs of pines are important indicating the given species may have relatively higher 

suitability to the local climatic, geophysical, and ecological conditions. Overall, boxplots 

displayed the right skewed distributions of IVs for each pine species with small IVs 

occurring more frequently than large IVs. 

According to occupied counties, IVs of southern pines have been changing 

spatially throughout the 1970s to the 2000s. For each county, the index of relative 

gain/loss, referring to the ratio of the difference of the IVs between the 2000s and 1970s 

versus the IVs of the 1970s, was calculated to quantify the change of the IV of a given 

pine between the 2000s and the 1970s. The positive values indicated IV gains, while the 

negative ones indicated IV losses. There were several properties of the index of relative 

gain/loss index. First, the larger the ratio value, the more severe the degree of gains/losses 
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is. Secondly, IV gains ranged from 0 to positive infinity and IV losses ranged from -1 to 

0. Thirdly, if IV (1970) = 0, the ratio has no defined value. If IV (2000) = 0, the ratio 

value is -1 indicating that given pine disappeared from such county. If IV (1970) = IV 

(2000), the ratio was 0 that meant no change on IVs.  

Spatial distributions of the ratio of relative gain/loss at county level of four 

southern pines are not alike. IVs of shortleaf pine decreased within its historical 

distribution range (red area in Figure 2.8). Loblolly pine, on the contrary, increased its 

IVs in most of the southern counties (blue area in Figure 2.9). A cluster of counties in 

Louisiana gained IVs of slash pine, but another cluster in South Carolina showed their 

loses of slash pine’s importance (Figure 2.10). However, slash pine showed a mixture of 

gains and losses within its historical range along the northern Gulf of Mexico. Longleaf 

pine lost its importance across most of counties lost, even though a few counties gained 

its importance less than 20% (Figure 2.11). With respect to spatial occupation of IVs, in 

general, shortleaf pine and longleaf pine presented decreasing dominance; loblolly pine 

has been increasing its importance over most of the southern counties; slash pine has high 

variation across the southern US from the 1970s to the 2000s.  
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Figure 2.6 The number of counties with pine occupation in the 13 southern states in 
the 1970s, 1980s, 1990s, and 2000s 
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Figure 2.7 Boxplots with whiskers based on southern pines importance values (IVs) in 
the 1970s, 1980s, 1990s, and 2000s.  
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Figure 2.8 Spatial distribution of relative gain/loss at county level—shortleaf pine 

 

 

Figure 2.9 Spatial distribution of relative gain/loss at county level—loblolly pine 
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Figure 2.10 Spatial distribution of relative gain/loss at county level—slash pine 

 

 

Figure 2.11 Spatial distribution of relative gain/loss at county level—longleaf pine 
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2.3.2 Association between climate variables and IVs 

Abundance-environment relationships are often adopted by applied ecologists for 

species conservation, habitat management, and predicting response to environmental 

changes. In this study, response variables (IV) are partitioned into various quantiles levels 

for each pine; explanatory variables are decadal climatic conditions (minimum 

temperature, maximum temperature, and annual precipitation). Univariate quantile 

regression was conducted to investigate the associations between decadal paired climate 

variability and pine abundance at the quantiles of 5th, 25th, 50th, 75th, and 95th. Figure 

2.12, Figure 2.13, and Figure 2.14 represent univariate quantiles regression lines 

corresponding to the IVs verses the maximum temperature, the minimum temperature, 

and annual precipitation, respectively. From a forest management perspective, more 

critical quantile levels are the upper conditional quantiles (i.e, the 95th and the 75th 

quantiles) because forest managers prefer restoring trees at the location with high 

importance values indicating more dominance.  

Table 2.1 lists the estimates of coefficients and 95% confidence intervals at the 

5th, 25th, 50th, 75th, and 95th in quantile regression models. The models are y = β01 + β1x1 + 

e1, y = β02 + β2x2 + e2, and y = β03 + β3x3 + e3 where y is importance value (IV) for a 

given pine species, x1 is decadal mean maximum temperature, x2 is decadal mean 

minimum temperature, and x3 is annual precipitation. β01, β02, and β03 are the intercepts 

for each model; β1, β2, and β3 indicated the slope for each model. e1, e2, and e3 are the 

error terms indicating residuals of each model. H0:  β1 = 0, β2 = 0, or β3 = 0 was tested 

from rank-score tests for five selected regression quantiles (5th, 25th, 50th, 75th, and 90th) 

at significant level of 0.05. The significant (α = 0.05) estimates were denoted with a “*”. 
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In addition, 95% confidence intervals were provided to evaluate whether models are 

ecologically meaningful. If a zero value exists within confidence interval, the estimation 

could not be ecologically meaningful because the associations were not consistently 

positive or negative between the responses (IVs) and climate variables. The meaningful 

estimates were in bold (Table 2.1). The estimates of β1, β2, and β3 (b1, b2, and b3) 

indicated the potential change of IV corresponding to per unit change of climatic variable 

with respect to decadal maximum temperature (°C), minimum temperature (°C), and 

annual precipitation (mm), respectively. For example, loblolly pine at 95th quantile 

achieved b1 = 0.959, which suggested that when maximum temperature increased 1°C 

and the other two variables (minimum temperature and annual precipitation) kept the 

same, the IV of loblolly pine would increase 0.959%; b2 = -0.401 was not significantly 

significant; b3 = -0.016 suggested that when annual precipitation increases 1 mm and 

other two climatic variables kept the same, the IV of loblolly pine would decrease 

0.401%. Moreover, the 95% confidence intervals of b1 and b3 are (0.308, 1.069) and (-

0.018, -0.013), respectively, both of which are ecologically meaningful because zero was 

not contained in the interval.  

Generally, the IVs of four southern pines expressed different responses to climatic 

variables (Table 2.1). Considering ecologically meaningful responses under decadal 

maximum temperatures, shortleaf pine didn’t show any significant response; loblolly pine 

had significant positive response (p = 0.004, b1 = 0.959) at the 95th quantile but 

significant negative response (p < 0.001, b1 = -1.202) at the 50th quantile; slash pine and 

longleaf pine had significant positive responses (for all p < 0.001) at all the selected 

quantiles. Therefore, importance of shortleaf pine didn’t show obvious association with 
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maximum temperature; importance of loblolly pine had variable association with 

maximum temperature at different quantiles; but importance of slash pine and longleaf 

pine expressed consistent positive association with decadal maximum temperature. 

Additionally, considering ecologically meaningful responses under decadal minimum 

temperatures, shortleaf pine and loblolly pine showed significant negative responses (for 

all p < 0.001) at almost all the selected quantiles (but the 95th and the 5th quantile for 

loblolly pine), while slash pine and longleaf pine expressed significant positive responses 

(for all p < 0.001) across the 5th to the 95th quantiles. Therefore, IV of loblolly pine and 

shortleaf pine will have a decrease tendency but IV of slash pine and longleaf pine will 

have an increase tendency when decadal minimum temperature increases. Lastly, 

considering ecological meaningful responses under annual precipitation, shortleaf pine 

had a significant positive response (p = 0.008, b3 = 0.004) at the 50th quantile; loblolly 

pine had significant negative response (for all p < 0.001, but the 5th quantile); slash pine 

didn’t show any significant association; longleaf pine expressed significant positive 

responses at the 25th, 50th, and 75th quantiles (p < 0.001). According to this result, more 

rainfall will increase the IV of longleaf pine but decrease the IV of loblolly pine.  
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Figure 2.12 The relationship of maximum temperature and species importance values 

 



 

38 

 

Figure 2.13 The relationship of minimum temperature and species importance values 

 



 

39 

 

Figure 2.14 The relationship of annual precipitation and species importance values 
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2.4 Discussion  

Four southern pines in this study used to be classified as yellow pine. They have 

similar wood appearance, but timber product output among the four pines is quite 

different. Loblolly and shortleaf pine group accounted for 73% - 78% but longleaf and 

slash pine group accounted for 17% - 19%. The increasing trend of loblolly is due to pine 

plantation because loblolly pine is the most important plantation species in the southern 

United States as a leading commercial timber species (Hardin et al. 2001). This study also 

displayed the range shift of four southern pines from the 1970s to the 2000s which 

implies that the morphology of pines decided their distribution. For example, shortleaf 

pine is able to spread to the more north because it is more resistant to ice storms than 

slash pine and longleaf pine due to its shorter leaf length, which holds less frozen ice 

under low temperatures. Therefore, the climatic niches of four pines are generically 

separated due to some morphological traits even though their distribution ranges are 

overlapped with each other. 

Among four southern pine species, the dominance of longleaf pine experienced a 

severe decrease during the past several decades. The longleaf pine ecosystem is one of 

the most important habitats, especially old-growth longleaf pine stands, for the red-

cockaded woodpecker (Picoides borealis) (Van Lear et al. 2005). Many private forest 

landowners in the South are interested in restoring native longleaf pine forests because of 

the higher wildlife, recreational and aesthetic values associated with longleaf compared to 

other southern pine species. There are some incentive programs for converting planted 

loblolly pine (or slash pine) to longleaf pine because loblolly pine and slash pine have 

shown to be very aggressive and quickly establish on cutover land and wet areas in 
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particular (Samuelson et al. 2012). This study provides an estimation of restoration 

success based on the relationship between climatic variables and importance values. For 

example, longleaf pine has positive responses to the temperatures and precipitation at 

both 75th and 90th percentile in quantile regression analysis. This result indicates that 

longleaf pine will have higher recovery success in the region with higher temperature and 

more precipitation.   

The result of general decline patterns of southern pines corresponded to the 

previous studies (Eckhardt et al. 2010, Oswalt 2010). Ninety two percent of pine 

mortality occurred in naturally regenerated stands compared to only 8% of pine mortality 

in planted stands (Eckhardt et al. 2010). Considering urbanization, private forest land will 

decline about 7% in the future (Zhang and Polyakov 2010). However, mortality rate was 

low in the late 1960s and early 1970s when the young stands were establishing, while a 

higher mortality rate occurred when forest stands were not effectively managed (Eckhardt 

et al. 2010). Besides the climatic variation, the combined effect of multiple stressors such 

as competition, pests and pathogens, stand susceptibility to natural disturbances (e.g., 

wind and fire), and human disturbances/lack of management appear to be the reasons of 

pine decline. To some extent, climate change may not immediately impact IVs than other 

factors, such as fire suppression, woody debris and duff accumulation, hardwood 

competition, and pine regeneration failures (Bragg et al. 2008). Further study should 

involve mechanistic approaches with more ecological meaning rather than empirical 

statistics by addressing tree species establishment likelihood, biotic interactions, and 

disturbance history.  
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2.5 Conclusions  

Distributions of importance values for four pine species in southern United States 

were spatially presented at the county level by decade from the 1970s and the 2000s. 

Loblolly pine, shortleaf pine, slash pine, and longleaf pine have shown decreasing trends 

in numbers of occupied counties across the four decades. The IVs have shown a similar 

decreasing trend over time. Future climate scenarios, plus local geographical 

characteristics may play a role in comprehensive decision making for management plan. 

Intra-species responses (positive or negative) to climatic variables are generally 

consistent across different quantiles, but inter-species responses to climate variables 

differ. For example, shortleaf pine and loblolly pine had positive responses to maximum 

temperature and negative responses to minimum temperature, but slash pine and longleaf 

pine achieved negative responses to maximum temperature and positive responses to 

minimum temperature. In this case, management decisions on planting and restoration 

should take the divergent responses into account. Furthermore, forest managers also need 

to pay attention to spatial variation which reflects the variability of local geographical 

conditions because every species has an optimum ecological range. For example, 

shortleaf pine achieved relatively high IVs at higher elevations near Arkansas, while 

longleaf pine had a hotspot along the coastal area. Quantile regression models could 

assist in assessing success likelihood in plantation and restoration by estimating potential 

IV on a given geographical range with respect to selected climatic variables.  
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CHAPTER III 

PROJECTING DISTRIBUTION PROBABILITIES OF MAJOR TREE SPECIES IN 

THE SOUTHEASTERN UNITED STATES UNDER A CHANGING CLIMATE  

3.1 Introduction  

The Earth’s mean surface air temperature has increased by 0.8°C over the last 100 

years and is projected to rise another 1-6°C over the next hundred years (Jones et al. 

2012, Karl et al. 2009). Climatic factors are driving factors of species distribution so that 

ecological processes are widely influenced by temporal and spatial variability of global 

warming (Stenseth et al. 2002, Woodward 1987). Considerable studies of ecological 

consequences of recent climate change have been reported on both fauna and flora based 

on the evidence of global warming (Hughes 2000, Parmesan and Yohe 2003, Root et al. 

2003, Walther et al. 2005, Walther et al. 2002). For example, ranges of birds and 

butterflies have been observed a northward expansion over the past 30-100 years 

(McCarty 2001, Parmesan and Yohe 2003). Grabherr et al. (2009) found a pronounced 

shift of mountain plants to higher elevations in the Swiss Alps over the past 40-90 years 

due to the warming climate. Poleward and upward shifts of species distribution have 

occurred among a wide range of taxonomic groups across geographical locations during 

the last century (McCarty 2001). These findings have raised concerns that ecosystems are 

likely to become increasingly vulnerable in response to climate change.  
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Climate changes have also impacted spatial distribution of species, communities, and 

biomes in the southern United States (Hansen et al. 2001, Wear and Greis 2012). 

Southern mixed pine and hardwood could expand northward from their historical range 

and increase the geographic distribution of southern forest communities, but the southern 

boundaries of species ranges were more stable over time (Hansen et al. 2001, Hughes 

2000). Iverson et al. (2008) modeled and mapped 134 tree species in the eastern United 

States and found that 66 species would gain and 54 species would lose their suitable 

habitat under several scenarios of climate change. Zhu et al. (2012) found 58.7% of the 

tree species are undergoing range contraction and only 20.7% have northward shift 

tendency by comparing seedling and adult tree of 93 species across the eastern United 

States with the records of temperature and precipitation in the 20th century. However, no 

consistent evidence shows a great association of climate change with population spread 

and seed dispersal (Zhu et al. 2012). To some extent, species are not expected to expand 

further south than the coastal line, such as forests along the northern Gulf of Mexico, but 

a changing climate is possible to increase or decrease the occurrence likelihood of 

establishment within their historical geographic ranges.  

Climate envelope modeling (CEM) has become a useful technique in revealing climate-

species relationships as a branch of species distribution modeling (SDM). CEMs 

considered as a group of niche-based models are aimed to assess species distribution 

conditions (presence/absence or abundance) with current climate, create maps showing 

geographic variation of site suitability, and further predict future potential distribution 

range for a single species (Elith and Leathwick 2009, Guisan and Zimmermann 2000, 

Thuiller et al. 2008). Predicted future distribution maps of SDMs are commonly of two 
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types, continuous output and binary output. Continuous output maps are the original 

format from CEMs referring to occurrence probabilities which are estimated from a 

statistical algorithm. Binary output map is derived from continuous output by selecting a 

cut-off value. The cut-off threshold is used to divide the predicted occurrence probability 

into two categories indicating the presence or absence for a given species. Thus, 

probability maps (continuous output from CEMs) are more capable in studying species 

bordering the coastal area.   

Furthermore, threshold values strongly influence omission error (false negative) 

and commission error (false negative) by dividing continuous output into projected 

presence and absence (Fielding and Bell 1997, Liu et al. 2005). If cut-off values are not 

reasonably placed, the modeling results will underestimate/overestimate species 

distribution so that CEMs will lose predictive power and mislead predictions in 

ecological context. To date, evaluation of model performance has been challenging 

because of lacking agreement on measuring the accuracy of species distribution models 

(Liu et al. 2005, Liu et al. 2011). Threshold-independent measures are directly applied to 

continuous predictions when the threshold value is changed systematically. For example, 

the area under curve (AUC) of receiver operating characteristic (ROC) plots are 

considered as effective indicators of model performance (Manel et al. 2001). During the 

procedure of systematical changing thresholds, the optimal cut-off value can be obtained 

to assign presence/absence status for species distribution. Therefore, probability maps 

(continuous output from CEMs) not only avoid uncertainties from selecting threshold, but 

also could apply threshold-independent indices in measuring and comparing performance 

among different modeling approaches.  
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On the other hand, CEMs have been increasingly applied to answer questions and 

test hypotheses, such as assessing potential impact of climate change on species 

distribution (Thuiller 2003, Thuiller et al. 2008), predicting species invasion (Thuiller et 

al. 2005, Václavík and Meentemeyer 2009), and providing conservation plans and reserve 

selection (Elith and Leathwick 2009) in ecology, biogeography, conservation biology, 

and evolutionary biology (Barbet-Massin and Jetz 2014, Guisan and Zimmermann 2000). 

Species distribution modeling has conquered challenges with improved error and 

uncertainties to yield ecologically meaningful and more robust predictions (Araújo and 

Luoto 2007, Elith et al. 2011). However, further improvements have been proposed to 

solve more comprehensive problems by involving migration processes, linking 

population dynamics, incorporating biotic interactions, considering functional groups and 

communities (Guisan and Thuiller 2005, Thuiller et al. 2008). Thanks to the development 

of concepts in model hybrid, combining multiple modeling processes to achieve 

comprehensive understanding has been becoming a novel trend for hierarchical 

ecosystem modeling (Parrott 2011). New challenges will trigger CEMs to integrate niche-

based approach with process-based approach to progress the understanding in the real 

world. 

The objectives of this study are to compare three climate envelope modeling 

approaches, to figure out whether CEMs have stable performance among species, and to 

project major coastal species distribution probabilities in the southern United States. First 

of all, major species are identified by importance value. Then, CEMs are constructed for 

those focal species under GLM, BIOCLIM, and MaxEnt approaches. Furthermore, 

threshold-independent measurements (AUCs) are calculated for each model and each 
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species to evaluate model effectiveness and performance. Lastly, future species 

occurrence probabilities are projected under former CEMs and aggregated to 

heterogeneous land types. This study aims to investigate climate change impact on focal 

species in the southern United States. On the other hand, this study also aims to test the 

hypothesis that species have distinguished potential suitability across heterogeneous land 

types in order to test the capability of CEMs for forest succession modeling along the 

northern Gulf of Mexico. Based on the modeling results, if focal species keep consistent 

suitability within one land type but vary among different land types, the projected 

probabilities derived from CEMs are eligible to incorporate other ecological models and 

be used for the future forest dynamic simulations. 

3.2 Methods 

3.2.1 Study area specification  

Figure 3.1 displays two regions for this study—the coastal area and the 

southeastern United States. The coastal region along the northern Gulf of Mexico is for 

selecting major trees according to species’ importance values. This area is located the 

east Gulf Coastal Plain of eastern Texas, Louisiana, Mississippi, Alabama, and western 

Florida (Figure 3.1). Bailey (2009) described this region as outer coastal plain mixed 

province. The climate of this region is moderate with average annual temperatures 

ranging from 15.6 to 21.1°C and precipitation ranging from 1,020 to 1,530 mm annually. 

The land form is gently sloping. Temperate evergreen forests are typical. Five forest 

types dominate the study area: longleaf-slash pine (FT4: 19.48%) chiefly comprises 

longleaf pine and slash pine associated with oak, hickory, and gum; loblolly-shortleaf 

pine (FT5: 16.38%) mainly consists of loblolly pine and shortleaf pine, but also contains 

http://www.iciba.com/Louisiana/
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a number of hardwoods, such as oaks, sweetgum, and hickories; oak-pine (FT6: 5.73%) 

covers the mixture of oaks and pines with associates of gum, hickory, and yellow-poplar; 

oak-hickory (FT7: 2.20%) comprises upland oaks or hickory, singly or in combination, 

with common associates including yellow-poplar, elm, maple, and black walnut; and oak-

gum-cypress (FT8: 13.43%) refers to bottomland forests mostly including tupelo, 

blackgum, sweetgum, oaks, or southern cypress with common associates of cottonwood, 

willow, ash, elm, hackberry, and maple (Oswalt et al. 2009). These forests are underlain 

by eight soil type include Alfisols (Alfs: 18.96%), Entisols (Ents: 16.3%), Histosols 

(Hsts: 8.01%), Inceptisols (Incp: 5.96%), Mollisols (Mlls: 1.37%), Spodosols (Spds: 

1.12%), Ultisols (Ults: 44.43%), and Vertisols (Vrts: 3.83). Elevation ranges from -4.2 m 

to 168.8 m above mean sea level across the study area.  

In addition, climate envelope models were constructed in the southeastern United 

States corresponding to the output domain of the current and projected climate data. This 

extended study area also consists of aforementioned five forest type. Within this study 

area, the five major forest cover types are longleaf-slash pine (5.86%), loblolly-shortleaf 

pine (16.60%), oak-pine (10.85%), oak-hickory (11.77%), and oak-gum-cypress (7.72%). 

U.S. non-forest and lakes respectively occupy 45.22% and 1.78% of this area. Climate, 

soil type, and elevation of the southeastern U.S. are more variable than conditions of the 

outer coastal region due to enlarged spatial range.  
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Figure 3.1 Study areas of major species selecting and climate envelope modeling 

 

3.2.2 Selection of major species  

Major species were selected from Forest Inventory and Analysis (FIA) database 

provided by Forest Services, USDA based on their importance values, which 

comprehensively reflected three aspects of a given species occurrence status—frequency, 

density, and dominance. Within the study area along the northern Gulf of Mexico, 138 

tree species have been tallied in 7614 plots from 1970-2009 according to the records from 

FIA database. The definitions and formulas of calculating importance values are listed in 

Figure 3.2. For each species, three indices were calculated,  including total number of 

individuals of the species (frequency), the commonness of a species occurred across the 

entire forest community (density), and the occupation area relative to the forest area 

(dominance) belonging to the northern Gulf of Mexico region. IV is the synthesis index 
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of frequency, density, and dominance to rank species contribution to forest composition 

of the region. The format of importance values is in percentage. 19 major species have 

been chosen as focal tree species for the following studies, climatic envelope modeling 

(chapter III) and forest dynamics simulating (chapter V). These species account for 80% 

of the accumulative percentage of IVs out of 138 FIA recorded species along the northern 

Gulf of Mexico.  

Figure 3.2 Definitions and formulas of species occurrence indexes  

Index  Definition and formula  

Relative 

frequency 

Number of occurrences of a species as a percentage of the total number 

of occurrences of all species 

 

Relative 

density 

Number of individuals of a species as a percentage of the total number of 

individuals of all species 

 

Relative 

dominance 

Total basal area of a species as a percentage of the total basal area of all 

species 

 
Importance 

value  

 

number of plots obtaining a given speciesrelative freqency
total plot number



number of trees for a given speciesrelative density
total number of trees for all species



sum of BA for given speciesrelative basal area
total BA for all species



relative frequency+relative density+relative basal areaimportance value=
3
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3.2.3 Variables in climate envelope modeling 

3.2.3.1 Climatic variables 

The environmental predictors for fitting CEMs are downscaled climate data derived from 

Weather Research and Forecasting (WRF) model (Version 3.2.1). NASA GISS AO 

model is the initialized input to WRF. The output was validated by the North American 

Regional Climate Change Assessment Program (NARCCAP), and then applied to 

forecast future climate condition for the time period from 2010 to 2070. Projected 

climatic modeling is based on the IPCC A1B emission scenario. Localized current and 

projected data climates are downscaled to 10-km resolution from a regional model 

(driving climate at the resolution of 30-km) by embedding high resolution topography, 

land use type, soil, and other geographical characteristics. In addition, WRF predictions 

used in this study not only retains large-scale information and but also adds small-scale 

features in spite of some biases. Correlation analysis performed among WRF outputs 

with CRU (Climate Research Unit), NARR (North American Regional Reanalysis), and 

GISS (Goddard Institute for Space Studies) data showed that temperature at 10-km 

resolution has a cold bias of about 6°C in both winter and summer, while precipitation 

has a wet bias in winter and a dry bias in summer (Fan et al. 2013). More detailed 

information on WRF model configuration and systematic bias correction can be found 

from the final technical report of NASA project (Fan et al. 2013). Downscaled climate 

data at 10-km resolution from 1970 to 2009 were used for model fitting and validation, 

while data from 2010 to 2070 for prediction (model application). 

In this study, four WRF output variables, monthly minimum temperature, maximum 

temperature, mean temperature, and monthly precipitation, were processed to generate 19 
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climatic predictors (Table 3.1), which are recommended by Hijmans and Graham (2006) 

(http://www.worldclim.org/bioclim) and U.S. Geological Survey (O'Donnell and Ignizio 

2012) for supporting ecological application, especially for climate envelope modeling. 

There are two reasons for using these 19 climatic variables as predictors in CEM. First, 

these variables comprehensively represent general trend (means), extremes (maximum 

and minimum), and variations with respect to climatic conditions. Secondly, these 

climatic variables have been recognized as key constraints of physiological processes in 

determining potential distributions of most flora and fauna (O'Donnell and Ignizio 2012). 

However, the 19 climatic variables are highly correlated with each other. A potential 

problem of collinearity will occur when regression models are applied to estimate 

parameters and identify significant predictors (Dormann et al. 2013). Pearson’s 

correlation coefficients were calculated to identify highly correlated pairs of climatic 

variables before constructing models. Prior to regression analysis in GLM, principle 

component analysis (PCA) was used to remove collinearity. However, BIOCLIM and 

MaxEnt, are not affected by collinearity due to their generic algorithm (Busby 1991, Elith 

et al. 2011).  

  

http://www.worldclim.org/bioclim
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Table 3.1 Nineteen variables in climatic envelope modeling  

Abbreviation Description Unit 

BIO1 Annual Mean Temperature °C 

BIO2 Mean Monthly Diurnal Range  °C 

BIO3 Isothermality (BIO2/BIO7) (*100) NA 

BIO4 Temperature seasonal variation  NA 

BIO5 Max Temperature of Warmest Month °C 

BIO6 Min Temperature of Coldest Month °C 

BIO7 Temperature Annual Range (BIO5-BIO6) °C 

BIO8 Mean Temperature of Wettest Quarter °C 

BIO9 Mean Temperature of Driest Quarter °C 

BIO10 Mean Temperature of Warmest Quarter °C 

BIO11 Mean Temperature of Coldest Quarter °C 

BIO12 Annual Precipitation mm 

BIO13 Precipitation of Wettest Month mm 

BIO14 Precipitation of Driest Month mm 

BIO15 Precipitation Seasonal Variation NA 

BIO16 Precipitation of Wettest Quarter mm 

BIO17 Precipitation of Driest Quarter mm 

BIO18 Precipitation of Warmest Quarter mm 

BIO19 Precipitation of Coldest Quarter mm 

 

3.2.3.2 Response variable 

In climate envelope modeling, occurrence records are serves as response variable since 

climate exerts a strong controlling impact on species geographical distribution 

(Woodward 1987). USDA Forest Service FIA (Forest Inventory Analysis) provides 

species information at both plot and tree levels. More than 52,000 plots with their 

geographical coordinates were extracted from FIA dataset within the CEM within the 
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southeast United States domain. The presence of a given species at each individual plot is 

denoted as 1, while the absence is denoted as 0. In climate envelope modeling, 

occurrence records serve as the response variable. 

FIA’s Data collection was based on systematically arranged plots each of which roughly 

represented 2428 ha (6,000 acres) of land area. Detailed descriptions of the plot design, 

FIA protocols as well as updated field inventory data can be found online at 

http://apps.fs.fed.us/fiadb-downloads/datamart.html. There are 34 data tables in the FIA 

database Phase 2 database. In this study, PLOT and TREE tables were used to extract 

sample plot location (i.e. coordinates) and tree measurements (i.e. DIA, current 

diameter). In the PLOT table of FIA, the coordinates were recorded which referring to the 

approximate longitude and latitude of the plot in decimal degrees using NAD 83 datum to 

represent geographical location. However, this approximate has +/- 0.5 to 1 mile (0.8 to 

1.6 kilometers) uncertainty because of a privacy provision enacted by Congress in the 

Food Security Act of 1985. These fuzzy coordinates will bring uncertainty in modeling 

but won’t have a severe influence since the grid size of climate data was greater than the 

grid size of FIA data. TREE table which could link to the unique plot record (PLOT.CN 

= TREE.PLT_CN) provided information for each tree 1 inch in diameter and larger found 

within a plot. A couple of measurements, such as SPCD and DIA, can be obtained to 

identify the importance of a given species within a geographic range and whether a given 

tree species was present or absent. Focal species occurrence status (presence or absence) 

in each plot was summarized in Table 3.2.  

http://apps.fs.fed.us/fiadb-downloads/datamart.html
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3.2.4 Description of Climatic Envelope Models (CEMs)  

Climatic envelope models (CEMs) as a niche-based modeling method are used to 

discover climatic niche for a given species. The fundamental concepts of climatic 

envelope modeling include describing the environment in which the species has been 

tallied, identifying other locations in which the species could possibly exist, and assessing 

the locations where the species may or may not occur under a projected climate. 

Generally, CEMs are classified into several modeling strategies—profile methods, 

regression models, and machine learning methods (Hijmans et al. 2012). Profile method 

only requires species presences in modeling; regression and machine learning takes both 

presence and absence data into account. In this study, CEM strategies are employed 

including BIOCLIM, GLM, and MaxEnt. The three techniques,  respectively representing 

regression, profile, and machine learning methods, have been recommended and  applied 

across a variety of statistical approaches (Hijmans et al. 2012).  

3.2.4.1 BIOCLIM 

The BIOCLIM method was originally developed to assess potential impacts of 

climate change on flora and fauna in Australian since the late 1980s (Beaumont et al. 

2005, Busby 1988, Doran and Olsen 2001). The ecological niche of a species in 

BIOCLIM is described as a bounding hyper-box including all species records in 

bioclimatic space. It computes any species presence spot by comparing the percentile of 

environmental variables. Thus, BIOCLIM only uses presence data. If values for all 

predictors fall between the 5-95% (90% percentile) values of the climate profile, such 

climate condition is considered to be “suitable”; if values for one or more climatic 

parameters fall outside the formerly mentioned 90% percentile, but within the 0-100% 



 

57 

percentile (the total range), the climate is “marginal”; and if any parameter fall outside 

the total range, the climate condition is “unsuitable” (Busby 1991). The more the 

percentile approaches the 50th (the median), the more suitable the location is. However, 

BIOCLIM generally does not perform as well as novel modeling methods (Elith et al. 

2006; Hijmans and Graham 2006), but it is still useful in understanding basic concepts of 

species distribution modeling as the first generation of CEMs (Booth et al. 2014).  

3.2.4.2 Generalized linear models (GLM) 

Generalized linear models are the simplest models among the selected approaches. They 

have linear quadratic and polynomial terms (second and third order). Significant variables 

could be selected by a stepwise procedure by the Akaike Information Criteria (AIC). 

Logistic regression is a special form of the GLM. It is assumed that the probability of 

presence p given factors X1, X2… Xn is to be modeled. The logistic model assumes that 

the log of the odds (i.e. logit of the probability of presence p) is linear, i.e. 

 
0 1 11 n n

plog( ) X X
p

       
  (3.1) 

Where β0, β1, …, βn denote the set of parameters to be estimated. The glm function was 

performed in standard R library (http://www.r-project.org/).   

3.2.4.3 Maximum entropy (MaxEnt) 

The same as BIOCLIM, MaxEnt only requires species presence data to estimate the 

probability of presence of a given species (Phillips et al. 2006, Phillips and Dudík 2008). 

If a species is disappeared from a suitable area because of past disturbances without any 

presence data ever recorded, the absence record will be unreliable. MaxEnt first estimates 

a ratio of 𝑓1(𝑧)/𝑓(𝑧), denoted as MaxEnt’s raw output. 𝑓1(𝑧) is the probability density of 
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covariates across species present locations and 𝑓(𝑧) is the probablity of covariate across 

all the locations. Then, a logistic output processed by transformation of the MaxEnt raw 

output will be given. The post-transformation procedure in reality considers species 

prevalence and sampling density. In MaxEnt, the fit of the model is measured at the 

occurrence sites by log likelihood. MaxEnt fits a penalized maximum likelihood model 

closely related to other penalties for complexity such as Akaike’s information Criterion 

(AIC). Maximizing the penalized log likelihood is equivalent to minimizing the relative 

entropy subject to the error-bound constraints. However, a highly complex model will 

have high log likelihood but may not generalize well so regularization procedure is to 

trade off model fit and model complexity. Overall, MaxEnt method indirectly maximizes 

the presence-only likelihood in a way which makes MaxEnt achieve more robust 

predictions (Elith et al. 2011).  

3.2.5 Model evaluation  

Model validation is “a demonstration that a model within its domain of 

applicability possesses a satisfactory range of accuracy consistent with the intended 

application of the model” (Rykiel Jr 1996). The purpose of validation refers to assessing 

model performance by comparing accuracy calculations from a set of measures of input 

and output relationship of the model prediction and the real system in species distribution 

range (Fielding and Bell 1997, Heikkinen et al. 2006, Liu et al. 2011). Unfortunately, 

validating predictions for future scenarios is impossible because future condition is 

uncertain and it has not occurred. The area under curve (AUC) of receiver operating 

characteristic (ROC) was adopted as model assessment index in this study because it has 

been commonly used to assess model performance even though recently AUC has been 
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challenged (Liu et al. 2011, Manel et al. 2001). However, AUC is independent of the 

threshold probability but the optimized probability threshold is able to maximize the 

percentage of true absences and presences that are correctly identified. The AUC is a 

nonparametric estimation denoted in the following formula.  

 

1 pa NN

i j
i ja p

ˆ ( X ,Y )
N N

  
 (3.2) 

Let Xi be the set of model predicted values corresponding to the absence sites (i = 

1, 2, …, Na); let Yj be the set of model predicted values corresponding to the presence 

sites (j = 1, 2, …, Np). Where 𝜙(𝑋, 𝑌) = 1, if Y > X; 𝜙(𝑋, 𝑌) = 0.5, if Y = X; otherwise, 

𝜙(𝑋, 𝑌) = 0. Xi and Yj are the predicted values for the absence site i and presence site j. 

The AUC measure derived from ROC plot is independent of the frequency of species 

occurrence, so it is suggested to optimize threshold for future prediction (Manel et al. 

2001). The value of AUC varies between 0.5 and 1. If the given model is not different 

from random expectation, then AUC = 0.5; if the model is the best, then AUC = 1. Swets 

(1988) recommends interpreting range values of AUC as: excellent AUC > 0.90; good 

0.80 < AUC < 0.90; fair 0.70 < AUC < 0.80; poor 0.60 < AUC <  0.70; fail 0.50 < AUC 

< 0.60.  

Furthermore, different data splitting strategies would influence model validation 

(Araújo et al. 2005). Resubstitution and k-fold data splitting strategy is applied in model 

construction and validation in this study. Resubstitution refers to using the same dataset 

to train model and then to test the model. First, I use this strategy to construct CEMs. 

However, this approach would cause overfitting problem that a model sustains a small 

random error term during data training but have poor predictive performance for a new 
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situation. Overfitted model has little generality because its efficacy is determined by its 

performance the training data but it has less ability to perform well on unseen data. 

Second, I chose the fold number k = 2, 3, 4, 5, 10, 15, and 20. Moreover, k-fold 

validation strategy refers to the resampling approach by randomly dividing the entire data 

set into k independent partitions, using k-1 of them to establish the model and evaluating 

on the left-out partition. This procedure will repeat k times and the final AUCs were 

estimated by the average AUCs inside each fold. Last, the average AUCs on each species 

enable to show the prediction efficiencies with respect to modeling species distribution.  

3.2.6 Examination of predictive consistency and ecological conformity 

CEMs assume that correlations derived from species occurrence and climatic variables 

can indicate species’ environmental requirements further addressing species suitability 

over spatial space. In general, if predictions from CEMs are reliable, predicted 

distributional status should meet two qualifications. First, the predicted potential 

locations meet the physiological and ecological requirements even though CEMs lack 

consideration of biological interaction and mechanistic processes (i.e. seed dispersal). 

Second, potential suitability for given species keep consistent predicted outcomes among 

various CEMs. The first qualification is biological consistency, while the second one is 

predictive consistency. Biological consistency could be verified by ecological concept. 

For example, if a bottomland species achieves higher estimated suitability on a low 

elevation land type than it does on a high elevation site, such result should be reliable 

from the ecological perspective. Moreover, predictive consistency can be tested in 

statistics, which is based on the central limit theorem. Due to lack of validation of future 

distributions, it is assumed that all CEM projections come from one population of 
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forecasting the future range of a given species. Besides evaluating model performance, it 

is also necessary to evaluate modeling consistency of projections under ecological 

concepts.  

First, multivariate regression trees (MRT) was applied to classify landform by forest 

types along the northern Gulf of Mexico. MRT is a new statistical technique in exploring 

and predicting relationships between multiple response variables (y) and multiple 

explanatory variables (De'ath 2002). The response variables in this study are five forest 

types; explanatory variables are elevation and soils representing landform. Five forest 

types include longleaf-slash pine (FT4: 19.48%), loblolly-shortleaf pine (FT5: 16.38%), 

oak-pine (FT6: 5.73%), oak-hickory (FT7: 2.20%), and oak-gum-cypress (FT8: 13.43%); 

elevation ranges from -4.2 m (-13.1 feet) to 168.8 m (183.4 feet), ; eight soil types 

include Alfisols (Alfs: 18.96%), Entisols (Ents: 16.3%), Histosols (Hsts: 8.01%), 

Inceptisols (Incp: 5.96%), Mollisols (Mlls: 1.37%), Spodosols (Spds: 1.12%), Ultisols 

(Ults: 44.43%), and Vertisols (Vrts: 3.83). Abbreviations and relative areas of soil orders 

are shown in percentages in parentheses. 

Then, individual species establishment probability was aggregated on each land types to 

test ecological consistency of CEMs. Species establishment probability (SEP) ranges 

from 0 to 1 indicating the relative suitability that environmental conditions favor 

establishment for a particular species (He et al. 1999). Since CEMs can estimate species 

suitability over space and time (Franklin 2009), it is assumed that SEPs are distinct 

among species and across land types because of distinct biological traits of various 

species and their adaptive ability on heterogeneous landscape. Higher values of SEP 

indicate higher suitability of species establishment on a given spatial location. In other 
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words, species with higher SEPs are expected to be more competitive than the species 

with lower SEPs with regard to germination and establishment. If considering climate 

change effects, SEPs could fluctuate over time, but should not change the order among a 

certain species group. In this study, SEPs were used to address the biological and 

predictive consistency of CEMS.  

The hypothesis is CEMs are able to capture the effects of soil and elevation in a large 

scale prediction, even though biological traits, mechanistic processes, and other factors 

(i.e. soil and elevation) are excluded. First, to test biological consistency, bio-

geographical concepts were applied to interpret the magnitude SEPs under distinguished 

landforms. Second, to test predictive consistency, Wilcoxon-rank test based on non-

parametric statistics is applied to check whether individual species keep the same order of 

SEPs across heterogeneous landscape across the simulation.  

3.3 Results  

3.3.1 Selection of major species  

Table 3.2 shows the calculation of relative density, relative dominance, relative 

frequency, and importance values of major tree species based on 7614 records in PLOT 

table and their associated TREE table from the FIA database. Loblolly pine achieved the 

highest importance value of 21.32% due to wide plantation in the southern United States, 

followed by slash pine (10.78%) and water oak (6.75%). Four southern pines account for 

38.4% of the cumulative IVs among the total tree species. 19 out of 138 southern tree 

species listed in Table 3.2 account for above 80% of the cumulative IVs. Thus, these 19 

species represent the forest condition along the northern Gulf of Mexico region. Later, 
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three climate envelope modeling methods are constructed for each of the 19 species, 

respectively.  
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Six typical species among 19 major species are selected for interpretation in order to 

reduce the length of result part. These six species, including two pines and four hardwood 

species, are loblolly pine (Pinus taeda), longleaf pine (Pinus palustris), water oak 

(Quercus nigra), southern red oak (Quercus falcata), post oak (Quercus stellata), and red 

maple (Acer rubrum). These two pines represent commercially and ecologically 

important species. Three oaks represent the gradient of water availability associated with 

various land types from xeric condition to mesic condition. Red maple represents 

ecological plastic species which is commonly dominant throughout the eastern North 

America. These species requiring distinguished environmental conditions (i.e., such as 

moisture and light) can be considered having different niches in forest communities. 

Because of their unique biological traits, they may have various responses to the 

changing climate (Table 3.3).  

Table 3.3 Six representatives of major species for result interpretation 

 Shade intolerance  Shade 
tolerance 

(pines)  (hardwood)  (hardwood) 
Xeric longleaf pine   post oak  

red maple  Intermediate   southern red oak  
Mesic loblolly pine   water oak   

 

Comparing current distribution with historical range (the cyan boundary in Figure 

2.3) (Little 1971), six representative species are still located within their historical range 

according to Forest Service inventory since the 1970s. Loblolly pine moved northward in 

Arkansas and Tennessee. Presence plots of longleaf pine are sparse within its historical 

range. For red maple, there are not dense presence points in the Mississippi Alluvial 
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Plain. Water oak and southern red oak became sparse along the Mississippi Alluvial 

Plain, as well. Southern red oak and post oak lack their occupancy in southern Georgia 

and northern Florida. Loblolly pine, longleaf pine, and water oak almost concentrate their 

distribution range to the South, while red maple, southern red oak, and post oak distribute 

further northern than the region of this study.  

 

Figure 3.3 Presence plots of the six representative species in the southern U.S. region 



 

67 

3.3.2 Correlation of climatic variables and principle component analysis 

Collinearity is intrinsic for the explanatory variables when they are not 

independent, especially for climatic variables. Pearson’s correlation coefficients (r) were 

calculated to investigate collinearity of 19 predictors (Table 3.4). In this study, there are 

𝐶19
2 =

19×18

2
= 171 pairs from 19 climatic variables. Most of them (97.1%) showed 

positive correlation and five pairs (2.9%) have negative correlation. As for the values of 

coefficient, a threshold of 0.7 is generally used to identify correlated pairs. If |r| > 0.7, the 

two variables are considered as highly correlated. Suzuki et al. (2008) also choose a 

threshold of 0.4 for more restrictive purpose. Here, 78 out of the 171 pairs are greater 

than the less restrictive threshold of 0.7 (45.6%), 64 pairs are between 0.4 and 0.7 

(37.4%), and 29 pairs are less than the more restrictive threshold of 0.4 (17.0%). 

Therefore, the 19 explanatory variables of the raw climate dataset came across the 

collinearity problem.  

Principle component analysis (PCA) is one of the most common approaches to 

reduce collinearity. For PCA, original explanatory variables were first standardized by Z-

score because temperature and precipitation were on different scales of units. After 

standardization, all variables are transformed to the same scale with the mean of 0 and 

standard deviation of 1. The first three PCs are selected for further analysis because they 

respectively captured 65.50%, 19.36%, and 9.47% of the raw dataset (94.32% in total).  
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Values in the eigenvector of PC1 (Table 3.5) were all positive, ranging from 

0.1357 to 0.2697, which was not strongly dispersed. Thus, PC1 represents an additive 

combination of climate situation, here indicating the general trend of climate condition. 

In PC2 (Table 3.5), eight (almost a half) out of 19 values in the eigenvector were negative 

and most of them are associated with temperature. As for their magnitude, minimum 

temperature of coldest month (BIO6: -0.4113), temperature seasonal variation (BIO4: 

0.3824), mean temperature of coldest quarter (BIO11: -0.3480), and temperature annual 

range (BIO7: 0.2837) achieved the largest absolute values. However, precipitation-related 

variables also achieved fairly large absolute values, such as precipitation of driest month 

(BIO14: 0.3398), and precipitation of driest quarter (BIO17: 0.2731). The mean 

temperature of wettest quarter (BIO8: -0.3113) which indicated the quarterly interaction 

between temperature and precipitation also had quite high magnitude. Thus, I interpret 

that PC2 indicates a contrastive climate condition of temperature and precipitation. In 

PC3 (Table 3.5), 11 values in the eigenvector of PC3 were negative (over a half). As for 

the magnitude, four variables including temperature annual range (BIO7: 0.3796), 

temperature seasonal variation (BIO4: 0.3346), precipitation of coldest quarter (BIO19: -

0.3127), and precipitation seasonal variation (BIO15: 0.3086) achieved relatively large 

contribution. Thus, PC3 chiefly reflected the fluctuation of temperature and precipitation. 

After reducing the correlation by PCA, the first three orthogonal components can be 

interpreted in the content of ecology and respectively stand for general additive 

combination, contrasts of temperature and precipitation, and climate fluctuation. 
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Table 3.5 Factor loadings used to summarize the 19 climatic variables by using 
principle component analysis 

Abbreviation Description PC1 PC2 PC3 

BIO1 Annual Mean Temperature 0.2636 -0.1649 0.1032 

BIO2 Mean Monthly Diurnal Range 0.2503 0.0982 0.2187 

BIO3 Isothermality (BIO2/BIO7) (*100) 0.2506 -0.1616 -0.0193 

BIO4 Temperature seasonal variation 0.1357 0.3824 0.3346 

BIO5 Max Temperature of Warmest Month 0.2656 0.0156 0.2489 

BIO6 Min Temperature of Coldest Month 0.1568 -0.4113 -0.1669 

BIO7 Temperature Annual Range (BIO5-BIO6) 0.1879 0.2837 0.3796 

BIO8 Mean Temperature of Wettest Quarter 0.2029 -0.3113 0.1622 

BIO9 Mean Temperature of Driest Quarter 0.2491 0.0150 -0.0027 

BIO10 Mean Temperature of Warmest Quarter 0.2696 -0.0158 0.2166 

BIO11 Mean Temperature of Coldest Quarter 0.2045 -0.3480 -0.0727 

BIO12 Annual Precipitation 0.2581 0.1467 -0.2125 

BIO13 Precipitation of Wettest Month 0.2697 0.0230 -0.1721 

BIO14 Precipitation of Driest Month 0.1803 0.3389 -0.2779 

BIO15 Precipitation Seasonal Variation 0.2341 -0.1748 0.3086 

BIO16 Precipitation of Wettest Quarter 0.2676 0.0334 -0.1870 

BIO17 Precipitation of Driest Quarter 0.2195 0.2731 -0.2477 

BIO18 Precipitation of Warmest Quarter 0.2152 -0.1569 -0.2746 

BIO19 Precipitation of Coldest Quarter 0.2139 0.2336 -0.3127 

 

3.3.3 Tendency of the projected climate scenario 

Table 3.6 summarizes the statistics of values of mean, maximum, minimum, 

range, standard deviation, and coefficient of variation (CV) at 5-year interval from 2010 

to 2070 (n = 12). CV is a normalized measure of dispersion for a certain variable. Mean 

temperature of warmest quarter (BIO10) had the smallest dispersion (CV = 0.011) 
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followed by annual mean temperature (BIO1, CV = 0.015), while precipitation of driest 

month achieved the largest CV (0.179). Hence, general trend of temperature will not vary 

a lot, but the extreme low precipitation will have severe variation in the future. Among 

temperature related variables, minimum temperature of coldest month had the largest 

variation (CV = 0.067) which showed that extreme temperature has more variation in the 

future. Overall, most temperature related variables had the CVs less than 5, but CVs of 

precipitation related variables are almost greater than 5. This trend indicates precipitation 

would have more variation than temperatures according to the projected future climate.  

In addition, Figure 3.4 to Figure 3.10 display the tendencies of 19 bioclimatic projections 

in 5-year interval for the next 60 years (2010-2070). For example, projected annual mean 

temperature increases from 13 °C to 13.6 °C, while annual precipitation slightly 

decreased from 1000mm to 800mm associated with much fluctuation during the first 

several decades (2009-2035) (Figure 3.4). Among temperature related variables, the 

maximum temperature of the warmest month (BIO5) fluctuates around 20 °C, while the 

minimum temperature of coldest month (BIO6) is around 5 °C (Figure 3.5). The mean 

temperature of warmest quarter (BIO10) is the highest over with the mean temperature of 

driest quarter (BIO9), the mean temperature of wettest quarter (BIO8), and the mean 

temperature of coldest quarter (BIO11) (Figure 3.6). Among precipitation related 

variables, the precipitation of the wettest month (BIO13) fluctuates around 150 mm, 

while the precipitation of the driest month (BIO14) is around 16 mm. The precipitation of 

wettest quarter (BIO16) achieved the highest value of 300 mm, following with the 

precipitation of coldest quarter (BIO19, 220 mm), the warmest quarter (BIO18, 200 mm), 

and the driest quarter (BIO17, 140 mm). Figure 3.8 shows the seasonality of precipitation 
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(BIO15) is higher than the one of temperature (BIO4), indicating that precipitation has 

more variation than temperatures according to the projected future climate.   

Current climate variability is critical in model construction step, while future climate 

variability will be influential in model application. Here, I illustrated both current and 

future climate conditions in such detail aims to provide a reference for other studies 

which may use different climate scenarios. 
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Figure 3.4 Projected climate of annual mean temperature and annual precipitation 
from 2010 to 2070 

 

 

Figure 3.5 Monthly summary of maximum/minimum temperatures and precipitation 
from 2010 to 2070 
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Figure 3.6 Quarterly tendency of mean temperatures from 2010 to 2070  

 

 

Figure 3.7 Quarterly tendency of precipitation conditions from 2010 to 2070  
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Figure 3.8 Seasonal variation of temperature and precipitation from 2010 to 2070 

 

Figure 3.9 Tendency of isothermality from 2010 to 2070 
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Figure 3.10 Projected diurnal and annual ranges of temperatures from 2009 to 2010 

 

3.3.4 Species responses to the climatic variables  

GLM is the parametric statistic method, which could identify significant climatic 

variables for each species with respect to species occurrence. Three climatic combination 

variables, PC1 – PC3, from PCA were applied to construct GLM for each species (Table 

3.5). As noted above, the three orthogonal exploratory variables can respectively stand 

for general additive combination, minimum temperature, and climate fluctuation in the 

content of ecology. Response variable is species presence and absence. Table 3.7 shows 

the coefficients from GLM for each selected species. All the selected species achieved 

negative association with PC1. Loblolly pine and post oak have positive association with 

PC2 but negative association with PC3. Longleaf pine has negative coefficients with all 

three PCs. Coefficients associated with red maple and southern red oak have positive 

values on PC2 and PC3 but different magnitude. The coefficient of water oak on PC1 and 

PC3 are negative. For the six representatives of coastal trees, only the coefficient of water 

oak on PC2 is not significant from zero (α = 0.01). This indicated that the contrast 



 

78 

contrastive condition of temperature and precipitation does not have significant effect on 

the presence or absence of water oak.  

Table 3.7 Coefficients of selected species from GLM (logistic regression) 

 
Intercept  PC1 PC2 PC3 

Loblolly pine -0.817 -0.611 0.208 -0.307 

Longleaf pine -3.492 -0.527 -0.314 -0.851 

Red maple -1.365 -0.463 0.435 0.394 

Water oak -1.331 -0.718 0.015* -0.270 

Southern red oak -1.869 -0.531 0.572 0.099 

Post oak -1.965 -0.319 0.603 -0.464 

 

BIOCLIM and MaxEnt are not able to identify significant bioclimatic variables 

during the modeling procedure; however, both approaches are able to estimate species 

distribution likelihood of a species being present by niche theory. The output of both 

BIOCLIM and MaxEnt are values between 0 (low) and 1 (high), which has the same 

range of GLM. The maps of distribution likelihoods of target species are shown from 

Figure 3.11 to Figure 3.14 during the time periods of 2010-2020, 2021-2050, and 2051-

2070 based on the model results of BIOCLIM, GLM, and MaxEnt, respectively. The 

cyan boundaries indicate the historical geographical range of given species by Elbert L. 

Little, Jr. (http://esp.cr.usgs.gov/data/little/). Comparing outputs among different CEMs, 

the absolute values were quite different. For example, as for the loblolly prediction, the 

GLM results seem more aggressive than MaxEnt and BIOCLIM. The reasons for 

achieving different future distribution patterns by different CEMs come from model 

complexity and data utilization (using presence only or both presence and absence).  
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In general, predicted species probabilities from BIOCLIM are the smallest among 

the three CEM approaches from 2010 to 2070. GLM mainly obtained the largest 

predicted values. From 2010 to 2070, predicted probability of loblolly pine has an 

increasing trend in the middle region of Mississippi and Alabama (BIOCLIM), to the 

northern Arkansas (GLM), and in the southeast Alabama and southwest Georgia 

(MaxEnt). Three models all show that longleaf pine would lose or decrease its occupation 

from southern west Gulf Coastal Plain, but it still exist on the Atlantic Coastal Plain. 

There was no agreement on the future probability in the east Gulf Coastal Plain for 

longleaf pine among the three CEMs. The western area of the Mississippi River seems 

favor the future distribution of red maple (MaxEnt). However, the Mississippi Alluvial 

Plain may not favor red maple’s establishment in the future. Water oak may not change 

its current distribution in the future but would increase its occurrence probability in 

southeast Alabama and southwest Georgia (MaxEnt). Southern red oak would keep its 

distribution along the Gulf and Atlantic Coastal Plain. However, it is uncertain whether 

southern red oak would increase or keeps low occurrence probability over Arkansas 

(disagreement between GLM and MaxEnt). Post oak as an upland species would 

generally increase its occurrence probability all over the study area except for the 

Mississippi Alluvial Plain.  

3.3.5 Performance of CEMs 

Besides resubstitution method, data partitioning strategies were set up by the K-

folder of 2, 3, 4, 5, 10, and 20 to investigate the effects exist upon the size of training data 

and testing data. Multiple comparison by least square distances (LSD) showed no 

significant difference among AUC values according to data splitting strategies (Figure 
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3.17, α = 0.05, n = 57, LSD = 0.0068, p = 0.8487). In this case, the resubstitution data 

partition method was applied to train and test models for each selected SDM because 

resubsittution could fully utilize the field inventory data of this study. 

 

Figure 3.17 Boxplot of AUC values for data partitioning validation strategies 

 

Comparing predictive performances, the mean AUC from BIOCLIM, GLM, and 

MaxEnt were 0.7559, 0.8070, and 0.8386, respectively. According to the criteria of Swets 

(1988), all of the three models have achieved fair performances. The average AUC value 
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from MaxEnt was significantly higher than the values from GLM and BIOCLIM (Figure 

3.18, α = 0.05, n = 152, LSD = 0.0042, p < 0.05).  

 

Figure 3.18 Boxplot of AUC values derived from three climatic envelop models 

 

As for the difference responses of selected species, the mean AUC values of all 

the ranged from 0.7167 to 0.9034 (Figure 3.19). CEMs of slash pine had the excellent 

performance (AUC = 0.9034) (Swets 1988). CEMs of swamp tupelo (AUC = 0.8795), 

yellow poplar (AUC = 0.8455), longleaf pine (AUC = 0.8396), sweet bay (AUC = 
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0.8369), laurel oak (AUC = 0.8361), and loblolly pine (AUC = 0.8010) had the mean 

AUC values above 0.80 referring to good performances (Swets 1988). Likewise, CEMs 

of shortleaf pine, white oak (AUC = 0.7882), sweetgum (AUC = 0.7816), American holly 

(AUC = 0.7745), water oak (AUC = 0.7737), baldcypress (AUC = 0.7690), water tupelo 

(AUC = 0.7650), flowering dogwood (AUC = 0.7637), black gum (AUC = 0.7509), 

southern red oak (AUC = 0.7373), post oak (AUC = 0.7254), and red maple (AUC = 

0.7167) had the mean AUC values above 0.70 suggesting a fair performances (Swets 

1988). Overall, CEMs of all the nineteen species were validated by achieving at least fair 

predictive performances (AUC > 0.7 for all the species).  

However, the ranges of predictive performance of species responses are variable 

(Figure 3.19). For example, water tupelo (range of AUCs = 0.2084) and baldcypress 

(range of AUCs = 0.190) had relative larger ranges of AUC values among the 19 species. 

However, the ranges of AUCs for yellow poplar, loblolly pine and water oak tightened by 

0.047, 0.048, and 0.050, respectively. The larger the range of AUC values, the greater the 

variability exists among model construction due to model selection and data partitioning 

strategies. 
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Figure 3.19 Boxplot of AUC values for 19 major species 

 

3.3.6 Predictive consistency and ecological conformity in CEMs 

Multivariate regression tree (MRT) obtained 14 homogenous geographical classes 

from response variable (forest types) and explanatory variables (soil order and elevation). 

The smallest relative error is 0.264 and the cross-validated relative error is 0.513. The 

first determinant is soil type; the second determinant is elevation (Figure 3.20). Two 

critical values are 76.5 m in Ultisols and 1.5 m for other seven soil types suggesting that 
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Ultisols are mostly located on the higher elevation sites and the other seven soil types 

usually dominated the lower sites. The critical values list in Table 3.8.which partition soil 

type and elevation into 14 homogenous geographical classes. Figure 3.21 is the spatial 

display of the reclassified results under a statistical technique. 

Here is a brief interpretation of above results. Land type class 14 occupies the most area 

(18.80%) across coastal region with elevation ranging from 17.5 m to 56.5 m and soil 

type of Ultisols, which indicating a land type belonging to intermediate elevation 

associated with a red clay acidic soil (Figure 3.21). In contrast, land type class 9 occupies 

10.58% of the coastal region indicating a land type which has rich organic carbon in the 

soil (Histosol) with elevation ranging – 0.5 m to 1.5 m (Figure 3.21). In addition, 

according to the MRT diagram (Figure 3.20), FT4 (longleaf-slash pine forest type) on 

land type class 14 has the greatest frequency, while FT8 (oak-gum-cypress) on land type 

class 9 has the greatest frequency. Thus, land type class 14 represents an inner coastal 

habitat (17.5 m to 56.5 m) dominated by longleaf-slash pine forest, while land type class 

9 represents an estuarine habitat (– 0.5 m to 1.5 m) dominated by oak-gum-cypress forest 

type. Therefore, the statistical classification under MRT matches the context of 

biogeography with respect to species distribution within the study area.  
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Figure 3.20 Multivariate regression tree of forest types.  

FT = forest type; FT4 = longleaf-slash pine; FT5 = loblolly-shortleaf pine; FT6 = oak-
pine; FT7 = oak-hickory; FT8 = oak-gum-cypress; Elve = elevation; Alfs = Alfisols; Ents 
= Entisols; Hsts = Histosols; Incp = Inceptisols; Mlls = Mollisols; Spds = Spodosols; Ults 
= Ultisols; Vrts = Vertisols; Watr = Water.  
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Table 3.8 Land type classes and associated relative occupied area partitioned by soil 
type and elevation 

 Soils  Elevation (m) Area (%) 

Class 1 Incp, Mlls, Spds, Vrts, Watr >= 1.5 11.25 

Class 2 Alfs >= 39.5 5.85 

Class 3 Alfs >= 1.5 and < 39.5 11.39 

Class 4 Ents >= 32.5 5.28 

Class 5 Ents >= 10.5 and < 32.5 2.80 

Class 6 Ents >= 1.5 and < 10.5 2.70 

Class 7 Alfs, Incp, Mlls, Spds, Vrts, Watr < 1.5 6.60 

Class 8 Ents, Hsts < -0.5 0.17 

Class 9 Ents, Hsts >= -0.5 and < 1.5 10.58 

Class 10 Ults >= 91.5 4.59 

Class 11 Ults >= 76.5 and < 91.5 5.65 

Class 12 Ults < 17.5 4.24 

Class 13 Ults >= 56.5 and < 76.5 10.10 

Class 14 Ults >= 17.5 and < 56.5 18.80 

Alfs = Alfisols; Ents = Entisols; Hsts = Histosols; Incp = Inceptisols; Mlls = Mollisols; 
Spds = Spodosols; Ults = Ultisols; Vrts = Vertisols; Watr = Water. 
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Figure 3.21 Maps of response variable (forest type) and explanatory variables (soil 
order and elevation) and final map of land type by 14 classes by 
multivariate regression tree. 
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Wilcoxon-rank test based on non-parametric statistics was applied to test 

predictive consistency on each land type class with predicted results from CEMs and to 

check whether individual species keep the same order of predicted probability (SEP) 

across heterogeneous landscape across the simulation. Comparison was conducted based 

on CEM methods and land types. On each land type, three pairs of predictive consistency 

(GLM vs. BIOCLIM, MaxEnt vs. BIOCLIM, and GLM vs. MaxEnt) were checked by 

Wilcoxon signed rank test. Three pairs of CEMs achieved consistent rank on thirteen land 

type classes with respect to the predicted probabilities at the significant level of 0.05, 

except on the land type class 3 (Table 3.9). Therefore, the hypotheses cannot be rejected 

that the CEM’s estimation of predicted probability keeps the same order of SEPs across 

heterogeneous landscape. This result can be speculated that individual species will not 

change their order of establishment coefficient in such a species group on any land types 

for the subsequent simulation from 2010 to 2070 (but uncertain on land type class 3). 

Therefore, the magnitudes of predicted species establishment probabilities by CEMs are 

associated with certain land types, but independent upon the modeling approaches. In 

other words, based on the central limit theorem in statistics, predicted results from 

BIOCLIM, GLM, and MaxEnt are three samples selected from one population that 

contains all the possible predictions by the climate envelope modeling method (Araújo et 

al. 2005). Overall, this finding supports the predictive consistency of climatic envelope 

modeling methods.   
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Table 3.9 p-values of Wilcoxon signed rank tests for paired data  

 GLM vs. BIOCLIM MaxEnt vs. BIOCLIM GLM vs. MaxEnt 
Class 1 0.5949 0.4777 0.6794 
Class 2 0.4653 0.4180 0.0553 
Class 3 0.0008* 0.0263* 0.0024* 
Class 4 0.4653 0.3438 0.3321 
Class 5 1.0000 0.5383 0.7086 
Class 6 0.4653 0.4859 0.6012 
Class 7 0.4180 0.1169 0.8596 
Class 8 0.2763 0.3955 0.2579 
Class 9 0.5949 0.0979* 0.5153 
Class 10 0.1387 0.6632 0.3955 
Class 11 0.1956 0.8871 0.3525 
Class 12 0.4413 0.6701 0.4653 
Class 13 0.2579 0.9622 0.4413 
Class 14 0.9217 0.3942 0.6507 

* Significance level at 0.05; n=19 of each pair for each landtype class. 

Since CEMs have conformity feature (predictive consistency), to further test 

ecological consistency, SEPs are represented by the average values of the three CEMs for 

each species on a certain land type at each 5-year interval. Fluctuating lines represent the 

changing of SEPs with changing climate from 2010 to 2070 (e.g., Figure 3.22 and Figure 

3.23). The magnitudes of SEPs for the representative six species on land type class 9 are 

much smaller than those on land type class 14. Additionally, SEPs are all below 0.10 on 

land type Class 9 (Figure 3.22), while SEPs reached up to 0.50 on land type Class 14 

(Figure 3.23). This result corresponds to the fact that the estuarine habitat (land type class 

9) with elevation ranging from -0.5 m to 1.5 m has low establishment likelihood for those 

tree species, since most tree species cannot grow well in depressions at elevations of less 

than 30 m (100 ft) above sea level (Blum 1998, Walters and Yawney 2004). In this case, 

the CEM predictions obtained low probabilities on land type class 9 demonstrate the 
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ecological consistency. On the other hand, the inner coastal habitat (land type class 14) 

has the elevation ranging from 17.5 m to 56.5 m with soil type of Ultisols. The results 

also corresponded to the fact that most species are able to achieve higher establishment 

likelihood (SEPs) on the inner coastal habitat (land type class 14) than on the estuarine 

habitat (land type class 9) (Figure 3.22 and Figure 3.23). For example, water oak overall 

had higher SEP than other species on land type class 9 (Figure 3.22). This result 

coincided with the fact that water oak is more tolerant to the moister alluvial stream 

bottoms (Walters and Yawney 2004). Above results demonstrated that the CEM 

predictions not only captured the variation of species establishment probabilities caused 

by species intrinsic traits, but also captured the species suitability due to various 

geographical conditions. Therefore, the predicted SEPs from CEMs have shown the 

ecological consistency with respect to the species competitive features on species’ 

climate niches and bio-geographical niches.  
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3.4 Discussion and conclusion 

Vegetation patterns across a landscape are neither completely random nor 

completely predictable (Oliver and Larson 1990). Modeling relationships between 

species and environment has long been recognized in ecology (Guisan and Zimmermann 

2000). This study first applied three climate envelope modeling approaches for major tree 

species in coastal area and southeastern U.S. To deal with complex ecological data and 

discover species-environment relationships, ecologists often use statistical tests as a 

method for addressing ecological hypotheses. Numerous statistical methods have been 

used to build SDMs. However, recent methods are proving to be more accurate than older 

methods (Franklin 2009). The machine learning algorithms, such as maximum entropy 

(Elith et al 2011), perform better in prediction than other methods. However, comparing 

to mechanistic models, some CEMs are conservative, but some are liberal (Hijmans 

2006). Depending on the application of conservation or repelling invasion, users may 

have flexibility to choose the proper CEMs or use the consensual projections (Araujo 

2005).  

When predictors are only climate variables, species distribution models are often 

called climate envelope models. On the one hand, climatic variables are highly correlated 

with each other. Therefore, removing collinearity among predictors is very important for 

both model construction and application. On the other hand, local factors also influence 

species distribution and establishment. Even though three climate envelope modeling 

approaches achieved different absolute values of future species distribution probabilities, 

the three approaches were shown to achieve consistent rank of species establishment 

probabilities within each homogeneous landscape unit. In fact, CEMs in this study 
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showed highly predictive consistency and ecological conformity when using soil and 

elevation to verify the modeling results in this study. This finding is useful for apply 

CEM’s continuous output to fine spatial scale process models at landscape level. 

Due to changeable properties of SEPs over various species, heterogeneous spatial space, 

and time series, SEPs are selected as critical input parameters in forest dynamics 

modeling, especially for spatially explicit modeling with climate change scenarios (Bu et 

al. 2008, He et al. 1999, Scheller and Mladenoff 2008, Xu et al. 2012). Furthermore, 

niche-based models tend to predict a stronger level of extinction and a greater proportion 

of colonization than the process-based models (Morin and Thuiller 2009). Thus, results 

from CEMs can be used for further forest landscape modeling. If a niche-based model 

can be integrated with a process-based model, it is expected to explicitly present species 

composition changes and natural succession trajectory. At the same time, directly 

applying continuous output from CEMs rather than converting continuous output to 

binary output is a method to decrease modeling uncertainties from choosing any cut-off 

values from ambiguous threshold selection strategies (Liu 2005). 

A valid model should meet the design criteria for operational, conceptual, and 

data validity (Rykiel Jr 1996). CEMs have been evaluated by AUC and shown their 

ability in predicting future distribution of tree species in the southern United States. 

Various species achieved different level of modeling performance. However, some 

factors, such as biotic interactions, evolutionary changes, and dispersal capabilities, are 

not depicted in CEMs (Pearson and Dawson 2003). Even though the limitations are not 

inevitable, it becomes necessary to choose the most effective and reliable models. The 
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usefulness of these rules is generally assessed by examining how many of the cases are 

predicted correctly. 
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CHAPTER IV 

PREDICTING THE LIKELIHOOD OF CHINESE TALLOW TREE OCCUPANCY BY 

CLIMATE ENVELOPE MODELS IN THE SOUTHEASTERN UNITED STATES 

4.1 Introduction 

Chinese tallow (Triadica sebifera (L.) Small = Sapium sebiferum (L.). Roxb) is a 

nonnative tree species which was introduced from Japan and central China into the 

United States in the late 1700s as an oil crop and ornamental species (Bruce 1993). The 

risk of T. sebifera invasion lies in decreasing the richness of native plants and 

invertebrates and altering ecosystem productivity (Bruce et al. 1997, Cameron and 

LaPoint 1978, Cameron and Spencer 1989, McCormick 2005). Even though T. sebifera 

has been introduced and naturalized for several centuries, it continues to severely invade 

southern United States. The population of T. sebifera has increased up to fivefold within 

Louisiana, east Texas and Mississippi since the early 1990s (Oswalt 2010). 

As for the factors of the T. sebifera invasion, extreme minimum temperature 

during winter restrains tallow’s northward migration (Gan et al. 2009). However, tallow 

trees can survive cold weather conditions and it is able to adapt to lower temperatures in 

North America than within its native range (Pattison and Mack 2008, Pattison and Mack 

2009).  Distance to formerly infested areas, topographical condition, and disturbances 

also affect its spread. Thus, tallow trees are likely to be found on areas adjacent to water, 

roads, recently harvested sites, young stands, and private forestlands (Fan et al. 2012, 
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Gan et al. 2009). Under current climatic conditions, the oak-gum-cypress forest, which is 

a common forest type along flood plains of major rivers, has achieved the highest 

probability of occurrence and the highest spread rate for T. sebifera (Fan et al. 2012). 

In forecasting future invasion dynamics, Wang et al. (2011) applied logistic 

regression models and constructed an agent-based simulation framework to predict tallow 

tree expansion rates. Their results showed that average annual rates are 2.96 km/yr under 

current condition, 3.34 km/yr assuming future climate change (2°C increase in mean 

extreme minimum temperatures), and 3.19 km/yr assuming post-invasion evolutionary 

adaptation to colder temperatures. Pattison et al. (2008) employed the CLIMEX model 

(http://www.hearne.com.au/Software/CLIMEX/Editions) and projected that tallow will 

be able to expand 500 km northward from the southeastern United States by comparing 

introduced and native climatic, biological, and geographical conditions. Previous studies 

have revealed that the extreme climatic condition constrains tallow tree spread. Since 

species distribution and climate has a strong link with each other (Woodward 1987), 

wetness and climate seasonality may also have critical impacts on species phenological 

behavior; however, few studies have examined these factors in tallow invasion research.  

This study aims to construct four climate envelope models (CEMs), predict future 

occupation probability under the IPCC A1B scenario, and detect vulnerability of major 

forest types in order to reveal the potential invasion ability of Chinese tallow. Our 

objective is to answer the following questions: (1) what are the significant climatic 

factors for T. sebifera presence among a set of climatic variables? (2) What would be the 

future distribution of T. sebifera under the IPCC A1B scenario? (3) Which forest types 

would have the highest likelihood of T. sebifera invasion in the future? 
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4.2 Methods 

4.2.1 Study area  

The range of the study area in the southeastern United States is eastern Texas to 

western Florida and also includes parts of Arkansas, Georgia, Oklahoma, Tennessee, 

South Carolina, and North Carolina. Within this study area, the five major forest cover 

types are loblolly-shortleaf pine (16.60%), oak-hickory (11.77%), oak-pine (10.85%), 

oak-gum-cypress (7.72%), and longleaf-slash pine (5.86%). U.S. non-forest and lakes 

occupy 45.22% and 1.78% of this area, respectively. 805 Chinese tallow invasion plots 

were extracted from 51349 FIA inventory records since 1990s (accessed by 12/31/2012). 

Most of the tallow tree occurrence plots are located in eastern Texas, Louisiana, southern 

Mississippi and Alabama along the northern Gulf of Mexico, as well some aggregated in 

eastern Georgia and southern South Carolina along the eastern coast (Figure 4.1).  



 

105 

 

Figure 4.1 Forest types and FIA plots with T. sebifera occurrence in the southern 
United States.  

 

4.2.2 Data preparation 

Reanalyzed and projected climate data were derived from the WRF model 

(Weather Research and Forecasting Model, Version 3.2.1) which covered 100 years 

(1970-2070) (Fan et al. 2013). Reanalysis data indicated current climate condition range 

from 1970 to 2009 and projected climate data from 2010 to 2070. NASA GISS AO 

model was used for initialization of WRF. WRF’s output was validated by the North 

American Regional Climate Change Assessment Program (NARCCAP). Correlation 

analysis was performed to test the bias among WRF outputs with CRU (Climate 

Research Unit), NARR (North American Regional Reanalysis), and GISS (Goddard 

Institute for Space Studies) data. Temperature has a cold bias of about 6°C in both winter 



 

106 

and summer, while precipitation has a wet bias in winter and a dry bias in summer (Fan et 

al. 2013). More detailed information on WRF model configuration and systematic bias 

correction can be found from the final technical report of NASA project (Fan et al. 2013). 

A future climate projection from 2010 to 2070 was based on the IPCC A1B emission 

scenario. IPCC (Intergovernmental Panel on Climate Change) described A1B as a 

balanced emission scenario which was not relying too heavily on one particular energy 

source (fossil intensive or non-fossil energy) (Parry 2007). By embedding high resolution 

topography, land use type, soil, and other geographical characteristics, the projection 

from WRF representing localized climatic conditions at 10-km resolution not only retains 

large-scale information, but also adds small-scale features in spite of some biases. 

Downscaled climate data at 10-km resolution from 1970 to 2009 were used for model 

fitting and validation, while data from 2010 to 2070 for prediction (model application). 

In this study, four WRF output variables, monthly minimum temperature, 

maximum temperature, mean temperature, and monthly precipitation, were processed to 

generate 19 climatic predictors (Table 4.1) which are recommended by Hijmans and 

Graham (2006) (http://www.worldclim.org/bioclim) and U.S. Geological Survey 

(O'Donnell and Ignizio 2012) for supporting ecological application, especially for climate 

envelope modeling. There are two reasons for using these 19 climatic variables as 

predictors in CEM. First, they comprehensively represent general trend (means), 

extremes (maximum and minimum), and variations with respect to climatic conditions. 

Secondly, these climatic variables have been recognized as key constraints of 

physiological processes in determining potential distributions of most flora and fauna 

(O'Donnell and Ignizio 2012). However, the 19 climatic variables are highly correlated 

http://www.worldclim.org/bioclim
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with each other. A potential problem of collinearity will occur when regression models 

are applied to estimate parameters and identify significant predictors (Dormann et al. 

2013). Pearson’s correlation coefficients were calculated to identify highly correlated 

pairs of climatic variables before model construction. Prior to regression analysis in 

GLM, principle component analysis (PCA) was used to remove collinearity. However, 

BIOCLIM, MaxEnt, and random forest are not affected by collinearity due to their 

generic algorithm (Busby 1991, Elith et al. 2011).  
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Table 4.1 Nineteen variables in climatic envelope modeling  

Abbreviation Description Unit 

BIO1 Annual Mean Temperature °C 

BIO2 Mean Monthly Diurnal Range  °C 

BIO3 Isothermality (BIO2/BIO7) (*100) NA 

BIO4 Temperature seasonal variation  NA 

BIO5 Max Temperature of Warmest Month °C 

BIO6 Min Temperature of Coldest Month °C 

BIO7 Temperature Annual Range (BIO5-BIO6) °C 

BIO8 Mean Temperature of Wettest Quarter °C 

BIO9 Mean Temperature of Driest Quarter °C 

BIO10 Mean Temperature of Warmest Quarter °C 

BIO11 Mean Temperature of Coldest Quarter °C 

BIO12 Annual Precipitation mm 

BIO13 Precipitation of Wettest Month mm 

BIO14 Precipitation of Driest Month mm 

BIO15 Precipitation Seasonal Variation NA 

BIO16 Precipitation of Wettest Quarter mm 

BIO17 Precipitation of Driest Quarter mm 

BIO18 Precipitation of Warmest Quarter mm 

BIO19 Precipitation of Coldest Quarter mm 

 

4.2.3 Modeling procedure 

Climatic envelope modeling (CEM) technique has been widely used in species 

distribution modeling (Araújo and New 2007, Elith et al. 2006, Guisan and Thuiller 

2005). CEMs stem from niche-based modeling methods generally have three groups— 

regression, profile, and machine learning (Hijmans et al. 2012). In this study, four 

CEMs—general linear model (GLM), BIOCLIM, maximum entropy (MaxEnt), and 
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random forest—were adopted in predicting future distribution of Chinese tallow tree. 

Here, GLM performs as classic regression modeling and BIOCLIM is related to profile 

method. Moreover, MaxEnt and Random Forest are machine learning methods. These 

four modeling approaches are not only classic and well-known in species distribution 

modeling, but also have achieved relatively high performance in previous studies 

(Hijmans and Graham 2006).  

Figure 4.2 illustrates the modeling procedures of climatic envelope modeling for 

T. sebifera in this study, including model construction, model evaluation, and model 

application.  At the stage of model construction, predictand is the presence/absence of 

T.sebifera denoted by 1/0; predictors are 19 climatic variables (BIO1-BIO19) extracted 

from reanalysis climate data from 1970 to 2009. The relationships between predictand 

and predictors are generated by four climatic envelope models—GLM (Generalized 

Linear Models), BIOCLIM, MaxEnt (Maximum Entropy), and Random Forest. Future 

predictors (BIO1-BIO19) were generated by projected climate data (2010-2070) with 12 

periods by five year increment. 
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Figure 4.2 Diagram of climate envelope modeling of T. sebifera  

 

Then, future occurrence probabilities were obtained from constructed CEMs with 

five-year intervals. The area under curve (AUC) of the receiver operating characteristic 

(ROC) was adopted to evaluate model performance. Swets (1988) recommends 

interpreting range values of AUC as: excellent AUC > 0.90; good 0.80 < AUC < 0.90; 

fair 0.70 < AUC < 0.80; poor 0.60 < AUC < 0.70; fail 0.50 < AUC < 0.60. All the CEMs 

were run using the default settings. Model establishment, evaluation, and prediction were 

implemented with R software. The outputs of CEMs are probability maps. Finally, 

average occurrence probabilities of T. sebifera on forest types were calculated by the 
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zonal statistic tool in ArcGIS. We reported the results for the years of 2020, 2050, and 

2070.  

4.3 Results 

4.3.1 Variable importance in predicting T.sebifra occupation 

GLM is the parametric statistic method which could identify significant climatic 

variables for tallow tree’s occurrence. However, collinearity is intrinsic for the climatic 

variables because they are not independent. Principle component analysis (PCA) was 

applied to reduce collinearity. The first three PCs (Table 4.2) are selected for further 

analysis because they respectively captured 65.50%, 19.36%, and 9.47% of the raw 

dataset (94.32% in total). The three PCs respectively indicated general additive 

combination of temperature and precipitation (PC1), a contrastive climate condition of 

temperature and precipitation (PC2), and climate fluctuation (PC3). 
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Table 4.2 Factor loadings used to summarize the 19 climatic variables by using 
principle component analysis  

Abbreviation Description PC1 PC2 PC3 

BIO1 Annual Mean Temperature 0.2636 -0.1649 0.1032 

BIO2 Mean Monthly Diurnal Range 0.2503 0.0982 0.2187 

BIO3 Isothermality (BIO2/BIO7) (*100) 0.2506 -0.1616 -0.0193 

BIO4 Temperature seasonal variation 0.1357 0.3824 0.3346 

BIO5 Max Temperature of Warmest Month 0.2656 0.0156 0.2489 

BIO6 Min Temperature of Coldest Month 0.1568 -0.4113 -0.1669 

BIO7 Temperature Annual Range (BIO5-BIO6) 0.1879 0.2837 0.3796 

BIO8 Mean Temperature of Wettest Quarter 0.2029 -0.3113 0.1622 

BIO9 Mean Temperature of Driest Quarter 0.2491 0.0150 -0.0027 

BIO10 Mean Temperature of Warmest Quarter 0.2696 -0.0158 0.2166 

BIO11 Mean Temperature of Coldest Quarter 0.2045 -0.3480 -0.0727 

BIO12 Annual Precipitation 0.2581 0.1467 -0.2125 

BIO13 Precipitation of Wettest Month 0.2697 0.0230 -0.1721 

BIO14 Precipitation of Driest Month 0.1803 0.3389 -0.2779 

BIO15 Precipitation Seasonal Variation 0.2341 -0.1748 0.3086 

BIO16 Precipitation of Wettest Quarter 0.2676 0.0334 -0.1870 

BIO17 Precipitation of Driest Quarter 0.2195 0.2731 -0.2477 

BIO18 Precipitation of Warmest Quarter 0.2152 -0.1569 -0.2746 

BIO19 Precipitation of Coldest Quarter 0.2139 0.2336 -0.3127 

 

The response variable is tallow tree’s presence and absence (denoted as 1 and 0). 

The GLM can be written as 

 
0 1 2 31 2 3

1
plog( ) PC PC PC

p
         

  (4.1) 

where β0, β1, …, βn denotes the set of parameters to be estimated.  
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The fitted GLM with estimated parameters is:   

 
4 66 0 382 1 0 421 2 0 838 3

1
plog( ) . . PC . PC . PC

p
       

  (4.2) 

The presence/absence of tallow tree achieved negative association with PC1and 

PC2 but positive association with PC3 and all the estimates were different from zero at 

the significance level of 0.05. These outcomes indicated the occurrence of tallow tree is 

highly correlated with the general trend of addictive climatic conditions (PC1: negative), 

the contrastive climate of temperature and precipitation (PC2: negative), and climate 

fluctuation (PC3: positive). 

On the other hand, besides GLM, random forest can recognize important variables 

without considering collinearity by acting PC transformation. The variable importance 

plot is a useful output of the random forest algorithm to illustrate how important each 

variable is in classification or regression. The plot shows each variable on the y-axis, and 

their total decrease in node impurities on the x-axis. The node impurity is measured by 

the Gini index which refers to the error rate by classifying response variable into 1 

(presence) and 0 (absence). The variables from top to bottom show the importance from 

the most to the least. BIO3 [Isothermality = (mean diurnal range) / (temperature annual 

range)] shows the highest importance in Figure 4.3, which indicates the range of 

temperature plays the most critical role in tallow tree distribution. Among the other top 

ten important climate variables, BIO15 (precipitation seasonal variation), BIO14 

(precipitation of driest month), and BIO18 (precipitation of warmest quarter) are three 

precipitation related variables demonstrating that precipitation influences tallow tree 

invasion due to variable seasonality, minimum rainfall, and the relation with quarterly 
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temperature. Therefore, this result also indicates that not only commonly used 

temperature variables, but precipitation variables are also of importance in this species 

distribution.   

 

Figure 4.3 The variable importance plot by random forest 

 

4.3.2 Prediction of future T. sebifera occupation  

Projected sixty years climatic data (from 2010-2070) was classified into twelve 

periods to generate predictors (BIO1-BIO19) for every five year increment. Using 

established CEMs, we can obtain future tallow tree occurrence probabilities by each five 
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year time period. The projected spatially distributed tallow occurrence probability maps 

are presented in Figure 4.4 for the years of 2020, 2050, and 2070. Four climatic envelope 

models did not achieve identical prediction. In the prediction for three time segments 

(2010-2020, 2021-2050, and 2051-2070), GLM and BIOCLIM provided conservative 

estimations with relatively small distribution range, while random forest seems a liberal 

approach with relatively greater distribution range (Figure 4.4).
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4.3.3 Model evaluation  

The area under curve (AUC) of the receiver operating characteristic (ROC) was 

used to evaluate model performance. Figure 4.5 presents the AUC values achieved from 

the four selected CEMs—0.896 (GLM), 0.896 (BIOCLIM), 0.944 (MaxEnt), and 0.922 

(Random Forest). According to Swets (1988), the recommended criteria for model 

performance, GLM and BIOCLIM did a good job (0.80 < AUC < 0.90), while MaxEnt 

and Random Forest were excellent (AUC > 0.90) with respect to selected CEMs in 

predicting T. sebifera distribution.  

Four CEMs have all satisfied AUC values indicating their good or excellent 

model performance. However, this result may be too good to make a model over fitted 

because of data utility in modeling. Then, k-fold data partitioning strategy was used to 

subtract a portion of raw data for data (1/n of the original data), applied the rest of the 

data to rain CEMs, and finally used the subtracted set to test the constructed model. I 

chose the fold number k = 2, 3, 4 5, 10, 15, and 20. The reanalyzed AUC values are not 

significant among k-folder evaluation and resubstitution strategy with BIOCLIM and 

random forest. However, average AUC from k-folder is higher than the AUC from 

resubstitution with GLM, while lower than the AUC from resubstitution with MaxEnt. 

This result implies that different data utility methods will influence model performance. 

In other words, data partitioning methods are sensitive to particular CEMs. In this study, 

BIOCLIM and random forest are insensitive to data utility rather than GLM and MaxEnt.  



 

118 

 

Figure 4.5 Model evaluation by AUC  

(Area under the Receiver Operator Curve) 

 

Figure 4.6 K-fold evaluation of constructing climate envelope models for T. sebifera 
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4.3.4 Occurrence probability associated with forest type 

The projected occurrence probabilities of T. sebifera in each time period were 

extracted by zonal statistics in ArcMap according to forest types. Figure 4.7 shows the 

average invasion probability with respect to four modeling methods. The longleaf-slash 

pine forests achieved the highest invasion probabilities of 10.57%, 12.88%, and 11.61% 

by the year of 2020, 2050, and 2070 followed with oak-gum-cypress having invasion 

probabilities of 9.88%, 8,94%, and 7.65%, respectively. The lowest likelihood was shown 

on Oak-hickory forest types of 2.14%, 1.94%, and 1.64% by the year of 2020, 2050, and 

2070, respectively. Comparing the three future time periods, across all the forest types in 

the year of 2050, the projected probabilities of tallow tree occurrence were higher than 

the other two earlier and later time periods (2020 and 2070); however, the ranks of 

invasion ability on forest types did not change over time. As for the predicted tendency of 

tallow occupation over time, the year of 2050 achieved the highest projected tallow 

occurrence estimation over the other two periods, 2020 and 2070. The fluctuation of 

predicted probabilities resulted from projected climate. IPCC A1B climate scenario used 

in this study is a balanced emission scenario which counterpoises the development of 

economy and environmental factors. Consequently, from 2020 to 2050, we can see an 

increasing trend which then declines by the year of 2070 (Figure 4.7). Overall, longleaf-

slash pine will have the highest invasion risk in the next 60 years, followed by the forest 

types of oak-gum-cypress, loblolly-shortleaf pine, and oak-pine. However, oak-hickory 

forests have relative low risks for Chinese tallow tree invasion.  
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Figure 4.7 T. sebifera projected occurrence probability by forest type in the southern 
United States in 2020, 2050, and 2070 

 

4.4 Discussion  

The issue of species responses to key environmental parameters is a fundamental 

concept in ecology. Geographical, ecological, economical, and even anthropological 

factors have powerful impacts on species responses. At the regional scale, climate is 

definitely the major driving factor (Woodward 1987). Previous research implies that the 

winter minimum extreme temperature plays an important role in inhibiting tallow 

invasion (Gan et al. 2009, Pattison and Mack 2008). This project also turns to a similar 

result in temperature variables. Additionally, general trends of temperature (i.e., 

magnitude, range, and variation of constructed temperature variables) significantly 

influenced the prediction of the species’ presence/absence. Because few previous studies 

revealed the relationship between Chinese tallow tree occurrence and precipitation 
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besides temperature, this study further explored water conditions and suggested that most 

of the rainfall related variables are significant, indicating that the habitat condition of 

tallow is highly dependent on hydric conditions.  

The results in this study showed that T. sebifera has a larger potential invasion 

capability in longleaf-slash pine and oak-gum-cypress forests than other forest types in 

the future. Similarly, previous studies revealed that the oak-gum-cypress forest type has 

the highest probability of occurrence and spreading rate for T. sebifera (Fan et al. 2012), 

and artificially regenerated forest stands have relatively low risk of tallow invasion (Gan 

et al. 2009). Our results are coincident with them. In fact, both forest types facilitate T. 

sebifera invasion revealed two dispersal mechanisms by birds and water (Renne et al. 

2002, Siemann and Rogers 2003). Longleaf-slash pine forests have a diverse variety of 

flora and fauna communities and support high species richness. Both longleaf pine and 

slash pine can reach up to 30-35 m (98-115 ft) tall. On the one hand, high biodiversity of 

longleaf pine ecosystems supports a large amount of birds; on the other hand, those birds 

nest on tall trees facilitating seeds spreading of Chinese tallow tree. In addition, the seeds 

has long dormant period and can survive longer in high salinity flooded area of the oak-

gum-cypress forests which dominate river floodplains in the southern region of the 

United States (Cameron et al. 2000, Conner 1994).  

The hydric condition favors T. sebifera establishment and growth. Under climate 

change, it can be speculated that tallow trees will favor the sites with increasing 

precipitation. In addition, longleaf-slash pine forest has been declining and intensively 

disturbed since pre-European settlement. During the processes of timber harvesting, 

tallow tree seeds could be transported by logging machines (Cameron et al. 2000). Thus, 
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the results indirectly supported the mechanism of T. sebifera spread. The results also 

indicated that oak-hickory forests have the least risks for Chinese tallow tree invasion. It 

could be speculated that oak-hickory covering poorly or unmanaged stands has not been 

intensively invaded by T. sebifera in the southern United States.  

Despite the significant relationship between T. sebifera distribution and climate 

variables, climate-based models still have generic limitations in that these models rarely 

consider biotic factors, such as competition, predation, parasitism, mutualism, and 

facilitation (Pearson and Dawson 2003). Other studies have supplemented the limitation 

of CEMs by investigating population genetics (Dewalt et al. 2006), leaf decay and 

nutrient release (Cameron and Spencer 1989, Conner 1994), shoot proliferation (Siril and 

Dhar 1997), seed dispersal mechanisms (Renne et al. 2000), and biological treats of T. 

sebifera (i.e., shade tolerance and salinity tolerance) (Carrillo et al. 2014, Jones and 

McLeod 1989, Paudel and Battaglia 2013). Future studies of tallow tree invasion ability 

are expected to integrate climate envelope modeling with other analysis and simulation 

techniques, such as growth and yield model and forest dynamic models, to achieve a 

comprehensive understanding of T. sebifera invasion mechanisms and impacts.  

4.5 Conclusion 

Both GLM and random forest identified that both temperature and precipitation 

would have great impact on the distribution of tallow tree. GLM indicated the occurrence 

of tallow tree is negatively correlated with the general trend of addictive climatic 

conditions and the contrastive condition of temperature and precipitation, but positively 

correlated with climate fluctuation. The result from random forest indicated that BIO3 

[Isothermality = (mean diurnal range) / (temperature annual range)] had the highest 
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importance to the tallow tree occurrence. Among the other top ten important climate 

variables, BIO15 (precipitation seasonal variation), BIO14 (precipitation of driest 

month), and BIO18 (precipitation of warmest quarter) are three precipitation related 

variables demonstrating that precipitation influences tallow tree invasion due to variable 

seasonality, minimum rainfall, and the relation with quarterly temperature.  

Selected climatic envelope modeling approaches (GLM, BIOCLIM, MaxEnt, and 

Random Forest) all performed well in predicting tallow tree distribution. The 

performance of MaxEnt and Random Forest are slightly better than GLM and BIOCLIM.  

As for the over-fitting issue, model performance with BIOCLIM and random forest was 

not significantly different among k-fold evaluated AUCs from resubstitution strategy. 

Thus, BIOCLIM and random forest are insensitive to data utility. However, average AUC 

from k-fold is higher than the AUC from resubstitution with GLM, while lower than the 

AUC from resubstitution with MaxEnt.  

However, predicted magnitudes of future occurrence probabilities are quite 

different from various models. According to the averaged result from the four climatic 

envelope models, longleaf-slash pine has the highest risk of invasion probability, while 

oak-hickory forests have the least risks for Chinese tallow tree invasion. Future study of 

tallow tree invasion ability, hopefully, should integrate climate envelope modeling with 

other analysis and simulation techniques.  
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CHAPTER V 

FOREST SUCCESSION TRAJECTORIES UNDER A CHANGING CLIMATE, 

NATURAL DISTURBANCES, AND HARVEST ALTERNATIVES ALONG  

THE NORTHERN GULF OF MEXICO 

5.1 Introduction 

Forests in the northern Gulf of Mexico region are the most productive for timber 

and wood products in the United States (Harcombe et al. 1992). Among nearly 85.8 

million hectares of forests in the 13 southern states stretching from Virginia to Texas, 

half of southeastern U.S. forest production comes from the five Gulf States (Texas, 

Louisiana, Mississippi, Alabama, and Florida) (Twilley 2001). Loblolly (Pinus taeda, L) 

and shortleaf (Pinus echinata, Mill) pines are cultivated most commonly in the uplands, 

while slash pine (Pinus elliottii, Engelm) and longleaf pine (Pinus palustris, Mill) are 

planted on the lower coastal plain (Twilley 2001). The productive mixed-hardwood 

forests are mostly along the floodplains of the region’s rivers and streams (King and 

Keeland 1999).  

In addition to geographical factors, climate is a primary influence on the growth 

and expansion of coastal forests. The northern Gulf of Mexico has mild winters and hot 

summers indicating a humid sub-tropical and humid temperate climate that supports 

coastal grasslands, coastal marshes and swamps, pine forests, and mixed pine-hardwood 

forests (Barrow et al. 2005, Twilley 2001). Similar to other regions of the world, over the 
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past 100 years, the northern Gulf of Mexico region has experienced variability in 

temperature, precipitation, and increasing extreme climate events. Historical records 

revealed that hurricanes with high wind speeds (i.e. greater than 50 meters per second) 

have increased 2.5 times for the North Atlantic and fivefold in the Caribbean region from 

1995 to 2000 than the period from 1971 to 1994 (Bove et al. 1998, Goldenberg et al. 

2001). As predicted by climate models, the Gulf of Mexico coastal regions will 

experience higher temperatures and slightly less rainfall, but predictions of precipitation 

patterns vary regionally (Twilley 2001). Tropical cyclones (i.e. hurricanes) are the most 

severe disturbance in the coastal region. Hurricanes often bring heavy rainfall, storm 

surges, and high winds, simultaneously causing extensive damage in forests that includes 

swaying, twisting, shearing, and blowing down trees. Two recent examples include the 

2005 hurricanes Katrina and Rita, which combined to damage 2.23 million ha of timber 

land stretching from Texas to Alabama (Stanturf et al. 2007).  

Wildfire is another common disturbance in southern forests. Before Euro-

American settlement, fire was ubiquitous across the southeastern United States and had a 

return interval of less than 13 years in the Coastal Plain across all forest types (Frost 

1998). Wildfire maintained several southern ecosystems, most notably longleaf pine 

forests (Brown and Smith 2000, Outcalt and Brockway 2010). To some extent, fire risk is 

usually increased after severe hurricanes because of debris accumulation (Myers and van 

Lear 1998); therefore, investigating hurricane-fire interactions in coastal forests along the 

Gulf of Mexico coastal region could facilitate the long-term restoration in areas impacted 

by hurricanes (Myers and van Lear 1998). Besides hurricanes and fires, coastal forests in 

the northern Gulf face loss and degradation because of other natural and human-driven 
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disturbances, such as sea-level rise, the spread of non-native species, urban sprawl, 

agriculture, livestock grazing, and lack of management activities (Barrow et al. 2005).  

Forest ownership in the southern United States is diverse. As of 85.8 million hectares 

forestland, 11% is owned by federal, state, and local government as public forestland, 

while almost 89% the South’s forestland is privately owned (Wear and Greis 2002). 

There are 4.3 million family forest owners who own about 51.6 million hectares of the 

forestland in the southern United States. Two-thirds of the private forest land is owned by 

families or individuals, and the remaining one-third is owned by industry. It has been 

reported that 18% non-industrial private forest (NIPF) landowners who owned 42% of 

the family forestland had harvest experience in the past 5 years; however, only 3% of the 

owners have a written management plan and only16% have sought management advice 

(Butler and Leatherberry 2004). On the one hand, different ownership entities could have 

contrasting forest management objectives. On the other hand, the behavior of non-

industrial private forest (NIPF) landowners would have critical impact on the future of 

southern forests. Previous studies focused on benefits from the social-economic 

prospective (Conway et al. 2003, Sun et al. 2008, Vokoun et al. 2006), but few studies 

pay attention to the impacts of forest management alternatives on ecological processes, 

such as forest composition and structure change. To date, southern forests along the 

northern Gulf of Mexico will face an uncertain future since a changing climate, multiple 

disturbances, and potential human management activities will impact forest dynamics 

over time (Wear and Greis 2012, Wear et al. 2009). Therefore, a comprehensive study on 

predicting forest dynamics is needed by incorporating climate change, natural 
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disturbances, and human activities in the South, especially along the northern Gulf of 

Mexico region, in order to reduce the risks by maintaining the southern forests.  

In order to comprehensively predict the future of southern forests, macro-scale 

modeling approach is required because traditional field experiments are incapable of 

capturing ecological processes and spatial interaction at landscape or a regional scale. At 

a regional scale, climate envelope models (CEMs) and landscape models related to the 

effects of forest fire on vegetation dynamics have been widely investigated (Keane et al. 

2004, Thonicke and Cramer 2006, Yang et al. 2008). Climate envelope models (CEMs), a 

class of statistical-based ecological models that assume the range of a species is 

constrained by limiting climatic factors, are widely applied in forecasting species range 

shifts under future climate change scenarios (Araújo and Luoto 2007, Elith et al. 2006, 

Heikkinen et al. 2006, Hijmans and Graham 2006, Thuiller 2003). Landscape simulation 

models taking disturbance and management factors into account have applied spatially 

explicit models to simulate long-term forest succession trajectories, such as forest 

landscape models (FLMs) (He 2008, Scheller and Mladenoff 2007, Seidl et al. 2011). 

CEMs are niche-based models that rely on statistical-based probability theories, while 

FLMs are process-based models that incorporate local-scale processes (i.e., growth, 

mortality, competition, etc.) to spatial processes at landscape in forest landscapes (i.e., 

seed dispersal, disturbances, and management alternatives). Both niche- and process-

based models play an important role in emulating ecological processes at regional scales 

even though CEMs and FLMs may be subject to high uncertainties (McMahon et al. 

2011). Coupling CEMs with FHMs may provide a new approach to better simulate 
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ecological processes under climate change, disturbances, and management alternatives by 

involving both statistical algorithms and eco-physiographical processes.  

This study aims to emulate future forest dynamics along the northern Gulf of 

Mexico and analyze potential impacts under climate change, natural disturbances, and 

three management alternatives by integrating a regional scale climate-driven niche-based 

climate envelope model with a forest landscape model (LANDIS 6.0). The primary 

objective of this study is to evaluate the effects of ownership-based management 

alternatives under a changing climate and natural disturbances scenario on forest 

composition and species age structure in both entire coastal region and non-industrial 

forest land. This study would assist forest managers and landowners with making 

management decisions from the ecological perspective.  

5.2 Methods 

5.2.1 Study area 

The study area is located in the Gulf Coastal Plain of eastern Texas, Louisiana, 

Mississippi, Alabama, and western Florida (Figure 5.1). Bailey (2009) described this 

region as the outer coastal plain mixed province. The climate of this region is moderate 

with average annual temperatures ranging from 15.6 to 21.1°C and precipitation ranging 

from 1,020 to 1,530 mm annually. The land form is gently sloping. Temperate evergreen 

forests are typical with five forest type groups approximately dominating 60% of the total 

land area (Figure 5.2): longleaf-slash pine (19.5%) chiefly comprises longleaf pine and 

slash pine and commonly associates with oak, hickory, and gum; loblolly-shortleaf pine 

(16.4%) mainly consists of loblolly pine and shortleaf pine but also contains a number of 

hardwoods, such as oaks, sweetgum, and hickories; oak-pine (5.7%) covers the mixture 

http://www.iciba.com/Louisiana/
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of oaks and pines with associates of gum, hickory, and yellow-poplar; oak-hickory 

(2.2%) comprises upland oaks or hickory, singly or in combination, with common 

associates including yellow-poplar, elm, maple, and black walnut; and oak-gum-cypress 

(13.4%) refers to bottomland forests mostly including tupelo, blackgum, sweetgum, oaks, 

or southern cypress with common associates of cottonwood, willow, ash, elm, hackberry, 

and maple (Oswalt et al. 2009). The ownership of the region’s forestland includes public 

land (16.9%), corporate private land (40.2%), and non-industrial private land (42.9%, 

hereafter “NIPF”) (Figure 5.3).These forests are underlain by eight soil types including 

Alfisols (Alfs: 18.96%), Entisols (Ents: 16.3%), Histosols (Hsts: 8.01%), Inceptisols 

(Incp: 5.96%), Mollisols (Mlls: 1.37%), Spodosols (Spds: 1.12%), Ultisols (Ults: 

44.43%), and Vertisols (Vrts: 3.83) (Figure 5.4). Elevation ranges from –4.2 meters to 

168.8 meters across the study area.  
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Figure 5.1 The study area of the Outer East Gulf Coastal Plain along the northern Gulf 
of Mexico for LANDIS simulation  
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Figure 5.2 Forest cover type of the study area—Outer East Gulf Coastal Plain along 
the northern Gulf of Mexico  

Data source: http://www.fia.fs.fed.us/library/maps.  

http://www.fia.fs.fed.us/library/maps
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Figure 5.3 Ownership of the study area—Outer East Gulf Coastal Plain along the 
northern Gulf of Mexico  

Data source: http://www.fs.usda.gov/rds/archive/Product/RDS-2014-0002.  

 

 

http://www.fs.usda.gov/rds/archive/Product/RDS-2014-0002
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Figure 5.4 Soil order of the study area—Outer East Gulf Coastal Plain along the 
northern Gulf of Mexico  

Data source: U.S. General Soil Map (STATSGO) Data,  
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.  

5.2.2 Data  

A variety of data were compiled to generate climate envelope models (CEMs) and 

parameterize the LANDIS model. The climatic predictors for fitting CEMs are 

downscaled climate data derived from Weather Research and Forecasting (WRF) model 

(Version 3.2.1), which include current reanalyzed data (1970 - 2009) and projected 

climate output (2010 - 2070) (see chapter III for detail). For LANDIS simulations, major 

tree species were selected from the Forest Inventory and Analysis (FIA) database (USFS 

et al. 2012) based on their importance values, which reflected three aspects of a given 

http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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species occurrence status—frequency, density, and dominance. Forest type, soils, and a 

digital elevation model were used to partition land type classes. Federal wildland fire 

occurrence data (http://wildfire.cr.usgs.gov/firehistory/data.htm) and severe weather 

database (http://www.spc.noaa.gov/wcm/#20yavg) were compiled for parameterizing 

disturbance regimes in LANDIS 6.0. Public and private forest ownership data 

(http://www.fs.usda.gov/rds/archive/Product/RDS-2014-0002) were used to set harvest 

units. A list of data sources associated with LANDIS parameterization can be found in 

Table 5.1. 
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Table 5.1 List of data sources for LANDIS simulations of Northern Gulf forest 
dynamics  

Data name Data type Descriptions Data source 

Bailey's Ecoregion Shapefile Providing a boundary of functional 

ecosystems across the U.S. 

http://nationalatlas.gov 

Forest Inventory and 

Analysis National Program 

Tables Providing plot and tree level data, 

including x-y coordinates, species, tree 

size, and site condition, etc. 

http://apps.fs.fed.us/fiadb-

downloads/ 

Forest Type Raster 25 forest type classes throughout the U.S. 

at 1 km resolution 

http://www.fia.fs.fed.us/librar

y/maps/ 

U.S. General Soil Map 

(STATSGO) Data 

Shapefile and 

Tables 

Providing  the proportionate extent of the 

component soils and their properties; map 

scale 1:250,000 

http://websoilsurvey.sc.egov.

usda.gov/App/WebSoilSurve

y.aspx 

Digital Elevation Model Raster USGS seamless National Elevation 

Dataset at 30 meters resolution 

http://ned.usgs.gov  

Federal Wildland Fire 

Occurrence Data 

 

Tables with x-y 

coordinates 

Providing wildland fire occurrence data http://wildfire.cr.usgs.gov/fire

history/data.html 

 

Severe Weather Database Table with x-y 

coordinates 

Providing tornado, hail, and wind database 

format specification by NOAA’s National 

Weather Service 

http://www.spc.noaa.gov/wc

m/#20yavg 

 

Public and private forest 

ownership 

Raster Spatial distribution of forest ownership 

types in the conterminous United States 

circa 2009. 

http://www.fs.usda.gov/rds/ar

chive/Product/RDS-2014-

0002 

 

http://ned.usgs.gov/
http://wildfire.cr.usgs.gov/firehistory/data.html
http://wildfire.cr.usgs.gov/firehistory/data.html
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5.2.3 The LANDIS model  

The LANDIS model is a spatially explicit landscape model that simulates 

ecological interactions at long temporal (10-103 years) and large spatial scales (103-107 

ha). LANDIS was designed to simulate forest dynamics under multiple natural (fire, 

wind, and pest) and anthropogenic disturbances (harvest and fuel treatment) (He and 

Mladenoff, 1999). The model implementation is based on raster cells, with vegetation 

information stored as attributes for each pixel. The cell size can be from 10 to 500 m 

depending on input data availability and simulation requirements. In this study, each 

pixel (the smallest simulation unit) represents a 25 ha (500 m × 500 m) area.  

Figure 5.5 displays the conceptual design of LANDIS model. Major processes embedded 

in LANDIS include: (a) successional dynamics, (b) species-site quality interactions, and 

(c) disturbance and management (He et al. 1999). Succession occurs within a cell based 

on species life history attributes (Table 5.2). Species-site interactions refer to the species 

establishment ability in a particular cell, which depends on species establishment 

probability (SEP) on a certain land type. SEPs generally indicate species establishment 

condition associated with geophysical characteristics. Harvesting activities interact with 

species age cohort representing various management alternatives. Fire and wind modules 

could be setup to complement the simulation of forest dynamics under natural 

disturbances (http://landis.missouri.edu/landis60).  
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Figure 5.5 The conceptual design of the LANDIS model 

Modified from http://landis.missouri.edu/index.php 

5.2.3.1 Biological traits of dominant tree species 

Competition among native tree species plays an important role in LANDIS (He 

and Mladenoff 1999, He et al. 1999). Nineteen dominant tree species, which account for 

80% of the accumulative percentage of important values out of 138 FIA recorded tree 

species along the northern Gulf of Mexico, were included in this study (Table 5.2). 

LANDIS applies these inputs to perform stand cell level simulation. In each stand, 

succession is a competitive process driven by traits of given species. For example, when 

seeds successfully reach a site, the rank of shade tolerance determines seedling 

establishment. Early successional species usually obtain low shade tolerance grades; late 

successional species are assigned relative larger numbers as the rank of shade tolerance. 

Besides shade tolerance, LANDIS also accounted for longevity, fire tolerance class, and 

seeding distance throughout the simulation. Parameters of biological traits for each 
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species were derived from published species data (Iverson et al. 1999) and expert 

opinion.  

Species establishment probability (SEP, a value ranging from 0 to 1) refers to the 

likelihood of species establishment after seeds arrive at a site (He et al. 1999). LANDIS 

defines SEPs for each species by land type classes based on environmental constraints. 

Users can define changeable SEPs iteration by iteration across simulation periods. SEPs 

generally reflect species’ generic responses to geographical conditions and climatic 

variation. In this study, SEPs for each of the nineteen dominant tree species were derived 

from climate envelope models (CEMs) from 2010 to 2070.  

In the LANDIS harvesting module, commercial species can be harvested based on 

management alternatives. Non-commercial species are not harvested, but would be 

clearcut in managing area or removed by any disturbances during their natural succession 

process. Twelve out of the nineteen dominant tree species were considered commercial 

species (Table 5.2) based on the assessment reports of timber product output and use for 

the South’s timber industry (Bentley 2003, Johnson et al. 2006, Johnson et al. 2008, 

Johnson et al. 2009, Johnson et al. 2011).   
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5.2.3.2 Landscape initialization  

There are two important landscape initialization input maps for LANDIS 6.0, land 

type map and species composition. Land type map is a raster GIS file which was derived 

by multivariate regression tree based on the relationship between vegetation cover type 

and geographical conditions (soil type and DEM). In this study, land type map (Figure 

5.6) consists of fourteen classes (Table 5.3) indicating heterogeneous geographical units 

across the northern Gulf of Mexico. Species establishment probabilities (SEPs) are 

assumed to be dependent on land type classes. Furthermore, SEPs are assumed to interact 

with a changing climate. Thus, SEPs for each individual species are variable among land 

type classes and five-year iterations across the 60-year simulation from 2010 to 2070. 

The species composition map is also a raster GIS file generated from the forest type 

groups. This GIS file includes five forest types (loblolly/shortleaf pine, longleaf/slash 

pine, oak/gum/cypress, oak/hickory, and oak/pine), and non-forest land (Figure 5.2). It is 

assumed that each simulated species has a different initial age which was extracted from 

the forest inventory data in the beginning. The two maps were related to two tabular files, 

respectively. One is the species establishment probability (i.e., ecoregion.dat linked to 

land type class map); the other is the initial species age cohort of first iteration for 

LANDIS simulation (i.e., MapAttribute.dat linked to species composition map).  
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Figure 5.6 Land type map for LANDIS simulation  

 

Table 5.3 Threshold values of soil type and elevation of fourteen land type classes 

 Soils  Elevation (m) Area (%) 

Class 1 Incp, Mlls, Spds, Vrts, Watr >= 1.5 11.25 

Class 2 Alfs >= 39.5 5.85 

Class 3 Alfs >= 1.5 and < 39.5 11.39 

Class 4 Ents >= 32.5 5.28 

Class 5 Ents >= 10.5 and < 32.5 2.80 

Class 6 Ents >= 1.5 and < 10.5 2.70 

Class 7 Alfs, Incp, Mlls, Spds, Vrts, Watr < 1.5 6.60 

Class 8 Ents, Hsts < -0.5 0.17 

Class 9 Ents, Hsts >= -0.5 and < 1.5 10.58 

Class 10 Ults >= 91.5 4.59 

Class 11 Ults >= 76.5 and < 91.5 5.65 

Class 12 Ults < 17.5 4.24 

Class 13 Ults >= 56.5 and < 76.5 10.10 

Class 14 Ults >= 17.5 and < 56.5 18.80 

 

5.2.3.3 Wind and fire modules parameterization  

Considering a relative short simulation period (60 years), only tornadoes are 

included in wind module parameterization due to data availability. About 2230 tornadoes 
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were recorded from 1950 to 2013 as derived from the NOAA severe weather database. 

Wind disturbance area was calculated as the product of length and width for each 

tornado. The minimum, maximum, and mean wind disturbance sizes are 73.6 m2, 6.9×107 

m2, and 8.4×105 m2; these three parameters are required by the wind module in LANDIS 

6.0.  

The fire module in LANDIS requires fire return interval, mean fire size, and fire 

ignition density parameters estimated from Federal Wildland Fire Occurrence Data 

(http://wildfire.cr.usgs.gov/firehistory/data.html). After model initialization and 

calibration, the simulated mean fire return interval was 20 years, mean fire size was 88.5 

ha, and fire ignition density is 0.64 per hectare.  

5.2.3.4 Harvest module parameterization  

The harvest module requires two additional maps to operate the main LANDIS 

succession program: a management area map and a stand map. Both maps are in GIS 

raster format. The management area map refers to management units on which same 

forest management plan is implemented. In this study, the forest type map and the 

ownership map were combined to generate the management area map resulting in 15 

management units. Each management unit was assigned a set of parameters including 

spatial location, harvest period, target proportion for harvesting, and species removal age 

cohort (Table 5.4). In addition, each management unit consists of multiple forest stands. 

Each forest stand represents a homogenous element with identical species composition, 

species age cohort, and site condition within a certain management unit for harvest 

activities. Management unit was partitioned by the 14 land types resulting 194 virtual 

stands. Hence, stands are the treatment units on which user-specified harvest events can 

http://wildfire.cr.usgs.gov/firehistory/data.html
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occur based on predefined percentage of each management area and ranking criteria at a 

given time interval. In this study, management areas are assumed to maximum harvest 

0.1 on public forest land, 0.4 on NIPF forest land, and 0.5 on industrial forest land if 

stands reach a certain criteria. Harvest event is selected as periodic-entry and stand-

filling, which means that harvest and planting are repeated. In other words, seedlings start 

to establish right after the removal of mature species cohorts. The harvest module also 

requires additional parameters in text files describing harvest events in detail which are 

related to the two spatial maps. 
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Table 5.4 An example of harvest parameter setting on public land (Regime 1). 

Parameters Description 
11 Management area ID 
1 Initial years 

100 Final years 
0.1 Target-proportion 

Target species Harvest Age Species list 
1 35-55 shortleaf pine* 
1 45-65 slash pine* 
1 45-65 longleaf pine* 
1 35-55 loblolly pine* 
0 0 baldcypress 
0 0 red maple 
0 0 flowering dogwood 
0 0 American holly 
0 40-60 sweetgum* 
1 80 yellow-poplar* 
0 0 sweetbay 
0 0 water tupelo 
0 40-60 blackgum* 
0 0 swamp tupelo 
1 60-80 white oak* 
1 60-80 southern red oak* 
1 60-80 laurel oak* 
1 60-80 water oak* 
1 60-80 post oak* 

Management area ID is the identifier of 15 management units; target-proportion indicates 
the removal area relative to a certain management unit (public = 0.1, NIPF = 0.4, and 
industrial land = 0.5); target species refers to harvest removal species occurring on 
commercial species only.   

5.2.4 Experimental design and analysis 

Beyond natural succession, three primary factors affect species abundance—

climate change, natural disturbances, and ownership-based harvesting (Scheller and 

Mladenoff 2005, Schumacher and Bugmann 2006). To illustrate the climate change 

effect, the average predicted distribution probabilities from three CEMs (BIOCLIM, 

GLM, and MaxEnt) were set up as SEPs for each five-year period from 2010 to2070. 
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Natural disturbances were parameterized based on a long term database (fire data were 

recorded from 1980 to 2012; wind data were recorded from 1950 to 2012) and remain 

unchanged across the 60-year simulation. In this case, except for natural succession 

processes, ownership-based harvesting management alternatives merely drive the 

pathway of forest dynamics in the 60-year simulation. Simulation starts from the year of 

1970. However, the run of 1970-2010 is for LANDIS self-calibration during which each 

management regime experiences a harvest rotation from 1970 to 2010. Each of the three 

management alternatives ran five times (replicates).  

Three harvest regimes are shown in Table 5.5. Several assumptions were made to design 

ownership-based harvest alternatives. The first assumption is that NIPF forest land has 

the longest rotation interval because NIPF owners have the least aspiration to manage 

their forest land due to variable preferences of owning forest land (Butler and 

Leatherberry 2004). In contrast, industrial owners have the highest expectation making 

profit from forest products so that industrial forest land has the shortest rotation interval. 

Second, all the three ownership entities (public, NIPF, and industrial) would manage 

forests corresponding to the current forest cover type without converting to other forest 

types. Hence, the same tree species will be planted after harvesting in the simulation. 

Lastly, harvest events only focus on commercial species and young age cohorts are 

immediately restored after their removing in the next iteration with the five year interval.  

LANDIS simulation was performed from 2010 to 2070 spanning 60 years with 20 

iterations by a five year time step. Each of the three scenarios ran five times as replicates. 

The effects of climate change, natural disturbances, and management alternatives on 

species dominance were analyzed at two levels (entire region and NIPF land only) and 
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were expressed by one response variable (species abundance: percentage of species 

occupation across the landscape) showing two aspects on forest dynamics (species 

composition and age structure). Six representative species out of nineteen major species 

in simulation were extracted for further analysis. These six species include loblolly pine 

(Pinus taeda, L), longleaf pine (Pinus palustris, Mill), water oak (Quercus nigra, L), 

southern red oak (Quercus falcata, Michx), post oak (Quercus stellata, Wangenh), and 

red maple (Acer rubrum, L). The two pines represent commercially and ecologically 

important species (Oswalt et al. 2012, Outcalt and Sheffield 1996, Samuelson et al. 2012, 

Schultz 1997). The three oaks represent the gradient of water availability associated with 

various land types from xeric condition to mesic condition (Collins and Battaglia 2008, 

Fei et al. 2011, Quarterman and Keever 1962). Red maple represents ecologically plastic 

species which is a non-commercial species but a significant component in late 

successional forests throughout the eastern North America (Abrams 1998, Lorimer 1984). 

Forest age structure refers to age cohorts of each species simply represented by 

establishment (<10 years), early-stage (11-30 years), mid-stage (31-60 years), and late-

stage (> 60 years). Analysis of variance (ANOVA) was used to test whether harvest 

alternatives have significant effects on future species composition and age structures at 

NIPF and regional levels, respectively.  
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5.3 Results 

5.3.1 CEM quantified climate change effects on species establishment 
probability 

The temporal trends of SEPs derived from climate envelope models indicate 

climate change effects on species establishment capacity. Initially, the mean SEPs of 

loblolly pine, longleaf pine, red maple, southern red oak, and water oak were 0.3816, 

0.1961, 0.2711, 0.2783, and 0.3695, respectively. The mean SEPs of five out of six 

representative species (loblolly pine, longleaf pine, red maple, southern red oak, and 

water oak) decline through the 60-year simulation (2010-2070). By 2070, the mean SEPs 

decline to 0.1953 (loblolly pine), 0.0647 (longleaf pine), 0.1030 (red maple), 0.1885 

(southern red oak), and 0.2673 (water oak). Overall, the five species achieved a 

decreasing trend of the mean SEPs across the landscape. 

The mean SEPs of loblolly pine, longleaf pine, and water oak, decrease from 2010 

to 2020 (Figure 5.7). Their SEPs are predicted to increase after 2020, but the magnitudes 

never return to the initial level. Mean SEPs of red maple and southern red oak are 

predicted to increase in the first five years, but sharply decrease in the subsequent 

periods. Mean SEPs of post oak do not show an obvious increase or decrease trend 

predicted over the simulation period, which decreases at first and then recovers at the 

end. Decreasing SEPs indicate the less likelihood chance of species which would 

establish in the region. Thus, climate change scenario indicates a negative effect on the 

ecological processes with respect to species dispersal and germination for LANDIS 

simulation.  
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Figure 5.7 Trends of species establishment probability from 2010 to 2070 based on 
climate envelope modeling 

The wavy lines show the trend of the mean SEPs; the vertical lines of each panel show 
standard deviations among 14 land type classes from 2010 to 2070 by 5-year interval. 

5.3.2 Projected wind and fire disturbances of the northern Gulf of Mexico 

The average areas of wind damage relative to the whole landscape per time step 

(5 years) are 0.66% under regime 1 (no harvest on NIPF), 0.62% under moderate 

management (regime 2), and 0.63% under intensive management (regime 3). Projected 

wind disturbance areas are stable across the 12 simulated iterations from 2010 to 2070 

(Figure 5.8). The predicted damage area of regime 1 is larger than the damage area of 

regime 2 and regime 3 (df = 2, 36; F-value = 11.92; p < 0.0001; LSD = 0.0154). 
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However, simulated wind damage areas accounts for minor significance of the total forest 

area loss.    

 

Figure 5.8 Projected wind damage area relative to the whole landscape from 2010 to 
2070 based on LANDIS simulation 

 

Across the whole region, simulated fire damage areas are not significantly 

different among three harvesting regimes (df = 2, 36; F-value = 0.00; p = 0.9976) (Figure 

5.9). On the forest land, projected fire disturbance area per time step (5 years) is 15.4% 

relative to the entire region (Figure 5.9). Simulated moderate fires (class 1, 2 and 3) took 

place accounting for13.7% of the entire region every five years, on average; the trend of 

moderate fires keeps stable from 2010 to 2025, increases from 2025 to 2030, and then 

slightly decreases to the end of the simulation (Figure 5.10). In contrast, intensive fires 

(class 4 and 5) would constantly disturb 1.7% of the entire region throughout the 

simulation from 2010 to 2070 (Figure 5.10). The average simulated fire return interval is 

20 years in the coastal region. In addition, there is no significant impact on fire damaged 
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areas on forest land among three management alternatives. Compare to wind disturbance 

(0.66%), fire disturbance (15.4%) accounts for much larger portion of the total forest area 

loss according to the simulation result.   

 

Figure 5.9 Projected fire damage area relative to the entire landscape from 2010 to 
2070 based on LANDIS simulation 

 

 

Figure 5.10 Projected fire damaged area on the forest land (by fire damage class) 
relative to the entire landscape from 2010 to 2070 based on LANDIS 
simulation 
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5.3.3 Projected timber harvesting of the northern Gulf of Mexico 

All three management regimes affect forest composition by removing forest 

species from the landscape. In 2010, 2.93%, 3.32%, and 5.02% forest land would, 

respectively, experience harvest management treatment under a no harvest on NIPF, 

moderate management, and intensive management (Figure 5.11). Every five years, the 

mean harvest areas are 1.78%, 2.07%, and 2.12% for the three management alternatives, 

respectively. Cumulatively, 23.2%, 27.0%, and 27.6% of the entire region would 

experience harvest events from 2010 to 2070. The intensive management would achieve 

relatively higher harvest removal. However, according to the simulation, three 

management regimes with respect to the mean harvest area are not significantly different 

(df = 2, 36; F-value = 0.12; p = 0.8911; LSD = 1.5431) from 2010 to 2070 under 12 

iterations.  

 

Figure 5.11 Projected harvest area relative to the entire landscape from 2010 to 2070 
2070 based on LANDIS simulation 
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5.3.4 Effects of management alternatives on tree species composition  

5.3.4.1 The northern Gulf of Mexico coastal region 

In 1970, the species dominance relative to the entire study area for loblolly pine, 

longleaf pine, red maple, post oak, southern red oak, and water oak was 26.5%, 23.7%, 

46.9%, 33.2%, 33.2%, and 30.4%, respectively. In 2010, after 40-year simulation for 

model self-calibration, the proportion of species occupation of the above six species 

would have ranges of 20.7% - 26.9%, 20.4% - 25.9%, 7.1%, 13.4% - 19.8%, 18.3% - 

24.0%, and 11.3% - 17.7%, respectively, corresponding to three harvest alternatives. 

During the 40-year self-calibration process, all three scenarios experienced one harvest 

rotation so that they have a different condition in 2010. By 2070, the above six species 

account for ranges of 19.8% - 25.3%, 18.9% - 23.7%, 0.4%, 10.5% - 16.6%, 15.3% - 

20.0%, and 7.6% - 14.0% in the coastal region, respectively, according to varying 

management regimes (Figure 5.12).  

Over the 60-year simulation, the percentage of occupation of six representative 

species is predicted to decline under the no harvest treatment (Regime 1) (Figure 5.12). 

Oaks decrease more severely than pines. Red maple has the fastest decrease trend due to 

the absence of management activity. Under moderate management (Regime 2) and 

intensive management (Regime 3), species dominance would not decrease as fast as the 

no harvest treatment (Regime 1) across the 60-year simulations. The average occupied 

areas of six species were different among three management treatments (p < 0.0001), but 

not statistically different between moderate and intensive management during the 60-year 

simulation from 2010 to 2070 (p = 0.4628). This result indicates that forests with active 

management would mitigate the decreasing trend; it also indicated that species 
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composition would not vary from the moderate management to the intensive management 

along the northern Gulf of Mexico.  

 

Figure 5.12 Change of species dominance under different management alternatives 
along the northern Gulf of Mexico coastal region based on LANDIS 
simulation 

 

5.3.4.2 Non-industrial forestland (NIPF) 

Non-industrial forestland without active forest management occupies 26.4% of 

the coastal region and 42.9% among the forestland. In 2010 (after 40-year run for model 
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self-calibration), the proportion of species dominance of the six species (loblolly pine, 

longleaf pine, red maple, post oak, southern red oak, water oak) would have a initial 

ranges of  4.4% - 9.7%, 4.9% - 9.3%, 2.6%, 1.8% - 7.3%, 3.6% - 9.0%, and 1.2% - 6.6% 

corresponding to three harvest alternatives, respectively, which were considered as new 

initial conditions for each regime. During the 40-year self-calibration process (1970-

2009), NIPF would experience one rotation period under regime 2 and regime 3, but 

would only experience natural succession under regime 1 due to lack of active 

management. Over the next 60-year simulation (2010-2070), the ranges of proportions of 

species occupation of NIPF land relative to the whole study area for the above six species 

would reduce to 4.0% - 8.9%, 4.6% - 8.4%, 0.8%, 1.0% - 5.9%, 3.0% - 7.1%, and 0.4% - 

5.1%, respectively.  

Percentages of occupancy of the six representative species would decline under 

no harvest on NIPF (Regime 1) over the 60-year simulation (Figure 5.13). Pines would 

have slower decreasing trend than oaks; southern red oak decreases slower than post oak 

and water oak. Red maple as a non-commercial species decreases the fastest due to lack 

of harvesting or replantation. According to the simulated results, red maple, water oak, 

and post oak have relative steeper decreases than loblolly pine, longleaf pine, and 

southern red oak on NIPF land. The former three species tend to disappear at the end of 

the 60-year simulation. On the other hand, the decreasing trend slows under moderate 

management (Regime 2) and intensive management (Regime 3). The average occupied 

areas of six species were different among three management treatments (p < 0.0001), but 

not statistically different between moderate and intensive management during the 60-year 

simulation from 2010 to 2070 (p = 0.9792). This result indicated that three management 
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alternatives agree on the decreasing trend of tree species dominance. It can be inferred 

that the decreasing is due to natural disturbances and climate change, but forest 

management alternatives would mitigate the decrease of species occupation. Otherwise, 

most of the species decline or lose their dominance over time on the NIPF land if no 

harvest activity occurs. Therefore, active management is necessary on the NIPF land in 

order to sustain the species structure.  

 

Figure 5.13 Forest succession trajectories on non-industrial forest land (NIPF) under 
different management alternatives relative to the whole study area 

This figure indicates species dominance (%) on the NIPF land which is relative to the entire region. To obtain species 
dominance (%) relative to the area of NIPF, figure values need to be divided by 0.264, the ratio of the area of NIPF 
land to the area of the entire region.  
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5.3.5 Effects of management alternatives on age structure  

5.3.5.1 The northern Gulf of Mexico coastal region 

The results indicate that species age structure differently respond to simulating 

scenarios reflecting seed dispersal, establishment, and growth (left panels: Figure 5.14 – 

Figure 5.19). Loblolly pine is predicted to be more abundant than longleaf pine in the 

establishment (<10 years), early-stage (11-30 years), and mid-stage (31-60 years) phases 

of development, while longleaf pine would surpass loblolly pine in the late-stage (> 60 

years old) on the average across the 60-year simulation during 2010 to 2070. Post oak, 

southern red oak and water oak were predicted to have similar abundance in the 

establishment, early, and middle stages. 

Compared with late-stage hardwood, late-stage pines were predicted to have more 

percent cover in the region. Late-stage loblolly pine and longleaf pine, respectively, are 

predicted to sustain the ranges of 14.4 – 15.5% and 16.1 - 16.6% in the region according 

to different management alternatives, while late-stage southern red oak (11.0 – 11.3 %) 

has predicted to be the most dominant followed by post oak (4.1 – 4.5%) and water oak 

(1.4 – 1.6%) in the coastal region. These results indicate that late-stage pines will 

continue to provide more timber wood compared to the hardwood species in the coastal 

region. On the other hand, red maple as a non-commercial species without any 

management treatment would experience heaviest losses under the potential climate 

change and natural disturbances (Figure 5.16). This result indicates that commercial 

species with active management (such as loblolly pine, longleaf pine, and southern red 

oak) would have more resistance to the alteration of age structure under a changing 

climate and potential disturbances. 
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5.3.5.2 Non-industrial forest land (NIPF) 

Species percentage cover in the development phases of establishment, early stage, 

and middle stage are much more developed under harvest management scenarios (regime 

2 and regime 3) than no harvest on NIPF scenario (regime 1) (right panels: Figure 5.14 – 

Figure 5.19). Under the no harvest on NIPF scenario, red maple and water oak would 

disappear by the end of the simulation; post oak would retain a small percentage of late-

stage; loblolly pine, longleaf pine, and southern red oak on NIPF land would retain less 

than 5% of their occupancy relative to the whole coastal region. However, there was no 

significant difference between moderate management to intensive management 

alternatives with respect to the mean species occupation areas. Therefore, harvest 

management would affect species age cohort structure, but two management alternatives 

have no different impacts on the structure of species age cohort with respect to species 

age cohort occupancy on the NIPF land.  



 

159 

 

Figure 5.14 Projected age structure of loblolly pine across the landscape and NIPF land 
under three harvest alternatives from 2010 to 2070 using LANDIS 
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Figure 5.15 Projected age structure of longleaf pine across the landscape and NIPF land 
under three harvest alternatives from 2010 to 2070 using LANDIS 
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Figure 5.16 Projected age structure of red maple across the landscape and NIPF land 
under three harvest alternatives from 2010 to 2070 using LANDIS 
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Figure 5.17 Projected age structure of post oak across the landscape and NIPF land 
under three harvest alternatives from 2010 to 2070 using LANDIS 
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Figure 5.18 Projected age structure of southern red oak across the landscape and NIPF 
land under three harvest alternatives from 2010 to 2070 using LANDIS 
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Figure 5.19 Projected age structure of water oak across the landscape and NIPF land 
under three harvest alternatives from 2010 to 2070 using LANDIS 

 

5.3.6 Evaluation of predictions 

Few forest landscape models are able to validate due to the lack of independent 

field data and the uncertainty of future conditions (He et al. 2011, Wang et al. 2014). It is 

assumed that all FIA plots represent an identical area during a certain time period. Then, 

for a given species, relative frequency can stand for species occupancy area, which refers 

to the ratio of species present plots to the total investigated plots during a certain period 

of time based on FIA plot level records (Table 5.6).  
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Table 5.6 Species frequency in forest inventory analysis database from 1970 to 2010 

 Northern Gulf of Mexico 

 1970s 1980s 1990s 2000s 1970s-2000s 

Loblolly pine 1416 
 (53.5%) 

44  
(45.8%) 

126  
(47.4%) 

720  
(62.0%) 

2306  
(55.3%) 

Longleaf pine 1228  
(46.4%) 

48  
(50%) 

118  
(44.4%) 

300  
(25.8%) 

1694  
(40.6%) 

Red maple 754  
(28.5%) 

21  
(21.9%) 

77  
(28.9%) 

423  
(36.4%) 

1275  
(30.6%) 

Post oak 519  
(19.6%) 

19  
(19.8%) 

42  
(15.8%) 

161  
(13.9%) 

741  
(17.8%) 

Southern red oak 762  
(28.8%) 

22  
(22.9%) 

64  
(24.1%) 

245  
(21.1%) 

1093  
(26.2%) 

Water oak 916  
(34.6%) 

31  
(32.3%) 

125  
(47%) 

638  
(54.9%) 

1710  
(41.0%) 

# of inventory plots 2648 96 266 1162 4172 

Values in parenthesis indicate relative frequency  

In the coastal region along the northern Gulf of Mexico, on average, the simulated 

species abundance (2010-2070) were 23.8% - 29.3% (loblolly pine), 22.5% - 27.3% 

(longleaf pine), 17.3% (red maple), 17.8% - 22.8% (post oak), 21.3% - 26.0% (southern 

red oak), and 15.7% - 20.8% (water oak), while the relative frequencies derived from FIA 

database (1970s – 2000s) were 55.3% (loblolly pine), 40.6% (longleaf pine), 30.6% (red 

maple), 17.8% (post oak), 26.2% (southern red oak), 41.0% (water oak). Compared to the 

FIA records for each species, LANDIS predictions would accurately estimate the future 

abundance of post oak, but underestimate species abundance of loblolly pine and water 

oak (Figure 5.20). As for the longleaf pine and southern red oak, LANDIS predictions 

match the field inventory records during the 2000s instead of the 40-year average records.  



 

166 

 

Figure 5.20 Projected dominance of loblolly pine, longleaf pine, post oak, southern red 
oak, and water oak compared to the historical ranges of the latest 40 years 
(the 1970s – the 2000s) and the past decade (the 2000s) on the coastal 
region 

 

Pines have relatively larger occupancy than oaks referring to the FIA’s field 

inventory records as well as the simulated results. A simple validation is provided 

between two species group (pines and oaks) by a graphic comparison (Figure 5.21). Pines 

include loblolly pine and longleaf pine, and oaks include post oak, southern red oak, and 

water oak. The ratio of occupancy area of pine group (numerator) versus oak group 

(denominator) shows that simulated results match the "historical range" referring to 

relative frequency calculated by FIA records (1970s-2000s and the 2000s)  in the coastal 

region. Similarly, on the NIPF land, results from regime 2 (moderate management) and 
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regime 3 (intensive management) are also coincident with the "historical range". This 

result implies that the simulation output with respective to relative abundance should be 

valid for forest community groups. However, the ratio of occupancy area of pines and 

oaks from regime 1 (no management on NIPF) increased substantially. On the one hand, 

the ratio increases at both spatial levels which suggest that pines are expected to have 

more relative occupancy than oaks. In this case, pines seem to be more resistant to the 

potential climate changes and disturbance events under all three management 

alternatives. On the other hand, the intensive management regime is predicted to have the 

gentlest increasing slope among the three management alternatives in the coastal region. 

Thus, it can be concluded that intensive management is beneficial in sustaining the 

composition of forests within their historical range.   

 

Figure 5.21 Projected dominance ratio of pines and oaks compared to the historical 
ranges of the latest 40 years (the 1970s – the 2000s) and the past decade 
(the 2000s) 

 

5.4 Discussion  

This study simulated the forest dynamics along the northern Gulf of Mexico over 

the next 60 years exploring the effects of management alternatives on species 
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composition and age structure of the forest community by integrating climate change 

along with natural disturbances at two spatial scales (the entire region and NIPF land). 

The results showed that the changing climate, disturbance events, and management 

alternatives had strong effects on forest composition and species structure at both spatial 

scales. The effects of climate change were negative on species establishment probabilities 

(Figure 5.7). Species abundance will decline with the decreasing establishment likelihood 

in the coastal region of Gulf of Mexico. The establishment probabilities were obtained 

from the climate envelope models which have been considered as widely used statistical 

empirical models in evaluating species-distribution relationships (Franklin 2009, Peterson 

2003). This study embedded in forest dynamic simulation speculates that climate change 

will impact individual tree species’ physiological processes at a local scale, but it may not 

immediately cause tree mortality because of lags in responses (Dietze and Moorcroft 

2011, Li et al. 2013). However, the effects of climate change on forest dynamics are 

dependent on the projected climate scenario, geographic location, and the local 

conditions of forest ecosystems (Gustafson et al. 2010, Scheller and Mladenoff 2005, 

Schumacher and Bugmann 2006).  

The effects of wind and fire events are also negative on species abundance by resulting in 

sudden and emergent damage on forests. The simulated results showed that wind caused 

about 0.66% damage on forest land per simulated time step (five years), while fire would 

damage as much as 15.4% over the same five year period (Figure 5.8 and Figure 5.9). 

This study showed that forest mortality caused by fire was much more severe than by 

wind. It can be explained that fire events have a relatively shorter return interval and 

occur more frequently than severe wind events in causing large scale tree mortality. 
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These natural disturbances could have stronger effects than climate change (Gustafson et 

al. 2010). However, how regional disturbance patterns interact with each other, especially 

under a climate change condition, is still uncertain (Mitchell et al. 2014, Myers and van 

Lear 1998, Stanturf et al. 2007).  

Management alternatives strongly affected modeled forest composition and species age 

structure along the coastal region under a changing climate and disturbance events. The 

results showed that projected harvested areas were not significantly different among three 

management regimes. Simulation results showed that representative species’ coverage 

was much more expanded under active management regimes than under no management 

regime at the regional scale and on NIPF land. Harvesting practices would create open 

sites for species to germinate, thus reducing the negative effects of climate change on 

species establishment probability; replanting would mitigate the removal effects of 

harvesting and natural disturbances in order to retain a relative sustainable coverage area 

of commercial species (Bu et al. 2008). Thus, commercial species would be more 

abundant from management practices than non-commercial species. Simulation results 

showed no significant difference in species abundance (relative coverage area) between 

moderate and intensive management regimes, but showed a pattern that the shorter 

rotation regime (intensive management) produced more early-stage species than the 

longer rotation regime (moderate management), in particular for oak species. Therefore, 

active management in the Gulf of Mexico coastal region can enhance forest resilience 

and resistance to the uncertain future (DeRose and Long 2014, Joyce et al. 2009, Lafond 

et al. 2014).  
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Additionally, simulation results revealed that species biological traits also affect forest 

dynamics under certain scenarios. The conventional wisdom is shade-tolerant species 

(e.g., red maple) would successionally replace shade-intolerant species (e.g., oak) without 

disturbances (Wang et al. 2013). However, in this study, red maple would disappear from 

the landscape due to lack of treatment under climate change and disturbance scenarios. 

This result indicates that non-commercial species (e.g., red maple, shade tolerance = 5, 

fire tolerance = 1, Table 5.2) with high degree of shade tolerance and low degree of fire 

tolerance would have the highest risk at experiencing extinction due to lack of 

management. In reality, however, the mortality rates for red maple are low compared to 

other species and this “super-generalist” as an ecological plastic species has low resource 

requirements (Abrams 1998, Lorimer 1984). The simulated rapid decline of red maple 

may not be true in a wide variety of forest conditions because of the intrinsic limitation of 

the LANDIS model, an important caveat in interpreting and potentially implementing this 

finding.  Nevertheless, if two commercial species under active management obtain equal 

tolerance to fire (for example, southern red oak and post oak both have fire tolerance = 

4), the coverage area of the species with higher shade tolerance (southern red oak: shade 

tolerance = 3) would decline slower than the species with lower shade tolerance (post 

oak: shade tolerance = 1) under frequent fire disturbances. These results are consistent 

with the result of Gustafson et al. (2004) that timber harvest maintained shade intolerant 

species because these species are resistant to surface fires.  

Drivers of forest dynamics are complex because of the interactions among climate, 

disturbances, and management strategies, as well as the bio-physiological interactions 

between species and sites. Nevertheless, the simulation results have potential applications 
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for sustainable management of forest ecosystems. Previous studies applied the LANDIS 

model to explore the effect of spatial configuration and hiatus length (Zollner et al. 2005), 

as well as harvest size, age, and target species (Radeloff et al. 2006). Based on the above 

experiments, this study designed various harvest regimes involving multipurpose harvest 

decisions from heterogeneous ownerships. It was found that coastal forest dynamics 

relied on active management on the NIPF land. Without management on the NIPF land, 

the area of pines would surpass the area of oaks (Figure 5.21). To mitigate the risk of 

changing forest composition (and its effects on other ecosystem services, e.g., wildlife 

habitat), this study provided evidence for organizations, such as Forest Service, in 

developing efficient and effective outreach and incentive programs for the NIPF 

landowners (Butler et al. 2012, Butler et al. 2007) and developing conservation 

management strategies for particular species such as bottomland hardwoods (Fei et al. 

2011, Stanturf et al. 2009) and longleaf pine (Aschenbach et al. 2010, Loudermilk et al. 

2011). On the other hand, the NIPF landowners can foresee the future of their land and 

utilize it with proper management.   

Spatially explicit landscape models with stochastic processes, such as LANDIS,  are open 

to other hybrid models, such as statistical empirical models (climate envelope model in 

this study), ecosystem gap-models (He et al. 1999), and biogeochemistry models 

(Scheller and Mladenoff 2005, Scheller and Mladenoff 2008) to simulate forest dynamics 

including regeneration, succession, and disturbances. Users need to realize that the 

LANDIS 6.0 implemented in this study does not simulate the growth of individual trees 

rather the spatial occurrence and species age class. The simulation results provided a 

comprehensive understanding of ecological response to natural and human effects in 
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order to compare management alternatives. This study focused on the effect of harvesting 

under climate change and natural disturbances. Management decisions are made at a 

stand-level, but the LANDIS model used in this study cannot output such information 

such as stand density. The latest version of LANDIS (LANDIS PRO 7.0: 

http://landis.missouri.edu/) is capable of providing not only occurrence and age class, but 

also density, basal area, biomass, and carbon storage by species (Wang et al. 2014, Wang 

et al. 2013) with more developed the procedure of model initiation, calibration, and 

evaluation of predictions (Dijak 2013, Wang et al. 2013).  

5.5 Conclusion 

According to this simulation study, the dominance of forest species will diminish 

in the coastal region and NIPF land due to climate change and natural disturbances. 

Climate change has a negative effect on tree species establishment; disturbances 

including windthrow and fire remove living trees from the landscape. Species 

composition and age structures of individual species will be significantly affected by 

management alternatives at both spatial scale—coastal region and NIPF land. Harvesting 

and subsequent reforestation efforts would mitigate the decreasing species. Species 

dominance is significantly higher under management regimes than the without 

management on the NIPF regime at both spatial scales. Species composition would 

deviate from the historical range if there is no active management on NIPF lands. 

Moderate and intensive management regimes were not significantly different from each 

other in this study. However, simulated results are biased at the species level, but match 

successional history at the species group level (pine group and oak group). Pines that tend 

to obtain the most resistance to potential climate change and disturbances had more stable 
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age structures than oaks. Above findings could assist forest managers in making effective 

management prescriptions and assist NIPF landowners to foresee the future of coastal 

forests in order to mitigate potential threats under climate change and natural 

disturbances. 
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

In summary, this dissertation first explores relationships between species and 

climate by historical climate and forest inventory data. Then, climate envelope modeling 

techniques are applied to estimate future distribution probabilities of major tree species 

and an invasive species in the southeastern United States under a projected climate 

scenario. Finally, projected future distribution probabilities integrated forest succession 

models to project forest composition change on age cohort over time.  

6.1 Large-scale climate models be linked with multi-scale ecological studies 

Forests provide water, timber, and pulp for human beings but long-term changes 

in the mean and variance of climate factors like air temperature and precipitation could 

have a significant impact on forest processes in the next century (McNulty and Aber 

2001). Therefore, climatic variables are taken into account as a driver in species 

distribution and control future colonization probability in this study.  

CEMs assume equilibrium relationships between species and the climate 

environment in order to estimate the feedback between climate and vegetation. This 

framework is coincident with the idea of α, β, and γ niches indicating a hierarchy of 

spatial scale (Pickett and Bazzaz 1978, Silvertown 2004, Silvertown et al. 2006). 

Silvertown et al. (2006) defined that α niche is “the region of a species’ realized niche 
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corresponding to species diversity at the local scale where interactions among species 

occur”; β niche refers to “the region of a species’ niche that corresponds to the habitat(s) 

where it is found”, which is equivalent to the “habitat niche” (Grubb 1977) ; and γ niches 

is the geographical range of a species (Peterson et al. 2011). However, niche-based 

models are tending to overestimate species extinctions due to climate change because 

they do not consider dispersal and migration rates and biotic interactions (e.g. symbiosis, 

competition, and predation, etc) (Botkin et al. 2007, Pearson and Dawson 2003). There is 

an effort in this study for hybrid framework of forecasting the impacts of climate change, 

natural disturbances, and forest management alternatives. The most important need is to 

validate models against actual changes in forests(Botkin et al. 2007). CEMs have been 

evaluated to have predictive consistency and ecological conformity. However, FLMs are 

hard to validate through field inventory data (Wang et al. 2014). Therefore, there will 

always be trade-offs between using complex, mechanistic versus simple, empirical 

models to forecast environmental change to link large-scale climate models with multi-

scale ecological processes (Franklin 2009). 

6.2 All models are wrong but some are useful 

There are several sources for the uncertainty of modeling estimation. First, in this study I 

focused on only one climate change scenarios and get the related result. It is uncertain 

that under other climate change scenarios forest ecosystem will truly have the same 

effects. On the other hand, mitigating strategies have been carrying on before species by 

reducing the atmospheric concentration of greenhouse gases, human-induced 

disturbances, and land-cover changes. Computer simulations of vegetation responses to 

climate and habitat have been available since 1970, beginning with the JABOWA forest 
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model, which forecasts the growth and mortality of individual trees and the regeneration 

of species in small forest areas (Botkin 1993, Botkin et al. 2007). In that, this study was 

based on a coarse special scale simulation; however, this study did not consider 

biophyisological processes of self-restoration of an individual plant.  

This study tried to link large-scale climatic models with multiscale ecological studies. 

Typically, the study plots of most ecological field work are tennis-court-sized, while the 

smallest resolution of global climatic models is about hundreds squared kilometers. For 

example, Phase 2 FIA plots which were used in this study were tallied in 7.32 m (24.0 ft) 

subplot for most tree measurements and in 2.07 m (6.8 ft) microplots for seedlings, 

saplings, and other vegetation measurements. Each plot represents 2428 hactares (6000 

acres). However, outputs from WRF (Weather Research and Forecasting) which were 

adopted in this study were downscaled from the original resolution of 90 × 90 km to the 

finest resolution of 10 × 10 km. In this case, one pixel of climate model covers about 5 

forest inventory plots on average. Due to the dynamic and variation in ecosystems, the 

problem occurs that scales between climatic and ecological measurements mismatch each 

other. This is another source of uncertainty of estimates of forest community responses to 

the climate conditions.   

Furthermore, the local suitability of given species are depend on geographical 

factors (e.g. soil and elevation). Forest dynamic are determined by species biological 

traits which are embedded in LANDIS simulation. The models have been tested 

obtaining predictive consistency and ecological conformity. Hence, simulation models 

are a type of decision support tools with scientific basis—the statistics and ecological 

mechanism knowledge. In other words, even though it is reluctant to admit to be 
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completely accurate, the prediction for the future condition of forests in the South 

indicated “The only forecast that seems certain is that the more rapidly the climate 

changes the higher the probability of substantial disruption and surprise within natural 

systems” (Root and Schneider 1993). 

6.3 Future challenges  

This study coupled CEMs (niche-based statistical empirical) and LANDIS (process-based 

forest landscape model). The linked model has pointed to several possible climate-

vegetation feedback mechanisms. However, there are still two shortcomings. One is only 

considering the equilibrium response of vegetation to shifting climatic conditions and 

therefore cannot be used to explore transient interactions between climate and vegetation. 

Another is related to the representations of vegetation processes and land-atmosphere 

exchange processes are still treated by two separate models and, as a result, may contain 

physical or ecological inconsistencies. Future studies need pay more attention to species 

competition, predation, and disturbance which can place pressures on a species 

distribution and cause more complex responses.  First, individual species would 

physiologically or evolutionarily accommodate a changing environment over space and 

time. Second, competition among multiple species could favor the species with wide 

ecological niches and contract species with narrow ecological niches. Future study also 

needs efforts on clarification of empirical relationship between tree species and their 

environmental conditions, species biological traits, specification of ecological processes, 

as well as improving design for sampling data for building models, parameterization, 

model selecting, and model validation.   
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