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Modern prosumer small unmanned aircraft systems (SUAS) have eliminated many
historical barriers to aerial remote sensing and photogrammetric survey data generation.
The relatively low cost and operational ease of these platforms has driven their adoption
for numerous geospatial applications including professional surveying and mapping.
However, significant debate exists among geospatial professionals and academics
regarding prosumer sUAS ability to achieve “survey-grade” geospatial accuracy < 0.164
ft. in their derivative survey data. To address this debate, a controlled accuracy test
experiment was conducted in accordance with federal standards whereby prosumer sSUAS
geospatial accuracies were reported between 15.367 ft. — 0.09 ft. horizontally and
496.734 ft. — 0.330 ft. vertically at the 95% confidence level. These results suggest
prosumer sUAS derived survey data fall short of “survey-grade” accuracy in this
experiment. Therefore, traditional surveying instruments and methods should not be
relinquished in favor of prosumer sUAS for complex applications requiring “survey-

grade” accuracy at this time.
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CHAPTER I

INTRODUCTION

Recent statistics from the United States (U.S.) Federal Aviation Administration
(FAA) demonstrate a significant increase in the use of unmanned aircraft systems (UAS)
for all variety of educational, commercial, and governmental applications (FAA 2017).
Aerial surveying and mapping by UAS, or more commonly small UAS (sUAS < 55 1bs.),
has become an increasingly common application as it supports multiple present uses for
commercial UAS recognized by the FAA. Recently, the practice of surveying and
mapping by sUAS has become increasingly automated with resulting survey data often
requiring minimal input on behalf of the SUAS operator. However, the adequacy of
sUAS derived survey data for high-accuracy geospatial applications, such as professional
surveying, remains in question (Mah & Cryderman 2015, Jaud et al. 2016, Pineux et al.
2017). This holds especially true of survey data derived consumer, or “prosumer”, sUAS
platforms which account for the vast majority of sUAS registrations in the U.S.

Modern prosumer sUAS platforms manufactured since 2015 represent the latest in
a long history of airborne technologies deployed for geospatial studies and applications.
However, given the emerging status of modern prosumer sUAS, scientific research on the
components, applied capabilities, and derivative scientific data from these specific
platforms remains lacking in comparison to traditional airborne technologies such as
polar-orbiting satellites, manned aircraft, and even earlier generations of UAS
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(Remondino et al. 2011, Colomina & Molina 2014, Nikolakopoulos et al. 2017). While
the cumulative body of sUAS research is growing, research which focusses exclusively
on modern prosumer sUAS platforms still remains limited. Among these studies,
research efforts focusing exclusively on the derivative geospatial accuracy of modern
prosumer sUAS survey data remains even further limited (e.g. Hugenholtz et al. 2013,
Uysal et al. 2015, Agiiera-Vega et al. 2017, Cook 2017). Additionally, the rapid
advancement and releasing of new prosumer sUAS generations with improved
capabilities often leaves older platforms and their corresponding research efforts
inapplicable, if not irrelevant. Therefore, scientific research which specifically examines
today’s modern prosumer sUAS survey data accuracies is needed to support the many

geospatial applications and individuals presently deploying these platforms.

Problem statement and research justification

Uncertainty regarding prosumer sUAS ability to achieve survey-grade data
accuracy represents a significant problem. The relative low cost, operational ease, and
semi-professional capabilities of these modern prosumer sUAS have increasingly driven
their adoption for geospatial tasks, including high-accuracy applications such as
professional surveying. These factors have also contributed to a rise in the
entrepreneurial pursuit of aerial surveying and mapping by prosumer sUAS operators
who often lack the expertise and/or oversight of a professional surveyor. In the worst
cases, these operators are completely unaware of the many geospatial considerations
involved in their aerial surveying efforts and resulting datasets. Meanwhile, professional
surveyors and geospatial experts alike remain in debate over the legitimacy of prosumer

sUAS derived survey data for high-accuracy geospatial applications (Clapuyt et al. 2016,
2



Pineux et al. 2017). Holland et al. 2016 perhaps summarizes this debate best in
questioning “whether a UAV and a simple camera can produce data suitable for a
mapping agency”. Until further research is conducted, the problematic uncertainty
surrounding prosumer sUAS survey data and its use for high-accuracy geospatial
applications will likely remain.

To address this problem, an accuracy test of SUAS derived survey data by
established, documented standards and procedures is needed. The purpose of this thesis
research has been to conduct such an accuracy test using the established guidelines of the
U.S. Federal Geographic Data Committee (FGDC). In doing so, it is the immediate goal
of this thesis to provide scientific insight into the geospatial accuracy debate surrounding
prosumer sUAS derived survey data. In a larger context, the broader goal of this research
is to contribute to the greater scientific understanding and successful utilization of UAS

technologies and derivative geospatial data.

Research objective

In consideration of these specific needs and goals, the objective of this thesis
research was to address the geospatial accuracy debate surrounding sUAS and Structure-
from-Motion (SfM) derived survey data. To do so, a controlled experiment was designed
and conducted per FGDC accuracy testing standards. In this experiment, survey data
from an instrument of higher accuracy was used as a ground-truth data to test the
accuracy of sUAS + SfM survey data. During the experiment, SUAS data collection and
SfM processing were designed to optimize resulting survey data accuracy based on
proven practices in current scientific research. For example, SUAS data collection was

conducted in (mostly) favorable meteorological conditions (wind < 5 mph, cloud cover <
3



1/8 opaque clouds) in an attempt to mitigate the influence of these conditions on resulting
survey data accuracy.

Ultimately, it was the objective of this thesis research to answer the following
questions in regards to SUAS + SfM survey data accuracy. First, what geospatial
accuracies are observed in SUAS + SfM derived survey data according to FGDC
standards and accuracy testing procedures? Next, what FGDC accuracy classification(s)
does the SUAS + SfM survey data achieve? Lastly, is “survey-grade” accuracy at 0.164
ft. (5§ cm.) achieved both horizontally and vertically in any sUAS + SfM data?

Research Questions:

1. What geospatial accuracies are observed in survey data derived from
modern prosumer sUAS platforms and SfM photogrammetry.

2. Which accuracy classification(s) does resulting survey data achieve
according to the FGDC Geospatial Positioning Accuracy Standards, Part
2: Standards for Geodetic Networks.

3.  Issurvey-grade accuracy at 0.164 ft. (5 cm) achieved, both horizontally
and vertically, in modern prosumer sUAS derivative survey data.

It is hypothesized that geospatial survey data derived from modern prosumer
sUAS and SfM photogrammetry does not currently achieve survey-grade accuracy at
0.164 ft. (5 cm) or greater both horizontally and vertically. To test this hypothesis,
research methodologies have followed the established formulas and procedures for
accuracy testing and classification as set forth in the FGDC Geospatial Positioning
Accuracy Standards (FGDC 1998). Before proceeding, the following chapters provide
relevant, detailed background information to establish the fundamental research context,

and a thorough review of the existing scientific literature relating to this topic.



CHAPTER 1II

BACKGROUND

Overview

Modern (post-2015) sUAS, also sometimes referred to as unmanned aerial
vehicles (UAV) or simply “drones”, represent the culmination of numerous technological
advances in the fields of aviation, robotics, and remote sensing. While military use of
unmanned aircraft long predates modern sUAS, recent technological advances have
resulted in modern platforms which are now easily deployable for numerous civilian
operations and applications. For most of these applications, aerial remote sensing
represents the fundamental task for which SUAS are most frequently deployed
(Remondino et al. 2011, Colomina & Molina 2014). For this thesis research, remote
sensing by prosumer sUAS, and all subsequent methodologies, have been conducted in
order to perform detailed accuracy testing of sUAS derived survey data. The following
sections provide detailed background information to establish the fundamental thesis

research context.

UAS groups & distinctions

UAS are most frequently “grouped” according to maximum takeoff weight
(MTOW) and operational altitude thresholds established by the United States (U.S.)
Department of Defense (DoD). For example, Group 3 UAS, those weighing 55 Ibs. —

1,320 Ibs., represent the first UAS grouping which are considered “large” as they exceed
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the 55 1b. threshold of “small” UAS. Similarly, Group 5 UAS, the largest class of UAS
groupings, include all UAS platforms weighing > 1,320 Ibs. and operating at altitudes
above 18,000 feet (ft.) mean sea level (MSL). All sUAS are grouped according to these
DoD group classifications as Group 1 UAS (< 20 Ibs.) and Group 2 UAS (20 Ibs. — 55
Ibs.; Fladeland et al. 2017, Marshall et al. 2016).

Despite these established groupings, civilian distinctions are often used in
referring to various sUAS platforms as an alternative to the traditional DoD group
classifications. In general, these distinctions are similar to that of civilian electronics and
primarily refer to sUAS platform capability, and the associated level of experience or
skill on behalf of the sUAS operator. Specifically, these distinctions include “consumer”,
“prosumer”, and “professional” sSUAS.

Consumer sUAS, as with consumer electronics, refer to sUAS platforms
possessing limited capabilities and requiring minimal sUAS operational experience.
Alternatively, professional sUAS refers to highly specialized platforms which require a
certain degree of skill or experience on behalf of the sUAS operator in order to perform a
specific task. These professional sSUAS platforms are typically, and sensibly, found in
use by individuals and organizations which are considered established professionals in
their respective fields — such as the use of a light detection and ranging (LiDAR)
equipped sUAS by a registered professional land surveyor (RPLS). The final distinction,
prosumer sUAS, differs from these former distinctions and requires additional discussion

as it represents the subject this thesis research.



Prosumer sUAS

Prosumer sUAS share similarities and differences with both consumer and
professional SUAS. These platforms, like consumer sUAS, generally require minimal
prior experience and remain relatively easy to operate. However, modern prosumer
sUAS, again referring to post-2015 platforms, increasingly approach the specialized
capabilities generally associated with professional sUAS. These capabilities are made
possible by onboard sUAS components including high-resolution sensor payloads, global
navigation satellite system (GNSS) receivers, and inertial measurement units (IMU)
which were previously reserved only for professional SUAS. Recent technological
advances have allowed these components to now become commonplace in modern
prosumer sUAS platforms. The advancement of these components is likewise
demonstrated in many now-common civilian electronic devices, such as smartphones.

What remains unique to prosumer sSUAS, however, is the reduction or outright
elimination of tremendous operational cost and expertise barriers which were previously
inherent to airborne flight operations. Historically, these cost and experience barriers
firmly excluded the participation of individuals or organizations which were not
professional aviators, sensor operators, etc. However, the relative ease of use and
borderline professional capabilities of modern prosumer sUAS have recently changed this
dynamic. Additionally, the inaugural implementation of FAA regulations for commercial
sUAS operations in August 2016 tremendously advanced the legitimacy of SUAS,
including prosumer platforms, as viable tools for both industry and academia (FAA

2018).



The cumulative impact of these factors has undoubtedly contributed to the
proliferation of prosumer sUAS platforms as we know them today. According to FAA
statistics, the vast majority of commercial SUAS registrations in the U.S. belong to
prosumer platforms (FAA 2017). These statistics firmly demonstrate the increasing
acceptance and use of modern prosumer sUAS platforms in numerous professional fields.
However, this trend toward legitimacy has not inherently translated into operational or
applicational proficiency of prosumer sUAS in every professional field for which they are
deployed. For this research, prosumer sUAS proficiency in the practice of high-accuracy

surveying, mapping, and modeling applications has been evaluated.

Small unmanned aircraft system (SUAS) remote sensing

Aerial remote sensing represents a longstanding scientific practice in which the
use of prosumer sUAS is exceptionally new. Historically, aerial remote sensing has been
conducted by large satellites and traditional manned aircraft which were capable of
successfully deploying the sensors and components necessary for performing this task.
However, modern advances and reduced operational barriers described above have
allowed prosumer sUAS to be increasingly deployed for demanding remote sensing
applications. Specifically, the advancement of low-cost, user-friendly compact digital
cameras and similar sensor technologies have greatly increased the ability of modern
prosumer sUAS to achieve high resolution remote sensing data (Colomina & Molina
2014, Franesco & Remondino 2014, Cooper et al. 2015). Likewise, the advancement of
compact global positioning systems (GPS) and IMU technologies have facilitated
prosumer sUAS capabilities for systematic, autonomous remote sensing data collection

(Chao et al. 2010, Vasuki et al. 2014, Cooper et al. 2015). As a result, modern prosumer
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sUAS now possess the necessary sensors and components to successfully perform aerial
remote sensing.

In general, aerial remote sensing remains an applied practice conducted in support
of a larger specified application or purpose. This larger purpose tends to dictate the
manner in which remotely sensed data are collected, processed, analyzed, interpreted, and
utilized. For this research, high accuracy surveying again serves as the larger specified
purpose of the remote sensing practice. While this purpose can be achieved through a
variety of both passive and active remote sensing systems, compact digital camera
sensors are most common to prosumer sUAS platforms. Therefore, digital image data are
generally the most common outcome of prosumer sUAS remote sensing data collection.
For these data to be of value in the greater mapping and modeling purpose, additional
scientific fields and practices must be explored — most notably, the field of

photogrammetry and its related concepts.

Photogrammetric applications

In simplest terms, photogrammetry refers to the practice of making geospatial
measurements from photos (Birdseye 1940). Much like remote sensing, photogrammetry
has a long-established history of scientific and professional use and acceptance. Also
similar to remote sensing, photogrammetry has historically relied upon traditional
manned aircraft for airborne data collection. Modern prosumer sUAS have changed this
dynamic as aerial photos can now be captured at lower altitudes and higher spatial
resolutions than were previously possible. In this sense, modern sUAS have greatly
contributed to the concept of “close-range” photogrammetry given their relatively close

proximity to photographed subject matter as opposed to manned aircraft (Brunier et al.
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2016). Furthermore, technological advances in the field of StM photogrammetry has
further advanced the utilization and acceptance of sUAS surveying applications. For the
purposes of this research, it is important to acknowledge the role of SfM technology and
its fundamental photogrammetric concepts founded in in stereoscopic photogrammetry as

described below.

Stereoscopic photogrammetry

Stereoscopic photogrammetry specifically refers to the use of stereo (i.e.
overlapping) photos to achieve a 3D perspective of the photographed subject matter
(Birdseye 1940). This overlapping nature and resulting 3D perspective as shown in
Figure 2.1 below represents the widely understood science of stereoscopy. In this sense,
stereoscopy applies not only to stereo photos, but to stereoscopic fields-of-view (FOV) in

general, like that of human eyesight.

- o

Figure 2.1  Stereoscopic Fields-of-View and 3-Dimensional Perception

Stereoscopic camera positions and resulting stereo image datasets can achieve 3-
dimensional perception of subject matter in the same way as human eyesight. In the
practice of stereoscopic photogrammetry, this allows for both horizontal and vertical (i.e.
3D) measurements to be made from stereo image subject matter. Image adapted from 7he
History of VR. Stereoscopic Vision. 2018.
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Given the inherently 3D nature of the geospatial environment which surrounds us,
stereoscopic photogrammetry provides the distinct ability for 3D reconstruction, analysis,
and measurement of photographic subject matter. Again, this ability is made possible
only through the use of stereo photos, as a single photo itself remains implicitly two-
dimensional. While the fundamental concepts of stereoscopy remain firmly established,
practical methodologies in the field of stereoscopic photogrammetry have continuously
evolved through various technological advances (e.g. Whittlesley 1970, Nikolakopoulos
etal. 2017).

To begin, proliferation of modern sUAS technology has drastically reduced the
geographic scale at which stereoscopic photogrammetry can be practically applied.
When captured by manned aircraft, aerial photographs tend to capture subject matter of
large geographic extent as a result of the aircraft’s operating altitude. In comparison,
aerial photographs capture by sUAS, which can only be legally deployed at altitudes up
to 400 ft. above ground level (AGL) in most instances, depict subject matter of far less
geographic extent. As a result, stereoscopic photogrammetry can now be effectively
applied to exceptionally small geographic regions which previously would have required
a different methodological approach.

Additionally, early photogrammetric methodologies were conducted manually by
a professional photogrammetrist with few or no automated processes. These early
methodologies were also applied exclusively to analog, hard-copy photographic data. At
present, these methodologies have trended significantly, if not exclusively, toward
autonomous digital processes which utilize digital photographic image data (Jensen 2007,

Jensen 2015). This trend toward digitization and autonomy comes as the result of
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significant advances in computational processing technologies which are increasingly
capable of performing photogrammetric operations. For this research, SfTM technology
and its associated concepts in computer vision and digital scene reconstruction represent

an especially important consideration.

Structure-from-motion (SfM)

Modern SfM technologies and practices as we know them today evolved from
numerous scientific advances in automated feature matching algorithms and computer
vision technologies in the late 1980s and early 1990s (Forstner 1986, Spetsakis &
Aloimonos 1991). As a result, StM photogrammetry has revolutionized the concept and
practice of 3D scene reconstruction in stereoscopic photogrammetry.

In traditional stereoscopic photogrammetry, the geospatial position and
orientation of an airborne camera and its resulting photographic data must be either
inherently known or calculated in order to perform 3D scene reconstruction. This
position and orientation information could be inherently known if the airborne camera or
aircraft is accompanied by additional components, such as a GNSS receiver.
Alternatively, position and orientation information could also be calculated through the
use of ground control points (GCPs) representing known positions within the
photographed subject matter. Once photographic data position and orientation have been
established, traditional stereoscopic photogrammetry still relies upon the experience and
intuition of an individual, usually a professionally licensed photogrammetrist, in order to
manually perform 3D scene reconstruction.

In the case of SfM photogrammetry, these practices are no longer required to

achieve 3D scene reconstruction of photographic data. This is true because SfM
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photogrammetry, again relying upon modern computer vision technology and feature
matching algorithms, is able to accurately estimate the position and orientation of aerial
photographic data through the content of the photos themselves. This task is achieved by
SfM’s ability to intuitively identify matching features throughout stereo image datasets,
and use these features to estimate photographic data position and orientation. In doing
so, SfM not only automates the calculation of this position and orientation information
(when this information is not already inherently known), but further autonomously
performs nearly all of the 3D reconstruction process of stereoscopic photogrammetry.
While varying degrees of autonomy can be practiced in SfM photogrammetry
depending on the specific application or individual, it is worth noting SfM’s unique
ability to successfully, and near fully autonomously, perform 3D scene reconstruction in
the absence of specialized airborne positioning components, GCPs, and even the intuition
of a seasoned photogrammetrist. However, when applied to a highly demanding
professional practice with established geospatial expectations and requirements, the SfTM
approach requires additional scrutiny in comparison to traditional stereoscopic
photogrammetry (Ishiguro et al. 2016, Cook 2017). This is especially true in the case of
professional surveying, which represents the intended field and target audience of this

thesis research.

Professional surveying

Surveying refers to the long standing professional practice of collecting and
accurately communicating the earth’s geographic landscape in a variety of 2D and 3D
representations. At present, these representations most commonly include maps (2D),

point cloud reconstructions (3D), and geospatial models (3D) including Digital Elevation
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Models (DEM) and Digital Surface Models (DSM). The practice of surveying generally
requires the use of one or more methods of in situ and/or remote sensing data collection.
In the case of in situ data collection, a variety of specialized instruments, such as robotic
total stations and real time kinematic (RTK) differential GPS (DGPS), are commonly
used to collect points of strategic interest for the geographic area being surveyed.

In the case of remote sensing data collection, a similarly specialized set of
instruments, such terrestrial laser scanning systems and robotic total stations, are often
utilized, as well as traditional methods of airborne remote sensing. However, recent
advances in sUAS remote sensing, as previously described, have spurred significant
interest with the professional surveying community. As a result, the utilization of sUAS,
including prosumer sUAS platforms, has risen significantly in the application of remote

sensing data collection for professional surveying practices (Mah & Cryderman 2015).

Federal surveying standards

Professional surveying and its derivative data are relied upon by many fields and
industries which harbor specific geographic and/or geospatial implications and
considerations. For example, a professional surveying operation is most often the very
first step associated with any form of construction or engineering project. Likewise, a
professional survey may also serve as the definitive representation of land ownership
boundaries prior to the sale or acquisition of any geographic area and its associated
surface or mineral rights. For this reason, professional surveying practices must be
formally conducted, and their resulting data confirmed, by a registered professional land

surveyor (RPLS) as required by federal law. Furthermore, professional surveying
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practices and resulting data are also formally regulated by the U.S. Federal Geographic
Data Committee’s (FGDC) Geospatial Positioning Accuracy Standards (FGDC 1998).
The earliest form of these modern survey standards came by way of “General
Instructions for the Field Work of the U.S. Coast and Geodetic Survey” as published in
the early 20" century. While these early instructions successfully established guidelines
for consistent surveying field practices, they failed to establish specific thresholds on the
basis of geographic data accuracy and precision. This changed around 1921 when the

99 ¢

original instructions were amended to include “precise”, “primary”, and “secondary”

accuracy distinctions, and again on May 25", 1925 with the implementation of “1°%",

“2nd” “3rd77

, and Order accuracy classifications by the Board of Surveys and Maps of the
Federal Government.

Later, in 1974, the Federal Geodetic Control Committee (FGCC) was formally
established and soon published revised documentation as the “Classification, Standards
of Accuracy, and General Specifications of Geodetic Control Surveys”. This
documentation was again revised and re-released in 1984 as the “Standards and
Specifications of Geodetic Control Networks”. More recently, with increasing interest
and use of GPS technology, additional surveying documentation was issued in 1989 as
the “Geometric Geodetic Accuracy Standards for using GPS relative positioning
techniques” to account for the latest practices and considerations of GPS technology at
the time. Eventually, in 1990, the original FGCC was restructured as a sub-committee to
the newly formed FGDC which took a wholistic approach to regulating the larger field of
professional surveying, as opposed to strictly focusing federal geodetic survey operations.
The FGDC Geospatial Positioning Standards in place today, and their corresponding
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accuracy requirements and classifications, were finally implemented in 1998 and have

remained, for the most part, without significant revision since that time (FGDC 1998).

Survey-grade accuracy

Ever since the first addition of formal accuracy distinctions in the 1920’s, all
subsequent surveying literature described above have revised and retained some form of
numerical accuracy orders, designations, and/or classifications. The reason for these
formal accuracy designations is to provide a consistent means of communicating both the
horizontal and vertical accuracies of all professionally surveyed geospatial data.
Additionally, these accuracy designations can be used to establish the required accuracy
of a geospatial data prior to collection, thereby allowing professional surveyors to
proactively utilize data collection methodologies which are accepted to meet the required
accuracy of the survey. As a result of the latter, specific “grades” of survey
instrumentation equipment were established on the basis of their ability to achieve certain
degrees of geospatial accuracy in their resulting data. In terms of GNSS/GPS equipment,
the United States Geological Survey (USGS) recognizes these grades as mapping-grade,
differential-grade, and survey-grade (USGS 2017).

While mapping-grade and differential-grade survey instrumentation are accepted
to result in geospatial accuracies of 9.84 ft. (3 meters) and 3.28 ft. (1 meter) respectively,
survey-grade instrumentation is general accepted to achieve geospatial accuracies
between 0.065 ft. (2 centimeters) and 0.164 ft. (5 centimeters). For this reason, mapping-
grade and differential-grade instrumentations and resulting data are considered adequate
for surveying efforts requiring lesser degrees of geospatial accuracy than that of survey-

grade efforts. Although these data are still significantly valuable for numerous purposes
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and applications, survey-grade data remains required for those applications, such as
engineering, in which high geospatial accuracy is inherently required for reasons of
geographic and/or structural safety and integrity (FGDC 1998, USGS 2017). As a result,
survey-grade data are generally subject to a much higher degree of scrutiny among
professional surveyors and survey data recipients. It is this scrutiny which has spurred a
heated, ongoing debate as to whether modern prosumer sUAS and their derivative

geospatial data are truly capably of achieving survey-grade accuracy.
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CHAPTER III

LITERATURE REVIEW

Earliest studies

The first unmanned aircraft, known as the “Kettering Bug”, was developed by
Orville Wright and Charles Kettering in 1918 for experimental use by the U.S. military in
the final year of World War I. Post-war research into unmanned aircraft continued
briefly but was later halted in the 1920’s due to opposing research priorities and
tremendous funding deficiencies. Further research into unmanned aircraft operations and
applications did not resume in significant capacity until the onset World War II. While
the Kettering Bug and other early generations of unmanned aircraft have little in common
with the modern sUAS platforms of today, these first platforms demonstrate the earliest
historical use of unmanned aircraft — a consideration which often pre-dates typical
expectations and perceptions. Furthermore, the development and experimental
deployment of early unmanned aircraft like the Kettering Bug undoubtedly laid the
foundation on which today’s sSUAS technologies have been built (Marshall et al. 2016).

Civilian scientific research on unmanned aircraft platforms and applications
gained traction in the latter half of the 20" century (Remondino 2011, Marshall et al.
2016). Unmanned aircraft from this time, similar to their military predecessors, were
generally not as complex or developed as today’s modern sSUAS. For example,
Whittlesley 1970 utilizes perhaps the simplest form of sUAS, a camera-equipped tethered
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balloon, to capture aerial photographs of an archaeological site from a non-traditional
perspective. Alternatively, Wester-Ebbinghaus 1980 explores the practice (and perceived
scientific value) of UAS aerial photography by using a radio-controlled model helicopter
— a platform which more closely resembles modern sUAS. This study in particular
remains relevant today as similar radio-controlled single-rotor sUAS (such as the model
helicopter in Wester-Ebbinghaus 1980) and multi-rotor sUAS (such as those used in this
thesis research) represent the most popular and prevalent form of prosumer sUAS by far.
More importantly, these early civilian studies, among few others, represent the pivotal
introduction of UAS and sUAS into the field of aerial photogrammetry and

photogrammetric surveying.

Modern developments

In consideration of these early research efforts, SUAS photogrammetric surveying
remains a relatively new concept and practice. Traditionally, photogrammetric surveying
was conducted near exclusively through the use of sensor-equipped manned aircraft for
data collection, and hard-copy, analog processing for data interpretation. This traditional
methodology has been the subject of its extensive scientific research for many decades,
much of which remains fundamentally relevant and applicable to photogrammetric
surveying today (e.g. Hirai 1962, Oshima & Usami 1964). However, modern
developments in both sUAS platforms and photogrammetric surveying practices have
recently altered the landscape of photogrammetric surveying (Tonkin et al. 2014).

As early sSUAS began to provide an alternate method of aerial photographic data
collection, recent scientific research and resulting technological developments have

continuously improved the ability of modern sUAS platforms to capture high resolution
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remote sensing data (Remondino et al. 2011, Colomina & Molina 2014, Tonkin et al.
2014). Specifically, scientific research in this area includes studies on modernized,
compact digital cameras (McCaffrey et al. 2005), sensor stabilization systems (e.g.
Sushchenko & Goncharenko 2016), navigation and orientation components (e.g. Chao et
al. 2010, Cooper et al. 2015), and autonomous flight operations (e.g. Vasuki et al. 2014,
Cooper et al. 2015). Furthermore, the enactment of U.S. federal regulations for
commercial SUAS operations beginning in 2014 further contributed to modern sUAS
developments by establishing and legitimizing the use of sSUAS for professional
applications (FAA 2017).

For photogrammetric surveying practices, the most pivotal modern developments,
as previously mentioned, have resulted from scientific research and corresponding
developments in the fields of automated feature matching and computer vision
technologies (Westoby et al. 2012). In the case of automated feature matching, the
development and implementation of complex feature-based algorithms in the late 1980°s
allowed for autonomous scaling and matching of digital image data and corresponding
subject matter — thereby establishing the first concepts of a digital photogrammetric
methodology (e.g. Forstner 1986, Harris & Stephens 1988). Additionally, in the case of
computer vision technology, scientific research from the early 1990°s greatly improved
computational motion perception and digital image data subject matter triangulation (e.g.
Spetsakis & Aloimonos 1991). The contributions of these research efforts and similar
studies eventually resulted in the development of SfM, a modern photogrammetric
practice which has since been the subject of much additional research (e.g. Westoby et al.
2012, Tonkin et al. 2014, Clapuyt et al. 2016, Ishiguro et al. 2016).
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For the most part, these modern developments in sUAS technology and StM
photogrammetry have resulted in a new, novel, and relatively capable method of
photogrammetric surveying, assuming the presence of adequate sUAS components and
SfM computational processing hardware and software (Tonkin et al. 2014). However,
existing research has also frequently questioned the ability of this new method to achieve
the required accuracy of inherently demanding geospatial applications, such as
professional surveying (Hugenholtz et al. 2013, Siebert & Teizer 2014, Mah &

Cryderman 2015, Pineux et al. 2017).

Applied geospatial studies

In most geospatial applications there exists a longstanding, fundamental need to
accurately map or model the geographic topology and/or surface features of a given
survey area. Recently, modern sUAS platforms, SfM photogrammetry, and the
combination of these technologies in performing photogrammetric surveying, has been
found increasing useful in meeting this need — often with greater ease and lower costs
than traditional surveying methods (Remondino et al. 2011, Colomina & Molina 2014).
This development is clearly demonstrated by the increasing number of recent scientific
studies which either utilize, or directly examine, these technologies for a number of
geospatial fields and applications (e.g. Westoby et al. 2012, Hugenholtz et al. 2013,
Cryderman et al. 2014, Sibert & Teizer 2014).

Despite this recent increase in SUAS utilization, the geospatial accuracy of SUAS
+ StM derived survey data remains questionable for geospatial applications demanding
consistent, high-accuracy survey data. (e.g. Pineux et al. 2017). This is due, in part, to a

number of a pivotal considerations which research has found to influence geospatial
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accuracy in sUAS + SfM survey data. The most important and commonly recognized of
these considerations (in regards to derivative survey data accuracy) include topology and
surface characteristics, meteorological conditions, and survey methodology (Tonkin &

Midgley 2016, James et al. 2017).

sUAS + SfM accuracy considerations

To begin, certain land cover characteristics are currently unbecoming of the SUAS
+ SfM methodology’s ability to achieve accurate survey data. For example, dense
vegetation is widely known to inhibit SfM’s ability to return accurate ground positions
and elevation measurements (Wallace et al. 2016, Watanabe & Kawahara 2016). This is
true as sUAS data collection is limited to the field-of-view (FOV) of the onboard sensor
payload. In the absence of a specialized sensor, dense vegetation obstructs this FOV
from collecting data at ground level for accurate topological mapping and modeling.

Surfaces exhibiting steep elevation change (both natural and man-made) are also
difficult to accurately map/model using the SUAS + SfM survey method (Bemis et al.
2014, Jaud et al. 2016). First, steep elevation changes may obstruct the FOV of nearby
terrain during sUAS data collection in just the same way as vegetation. Furthermore,
additional challenges arise if sSUAS data collection altitude does not account for and
adjust to follow steep topological elevation changes. Properly adjusting sSUAS data
collection altitude in these areas allows photographic data to maintain a consistent ground
sample distance (GSD) across the remote sensing dataset (Udin & Ahmad 2014, James et
al. 2017). However, the ability to autonomously perform this adjustment is not yet

common in most prosumer SUAS platforms — hence, it is often unconsidered or
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overlooked in favor of a fully autonomous workflow (Vasuki et al. 2014, Cooper et al.
2015).

Elevation changes resulting from large, man-made surface features extending into
the airspace above a survey area may further complicate and inhibit the sSUAS + SfM
methodology. These features may impede sUAS ability to safely perform remote sensing
data collection at low altitudes. Furthermore, these features often represent the steepest
elevation changes in a given survey area and are known to obstruct sensor FOV of
surrounding areas, usually more so than naturally occurring surface features. Lastly,
these man-made features nearly always possess distinct linear edge features which SfM
photogrammetry generally struggles to reconstruct (Ruzgiene et al 2015, Ishiguro et al.
2016, Jaud et al. 2016).

Meteorological conditions are likewise known to influence sUAS + SfM
derivative survey data, as well as the data collection process itself (Remondino et al.
2011, Colomina & Molina 2014). High winds (or any wind speed which affects the flight
path of the sUAS) are especially troublesome as SUAS platforms must battle these winds
while performing remote sensing data collection. As a result, photographic data may be
offset or disoriented from its intended position and lead to errors during SfM processing
(Cooper et al. 2015, Sushchenko & Goncharenko 2016). Sporadic cloud cover also
presents a challenge in the form of incident energy/lighting variations across a survey
area. These variations are known to challenge the feature matching algorithms utilized
by SfM as topological and surface features are more difficult to match and reconstruct in
inconsistent lighting. Similarly, in the absence of sporadic cloud clover, the incident

angle of solar energy remains a primary consideration as surface features may cast
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shadows within the survey area — again resulting in troublesome lighting variations
(Clapuyt et al. 2016, Ishiguro et al. 2016).

Lastly, survey methodology presents the most pivotal of considerations in terms
of derivative survey data accuracy. Methodological error is a well-documented source of
error in remote sensing data collection practices (Jenson 2007). This holds true in the
case of sSUAS + SfM photogrammetric surveying and its associated methodologies
(Mesas-Carrascosa et al. 2016, Tonkin & Midgley 2016, James et al. 2017). SfM
generally requires a quantitatively larger set of images than traditional photogrammetry
to perform 3D scene reconstruction. Additionally, SfM also requires an exceptionally
higher degree of overlap in stereo images than traditional photogrammetry (Konstantinos
et al. 2016, Nikolakopoulos et al. 2017). For this reason, the sUAS + SfM survey
methodology is fully dependent on thorough, comprehensive data collection of the entire
survey area(s) with appropriate degrees of image overlap. Existing research has
demonstrated that failure to perform sUAS remote sensing data collection in this manner
will result in incomplete and/or erroneous derivative survey data (Mah & Cryderman
2015, Jaud et al. 2016, Cook 2017).

Furthermore, the georeferencing of SUAS + SfM survey data into geographic or
projected coordinate systems requires additional steps in the survey methodology. The
use of GCPs, though not required for SfM 3D reconstruction in relative “image space”
coordinates, are now inherently required for accurate georeferencing of survey data (e.g.
Tonkin & Midgley 2016, James et al. 2017, Molina et al. 2017). Additionally, the use of
sampled checkpoints is also required to assess survey accuracy relative to the geographic

or projected coordinate system (FGDC 1998). The placement, in sifu collection, and
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integration of these points in the survey methodology workflow presents another source

of potential error in sSUAS + SfM derivative survey data.

Observed accuracies in existing research

Observed accuracies have varied in applied geospatial studies using the sUAS +
SfM method. This is due, in part, to numerous variations in the accuracy considerations
above and the rapid release of new and more capable SUAS platforms and components.
In the most recent studies, some sUAS +SfM derived survey data appear on the verge of
achieving survey-grade accuracy at 0.164 ft. (5 cm.). For example, Aguera-Vega et al.
2017 found geospatial accuracy values of 0.190 ft. (5.8 cm.) — 0.147 (4.5 cm.) in
derivative survey data when optimized by 15-20 GCPs during SfM processing. However,
in this study the 0.164 ft. (5 cm.) survey grade accuracy threshold was not met at the 95%
confidence level — a requirement of accuracy classification by FGDC standards (FGDC
1998). A similar study, Clapuyt et al. 2015, found the geospatial accuracy of sUAS +
SfM derived survey data to be approximately 0.196 ft. (6 cm). This study also added that
resulting accuracy “can easily be improved” through the use of higher accuracy GCPs.
The accuracy results of both studies border on survey-grade distinction and demonstrate
significant improvement over similar studies as little as 3-4 years prior (e.g. Hugenholtz
et al. 2013, Mancini et al. 2013, Franesco & Remondino 2014).

In most studies, including those mentioned above, observed accuracies are
reported in the form of root mean square error (RMSE) values representing
error/deviation from benchmark checkpoints or established data within a survey area.

For example, Niethammer et al. 2012 reports the accuracy of sUAS + SfM survey data by

calculating the RMSE deviations from benchmark terrestrial laser scanning data in
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studying the geological impacts of a recent landslide event. In this study accuracy was
reported at ~ 0.5 meters based on the calculated RMSE values. Similarly, Siebert &
Teizer 2014 also reports sSUAS + SfM survey data accuracy in the form of RMSE
deviations, this time based on benchmark survey data of higher accuracy from a robotic
surveying total station. In this study, accuracy is reported as 0.042 meters - a higher
observed accuracy than the previous Neithammer et al. study of 2012 and consistent with

similar accuracy improvements over the same time period cited above.

Need for additional research

Variations in the accuracies reported above, while scientifically insightful, have
certainly contributed to the debate surrounding sSUAS ability to achieve survey-grade
accuracy. Again, since most accuracy results are presented in the form of RMSE, these
values can sometimes give the impression of survey-grade accuracy. FGDC standards
recognize RMSE as an “accepted estimate of geospatial accuracy”, however, RMSE
values must be subject to further statistical analysis to achieve an FGDC accuracy
classification at the 95% confidence level (FGDC 1998, e.g. Aguera-Vega et al. 2017).

Since accuracy is not always the explicit focus of these studies, discussion of
accuracy is often surpassed by more extensive discussion of concepts which are specific
to the geospatial field of the research effort (e.g. Hugenholtz et al. 2013, Bemis et al.
2014). For this reason, additional research focusing on geospatial accuracy testing and
quantification of modern prosumer sUAS + SfM survey data remains continuously
needed as SUAS and SfM technologies advance. This is clearly demonstrated by both the
increasing number of studies utilizing SUAS, and the documented improvements in SUAS

+ SfM derived geospatial accuracies in recent research (Clapuyt et al. 2016, Agtiera-Vega
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etal. 2017). Furthermore, the need for this continued research is regularly acknowledged
in existing scientific literature (Remondino et al. 2011, Colomina & Molina 2014, Tonkin
et al. 2014, James et al. 2017). Therefore, the thesis research methodologies, results, and
conclusions described in the following sections have been designed and conducted to

contribute to this scientific research need as best as possible.
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CHAPTER IV

FIELD METHODS

For accuracy testing and evaluation, FGDC Geospatial Positioning Accuracy
Standards dictate “accuracy testing by an independent source of higher accuracy is the
preferred test for positional accuracy” (FGDC Geospatial Positioning Accuracy
Standards 1998, Part 3, Section 3.2.2). This method of accuracy testing is likewise
endorsed by the U.S. Spatial Data Transfer Standard (SDTS) (ANSI-NCITS, 1998) as
referenced in FDGC standards (FGDC 1998). Therefore, in compliance with established
standards, two survey area test sites were selected and utilized for accuracy testing of
sUAS + SfM derived survey data by an independent source of higher accuracy. Specific
survey area details and corresponding in sifu and remote sensing methodologies are

discussed in the following sections.

Survey areas

For this research, two survey area test sites on the grounds of George M. Bryan
Field in Starkville, MS were used for accuracy testing and evaluation of sUAS + SftM
derived survey data. The selected survey areas represent two fundamentally differing
survey environments, each with its own topological and surface characteristics, to allow
for a more comprehensive evaluation of SUAS + SfM derived survey data. These survey
areas have been hereafter referred to as Survey Area #1 (SA-1) and Survey Area #2 (SA-

2) as shown in Figure 4.1 below.
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Figure 4.1  Survey Areas Map (SA-1, SA-2)

Survey Area #1 (SA-1) and Survey Area #2 (SA-2) located on the grounds of George M.
Bryan Field in Starkville, MS.

SA-1 represents approximately six acres of urban, industrial survey environment
with built-up land use features dominating the geographic landscape. Alternatively, SA-2
represents approximately 11 acres of rural, undeveloped survey environment with mostly
rangeland land use characteristics. Each survey area provides recognized challenges for
the sUAS + SfM survey method. Specifically, SA-1 possess many steep elevation
changes and sharp linear features resulting from the built-up landscape. SA-2, on the
other hand, is covered in its entirety by short, grassy vegetation. Again, these survey
environments were intentionally utilized to allow for accuracy testing of sUAS + SfM

derived data across differing landscapes.
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In situ survey equipment

For accuracy testing, a Trimble R6 GNSS differential RTK GPS (hereafter
Trimble R6) served as the independent means of higher accuracy by which sUAS + SfM
survey data were evaluated. Trimble R6 manufacturer specifications show that horizontal
and vertical accuracies up to 0.026 ft. (0.008 m.) and 0.049 ft. (0.015 m.), respectively,
are achievable using RTK surveying techniques. Therefore, according to FGDC
standards, the Trimble R6 system can adequately serve as the independent source of
higher accuracy for testing of SUAS + SfM derived survey data in the research
experiment. Furthermore, based on manufacturer specifications, the Trimble R6 is
clearly capable of achieve geospatial accuracies within the 0.164 ft. “survey-grade”
accuracy threshold. This is representative of most professional RTK GPS surveying
equipment and provides some context on professional expectations of “survey-grade”

instrumentation and corresponding geospatial accuracy.

In situ field methodology

In situ field methods began by establishing the base position of the Trimble R6 in
order to collect RTK differential GPS measurements of GCPs and checkpoint locations
within both survey areas. National Geodetic Survey (NGS) monument #DJ1746, located
nearby on the grounds of George M. Bryan Field, was held as the base position for all
RTK differential GPS measurements at both SA-1 and SA-2. This monument serves as
the current GPS and vertical control monument for George M. Bryan Field with third-
order geodetic control accuracy and FGDC observed network accuracies of 0.0357 ft.
(0.0109 m.) horizontally and 0.1266 ft. (0.0386 m.) vertically. The accuracies of NGS

monument #DJ1746 shown in entirety in Appendix A, remain in compliance with FGDC
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standards for accuracy testing by independent source of higher accuracy. Figure 4.2
below shows the Trimble R6 base station positioned on NGS monument #DJ1746 prior

to RTK in situ measurement collections at SA-1 and SA-2.

National Geodetic Survey (NGS) Trimble R6 Base Station operating from a fixed, level position
Monument DJ1746 centered 6.561 ft. (2 m.) above NGS Monument DJ1746.

Figure 4.2  NGS Monument DJ1746 and Trimble R6 Base Station

Trimble R6 base station operating from National Geodetic Survey (NGS) Monument
DJ1746 as located in the field. Field methodology intended to allow for highest accuracy
in real time kinematic (RTK) GPS in situ data collection.

With an active base station in place, in situ field work continued with the
placement and collection of GCPs and checkpoints within SA-1 and SA-2. GCPs were
needed to promote accurate georectification of SUAS derived survey data. However,
these GCPs could not be used for accuracy assessment purposes as survey data accuracy
is biased in GCP locations after georectification. Alternatively, checkpoints were

exclusively needed for accuracy assessment purposes. Since checkpoints are not used for
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survey data georectification, these points provide unbiased ground-truth positions for use
in accuracy assessment of SUAS derived survey data.

Geospatial location measurements for all points were recorded via Trimble R6 as
X, y, and z coordinate values in the Geoid 12B earth model, North American Datum of
1983 (NADS3), State Plane — Mississippi East coordinate system (SP — MS East), in U.S.
Survey Feet units (ft.). This specific geoid, datum, and coordinate system has been used
intentionally as this geospatial framework is accepted in traditional surveying practices to
yield the highest local accuracy in the geographic region of this research. Furthermore,
the use of U.S. Survey Feet measurement units has also been done intentionally as this is
the most common unit of measure for U.S. surveying applications and is often required

for geospatial data use by many private and governmental entities.

In situ field methods for survey area #1 (SA-1)

For SA-1, a total of 12 GCPs and 20 checkpoints were placed and collected using
the Trimble R6. GCPs were placed systematically across SA-1 with one of the GCPs
being intentionally placed on the roof of a built-up structure to promote accurate SfM
reconstruction of the survey area. The total number and placement of GCPs for SA-1
represents a frequency distribution of approximately 1 GCP per 0.5 acres of survey area.
Checkpoints were placed according to FGDC standards which require that “A minimum
of 20 checkpoints shall be tested”, and that the checkpoints be “distributed to reflect the
geographic area of interest and the distribution of error in the dataset” (FGDC 1998).
Since no established distribution of error was available for SA-1 at the time of research,
half of the checkpoints (10) were placed on, or adjacent to, built-up surface features

which were expected to exhibit higher error based on known SfM photogrammetric
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challenges (Ruzgiene et al 2015, Ishiguro et al. 2016, Jaud et al. 2016). The remaining
checkpoints (10) were distributed to account for the cumulative reaches of SA-1 per
FGDC standards (FGDC 1998).

It is worth noting the quantity of GCPs used here is rather extensive and not
necessarily representative of traditional surveying and photogrammetric methods. In
traditional practice, as few GCPs as possible are placed during in situ fields methods to
achieve the desired georectification accuracy. This is because in situ GCP placement and
collection often requires significant time and effort, sometimes in very hazardous
geographic environments. Since these considerations were not a factor in this research,
GCPs were placed in an intentionally high frequency in order to provide optimal
parameters for accurate georectification (James et al. 2017, Agiliera-Vega et al. 2017).
Additionally, the use of 20 checkpoints, while minimal by FDGC standards, remains in
compliance with required accuracy testing standards. Furthermore, this number of
checkpoints was expected to be sufficient given the relatively limited geographic scope of
SA-1. Figure 4.3 below demonstrates GCP placement and in situ collection via Trimble
R6 GNSS Rover in the field at SA-1. Additionally, Figure 4.4 below represents all GCP

and checkpoint locations as collected for SA-1.
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Survey Area #1 (SA-1) - GCP and Checkpoint Locations
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Figure 44  Survey Area #1 (SA-1) — GCPs and Checkpoints

SA-1 Ground Control Points (GCP) for georectification, checkpoints (ckp) for accuracy
testing, and Trimble R6 Base Station relative to SA-1 for in situ data collection.

In situ field methods for survey area #2 (SA-2)

For SA-2, a total of 21 GCPs and 20 checkpoints were placed and collected using
the Trimble R6. GCPs were again placed systematically across the entire survey area at
an approximate frequency distribution of 1 GCP per 0.5 acres. The additional GCPs used
here, in comparison to SA-1, are the result of maintaining this same frequency
distribution across the larger geographic acreage of SA-2. Checkpoints within SA-2 were
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likewise placed according to the FGDC standards mentioned above. Since the land cover
of SA-2 is nearly uniform, and no record of error distribution was available at the time of
research, checkpoint locations were selected in an effort to best represent the geographic
area of SA-2 per FGDC standards.

The number of GCPs used in SA-2 (21 total) was just as extensive as SA-1 as
both survey areas share a GCP distribution of approximately 1 GCP per 0.5 acres. SA-2
possess more total GCPs simply as a result of its larger geographic size. Again, the
extensive use of GCPs in both survey areas was done intentionally to optimize
georectification accuracy of all SUAS derived survey data. As with SA-1, the FDGC
minimum of 20 checkpoints were again used for accuracy testing of SA-2 survey data in
compliance with FGDC accuracy testing standards. Again, this number of checkpoints
was expected to be completely sufficient for accuracy testing across the geographic scope
of SA-2. Figure 4.5 below shows an example of checkpoint(s) used in both SA-1 and
SA-2, while Figure 4.6 shows all GCP and checkpoint locations collected during in situ

field methods for SA-2.
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Survey Area #2 (SA-2) - GCP and Checkpoint Locations

Figure 4.6  Survey Area #2 (SA-2) — GCPs and Checkpoints

SA-2 ground control points (gcp) for georectification, checkpoints (ckp) for accuracy
testing, and Trimble R6 Base Station relative to SA-2 for in situ data collection.

Remote sensing survey equipment

Remote sensing survey equipment for this research effort includes two modern
prosumer sUAS platforms. The specific make and model of these platforms includes the
DJI Phantom 3 Advanced and the DJI Phantom 4 Pro, hereafter referred to as P3A and

P4P respectively.
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The P3A model was released in April 2015 and represents the mid-level platform
between the “Standard” and “Professional” Phantom 3 models. The P3A possesses a 12-
megapixel RGB camera payload powered by a 1/2.3” complementary metal-oxide
semiconductor (CMOS) sensor with an electrical rolling-shutter mechanism. For the
purpose of this research, the P3A may also serve as a surrogate representation of similar
prosumer sUAS platforms including the Phantom 3 Pro and Phantom 4 Standard. These
additional platforms deploy a nearly identical payload camera in regards to still image
capture, and only possess improved payload capabilities in regards to video capture
(higher resolutions and lower frame rates). Since remote sensing data collection and
corresponding SfM processing in this experiment utilize only still image data, P3A
survey data accuracies observed and presented in this research are expected to be
representative of Phantom 3 Pro and Phantom 4 Standard derived survey data accuracies
as well.

The P4P model was released in November 2016 and represents the latest modern
capabilities of the DJI Phantom prosumer platform series as only cosmetic re-renderings
of this platform have been released since. The P4P platform possesses a 20-megapixel
RGB camera payload powered by a 1” CMOS sensor and mechanical global-shutter
mechanism. Therefore, the P4P utilizes an inherently more capable camera payload than
previous Phantom generations. Besides the obvious improvement in megapixel
resolution and sensor size, the mechanical global-shutter mechanism is especially
important in regards to geospatial applications as previous sUAS rolling-shutter camera
payloads have proved troublesome in achieving high-accuracy photogrammetric results
(Liang et al. 2008, Albl et al. 2015). For this reason, P4P derived survey data accuracies
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were expected to exceed that of the P3A and earlier Phantom generations. Furthermore,
for the purpose of this research, the P4P is assumed to represent the latest in modern
prosumer sUAS capabilities and derivative survey data accuracies until the release of

newer, more capable prosumer sUAS platforms in the near future.

Remote sensing field methodology

Remote sensing field methodologies began with securing the required permissions
to perform sUAS operations in the vicinity of George M. Bryan Field. With proper
permissions secured, remote sensing data collection flights were planned for both SA-1
and SA-2 using the proprietary Pix4D Capture mobile application installed on an iPhone
6S. The use of Pix4D Capture in planning and conducting remote sensing data collection
was a intentional decision as this application allows for streamlined consistency between
data collection and SfM processing of remotely sensed digital image data in Pix4D
Mapper Pro (discussed further in Chapter 5 — DATA PROCESSING). Furthermore,
Pix4D Capture allows for a number of specific, user-defined data collection parameters,
such as flight altitude and image overlap, which are integral to resulting survey data

accuracy.

Specific data collection parameters

User adjustments were made only to Pix4D Capture data collection parameters
which are standard in all SUAS data collection programs and are known to influence SfM
processing and resulting survey data accuracy. Adjusted parameters and their exact
corresponding values are as follows: Altitude = 300 ft. AGL, Angle of the camera = 90°,

Front overlap = 85%, and Side overlap = 85%. Remaining Pix4D Capture data collection
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parameters (those being mostly unique to the Pix4D Capture application) were left at
default settings. These parameters and their exact default values are as follows: Look at
grid’s center = Yes, Picture trigger mode = Fast mode, Drone speed: Normal, White
Balance = Auto, and Ignore homepoint = No. All final Pix4D Capture parameters as

listed here are shown in the Pix4D Capture interface below in Figure 4.7.

< Settings

Angle of the camera
90°

@

N

Side overlap ®
85%

Front overlap ® - ._ a0
85% : :

]
vz
L]

Look at grid's center
Yes

K

< Settings

Yes
Picture trigger mode @® —

Drone speed .
Slow Fast
Normal

»

4

N

White balance A B
Ignore homepoint 0 o

Figure 4.7  Pix4D Capture — Remote sensing data collection parameters

Remote sensing data collection parameters as shown in Pix4D Capture mobile
application. All parameters were held constant throughout sUAS remote sensing data
collection with both the P3A and P4P, at both SA-1 and SA-2. Not pictured are Altitude
=300 ft. Above Ground Level (AGL). Resulting Ground Sample Distance (GSD) for
P3A ~4.0 cm. or 0.13 ft. per pixel. Resulting GSD for P4P ~ 2.5 cm. or 0.08 ft. per
pixel.
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The above Pix4D Capture parameters were held constant for all remote sensing
data collection flights with both the P3A and P4P, at both SA-1 and SA-2. The choice to
adjust these parameters, or have them remain at default values, was made consciously in
an effort to achieve optimal survey data accuracy using only those parameters which are
commonly available across all SUAS remote sensing platforms. In doing so,
experimental results were intended to be more widely applicable and not specific to the
Pix4D Capture application itself. Additionally, the consistent use of these parameters by
both sUAS platforms, and at both survey areas, was also intentional as this was meant to
reduce the possibility of introducing methodological variables which may have
unintentionally affected resulting survey data accuracies. Finally, it is important to again
note remote sensing data collection with both sUAS platforms was conducted at 300’
AGL. However, as a result of camera payload variations (i.e. improved payload in P4P),
resulting Ground Sample Distances (GSD) varied between the two platforms (P3A GSD

~4.0 cm. or 0.13 ft. per pixel, P4P GSD ~ 2.5 cm. or 0.08 ft. per pixel).

Remote sensing field methods for survey area #1 (SA-1)

Remote sensing data collection at SA-1 began on July 26, 2017 at approximately
12:21 p.m. to allow for optimal, evenly distributed incident lighting across the built-up
landscape. Remote sensing data collection was conducted with all 12 GCPs and 20
checkpoints in place and easily visible. A total of 4 data collection flights were planned,
whereby each sUAS platform would perform 2 data collection flights of SA-1. The first
flight would perform data collection at a North/South orientation flight path, while the
second flight plan would take an East/West orientation. Data collection at these opposing

orientations has been shown to benefit StM processing as the cumulative image dataset
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provides additional perspective for SfM feature matching and surface reconstruction
(Westoby et al. 2012, Franesco & Remondino 2014, Ishiguro et al. 2016) — especially for
built-up surface features like those in SA-1.

P3A data collection was conducted first with the North/South orientation flight
taking place from 12:21 p.m. — 12:28 p.m. and yielding 91 JPG digital images. In
preparation for launch of the East/West flight plan, the P3A returned a “motors
overheated” error. After attempting to cool the P3A for approximately 10 minutes and
still receiving this error, the East/West flight plan was scrapped in the interest of safety.
Therefore, only the 91 JPG images collected during the first flight were utilized in later
SfM processing and survey data generation for the P3A at SA-1. Fortunately, this
represents the only instance of instrumentation error during all remote sensing data
collection efforts.

P4P remote sensing data collection at SA-1 commenced with the North/South
orientation flight from 12:40 p.m. — 12:50 p.m. yielding 120 JPG digital images. This
flight was immediately followed by the East/West orientation flight from 12:55 p.m. —
1:06 p.m. yielding 121 JPG digital images. Therefore, between the two flights, a
cumulative remote sensing dataset of 241 JPG digital images was achieved for later SfTM
processing and survey data generation for the P4P at SA-1. Figure 4.8 below shows both

P4P flights in the Pix4D Capture user interface as conducted at SA-1.
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Figure 4.8  Flight Plans — P4P at Survey Area #1 (SA-1)
P4P flight plans (North/South and East/West) as conducted during remote sensing data

collection at SA-1 on July 26, 2017. Perpendicular flight plans were intended to aid later
Structure-from-Motion (SfM) processing and reconstruction of SA-1 survey data.
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Remote sensing field methods for survey area #2 (SA-2)

Remote sensing data collection for SA-2 was conducted in the late morning hours
of July 26, 2017 prior to remote sensing data collection at SA-1. The choice to start
remote sensing data collection at SA-2 was intentional as the land-cover of this survey
area was far less subject to uneven incident lighting and shadowing than SA-1. A total of
4 data collection flights were conducted, again with each sUAS platform performing 2
data collection flights utilizing the North/South and East/West flight paths.

P4P remote sensing data collection commenced first with the North/South data
collection flight at approximately 10:35 a.m. — 10:49 a.m. and yielding 279 JPG digital
images. Immediately following this flight, the P4P East/West flight was conducted from
approximately 11:03 a.m. — 11:17 a.m. and yielded 240 JPG digital images. Therefore,
between the two flights, a cumulative remote sensing dataset of 519 JPG digital images
was achieved for SfM processing and survey data generation for the P4P at SA-2. Figure
4.9 below shows both P4P flights in the Pix4D Capture user interface as conducted at

SA-2.
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Figure 4.9  Flight Plans — P4P at Survey Area #2 (SA-2)
P4P flight plans (North/South and East/West) as conducted during remote sensing data

collection at SA-2 on July 26, 2017. Again, perpendicular flight plans meant to aid later
Structure-from-Motion (SfM) processing and reconstruction of SA-2 survey data.
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Immediately following the P4P flights, P3A remote sensing data collection
commenced at SA-2 beginning with the East/West flight at approximately 11:24 a.m. —
11:36 a.m. and yielding 153 JPG digital images. Next, P3A remote sensing data
collection continued with the North/South flight at approximately 11:46 a.m. — 11:57 a.m.
which yielded 161 JPG digital images. Therefore, between the two flights, a cumulative
remote sensing dataset of 314 JPG digital images was achieved for SfM processing and

survey data generation for the P3A at SA-2.

Meteorological considerations

Given the known implications of meteorological conditions on sUAS operations
and derivative data accuracies (Remondino et al. 2011, Colomina & Molina 2014), this
research aimed to assess SUAS derived survey data collected in favorable meteorological
conditions. For the purpose of this research, favorable meteorological conditions were
considered to be 1) minimal wind speed, ideally <5 mph, and 2) minimal cloud cover,
ideally < 1/8 opaque cloud sky cover. Favorable meteorological conditions were scouted
using National Weather Service (NWS) forecasts and eventually led to remote sensing
data collection on July 26, 2017. Meteorological conditions were recorded in the field
during remote sensing data collection and later verified via NWS weather observations as
shown in Appendix B.

Based on these official NWS meteorological observations, wind speeds during all
remote sensing data collection flights were indicated as “Calm”, which is defined by the
NWS as “A weather condition when no air motion (wind) is detected”. Therefore, all
sUAS remote sensing data collection was indeed conducted in favorable meteorological

conditions in regards to wind. Similarly, NWS meteorological observations also
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demonstrate favorable Weather and Sky Conditions as “Clear” and “SKC” (skies clear),
respectively, for most remote sensing data collection operations. However, these
favorable conditions ceased sometime around 12:45 p.m. as this specific NWS
observation reports weather conditions of “Mostly Cloudy”, which is defined by the
NWS as up to 5/8 sky coverage by opaque clouds. The timing of this specific NWS
observation and corresponding meteorological conditions coincides with the timing of
P4P remote sensing data collection at SA-1 at approximately 12:40 p.m. — 1:06 p.m.
Examination of the P4P digital image data collected at SA-1 during this time corroborates
the NWS observation as regions of cloud-obstructed, uneven incident lighting are visible
as shown in Figure 4.10 below. Therefore, it must be noted that P4P derived survey data
at SA-1 was collected in less-than-favorable meteorological conditions in regards to

cloud cover.
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CHAPTER V

DATA PROCESSING METHODS

With field data collection complete, research efforts immediately shifted to
processing of in sifu and remote sensing data and resulting survey data generation.
Trimble R6 in situ data included x, y, and z coordinates (NAD 1983 State Plane
Mississippi East FIPS 2301 Feet) in comma-separated value format (.csv) for all GCP
and checkpoint positions in both survey areas. Additionally, Trimble R6 in situ data also
included base station receiver files (.T02) which were used to verify base station
positional accuracy on NGS Monument DJ1746 through the NGS Online Positioning
User Service (NGS.OPUS 2018). All sUAS remotely sensed JPG image data were
transferred to a field laptop post-flight, and later transferred from the field laptop to the
primary data processing laptop. Image data was then organized according to SUAS
platform and survey area (e.g. P3A SA-1, P4P_SA-2) for processing. Lastly, STM
processing and survey data generation was then carried out for each image dataset using

Pix4D Mapper Pro.

Pix4D mapper pro

Pix4D Mapper Pro, a proprietary SfM photogrammetry software, was used
exclusively for all SfM processing of sSUAS remote sensing data (Pix4D Mapper Pro —
Version 3.3.29). Pix4D Mapper Pro performs all the fundamental processes of SfM

photogrammetry including feature matching, bundle-block adjustment, surface
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reconstruction, and geometric transformation, and also has numerous platform-specific
processing capabilities as well. Also, as previously mentioned, Pix4D Mapper Pro is
strategically compatible with the Pix4D Capture mobile application used during sUAS
remote sensing data collection. This compatibility allows for the automation of vital
remote sensing processes including camera payload calibration and metadata collection in
exchangeable image file format (.EXIF). Therefore, Pix4D Mapper Pro was intentionally
selected for SfM processing and survey data generation as it allows for strategic
compatibility across data collection and processing methodologies. Furthermore, Pix4D
Mapper Pro was also intentionally selected for its broad applicability as one of the most

common, professionally-used SfM photogrammetry software solutions.

Specific processing parameters
Initial processing

Once an image dataset and its corresponding metadata are defined, “Initial
Processing” represents the first SfM processing step of Pix4D Mapper Pro. During Initial
Processing Pix4D Mapper Pro first computes keypoints (i.e. matching points) within
stereoscopic image subject matter. These keypoints are then utilized in conjunction with
proprietary feature matching algorithms to identify additional feature matches throughout
the image dataset. From these matches, Pix4D Mapper Pro can conduct fundamental SfM
processes including Automatic Aerial Triangulation (AAT) and Bundle Block
Adjustment (BBA). At the conclusion of Initial Processing a sparse point cloud
reconstruction, composed of initial “Tie Points”, is generated and stored within the Pix4D
Mapper Pro project (.p4d). These initial tie points can be analyzed within Pix4D Mapper

Pro, or manually exported for use in other programs. While the density of initial tie
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points is recognizably sparse compared to fully-processed SfM point clouds, they succeed
in providing useful 3D point data in much smaller files, which are more easily
manageable in non-SfM software solutions such as ESRI’s ArcGIS software suite.
Specific data processing parameters for Initial Processing are provided below in Figure

5.1.

¥ Processing Options %

General Matching Calibration

" 1 Keypoints Image Scale
1. Initial Processing
® Full

() Rapid

O Custom

oo
= ::@ 2. Point Cloud and Mesh nage Scale: 1 (Ofginal Image size
oo

Quality Report
B4 p‘ 3. DSM, Orthomosaic and Index
il
Resources and Notifications
£

[+] Generate Qrthomasaic Preview in Quality Report

Current Options: ¢; Thesis_Processing
Load Template Save Template | Manage Templates..,
[ Advanced OK Cancel Help

Figure 5.1  Pix4D “Initial Processing” Parameters

Initial Processing — General tab and associated settings.
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Figure 5.1 (continued)

Initial Processing — Matching tab and associated settings.
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Figure 5.1 (continued)

Initial Processing — Calibration tab and associated settings.

Point cloud generation

After Initial Processing, “Point Cloud and Mesh” represents the second SfM

processing step of Pix4D Mapper Pro. The name of this step refers to the derivative

survey data which is generated and exported at the end of processing. For this step,

survey data include the full density point cloud and 3D textured mesh model. Thesis

research focused more-so on the full density point cloud survey data generated in this

step as these data are more commonly suited for professional surveying applications than

the 3D textured mesh data.

54




During Point Cloud and Mesh processing, Pix4D Mapper Pro builds upon the
completed Initial Processing step to generate a fully-processed point cloud dataset with
significantly higher point density. Pix4D’s online support documentation provides a
simple explanation that Point Cloud and Mesh processing “increases the density of 3D
points of the 3D model computed in step 1. Initial Processing”. After processing,
resulting point cloud data are automatically exported to a pre-designated file location, and
stored within the Pix4D Mapper Pro project. This differs slightly from the initial tie
points data which must be manually exported if desired. Additionally, full density point
cloud data are also stored in a separate Table of Contents layer within Pix4D Mapper Pro
from the initial tie points data. These differences are likely due, in part, to the notion that
full density point cloud data are more comprehensive (and thereby more valuable) than
sparse point data such as the initial tie points. Specific data processing parameters used

for step two, Point Cloud and Mesh, are provided in Figure 5.2 below.
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Figure 5.2

Pix4D “Point Cloud and Mesh” Parameters

Point Cloud and Mesh — Point Cloud tab and associated settings.
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Figure 5.2 (continued)

Point Cloud and Mesh — 3D Textured Mesh tab and associated settings.
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Figure 5.2 (continued)

Point Cloud and Mesh — Advanced tab and associated settings.

Raster data generation

“DSM, Orthomosaic and Index” represents the third and final SfM processing
step of Pix4D Mapper Pro. The name is once again indicative of the step’s resulting
survey data generated at the end of processing. For this step, survey data includes two
raster datasets (DSM and aerial imagery orthomosaic) and an index of associated values.

Thesis research focused more-so on the DSM raster generated in this processing step as it
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contains elevation values (z coordinates) for accuracy testing. However, aerial imagery
orthomosaics were still generated in this step for visual aid in Appendices C —F.

During DSM, Orthomosaic and Index processing, Pix4D Mapper Pro now
interpolates between the 3D points of the dense point cloud from the previous step to
generate resulting DSM raster data. Two methods of interpolation, Inverse Distance
Weighting (IDW) and Triangulation (Delauney), are available for this processing step.
The IDW interpolation method was utilized for DSM data generation because 1) IDW is
the default interpolation option within Pix4D Mapper Pro, 2) IDW was expected to
achieve higher accuracy in DSM data than the Triangulation method, and 3)
Triangulation interpolation method is intended to offer faster processing times for
reconstruction of simple, flat survey areas per Pix4D technical support.

It is important to acknowledge the specific weighting of the IDW interpolation
used in Pix4D Mapper Pro is unknown. This is because Pix4D uses a proprietary
interpolation algorithm specialized to interpolate between the millions of sampled point
locations provided by the point cloud survey data. Without the exact weight values, very
little can be speculated about the IDW interpolation method. Nonetheless, Pix4D
technical support documentation shows IDW to be the preferred interpolation method
when processing time is a non-factor. Full processing parameters for this step, including

interpolation method as discussed here, are shown in Figure 5.3 below.
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Figure 5.3

Pix4D “DSM, Orthomosaic and Index” Parameters

DSM, Orthomosaic, and Index — DSM and Orthomosaic tab and associated settings.
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Figure 5.3 (continued)

DSM, Orthomosaic and Index — Additional Outputs tab and associated settings.
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Figure 5.3 (continued)

DSM, Orthomosaic and Index — Index Calculator tab and associated settings.

In situ data incorporation

As previously mentioned, in sifu data incorporation represents a pivotal
consideration of SfM processing. This is especially true of SfM processing and data
generation for high-accuracy geospatial applications. In situ data for these applications
must accurately, effectively georectify SfM derived datasets and assess their resulting

accuracy.
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GCP position in situ data plays an active role in SfM processing by serving as
points of known location for data georectification. Without GCPs, SfM reconstruction
data can still be processed into a projected coordinate system, however, resulting
geospatial accuracy is known to be exceptionally poor when doing so. Furthermore,
research has shown that data accuracy in SfM derived datasets can be improved through
optimal GCP incorporation (Agiiera-Vega et al. 2017, James et al. 2017, Molina et al.
2017). Therefore, the GCP methodology used in this research was intended to be optimal
for achieving the highest accuracy in SfM derived survey data.

Alternatively, checkpoint position in situ data plays a passive role and are not
directly utilized during SfM processing. Instead, these points are used as benchmark
ground-truth positions for accuracy assessment of sSUAS + SfM derived survey data.
Since GCPs are utilized for georectification, SfM reconstruction accuracy is generally
biased in regions of near proximity to GCPs (e.g. Tonkin et al. 2014, Tonkin & Midgley
2016). Therefore, checkpoints are required (minimum of 20 by FGDC Standards) to
serve as unbiased benchmark positions for accuracy testing (FGDC 1998). The details of
GCP and checkpoint implementation in Pix4D Mapper Pro are discussed in the following

sections.

Ground control point (GCP) implementation

In Pix4D Mapper Pro there are two methods for GCP implementation. For this
research, the Pix4D recommended method was used as described here. First, Initial
Processing (first STM processing step) was completed. Next, GCP in situ data and all
associated coordinate positions were loaded to the Pix4D project through the “GCP/MTP

Manager” tool. Next, the “rayCloud Editor...” function within the GCP/MTP Manger
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was launched to identify and manually “tag” GCP locations in each project’s image
dataset. Manual GCP tagging here is similarly found in the georectification tools of
varying geospatial software solutions, such as ESRI’s Georeferencing Toolbar.

For Pix4D Mapper Pro, a minimum of 3 GCPs are required for data
georectificaiton, and each GCP must be manually tagged in at least 2 images. For the
purpose of this research, all GCPs were manually tagged 3-7 times as research has shown
additional tagging, when done properly, improves resulting accuracy of the
georectification. Once GCPs were tagged, the “Reoptimize” process was selected and
run within Pix4D Mapper Pro. This Reoptimize process now takes GCP positions into
account to georectify the project’s initial reconstruction data (tie points). At this point,
any additional datasets resulting from further processing (point cloud, DSM, etc.) will be
georectified as well. An example of manual GCP tagging for georectification in Pix4D

Mapper Pro is provided in Figure 5.4 below.
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Figure 5.4

Ground Control Point (GCP) Implementation

Manual tagging of GCP11 in P4P remote sensing data at SA-2. With the contrasting X
mark of GCP11 clearly visible, the GCP was tagged to best represent the center nail
position where Trimble R6 in situ measurement was collected for accurate
georectification. Once the GCP has been tagged, the “Apply” button becomes active as
seen in the image on the right. Once the GCP is appropriately tagged in the required
number of images, the “Apply” button is clicked to finalize the GCP position for

georectification in Pix4D Mapper Pro.
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Checkpoint implementation

Once the Reoptimize process was completed and project data georectified (tie
points only at this point), checkpoints were added in a nearly identical fashion as the
GCPs. First the GCP/MTP Manager tool is again utilized, this time to load checkpoint in
situ data and all corresponding coordinate positions (still in .csv format). These points
must then be officially designated as “Check Points” using a drop-down menu within the
GCP/MTP Manager. This represents an additional, important step from the GCP
workflow as the GCP/MTP Manager loads all points as “3D GCP” by default — meaning
the points would be used during processing for georectification. Since this is not the
purpose of these points, designating them as “Check Points” within the GCP/MTP
Manager ensures they are not used in data georectification and can therefore be used as
checkpoints for accuracy testing.

Per FGDC standards, a minimum of 20 checkpoints must be used for official
accuracy testing (FGDC 1998). Additionally, Pix4D Mapper Pro requires that these
checkpoints be manually identified (i.e. tagged) in at least 2 images each as with the
GCPs. Therefore, all 20 checkpoints were implemented at each survey area (40
checkpoints total) and were tagged between 3-7 times each to maintain methodological
consistency with GCP tagging. Once manual tagging is complete, deviation from the in
situ benchmark checkpoint position is calculated. This deviation is represented in Pix4D
Mapper Pro as “Error to GCP Initial Position” in the units of the GCP/checkpoint
coordinates (feet in this case). It’s important to note the “Error to GCP Initial Position”

title is synonymous with error to checkpoint initial position, this is simply a static title
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within Pix4D Mapper Pro. An example of checkpoint tagging and resulting Error to GCP

Initial Position is provided in Figure 5.5 below.
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Figure 5.5  Checkpoint Implementation

Manual tagging of CKP8 in P4P remote sensing data at SA-2. With the contrasting
square mark of CKP8 clearly visible, the point was tagged to best represent the center
nail position where Trimble R6 in situ measurement was collected. Again, once the
checkpoint has been tagged, the “Apply” button becomes active and is used to finalize
the checkpoint position in Pix4D Mapper Pro.
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Since checkpoints are not used for data georectification, the Reoptimize process is
not required after checkpoint implementation has been completed. At this point, with all
GCP and checkpoints properly designated in the GCP/MTP Manager and implemented in
the Pix4D Mapper Pro, remaining SfM processing of full density point cloud data
(second SfM processing step) and raster data (third step) can be completed with all the

necessary point data for effective georectification and accuracy testing.

Processing iterations and resulting survey datasets

While all 20 checkpoints were required in each SfM datatset for official accuracy
testing, the number of GCPs used for georectification was intentionally varied for each
dataset, which resulted in multiple processing iterations for each remote sensing dataset
and corresponding Pix4D project. For example, P3A remote sensing data for SA-1
(already stored as P3A_SA-1), when processed without GCPs, resulted in the P3A_SA-
1_OGCP dataset. Similarly, the same P3A data for SA-1, when processed with 5, 8, and
12 GCPs, resulted in the P3A_SA-1 5GCP, P3A_SA-1 8GCP, and P3A_SA-1_12GCP
datasets, respectively.

The first processing iteration for all datasets included no GCPs at all (0GCP) to
provide baseline accuracies values for reference. Again, SfM processing and
georectification is known to result in poor geospatial accuracy. Therefore, accuracies
calculated for all 0GCP datasets will represent known outliers based on this
methodology. However, these accuracies still valuably demonstrate the typical baseline
accuracies of SUAS + SfM derived data in the absence of GCPs. In all subsequent
processing iterations, the number and location of GCPs used for georeferencing were

selected intentionally based on optimal GCP implementation practices for achieving
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geospatial accuracy (Tonkin & Midgley 2016, James et al. 2017). At the conclusion of

data processing, a total of 18 survey datasets were generated, each including initial tie

points, full density point cloud, and DSM survey data for accuracy testing. All

processing iterations and resulting survey datasets are represented below in Figure 5.6.

GCP
sUAS Survey P : Survey sUAS Survey ok Survey
Aircraft Area rocessing Dataset Aircraft A Processing Dataset
Iteration R A Iteration s
0 GCP  —— P4P_5A-1 0GCP |
2114 s inte—oiaed 5GCP  — pap_sa-1 secp
5GCP ——— P3a_sa1sGep SA-1 8 GCP '_—l T
SA-1
8 GCp B30, 281 BECR | 12GCP ———pap_sa-1_12GcP
12 GCP P3A_SA-1_12GCP
. pap
P3A )
0 GCP P3A_SA-2_0GCP 0 GCP  — PaP_sA-2_0GCP |
5 GCP P3A_SA-2_SGCP 5 GCP —1 P4P_SA-2_5GCP
SA-2 8 GCP P34_SA-2_SGCP SA-2 8GCP —— Pap_sa-2 85ch |
' . 11 GCP P4P_SA-2_11GCP
lﬂ ot 21 GCP ——pap_sa-2 216cP
21 GCP P3A_SA-2_11GCP
Figure 5.6  Resulting Survey Datasets

All resulting survey datasets at the completion of data processing. For each survey
dataset three forms of SUAS + SfM derived survey data (initial tie points, full density
point cloud, and DSM) were generated and used for accuracy testing.
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CHAPTER VI

GEOSPATIAL AND STATISTICAL ANALYSIS

Geospatial analysis

FGDC Geospatial Positioning Accuracy Standards, Part 3: National Standard for
Spatial Data Accuracy provides comprehensive guidelines and requirements for
statistical analysis of, and accuracy calculation for geospatial data (FGDC 1998). For this
research, geospatial analysis was first required to observe and calculate the error
measurements required for full statistical analysis. Error measurements were calculated
as positional deviation (Ax, Ay, A;) in feet (ft.) of SUAS + SfM survey data (initial tie

points, point cloud, DSM) from benchmark in-situ checkpoint positions.

Error calculation

Error calculation represented a vital step for this research effort. All observed
error values would be used in statistical analysis for latter error and accuracy calculations
which represent the very premise of this thesis. Additionally, error calculation was
required for each of the three survey data types (initial tie points, point cloud, DSM) in
each sUAS + SfM survey dataset. Given the differences in survey data types, each
required a unique method of geospatial analysis for error calculation. These methods are

described in the following sections before proceeding to statistical analysis discussion.
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Error calculation was simplest for initial tie points data generated in the first
“Initial Processing” step of Pix4D Mapper Pro. During in situ data incorporation
(discussed in previous chapter - DATA PROCESSING METHODS), error is calculated
for all checkpoints within Pix4D Mapper Pro and reported as “Error to GCP Initial

Position”. This calculation occurs at the conclusion of manual checkpoint tagging (e.g.

Initial tie points

Figure 5.5) as shown in Figure 6.1 below.

Figure 6.1

Once manual checkpoint tagging is complete, the active “Apply” button is clicked and
the “Computed Position” of the checkpoint is finalized (Apply button becomes inactive).
“Error to GCP Initial Position” then represents the positional deviation (Ax, Ay, A)
between the “Initial Position” and the “Computed Position” of the checkpoint.
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Error calculation for initial tie points.
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“Error to GCP Initial Position” values were copied to Microsoft Excel spreadsheet
format for all checkpoint locations in all 18 survey datasets. The excel format, as shown
in Table 1.1 below, organizes all error values for further statistical analysis when
calculating RMSE and accuracy later in the research effort. As you can see, the “Error to
GCP Initial Position” values identified for checkpoint 8 (ckp 8) in Figure 6.1 above, are

likewise listed for ckp 8 in Table 6.1 below.

Table 6.1 “Error to GCP Initial Position” for P4AP_SA-2 21GCP checkpoints

PAP_SA-2_21GCP
Error to GCP Initial Position
X Y Z
ckp_1 0.021 0.043 -0.212
ckp_2 0.016 0.002 -0.044
ckp_3 -0.138 0.002 -0.247
ckp_4 -0.036 0.057 -0.011
ckp_5 0.038 0.023 -0.115
ckp_6 0.003 0.053 -0.079
ckp_7 0.043 0.1 0.057
ckp_8 0.005 -0.014 -0.139
ckp_9 -0.025 0.053 -0.156
ckp_10 -0.032 -0.044 -0.015
ckp_11 -0.001 0.038 0.162
ckp_12 -0.112 0.003 0.04
ckp_13 0.035 0.039 -0.131
ckp_14 -0.077 0.013 -0.006
ckp_15 -0.074 0.007 -0.081
ckp_16 0.014 -0.029 -0.206
ckp_17 -0.036 -0.054 -0.205
ckp_18 -0.078 -0.078 0.108
ckp_19 0.04 -0.041 -0.472
ckp_20 -0.087 -0.021 -0.157

“Error to GCP Initial Position” values copied to Microsoft Excel for all 20 checkpoints
(Ax, Ay, Az) in P4P_SA-2 21GCP. Error values are organized for statistical analysis
(RMSE, accuracy at 95% confidence) later in the research effort.
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Point cloud

Error calculation in the fully processed point cloud survey data generated in the
“Point Cloud and Mesh” step of Pix4D Mapper Pro was very similar to that for the initial
tie points. However, for error calculation in this data, specific 3D points and their
corresponding computed positions were used. This differs from error calculation in
initial tie point as the error values were computed from the checkpoints themselves.
Interestingly, the dense point cloud often provided multiple 3D points on any single
checkpoint due to high reconstruction point density. Therefore, a specific 3D point
within the point cloud was selected at each checkpoint location, and the point’s
“Computed Position” was used for error calculation. Specific points were selected to best
corresponded to the central checkpoint position where the in situ checkpoint

measurements were taken as shown in Figure 6.2 below.

Figure 6.2 3D point selection for point cloud error calculation

The 3D point best representing the central checkpoint location was selected. The
corresponding “Computed Position” for this 3D point was then used for error calculation.

73



As Figure 6.2 demonstrates, the dense point cloud does not guarantee point
reconstruction in the exact checkpoint location. It is important to note this method
provides the best option for error calculation according to FGDC requirements.
However, it must be acknowledged that resulting error values for point cloud datasets
may be higher than true geospatial error since 3D points rarely coincide with exact
checkpoint positions.

Once a specific 3D point was selected, its “Computed Position” was copied into
Microsoft Excel. Next, the “Initial Position” of the corresponding checkpoint copied into
the same excel document. With the 3D point computed position and the checkpoint
initial position both in excel, error values were calculated as positional deviation (Ax, Ay,
A;) between the points as shown in Figure 6.3 below. These error values were then
copied into a separate excel document for statistical analysis as shown in Table 6.2

below.
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Table 6.2 Error values for PAP_SA-2 21GCP point cloud survey data

P3A_SA-1_5GCP
Error to Initial GCP Position
(Point Cloud)
X Y VA
ckp_1 -0.161 -0.017 0.223
ckp_2 -0.192 -0.01 0.408
ckp_3 0.114 0.059 0.293
ckp_4 0.01 0.11 0.328
ckp_5 0.073 0.009 0.203
ckp_6 -0.101 -0.052 0.234
ckp_7 -0.045 -0.117 0.275
ckp_8 -0.056 -0.06 0.246
ckp_9 0.07 -0.113 0.245
ckp_10 0.032 -0.093 0.052
ckp_11 0.115 0 0.382
ckp_12 0.153 -0.066 0.411
ckp_13 0.011 -0.01 0.139
ckp_14 0 0.032 0.227
ckp_15 0.087 0.021 0.186
ckp_16 -0.022 0.039 0.424
ckp_17 0.129 -0.046 0.339
ckp_18 0.222 0.098 0.285
ckp_19 0.117 0.113 0.279
ckp_20 -0.028 0.023 0.141

Error values copied to Microsoft Excel for all 20 checkpoints (Ax, Ay, A7) in P4P_SA-
2 21GCP point cloud survey data. Error values are organized for statistical analysis

(RMSE, accuracy at 95% confidence) later in the research effort.

Error calculation in DSM raster data required a different approach for geospatial
analysis. First, DSM raster data generated by Pix4D Mapper Pro for each survey dataset

was imported to ESRI’s ArcMap software program. Once in ArcMap, DSM raster data

Digital surface model (DSM)
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was organized according to dataset and overlaid with in situ checkpoint positions using
the “Add XY Data” tool. With checkpoints in place, ArcMap was zoomed to a 1:1 scale
at each checkpoint location and the “Identify” tool was used to show DSM raster data

elevations (i.e. “Pixel value”) at each checkpoint location as shown in Figure 6.4 below.

Q) Thesis_psus_cis - Avcnass - o x
P A i i | i boprocesie | Comin Wi | il

Deds BXI2CAAa K BEER O3~ sepeme-[O]5]a]F]g

QaMQ il e[l v 0/ B LNES T §see P : L= My
Table Of Contents " x 7 4 = ~
Heom

Layers

Identified & features

Figure 6.4  Raster pixel identification for digital surface model (DSM) error
calculation.

With the “Identify” tool set to <Visible Layers> in ArcMap, DSM pixel values
(elevations in ft.) were identified for all DSM survey data, at all checkpoint locations.
Once identified, these pixel values were copied into Microsoft Excel for error calculation.
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One prominent difference in DSM survey data, as opposed to the initial and full
density point clouds, is that this raster data only possesses vertical coordinate (z)
elevations values. For the purpose of this research, vertical error calculation and
accuracy testing were still conducted on all DSM survey data — however, it is worth
noting FGDC standards require accuracy to be reported both horizontally and vertically,
which could not be done with these data without extensive additional effort to extract
horizontal coordinate values manually from ArcMap. Since vertical accuracy is often
more variable (and more debated) than horizontal accuracy in SfM derived survey data,
vertical accuracy calculations made for DSM survey data were still considered valuable
for this research effort — even though these accuracies could not be formally reported by
FGDC standards (FGDC 1998).

Once DSM raster elevations were identified, the error calculation procedure
matched that of the point cloud data done previously, but exclusively on vertical
coordinates. All elevation pixel values were copied into Microsoft Excel along with
corresponding “Initial Position” checkpoint elevations for vertical error calculation as
shown in Figure 6.5 below. Resulting vertical error values were then copied to a separate
excel document for statistical analysis in the same manner as Tables 1.2 and 1.3, though

again with vertical coordinates only.
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Statistical analysis

Statistical analysis was required to calculate comprehensive error and accuracy
statistics for all three survey data types (initial tie points, point cloud, DSM) in each
sUAS + SfM survey dataset. Specifically, FGDC Geospatial Positioning Accuracy
Standards — Part 3: National Standard for Spatial Data Accuracy (FGDC), Section 3.2.1
Spatial Accuracy uses RMSE “to estimate positional accuracy”, while actual Accuracy is
“reported in ground distances at the 95% confidence level.” (FGDC 1998). The
upcoming sections detail the specific statistical analysis procedures conducted per FGDC

standards to calculate RMSE and Accuracy statistics for all SUAS + SfM survey datasets.

Root mean square error (RMSE) calculation

The FGDC defines RMSE for geospatial data as “the square root of the average of
the set of squared differences between dataset coordinate values and coordinate values
from an independent source of higher accuracy for identical points” (FGDC 1998).
Therefore, “differences between dataset coordinate values” were calculated as error
(positional deviation - Ax, Ay, A;) during geospatial analysis and copied to Microsoft
Excel as described in the previous section. Using these error values, RMSE was
calculated in all coordinate directions (RMSE x, RMSE y, RMSE ;) by squaring the error,
calculating the average square error, and then calculating the square root of the average
square error as shown in the formulas of Figure 6.6 below taken from FGDC Appendix 3-

A. Accuracy Statistics (normative).
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Let:

RMSE, = sqrt[ (X i = X e 70
RMSE, = sqrt] (¥ g - ¥ et )70

where:

X g i+ ¥ da ; @r€ the coordinates of the 1 th check point in the dataset

X check 1+ ¥ check @€ the coordinates of the 1 th check point in the independent source of higher
accuracy

n 1s the number of check points tested

11s an integer ranging from 1 to n

RMSE, = Sqr[Y(Zaa; = Zeear) /0]
where

Z 4ua; 18 the vertical coordinate of the i th check point in the dataset.

7 geac; 18 the vertical coordinate of the 1 th check point in the independent source of higher accuracy
n = the number of points being checked

i is an integer trom 1 to n

Figure 6.6  RMSE formulas

Formulas used for RMSE calculation (RMSE x, RMSE y, RMSE ;) per FGDC Appendix
3-A. Accuracy Statistics (normative).

Vertical RMSE (RMSE ;) calculation is complete after this calculation, but further
statistical analysis is required on RMSE y and RMSE y to calculate overall horizontal
RMSE (RMSE ). To calculate RMSE;,, the sum of squared RMSE x and RMSE y values
was calculated first, then the square root of this sum of squares was taken as shown in the
formula of Figure 6.7 below taken from FGDC Appendix 3-A, Accuracy Statistics

(FGDC 1998).

Horizontal error at point i is defined as sqrt[(X g ; = X check i)” TV dami = ¥ ehecti)-].  Horizontal RMSE
18:

R'Ms}ﬂ = SL]I'tlE((X data,i = X check, i): +(}f data,i " Y ahack.l}:)/n]
=sqrt{RMSE,* + RMSE, N

Figure 6.7  Horizontal RMSE (RMSE ;) formula

With vertical RMSE (RMSE ,) already calculated, horizontal RMSE (RMSE ;) was
calculated using the RMSE values calculated in both horizontal directions (RMSE y,
RMSE)y).
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At the conclusion of RMSE calculation, resulting RMSE ; and RMSE ;, values
were organized within the existing excel document alongside initial error values. These
values were then subject to further statistical analysis for accuracy calculation at the 95%

confidence level per FGDC standards.

Accuracy (95% confidence) calculation

The FGDC reports accuracy “in ground distances at the 95% confidence level”.
Additionally, the FGDC elaborates on accuracy values in the following excerpt from
FGDC Section 3.2.1 Spatial Accuracy — “Accuracy reported at the 95% confidence level
means that 95% of the positions in the datasets will have an error with respect to true
ground position that is equal to or smaller than the reported accuracy value. The reported
accuracy value reflects all uncertainties, including those introduced by geodetic control
coordinates, compilation, and final computation of ground coordinate values in the
product” (FGDC 1998). Therefore, for this experiment, accuracy at the 95% confidence
level means that positional deviation error (Ax, Ay, A7) at only one of the 20 checkpoints
(5%) for either survey area may exceed the reported accuracy.

For horizontal accuracy (Accuracy:), the FGDC provides two methods or “cases”
for calculation. The first case is used when RMSE is equivalent in both horizontal
directions (RMSE x= RMSEy). The second case is used when RMSE is “independent in
the x- and y- component and error” (RMSE x# RMSE y) and resulting horizontal error
values are approximated. Therefore, since RSME values calculated in the previous step
were observed to be independent in both horizontal directions (RMSE x# RMSE y), the
second case and its associated formula were used to approximate Accuracy; in

compliance with FGDC standards.
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For vertical accuracy (Accuracy,), the FGDC provides a single calculation
method. Therefore, this method and its associated formula was used to calculate
Accuracy, in compliance with FGDC standards. The formulas used for Accuracy:and
Accuracy;, calculation are shown in Figure 6.8 below as taken from FGDC Appendix 3-
A, Accuracy Statistics (FGDC 1998). At the conclusion of geospatial and statistical
analysis, resulting Accuracy: and Accuracy, values were organized within existing
Microsoft Excel documents alongside initial error values and RMSE values for each

sUAS + SfM survey dataset.

Formulas for Horizontal and Vertical Accuracy calculation

Accuracy, ~2.4477 * 0.5 * (RMSE, + RMSE, )

Accuracy, = 1.9600 *RMSE,.

Figure 6.8  Horizontal Accuracy (Accuracy;) and Vertical Accuracy (Accuracy,)
formulas.

With RMSE values calculated, Horizontal Accuracy (Accuracyr) and Vertical Accuracy
(Accuracy,) were calculated using accuracy formulas from FGDC Appendix 3-A.
Accuracy Statistics (normative).

83



CHAPTER VII

RESULTS

Accuracy results overview

The accuracy values calculated during geospatial and statistical analysis embody
the fundamental research results of this thesis. As previously quoted from the FGDC,
these accuracy values represent ground distances at the 95% confidence level which
reflect all geospatial uncertainties in the final survey data product. To recap, resulting
accuracies were calculated for two modern prosumer sUAS platforms (P3A, P4P) at two
differing survey areas (SA-1, SA-2). Additionally, multiple processing iterations and
resulting survey data were generated for each dataset by varying the number of GCPs
used for georectification. This includes four processing iterations for SA-1 (0GCP,
5GCP, 8GCP, and 12GCP) and 5 processing iterations for SA-2 (0GCP, 5GCP, 8GCP,
11GCP, and 21GCP). In this manner, a total of 18 sUAS + SfM survey datasets were
generated during the experiment as previously shown in Figure 5.6. For each survey
dataset, three survey data types (initial tie points, point cloud, and DSM) were subjected
to accuracy testing and calculation. For initial tie points and point cloud survey data,
both horizontal and vertical accuracies (Accuracy:, Accuracy,) were calculated. For
DSM data, only vertical accuracy was calculated (Accuracy;). Resulting accuracies for

all SUAS + SfM derived survey datasets are provided in Figure 7.1 below.
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In reviewing the resulting accuracies presented in Figure 7.1, all 0GCP datasets
were found to be statistical outliers. Since the use of GCPs has been demonstrated to
improve sUAS derived accuracies in existing research, it can be assumed that any sUAS
survey applications intending to achieve geospatial accuracy should indeed utilize GCPs.
Therefore, by removing these 0GCP datasets and their outlier accuracy values, resulting
sUAS + SfM derived accuracies can be better understood. This is demonstrated by
Figures 7.2 — 7.5 below.

Figure 7.2 compares resulting horizontal accuracies (Accuracy;) and vertical
accuracies (Accuracy;) in all remaining sUAS + SfM datasets after removing 0GCP
outliers. Figure 7.3 compares resulting P3A-derived vs. P4P-derived accuracies in all
datasets with OGCP outliers removed. Figure 7.4 shows cumulative accuracies for SA-1
and compares P3A vs. P4P derived accuracies at SA-1 with 0GCP outliers removed.
Finally, Figure 7.5 shows cumulative accuracies for SA-2 and compares P3A vs. P4P

derived accuracies at SA-2 with 0GCP dataset outliers removed.
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SA-1 Horizontal and Vertical Accuracy (R, Z) Statistics for P3A & P4P
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[ —
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Figure 7.4  Resulting accuracies at SA-1 (OGCP outliers removed)

Cumulative accuracies from both P3A and P4P at Survey Area #1 (SA-1) are plotted in
the top box and whisker diagram. Alternatively, P3A and P4P derived accuracies at SA-1
are isolated for comparison in the bottom box and whisker diagrams. For all diagrams,
horizontal accuracy (Accuracyr) is shown in blue and vertical accuracy (Accuracy;) is
shown in orange. Additional data statistics shown on the diagram include the
interquartile range (IQR, box), mean (X mark within IQR), median (line across IQR),
minimum and maximum values (whiskers), and any statistical outliers (dots).
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SA-2 Horizontal and Vertical Accuracy (R, Z) Statistics for P3A & P4P
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Figure 7.5  Resulting accuracies at SA-2 (0GCP outliers removed)

Cumulative accuracies from both P3A and P4P at Survey Area #2 (SA-2) are plotted in
the top box and whisker diagram. Alternatively, P3A and P4P derived accuracies at SA-2
are isolated for comparison in the bottom box and whisker diagrams. For all diagrams,
horizontal accuracy (Accuracyr) is shown in blue and vertical accuracy (Accuracy;) is
shown in orange. Additional data statistics shown on the diagram include the
interquartile range (IQR, box), mean (X mark within IQR), median (line across IQR),
minimum and maximum values (whiskers), and any statistical outliers (dots).
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Accuracy reporting and classification results

It was necessary to report these accuracies according to FGDC standards and
identify their corresponding accuracy classification(s) (FGDC 1998). First, resulting
horizontal and vertical accuracies were reported per FGDC standards for each survey data
type (vertical accuracy only for DSM data). For example, P4P_SA-2 21GCP accuracies
were reported as 0.125 ft. horizontally and 0.330 ft. vertically for initial tie points survey
data, and 0.212 ft. horizontally and 0.554 vertically for point cloud survey data. Overall,
reported accuracies ranged from 15.367 ft. — 0.09 ft. horizontally and 496.734 ft. — 0.330
ft. vertically for all initial tie point and point cloud survey data. Vertical accuracies for
DSM raster survey data ranged from 495.107 ft. — 0.65 ft. consistent with vertical
accuracies reported in the initial tie points and point cloud survey data types.

Next, reported accuracies were classified according to established FGDC
accuracy classifications shown in Figure 7.6 below as taken from the FGDC Geospatial
Positioning Accuracy Standards — Part 2: Standards for Geodetic Networks, Section 2.21

Accuracy Standards, Table 2.1.
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Table 2.1 -- Accuracy Standards
Horizontal, Ellipsoid Height, and Orthometric Height
Accuracy 95-Percent
Classification Confidence
Less Than or
Equal to:
1-Millimeter 0.001 meters
2-Millimeter 0.002 "
5-Millimeter 0.005 "
1-Centimeter 0.010 "
2-Centimeter 0.020 "
5-Centimeter 0.050 "
1-Decimeter 0.100 "
2-Decimeter 0.200 "
5-Decimeter 0.500 "
1-Meter 1.000 "
2-Meter 2.000 "
5-Meter 5.000 "
10-Meter 10.000 "

Figure 7.6 ~ FGDC accuracy classifications

For geodetic control networks, the FGDC utilizes these accepted accuracy classifications
to effectively group and communicate survey data geospatial accuracy. Given their
federal use for this purpose, these classifications are likewise commonly used to
communicate survey data accuracy outside of geodetic control networks — such as the

accuracy results of this research effort.

Since accuracies can be reported at similar or near identical values, FGDC
classifications provide a consistent means of grouping and communicating geospatial
accuracy through specific accuracy thresholds in metric values. For example, horizontal
accuracy reported at 0.212 ft. for PAP_SA-2 21GCP point cloud survey data would fall

under the 1-Decimeter (0.328 ft.) accuracy classification, as it does not achieve the
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threshold accuracy value of the next classification (5-Centimeter, 0.164 ft.). Likewise,
vertical accuracy reported at 0.554 ft. for PAP__SA-2 21GCP point cloud survey data
would fall under the 2-Decimeter (0.656 ft.) accuracy classification.

These FGDC accuracy classifications represent established and commonly used
accuracy threshold values by which geospatial accuracies are effectively communicated.
For this research, the 5-Centimeter (0.164 ft. equivalent) accuracy classification served as
the threshold for “survey-grade” accuracy. Overall, sUAS + SfM derived survey datasets
achieved accuracy classifications between the 5-Meter and 2-Centimeter (16.504 — 0.065
ft. equivalent) classifications horizontally, and no better than the 1-Decimeter (0.328 ft.
equivalent) classification vertically.

Among all SUAS + SfM survey datasets, 8.8% of derivative survey data achieved
“survey-grade” accuracy at the 5-Centimeter (0.164 ft.) accuracy classification or better
(8 0f 90 calculated accuracies). However, those survey data which achieved “survey-
grade” accuracy were found to do so in horizontal accuracy (Accuracy:) only.
Additionally, this “survey-grade” horizontal accuracy was observed only in initial tie
points survey data, and not in subsequent survey data types (point cloud, DSM).
Specifically, these SUAS + SfM survey datasets which exhibited “survey-grade”
horizontal accuracy < 0.164 in initial tie points data included: P4P_SA-1 5GCP,
P4P_SA-1 8GCP, P4P_SA-1 12GCP, P3A_SA-2 11GCP, P4P_SA-2 5GCP, P4P_SA-
2 8GCP, P4P_SA-2 11GCP, and P4P_SA-2 21GCP. Finally, no sUAS + SfM survey
datasets were found to achieve “survey-grade” vertical accuracy (Accuracy,), even those

which did so horizontally.
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Resulting geospatial accuracies as calculated, reported, and classified here for
sUAS + SfM derived survey datasets again represent the very premise of this thesis
research. However, additional results and insight were made possible through descriptive

analysis of these accuracy values.

Descriptive analysis of resulting accuracies

All survey datasets (18 total)
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Figure 7.7  Descriptive statistics for all survey datasets

Descriptive statistics for resulting geospatial accuracies in all 18 sUAS + SfM derived
survey datasets show accuracy values to be wide-ranging and skewed as a result of
statistical outlier values from 0GCP datasets with poor geospatial accuracy.

Descriptive statistics for all 18 survey datasets as shown in Figure 7.7 above

provide additional insight into resulting survey data accuracies. First, Accuracy;
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consistently outperformed Accuracy, in all survey data types and datasets. This outcome
is consistent with the results of similar recent studies and supports the notion that vertical
accuracy is challenging to achieve with the sSUAS + SfM methodology (more-so than
horizontal accuracy; e.g. Clapuyt et al. 2016, Agiiera-Vega et al. 2017, Cook 2017).
Additionally, the range of accuracy values (both Accuracy: and Accuracy,) observed for
all survey datasets is relatively broad and skewed. These characteristics are demonstrated
in both the large range statistics and the difference in mean and median statistics for all
accuracy values in Figure 7.7.

The wide-ranging and skewed nature of resulting accuracy values was expected
for this research as 0GCP datasets are known to demonstrate less geospatial accuracy
than datasets which possess optimal GCPs for georectification in SfM processing (Tonkin
& Midgley 2016, Agiiera-Vega et al. 2017, James et al. 2017). Again, statistical analysis
determined these 0GCP accuracies to be statistical outliers which are represented in
Figure 7.7 as blue and orange dots 1.5x beyond the highest inter-quartile range (IQR) of
other accuracy results. Removing OGCP outliers provides a more accurate representation

of sSUAS + SfM derivative accuracies as shown the various charts of Figure 7.8 below.
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0GCP outliers removed, > SGCP datasets only (14 total)
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Figure 7.8  Descriptive statistics for > SGCP survey datasets

After removing the 0GCP outlier accuracy values, accuracy statistics for the remaining
14 sUAS + SfM derived survey datasets demonstrate a reduction in overall range, center
measures (mean and median), and standard deviation values.

By comparing Figure 7.7 with Figure 7.8, the influence of 0GCP outliers on
cumulative descriptive statistics is apparent. Removing these outliers reduced all
calculated statistics for the remaining 14 sUAS + SfM survey datasets with > 5 GCPs.
First, the range of Accuracy: values was reduced from 15.276 ft. to 0.458 ft. (3,235%
change) and Accuracy;, values from 496.403 ft. to 5.959 ft. (8,230% change).

Additionally, remaining accuracy values are less skewed after removing 0GCP outliers.
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This is shown in Figure 7.8 with mean statistics becoming a more accurate measure of
center for resulting accuracies than previously in Figure 7.7.

Therefore, based on these results, the value of GCP placement and collection for
achieving geospatial accuracy in SUAS + SfM derived survey data must be echoed here
as it has in previous studies (Colomina & Molina 2014, Cryderman et al. 2014).
However, in addition to GCPs, this research must also consider accuracy variations
observed between the two sUAS platforms used for remote sensing data collection.

While P3A derived accuracies in this research were not found to be statistical
outliers (excluding 0GCP P3A datasets), they were consistently observed to be less
accurate both horizontally and vertically in comparison to P4P derived accuracies at both
survey areas. For example, P3A_SA-2 5GCP point cloud survey data exhibited
Accuracy: = 0.594 ft. and Accuracy, = 6.291 ft., while P4P_SA-2 5GCP point cloud
survey data (same survey data type, same survey area, same GCPs used) was found to be
Accuracy: = 0.236 ft. and Accuracy, = 0.809 ft. Likewise, when georeferencing is
optimized with all GCPs available, P3A SA-2 21GCP point cloud survey data exhibits
Accuracy: = 0.443 ft. and Accuracy, = 1.762 ft., while P4P_SA-2 21GCP point cloud
data (again, same survey data type, area, and GCPs used) was found to be Accuracy; =
0.212 ft. and Accuracy, = 0.554 ft.

The most likely reason for accuracy improvement in P4P derived data is the
improved quality and capability of the P4P camera payload — especially in regards to
shutter mechanism. Again, the P3A camera payload utilizes a digital rolling-shutter
mechanism which has already been found detrimental to geospatial accuracy in SUAS +
SfM derived survey data (Liang et al. 2008, Albl et al. 2015). In contrast, the P4P utilizes
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a mechanical-shutter which eliminates the geospatial issues resulting from rolling-shutter

image capture. Additionally, the P4P camera payload also possesses a larger sensor size

and megapixel resolution than the P3A camera payload. Therefore, since the P4P

represents the latest modern sUAS platform and corresponding capabilities used in this

research effort, further insight into resulting survey data accuracies can be achieved by

isolating the P4P datasets, again with 0GCP outliers excluded.

P4P > SGCP datasets only (7 total)
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Figure 7.9

Descriptive statistics for PAP > SGCP survey datasets

With only P4P > S5GCP datasets remaining (7 total), descriptive statistics show resulting
accuracies from these specific datasets are higher accuracy, and more consistently and
evenly distributed than the cumulative accuracy statistics for all SUAS + SfM survey
datasets (18 total).
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Figure 7.9 above shows the descriptive statistics as calculated for P4P > SGCP
survey datasets only (7 total datasets). After removing all 0GCP outlier datasets and all
P3A derived datasets, descriptive statistics show the remaining accuracies are
significantly smaller ranging and more evenly distributed than previous statistics for all
survey datasets. First, the range of Accuracy; values was improved from 15.276 ft. for all
survey datasets, to 0.458 ft. with OGCP outliers removed, now to 0.145 ft. in P4P > SGCP
derived accuracies. Likewise, the range of Accuracy, values was improved from 496.403
ft. for all survey datasets, to 5.959 ft. with 0GCP outliers removed, now to 1.351 ft. in
P4P > 5GCP derived accuracies. Additionally, statistical skew in the remaining accuracy
values is practically negligible as the difference in mean and median measures of center
for P4P > 5GCP datasets differ by only ~0.01 ft. for Accuracy: and ~ 0.05 ft. for

Accuracy;.

Frequency distribution for resulting accuracies

While the P4P > 5GCP survey datasets clearly achieved greater geospatial
accuracy than other datasets in the experiment, it must be noted that descriptive statistics
for these datasets used only a limited sample of the available sUAS + SfM survey
datasets for calculation (7 of 18 total datasets). Likewise, descriptive statistics calculated
for all > SGCP survey dataset accuracy values (O0GCP outliers excluded) also used a
limited sample (14 of 18 total datasets). With this consideration in mind, the descriptive
statistics for these survey datasets provide additional insight into resulting sUAS + StM
derived accuracies as intended — especially regarding GCP and sUAS camera payload

variables and their influence on derivative geospatial accuracy.

100



Therefore, for this thesis research, geospatial accuracies derived from > 5GCP
datasets and P4P > 5GCP datasets are expected to provide the most relevant results. In
addition to the descriptive statistics provided above, the frequency distribution of
resulting accuracies for these survey datasets are shown in the histograms of Figure 7.10
below. Likewise, Figures 7.11 and 7.12 provide accuracy distribution comparisons
between survey areas (SA-1, SA-2) and sUAS platforms (P3A, P4P) with 0GCP outliers

removed (coincides with Figures 1.27 — 1.30).
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Figure 7.10 Frequency distribution of accuracy in > 5GCP and P4P > 5GCP datasets

Frequency distributions of resulting accuracies in > SGCP and P4P > 5GCP survey
datasets. Distributions show “survey-grade” accuracies numbered fewer than non-survey
grade accuracies in SUAS + SfM derived survey data. Additionally, no survey data types
or datasets were found to achieve “survey-grade” vertical accuracy.
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SA-1 Horizontal Accuracy (R) Distribution for P3A & P4P

SA-2 Horizontal Accuracy (R) Distribution for P3A & P4P
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Figure 7.11

SA-1 and SA-2 accuracy distributions (O0GCP outliers removed)

On the left, distribution of SA-1 derived accuracies for both P3A and P4P are shown. On
the right, distribution of SA-2 derived accuracies for both P3A and P4P are shown. For
both sides, green bars indicate “survey-grade” accuracies < 0.164 ft. and blue bars
indicate accuracies exceeding the 0.164 ft. threshold.
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P3A Horizontal Accuracy (R) Distribution for SA-1 & SA-2

P4P Horizontal Accuracy (R) Distribution for SA-1 & SA-2
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Figure 7.12 P3A and P4P accuracy distributions (0GCP outliers removed)

On the left, distribution of P3A derived accuracies at both SA-1 and SA-2 are shown. On
the right, distribution of P4P derived accuracies for both SA-1 and SA-2 are shown. For
both sides, green bars indicate “survey-grade” accuracies < 0.164 ft. and blue bars
indicate accuracies exceeding the 0.164 ft. threshold.
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CHAPTER VIII

DISCUSSION

Research objective evaluation

All research efforts were conducted to address a specific research objective as
presented in Chapter [ - INTRODUCTION. Specifically, the research objective posed
three questions relating to geospatial accuracy in sUAS + SfM derived survey data.
Having conducted the experiment and calculated accuracy results and associated
statistics, it was necessary to evaluate final results against the questions posed in the

research objective.

Question 1. What geospatial accuracies were observed?

The first question specifically asked, “What geospatial accuracies are observed in
survey data derived from modern prosumer sUAS platforms and SfM photogrammetry?”.
Referring back to Figures 1.26 — 1.31, horizontal accuracies (Accuracy,) were observed
from 15.37 ft. — 0.09 ft. and vertical accuracies (Accuracy;) observed from 496.73 ft. —
0.33 ft. Greatest geospatial accuracies were most frequently observed in survey datasets
which utilized all available GCPs for georectification. This includes 12 GCPs at SA-1,
and 21 GCPs at SA-2, distributed systematically throughout the extent of each survey
area at approximately 1 GCP per 0.5 acres. Poorest geospatial accuracies were
exclusively observed in 0GCP survey datasets, consistent with existing research (e.g.

Tonkin & Midgley 2016, Agliera-Vega et al. 2017, Cook 2017, James et al. 2017). For
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example, P4P_SA-2 0GCP vertical accuracies were only accurate within ~432 ft., which
holds very little value for any high accuracy geospatial application. Alternatively,
P4P _SA-2 21GCP vertical accuracies were reported as high as 0.33 ft. — the highest
observed vertical accuracy of the experiment.

After removing O0GCP derived accuracy values as statistical outliers, remaining >
SGCP derived horizontal accuracies (Accuracy:) were observed between 0.549 ft. — 0.09
ft. and vertical accuracies (Accuracy,) between 6.290 ft. — 0.33 ft, again with accuracies
improving as additional GCPs are incorporated. These resulting accuracies are shown

sUAS + SfM survey dataset in Figure 8.1 below.
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Figure 8.1  Resulting accuracy by sUAS + SfM dataset
Resulting accuracies in initial tie points survey data for all sUAS + SfM survey datasets.

Red bars represent statistical outliers extending beyond the scope of the graph. Green
bars represent “survey-grade” accuracies at > 0.164 ft.
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Horizontal Accuracy (Accuracy,) of Point Cloud Data
06
=
< 05
>
Q
C o4
-
3]
< 03
w©
£ 02
o
N
= 0.1
)
T
0
& & & & S Sl & g & & & 8 GG} A S
\,96 ;3@ \,q’b o S N?@&e o® m9®m/®¢3’o &8 %9(9 m?em?co R
F F F T FFF Y FF F s F o e
oF7 R o o CEIC Ve A R I AR
SRR e ] X SO RN g ] o R
Survey Dataset

Vertical Accuracy (Accuracy,) of Point Cloud Data
7
— 6
ped
.2
=5
Q
g
: 4
Q
15
o 3
B
.; 2
]
> 1
0
Q2 Q s o Q Q Q Q >3 ) < R Q 2 R K &
2 e i Lr A O 0 2 0 e O O Lo Lt o e O
Qb 9(9 (b(c \,,\’(9 Q(D 6)(7 %6 '\,,\,(9 Qb < ‘b() '\,’\’0 '\«\'O GRS %C‘) ’»\‘b ’LN@
N7z Ne N2 NS N/ \,/,»/ 2o s 0 PR ﬂ'/’\/ "/
V’5V‘V~?V‘V%V‘ ¥ Q/V?‘Qc;) Q(;’v W oy c/,;?‘vc;y‘ o g Q?V‘Q(? Qr? r_)V: (‘)v:
Q= Q¥ Y A Q% oMol R &P & GRS
Survey Dataset

Figure 8.1 (continued)
Resulting accuracy in point cloud survey data for all SUAS + SfM survey datasets. Red

bars represent statistical outliers extending beyond the scope of the graph. No datasets
were found to achieve “survey-grade” accuracy > 0.164 ft.
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Vertical Accuracy (Accuracy,) of Digital Surface Models (DSM)
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Figure 8.1 (continued)
Resulting vertical accuracy in digital surface model (DSM) survey data for all SUAS +

SfM survey datasets. Red bars represent statistical outliers extending beyond the scope
of the graph. No datasets were found to achieve “survey-grade” accuracy > 0.164 ft.

Among these accuracy results, a clear distinction existed between datasets derived
from the two different SUAS platforms used (P3A, P4P). Geospatial accuracies derived
from the older P3A platform were consistently observed to be 2-3 times poorer
horizontally, and up to 5-6 times poorer vertically, than accuracies derived from the
newer P4P platform. For example, P3A SA-1 5GCP initial tie point survey data
exhibited horizontal accuracy of 0.533 ft., while P4AP_SA-1 5GCP initial tie points
achieved a horizontal accuracy of 0.135 ft. at the same survey area and using the same
GCPs. Again, the most likely reason for higher observed accuracies in P4P derived

survey data is the improved camera payload of the P4P as previously described. Since,
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the P4P represents the latest of the two sUAS platforms used in this research, P4P
derivative survey accuracies are expected to be a more accurate representation of current

and near-term modern sUAS capabilities.

Question 2. What accuracy classifications (FGDC) were achieved?

As previously stated in Chapter VII - RESULTS, sUAS + SfM derived survey
datasets achieved accuracy classifications between 5-Meter and 2-Centimeter (16.504 —
0.065 ft. equivalent) horizontally, and no better than 1-Decimeter (0.328 ft. equivalent)
vertically. These classifications are consistent with established FGDC accuracy
classifications previously shown in Figure 7.6. Again, since FGDC accuracy
classifications are provided in metric unit values only, equivalent imperial values have
been cited alongside metric accuracy classifications throughout this thesis for unit
consistency.

In practice, FGDC accuracy classifications serve to provide a consistent means of
communicating geospatial accuracy in survey data. Specifically, these FGDC
classifications are used in communicating the accuracy (again at the 95% confidence
level) of geodetic control networks (FGDC 1998). However, given their established use
for this practice, FGDC standards are also often used to communicate accuracy for other
geospatial data beyond geodetic control networks — such as the sUAS + SfM derived
survey data of this research. Therefore, while resulting FGDC accuracies classifications
do not provide a great deal of additional insight into resulting accuracy values, these
classifications serve two important roles for the purpose of this research.

First, resulting FGDC accuracy classifications provide the established means of

communicating geospatial accuracy, versus simply reporting Accuracy: and Accuracy; as
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calculated (done for Question 1 above). In professional surveying practice it is much
more common to hear geospatial accuracy communicated as 1-Meter, 1-Centimeter, 1-
Millimeter, etc., than 0.068 meter, 6.8 centimeter, or 68 millimeter. This is because
FGDC classifications are based on threshold accuracy values where resulting accuracies
greater than or equal to the stated accuracy threshold at 95% confidence are grouped. For
example, observed accuracies of 0.011 meters and 0.019 meters would both be classified
as 2-Centimeter accuracy using the FGDC classifications. Therefore, for the purpose of
this research, resulting FGDC accuracy classifications as described here in response to
Question 2 serve to provide an established, broadly-applicable means of communicating
resulting accuracies observed in this research.

Second, and most importantly for the purpose of this research, the 5-Centimeter
FGDC accuracy classification has served as the qualifying accuracy classification for
“survey-grade” accuracy. As previously mentioned, “survey-grade” accuracy refers to
geospatial accuracy which is considered adequate for professional surveying and
engineering practice. Generally, “survey-grade” accuracy is required where geospatial
accuracy directly translates to the safety and/or structural integrity of a project or
application. Some industry debate exists as to whether “survey-grade” accuracy should
refer to sub-centimeter accuracy only (FGDC Millimeter accuracy classifications), or if
“survey-grade” accuracy includes centimeter accuracies as well. To be clear, this
research has assumed the latter and again used the 5-Centimeter (0.164 ft.) accuracy
classification to designate “survey-grade” accuracy in resulting SUAS + SfM survey data.

At this point, it must be noted that FGDC classifications are provided in metric
units only (again demonstrated in Figure 7.6). This differs from FGDC accuracy
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reporting guidelines which allow accuracies to be reported in either metric or imperial
units (whichever unit used in the dataset) per FGDC Geospatial Positioning Accuracy
Standards — Part 3: National Standard for Spatial Data Accuracy (FGDC). The reason
for this difference is again based on the fact that FGDC classifications are designed to
communicate accuracy for geodetic control networks per FGDC Geospatial Positioning
Accuracy Standards, Part 2: Standards for Geodetic Networks. Therefore, since imperial
unit accuracy classifications are not established by the FGDC, equivalent imperial units
(feet in this case) have been provided for all resulting FGDC accuracy classifications in

order to utilize consistent units for the purpose of this thesis.

Question 3. Is “survey-grade” accuracy achieved, both horizontally and vertically?

No, resulting accuracies as observed and classified in Questions 1 and 2
demonstrate that no sUAS + SfM derived data achieved survey-grade accuracy both
horizontally and vertically at the 5-Centimeter (0.164 ft.) FGDC classification or greater.
As previously discussed, FGDC accuracy classifications are reported in ground distances
at the 95% confidence level. This means that 95% of positional error within the dataset
must be < the reported accuracy. With 20 checkpoints collected by independent source
of higher accuracy for use in accuracy testing, sUAS + SfM survey data error values at 19
checkpoints (95%) must be observed within the reported accuracy. Likewise, SUAS +
SfM survey data error at only one checkpoint (5%) may fall beyond the reported
accuracy. Therefore, to achieve survey-grade accuracy at the 5-Centimeter (0.164)
FGDC classification, sUAS + SfM survey data error values at 19 of the 20 checkpoints

must be < 0.164 ft.
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To further examine this point, the SUAS + SfM survey datasets with the highest
reported accuracies from each sUAS platform at each survey area were isolated so that
positional errors could be evaluated against the < 0.164 ft. survey-grade threshold.
Specifically, these datasets included P3A SA-1 12GCP, P3A SA-2 21GCP, P4P SA-
1 12GCP, and P4P_SA-2 21GCP. Reported accuracies for these selected datasets are

shown in Figure 8.2 below.

INITIAL_TIE_POINTS POINT_CLOUD DSM_RASTER
Survey Dataset Accuracy R Accuracy Z Accuracy R Accuracy 7 Accuracy 7

P3A_SA-1_12GCP| 0.278866604| 3.369252143| 0.397871969| 3.636964719| 3.841283643

P3A_SA-2_21GCP| 0.318827132| 1.678198538| 0.443719122| 1.762354793| 1.995641831

P4P_SA-1_12GCP| 0.091373116| 0.350159088| 0.215313416| 0.562304837| 1.145862507

PAP_SA-2 21GCP| 0.125051027| 0.330818448| 0.212648769| 0.554093768| 0.697617071

Figure 8.2  Highest reported accuracies (ft.) by sUAS platform and survey area

Highest reported accuracies in SUAS + SfM derived survey by sUAS platform and survey
area were observed between 0.443 ft. — 0.091 ft. horizontally and 3.841 ft. — 0.330 ft.
vertically. Of these accuracies, only 2 reported “survey-grade” accuracy at < 0.164 ft.
were observed as outlined in blue. Remaining accuracies outlined in red exceed the <
0.164 ft. “survey-grade” accuracy threshold.

As shown by the blue outlined values in Figure 7.4, only 2 of the remaining
survey datasets/types achieved survey-grade horizontal accuracy at < 0.164 ft. (P4P_SA-
1 _12GCP, P4P_SA-2 21 GCP). By reverting to all 18 SUAS + SfM survey datasets, a
total of 8 datasets (including the 2 above) achieved similar survey-grade horizontal

accuracy in initial tie points data with seven being P4P derived and one being P3A
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derived. However, neither these datasets nor any other resulting sUAS + SfM derived
survey data of the experiment were found to achieve survey-grade horizontal accuracy in
subsequent survey data types (point cloud, DSM). Additionally, no resulting sUAS +
SfM survey data in the experiment was found to achieve survey-grade vertical accuracy
at <0.164 ft. To further examine this point a comprehensive error analysis was
performed on each of the 4 highest accuracy sUAS + SfM derived datasets (P3A_ SA-

1 _12GCP, P3A_SA-2 21GCP, P4P_SA-1_12GCP, and P4P_SA-2 21GCP). The results
of each analysis are provided in Appendices C — F. Figure 8.3 below provides an excerpt
from each of these appendices to demonstrate the results of survey-grade accuracy

evaluation for the purpose of answering research question 3.
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As shown in Figure 7.5, positional error values observed for the sUAS + StM
datasets with the highest reported accuracies clearly fall short of achieving survey-grade
accuracy at < (0.164 ft. in most cases. The only exemptions which did achieve survey
grade accuracy among these datasets were found to do so in horizontal accuracy only,
and not in vertical accuracy. These exemptions include P4P _SA-1 12GCP and P4P SA-
2 21GCP initial tie points survey data — 2 of the 8 datasets reporting “survey-grade”
horizontal accuracy initial tie points data as shown in Figure 7.4.

Interestingly, the full density point cloud survey data from each of these survey
datasets (P4P_SA-1 12GCP and P4P_SA-2 21GCP) also tested relatively well in
regards to positional error at checkpoint locations. In fact, positional error values at 18 of
20 checkpoint locations in both datasets were observed to be within the < 0.164 ft.
survey-grade threshold. However, since FGDC accuracies are reported at the 95%
confidence level, these datasets fall short of survey-grade accuracy with only 90% of
observed error (18 of 20 checkpoints) being < 0.164 ft. survey-grade threshold. This
corroborates the calculated horizontal accuracies for both PAP_SA-1 12GCP and
P4P_SA-2 21GCP point cloud data which were reported as 0.215 ft and 0.212 ft.,
respectively, as previously shown in Figure 7.4.

Figure 8.4 below as taken from Appendix E further demonstrates how positional
error in PAP_SA-2 21GCP initial tie point survey data achieved survey-grade horizontal
accuracy (reported at 0.125 ft.) with regards to horizontal error, and how point cloud
survey data from the same dataset did not (horizontal accuracy reported at 0.212 ft.).
Additionally, Figure 8.5 below, also taken from Appendix E, demonstrates how vertical

error in both the initial tie points and the point cloud data of these same datasets failed to
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achieve survey-grade vertical accuracy. Similar evaluations and graphics are provided

for each of the 4 highest accuracy sUAS + SfM survey datasets in the comprehensive

error evaluations of Appendices C-F.

Horizontal Error (x,y)
in P4P_SA-1 12GCP Initial Tie Points
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Survey-grade horizontal accuracy. 100% of positional error < 0.164 ft.

Horizontal Error (x,y)
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Figure 8.4  Horizontal error in relation to survey-grade accuracy at PAP_SA-1 12GCP

Survey-grade horizontal accuracy at < 0.164 ft. is represented by the green outline.
Checkpoint locations with horizontal error < 0.164 ft. are represented in blue, while
checkpoint locations with horizontal error > 0.164 ft. are represented in red.
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Vertical Error (Z) by Checkpoint
in P4P_SA-1 12GCP Initial Tie Points
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Figure 8.5  Vertical error in relation to survey-grade accuracy at PAP_SA-1 12GCP

Survey-grade vertical accuracy at 0.164 ft. is represented by the green lines. Checkpoint
locations with vertical error < 0.164 ft. are represented in blue, while checkpoint
locations with vertical error > 0.164 ft. are represented in red.

Therefore, after examining the resulting sUAS + SfM survey data accuracies from
this experiment, and analyzing the positional error observed in the four highest accuracy

datasets as shown here and in APPENDICES C-F, it can be confirmed that survey-grade
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accuracy was not achieved both horizontally and vertically at the 5-Centimeter (0.164 ft.)

FGDC classification for any sUAS + SfM derived survey data in the experiment.

Additional discussion

Having addressed the research objective questions of this thesis, some additional

topics of discussion remain noteworthy. These topics are discussed in detail below.

Error calculation considerations for various survey data types

Datasets which achieved “survey-grade” horizontal accuracy were observed to do
so in initial tie points survey data only (P4P_SA-1 12GCP, P4P_SA-2 21GCP). Upon
further analysis, it is clear reported accuracies for initial tie points survey data were
consistently greater (more accurate) than reported accuracies for subsequent survey data
types (point cloud and DSM). It is expected these higher accuracies were the result of
using Pix4D Mapper Pro calculated error (“Error to GCP Initial Position”) at checkpoint
positions for initial tie points data, as opposed to using actual 3D point positions and
raster cells for error calculation as done for point cloud and DSM survey data. The use of
checkpoint “Error to GCP Initial Position” values for initial tie points error calculation
was done intentionally, however, resulting accuracies for initial tie points data are
expected to have benefited from this methodology.

For sUAS + SfM derived point cloud survey data, it is important to note that
multiple 3D points were reconstructed at all checkpoint locations given the high point
density of these data. Even with multiple 3D points available, rarely does a single 3D
point coincide perfectly with the central checkpoint position where in situ collection of

the checkpoint was made. Even though error calculation was made from 3D points
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selected to best represent central checkpoint positions within the point cloud, it must be
acknowledged this method is imperfect as selected 3D points again rarely coincide with
the exact checkpoint position from which error calculations were made. Therefore, while
error calculation and accuracy reporting for point cloud data was conducted consistent
with FGDC accuracy testing requirements, resulting error and accuracy values for all
point cloud data were undoubtably influenced by the proximity of selected 3D points to
the true checkpoint location were in situ checkpoint collection was made.

Alternatively, SUAS + SfM derived DSM survey data was not subject to the same
error evaluation short comings of point cloud data. For DSM survey data, raster pixels
which coincided with exact checkpoint positions were used for error calculation in
ArcMap. Unfortunately, since only vertical coordinate values (z) were available for
DSM data, only vertical error and vertical accuracy could be calculated for this data.
Nonetheless, these vertical error and vertical accuracy values for DSM data are expected
to be highly accurate as the error calculation method for these data was more consistent

than error calculation for point cloud survey data.

P4P accuracy considerations

As previously discussed, P4P derived survey data consistently outperformed P3A
derived survey data in regard to geospatial accuracy. This result was expected given the
improved camera payload of the newer P4P platform. However, upon further
examination, P4P derived survey data accuracy was also found to be remarkably
consistent with regards to the number and frequency of GCPs used in SfM processing.
For example, P4AP_SA-1 S5GCP point cloud data achieved a horizontal accuracy of 0.236

ft. and a vertical accuracy of 0.739 ft., while P4P_SA-2 SGCP point cloud data achieved
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a horizontal accuracy of 0.236 ft. and a vertical accuracy of 0.809 ft. In this case, with
both datasets using an equivalent number of GCPs (5), P4P derived accuracies differ by
only 0.0004 ft. horizontally and 0.07 ft. vertically. Once optimized with all available
GCPs, P4P_SA-1 12GCP point cloud data reports a horizontal accuracy of 0.215 ft. and
a vertical accuracy of 0.562 ft., while P4P_SA-2 21GCP point cloud data reports
horizontal accuracy of 0.212 ft. and vertical accuracy of 0.554. In this case, with both
datasets using an equivalent frequency of GCPs (1 GCP per 0.5 acre), P4P derived
accuracies are again very consistent with differences of only 0.003 ft. horizontally and
0.008 ft. vertically. Therefore, it must be noted that P4P derived survey data not only
consistently outperformed the older P3A platform with regards to geospatial accuracy,
but that P4P derived survey data also generated consistent accuracies across SA-1 and

SA-2 with regard to the number and frequency of GCPs used in SfM processing.

Revisiting field method considerations

Two previously acknowledged variables relating to geospatial accuracy in sUAS
+ SfM derived survey data in this research must be revisited. First, as stated in Chapter
IV — FIELD METHODS, P3A remote sensing data collection at SA-1 was cut short due
to a hardware error (motors overheated). As a result, only 91 JPG digital images were
available for SfM processing of all P3A_SA-1 survey datasets. This number of images
was significantly fewer for SfM processing than that of all other sSUAS + SfM datasets of
the experiment. Therefore, error values and resulting accuracies as reported for all
P3A_ SA-1 survey datasets may have been negatively affected by the limited number of
JPG images available for SfM processing. Second, and also previously stated in Chapter

IV — FIELD METHODS, P4P remote sensing data collection at SA-1 was conducted in
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sky cover conditions which were less than ideal in regards to incident lighting. It was
confirmed that cloud cover during this time did result in uneven incident lighting across
SA-1 as previously shown in Figure 4.10. Therefore, error values and resulting
accuracies reported for all PAP-SA-1 survey data may have been negatively affected by
this uneven lighting as demonstrated in similar research (Cryderman et al 2014, Clapuyt

etal. 2016).

Opportunities for additional research

Having addressed the research objective questions for this thesis, numerous
opportunities for additional research remain plausible for sUAS derived survey data.
First, the scope of this thesis research was limited to only 2 modern prosumer sUAS
platforms and their derived survey data accuracy. One opportunity for additional
research comes in extending the accuracy test experiment of this thesis to include
“professional” sSUAS platforms. An accuracy test of these professional platforms would
not only provide equivalent insight into the geospatial accuracy of survey data derived
from professional SUAS, but also how those accuracies compare to resulting accuracies
derived from prosumer sUAS as presented here.

Additionally, the scope of this research was also limited to only 2 survey area test
sites where accuracy testing was conducted. These survey area test sites both exhibited
certain land use characteristics which are known to challenge SfM processing practices
(steep elevations changes in SA-1, vegetation in SA-2). Another opportunity for
additional research comes by expanding the survey areas used for accuracy testing.
Ideally, future research efforts would not only expand the number of survey areas used

for accuracy testing, but also the geographic size and land use characteristics of the
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survey areas themselves. For example, no bare-earth survey areas were available for
accuracy testing during this thesis research. However, existing scientific research
currently shows that bare-earth survey environments can be ideal subjects for STM
photogrammetry under the right conditions (e.g. Hugenholtz et al. 2013, Cryderman et al.
2014, Siebert & Teizer 2014, Ishiguro et al. 2016). Therefore, additional research which
evaluates SUAS + SfM derived survey data accuracies at bare-earth survey environments,
as opposed to those used in this research, would certainly provide further results and
insight on the topic of sUAS + SfM derived accuracies.

Furthermore, the scope of this research was also limited to only a single sUAS
data collection application and SfM processing software — Pix4D Capture and Pix4D
Mapper Pro, respectively. While both of these solutions are commonly used for
surveying applications with SUAS, they represent only 2 of the many sUAS data
collection and SfM processing solutions currently on the market. Additionally, the
specific parameters used for data collection and SfM processing in this thesis represent
only a fraction of the many parameters available for performing both tasks. Therefore,
additional research opportunities can be readily found in the examination of multiple
sUAS data collection and SfM processing solutions not utilized within this thesis research
(e.g. Jaud et al. 2016). Furthermore, additional research opportunities are also available
for examination of specific data collection and/or SfM processing parameters and their
resulting influence on sUAS + SfM derived survey data accuracy (e.g. Udin & Ahmad,
2014, Mesas-Carrascosa et al. 2016).

Also, while many factors known to influence geospatial accuracy have been

acknowledged and discussed in this thesis research, additional research opportunities
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abound for quantifying the influence of these factors on geospatial accuracy. To do so,
more advanced statistical analytics would likely be required. For example, the use of
regression analysis to evaluate and quantify the influence of factors such as wind speed,
incident lighting variations, GCP distribution, etc. as independent variables on the
dependent variable of geospatial accuracy would be especially valuable. Ideally,
additional research efforts in this area would provide more detailed insight on the
influence of these factors, and thereby allow geospatial professionals and academics to
more effectively plan and conduct successful sUAS surveying operations.

Finally, research efforts studying the sources of systematic error from which
geospatial accuracy suffers when using the sUAS + SfM methodology represents a most
pivotal opportunity for additional research. The purpose of this thesis research has been
to observe and report geospatial accuracies achieved using the SUAS + SfM
methodology. Having now done so, if only to a very small extent, the geospatial
community would now benefit most from additional research which provides insight for
improving geospatial accuracy when using this methodology. Additional research into
systematic errors, such as those arising from spatial projection, resampling, and
interpolation methods, and potential solutions to address these errors seems the most

logical approach to do so.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

Summary

Modern prosumer sUAS platforms have significantly reduced the long-standing
cost and expertise barriers associated with aerial remote sensing. Additionally, modern
sUAS platforms now allow for aerial remote sensing at lower altitudes and higher spatial
and temporal resolutions than ever before. As a result, geospatial professionals and
academics which utilize aerial remote sensing data have rapidly adopted sUAS platforms
for a number of applications. This thesis research has focused exclusively on the
application of surveying and mapping by sUAS. More specifically, thesis research has
been conducted to strategically evaluate geospatial accuracy in SUAS derived survey
data. Research in this specific area was necessary as a current debate exists among
geospatial professionals and scientists as to whether modern prosumer sUAS platforms
are capable of achieving “survey-grade” accuracy. Additionally, since sSUAS platforms
and components continue to develop rapidly, continued research is and will remain
necessary to understand the capabilities of increasingly modernized sUAS.

In order to address the geospatial accuracy debate surrounding sUAS derived
survey data and contribute scientifically to the existing body of geospatial research on
sUAS, a controlled accuracy test experiment was conducted for this thesis research. The

accuracy test was conducted in accordance with FGDC testing requirements and
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guidelines to ensure consistency with established geospatial standards. Additionally, the
accuracy test experiment was conducted to address a thesis research objective which
posed 3 specific questions relating to geospatial accuracy in SUAS derived survey data.
In essence, these questions were 1) What geospatial accuracies is observed, 2) What
corresponding FGDC accuracy classifications are met, and 3) Is “survey-grade” accuracy
achieved both horizontally and vertically.

The experiment began with in situ and remote sensing data collection during the
experiment’s field methods stage (Chapter IV). At this stage, GCPs and checkpoints
were placed throughout 2 differing survey areas (SA-1, SA-2) and collected by means of
higher accuracy (Trimble R6) for georectification and error calculation. With GCPs and
checkpoints in place, remote sensing data collection was conducted with 2 modern
prosumer sUAS platforms (P3A, P4P) at each survey area using the Pix4D Capture
mobile application. Remote sensing data collection was conducted in 2 flights per sUAS
platform at each survey area utilizing perpendicular flight paths (North/South flight, and
East/West flight). Once field methods were completed, all in sifu GCP and checkpoint
positions (.csv), remote sensing digital image data (JPGs), and flight log
notes/meteorological observations were stored and later transferred to a primary
processing laptop.

With field methods completed, experiment focus shifted towards the data
processing stage where all SUAS digital image data was subject to SfM photogrammetric
processing (Chapter V). At this stage, Pix4D Mapper Pro was used to conduct all StM
processing and survey data generation. This processing also included in situ data

incorporation of GCP positions for data georectification, and checkpoint positions for
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error calculation, all within Pix4D Mapper Pro. Additionally, numerous processing
iterations of each sUAS digital image dataset were generated by systematically increasing
(i.e. optimizing) the number of GCPs used for georectification during SfM processing.

As aresult, 18 total SUAS + SfM survey datasets were generated during SfM processing
and stored according to sUAS platform, survey area, and GCP iteration (e.g. P3A_SA-

1 5GCP, P4P_SA-2 21GCP).

After SfM processing was completed, both geospatial and statistical analysis were
required to evaluate the 18 resulting SUAS + SfM survey datasets and their corresponding
survey data types (Chapter VI - GEOSPATIAL AND STATISTICAL ANALYSIS). At
this stage, error (positional deviation in x,y,z) was calculated by comparing sUAS + SfM
derived survey data to 20 checkpoints serving as benchmark ground-truth positions at
each survey area. Pix4D Mapper Pro was used at this stage for geospatial analysis of all
initial tie points and point cloud survey data types, while ESRI’s ArcMap was used for
geospatial analysis of DSM survey data. At the conclusion of geospatial analysis, SUAS
+ SfM derived point cloud and DSM survey data positions (X,y,z) were copied into
Microsoft Excel along with checkpoint positions (X,y,z) for error calculation. This was
not required for initial tie points survey data as Pix4D error calculations were held as the
error values for these data and also copied into Microsoft Excel. With positional
deviation error values calculated for all sUAS + SfM survey datasets, further statistical
analysis was performed to calculate RMSE and Accuracy at the 95% confidence level
(Accuracyr, Accuracyy).

At the conclusion of geospatial and statistical analysis, resulting accuracies at the

95% confidence level were presented as the fundamental results of the accuracy test
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experiment for this thesis (Chapter VII - RESULTS AND DISCUSSION). At this stage,
descriptive analysis was conducted on resulting accuracy figures to further evaluate and
discuss experimental results. During descriptive analysis, resulting accuracies from all
0GCP survey datasets were shown to be statistical outliers which heavily skewed the
descriptive statistics for all survey datasets (18 total). After removing all 0GCP datasets,
descriptive statistics for the remaining survey datasets (14 total) were less skewed and
provided greater insight into SUAS + SfM derived accuracies assuming the use of > 5
GCPs. Additionally, P4P derived survey datasets were found to exhibit consistent
accuracies with regard to GCP number/frequency, and also consistently surpassed P3A
derived survey data accuracies at both survey areas. Since this research was specifically
targeted at “modern” SUAS platforms, and the P4P represents the latest modern sUAS
platform used during the experiment, all P4P derived datasets with > 5 GCPs were
isolated for further analysis (7 total). These P4P > 5 GCP survey datasets were observed
to achieve the highest reported accuracies and most consistent descriptive statistics of the
experiment.

Lastly, an evaluation was conducted of all resulting sUAS + SfM derived
accuracies against the specific questions of the research objective. Specifically,
accuracies were reported from 15.367 ft. — 0.09 ft. horizontally and 496.734 ft. — 0.330 ft.
vertically for all resulting SUAS + SfM survey data. These accuracies were found to
achieve FGDC accuracy classifications between 5-Meter and 2-Centimeter (16.504 —
0.065 ft. equivalent) horizontally, and no better than 1-Decimeter (0.328 ft. equivalent)

vertically. No sUAS + SfM derived survey data was found to achieve survey grade
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accuracy both horizontally and vertically at the 5-Centimeter (0.164 ft.) FGDC

classification as demonstrated in Appendices C — F.

Conclusions

In consideration of existing research and the results of this experiment, it is clear
the debate surrounding prosumer sUAS + SfM survey data accuracy is justifiable. The
latest generation sUAS platform tested in this experiment (P4P) derived survey data with
accuracies bordering on, and sometimes achieving, survey-grade accuracy at the 5-
Centimeter (0.164 ft.) FGDC accuracy classification. However, the results of this thesis
research clearly demonstrate that no SUAS + SfM survey data of the experiment achieved
survey-grade accuracy both horizontally and vertically. Therefore, in regards to the
hypothesis of this thesis, it can be concluded that modern prosumer sUAS derived survey
data did not achieve survey grade accuracy in this experiment. Given the relatively
limited scope of this thesis research, this conclusion cannot be definitively made for all
sUAS + SfM derived survey data — especially where sUAS platform, data collection, data
processing, and other relevant variables are present. Nonetheless, some valuable
conclusions can be drawn from the results of this research.

First, the optimal placement, collection, and incorporation of GCPs can be
concluded as proportional to resulting geospatial accuracy in sUAS + SfM survey data.
This is clearly demonstrated by the increasing accuracy of SUAS + SfM survey datasets
when increasing the frequency of GCPs in each processing iteration. This conclusion
also supports several instances of existing research which found similar research results
(e.g. Tonkin & Midgley 2016, Agiiera-Vega et al. 2017, James et al. 2017). Most

importantly, this conclusion also demonstrates that sUAS + SfM derived survey data
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which does not utilize any GCPs for georectification will achieve poor geospatial
accuracies which are unfit for most geospatial applications. This conclusion can be
rendered moot in the case of RTK capable sUAS platforms which do not require GCPs
for georectification. Since modern prosumer sUAS platforms do not currently possess
RTK capabilities in most cases, this capability is generally associated with professional
sUAS platforms only. As prosumer sUAS continue to advance, it is certainly possible
that RTK capabilities will become available in future prosumer sUAS platforms.
However, given the historical use and demonstrated value of GCPs for accurate
georectification, it is expected the use of GCPs would continue even for RTK capable
sUAS platforms as an additional means of georectification and/or accuracy assessment
(James et al. 2017, Molina et al. 2017).

Second, it can be concluded that P4P derived survey data was consistently more
accurate than P3A derived survey data. This conclusion is demonstrated by the accuracy
values in Figure 7.1 and the many subsequent figures which show P4P derived accuracies
exceeding that of the P3A at both survey areas using identical GCPs. This conclusion is
further demonstrated by the seven P4P derived survey datasets which achieved survey-
grade horizontal accuracy in initial tie points data, versus only one dataset for the P3A.
Again, it must be noted that sUAS data collection and SfM processing methods were held
constant for all P4P and P3A survey datasets. For the purpose of this research, the only
known variable between these sUAS platforms (excluding meteorological conditions at
the time of remote sensing data collection) was their camera payload. As previously
discussed, the P4P possesses a superior camera payload to the P3A in terms of both

sensor size and image resolution. Furthermore, the documented shortcomings of the P3A
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camera payload’s rolling-shutter mechanism are assumed to have influenced P3A
derivative accuracies as shown in similar research efforts (e.g. Liang et al. 2008, Albl et
al. 2015). Additional statistical analysis beyond the scope of this thesis would be
required to confirm the P4P camera payload was indeed the variable which influenced
greater geospatial accuracy on behalf of the P4P. However, this point is speculated here
for the purpose of this research as P4P survey data was concluded to be of consistently
higher accuracy than P3A survey data.

Lastly, and most importantly, it can be concluded that horizontal and vertical
accuracies at the 95% confidence level provide a more statistically accurate measure of
geospatial accuracy than RMSE. As previously discussed, FGDC standards recognize
RMSE as an accepted estimate of geospatial accuracy. Alternatively, FGDC standards
explicitly state that reported accuracies at the 95% confidence level reflect all
uncertainties “including those introduced by geodetic control coordinates, compilation,
and final computation of ground coordinate values in the product”. This final conclusion,
while not scientifically ground-breaking, plays directly to the heart of the geospatial
accuracy debate surrounding SUAS derived survey data. Much of the existing research
on sUAS derived accuracy uses only RMSE values to represent geospatial accuracy (e.g.
Niethammer et al. 2012, Mancini et al. 2013, Bemis et al. 2014, Ruzgiene et al. 2015).
Additionally, even Pix4D Mapper Pro uses RMSE to communicate geospatial accuracy
of resulting survey data. However, the statistical nature of RMSE ensures these values
are nearly always lower (lower error = higher accuracy) than calculated accuracy at the

95% confidence level.
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Final thoughts

The results of this thesis research show that achieving “survey-grade” accuracy
both horizontally and vertically with modern prosumer sUAS is somewhat unlikely, but
not completely implausible. To this point, it must be acknowledged that all conditions of
the accuracy test experiment including sUAS platforms used, survey area characteristics,
flight setting and environmental conditions, and data collection and processing
methodologies are all assumed to have contributed to the final geospatial accuracy
results. Therefore, it cannot be definitively stated that prosumer sUAS are unable to
achieve “survey-grade” accuracy.

Variations in any of the above experimental conditions could have potentially
improved or worsened the resulting accuracies reported herein. For example, conducting
sUAS remote sensing data collection at a lower altitude (< 300 ft. AGL) would have
resulted in smaller ground sample distances (GSD) for both sUAS platforms. This
altitude adjustment could certainly improve resulting accuracy values in the proper
conditions. However, sSUAS data collection altitude has a proportional relationship to
sUAS survey coverage capability. Thus, reducing sUAS data collection altitude also
effectively reduces the geographic scope which the SUAS can survey. Likewise, a higher
GCP frequency may have benefitted resulting accuracy through improved sUAS data
georectification. However, this requires much additional time and effort to place and
collect said GCPs. Essentially, a significant trade-off exists between achieving geospatial
accuracy with modern prosumer sUAS and the additional time, effort, and cost required
to do so (i.e. low altitude data collection, extensive GCP placement, additional
hardware/software requirements, etc.). For this reason, traditional surveying instruments
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and methods should not be relinquished in favor of prosumer sUAS for complex
applications requiring “survey-grade” accuracy at this time.

Also, it can be speculated that use of RMSE to communicate geospatial accuracy
may be a contributor to the greater debate surrounding sUAS derived survey data. Had
RMSE been used to communicate geospatial accuracy for this thesis research, nine
additional survey datasets could have been inaccurately or inadvertently interpreted as
exhibiting survey-grade accuracy (more than doubling the “survey-grade” accuracy
results). While these datasets exhibit RMSE values < 0.164 ft., their calculated
accuracies at the 95% confidence level exceeded the survey-grade accuracy threshold by
almost five times in some cases. Therefore, while the impact of RMSE misinterpretation
as geospatial accuracy can only be speculated, accuracy at the 95% confidence level is
expected to be a more effective measure of geospatial accuracy based on the results this
research.

Finally, it must be acknowledged that SUAS derived accuracies observed in this
research may certainly be sufficient for applications requiring moderate “mapping-grade”
geospatial accuracy. Geospatial data of “mapping-grade” accuracy still possess
significant value — especially when compiled alongside additional data in a GIS or other
data repository. Furthermore, the geospatial accuracies achieved with modern prosumer
sUAS and sufficient ground control in this research are very impressive given the
relatively low cost and operational ease of these platforms. Therefore, the capabilities
and benefits offered by modern prosumer sUAS should not be disregarded for current and

future geospatial applications.

135



REFERENCES

Agiliera-Vega, F., Carvaljal-Ramirez, F., Martinez-Carricondo, P., 2017.
Assessment of photogrammetric mapping accuracy based on variation ground control
points using unmanned aerial vehicle. Measurement: Journal of the International
Measurement Confederation. 98, 221-227.

Albl, C., Kukelova, Z., Pajdla, T., 2015. R6P — Rolling shutter absolute pose
problem. Proceedings of the IEEE Computer Society. Conference on Computer Vision
and Pattern Recognition. 07, 12-June-2015. 2292-2300.

Bemis, S., et al., 2014. Ground-based and UAV-Based photogrammetry: A multi-
scale, high-resolution mapping tool for structural geology and paleoseismology. Journal
of Structural Geology. 69, 163-178.

Birdseye, C.H., 1940. Stereoscopic Photographic mapping. Annals of the
Association of American Geographers. 30, 1-24. DOI: 10.1080/00045604009357193.

Chao, H., Cao, Y., Chen, Y., 2010. Autopilots for Small Unmanned Aerial
Vehicles: A Survey. International Journal of Control, Automation, and Systems. 8, 1, 36-
44,

Clapuyt, F., Vanacker, V., Van Oost, K., 2016. Reproducibility of UAV-based
earth topography reconstructions based on Structure-from-Motion algorithms.
Geomorphology. 260, 4-15.

Colomina, 1., Molina, P., 2014. Unmanned aerial systems for photogrammetry
and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing.
92, 79-97.

Cook, K., 2017. An evaluation of the effectiveness of low-cost UAVs and
structure from motion for geomorphic change detection. Applied Geomatics. 278, 195-
208.

Cooper, A., Redman, C., Stoneham, D., Gonzalez, L., Etse, V., 2015. A Dynamic
Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous
Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.
Sensors. 15, e21537-e21553.

136



Cryderman, C., Mah, B., Shufletoski, A., 2014. Evaluation of UAV
Photogrammetric Accuracy for Mapping and Earthworks Computations. GEOMATICA,
Vol. 68, No. 4, 2014, pp. 259- 271.

Federal Aviation Administration (FAA), Office of Aviation Policy and Plans,
Forecasts and Performance Analysis Division (APO-100), 2017. FAA Aerospace
Forecast: Fiscal Years 2017 — 2037.

Federal Aviation Administration (FAA), 2018. Title 14, Chapter I, Subchapter F,
Part 107. Electronic Code of Federal Regulations (e-CFR). https://www.ecfr.gov/cgi-
bin/text- idx?SID=e331c2fe611df1717386d29eee38b000&mc=true&node=pt14.2.107&
rgn=div5.

Federal Geographic Data Committee (FGDC), 1998. Geospatial Positioning
Accuracy Standards, Part 2: Standards for Geodetic Networks. National Spatial Data
Infrastructure (NSDI). FGDC-STD-007.2-1998.

Federal Geographic Data Committee (FGDC): Sub-Committee for Base
Cartographic Data., 1998. Geospatial Positioning Accuracy Standards, Part 3: National
Standard for Spatial Data Accuracy. National Spatial Data Infrastructure (NSDI). FGDC-
STD-007.3-1998.

Fladeland, M., Schoenung, S., Lord, M., 2017. UAS Platforms. NCAR/EOL
Workshop — Unmanned Aircraft Systems for Atmospheric Research — February 2017.

Forstner, W., 1986. A feature-based correspondence algorithm for image
matching. International Archives of Photogrammetry and Remote Sensing. 26, 150—166.

Franesco, N., Remondino, F., 2014. UAV for 3D mapping applications: A review.
Applied Geomatics. 6, 1-15.

Harris, C., Stephens, M., 1988. A combined corner and edge detector.
Proceedings of the Fourth Alvey Vision Conference, Manchester, pp. 147—151.

Hirai, T., 1962. On the results of the examiniation for the aerial photograph on the
large scale basic mapping. Journal of the Japan society of photogrammetry. 1(2): 78-84.

Holland, D., Pook, C., Capstick, D., Hemmings, A., 2016. The Topographic Data
Deluge — Collecting and Maintaining Data in a 21st Century Mapping Agency. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 41, 727-731.

Hugenholtz, C., et al., 2013. Geomorphological mapping with a small unmanned
aircraft system (sUAS): Feature detection and accuracy assessment of a
photogrammetrically-derived digital terrain model. Geomorphology. 194, 16-24.

137



Ishiguro, S., Yamano, H., Oguma, H., 2016. Evaluation of DSMs generated from
multi-temporal aerial photographs using emerging structure from motion-multi-view
stereo technology. Geomorphology. 268, 64-71.

James, M., Robson, S., D’oleire-Oltmanns, S., et al., 2017. Optimising UAV
topographic surveys processed with structure-from-motion: Ground control quality,
quantity and bundle adjustment. Geomorphology. 280, 51-66.

Jaud, M., Passot, S., Le Bevic, R., et al., 2016. Assessing the accuracy of high
resolution digital surface models computed by PhotoScan© and MicMac© in sub-optimal
survey conditions. Remote Sensing. Vol. 8, Issue 6, 465.

Jensen, J., 2007. Remote Sensing of the Environment — An Earth Resource
Perspective. Pearson Prentice Hall. ISBN 0-13-188950-8. 1-592.

Jensen, J., 2015. Introductory Digital Image Processing — A Remote Sensing
Perspective, 4™ Edition. Pearson Series in Geographic Information Science. Pearson.
ISBN-10 013405816X. 1-544.

Konstantinos, G. N., Konstantina, S., Ioannis, K.K., Nikolaos, G. A., 2016. UAV
vs. classical aerial photogrammetry for archaeological studies. Journal of Archaeological
Science: Reports (2016).

Liang, C., Chang, L., Chen, H., 2008. Analysis and compensation of rolling
shutter effect. IEEE Transactions on Image Processing. 17. Issue 8. 1323-1330.

Mah, S., Cryderman, C., 2015. Implementation of an Unmanned Aerial Vehicle
System for Large Scale Mapping. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. 40, 47-54.

Mancini, F. et. al., 2013. Using Unmanned Aerial Vehicles (UAV) for High-
Resolution Reconstruction of Topography: The Structure from Motion Approach on
Coastal Environments. Remote Sensing. S, 6880-6898. DOI: 10.3390/rs5126880.

Marshall, D., Barnhart, R., Shappee, E., Most, M., 2016. Introduction to
Unmanned Aircraft Systems, Second Edition. CRC Press; 2 edition. ISBN-10:
1482263939. 1-395.

McCaffrey, K., Jones, R., Holdsworth, R., et al., 2005. Unlocking the spatial
dimension: digital technologies and the future of geoscience fieldwork. Journal of the
Geological Society. 162, 6, 927. DOI: 10.1144/0016-764905-017.

Mesas-Carrascosa, F., Garcia, M., Larriva, J., Garcia-Ferrer, J., 2016. An
Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial

Vehicle (UAV) Orthomosaics to Survey Archaeological Areas. Sensors. 16, 1838.

138



Molina, P., Blazquez, M., Cucci, D., Colomina, I., 2017. First Results of a
Tandem Terrestrial-Unmanned Aerial mapKITE System with Kinematic Ground Control
Points for Corridor Mapping. Remote Sensing. 9, 60.

NGS.OPUS, 2018. https://www.ngs.noaa.gov/OPUS/. National Geodetic Survey
(NGS).

Niethammer, U., James, M., Rosthmund, S., Travelletti, J., Joswig, M., 2012.
UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results.
Engineering Geology. 128. 2-11.

Nikolakopoulos, K., Soura, K., Koukouvelas, L., et al., 2017. UAV vs classical
aerial photogrammetry for archaeological studies. Journal of Archaeological Science:
Reports. 14, 758-773.

Oshima, T., Usami, Y., 1964. On the vertical accuracy of aerial photograph.
Journal of the Japan society of photogrammetry. 3(1): 21-27.

Pineux, N., Lisein, J., Swerts, G., et al., 2017. Can DEM time series produced by
UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology.
280, 122-136.

Remondino, F., et al., 2011. UAV Photogrammetry for Mapping and 3D
Modeling — Current Status and Future Perspectives. ISPRS — International Archives of
the Photogrammetry, Remote Sensing, and Spatial Information Sciences. XXXVII-
1/C22, 25-31.

Ruzgiene, B., Berteska, T., GeCyte, S., et al., 2015. The surface modelling based
on UAV Photogrammetry and qualitative estimation. Measurement: Journal of the
International Measurement Confederation. 73, 619-627.

Siebert, S., Teizer, J., 2014. Mobile 3D mapping for surveying earthwork projects
using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction. 41, 1-
14.

Spetsakis, M.E., Aloimonos, Y., 1991. A multi-frame approach to visual motion
perception. International Journal of Computer Vision. 6, 245-255.

Sushchenko, O., Goncharenko, A., 2016. Design of Robust Systems for
Stabilization of Unmanned Aerial Vehicle Equipment. International Journal of
Aerospace Engineering. 2016, Article ID 6054081.

United States Geological Survey (USGS), 2017. USGS Global Positioning
Application and Practice. U.S. Department of the Interior. https:// water.usgs.gov
/osw/gps/.

139



Tonkin, T., Midgley, N., Graham, D., Labadz, J., 2014. The potential of small
unmanned aircraft systems and structure-from-motion for topographic surveys: A test of
emerging integrate approaches at Cwn Idwal, North Wales. Geomorphology. 226, 35-43.

Tonkin, T., Midgley, N., 2016. Ground-control networks for image based surface
reconstruction: An investigation of optimum survey designs using UAV derived imagery
and structure-from-motion photogrammetry. Remote Sensing. Vol. 8, Issue 9, 16-19.

Udin, W., Ahmad, A., 2014. Assessment of photogrammetric mapping accuracy
based on variation flying altitude using unmanned aerial vehicle. IOP Conference Series:
Earth and Environmental Science. 18, 1-7.

Uysal, M., Toprak, A., Polat, N., 2015. DEM generation with UAV
Photogrammetry and accuracy analysis in Sahitler hill. Measurement: Journal of the
International Measurement Confederation. 73, 539-543.

Vasuki, Y., Holden, E., Kovesi, P., Micklethwaite, S., 2014. Semi-automatic
mapping of geological Structures using UAV-based photogrammetric data: An image
analysis approach. Computers & Geosciences. 69, 22-32.

Wallace, L., Lucieer, A., Malenovsky Z., et al., 2016. Assessment of forest
structure using two UAYV techniques: A comparison of airborne laser scanning and
structure from motion (SfM) point clouds. Forests. Vol. 7, Issue 3, 1-16.

Watanabe, Y., Kawahara, Y., 2016. UAV Photogrammetry for Monitoring
Changes in River Topography and Vegetation. Procedia Engineering. 154, 317-325.

Wester-Ebbinghaus, W., 1980. Aerial Photography by radio controlled model
helicopter, The Photogrammetric Record, 10, 55, 85-92.

Westoby, J., Brasington, J., Glasser, N., Hambrey, M., Reynolds, J., 2012.
Structure-from-Motion photogrammetry: A low-cost, effective tool for geosciences

applications. Geomorphoogy. 179, 300-314.

Whittlesley, J. H., 1970. Tethered Balloon for Archaeological Photos,
Photogrammetric Engineering, 36, 2, 181-186.

140



APPENDIX A
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See file dsdata.pdf for more information about the datasheet.
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e s ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok sk ok ok ok ook sl sk ok ook ks sk ok ok ok ki sk ok ook sk ko ok ok koo ook kol ok kokodkok ok k ki ke ok ok
CBN - This is a Cooperative Base Network Control Station.
DESIGNATION - STARKVILLE CBL 113@

PID - DJ1746
STATE/COUNTY- MS/OKTIBBEHA
COUNTRY - Us
USGS QUAD - STARKVILLE (1982)
*CURRENT SURVEY CONTROL
NAD 83(2011) POSITION- 33 25 53.56377(N) @88 50 58.34171(W)  ADJUSTED
NAD 83(20811) ELLIP HT- 70.356 (meters) (06/27/12)  ADJUSTED
NAD 83(2@11) EPOCH - 2010.600
NAVD 88 ORTHO HEIGHT - 98.51 (meters) 323.2  (feet) LEVELING
GEOID HEIGHT - -28.164 (meters) GEOID12B
NAD 83(2011) X - 106,981.786 (meters) comp
NAD 83(2011) Y - -5,327,240.982 (meters) CcoMp
NAD 83(2011) Z - 3,494,039.287 (meters) comp
LAPLACE CORR - -1.89 (seconds) DEFLEC12B
VERT ORDER - THIRD ?
Network accuracy estimates per FGDC Geospatial Positioning Accuracy
Standards:
FGDC (95% conf, cm) Standard deviation (cm) CorrNE

Horiz Ellip SDN SD E SD_h (unitless)

NETWORK 1.09 3.86 8.45 0.44 1.97 -0.00050734

Click here for local accuracies and other accuracy information.

.This mark is at George M Bryan Airport (STF)

.The horizontal coordinates were established by GPS observations
.and adjusted by the National Geodetic Survey in June 2012.

.NAD 83(2011) refers to NAD 83 coordinates where the reference frame has

been affixed to the stable North American tectonic plate. See

.NA2011 for more information.

.The horizontal coordinates are valid at the epoch date displayed above
.which is a decimal equivalence of Year/Month/Day.

.The orthometric height was determined by differential leveling.
.The vertical network tie was performed by a horz. field party for horz.
.0obs reductions. Reset procedures were used to establish the elevation.

.Significant digits in the geoid height do not necessarily reflect accuracy.
.GEOID12B height accuracy estimate available here.

.The X, Y, and Z were computed from the position and the ellipsoidal ht.

.The Laplace correction was computed from DEFLEC12B derived deflections.

https://mww.ngs.noaa.gov/cgi-bin/ds_mark.pri?PidBox=DJ1746 1/4

Figure A.1

National Geodetic Survey (NGS) Monument DJ1746 Datasheet
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4/15/2018 DATASHEETS
DJ1746
DJ1746.The ellipsoidal height was determined by GPS observations
DJ1746.and is referenced to NAD 83.
D11746
DJ1746. The following values were computed from the NAD 83(2011) position.
D11746
DJ1746; North East Units Scale Factor Converg.
DJ1746;SPC MS E - 435,899.067 298,492.986 MT ©.99995003 -0 @0 32.1
D11746;SPC MS E - 1,430,112.19 979,305.74 sFT ©.99995603 -0 @@ 32.1
D11746;UTM 16 - 3,700,659.064 328,057.917 MT ©.99996450 -1 01 ©9.2
D11746
DJ1746! - Elev Factor x Scale Factor = Combined Factor
DJ1746!SPC MS E - 9.99998895 x  ©.999950@3 =  ©.99993899
DJ1746IUTM 16 - 0.99998895 x 0.99996450 = ©.99995346
DJ1746
DJ1746: Primary Azimuth Mark Grid Az
DJ1746:SPC MS E - STARKVILLE CBL 430 358 34 ©0.0
DJ1746:UTM 16 - STARKVILLE CBL 430 359 34 37.1
DJ1746
DJ1746_U.S. NATIONAL GRID SPATIAL ADDRESS: 16SCC28085780659(NAD 83)
DJ1746
DL 746 | === - m = o mm s oo |
DJ1746| PID Reference Object Distance Geod. Az
DJ1746| dddmmss.s |
DJ1746| DJ1744 STARKVILLE AIRPORT BEACON APPROX. 1.2 KM 0174436.0 |
DJ1746| DJ1747 STARKVILLE CBL 43@ APPROX. ©.7 KM 3583327.9 |
DJ1746| DJ1745 STARKVILLE CBL © APPROX. 1.1 KM 3583329.9 |
DI1T746 | === === e e e e e |
DJ1746
DJ1746 SUPERSEDED SURVEY CONTROL
DJ1746
DJ1746 NAD 83(2087)- 33 25 53.56366(N) 0988 50 58.34208(W) AD(2002.00) ©
DJ1746 ELLIP H (e2/10/07) 70.380 (m) GP(2002.00)
DJ1746 ELLIP H (04/15/02) 70.349 (m) GP( ) 42
DJ1746 ELLIP H (82/15/02) 70.348 (m) GP( )41
DJ1746 NAD 83(1993)- 33 25 53.56360(N) 088 50 58.34249(W) AD( ) B
DJ1746 ELLIP H (@1/12/94) 70©.464 (m) GP( ) 42
DJ1746 ELLIP H (01/12/94) 7@.464 (m) GP( )41
DJ1746 NAD 83(1992)- 33 25 53.57400(N) 088 50 58.34878(W) AD( ) 2
DJ1746 NAD 83(1986)- 33 25 53.57412(N) 088 50 58.33789(W) AD( ) 2
DJ1746 NAD 27 - 33 25 53.13645(N) 0988 50 58.14219(W) AD( ) 3
DJ1746 NGVD 29 98.47 (m) 323.1 (f) LEVELING 3
DJ1746
D]1746.Superseded values are not recommended for survey control.
D11746
DJ1746.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
DJ1746.See file dsdata.pdf to determine how the superseded data were derived.
DJ1746
DJ1746_MARKER: DQ = CALIBRATION BASE LINE DISK
DJ1746_SETTING: 7 = SET IN TOP OF CONCRETE MONUMENT
DJ1746_STAMPING: 113@ 1978
DJ1746_MARK LOGO: NGS
DJ1746_MAGNETIC: N = NO MAGNETIC MATERIAL
DJ1746_STABILITY: C = MAY HOLD, BUT OF TYPE COMMONLY SUBJECT TO
DJ1746+STABILITY: SURFACE MOTION
DJ1746_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
DJ17464SATELLITE: SATELLITE OBSERVATIONS - November @5, 2005
DJ1746
DJ1746 HISTORY - Date Condition Report By
DJ1746 HISTORY - 1978 MONUMENTED MSSU
DJ1746 HISTORY - 1988 GOOD NGS
DJ1746 HISTORY - 19910214 GOOD NGS
D11746 HISTORY - 19921008 GOOD MSHD
DJ1746 HISTORY - 19930511 GOOD
DJ1746 HISTORY - 20000911 GOOD MSHD
https://www.ngs.noaa.gov/cgi-bin/ds_mark.prl?PidBox=DJ1746

Figure A.1 (continued)
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4/15/2018 DATASHEETS

DJ1746 HISTORY - 20851105 GOOD MSSU
DJ1746
DJ1746 STATION DESCRIPTION
DJ1746

DJ1746'DESCRIBED BY MISSISSIPPI STATE UNIVERSITY 1978 (RB)

DJ1746'LOCATED 3 MILES SW OF STARKVILLE, 1 MILE SOUTH OF MS HWY 12, 3@ FT
DJ1746'WEST OF C/L OF STARKVILLE AIRPORT RUNWAY, 12.1 M NW OF DITCH, 21.7 M
DJ1746'SE OF EAST CORNER OF CIVIL AIR PATROL BUILDING. A STD BASELINE DISK
DJ1746'IN CONCRETE CYLINDER.

DJ1746

DJ1746 STATION RECOVERY (1988)

DJ1746

DJ1746'RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 1988 (AJL)

DJ1746'THE STATION IS LOCATED ABOUT 4.8 KM (2.5 MI)

DJ1746'SOUTHWEST OF STARKVILLE,

DJ1746'1.4 KM (©.9 MI) SOUTH OF STATE HIGHWAY 12, ON THE WESTERN EDGE OF
DJ1746'THE PROPERTY FOR THE STARKVILLE-GEORGE M. BRYAN AIRPORT,
DJ1746'NEAR THE CENTER OF THE FIELD.

DJ1746 'OWNERSHIP--CITY OF STARKVILLE, C/0O CITY ENGINEER JOE WEBB, CITY
DJ1746'HALL, STARKVILLE, MS 39759. PHONE (6@1) 325-8581.

DJ1746"

DJ1746'TO REACH THE STATION FROM THE JUNCTION OF STATE HIGHWAYS 12 AND 25
DJ1746'IN SOUTHWEST STARKVILLE, GO WEST FOR 2.4 KM (1.5 MI) ON HIGHWAY 12
DJ1746'TO A PAVED CROSSROAD.

DJ1746'TURN LEFT AND GO SOUTH FOR ©.5 KM (@.3 MI) ON THE PAVED ROAD TO A
DJ1746'GATE ON THE RIGHT AT THE SOUTHEAST CORNER OF THE UNIVERSITY HANGAR.
DJ1746'TURN RIGHT AND GO WEST FOR ©.3 KM (@.2 MI) ON THE PARKING PAD AND
DJ1746'RAMP TO THE RUNWAY.

DJ1746'TURN LEFT AND GO SOUTH FOR 1.8 KM (@.6 MI) ON THE RUNWAY TO THE
DJ1746'STATION ON THE RIGHT JUST EAST OF AN ABANDONED BUILDING.

DJ1746"

DJ1746'THE STATION IS A STANDARD NGS DISK

DJ1746'STAMPED---113@ 1978---,

DJ1746'SET INTO THE TOP OF A ROUND CONCRETE MONUMENT

DJ1746'26 CM IN DIAMETER FLUSH WITH GROUND. LOCATED

DJ1746'68.6 METERS (225.@ FT) WEST FROM THE WEST EDGE OF THE RUNWAY,
DJ1746'55.2 METERS (181.@ FT) EAST FROM A POWER POLE WITH A TRANSFORMER,
DJ1746'23.6 METERS (77.5 FT) EAST-SOUTHEAST FROM THE SOUTHEAST CORNER
DJ1746'0F THE ABANDONED BUILDING,

DJ1746'21.6 METERS (71.0 FT) SOUTHEAST FROM THE NORTHEAST CORNER OF THE
DJ1746'ABANDONED BUILDING, AND

DJ1746'@.6 METERS (2.@ FT) SOUTH FROM A METAL WITNESS POST.

DJ1746'THE UNDERGROUND MARK IS A STANDARD MSU DISK

DJ1746'STAMPED---113@ 1978---,

DJ1746'SET INTO AN IRREGULAR MASS OF CONCRETE 1.1 METERS BELOW THE SURFACE.

DJ1746"
DJ1746'DESCRIBED BY D.D. REXRODE, TYPED BY C.L. SMITH.
DJ1746
DJ1746 STATION RECOVERY (1991)
DJ1746

DJ1746'RECOVERY NOTE BY NATIONAL GEODETIC SURVEY 1991 (LPB)

DJ1746'MARK IS A COMPONENT OF THE STARKVILLE CALIBRATION BASE LINE, LOCATED
DJ1746'ABOUT 4.0 KM (2.49 MI) SOUTHWEST OF STARKVILLE, ALONG THE WEST
DJ1746'BOUNDARY OF THE STARKVILLE CITY AIRPORT IN SECTION 17 T 18 N R 14 E
DJ1746' (STARKVILLE 7.5 MIN QUAD). OWNERSHIP--CITY OF STARKVILLE.

DJ1746'FOR PERMISSION TO ENTER AIRPORT PROPERTY PLEASE CONTACT MR. JOE WEBB,
DJ1746'BOX 6062, MISSISSIPPI STATE UNIVERSITY, MISSISSIPPI STATE, MS 39762.
DJ1746'TELEPHONE 601-323-8581 OR 325-3@1@. TO OBTAIN THE KEYS TO THE LOCKED
DJ1746'GATES CONTACT THE CIVIL ENGINEERING DEPARTMENT OF MISSISSIPPI STATE
DJ1746'UNIVERSITY OR THE STARKVILLE POLICE DEPARTMENT.

DJ1746"

DJ1746'TO REACH FROM THE JUNCTION OF MISSISSIPPI STATE HIGHWAYS 12 AND 25, IN
DJ1746'SOUTHWEST STARKVILLE, GO WEST ON HIGHWAY 12 FOR 2.4 KM (1.49 MI) TO
DJ1746'AN INTERSECTION LEADING TO THE AIRPORT ON THE LEFT. CONTINUE WEST
DJ1746'FOR @.56 KM (@©.35 MI) TO A GRAVEL ROAD LEFT. TURN LEFT AND GO SOUTH

https://www.ngs.noaa.gov/cgi-bin/ds_mark.prlI?PidBox=DJ1746 3/14

Figure A.1 (continued)
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DJ1746'FOR ©.85 KM (@.53 MI) TO A LOCKED GATE. PROCEED THROUGH THE GATE AND
DJ1746 'FOLLOW THE FENCE LINE SOUTH FOR ©.39 KM (©.24 MI) TO THE MARK ON THE
DJ1746'LEFT, ACCESSED THROUGH A LOCKED GATE.

DJ1746'

DJ1746'MARK IS SET IN THE TOP OF A 28 CM (11 IN) DIAMETER CONCRETE POST FLUSH
DJ1746 'WITH GROUND SURFACE. IT IS 38.4 M (125.98 FT) SOUTHEAST OF A GATE
DJ1746'CENTER POST, 29.1 M (95.47 FT) EAST OF A WIRE FENCE, 22.9 M
DJ1746'(75.13 FT) NORTHWEST OF A MSU REFERENCE MARK, ©.5 M (1.64 FT)

DJ1746 'NORTHWEST OF A METAL WITNESS POST, AND ©.5 M (1.64 FT) SOUTHEAST OF A
DJ1746 'METAL WITNESS POST.

DJ1746'FOR MORE INFORMATION CONTACT MR. ROFFIE BURT, DEPARTMENT OF CIVIL
DJ1746 'ENGINEERING, P.0. DRAWER CE, MISSISSIPPI STATE, MS 39762. TELEPHONE
DJ1746'601-325-7188 OR 325-3@5@. OR CONTACT MR. DONALD REXRODE, P.0. BOX
DJ1746'6366, JACKSON, MS 392@8. TELEPHONE 601-944-9098.

DJ1746

DJ1746 STATION RECOVERY (1992)

DJ1746

DJ1746 'RECOVERY NOTE BY MISSISSIPPI STATE HIGHWAY DEPARTMENT 1992

DJ1746'THE STATION IS LOCATED ABOUT 3.5 MI (5.6 KM) SOUTHWEST OF STARKVILLE,
DJ1746'©.9 MI (1.4 KM) SOUTH OF STATE HIGHWAY 12, ON THE WESTERN EDGE OF THE
DJ1746 'PROPERTY OF THE STARKVILLE-GEORGE M. BRYAN AIRPORT, NEAR THE CENTER
DJ1746'0OF THE FIELD AND IS IN SECTION 17, T 18N, R 14E. OWNERSHIP--CITY OF
DJ1746'STARKVILLE, C/0 CITY ENGINEER JOE WEBB, CITY HALL, STARKVILLE, MS
DJ1746'39759. PHONE (6@1) 325-8581.

DJ1746'TO REACH THE STATION FROM THE JUNCTION OF STATE HIGHWAYS 12 AND 25 IN
DJ1746 'SOUTHWEST STARKVILLE, GO WEST ON STATE HIGHWAY 12 FOR 1.5 MI
DJ1746'(2.4 KM) TO A CROSSROAD, TURN LEFT AND GO SOUTH ON A PAVED ROAD FOR
DJ1746'0.3 MI (0.5 KM) TO A GATE ON THE RIGHT AT THE SOUTHWEST CORNER OF THE
DJ1746 'UNIVERSITY HANGAR, TURN RIGHT THROUGH THE GATE AND GO WEST ON A
DJ1746'PARKING PAD AND RAMP FOR @.2 MI (@.3 KM) TO THE RUNWAY, TURN LEFT AND
DJ1746'GO SOUTH ON THE RUNWAY FOR @.6 MI (1.0 KM) TO THE MARK ON THE RIGHT.
DJ1746'MARK IS A STANDARD NGS CALIBRATION BASE LINE DISK SET IN THE TOP OF A
DJ1746 'ROUND CONCRETE POST, FLUSH WITH THE GROUND, 225 FT (68.6 M) WEST OF
DJ1746'THE WEST EDGE OF THE RUNWAY, 181 FT (55.2 M) EAST OF A POWER POLE
DJ1746 'WITH A TRANSFORMER, 118 FT (36.@ M) EAST SOUTHEAST OF THE SOUTH POST
DJ1746'0F A DOUBLE GATE, 95.5 FT (29.1 M) EAST OF A FENCE AND 2 FT (@.6 M)
DJ1746'SOUTH OF A METAL WITNESS POST. (NOTE) THE ABANDONED BUILDING MENTIONED
DJ1746'IN THE PREVIOUS DESCRIPTION NO LONGER EXISTS.

D11746

D11746 STATION RECOVERY (1993)

DJ1746

DJ1746 'RECOVERED 1993

DJ1746 'RECOVERED IN GOOD CONDITION.

DJ1746

DJ1746 STATION RECOVERY (2000)

DJ1746

DJ1746'RECOVERY NOTE BY MISSISSIPPI STATE HIGHWAY DEPARTMENT 2@0@

DJ1746 'RECOVERED AS DESCRIBED.

DJ1746

DJ1746 STATION RECOVERY (2005)

DJ1746

DJ1746 'RECOVERY NOTE BY MISSISSIPPI STATE UNIVERSITY 2005 (HAK)

DJ1746 'RECOVERED IN GOOD CONDITION.

*¥% petrieval complete.
Elapsed Time = 00:00:04

https://www.ngs.noaa.gov/cgi-bin/ds_mark.prl?PidBox=DJ1746 414
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NATIONAL WEATHER SERVICE (NWS) OBSERVATIONS FOR JULY 26, 2017
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weather gov
EATy,
WERThe,

D Temperature (°F) Wind Heat Pressure (m“ t)a o
a Time Wind Vis. Sky Relative | o —

t| iy Gty ey TR L Ghour | Siammuisy (-0 Iwdex (B0 sea

. E Air Dwpt > w1 | Feoneter oy hlr ]f 5 hr

Max. Min. s} oty T
26 15:45 Calm 10.00 A Few FEW050 99 70 39% NA 106 3001 NA
Clouds

26 14:45 Calm 10.00 Partly Cloudy SCT045 97 72 44% NA 106 3003 - NA

26 13:45 Calm 10.00 Partly Cloudy SCT045 95 72 47% NA 103 3005 NA

26 12:45 Calm 10.00 Mostly BKNO45 93 72 50% NA 101 3008 NA

Cloudy

26 11:45 Calm 10.00 Clear Secl 51 B 52% NA 98 3008 NA

26 10:30 Calm 10.00 Clear SKC 90 T2 55% NA 97 3010 NA

26 09:45 Calm 10.00 Clear SKC 86 70 59% NA 91 3009 NA

26 08:45 Calm 10.00 Clear SKC 86 70 59% NA 91 3008 NA

26 07:45 Calm 10.00 Clear SKC 79 30 37% NA 79 3009 NA

26 06:45 Calm 1000 Clear SKC 73 66 78% NA NA 3009 - NA

26 05:45 Calm 7.00 FogMist SKC 73 66 78% NA NA 3008 -NA

26 05:35 Calm 8.00 Fair CLR 73 66 78% NA NA 3008 - NA

26 05:15 Calm 6.00 Fair CLR 73 66 78% NA NA 3007 -NA

Figure B.  National Weather Service (NWS) Observations for July 26, 2017.

Observation times of 09:45 — 13:45 coincide with all remote sensing data collection
flights at Survey Area #1 (SA-1) and Survey Area #2 (SA-2).
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P3A SA-1 12GCP COMPREHENSIVE ERROR EVALUATION
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Figure C.1  Error evaluation — P3A_SA-1_12GCP checkpoint locations

Checkpoint locations collected via independent source of higher accuracy (Trimble R6)
and used for positional error calculation and accuracy testing in P3A_SA-1_12GCP data.
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Figure C.2  Examples of error at various checkpoints in P3A_SA-1 12GCP dataset

In Pix4D Mapper Pro, positional error between initial and computed point positions can
be visualized using the “Ray Cloud Editor” and corresponding “Error Ellipsoid” function.
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P3A SA-1 12GCP

INTIAL

FEEFREEF

Distribution of Horizontal Error (x,y) Distribution of Vertical Error (z)
in all P3A SA-1 12GCP data in all P3A SA-1 12GCP data
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Figure C.3  Survey-grade accuracy evaluation of P3A_SA-1 12GCP error values

Positional error as recorded in P3A_SA-1 12GCP derived survey data. Red error values
and corresponding red sections in the associated charts represent error values exceeding
the < 0.164 ft. survey-grade threshold tolerance. Blue error values and corresponding
blue sections in the associated charts represent error values within the < 0.164 ft.
tolerance.
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Error (x,y, z) by Checkpoint
in P3A SA-1 12GCP Initial Tie Points
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Figure C.4  Positional error by checkpoint for P3A SA-1_ 12GCP dataset

Positional error (x = blue, y = orange, z = gray) at each checkpoint location in the various
survey data types of the P3A SA-1 12GCP dataset.
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Vertical Error (z) by Checkpoint
in P3A SA-1 12GCP Digital Surface Model (DSM)
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Figure C.5 Vertical error by checkpoint for P3A_SA-1 12GCP DSM

Vertical error (z = gray) at each checkpoint location in the digital surface model (DSM)
raster survey data of P3A_SA-1_12GCP.
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Horizontal Error (x, y)
in P3A SA-1 12GCP Initial Tie Points
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Vertical Error (z) by Checkpoint
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Figure C.6  Horizontal and vertical error in relation to survey-grade accuracy for

P3A SA-1 12GCP initial tie points data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > (.164 ft. are represented in red.
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Horizontal Error (x, v)
in P3A SA-1 12GCP Point Cloud Data
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Figure C.7  Horizontal and vertical error in relation to survey-grade accuracy for
P3A SA-1_12GCP point cloud data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > (.164 ft. are represented in red.
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Vertical Error (z) by Checkpoint
in P3A SA-1 12GCP Digital Surface Model (DSM)
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Figure C.8  Vertical error in relation to survey-grade accuracy for P3A-SA-1 12GCP

DSM data

Survey-grade vertical accuracy at < 0.164 ft. is represented by the green outline.
Checkpoint locations with vertical error < 0.164 ft. are represented in blue, while
checkpoint locations with vertical error > 0.164 ft. are represented in red.
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APPENDIX D

P3A SA-2 21GCP COMPREHENSIVE ERROR EVALUATION
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Figure D.1  Error evaluation — P3A SA-2 21GCP checkpoint locations

Checkpoint locations collected via independent source of higher accuracy (Trimble R6)
and used for positional error calculation and accuracy testing in P3A _SA-2 21GCP data.

158



Figure D.2  Examples of error at various checkpoints in P3A SA-2 21GCP dataset

In Pix4D Mapper Pro, positional error between initial and computed point positions can
be visualized using the “Ray Cloud Editor” and corresponding “Error Ellipsoid” function.
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Figure D.3  Survey-grade accuracy evaluation of P3A_SA-2 21GCP error values

Positional error as recorded in P3A_SA-2 21GCP derived survey data. Red error values
and corresponding red sections in the associated charts represent error values exceeding
the < 0.164 ft. survey-grade threshold tolerance. Blue error values and corresponding
blue sections in the associated charts represent error values within the < 0.164 ft.
tolerance.
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Error (X.Y.Z) by Checkpoint
in P3A_SA-2 21GCP Initial Tie Points
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Figure D.4  Positional error by checkpoint for P3A SA-2 21GCP dataset

Positional error (x = blue, y = orange, z = gray) at each checkpoint location in the various
survey data types of the P3A _SA-2 21GCP dataset.
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Vertical Error (Z) by Checkpoint
in P3A SA-2 21GCP Digital Surface Model (DSM)
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Error_Z

Figure D.5 Vertical error by checkpoint for P3A_SA-2 21GCP DSM

Vertical error (z = gray) at each checkpoint location in the digital surface model (DSM)
raster survey data of P3A_SA-2 21GCP.
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Horizontal Error (X.Y)
in P3A_SA-2 21GCP Inital Tie Points
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Figure D.6  Horizontal and vertical error in relation to survey-grade accuracy for
P3A SA-2 21GCP initial tie points data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > 0.164 ft. are represented in red.
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Horizontal Error (X.Y)
in P3A_SA-2 21GCP Point Cloud Data
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Figure D.7  Horizontal and vertical error in relation to survey-grade accuracy for
P3A SA-2 21GCP point cloud data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > (.164 ft. are represented in red.
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Vertical Error (Z) by Checkpoint
in P3A_SA-2 21GCP Digital Surface Model (DSM)
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Figure D.8  Vertical error in relation to survey-grade accuracy for P3A_SA-2 21GCP
DSM data

Survey-grade vertical accuracy at < 0.164 ft. is represented by the green outline.

Checkpoint locations with vertical error < 0.164 ft. are represented in blue, while
checkpoint locations with vertical error > 0.164 ft. are represented in red.
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APPENDIX E

P4P SA-1 12GCP COMPREHENSIVE ERROR EVALUATION
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Figure E.1  Error evaluation — P4P_SA-1_ 12GCP checkpoint locations

Checkpoint locations collected via independent source of higher accuracy (Trimble R6)
and used for positional error calculation and accuracy testing in P4P_SA-1 12GCP data.
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Figure E.2  Examples of error at various checkpoints in P4P_SA-1 12GCP dataset

In Pix4D Mapper Pro, positional error between initial and computed point positions can
be visualized using the “Ray Cloud Editor” and corresponding “Error Ellipsoid” function.
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Figure E.3  Survey-grade accuracy evaluation of P4P_SA-1_12GCP error values

Positional error as recorded in P4P_SA-1 12GCP derived survey data. Red error values
and corresponding red sections in the associated charts represent error values exceeding
the < 0.164 ft. survey-grade threshold tolerance. Blue error values and corresponding
blue sections in the associated charts represent error values within the < 0.164 ft.
tolerance.
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Error (XY, Z) by Checkpoint
in PAP SA-1 12GCP Initial Tie Points
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Figure E4  Positional error by checkpoint for PAP_SA-1 12GCP dataset

Positional error (x = blue, y = orange, z = gray) at each checkpoint location in the various
survey data types of the P4P_SA-1 12GCP dataset.
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Vertical Error (Z) by Checkpoint
in PAP SA-1 12GCP Digital Surface Model (DSM)
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Figure E.5  Vertical error by checkpoint for PAP_SA-1 12GCP DSM

Vertical error (z = gray) at each checkpoint location in the digital surface model (DSM)
raster survey data of P4P_SA-1 12GCP.
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Horizontal Error (X.Y)
in PAP SA-1 12GCP Initial Tie Points
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Figure E.6  Horizontal and vertical error in relation to survey-grade accuracy for
P4P_SA-1 12GCP initial tie points data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint

locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > (0.164 ft. are represented in red.
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Horizontal Error (X.Y)
in PAP SA-1 12GCP Point Cloud Data
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Figure E.7  Horizontal and vertical error in relation to survey-grade accuracy for
P4P_SA-1 12GCP point cloud data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > 0.164 ft. are represented in red.
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Vertical Error (Z) by Checkpoint
in PAP SA-1 12GCP Digital Surface Model (DSM)
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Figure E.8  Vertical error in relation to survey-grade accuracy for P3A-SA-1_12GCP

DSM data

Survey-grade vertical accuracy at < 0.164 ft. is represented by the green outline.
Checkpoint locations with vertical error < 0.164 ft. are represented in blue, while
checkpoint locations with vertical error > 0.164 ft. are represented in red.
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APPENDIX F

P4P SA-2 21GCP COMPREHENSIVE ERROR EVALUATION
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Figure F.1  Error evaluation — P4P_SA-2 21GCP checkpoint locations

Checkpoint locations collected via independent source of higher accuracy (Trimble R6)
and used for positional error calculation and accuracy testing in P4P_SA-2 21GCP data.
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Figure F.2  Examples of error at various checkpoints in P4P_SA-2 21GCP dataset

In Pix4D Mapper Pro, positional error between initial and computed point positions can
be visualized using the “Ray Cloud Editor” and corresponding “Error Ellipsoid” function.
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Figure F.3  Survey-grade accuracy evaluation of P4P_SA-2 21GCP error values

Positional error as recorded in P4P_SA-2 21GCP derived survey data. Red error values
and corresponding red sections in the associated charts represent error values exceeding
the < 0.164 ft. survey-grade threshold tolerance. Blue error values and corresponding
blue sections in the associated charts represent error values within the < 0.164 ft.
tolerance.
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Error (X.Y.Z) by Checkpoint
in PAP_SA-2 21GCP Initial Tie Points
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Figure F.4  Positional error by checkpoint for P3A_SA-2 21GCP dataset

Positional error (x = blue, y = orange, z = gray) at each checkpoint location in the various
survey data types of the P4P_SA-2 21GCP dataset.
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Vertical Error (Z) by Checkpoint
in PAP SA-2 21GCP Digital Surface Model (DSM)

E - T R

[ R TT R S T R

Error (ft.]
= e R | =] L= = e B = | =

o s

Figure F.5  Vertical error by checkpoint for PAP_SA-2 21GCP DSM

Vertical error (z = gray) at each checkpoint location in the digital surface model (DSM)
raster survey data of P4P_SA-2 21GCP.
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Horizontal Error (X,Y)
in PAP_SA-2 21GCP Initial Tie Points
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Figure F.6  Horizontal and vertical error in relation to survey-grade accuracy for
P4P SA-2 21GCP initial tie points data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint

locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > 0.164 ft. are represented in red.
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Horizontal Error (X,Y)
in PAP_SA-2 21GCP Point Cloud Data
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Figure F.7  Horizontal and vertical error in relation to survey-grade accuracy for
P4P_SA-2 21GCP point cloud data

Survey-grade accuracy at < 0.164 ft. is represented by the green outline. Checkpoint
locations with error < 0.164 ft. are represented in blue, while checkpoint locations with
error > 0.164 ft. are represented in red.
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Vertical Error (7) by Checkpoint
in PA4P SA-? 21GCP Digital Surface Model (DSM)
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Figure F.8  Vertical error in relation to survey-grade accuracy for P4AP_SA-2 21GCP
DSM data

Survey-grade vertical accuracy at < 0.164 ft. is represented by the green outline.

Checkpoint locations with vertical error < 0.164 ft. are represented in blue, while
checkpoint locations with vertical error > 0.164 ft. are represented in red.
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