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The evolution of genes and genomes has attracted great interest. The research 

presented here is an examination of genomes at three distinct levels, protein evolution, 

gene family evolution, and TE content regulation. First at a genetic level, I conducted an 

analysis of the salivary androgen-binding proteins (ABPs). I focused on comparing 

patterns of molecular evolution between the Abpa gene expressed in the submaxillary 

glands of species of New World and Old World muroids and found that in both sets of 

rodents, the Abpa gene expressed in the submaxillary glands appear to be evolving under 

sexual selection, suggesting ABP might play a similar biological role in both systems. 

Thus, ABP could be involved with mate recognition and species isolation in New World 

as well as Old World muroids. Second I examined the largest gene family in vertebrate 

olfactory receptors (ORs) among birds and reptiles. I found that the number of intact OR 

genes in sauropsid genomes analyzed ranged over an order of magnitude, from 108 in the 

lizard to over 1000 in turtles. My results suggest that different sauropsid lineages have 

highly divergent OR repertoire compositions. These differences suggest that varying rates 

of gene birth and death, together with selection related to diverse natural histories, have 



 

 

  

 

 

   

  

  

  

   

 

 

shaped the unique OR repertoires observed across sauropsid lineages. Lastly, I studied 

the interactions between transposable elements (TEs) and PIWI-interacting RNAs 

(piRNAs) among laurasiatherian mammals. piRNAs are predominantly expressed in 

germlines and reduce TE expression and risks associated with their mobilization. I found 

that within TE types, families that are the most highly transcribed appear to elicit the 

strongest ping-pong response. This was most evident among LINEs, but the relationships 

between expression and PPE was more complex among SINEs. I also found that the 

abundance of insertions within piRNAs clusters strongly correlated with genome 

insertions and there was little evidence to suggest that piRNA clusters regulated TE 

silencing. In summary, the piRNA response is efficient at protecting the genome against 

TE mobility, particularly LINEs, and can have an evolutionary impact on the TE 

composition of a genome. 
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CHAPTER I 

INTRODUCTION 

There is wide variation among eukaryotic genomes reflected in the abundance of 

DNA and genomic complexity. Eukaryotic genome size can vary from 2.9 megabases 

(Mb) for some unicellular species to 2900 Mb in humans (Lynch 2007) although the 

genomes for some land plants and amphibians can be much larger. On average, 

vertebrates have the largest genomes; despite the large sizes, protein coding DNA only 

makes up approximately 1-2% of the genomic content, while the remainder is composed 

of introns, regulatory sequences, transposable elements (TEs), non-coding small RNAs, 

satellite DNA, and non-coding intergenic space with unknown functions. 

How genes and genomes evolve over time has attracted great interest in the 

scientific community. Evolutionary genomics is a broad field of study that aims to 

address the increase in genome size and complexity, the rate of nucleotide changes within 

and among genes, the evolution of gene families, and the presence and evolution of TE 

content among species. A phenotypic trait can be encoded by one or multiple genes and 

the evolution of a phenotypic trait is dictated by the underlying genetic code. Since 

analyzing large datasets has become feasible, great efforts have been made to link 

genetics to phenotypes and how selection and adaption shapes the genes underlying 

phenotypes. A relatively famous example is the adult tolerance of lactose among the 
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descendants of northern Europeans which is associated with two single nucleotide 

polymorphisms (SNPs) ~14k and 22k upstream of the lactase gene (Poulter et al. 2003).  

With the increasing availability of whole genomes, the function of non-coding 

genomic content has been investigated and debated in recent years (Dunham et al. 2012; 

Graur et al. 2013). Still, the most commonly studied, and arguably the simplest regions of 

the genome to study are the protein coding genes. Proteins are considered the major 

product of genomes and they evolve in a manner that is relatively easy to model (Yang 

1998; Yang 2000; Zhang et al. 2005). A single amino acid is coded by a string of three 

nucleotides (codon) and multiple codons can code for the same amino acid. The 

redundancy in the genetic code means that any nucleotide change within a codon will 

either not affect the protein sequence (synonymous mutation) or cause the substitution for 

a different amino acid (nonsynonymous mutation). The three primary models proposed 

for protein evolution are neutral evolution, purifying selection, and adaptive (Darwinian) 

evolution. The null model of gene evolution states that most changes are neutral (Kimura 

1983) or nearly neutrally (Ohta 1992),  meaning that nucleotide changes occur 

haphazardly, are often not deleterious and the fixation of a new allele is determined by 

genetic drift, the strength of which is dependent on population size. However, some gene 

sequences, like those encoding histone proteins, are highly conserved and exhibit very 

low rates of change. Among eukaryotic histone H4 genes, the proportion of synonymous 

differences are at or near saturation, yet the protein sequences are nearly identical, 

suggesting there is strong selection against any nonsynonymous mutation (Piontkivska et 

al. 2002). By contrast, genes responsible for immune defense exhibit a higher rate of 

change at nonsynonymous nucleotide sites than synonymous sites, and this phenomenon 
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is known as a positive selection (Zhang et al. 1998). Still it should be noted that the roles 

genetic drift, selection and mutation play on gene and genome evolution is strongly 

debated among evolutionary biologists. For example, Nei (2013) rejects the claim of 

natural selection as the major driver of evolution and directs focus toward the importance 

of mutation on breaking evolutionary constraints. Alternatively, Lynch (2007) proposes 

that the observed variation in nucleotide composition, TE content, gene birth-and-death 

rates, and genome size among taxa can be explained by population size and the strength 

of genetic drift. What is understood is that evolution is a very complicated process where 

the interactions of selection, population size, mutation, recombination, etc. have varying 

strengths on shaping gene function and genome content, and genes and genomes have 

mostly independent evolutionary trajectories. 

In this dissertation I used the genomes of mammals, birds and reptiles to study 

three different aspects of genomic evolution: 1) evolutionary patterns of a single gene 

among species, 2) the expansion and contraction of the largest gene family in vertebrates 

and 3) the evolutionary consequences of TE mobility and host defense interactions on 

genomic content. 

In Chapter II, I explored the influence sexual selection may play on protein 

evolution by studying a protein that has been described as a mate recognition hormone in 

mice. In rodents, androgen-binding protein is secreted into the saliva and transferred to 

the pelt during grooming, and evidence suggesting this protein is used for conspecific and 

mate recognition in the common house mouse (Mus musculus) (Laukaitis et al. 1997; 

Karn and Nachman 1999; Talley et al. 2001; Karn et al. 2002; Bímová et al. 2005; 

Bímová et al. 2011). I further hypothesized that this protein would be used as a 
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conspecific recognition protein among all mouse-like rodents (Muroids) and examined 

the evolution of this protein in both Old and New World Muroids. This study confirmed 

that several amino acid sites were evolving under positive selection, supporting the 

hypothesis that this protein is used rodent-wide for mate recognition. 

At a higher level, gene duplication is the major mechanism for the origin of new 

genes and gene functions (Ohno 1970; Zhang 2003). Genes are duplicated primarily 

through three processes: tandem gene duplication, segmental duplication, and whole 

genome duplication. If a new gene survives the duplication process intact, the gene copy 

is considered to be released from functional constraint and permitted to evolve neutrally 

(Ohno 1970). This evolutionary process will commonly result in a pseudogene; however, 

a duplicated gene can also develop a novel function and be retained in the genome (Force 

et al. 1999; Lynch and Conery 2000; Hurley et al. 2005; True and Carroll 2002; Nei and 

Rooney 2005).  

Among vertebrates, the olfactory receptor (OR) gene family is the largest gene 

family. ORs are cellular membrane G protein-coupled receptors (GPCRs) that 

communicate environmental cues, such as those signaling food and mates, to the brain 

(Buck and Axel 1991; Krautwurst et al. 1998; Mombaerts 1999; Fredriksson et al. 2003). 

Evidence suggests that environmental and niche pressures shape the repertoire of OR 

genes among genomes (Steiger et al. 2008; Niimura 2009; Hayden et al. 2010; Garrett 

and Steiper 2014; Hayden et al. 2014; Niimura et al. 2014). The second portion of this 

research (Chapter III) focused on evolution of the OR family among birds and reptiles 

(Sauropsids). I used several recently released Sauropsid genomes to investigate how the 

OR repertoire varies among a vastly diverse group of tetrapods. The OR repertoire ranged 
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over an order of magnitude (100-1000) and the content among the OR subfamilies was 

diverse among even relatively closely related species. Yet, in one group of sauropsids, the 

crocodilians, OR evolution has effectively been stable since radiating from the common 

ancestor. I suggest that these differences are result of a combination of gene birth and 

death coupled with selection. 

While Chapters II and III primarily investigated protein coding gene evolution, 

the last chapter focused on non-coding TEs. TEs are segments of DNA that are capable of 

mobilizing and accumulating within a genome, and often occupy more than half of 

vertebrate genomes. There are two major classes of TEs. Class I TEs are retrotransposons 

which mobilize via the reverse transcription of an RNA intermediate (Luan et al. 1993). 

By contrast, Class II elements (DNA transposons) do not require an RNA intermediate 

and will directly mobilize. In most vertebrates, Class I elements make up the majority of 

the TE content. For example, 41% of the human genome is derived from Class I TEs 

while only 2.8% is derived from DNA transposons (Lander et al. 2001) (de Koning et al. 

(2011) suggested TE content makes up 70% of the human genome). Because TE 

mobilization is generally deleterious, there are mechanisms that exist to prevent 

transposition (Aravin et al. 2007; Jacobs et al. 2014). One of the most understood TE 

silencing pathway involves PIWI proteins and a class of small RNAs, known as PIWI 

interacting RNAs (piRNAs) (Brennecke et al. 2007; Carmell et al. 2007; Houwing et al. 

2007; Aravin et al. 2008). PIWI proteins are expressed during gametogenesis and their 

functions have been most studied in mouse testis and Drosophila ovaries. Among 

vertebrates, PIWIs act to silence TEs via two pathways. The primary method is through 

direct TE transcript digestion (known as the ping-pong cycle) (Siomi et al. 2011) which 
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appears to occur throughout most of spermatogenesis. In the vertebrate ping-pong model, 

a PIWI protein, specifically MILI, binds with a piRNA that is anti-sense and 

complementary to a TE transcript. Through complementary base-pairing, the complex 

pairs with a TE target and an endonuclease domain cleaves the TE transcript (Aravin et 

al. 2007). The cleavage of TE transcripts results in a pool of sense piRNAs which are 

loaded onto MILI and the cycle continues. Another PIWI protein (MIWI2) is also linked 

to the methylation of TE loci during the early stages of gonad development (Carmell et 

al. 2007; Kuramochi-Miyagawa et al. 2008; Moralo et al. 2014), however it is unclear 

how MIWI2 marks TE loci for subsequent methylation. The immediate effects of MILI 

and MIWI2 deficiency leads to the activation of retrotransposon in the male germline, an 

arrest of gametogenesis, and complete sterility in male mice (Aravin et al. 2007; Carmell 

et al. 2007). However, the long term genomic consequences of TE and PIWI interactions 

are generally unknown, therefore I started to investigate how TE content is (or is not) 

shaped by the PIWI/piRNA defense. There are several testable predictions of the ping-

pong cycle, so I started with the most basal prediction, that the most expressed TE 

families will be the most represented in the pool of ping-pong piRNAs. I used three 

laurasiatherian genomes with unique TE compositions to test this hypothesis. I found 

strong linear relationships between LINE expression and piRNA expression in all three 

species. By contrast, the second most abundant group of elements, the SINEs, did not fit 

this pattern and I found major deviations among the three species regarding how PIWIs 

responded to SINE expression. 

Each chapter represents a standalone unit of research at various stages of 

completion. For this reason, each chapter follows the formatting requirements for the 
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publishing journals. Chapter II is published in the Journal of Molecular Evolution titled: 

Evolution of the ABPA subunit of androgen binding protein expressed in the 

submaxillary glands in New and Old World rodent taxa. Chapter III has been accepted at 

Genome Biology and Evolution entitled: Contrasting patterns of evolutionary 

diversification in the olfactory repertoires of reptile and bird genomes. Lastly, Chapter IV 

is under revision also at Genome Biology and Evolution entitled: Transposable element 

targeting by piRNAs in Laurasiatherians with distinct transposable element histories. 
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CHAPTER II 

EVOLUTION OF THE ABPA SUBUNIT OF ANDROGEN-BINDING PROTEIN 

EXPRESSED IN THE SUBMAXILLARY GLANDS IN NEW AND 

OLD WORLD RODENT TAXA 

Introduction 

Speciation can be driven by the isolation of two populations through geographic, 

temporal, ecological, or behavioral barriers (see Coyne and Orr [2004] for an extended 

discussion). In many mammals olfaction is a dominant sensory modality and chemical 

cues can be used to convey information about individuality. In the common house mouse 

(Mus musculus) subspecies complex, the salivary androgen-binding proteins (ABPs) are 

hypothesized to be a component of such a cue, as they are thought to mediate mate 

recognition (Laukaitis et al. 1997; Talley et al. 2001). ABPs are secretoglobins (Klug et 

al. 2000; Laukaitis et al. 2005; Laukaitis and Karn 2005; Mukherjee and Chilton 2000) 

present in the saliva following expression within the submaxillary, sublingual, and 

parotid glands (Dlouhy et al. 1986; Laukaitis et al. 2005). The putative biological 

function of mouse salivary ABPs are that of a pheromone, mediating mate selection 

resulting in assortative mating and incipient reinforcement at the edges of the house 

mouse hybrid zone in Europe (Bímová et al. 2005; Bímová et al. 2011). 

ABP is secreted into the saliva and transferred to the pelage and environment after 

grooming, allowing an animal to mark territory with a biochemical signal. From a 
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genomic standpoint, the mouse ABP system was thought to consist of three single copy 

genes, Abpa, Abpb, and Abpg, encoding for the three separate subunits, ABPA, ABPB, 

and ABPG, respectively (Dlouhy et al. 1987; Karn and Laukaitis 2003). Genomic 

comparisons, however, revealed a more complex pattern (Emes et al. 2004; Laukaitis et 

al. 2008; Karn and Laukaitis 2009). Most mammals have a single Abpa gene encoding an 

ABPA protein and a single Abpbg gene encoding an ABPBG protein in the Abp locus, 

however, rat and house mouse possess multiple paralogs in the corresponding location 

(Laukaitis et al. 2008; Karn and Laukaitis 2009). In the case of house mouse there are 64 

Abp paralogs (30 Abpa and 34 Abpbg genes) over a 3 megabase (Mb) region, whereas the 

rat genome has 6 paralogs (3 Abpa and 3 Abpbg paralogs). Analyses of intron sequences 

suggest these expansions occurred independently in these two species (Laukaitis et al. 

2008). In house mouse, the Abpa27 paralog has been the most studied gene in the Abp 

locus. The translated gene ABPA27 forms a dimer with either ABPBG26 or ABPBG27 

via disulfide bridges and is expressed in the submaxillary glands of both males and 

females. Evidence suggests the ABPA27 subunit plays a significant role in conspecific 

recognition and mate selection (Bímová et al. 2005; Hwang et al. 1997; Karn et al. 2002; 

Laukaitis et al. 1997; Talley et al. 2001). Interestingly, recent studies also suggest that 

additional Abpbg paralogs secreted into the saliva of house mouse, specifically Abpbg26 

and Abpbg27 show patterns of molecular variation suggesting adaptive evolution 

(Laukaitis et al. 2012). 

Protein coding genes associated with reproductive and chemosensory roles have a 

tendency to evolve rapidly and display signatures of positive selection (Duret and 

Mouchiroud 2000; Kosiol et al. 2008; Park et al. 2011; Swanson and Vacquier 2002; 
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Torgerson et al. 2002). In line with these expectations, comparisons among different Mus 

sp. alleles revealed high rates of nonsynonymous to synonymous substitutions, and 

comparative analyses among lineages within the Mus species complex have shown that 

distinct Abpa27 alleles are fixed in the different subspecies of M. musculus, and 

molecular evolution analyses of mouse Abpa27 sequences detected strong signals of 

Darwinian selection (Emes et al. 2004; Hwang et al. 1997; Karn and Nachman 1999; 

Karn et al. 2002). Therefore the combination of controlled mate choice experiments and 

the observed genetic signatures consistent with positive selection suggests that ABPs 

probably play a role in olfactory communication, assortative mating, and incipient 

reinforcement of reproductive isolation (Bímová et al. 2005; Bímová et al. 2011; Karn 

and Dlouhy 1991; Karn et al. 2002; Laukaitis et al. 2005). The expression and evolution 

of ABP has been extensively studied in Mus (Dlouhy et al. 1987; Emes et al. 2004; Karn 

et al. 2010; Laukaitis et al. 2008; Laukaitis and Karn 2005; Karn and Laukaitis 2009). 

However, few data have been presented for other rodent genera: Karn and Dlouly (1991) 

extracted and identified ABP in the saliva for New World rodents, and Laukaitis et al. 

(2008) identified two putative paralogs of Abpa in Apodemus sylvaticus. 

In the present study, my objective was to explore whether the patterns of variation 

in the Abpa genes that encode for the ABPA subunit expressed in the submaxillary glands 

are similar in New and Old Word rodents. In particular, I focused on comparing patterns 

of molecular evolution between the Abpa27 gene in house mouse, with their functional 

counterparts in other Old and New World rodent species. To do so, I analyzed partial 

sequence data from mRNA transcripts isolated from submaxillary glands of selected New 

and Old World muroids and used maximum likelihood methods to characterize patterns 
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of molecular evolution. My results indicate that the Abpa genes expressed in the 

submaxillary glands are evolving rapidly in both rodent groups, and that a similar set of 

codon positions appears to be under positive selection in the two systems. Given that 

proteins involved in species isolation tend to evolve rapidly, these findings would suggest 

that ABPs might play similar roles related to maintaining species boundaries in both sets 

of species. 

Materials and Methods 

Data Collection 

Representatives of New World muroids were collected from West Texas and 

Ecuador and Old World muroid representative rodents were collected from northern 

Ukraine. Voucher specimens are stored in the Natural Science Research Laboratory 

collections at the Texas Tech Museum. The submaxillary gland was removed from the 

animal and stored at -70° C. Isolation of mRNA, cDNA preparation, PCR amplification 

of expressed Abpa, and sequencing of amplicons followed Wickliffe et al. (2002). In 

addition, I obtained additional known expressed Abpa sequences from Spermophilus 

tridecemlineatus, Mus sp., and Rattus norvegicus from Karn et al. (2002) and Laukaitis et 

al. (2008). Mus spicilegus was not included from Karn et al. (2002) given the exact 

sequence identity to M. macedonicus. In the case of heterozygous individuals, haplotypes 

were resolved using PHASE version 2.1(Stephens and Donnelly 2003). Previously 

unpublished Abpa sequences were deposited in GenBank under the accession numbers 

JX275970–JX275986. 
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Sequence Alignment and Analysis 

Partial Abpa cDNA sequences were aligned by codons with MUSCLE (Edgar 

2004) as implemented in MEGA 5 (Tamura et al. 2011). I explored alignment sensitivity 

by comparing the MUSCLE alignment to the results of ClustalW (Thompson et al. 1994), 

MAFFT (Katoh et al. 2005), and PRANK (Löytynoja and Goldman 2005). Alternative 

alignment strategies yielded the same alignment, which was used for downstream 

analyses. The intraspecific number of haplotypes, nucleotide diversity, and the 

uncorrected average pairwise number of differences for nucleotide and amino acid 

changes were determined in MEGA 5. Intra-generic number of nonsynonymous and 

synonymous changes were counted within Apodemus, Mus, Peromyscus, and 

Reithrodontomys. Once redundant alleles were removed from the alignment, I 

reconstructed phylogenetic relationships using maximum likelihood as implemented in 

Treefinder version March 2011 (Jobb et al. 2004), and I evaluated support for the nodes 

with 1,000 bootstrap pseudoreplicates. I used the ‘propose model’ tool of Treefinder to 

select the best-fit models of nucleotide substitution, with an independent model at each 

codon position in nucleotide analyses. Model selection was based on the Akaike 

information criterion with correction for small sample size. 

We then estimated patterns of molecular evolution using the maximum likelihood 

approach described by (Goldman and Yang 1994) as implemented in CODEML in 

PAML (Yang 2007). In order to estimate the putative role of negative and positive 

selection, I compared the rate of nonsynomous substitution per nonsynonymous site (dN) 

to the rate of synonymous substitution per synonymous site (dS). The dN/dS ratio (also 

labeled as ω) can be used to measure the selective regime of a given codon, as similar 
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rates of nonsynonymous and synonymous substitution (ω ≈ 1) are indicative of neutral 

evolution, an excess of synonymous mutations (ω < 1) is indicative of purifying, or 

negative selection, and an excess of nonsynonymous mutations (ω > 1) is indicative of 

positive Darwinian selection, or adaptive evolution. I compared models that allow ω to 

vary among codons in the alignment (M0 vs. M3, M1a vs. M2a, M7 vs. M8, and M8a vs. 

M8). In all cases, I used likelihood ratio tests (LRTs) to compare nested sets of model 

(Yang 1998). Bayesian Empirical Bayes (BEB) was used to calculate the posterior 

probabilities for sites under positive selection in models M2a and M8 (Yang et al. 2005). 

These analyses were performed separately for New World and Old World muroids, 

because orthology between Abpa27 in Mus and New World taxa cannot be guaranteed. 

To account for the potential problem generated by intraspecific polymorphism, these 

analyses were repeated using only one randomly selected representative from each 

species. Phylogenetic trees were reconstructed from each subset under the same 

parameters as the full dataset. 

Residues were determined to be under selection if a position was predicted to be 

under positive selection with posterior probability >0.9 in one model and >0.5 in one 

other model. I predicted the Mus ABPA27 amino acid structure was using Phyre2 (Kelley 

and Sternberg 2009). Residues under selection in New World rodents and Old World 

rodents were mapped onto the structure.  Swiss-PDBviewer (Guex and Peitsch 1997) was 

used to manipulate the protein structure and the 3D image was rendered with POV-Ray 

(www.povray.org). Relative solvent accessibilities of residues were calculated based on 

criteria given in (Emes et al. 2004). Relative accessibility values were divided into three 

categories, buried (<9% relative accessibility), intermediate (9 –35% relative 
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accessibility) and exposed (>35% relative accessibility) (Emes et al. 2004; Rost and 

Sander 1994). 

PolyPhen-2 (Polymorphism Phenotyping ver. 2.0; 

http://genetics.bwh.harvard.edu/pph2/index.shtml), an in silico tool for predicting 

structural and functional effects of amino acid substitutions on proteins, was used to 

explore the possible impacts of amino acid variants that appeared to be under strong, 

positive selection within and among New World and Old World rodent lineages 

(Adzhubei et al. 2010). Default options were used for all analyses. 

Results 

Description of Data 

We obtained sequences corresponding to 213 bp of the 279 nucleotides of coding 

sequence of Abpa transcripts from submaxillary glands from 34 rodent specimens. 

Twenty-seven samples were collected from the New World species, 9 Peromyscus 

leucopus, 6 Peromyscus maniculatus, 3 Reithrodontomys fulvescens, 1 Akodon aerosus, 6 

Sigmodon hispidus, 2 Oligoryzomys microtis; and six samples were collected from the 

Old World, 1 Microtus oeconomus, 1 Apodemus agrarius, 1 Apodemus flavicolis and 3 

Apodemus sylvaticus. The Apodemus sequences were previously isolated and described in 

Wickliffe et al. (2002). Even though Microtis oeconomus was collected in northern 

Ukraine, the genus is more closely related to New World muroid rodents. Therefore the 

M. oeconomus Abpa cDNA sequence was compared to the remaining New World muroid 

rodents in this study. The Abpa sequence of Spermophilus tridecemlineatus reported by 

Laukaitis et al. (2008), which corresponds to a single-copy gene in the spetri2 assembly 

of the squirrel genome, was included as an outgroup for phylogenetic analyses. All 
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alignment strategies yielded similar results, with no gaps or premature stop codons found 

among cDNA derived sequences. Intraspecific pairwise comparisons of the number of 

nucleotide substitutions ranged from 0 to 14 and from 0 to 12 when comparing amino 

acid sequences (Table 1). Despite the relatively small sample sizes, I found that A. 

sylvaticus, P. leucopus, P. maniculatus, and R. fulvescens were polymorphic for the Abpa 

gene in this sample, whereas there was no sequence variation among the 6 specimens of 

Sigmodon hispidus (Table 1). 

We then estimated phylogenetic relationships among the different alleles using 

maximum likelihood, excluding redundant haplotypes. In the resulting tree the New 

World and Old World muroid sequences fell in reciprocally monophyletic clades, as 

expected given current estimates of organismal phylogeny (Fig. 1; Jansa and Weksler 

2004; Steppan et al 2004). In general, the sequences of given genera were monophyletic, 

with the exception of the rat Abpa paralogs (Fig. 1). Phylogenies based on intronic 

sequence suggest that the presence of multiple paralogs of Abpa in rat and mouse derive 

from lineage-specific expansions (Laukaitis et al. 2008). My results differ from those of 

Laukaitis et al. (2008) as the rat paralogs did not form a monophyletic clade. However, an 

approximately unbiased topology test (Shimodaira 2002) could not discriminate between 

the maximum-likelihood tree and a tree where the rat paralogs were constrained to 

monophyly. This issue warrants further attention once intronic sequences from the Abp 

genes of a wider selection of Old World muroid rodents become available. 

Patterns of molecular evolution 

As a starting point, I compared nonsynonymous and synonymous substitution 

rates in a pairwise manner. I detected an excess of nonsynonymous substitutions relative 
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to synonymous substitutions in intrageneric and intraspecific comparisons within the Old 

World and New World muroid groups. This is especially noticeable in comparisons 

within R. fulvescens. In line with these results, estimates of dN/dS (=ω) for the whole 

fragment sequenced were high for both datasets, 0.9 for New World muroids and 1.18 for 

Old World rodents. In general, estimates of dN/dS averaged over all sites in excess of 0.5 

have been considered as suggestive of positive Darwinian selection (Swanson et al. 

2004). 

We then compared different models of molecular evolution that explore variation 

in ω among codons in a tree-based approach. I first explored whether there was evidence 

of variation in ω among codons. I compared models M0, which assigns the same value of 

ω to all codons with M3, a model that groups codons in three separate classes with 

independent estimates of ω for each class. There was significant variation in ω, as the 

LRT rejected M0 in favor of M3 in both cases (Table 2). I then looked for evidence of 

positive Darwinian selection among samples by comparing models that allow a class of 

sites to have ω > 1, M2a and M8, with the corresponding models that restrict all ω 

estimates to be ≤ 1, M1a, M7, and M8a. In all comparisons, M1a vs. M2a, M7 vs. M8, 

and M8a vs. M8, the models that allow a class of sites to have ω > 1 were favored by the 

corresponding LRTs (Table 2). Under the criteria given, 5 and 12 sites were found to be 

evolving under positive selection in New World and Old World muroids, respectively 

(Table 2). Similar results were obtained when I reran the analyses using only one 

representative from each species (Table 2). Most of the sites were found to be in exposed 

regions of the ABPA27 structure in both the New World and Old World groups (Fig. 2). I 

then focused on amino acid variants at sites 68 and 69 (90 and 91 in the accessioned 
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amino acid sequence for M. musculus 

[http://www.ncbi.nlm.nih.gov/protein/NP_033726.1]) as these sites exhibited marked 

positive selection in the New World and somewhat in the Old World muroids. In silico 

simulations with PolyPhen-2 suggest that changes in either of these sites do not appear to 

alter the structure or putative function of the Abpa. 

Discussion 

In house mouse the ABP heterodimers present in the saliva appear to play a 

behavioral role in reproductive isolation (Laukaitis et al. 1997; Talley et al. 2001; 

Laukaitis et al. 2012). Most of these studies have focused on the Abpa27 gene, which is 

expressed in the submaxillary glands in both male and female Mus musculus (Laukaitis et 

al. 2005). In the M. musculus subspecies complex, several lines of evidence suggest 

salivary ABP plays an important role in assortative mating. First, alternative alleles are 

fixed in each M. musculus subspecies at the Abpa27 locus (Hwang et al. 1997; Karn and 

Dlouhy 1991). Second, in laboratory experiments, female mice preferred to associate and 

mate with males of their own Abpa27 genotype significantly more often than with males 

carrying a different allele (Laukaitis et al. 1997; Talley et al. 2001). Lastly, comparisons 

of evolutionary rates among Abpa27 alleles in different species of mice revealed a large 

excess of nonsynonymous substitutions over synonymous substitutions consistent with 

positive Darwinian selection (Hwang et al. 1997; Karn and Nachman 1999; Karn et al. 

2002). 

Because the rat and mouse Abpa repertoires derive from largely independent sets 

of duplications, resolving orthology for the expressed genes and predicted proteins can be 

difficult. However, the evidence at hand indicates that all of the Abpa genes in mammals 
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derive from the single copy ancestral Abpa gene present in the common ancestor of 

placental mammals. The most recent assessments of variation in the gene complement of 

the Abp gene family (Emes et al. 2005, Laukaitis et al. 2008, and Karn and Laukaitis 

2009) indicate that the duplications that gave rise to the presence of multiple Abpa genes 

in mouse genome are specific to the mouse lineage (see Fig. 1), therefore, I inferred that 

all mouse Abpa paralogs are co-orthologs with the ancestral single copy Abpa gene. I 

have no evidence of the presence of multiple Abpa paralogs in New World rodents; thus, 

I assumed that Abpa gene from New World rodents is an ortholog of the ancestral single-

copy gene. Because of this shared ancestry and tissue-specific patterns of expression, I 

assumed that Abpa27 genes of house mouse were functionally equivalent to the Abpa 

expressed in the submaxillary gland of other rodents. To ensure this, I extracted and 

sequenced cDNA from the salivary glands in New World rodent group using primers 

designed to amplify Abpa27 in Mus (Hwang et al. 1997). If the proposed role of the 

APBA subunit of New World rodents is to act as a mate choice pheromone, as the 

ABPA27 subunit does in Mus, I expected to observe similar patterns of molecular 

evolution in New and Old World rodents. In this case, I addressed this question by 

comparing patterns of molecular evolution between Old World and New World muroids. 

These results suggest that both the New and Old World muroid Abpa sequences 

share the signature of positive Darwinian selection. In both sets of sequences I found high 

rates of nonsynonymous substitutions within and among genera, consistent with positive 

selection. In particular, all analyses indicate that a similar subset of positions appear to be 

under positive selection within these two separate rodent lineages. These results suggest 

that changes in a few key residues might play a significant role in the evolution of this 
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protein. Also, a prediction of solvent accessibility is consistent with previous results 

where the majority of sites under positive selection are mostly in exposed regions of the 

protein (Fig. 2). Because there is strong evidence that Abpa27 plays an important role in 

speciation among Old World muroids, I speculate that ABPA subunit analyzed might be 

playing a similar role among the New World rodents studied. 

Interestingly, the patterns of intraspecific variation I identified are not entirely 

consistent with those reported for the Mus musculus subspecies complex. The signal of 

positive selection detected among New World muroids is not as strong as the one 

detected among Old World rodents. There were five sites under selection inferred among 

New World rodents compared to the 12 sites detected in the Old World muroids. 

Additionally, despite limited sample size, I found significant levels of intraspecific 

variation in species of the genera Apodemus, Peromyscus and Reithrodontomys. Thus, the 

data would suggest that the putative role of the Abpa gene in New World muroids might 

be slightly different relative to the M. musculus complex where different alleles segregate 

with different subspecies (Bímová et al. 2005; Bímová et al. 2011). The fact that the 

Abpa27 paralog is fixed in the members of the two subspecies M. m. musculus and M. m. 

domesticus and the ABPA27 subunit is apparently involved with reinforcing reproductive 

barriers in the Central Europe hybrid zone between these two subspecies, could account 

for the higher rate of molecular evolution in this system relative to New World rodents 

(Bímová et al. 2005; Bímová et al. 2011). 

In rodents, chemical cues and pheromones play a central role in individual 

recognition as evidenced by the approximately 1000 functional olfactory receptors and 

212 vomeronasal receptors found in the mouse genome (Shi and Zhang 2009; Zhang and 
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Firestein 2002). Currently, the primary hypotheses proposed to explain patterns of ABP 

evolution are related to assortative mating, and the coevolution of the ABP pheromone 

and vomeronasal (VNO) receptors of the V1R receptor family (Karn et al. 2010). As 

suggested by Karn et al. (2010), it may be that these two systems, ABP and V1R 

receptors, are coevolving to promote and maintain species boundaries. It would be 

interesting to identify the V1Rs involved in this putative interaction, and evaluate 

whether positive selection is also acting on their evolution. 
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Table 2.1 ABPA sequence information for included taxa. 

Species N h π distance (nuc) distance (aa) 
A. sylvaticus 4 4 0.043 9.3 (6-14) 7.5 (4-12) 
P. leucopus 12 7 0.008 1.8 (0-4) 0.8 (0-2) 
P. maniculatus 7 3 0.009 2.0 (0-4) 1.5 (0-3) 
O.microtis 2 1 0 0 0 
R. fulvescens 3 3 0.048 10 (1-15) 6.7 (1-10) 
S. hispidus 6 1 0 0 0 
Abpa sequence statistics for intraspecific samples. The number of samples sequenced (N), 
number of unique haplotypes (h) and nucleotide diversity (π) are listed along with the 
average (and range in parentheses) pairwise number of differences (distance) for both 
nucleotide (nuc) and amino acid (aa) sequences. 

Table 2.2 Site models positive selection tests. 

2(ΔL) M2a sites M8 sites Group n under selection under selection M2a vs M1a M3 vs M0 M8 vs M8a 

New World 17 14.54* 67.06** 14.34* 

New World 
(single 7 8.18* 51.20** 8.08* 

sequence) 

Old World 16 18.96** 38.76** 18.90** 

Old World 
(single 13 17.23** 31.12** 17.09** 

sequence) 

10 11 47 68 69 

11 40 47 62 68 
69 

12 14 18 23 27 
30 32 33 34 36 
43 45 55 59 60 

68 69 

12 14 18 23 30 
32 33 36 43 45 
55 59 60 68 69 

7 10 11 12 16 
23 32 33 40 43 
47 61 62 65 66 

67 68 69 

7 10 11 15 16 
18 23 25 26 27 
29 30 32 33 40 
43 47 55 57 58 
61 62 66 68 69 

7 12 14 18 23 
27 30 32 33 34 
36 43 45 48 51 
55 59 60 68 69 

12 1418 23 27 
30 32 33 36 43 
45 51 55 59 60 

68 69 

Tests of positive selection for n sequences among sites for the New World and Old World 
groups. Sites listed had a posterior probability >0.5. Underlined positions were predicted 
to be under positive selection with a posterior probability 0.9 – 0.949 and bold sites had a 
posterior probability >0.95. *p < 0.001, **p < 0.0001 
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Figure 2.1 ABPA phylogenetic trees 

Phylogenetic reconstructions from the 210 bp fragment of Abpa. A) Maximum likelihood 
phylogeny for all newly isolated Abpa cDNA sequence, and previously published Old 
World orthologs and paralogs, excluding redundant haplotypes. B) Maximum likelihood 
phylogeny for the Old World Abpa sequences included in the molecular evolution 
analyses and C) maximum likelihood phylogeny for the New World Abpa sequences 
included in the molecular evolution analyses. 
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Figure 2.2 Sites under positive selection in ABPA 

Sites found to be under positive selection for New World muroids (A) and Old World 
muroids (B) mapped to the Mus ABPA27 subunit. Codons and their side chains predicted 
to be under positive selection are colored red. 
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CHAPTER III 

CONTRASTING PATTERNS OF EVOLUTIONARY DIVERSIFICATION IN THE 

OLFACTORY REPERTOIRES OF REPTILE AND BIRD GENOMES 

Introduction 

In vertebrates, the ability to detect odors is mediated by olfactory receptors (ORs), 

a type of transmembrane G protein-coupled receptor (GPCR) that mediates interactions 

between the cell and its surroundings. Structurally, GPCRs have seven α-helical 

transmembrane domains bound to a G-protein, and the binding of extracellular ligands 

triggers conformational changes that, in turn, lead to intracellular signaling cascades 

(Fredriksson et al. 2003). Vertebrate ORs belong to the rhodopsin-like group of GPCRs, 

which includes receptors that mediate the detection of hormones, neurotransmitters, and 

photons (Fredriksson et al. 2003). Vertebrate ORs are primarily expressed in the olfactory 

epithelium of the nasal cavity, where they bind odorants, and transmit the resulting nerve 

impulse to the brain (Buck and Axel 1991; Mombaerts 1999). The OR repertoires of 

amniote vertebrates are dominated by two major groups of ORs, Class I ORs, which 

appear to have a higher affinity for hydrophilic ligands, and Class II ORs, which 

generally bind hydrophobic ligands (Saito et al. 2009). 

Genomic surveys have revealed that ORs represent the largest vertebrate gene 

family (Zhang and Firestein 2002), and indicate that the numbers and diversity of ORs 

vary widely among vertebrates, even between closely related taxa (Niimura and Nei 
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2005b; Nei et al. 2008). There is debate regarding the relative influence of different 

evolutionary forces in shaping OR repertoires. Nei et al. (2008) suggests that OR 

evolution is largely a neutral process, whereas multiple comparative studies report that 

similarities among OR repertoires reflect shared ecology and anatomy rather than 

phylogenetic relatedness (Hayden et al. 2010; Garrett and Steiper 2014; Hayden et al. 

2014; Khan et al. 2015). Consistent with the prominent roles of ecology and anatomy, the 

size of the OR repertoire has been previously related to reliance on olfaction. There are 

~800 OR genes in the human genome, half of which appear to be pseudogenes, whereas 

there are more than 1,000 intact OR genes in the mouse genome and ~2,000 intact ORs in 

the elephant (Glusman et al. 2001; Zhang and Firestein 2002; Niimura et al. 2014).  

Further, although clear links between particular ORs and specific chemical ligands are 

largely missing, multiple studies have linked features of the OR repertoires to ecological 

adaptation and lineage-specific specialization (Steiger et al. 2009; Hayden et al. 2010, 

2014; Garrett and Steiper 2014; Niimura et al. 2014; Khan et al. 2015). 

Most of the comparative studies of the OR repertoires of tetrapods have focused 

on mammals because of the greater availability of mammalian genome drafts (Zhang and 

Firestein 2002; Niimura and Nei 2003, 2007; Hayden et al. 2010, 2014; Matsui et al. 

2010; Niimura et al. 2014), with a recent study comparing bird OR repertoires as a 

notable exception (Khan et al. 2015). Sauropsids are the sister group of mammals, and 

include Rhynchocephalia (tuatara), Squamates (snakes and lizards), Testudines (turtles 

and tortoises) and Archosaurs (crocodilians, dinosaurs, and birds), and with the exception 

of birds, have been largely absent from OR studies. Multiple genomes from 

representatives from this group have been released recently (Castoe et al. 2013; Wan et 
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al. 2013; Wang et al. 2013; Green et al. 2014) and offer an opportunity to explore the 

evolution of OR repertoires in amniote vertebrate lineages other than mammals. 

Therefore, the primary goal of this study was to investigate patterns of diversification of 

sauropsid OR repertoires using these recently released genomes. 

Prior studies based on the genomic analyses of the green anole, chicken, and 

zebra finch suggest that squamates have smaller OR repertoires than most mammals 

(Steiger et al. 2009) and that gene loss played a prominent role in the evolution of avian 

OR repertoires (Khan et al. 2015). Similarly, the OR repertoires of birds appear to be 

small relative to most other amniotes yet include an expansion of OR subfamily 14 

(Lagerström et al. 2006; Steiger et al. 2008, 2009; Khan et al. 2015). The phyletic extent 

of this expansion has not, however, been fully resolved. Further, it is not known whether 

snakes, which rely heavily on their sense of smell and chemoreception abilities (Cooper 

Jr 1991; Stone and Holtzman 1996; Shine and Mason 2001; LeMaster and Mason 2002; 

Clark 2007), do indeed have a reduced OR repertoire like that observed in the green 

anole. Similarly, the OR repertoires in crocodiles and turtles, which invaded semi-aquatic 

niches independently, have yet to be thoroughly analyzed and compared. Because Class I 

ORs are thought to be primarily involved in detecting aquatic-borne odorants and are 

particularly abundant in turtles (Wang et al. 2013), I was interested in evaluating whether 

semi-aquatic crocodilians may have also experienced an expansion of Class I ORs. To 

address these questions I analyzed patterns of OR gene gain and loss from a sample of 

sequenced sauropsid genomes. These results indicate that different sauropsid lineages 

have diverse OR repertories that range from few to several hundred genes derived from 
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lineage-specific combinations of expansions, losses, and differential retention of ancestral 

genes. 

Material and Methods 

Data sources 

We queried the genomes for putative ORs from the following representative 

sauropsid species: green anole (Anolis carolinensis), Burmese python (Python morulus), 

Chinese softshell turtle (Pelodiscus sinensis), painted turtle (Chrysemys picta), American 

alligator (Alligator mississippiensis), Indian gharial (Gavialis gangeticus), saltwater 

crocodile (Crocodylus porosus), chicken (Gallus gallus), and zebra finch (Taeniopygia 

guttata). I included duckbilled platypus (Ornithorhynchus anatinus) as an outgroup. 

Although many of these genome drafts have been previously surveyed for ORs, I re-

annotated these genomes to benchmark the accuracy of my OR prediction approach, and 

to provide a consistent basis for the annotation of ORs across genomes for comparative 

analyses. Further, in many of these cases only OR numbers were reported, therefore I 

sought to provide more detail regarding subfamily designations and comparative 

evolutionary histories among OR repertoires which has yet to be conducted. 

OR prediction 

To identify putative ORs I implemented a bioinformatic pipeline similar to the 

one described in Niimura and Nei (2007). Briefly, I conducted TBLASTN searches of the 

specified genomes excluding hits with an e-value greater than 1e-10. These searches were 

conducted using as queries a set of known ORs from the green anole, African clawed frog 

(Xenopus tropicalis), chicken, and zebra fish (Danio rerio) from Niimura (2009), and 
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human ORs from Niimura and Nei (2003). Hits shorter than 150 bp were discarded. I 

extracted the best BLAST hits identified by the smallest e-value from non-overlapping 

regions, plus 999 bp in the upstream and downstream flanking sequences, using modules 

in BEDTOOLS (Quinlan and Hall 2010) and custom Python scripts. Putative OR genes 

were considered intact if there was an uninterrupted open reading frame with no gaps ≥ 5 

amino acids in the 7 transmembrane domains or conserved regions, and an appropriate 

stop codon. Newly discovered intact ORs were added to the amino acid query and the 

TBLASTN search was conducted a second time to discover potentially undetected 

pseudogenes and truncated genes using a cutoff of 1e-20. The best hits, plus 99 bp 

upstream and downstream, were extracted. ORs were considered pseudogenes if the 

longest open reading frame (ORF) was shorter than 250 amino acids, there were gaps of 

five or more amino acids in the transmembrane domains or conserved regions, frame-

shift mutations, or premature stop codons. OR sequences located at the end of a scaffold 

or interrupted by scaffold gaps, but otherwise apparently intact, were considered 

truncated. Truncated ORs were validated by alignment to functional genes using MAFFT 

7.127 (Katoh and Toh 2008) and visually inspected for premature stop codons and gaps 

within conserved regions. Predicted OR amino acid sequences were mapped back to their 

corresponding genome to annotate their precise coordinates and orientation. 

Class I and II ORs diverged and diversified early in tetrapod evolution (Niimura 

2009). Mammalian OR genes have been historically classified into 18 subfamilies, four 

Class I subfamilies (51, 52, 55, 56) and 14 Class II subfamilies identified from the human 

genome (Glusman et al. 2000). However, Hayden et al. (2010) determined that several of 

the previously classified Class II subfamilies were not monophyletic among all mammals 
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and subsequently defined new groups by identifying monophyletic lineages of ORs 

(1/3/7, 2/13, 4, 5/8/9, 11, 6, 10, 12, 14). I used BLASTP to group intact ORs into putative 

subfamilies based on human ORs and the classifications of Hayden et al. (2010). I then 

verified and corrected the putative BLASTP-based assignments based on the inferred 

phylogenetic tree of the full OR dataset (see below). I assigned pseudogenes to OR 

subfamilies in the following manner. I created a database of all of the annotated amino 

acid sequences and used BLASTX to query the pseudogene nucleotide sequences against 

the protein database. I used a cutoff of 1e-10 and allowed 10 target sequences per query 

sequence. The subfamily annotation that was most frequent among the 10 hits was 

assigned to the pseudogene. 

Analyses 

After annotation, I used CAFÉ (De Bie et al. 2006) to reconstruct the OR 

repertoires from the number of intact Class I and Class II genes to identify ancestral OR 

gene copy number states given the gene gain and loss in each lineage. The CAFÉ method 

assumes equal probability of birth (duplication) and death (deletion / pseudogenization). 

Divergence times for each node in the CAFÉ analyses were taken from TimeTree 

(Hedges et al. 2006). 

We estimated the evolutionary relationships of OR sequences based on amino 

acid alignments. In all cases, I aligned the amino acid sequences of intact ORs using 

EINSI parameters in MAFFT 7.127. I created a full alignment of all intact ORs and also 

separate alignments of OR sequences for the birds, crocodilians, turtles, and squamates, 

and estimated phylogenetic relationships using Fastree2 (Price et al. 2010), which is 

specifically designed to calculate “approximately-maximum-likelihood” phylogenetic 
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trees on extremely large alignments such as those generated from aligning thousands of 

ORs here. Nodal support was estimated from 1,000 bootstrap replicates. The resulting 

tree was used to infer and date gene duplication events based on a phylogeny-aware 

algorithm (Huerta-Cepas and Gabaldón 2011) as implemented in ETE v2 (Huerta-Cepas 

et al. 2010). This method is complementary to CAFÉ, which does not consider the 

topology of the gene tree. 

In most vertebrates studied to date, OR genes are spatially clustered (Giglio et al. 

2001; Niimura and Nei 2005a). Thus, it was of interest to investigate how ORs were 

organized and distributed across various sauropsid genomes. To do so, I analyzed spatial 

clustering patterns of genetically linked OR genes using BEDTOOLS to locate genomic 

clusters of ORs in each genome in my analysis, even though establishing the exact 

boundaries of OR clusters was difficult for most genome drafts. OR clusters can be 

several Mb long yet many of the unmapped scaffolds containing ORs were shorter than 1 

Mb due to the overall shorter scaffold sizes of some genome assemblies I analyzed. Due 

to this limitation, I defined clusters as three or more OR genes that are separated by less 

than 100 kb of one another. Clusters that were within 10 kb of a scaffold end were 

considered incomplete. 

Results and Discussion 

I first compared results from my bioinformatic pipeline on updated drafts of the 

green anole, zebra finch, and chicken with the original reports. I found that gene counts 

were similar between anoCar1 and anoCar2, that galGal4 had more ORs than galGal3, 

and that these counts were very similar to those in the zebra finch and softshell turtle 

reported in Wang et al. (2013). The annotation of the python genome yielded more ORs 
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than previous estimates (Dehara et al. 2012; Castoe et al. 2013). Overall, these 

comparisons suggest that my pipeline generates results that are generally comparable to 

those from previous studies, and in some cases more inclusive. Thus, I inferred the 

characterization of the OR repertoires of painted turtle, python, gharial, American 

alligator, and saltwater crocodile represent robust estimates of the diversity and size of 

the OR gene family in these genomes. 

OR repertoires vary among major sauropsid groups 

Quantitative comparisons of ORs across genomes indicate that sauropsids evolved 

extensive variation in the size of the OR repertoires, as the number of intact genes in the 

genomes analyzed ranged over an order of magnitude, from 108 in the green anole to 

1180 in the Chinese softshell turtle. Similarly, the number of pseudogenes ranged from 

33 in the green anole to 538 in the American alligator (Table 1) and the number of 

truncated but putatively coding genes ranged from 1 in the green anole to 598 in the 

python. The abundance of these truncated genes did not appear to be related to the overall 

contiguity of genome assembly, since the crocodile and gharial genomes had shorter 

scaffold N50s yet fewer truncated genes (Table 1). 

Intriguingly, the two squamates in this study, the python and the green anole, 

diverged ~160 million years ago (Evans 2003; Castoe et al. 2009) and exhibit the largest 

difference in the number of ORs between species within a major sauropsid lineage, 481 

in the python to 108 in the anole (Table 1). This difference is probably higher, as the 

number of truncated genes in the python genome (Table 1, fig. 1A) suggests the number 

of intact genes in the python genome is likely higher than my current estimate. Despite 
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these numerical differences, both species have repertoires dominated by Class II ORs 

(fig. 1A) with similar subfamily proportions in the two species (fig. 1B). 

The two testudines in this study, the Chinese softshell and the painted turtle, 

diverged ~ 170 mya (Pyron 2010). The turtle genomes contained the largest numbers of 

intact ORs among sauropsids, and included several hundred Class I genes (fig. 1A), 

primarily from subfamily 52 (fig. 1B). This class of ORs is thought to mediate detection 

of water-borne odorants (Saito et al. 2009). Compared to the Chinese softshell turtle, the 

painted turtle genome contained a higher fraction of truncated ORs (24% vs 3% in the 

softshell turtle, fig. 1A) and pseudogenes (~50% vs. ~30% in the softshell turtle). 

The two extant groups of archosaurs, birds and crocodilians, show marked 

differences in their OR repertoires. Chicken and zebra finch had the second smallest 

number of ORs, with 200 and 250 ORs respectively, almost all of which belonged to 

subfamily 14 (fig. 1B). By contrast, crocodilian genomes encode more than twice the 

number of intact ORs, between 465 and 597 (Table 1), derived from multiple subfamilies 

(fig. 1B). It is notable that although the three crocodilian species diverged ~90 MYA 

(Roos et al. 2007), they have similar OR repertoires in terms of gene numbers (fig. 1A) 

and subfamily composition (fig. 1B), further illustrating suggestions that crocodilian 

genomes have remained remarkably static and conserved over many millions of years 

(Green et al. 2014). 

OR pseudogenization 

If there has been no gene gain and pseudogenes are retained in the genome, there 

should be a negative correlation between the number of intact ORs and number of 

pseudogenes. To test this prediction, I explored the number of pseudogenes and their 
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distribution across OR subfamilies. I calculated the proportion of pseudogenes by 

dividing the number of pseudogenes by the total number of genes, excluding truncated 

genes because they cannot be classified confidently. The analyses indicate that the overall 

proportion of pseudogenes was not correlated with the number of intact genes (fig. 2A). 

However, I did find a significant positive correlation between the proportion of 

pseudogenes per subfamily and the proportion of intact genes per subfamily (r2 = 0.87, p 

< 0.0001, fig. 2B). These two observations together suggest that the pseudogenes present 

reflect the composition of the OR repertoire, but that the current abundance of 

pseudogenes is not determined by the abundance of intact genes. The fraction of 

pseudogenes can change when genes or pseudogenes are deleted from the genome 

(Niimura et al. 2014) and although several groups have suggested that the proportion of 

pseudogenes relative to the total number of genes is related to olfactory ability (Kishida 

et al. 2007; Hayden et al. 2010; Kishida and Hikida 2010), the results here are not 

consistent with this. In agreement with Niimura et al. (2014), my analyses suggest that 

the fraction of pseudogenes is a poor indicator of olfactory ability. 

Genomic organization of OR genes 

In most mammalian genomes, OR genes are arranged in gene clusters composed 

of closely related genes and orthologous clusters are often shared among relatively 

distantly related species, such as the human and the mouse (Niimura and Nei 2005a). 

Similarly in sauropsids, the proportion of ORs in clusters ranged from 42 to 90%, in the 

zebra finch and softshell turtle respectively, and the number of OR gene clusters per 

genome ranged from 5 to 139 across species (Table 2). Some of these clusters were 

composed of a single subfamily, but most clusters (such as the largest cluster in the 
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painted turtle) contained multiple OR subfamilies (fig. 3A). As expected, genome drafts 

with lower scaffold N50s exhibited smaller clusters and greater abundances of 

incomplete clusters (Table 2). True OR cluster sizes are likely larger than my estimates 

(due to the fragmentary nature of assemblies), and ultimately the majority of ORs may be 

located in a small number of clusters, as in the green anole where almost 85% of ORs 

were found in only five clusters (Table 2).  For example, five scaffolds contained the 

majority of subfamily 51 ORs in the softshell turtle (fig. 3B), and the entire length of 

these five contigs is composed almost exclusively of these ORs (fig. 3C). The combined 

length of these five contigs is approximately 1.5 Mb. Because almost all of the subfamily 

51 ORs are scattered among these five contigs and each of these contigs is incomplete at 

the 5’ and 3’ end, I suspect these five contigs may represent a single contiguous cluster, 

containing the majority of the subfamily 51 ORs. The largest single human OR locus 

contains ~130 ORs and the largest mouse locus contains ~250 ORs (Niimura and Nei 

2005a). By comparison, the largest clusters in my study were observed in the anole, 

platypus, painted turtle and softshell turtle (assuming a single contiguous cluster) and 

contained 75, 93, 108, and 147 total ORs, respectively. These comparisons should be 

considered preliminary, as the actual cluster sizes will likely change as future more 

contiguous genome assemblies become available. Regardless of the exact numbers of 

clusters per genome, observed patterns of OR clustering across genomes suggest that 

tandem duplication is a primary source of novel ORs, as suggested by Niimura and Nei 

(2005a). 
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Evolution of OR repertoires 

We tracked gene gain and loss for Class I and Class II ORs on the species tree 

using maximum likelihood estimates of OR repertoire size (fig. 1C). These analyses 

suggest that the relatively small OR repertoires of the chicken, the zebra finch and the 

anole are the result of multiple gene losses, and that ancestors of both the birds and the 

green anole likely contained larger OR repertoires. Interestingly, the analysis of the anole 

and the two birds yield drastically different patterns of gene loss. The anole lost ORs 

from all subfamilies while retaining repertoire diversity, whereas the two birds analyzed 

lost almost all ORs belonging to all subfamilies except subfamily 14. Khan et al. (2015) 

previously demonstrated that birds generally have diverse OR repertoires. The notable 

exceptions were chicken, zebra finch and the little egret, as more than 90% of the ORs in 

these genomes were made of subfamily 14 ORs suggesting that almost all OR 

subfamilies were lost independently in these three species.    

Reconstructions of the OR repertoire in the common ancestor of sauropsids 

suggest it had 51 Class I and 344 Class II ORs. Ancestral nodes also had hundreds of 

Class II receptors, ranging from 263 to 520, and tens of Class I receptors, from 14 to 58, 

with the exception of the common ancestor of softshell and painted turtle, which had an 

estimated 274 Class I receptors. Turtles are notable because they are the only group 

analyzed to have gained Class I ORs at a greater rate than Class II ORs (fig. 1C). The 

crocodilian ancestor is estimated to have gained approximately 100 ORs since diverging 

from birds, and interestingly, the number of ORs in the three crocodilians has apparently 

remained remarkably similar to the number inferred for their ancestor. 
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To investigate patterns of OR gene gain and loss among subfamilies in more 

detail, I estimated phylogenetic relationships among all 4,991 intact OR genes (fig. 4). 

Class I and Class II ORs formed highly supported monophyletic clades (fig. 4A). Most 

mammalian-defined subfamilies generally formed monophyletic groups that included 

mammalian and sauropsid representatives (fig. 4A). Exceptions to this pattern include 

subfamily 5/8/9, which is paraphyletic in my analysis. The 5/8/9 subfamily is represented 

by three relatively distant clades (fig. 4A) that each includes representatives of all 

sauropsids (fig. 1B, 4B). Because of the difficulties in resolving a tree with many more 

sequences than sites in the alignment, I restricted the primary focus to strongly supported 

monophyletic OR subfamilies, such as groups 51, 52, and 14 (fig. 4A). 

In most cases, it was uncommon for ORs from a species or lineage to form a 

monophyletic group within a subfamily suggesting that these subfamilies had expanded 

prior to radiation of these species. Subfamily 14 was an exception, as almost all ORs in 

this subfamily formed species or lineage-specific clades (fig. 4B) suggesting that the 

same ancestral gene expanded independently multiple times in different lineages. Within 

this subfamily, chicken and zebra finch ORs are the most remarkable, as they are 

reciprocally monophyletic, stemming exclusively from species specific expansions (fig. 

5C; Khan et al. 2015), with a long branch leading to their common ancestor gene (fig. 

4B). 

When I constructed independent phylogenetic trees for each major sauropsid 

group, I was able to visualize the distinct patterns of gene gain and loss that produced 

current OR repertoires (fig. 5). Phylogenetic tree characteristics tended to be 

fundamentally different among the four groups. Turtles and crocodilian genomes are both 
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notable for evolving slowly (Shaffer et al. 2013; Green et al. 2014), yet the OR 

repertoires of turtles show extensive evolutionary dynamics with multiple species-

specific expansions (fig. 5B) while crocodilian OR repertoires have apparently 

experienced little change in gene number and diversity (fig. 5D). The conservative nature 

of crocodilian OR repertoires is exemplified by noticeably short terminal branches among 

orthologous gene copies (fig. 5D). These observations collectively suggest that not only 

have crocodilians not experienced substantial change in the number and diversity of OR 

genes, but have also experienced fewer amino acid changes among orthologous OR genes 

since extant crocodilians diverged from their common ancestor. 

ORs subfamilies in the last common ancestor of sauropsids 

Consistent with previous analyses of OR repertoires in birds (Khan et al. 2015), 

these phylogenies indicate that at least six OR subfamilies (51, 52, 14, 4, 12, and 1/3/7) 

formed monophyletic groups among sauropsids, suggesting that these subfamilies began 

diversifying in the common ancestor of sauropsids. In addition, the majority of the 

predicted ORs in subfamilies 11, 10, 6, and 2/13 were placed in monophyletic groups as 

well, indicating that these subfamilies were also present in the last common ancestor of 

sauropsids. The most interesting case is subfamily 5/8/9, which is split into three weakly 

supported clades in this study (fig. 4A). Thus, my analyses suggest that the OR 

classification derived from mammals is largely applicable to sauropsids, and that the 11 

major groups emerged prior to divergence of these mammals and sauropsids. 
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The Role of Natural Selection in Shaping OR repertoires 

The relative role selection played in shaping OR repertoires is a matter of debate. 

Early studies suggest that variation in OR repertoires is largely independent of selection 

(Niimura and Nei 2007; Nei et al. 2008). However, more recent comparative studies 

among mammals (Hayden et al. 2010, 2014) and birds (Khan et al. 2105) suggest that OR 

repertoires reflect ecological adaptations and have in part been shaped by natural 

selection. Khan et al. (2015) also show that olfactory acuity, as reflected by the size of 

the olfactory bulb, is correlated with the size of the olfactory repertoire. 

These results provide new and intriguing evidence consistent with a role of 

natural selection in shaping OR repertoires. I found independent expansions of 

subfamilies associated with detection of waterborne odorants in the two aquatic groups 

studied: subfamily 2/13 expanded in crocodiles, which has been linked to chemoreception 

in aquatic mammals and birds (Hayden et al. 2010; Khan et al. 2015), and Class I ORs in 

turtles, which are hypothesized to primarily bind waterborne odorants (Saito et al. 2009; 

Wang et al. 2013). Additional support for natural selection was observed in comparisons 

between squamate reptile OR repertoires. The green anole is an arboreal insectivore that 

relies on visual cues for social interactions (Leal and Fleishman 2004) and has the lowest 

number of functional ORs, despite having high OR subfamily diversity. By contrast, the 

python, which like most snakes, has poor hearing and vision and relies heavily on 

chemoreception to locate prey and mates, has at least five times as many putatively 

functional OR genes as the anole. Thus, the difference in size of squamate OR repertoires 

points towards a correspondence between OR size and the relative dependence on 

chemosensory information. While not conclusive, examples from sauropsid OR 
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repertoires are at least consistent with natural selection playing a role in shaping OR 

repertoires, and suggests that the diversity of OR repertoires and natural history of 

sauropsid species may provide a rich model system for more detailed tests of this 

hypothesis. 

Conclusions 

Sauropsids represent an ecologically and phenotypically diverse set of tetrapods 

that include the closest living relatives to mammals, and recently available genomes of 

representative members of sauropsid lineages provide new opportunities to study the 

patterns of OR diversification in the group. These results indicate that most sauropsids 

have diverse and relatively large OR repertoires that derive from a complex diversity of 

lineage-specific patterns of gene birth and death, and the differential retention of OR 

duplicates. I found that gene loss has played a prominent role in the evolution of the 

repertoires of birds and lizards. In contrast, turtles have experienced notable gains of 

class I ORs, and the common ancestor of crocodilians gained multiple ORs. Unlike other 

lineages, however, the crocodilian repertoire has remained nearly constant since the 

diversification of crocodilian lineages. Overall sauropsids have undergone numerous 

major life history and ecological transitions that are likely to have resulted in changes in 

the dependence of various lineages on olfaction and on OR repertoires. 
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Table 3.1 Summary of OR gene annotations from each genome. 

Genome Intact Pseudogenes Truncated Total %Truncated %Intact 
(I) (P) (T) (I+P+T) (T/I+T) (I/I+P) 

Platypus 270 351 35 656 11 44 
Green Anole 108 33 1 142 0.9 77 
Python 481 319 598 1398 55 60 
Softshell Turtle 1180 533 40 1753 3 69 
Painted Turtle 842 942 279 2063 24 47 
Crocodile 592 331 66 989 10 64 
Gharial 597 389 153 1139 18 61 
Alligator 465 538 74 1077 14 46 
Zebra Finch 190 306 45 541 19 38 
Chicken 266 173 83 522 24 61 

For each species I calculated the total number of intact, pseudogenes and truncated genes. 

Table 3.2 Summary of OR gene clusters.  

5’ 3’ 5’ and 3’ % genes Genome Clusters Intact incomplete incomplete incomplete in clusters 
Platypus 39 11 23 1 4 41 
Green Anole 5 5 0 0 0 83 
Python 130 16 84 30 0 58 
Softshell Turtle 126 30 83 3 10 90 
Painted Turtle 115 53 51 6 5 78 
Crocodile 122 30 79 2 11 69 
Gharial 139 48 67 12 12 58 
Alligator 120 0 58 3 15 75 
Zebra Finch 52 52 0 0 0 42 
Chicken 27 7 18 0 2 57 

From each genome draft, I estimated the number of OR clusters, the number that clusters 
that were not near a contig end (intact), those that were near the 5’, 3’ or both contig 
ends, and the percentage of genes found in clusters. 
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Figure 3.1 OR composition among taxa 

A) The comprehensive collection of annotated Class I and Class II genes in each taxon. 
B) Heat map based on the proportion of intact ORs that belong to OR subfamilies. Avian 
and non-avian groups were presented on two different scales because more than 85% of 
avian ORs are in subfamily 14, whereas the highest percentage is 36% in subfamily 52 of 
turtles. C) Historic Class I and Class II gene numbers in the ancestral nodes and gain/loss 
along each branch of taxa (CAFÉ analysis, above branches), and the inferred number of 
past duplication events per OR Class and lineage, based on the gene phylogeny and a 
species-overlap duplication detection and dating algorithm (Huerta-Cepas and Gabaldón 
(2011), below branches). Light blue branches are those with an average gene loss per 
Class and orange branches are those with an average gene gain. 
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Figure 3.2 Pseudogene frequency 

A) The number of intact genes plotted against the percentage of pseudogenes as a 
proportion of the total number of intact genes and pseudogenes (p/p+i) within the same 
genome. A simple linear model was applied to the data and there was no significant 
correlation. B) I plotted the percentage of pseudogenes against the percentage of intact 
genes for all subfamilies in all species and again applied a simple linear model to the data 
and found a strong linear relationship between the two metrics. 
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Figure 3.3 OR cluster composition 

A) The largest (most numerous) OR gene cluster from each genome draft. Each vertical 
bar represents a position of an OR. Bars above the horizontal line represent sense 
oriented genes and bars below the line represent anti-sense oriented genes in relation to 
the scaffold sequences. Each OR is colored according to the annotated subfamily. Cluster 
lengths are drawn to scale. B) Neighbor joining tree of the subfamily 51 ORs in the 
softshell turtle; branches are colored according to the contig each OR was identified on. 
C). The OR content of each contig presented in the B panel. Contig lengths are to scale, 
and the gene color scheme is congruent with the legend in panel A. 
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Figure 3.4 Phylogenetic tree estimate of the 4,991 intact ORs 

Phylogenetic tree estimate of the 4,991 intact ORs. A) Branches colors are based on the 
annotated OR subfamily, nodal support is listed for the Classes and high supported 
subfamilies. B) The same tree presented in A but branches are colored according to the 
major taxonomic classifications and nodal support is presented for high supported group 
specific OR expansions. 
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Figure 3.5 OR gene trees among major sauropsid groups 

Phylogenetic reconstruction of ORs in each major group of saurposids, including A) 
squamates B) turtles, C) birds, and D) crocodilians.  
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CHAPTER IV 

TRANSPOSABLE ELEMENT TARGETING BY PIRNA IN LAURASIATHERIANS 

WITH DISTINCT TRANSPOSABLE ELEMENT HISTORIES 

Introduction 

Transposable elements (TEs) are selfish DNA sequences that have the ability to 

invade and propagate in host genomes, and are classified as either DNA transposons or 

retrotransposons based on their mechanism of mobilization and cycle of replication. 

Retrotransposons (Class I TEs) mobilize exclusively through 'copy-and-paste' 

mechanisms, they transcribe an RNA intermediate that is reverse transcribed and inserted 

into a new genomic location. In mammalian genomes the most common retrotransposons 

are Long INterspersed Elements (LINEs), Short INterspersed Elements (SINEs), and 

Long Terminal Repeat elements (LTRs). DNA transposons (Class II TEs) do not use an 

RNA intermediate and may mobilize either through a 'cut-and-paste' mechanism (TIR 

elements), by excising themselves from one locus and reinserting into a novel one 

(Kapitonov and Jurka 2007), or by “copy-and-paste” mechanisms (e.g. Helitrons and 

Mavericks). 

TEs are major components of vertebrate genomes, and in the case of mammals, 

TEs can account for up to 70% of the genomic content (de Koning et al. 2011), most of 

which is derived from retrotransposon insertions (Yohn et al. 2005). TEs can be an 

important source of variation within and among species. In addition to increasing genome 
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size, TE insertions can disrupt gene reading frames or alter gene expression by inserting 

within or close to a gene, promote genomic deletions and reorganize genome structure via 

TE-mediated non-homologous recombination (Gilbert et al. 2002; Liu et al. 2003; 

Callinan et al. 2005; Han et al. 2005; Sen et al. 2006). Because of these potential impacts, 

TE mobilization is generally considered deleterious and their unrestricted proliferation 

can have profound biological effects. As a result, the question of how organisms control 

TE mobilization has attracted great interest. 

Data from multiple metazoans indicate that proteins in the PIWI and Argonaute 

gene families, referred to as PIWI proteins from here onwards, and PIWI-interacting 

RNAs (piRNAs), a class of small noncoding RNAs predominantly expressed in 

germlines, play a major role reducing TE expression and mobilization (Aravin, Hannon, 

et al. 2007; Aravin, Sachidanandam, et al. 2007; Brennecke et al. 2007; O’Donnell and 

Boeke 2007; Saito and Siomi 2010). piRNAs are the most abundant class of small RNAs 

expressed in testis and range in size from approximately 24 to 32 nucleotides (Aravin et 

al. 2006; Girard et al. 2006; Aravin et al. 2008; Höck and Meister 2008). piRNA and 

PIWI proteins associate in complexes that are involved in epigenetic and post-

transcriptional repression of TEs (Siomi et al. 2011). 

Two distinct populations of piRNAs have been described in mammals, pre-

pachytene and pachytene, which differ in their expression, biogenesis, and genomic 

origins (Aravin, Sachidanandam, et al. 2007; Li et al. 2013). Expression of pre-pachytene 

piRNAs begins in pre-meiotic and early prophase 1 spermatogonia whereas expression of 

pachytene piRNAs starts in the pachytene stage of prophase 1 through sperm maturation 

(Aravin, Sachidanandam, et al. 2007; Aravin et al. 2008; Reuter et al. 2011). Both classes 
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of piRNAs are present in mature testes; however pachytene piRNAs greatly outnumber 

pre-pachytene piRNAs (Li et al. 2013). That being said, pachytene piRNAs are derived 

from unannotated (non-TE) regions of the genome and do not appear to be involved in 

TE silencing. Instead, evidence suggests pachytene piRNAs regulate and eliminate gene 

transcripts from the cytoplasm in a manner similar to the miRNA pathway (Guo et al. 

2014). By contrast, the pre-pachytene population of piRNAs appears to be heavily 

involved with post-transcriptional silencing of TEs via a feed-forward amplification loop 

known as the “ping-pong” cycle. In the mammalian ping-pong cycle, Aravin et al. (2008) 

proposed that a primary piRNA is derived from a TE transcript. This primary piRNA 

becomes bound to its PIWI counterpart, directs the complex to a complementary anti-

sense TE transcript, and through the slicer activity of the PIWI protein, directs the 

cleavage of the bound transcript producing a secondary anti-sense piRNA. The secondary 

piRNA is then loaded onto a new PIWI protein and the cycle is repeated, amplifying the 

pool of both primary and secondary piRNAs while reducing the threat of TE transcripts. 

This is in stark contrast to the Drosophila ping-pong cycle where anti-sense piRNAs are 

derived from transcribed piRNA clusters and subsequently bind sense TE transcripts 

(Brennecke et al. 2007). 

The evolutionary relationships between TE families and regulatory piRNAs have 

been examined in a few model species. For example, Kelleher and Barbash (2013) found 

limits of the piRNA response and suggested the most deleterious TE families are not the 

most abundant in the piRNA pool. By contrast, the relationship between piRNAs and TE 

families in mammals is effectively unknown. Lukic and Chen (2011) and Mouier (2011) 

found a correlation between the age of TE families and piRNA density in humans and 
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mice, respectively. However, there has not been a thorough investigation into which TE 

parameters illicit the strongest piRNA response. Because there is such a contrast between 

the TE silencing pathway in flies and mammals, I feel a broader investigation was 

needed. 

The goal of this research is to better understand the relationships between TE 

abundance at the genome and transcriptome level and piRNA abundance among 

mammals. To do so, I compared genome-wide TE composition, TE expression, and the 

strength of the piRNA response elicited by TEs in three laurasiatherian mammals with 

very distinct TE landscapes. The three species diverged from one another within a 

relatively short period, approximately 80 million years ago (Meredith et al. 2011), and the 

combination of distinct TE loads and similar evolutionary divergences allowed us to 

explore the piRNA response to TE related variables within the context of the ping-pong 

model. Briefly, analyses indicate that TE expression was a strong predictor of the level of 

piRNA response, in agreement with predictions of the ping-pong model, and suggest that 

the level of piRNA response may modulate the relative contribution of the different TEs 

to the genome. 

Materials and Methods 

Sample collection and library prep 

We collected discarded testicular tissue from one adolescent dog and one 

adolescent horse after the animals were sedated and neutered by licensed veterinarians 

from the College of Veterinary Medicine at Mississippi State University. A wild caught 

adult big brown bat, Eptesicus fuscus, was sacrificed in accord with IACUC standards to 

collect testis tissue. In each case, a cross section of testis was snap frozen in liquid 
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nitrogen immediately following castration and stored at -70°C prior to RNA isolation. I 

isolated total RNA using Trizol ® (Invitrogen, USA) according to the manufacturer’s 

specifications. Small RNA libraries were prepped using the Illumina TruSeq small RNA 

kit © and 1 x 50 bp reads were sequenced on the Illumina HiSeq2000 platform. 

Directional RNASeq libraries were prepped using the Illumina TruSeq v2 kit and 2x100 

bp reads were sequenced on a single lane of a HiSeq2000. 

TE composition and expression 

We masked the dog (CanFam3.1) and horse (EquCab2) genomes using 

RepeatMasker 4.0.5 using the ‘-species dog’ and ‘-species horse’ parameters, 

respectively. The big brown bat genome was acquired from NCBI (EptFus1.0, GenBank 

accession ALEH00000000, 1.806 gigabases). Contigs were first masked with 

RepeatMasker with the ‘-species Chiroptera’ option then secondarily masked with a de 

novo repeat library constructed from the Eptesicus genome draft (Platt et al. 2014). To 

estimate genetic distances, I used the calcDivergenceFromAlign.pl script included with 

RepeatMasker to calculate Kimura two-parameter (Kimura 1980) distances between each 

insertion and its respective consensus sequence. The option –noCpG was invoked to 

exclude highly mutable CpG sites from distance calculations. I calculated the total 

number of insertions, total number of bases (as a proportion of the genome), average 

insertion length, and the median genetic distance among insertions for each TE family 

from the RepeatMasker output. Novel TEs insertions, especially among retrotransposons, 

are expected to be identical to the source element, and the consensus sequence of a given 

subfamily is inferred to be the best estimate of the sequence of the source element for that 

subfamily. Within the framework of the master element model proposed by Brookfield 
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and Johnson (2006), the distance between an element of a given subfamily and the 

corresponding consensus provides an estimate of the age of that insertion, and the median 

distance among insertions of a given subfamily provide an estimate of the peak of 

accumulation in that subfamily. Thus, insertions with high similarity to the corresponding 

consensus, i.e. low genetic distances, are assumed to have occurred in the recent past, 

whereas insertions with low similarity (high genetic distance) are thought to be older. 

We estimated the relative expression of TE families by mapping RNA-Seq reads 

to the TE consensus sequences representing families found in each genome. For each 

species, I mapped approximately 30 million RNASeq reads to the consensus elements 

using the default parameters of RSEM (Li and Dewey 2011), which used Bowtie to 

initially map reads. The default parameters allow two mismatches in a seed region of the 

first 25 bases of an alignment, then unlimited mismatches in the remainder of the 

sequence alignment. Expression estimates were measured in transcripts per million 

(TPM). 

piRNA processing and cluster annotation 

Prior to small RNA mapping, I clipped barcodes, removed reads that had bases 

with Phred quality score <25, and removed identical reads using modules in the fastx 

toolkit. I also removed low complexity small RNA sequences using a custom python 

script. I mapped  piRNA-like (pilRNA) sequences 24-32 bases long to the complete 

genomes using Bowtie allowing one mismatch in the alignment (Langmead et al. 2009). 

pilRNAs that mapped to only one locus were reported. A cluster was defined as a group 

of at least 50 pilRNAs where contiguous pilRNAs were separated by less than 1,500 

bases (Beyret et al. 2012). Only clusters longer than 10Kb and that had a normalized 
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small RNA count of 10 pilRNAs / cluster length (in thousands) / number of mapped 

sequences (in millions) were analyzed for TE insertions. I calculated the same TE 

parameters within clusters as I did for the whole genome (see above). 

Ping-pong piRNA expression 

pilRNA sequences were mapped to a library of consensus sequences representing 

the TE families annotated in each genome. I mapped pilRNAs to the consensus elements, 

allowing three mismatches, and allowed pilRNAs to map to all possible loci. I identified 

the ping-pong signature by partitioning mapped reads into putative primary or secondary 

pilRNAs. pilRNAs that had a U in the first position and did not have an A in the 10th 

position were considered ‘primary’ pilRNAs, whereas those pilRNAs that had an A in the 

10th position and did not have a U in the first position were classified as ‘secondary’ 

pilRNAs. Pairs of primary and secondary pilRNAs that overlapped at the first 10 

nucleotides were assumed to have resulted from the ping-pong cycle. Ping-pong pilRNA 

expression was estimated for each TE family by summing the number of ping-pong 

pilRNAs for each element and dividing the pilRNA counts by the length of the consensus 

sequence (in thousands of bp) and the number of ping-pong pilRNA that mapped to the 

entire consensus libraries for each species (in millions). I refer to this metric as ping-pong 

pilRNA expression (PPE) throughout and consider it as a proxy for the strength of the 

piRNA response against a given TE because the abundance of ping-pong pairs would 

indicate where PIWI proteins are most concentrated. 
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Statistical analyses 

Because they have different mechanisms of transposition, the major types of 

elements (LINEs, SINEs, LTRs, and DNA transposons) were analyzed independently 

within each species. I log + 1 transformed all variables (both dependent and independent) 

associated with TE families and first performed simple linear regression between PPE 

and all independent variables. I then used bi-directional stepwise regression analyses 

using Akaike's Information Criteria to choose the best sub-model from a full model that 

included all independent variables to explain the most PPE variation. To explore the 

relevance of each independent variable in the chosen sub-model, I used the lmg method 

available in the R package relaimpo which averages sequential sums of squares over the 

ordering of regressors. 

Results 

We sought to better understand the interplay between TEs and piRNAs among 

mammals by comparing TE activity and piRNA repertoires in dog, horse and the big 

brown bat. Patterns of TE activity are often inferred based on the relative abundance of 

TEs in a given genome. However, for the purpose of this study, it was critical to 

distinguish between genome-wide patterns of TE accumulation and levels of TE 

expression, which are related but need not necessarily be the same. The first reflect 

historical patterns of TE deposition and retention, whereas the second reflect the TE 

stress currently challenging a given genome. Both of these factors could impact piRNA 

production, as the abundance of a given TE in the genome could directly relate to its 

potential as a source of primary piRNAs, and TEs that are actively transcribed are 

expected to contribute more to the pool of piRNAs in the ping-pong cycle. 
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SINE, LINE, LTR, and DNA transposon insertions are grouped into discrete 

families based on overall similarity and are often represented by a single consensus 

sequence. This consensus sequence is considered the best estimate of the mobilizing 

elements for that particular family. There were 745, 787, and 976 distinct TE families 

annotated by RepeatMasker in the dog, horse, and bat genomes, respectively, 

corresponding to 150-159 LINE, 20-26 SINE, 283-430 LTR, and 280-376 DNA 

transposon families. For each separate TE family I calculated 1- the number of insertions, 

2- the relative age of the family, 3- the average length of insertions (in two categories, 

among all insertions and only those within piRNA clusters), and 4- the abundance of 

transcripts. There were clear differences in patterns of TE accumulation and expression 

among the three genomes that may allow us to tease apart what drives the production of 

TE related ping-pong piRNAs when the types of TE families, insertion numbers, 

expression and genomic proportion vary. 

Genomic TE composition and properties 

Among retrotransposons, LINEs occupied the most genomic space in all three 

species, accounting for ~10% of the genome, followed by SINEs, ~3 to 8%, and LTR 

retrotransposons, ~ 1 to 3% (fig. 1A). Based on number of insertions, LINEs were also 

the most abundant TEs in the horse genome, but SINEs and DNA transposons were the 

most abundant in the dog and the bat, respectively with over 1.65 x 106 insertions in all 

cases (fig. 1A). The bat genome stands out in this regard, as it has experienced a 

resurgence of DNA transposons when compared to most mammals, a characteristic 

shared with the closely related little brown bat, Myotis lucifugus (Pritham and Feschotte 

2007; Ray et al. 2007, 2008; Mitra et al. 2013; Platt et al. 2014). I estimated that 
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approximately 11% of the bat genome derives from DNA transposon insertions, in 

contrast to ~1% in dog or horse (fig. 1A). 

The historical patterns of TE accumulation also vary among these three species 

(fig. 1B). In the recent past, the dog genome has accumulated LINE and SINE insertions 

at a higher rate than either the horse or bat. Some LINEs have been deposited relatively 

recently in the horse genome, yet young LINE insertions are almost undetectable in the 

bat genome. Similarly, recent SINE insertions are very uncommon in the bat and horse 

genomes while in the dog, SINEs have accumulated at a relatively high rate. Recent DNA 

transposon insertions are uncommon in all three species. However, the bat differs from 

dog and horse in that there was a high rate of DNA transposon deposition in the recent 

past (fig. 1B). This is also seen in Myotis lucifugus, which diverged from the big brown 

bat lineage ~ 25 million years ago (Miller-Butterworth et al. 2007; Ray et al. 2007; Pagán 

et al. 2012; Platt et al. 2014). Despite the clear slowdown in DNA transposon 

accumulation in the genome of the big brown bat, these elements have remained the 

dominant TE type. 

pilRNAs formed clusters, which were not enriched for TEs 

We then moved on to characterize pilRNA diversity in these three species. The 

sequenced small RNAs were similar to previously characterized piRNAs extracted from 

other mammalian testes (Lau et al. 2006; Yan et al. 2011; Liu et al. 2012). Specifically, 

more than 75% of the sequenced small RNAs were between 24 and 32 nucleotides long 

and there was a strong uridine bias in the first base position (fig. 2A), consistent with 

previously described pilRNAs. Allowing one mismatched base between the pilRNA and 

genome alignment, between 51 and 72% of the unique pilRNA sequences mapped to 
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each genome, and the majority of these pilRNAs map to non-TE related genomic space 

(fig. 2B), which is characteristic of the pachytene piRNAs. Interestingly, the proportions 

of LINE, SINE, LTR, and DNA transposon derived pilRNAs were similar among the 

three species. 

We then compared TE content within pilRNA clusters against genome wide 

patterns of TE accumulation. I restricted my analyses to clusters longer than 10Kb 

because these are more likely to contain full length TE insertions. The annotated clusters 

generally occupied unannotated space and generated ~50% of the unique pilRNAs. I 

annotated 290, 376, and 221 clusters in the dog, horse and bat genomes, respectively. By 

comparison, groups have annotated approximately 100 clusters in the mouse (Girard et al. 

2006; Beyret et al.2012; Li et al. 2013). Although I annotated many more clusters in these 

genomes, cluster variation among species is typical. For example, Chirn et al. (2015) 

found that most piRNA clusters were species specific, few were conserved among 

species, and the number of piRNA clusters varied drastically. 

Although piRNA clusters are derived from unannotated space, there were several 

TE insertions within any given cluster. For example, in a large cluster shared between the 

three species there were between 53 and 191 TE insertions, most of which were more 

than 20% diverged from the consensus sequence (fig. 2C). In fact, more than 98% of 

clusters included one or more TE insertions. However, I did not find that clusters were 

necessarily enriched for insertions, rather the number of genomic insertions from each 

family was tightly correlated with the total number of insertions among all clusters (fig. 

2D), a relationship also observed in Hirano et al. (2014), suggesting that clusters do not 

preferentially accumulate TE insertions from particularly deleterious TE families. 
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Ping-pong response 

The next step was to explore relationships between different TE family 

characteristics and ping-pong pilRNA expression (PPE) using bivariate and multivariate 

regression analyses. To estimate the expression of ping-pong pilRNAs, I mapped all 

pilRNA sequences to the TE consensus sequences and only calculated expression of 

pilRNAs that exhibited the signature of the ping-pong cycle, i.e. 10 bp overlap between 

pairs of pilRNAs where a uridine is in the first position of the primary pilRNA, and an 

adenine is in the 10th position of the secondary pilRNA. As expected, only a small 

percentage of pilRNAs mapped to the consensus sequences (~3-6%), and half of these 

pilRNAs were found as ping-pong pairs. This was expected because pachytene pilRNAs 

are the most abundant in mature testes and are generated independently of the ping-pong 

cycle (Beyret et al. 2012). 

To estimate the level of pilRNA response I initially discriminated between sense, 

anti-sense, and total PPE. However, because of the high correlation (r2 > 0.95) observed 

among the three measurements, I only measured the impact of TE parameters on total 

PPE. Statistical analyses were performed for all TE families combined and separately for 

LINEs, SINEs, LTRs and DNA transposons among species. When I examined parameters 

individually, I found that the largest r2 values were most often associated with estimates 

of TE family expression, especially in LINEs, SINEs, and DNA transposons in the bat (r2 

= 0.47–0.81, p < 0.001; fig. 3A), i.e. the most expressed families also generate the most 

ping-pong pilRNAs. In addition, I found that the estimated age of the TE family was also 

a strong predictor of ping-pong pairs among LINEs in all three species (r2 = 0.51–0.60, p 

< 0.001; fig. 3A). I tested whether RSEM’s mapping parameters potentially biased 
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RNASeq reads to younger elements by increasing the number of allowed mismatches in 

the seed region. I found that increasing mismatches did not change the overall pattern that 

younger elements had higher expression and only made inferences from the default 

parameters. This observation is not unexpected given that the youngest TE families are 

often the most expressed, aligns with the predictions of the ping-pong model, and Lukic 

and Chen (2010) and Mourier (2011) also reported this property. By contrast, variables 

related to the abundance of TEs in the genome and piRNA clusters, such as insertion 

number, total bases, and average length typically had much lower r2 values suggesting 

that they are not as important with regard to the ping-pong response. The most obvious 

exceptions to this general pattern involved SINEs in the dog (see discussion below). 

In order to explore relationships between TE metrics and PPE in a multivariate 

framework I combined all variables into a single model, and used stepwise regression to 

find a sub-model with an optimal r2. Stepwise regression also selects optimal variables 

when one or more variables correlate, as is the case with genome insertions and cluster 

insertions (fig. 2D). Based on genomic insertions (fig. 1), LTR families generally 

appeared to not be transcribed or accumulating in all three species, and only estimates of 

subfamily expression had any meaningful and significant relationship with PPE for these 

TEs. Because of this, LTRs were excluded from the multivariate regression. For SINEs, 

LINEs, and DNA transposons, the parameters selected and their relative contribution to 

PPE varied among each element type and species. Between two and six independent 

variables were selected for each multivariate regression model (fig. 3B). With the 

exception of DNA transposons in dog and horse, both of which have very old families 

that are no longer transcribed, the models yielded high r2 values (between 0.7 and 0.92), 
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and in most cases included TE expression as the most important variable in the model. A 

second common parameter selected among species and TE types was TE family age, 

which when selected, always had a negative relationship with PPE, i.e. younger families 

had higher PPE. When all TE families were combined, the number of cluster insertions 

was selected in all three species. However, when TEs were separated by type, cluster 

insertions were only meaningfully selected as part of the horse SINE and bat DNA 

transposon models (fig. 3B). The remaining piRNA cluster parameters, if selected by 

stepwise regression were typically not among the most influential parameters in the 

model, and had negative relationships with PPE. 

TE expression is predicted to be the driver of the abundance of ping-pong 

piRNAs based on the ping-pong model. The bivariate and multivariate regression 

analyses generally confirmed this primary prediction yet there was variation among 

species and TE types. To illustrate the variation, I plotted TE expression and PPE for 

each family against family age (as proxied by median genetic distance) (fig. 4). The plot 

illustrates those TE families that are the most highly transcribed appear to elicit the 

strongest ping-pong response. This is particularly true for LINEs, but the relationships 

between expression and PPE appear to be more complex in SINEs. I found that the 

largest fraction of TE transcripts corresponded to SINEs in all species, ranging from 

~50% in bat to 80% in dog. However, the piRNA response to SINE expression varies 

greatly among the three taxa. For example, in horse, SINEs are the most highly expressed 

TEs and also elicit the strongest piRNA response (fig. 4), whereas expression of ping-

pong pilRNAs in the dog correlates more with the total number of SINE family insertions 

(fig. 3A) rather than with SINE expression. Moreover, in the dog SINE PPE is generally 
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much lower than SINE transcription levels (fig. 4).  In the bat, the Ves SINE family is the 

only family significantly expressed, yet elicits a weak ping-pong response (fig. 4). Thus, 

while a pattern similar to that observed in mouse for LINEs is recapitulated in these three 

taxa, no such obvious pattern emerges for SINEs. Finally, there does appear to be a 

correlation between DNA transposon expression and PPE in the bat (fig. 3A). However, 

because recent DNA transposon activity is unique to the bat, a meaningful comparison 

with dog and horse is not possible. 

Discussion 

The relationship among TE expression, piRNAs, and TE accumulation is not 

entirely clear and it is difficult summarizing the outcome of these interactions for several 

reasons. For example, while some TE families have deleterious members capable of 

transcription, many families are completely transpositionally inert yet make up sizable 

proportions of the genome. This discrepancy makes teasing apart the relative 

contributions of self-transcribed TEs and those that are spuriously transcribed difficult. 

Among vertebrates, the mouse has been the primary model used to study the piRNA 

pathway. However, despite extensive investigation into the mechanisms of the ping-pong 

cycle, almost nothing has been described about the evolutionary dynamics between 

piRNAs and TEs. Indeed, the mouse genome exhibits only one of the many patterns of 

TE transcription and accumulation that exist among mammals and piRNA dynamics 

among taxonomically varied vertebrate genomes has not been investigated. Therefore I 

examined three laurasiatherian mammals with markedly different TE landscapes, patterns 

of TE expression and pilRNA repertoires to better understand the complex relationship 

between host defenses and TE accumulation over time, in an attempt to identify general 
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patterns. I tested parameters commonly associated with TE activity and in line with 

predictions from the mammalian ping-pong model, univariate and multivariate analyses 

identified the abundance of TE transcripts as a strong predictor of the abundance of ping-

pong pilRNAs. 

Ping-pong piRNAs target the most transcribed families 

The primary prediction of the ping-pong model suggests that the TE families that 

are most transpositionally active, those that are the most deleterious, would be the most 

abundant representatives among piRNAs. I generally found that this prediction was 

satisfied (See fig. 4). In both the bivariate and multivariate tests, when all TE families 

were considered, the abundance of family transcripts was the best predictor of ping-pong 

piRNAs. When comparing within the different element types, the families that were the 

most transcriptionally active, usually elicited the strongest pilRNAs response. Similarly, 

Mourier (2011) found that among mouse TEs, the youngest families often had the most 

mapped piRNAs and there was some proportionality between cellular TE transcripts and 

piRNAs.  

DNA transposons are the most abundant recently active elements in the big brown 

bat genome. Thomas et al. (2014) found evidence of low-level ongoing Helitron 

accumulation and Mitra et al. (2013) and Ray et al. (2008) suggested that piggyBac 

elements were still accumulating in the related bat, M. lucifugus, raising the possibility 

that these elements are still actively inserting in this genome but that such activity is 

simply too low to be detected. There was an abundance of DNA transposon transcripts in 

the testis transcriptome of the big brown bat and there was also a statistically significant 

response to these expressed elements (fig. 3A, 3B; fig. 4). This was an interesting and 
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unexpected response for several reasons. DNA transposons do not require an RNA 

intermediate for transposition, therefore it was unexpected to detect RNA associated with 

these elements, especially elements that are annotated as non-autonomous; which do not 

encode the proteins needed to mobilize. There are at least two plausible explanations as 

to why I observed expressed DNA transposons and a subsequent piRNA-response. First, 

there are large numbers of DNA transposon insertions in the bat genome. The sheer 

density of these insertions suggests that at least a subset will exist in close proximity to a 

promoter, leading to spurious transcription and incorporation into the ping-pong cycle. 

Second, several families of transposons harbor promoters that act to encourage 

transcription of their transposase and those transcripts could be targeted by piRNAs. 

Regardless of the mechanism, results indicate a statistically significant relationship 

between DNA transposons and ping-pong pilRNAs that may suggest a defensive 

response. The strong response to DNA transposons may suggest an adaptable defense to 

both Class I and Class II TEs. Because vesper bats are the only known vertebrate to 

harbor actively mobilizing DNA transposons, this relationship could be worthy of 

additional investigation. 

piRNA cluster likely do not regulate TEs in mammals 

In contrast to Drosophila, where piRNA clusters are thought to give rise to 

primary piRNAs (Kelleher and Barbash, 2013), TE transcripts are proposed as the 

substrates for primary piRNA processing in mammals (Aravin et al. 2008 and Girard et 

al. 2006). However, dissenting views exist. For example, Ha et al. (2014) and Hirano et 

al. (2014) both suggested pachytene piRNA clusters could be a source of anti-sense 
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piRNAs used in the ping-pong cycle. Here, I further concluded that piRNAs derived from 

these clusters are likely not involved in the TE silencing pathway. 

We tested the role of piRNA clusters as determinants of the ping-pong response in 

a statistical framework and found that the abundance of insertions within clusters strongly 

correlated with the overall prevalence of genome insertions in all three species, but was 

not the most important factor with regard to PPE. Furthermore, I found total bases in 

clusters and the median age of cluster insertions did not correlate well with PPE. 

Interestingly, when all TE families were taken into consideration under the multivariate 

framework, cluster insertions were included in the final models, but TE expression was 

always the most important contributor to PPE. These results suggest there may be some 

role that piRNA clusters play in TE silencing, but it is likely minimal. 

Unfortunately, this will likely continue to be a confounding factor. Because of the 

many TE insertions that exist in mammalian genomes, it is difficult to determine the 

ultimate source of any single TE-derived pilRNA, much less whether it arose from a 

mobilizing TE transcript or from an insertion that simply lies within a piRNA cluster. 

However, the families with the most cluster insertions were generally older, had few 

mapped ping-pong pilRNAs, and there was ultimately no relationship between the 

number of insertions in clusters and the abundance of ping-pong pilRNAs. However, 

because I cannot fully identify the source of TE derived piRNAs, I cannot fully rule out 

the notion that some TE silencing piRNAs are derived from piRNA clusters. Perhaps 

piRNAs that are processed from cluster insertions are incorporated into the ping-pong 

cycle, but unlike in Drosophila where clusters seem to act as TE “traps”, piRNA clusters 

do not appear function this way in mammals. 
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Complex relationship between TE accumulation and genome defense 

These results have implications for understanding the relationship between TE 

transcription and accumulation. It is generally assume a dearth of recent deposition for a 

given TE is related to decreases in TE transcription in the recent past. Among LINEs in 

the three species this presumption appeared generally true. There is a large abundance of 

young LINE transcripts in the dog, and an abundance of young LINE insertions, by 

contrast, there is little expression of full length LINEs in the bat and very few recent 

insertions and the horse is intermediate between the two. Also, data suggest that the 

representation of LINE families in the piRNA pool among the three species fit the 

predictions of the ping-pong cycle. 

SINEs presented a very different case. Initially, based on their genomic 

abundance, I expected that SINEs would only be highly expressed in the dog. However, 

after taking their sequence length into account, young SINE families were the most 

transcribed elements in all three species, but recent SINE accumulation is only seen in the 

dog genome. Fig. 4 suggests that the abundance of SINE insertions in the dog could be 

the result of a reduced pilRNA response. Although young SINE families have the highest 

abundance of ping-pong pilRNAs in the dog, the ping-pong response appears weak in 

relation to the level of SINE expression. The opposite is true in the horse genome, where 

SINEs are being expressed at comparable levels but the ping-pong piRNAs appear to 

offer a formidable response, potentially preventing the eventual reverse transcription and 

insertion. In bats, yet a third scenario appears to have played out, revealing the 

complexity of this system. There, the Ves SINE family is highly transcribed, the piRNA 

response appears limited, yet recent Ves insertions are not highly represented in the bat 
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genome. Unlike LINEs, which are completely autonomous, SINEs depend on the reverse 

transcriptase and endonuclease genes encoded by LINE elements to fully mobilize and 

this property may be responsible for the lack of a strong pattern similar to that among 

LINEs. This also raises the question of whether piRNA+ PIWIs complexes preferentially 

different target elements. 

In summary, the data indicates that the level of piRNA response against a given 

TE subfamily is most strongly associated to the abundance of the corresponding 

transcripts, with other factors, such as the age of the subfamily playing a more modest 

role. These analyses suggest that piRNA responses are able to provide protection against 

TE invasion in mammalian genomes, but that TEs are still able to propagate even in the 

presence of a putatively robust piRNA response. Furthermore, it appears that the 

interplay between TEs and piRNAs is distinct among species and TE types. Expanding 

comparative studies of piRNAs and TEs to a broader array of mammals could help 

uncover a general model to account for the relationship between TE abundance at the 

genome and the piRNA response. 
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Figure 4.1 Genomic TE characteristics 

A) The percentage of each genome composed of major TE types and the number of 
insertions for each type. Calculations were made from the insertions that were less than 
0.2 divergent from the consensus sequence. B) The temporal contribution of major TE 
types in each genome. Insertions with lower genetic distances were deposited more 
recently. 
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Figure 4.2 piRNA characteristics 

A) The length and distribution of unique small RNA sequences presented with the 
frequency of the first nucleotide illustrating the 5’ U bias. B) Proportion of singly 
mapping pilRNAs that mapped to TE and non-TE space. C) The TE content of one 
homologous cluster found in the dog, horse and bat. TE insertions with genetic distances 
less than 0.1 from the family consensus are colored green, between 0.1 and 0.2 divergent 
are blue, and greater than 0.2 are orange. pilRNAs that mapped anti-sense relative to the 
contig are red, and sense pilRNA are blue. D) The raw number of genomic insertions 
plotted against the total number of cluster insertions per TE family. r2 values from simple 
linear regressions between the two variables are reported, p < 0.001 in all cases. 
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Figure 4.3 piRNA univariate and multivariate statistics 

A) Heat map representing r2 values for independent linear regressions between PPE and 
each independent variable for dog (D), horse (H) and bat (B). B) The independent 
variables selected for each step-wise regression analysis and relative importance of each 
variable in the model. TE expression is colored red. Negative interactions are indicated 
by a “-” above the variable. For each full model I reported the corresponding r2 values. 
Abbreviations: avg: average, gen: genome, clus: cluster, len: length.  * p < 0.05, ** p < 
0.001, *** p < 0.0001 
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Figure 4.4 TE expression vs piRNAs 

Separate dot plots illustrating the relationship between TE expression, TE family age, and 
PPE. For each TE family, I plotted the expression values (blue) and PPE (red) plotted 
against family age (median K2P) separately for LINEs, SINEs and DNA transposons in 
each species. 
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CHAPTER V 

CONCLUSIONS 

This dissertation was used as an opportunity to study genomic components, 

primarily transposable elements (TEs), protein coding genes and small RNAs, to 

understand the complexity of vertebrate genome evolution. My objective was to study the 

genome evolution at three different scales; the first being the evolution of genes under 

sexual selection, the second being the evolution of a gene family responsible for relaying 

environmental information to the brain, and finally I studied how encoded proteins and 

small RNAs in the genome regulate and reduce the harm caused by TE mobilization. 

In chapter II, I illustrated how a subunit (Abpa) of androgen binding protein 

(ABP) is a candidate protein for mate recognition in both New and Old World mouse-like 

rodents (Muroids). In both groups of Muroids, I found accelerated rates of 

nonsynonymous substitutions within and among genera, consistent with positive 

selection. More specifically, I found that five and 12 amino acid sites exhibit evidence of 

positive selection in the New and Old World rodent taxa evaluated. The amino acid sites 

that were under selection did not appear to alter the structure of the protein and most were 

in exposed regions of the protein, consistent with previous findings (Emes et al. 2004). 

These results along with the strong evidence that Abpa27 plays an important role in 

speciation in Mus suggest changes among non-essential residues might play a significant 

role in the evolution of this protein and facilitate mate recognition. Additionally, despite 
86 



 

 

  

  

  

       

 

  

 

        

    

  

 

  

 

 

 

   

 

limited sample size, I discovered high levels of intraspecific variation among species 

within Apodemus, Peromyscus and Reithrodontomys. Therefore, the suggested role of the 

Abpa gene in New World muroids might be slightly different relative to the M. musculus 

complex where different alleles segregate with different subspecies (Bímová et al. 2005; 

Bímová et al. 2011).  

In rodents, chemical cues are critical for mice evidenced by the approximately 

1000 functional olfactory receptors and 212 vomeronasal receptors encoded in the mouse 

genome (Zhang and Firestein 2002; Shi and Zhang 2009). Currently, the patterns of ABP 

evolution are hypothesized to facilitate assortative mating, with evidence of coevolution 

between ABP pheromone and vomeronasal receptors of the V1R receptor family (Karn et 

al. 2010). Therefore, these two systems, ABP and V1R receptors, may facilitate the 

maintenance of species boundaries in Muroids. 

In chapter III, I focused on the largest gene family in vertebrates. The olfactory 

receptor (OR) gene family directly communicates environmental information to the brain, 

and the composition of this gene family can provide clues as to how a species gathers 

information from environmental cues. I showed there was remarkable diversity of 

olfactory receptor (OR) repertoires among sauropsid (bird and reptile) lineages, and 

indicate that most sauropsids have diverse, relatively large, and highly lineage-specific 

repertoires. Genomic queries from representative species (anole, python, zebra finch, 

chicken, softshell turtle, painted turtle, crocodile, alligator, and gharial) determined that 

most of the OR subfamilies described in mammals are also present in sauropsids, which 

indicates these subfamilies were likely present in the common ancestor of all amniotes. I 

found that the number of intact ORs ranged from 100 in the green anole to 1100 in the 
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softshell turtle. Among vertebrates, turtles and crocodilian genomes are both notable for 

evolving very slowly (Shaffer et al. 2013; Green et al. 2014), yet the evolutionary history 

and diversity of their OR repertoires was remarkably different between the two lineages. 

The OR repertoires of turtles are very evolutionarily dynamic, and demonstrate multiple 

species-specific expansions. In contrast, crocodilian OR repertoires have experienced far 

less change in gene number and diversity among species. These observations collectively 

suggest that not only have crocodilians not experienced substantial change in the number 

and diversity of OR genes, but have also experienced fewer amino acid changes among 

orthologous OR genes since extant crocodilians diverged from the common ancestor. The 

largest difference in gene number was observed between snake and lizard (squamate) 

lineage. Both squamates have retained a very diverse ancestral OR repertoire, yet the 

python has at least five times as many putatively functional genes than the green anole, 

likely due to its reliance on chemosensory information. Finally, the most extreme OR 

repertoire was found in the two birds. Interestingly, the chicken and zebra finch are even 

remarkable among birds (Khan et al. 2015). These two birds have major expansions of 

subfamily 14 ORs and these expansions occurred independently in each species. The 

zebra finch has fewer intact ORs and a greater number of pseudogenes than the chicken. 

Saurapids began radiating ~300 mya and there are more than 20,000 extant 

species that span an extensive array of natural histories, habitats, and ecological niches 

that may require specific olfaction and chemoreception specializations. My data leads to 

the expectation that OR repertoirs are remarkably diverse across all sauropsid lineages, 

and that sauropsids may be an excellent model system in which to study OR gene birth 

and death, and the forces that drive these patterns. 
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In the last major research chapter, chapter IV, I focused on the interaction 

between TEs and genomic defenses against TE proliferation. In humans, TEs make up 

between 45-70% of the genome (Lander et al 2001; de Koning et al. 2011), most of this 

content is “dead”, i.e. the insertions are no longer capable of duplicating, but a fraction of 

these elements are capable of mobilization. I this chapter, I compared the PIWI 

interacting RNA (piRNA) and TE dynamics in dog, horse, and big brown bat, three 

species with markedly different TE landscapes and expression profiles to better 

understand the complex evolutionary relationship between host genome defenses and 

TEs. 

I found that within major TE types, i.e. LINEs, SINEs, LTRs, and DNA 

transposons, the abundance of TE transcripts was the best predictor of the abundance of 

ping-pong pilRNAs, suggesting a direct response to TE expression, a property not found 

in Drosophila (Kelleher and Barbash 2013), but a property that is predicted by the 

mammalian ping-pong cycle. The second major conclusion I found was that piRNA 

clusters had little if any involvement in TE silencing in mammals, contradictory to what 

previously authors have proposed (Ha et al. 2014;  Hirano et al. 2014). 

It is generally assumed that a decline in TE deposition is related to a decline in 

transcription and this was generally true among LINEs. My data from LINEs indicate that 

the representation of LINE families among ping-pong piRNAs in the three species fits the 

predictions of the ping-pong cycle, i.e. the element families that are transcribed the most, 

are the most deleterious, and would be most targeted by piRNAs. However, SINEs 

deviated from this prediction. I observed that young SINE families were the most 

transcribed elements in all three species, but the piRNA response varied and recent SINE 
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accumulation is only notable in the dog genome. I speculate that the abundance of SINE 

insertions in the dog could be the result of a reduced pilRNA response. The piRNA 

response to SINEs in the dog appears weak in relation to the level of SINE expression. 

By contrast, SINEs are being expressed at comparable levels in the horse but piRNAs 

appear to offer a stronger response, preventing more insertions. However, unlike LINEs, 

SINEs are not fully autonomous and depend on LINE machinery to fully mobilize and it 

is possible that this property may also be responsible for the lack of a strong pattern. 

Of the research topics presented here, both the ORs and piRNA pathway have 

been expounded on. For example, I have coauthored a publication at Genome Biology 

and Evolution describing the evolution of a transcription factor (A-MYB) responsible for 

the expression of pachytene piRNA precursors (Campanini et al. 2015). Li et al. (2013) 

found that A-MYB regulated the expression of some if not all pachytene piRNA 

precursor transcripts and pachytene piRNAs have only been described in vertebrates. The 

exact function of pachytene piRNAs is still under investigation, although Gou et al. 

(2014) suggested they remove gene transcripts from the cytoplasm.  I and co-authors 

found drastically different structural differences and expression patterns between 

cyclostome and gnathostome A-MYB proteins and predicted that pachytene piRNAs are 

an innovation specific to gnathostomes. Furthermore, some of the work I conducted for 

the OR gene family also made appearances in two genome project papers, for the python 

(Castoe et al. 2013) and crocodilians (Green et al. 2014). Moreover, I have been asked by 

a collaborator to query the recently generated garter snake genome and perform analyses 

related to OR evolution in the garter snake relative to other squamates. As more squamate 

genomes become available, a second full paper will also be constructed. 
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The primary objectives of this dissertation were to study vertebrate genomes, 

more specifically the evolution of genes and the regulation of TEs. During this process, I 

identified a protein that appears to be involved with mate selection for all mouse-like 

rodents, not just Mus. The OR repertoires from the chicken and green anole were solely 

used to describe OR gene family evolution for all sauropsids and were thought to be 

relatively simple. Yet, after annotating a phylogenetically more diverse set of genomes, I 

found that ORs are incredibly diverse among taxa within this group. Lastly, it was 

assumed that the abundance of TE insertions could be related to TE expression, and those 

that are being the most expressed would be the most common in the genome. However, I 

have determined that in many cases, the abundance of TE transcripts is a poor predictor 

of insertion abundance. Although piRNAs and PIWI proteins act to silence TE 

transcripts, it is still unclear how their involvement impacts TE accumulation over time. 

In conclusion, the evolution and genes and TEs involve complex processes which 

can become difficult to untangle. The work presented here addressed three questions in 

three disciplines of evolutionary biology. Although a high volume of data was processed, 

inferences for each chapter were derived from a restricted number of taxa. As the quality 

of sequencing improves, availability and diversity of genomes increases, and computation 

advances, more data points from a diverse array of taxon can be collected and used to 

resolve biological history. 
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