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High altitude balloons are an effective, inexpensive and readily available conduit 

for conducting near space and low Reynolds number experimentation.  Experiments are 

being developed that will use high altitude balloons as carriers for near space and low 

Reynolds test vehicles.  The first step in developing this capability is to create a system 

that is able to log collected data and track and control a high altitude balloon payload. It 

is also beneficial that this system be flexible enough to accept different sensor types, 

communication methods and connection and release linkages. 

 By combining the flexibility of microcontroller biased circuitry and the 

availability of commercial off the shelf products an economical design solution to this 

problem has been be achieved.  Analysis of this system has been performed and the 

design has been fabricated, tested and specially modified to withstand the extreme 

conditions of high altitude flight.  

Key words: balloon payload, data collection, high altitude balloon, telemetry 
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CHAPTER I 

 

MISSION OVERVIEW AND SYSTEM BACKGROUND 

 

Project Context 

It is the purpose of this project to serve as a preparatory step in the development 

of a system to explore aircraft flight in the lower Martian atmosphere.  An airplane can 

provide information about Mars at levels of extent and detail that are intermediate to 

those provided by orbiters and rovers.  NASA has been interested in developing this 

capability and has created one prototype vehicle that has undergone some Earth testing
1
.  

The current project is intended to support additional research into this concept. 

Mars airplane concepts need to first be tested on or near Earth, but in an 

environment similar to what will be experienced at Mars.  Nominal values of Mars 

surface pressure and density are 14.6 lbf/ft
2
 and 2.93·10

5
 slug/ft

3
, respectively

2
.  There 

are only a few wind tunnels on Earth that can simulate these conditions for testing.  

However, these values do correspond to conditions in the Earth’s atmosphere near 

100,000 ft (more precisely, standard atmosphere at 110,000 ft and 102,000 ft, 

respectively).  Consequently, if an aircraft can be operated at altitudes near 100,000 ft in 

the Earth’s atmosphere it will experience aerodynamic loads similar to those it would 

encounter near the surface of Mars. 
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It is extremely difficult for an airplane to takeoff from the surface of the Earth and 

climb to 100,000 ft altitude.  Only a few altitude record attempts by modified military 

aircraft have actually achieved this height, although the extremely large (247 ft 

wingspan) Helios unmanned solar airplane has ascended to 96,000 ft
3
.  A small aircraft 

needs assistance to reach this altitude; this assistance can be provided by a high altitude 

balloon.  For example, a half-scale version of the NASA proposed Mars aircraft has been 

carried to 103,500 ft by a balloon, released, successfully flown and recovered
1
. 

The present project focuses on the development of a high altitude balloon system.  

This system, or subsequent generations of this system, will eventually be incorporated 

into a high altitude balloon that will carry a fixed wing glider to altitudes near 100,000 ft 

above the Earth.  Of particular interest here are control, communication, sensor, data 

acquisition and actuator subsystems. 

The system discussed in this document is designed to be placed inside a payload 

box instead of a glider and flown to approximately 100,000 feet, using latex, or other 

high altitude balloon. At approximately 100,000 feet, the balloon ruptures and the 

payload descends using a parachute. During the flight the payload system performs three 

main tasks recording data, telemetering data, and releasing the balloon and parachute. To 

perform these tasks, five in-flight subsystems, or modules, have been created. They are 

the GPS/Telemetry Module, Servo Driver Module (SDM), Low Speed Module (LSM), 

High Speed Module (HSM), and the Ground Station Module (GSM). Another module 

exists on the ground and is used to receive the telemetered data and track the balloon, 

while in flight. 
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Payload Enclosure Design 

High altitude ballooning is conducted throughout the world by a wide variety of 

amateur as well as governmental and corporate organizations.  As an example, Edge of 

Space Sciences, or EOSS, is a non-profit worldwide organization that promotes amateur 

and university high altitude ballooning
4
.  EOSS provides guidelines on successful 

strategies and methods for payload box and subsystem design and construction.  The 

design described here is guided by EOSS principles where appropriate. 

Throughout the flight, the balloon payload will be subjected to temperatures 

ranging from -60ºC to 30ºC. The balloon payload will also be subjected to moderate 

turbulence and to atmospheric pressures as low as 0.1 psi. Constructing the payload box 

to withstand these conditions requires a unique construction technique. Therefore, it is 

recommended that the payload box be made of foam and covered in a plastic covering 

such as Monokote. However, the payload box should have minimal gaps between pieces 

to allow for maximum heat retention. The payload box should not be completely airtight 

so that the internal box pressure does not differ greatly from the atmospheric pressure. If 

the box is built airtight it might explode when subjected to very low atmospheric 

pressures. 

Because of the low temperatures that the balloon payload structure will be 

exposed to, special considerations must be used when selecting an adhesive for 

constructing the payload box and for mounting components. Most adhesives, such as 

epoxy and super glue, become very brittle at low temperatures; in contrast low 

temperature hot glue is able to withstand the low temperatures and maintain its bonding 
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strength. Larger components are mounted within the balloon box using hook and loop 

straps. When connecting components to a foam board using a hook and loop straps, it is 

best to glue a small piece of wood (such as a tongue depressor) that will more evenly 

distribute the force the strap will exert on the balloon. If the pieces of wood are not glued 

in place, it is likely that the strap will pull through the foam and the mounted component 

will become loose within the payload box. 

 To minimize the possibility of component damage when the payload box contacts 

the ground, the payload box has been designed with a piece of foam that runs crosswise 

within the box. This allows the components to be suspended in the center of the box and 

for them to be more protected from the cold and from landing damage. Figure 1.1 depicts 

the payload box and the cross brace as viewed from above. 

 

 

Figure 1.1 View from the Top of the Payload Box with the Payload 

Box Top Removed 
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 To distribute the shock load of the parachute deployment a metal bottom should 

be added to the base of the balloon payload box. This metal piece will distribute the force 

exerted by the parachute strings on the payload box and prevent the sudden motion of the 

parachute deployment from pulling the mounting strings through the foam and “gutting” 

the payload box. Figure 1.2 shows the payload box as viewed from the side. 

 

 

Figure 1.2 Side View Drawing of the Payload Box  

 

 

The FAA sets certain guidelines that must be followed when performing a balloon 

launch. These guidelines are contained within Part 101 of the Federal Aviation 

Regulations
5
. These guidelines set weight, density, construction and other regulations for 

the operation of unmanned balloons. The specifics of the guidelines for launching an 

unmanned balloon will not be discussed in this document. It is the responsibility of the 

balloon operator to review and comply with these regulations.  
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Balloon and Parachute Release Mechanism 

 A typical high altitude balloon flight lasts approximately 3 hours. It takes about 

two hours for the balloon to reach its maximum altitude and it takes about one hour for 

the payload to descend with a parachute. To reduce the descent time, and the associated 

drift, the current system incorporates a parachute deployment mechanism that is triggered 

after the payload has reached its peak and then fallen through 70,000 feet. The balloon is 

released once it has ruptured and the descent has begun. This prevents the balloon 

remnants from entangling the parachute. Both the balloon release and the parachute 

deployment are programmed to be automatically triggered. However, it is possible to 

send a signal (through DTMF tones) from the ground station radio to trigger either the 

balloon release or the parachute deployment.  

The release mechanism is used to release the balloon and to deploy the parachute. The 

release mechanism described, including the servo, represents two separate release 

mechanisms. These mechanisms are located on opposite sides of the balloon. The two 

release mechanism servos are connected to the same module output through a servo “Y-

harness”. Both mechanisms are operated using a standard hobby servo. (The details and 

use of the servos will be discussed in Chapter 3.) The actual release mechanism consists 

of a metal wire and a metal tube. The metal tube is mounted to a piece of wood that is 

mounted to the balloon payload box. Two gaps are cut through the metal tube and 

through the wood. A loop of string that connects the balloon to the payload box is placed 

in the gap. A second loop of string that keeps the parachute packed is placed through the 

second slit. The metal rod is then inserted through the tube, locking the loops of string in 
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place. When a release is triggered, the servo retracts the rod and the loop of string is 

released. Figures 1.3 and 1.4 show the details of the release mechanism. Figures 1.5, 1.6 

and 1.7 show how the release mechanism operates using a side view perspective. 

 

 
 

Figure 1.3 Side View Detail Drawing of Release Mechanism Design 
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Figure 1.4 Top View Detail Drawing of Release Mechanism Design. 

 

 

 
 

Figure 1.5 Release Mechanism Shown in Initial, Hold, Position 
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Figure 1.6 Release Mechanism Shown in Balloon Release Position 

 

 

 
 

Figure 1.7 Release Mechanism Shown in Parachute Release Position 
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 Figure 1.5 shows the release mechanism in its initial position. In this position the 

loops of string (not shown) are held in place by the metal rod. The balloon and parachute 

are held in place by the string connected to the loops. To release balloon, the servo is 

moved to its midpoint. This retracts the metal rod and allows the loop of string to pull 

through the opening, releasing the balloon. This release mechanism position is shown in 

Figure 1.6. Figure 1.7 shows the release mechanism in its final position. When a 

parachute release or a release all is commanded the servo moves to its final position. In 

this position the string holding the parachute to the side of the balloon is released, 

deploying the parachute. The parachute is still attached to the payload by the loop of 

string shown in Figure 1.2. 

 

System Breakdown and Module Overview 

 This section will discuss the organization of the payload box and give a general 

description of the subsystems (modules). The payload data recording and telemetry 

system has been broken down into four flight modules and one ground module. The flight 

modules are contained within the payload box attached to the balloon and the ground 

module is located on the ground.  Figure 1.8 shows the different modules and the general 

flow of information throughout the system. 
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Figure 1.8 Payload System Breakdown and Information Paths 

 

 

The Ground Station Module is connected to the GPS/Telemetry Module and the Servo 

Driver Module by dotted lines, signifying that there is no physical link between GSM and 

the other flight stations. Information is sent/received by the GSM by using a ham radio 2 

meter transceiver. Information is exchanged among the flight modules through wire 

connections. 

 The Ground Station Module (GSM) is used to receive telemetered data from the 

balloon payload. Among the data sent are the balloon’s ground track position and its 

altitude. This data is used by recovery teams on the ground to track and recover the 

balloon payload after the flight. The ground station may also trigger a release of the 

balloon or the parachute in the event that the payload system malfunctions. 
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 The GPS/Telemetry Module relays collected data to the ground station. The main 

purpose of this information is to track and recover the payload. The GPS/Telemetry 

module also relays payload temperature, payload battery voltage and one other analog 

voltage to the ground. 

 The Servo Driver Module (SDM) controls the release servo. The SDM receives 

commands from the ground station that can be used to trigger a release or perform 

another, yet to be determined action. The SDM may also receive release commands from 

the Low Speed Module. 

 The Low Speed Module (LSM) is the most complex module. It reads data from 

various analog and digital sensors and records this data to an EEPROM array.  The 

recording rate is 1 Hz. The data can be downloaded and analyzed once the flight has 

finished and the payload box is recovered. This module also provides timing information 

to the High Speed Module. 

 The High Speed Module (HSM) samples a 6 degree of freedom inertial 

measurement unit (IMU). The IMU collects acceleration and angular rate information 

about the balloon payload box. This information is recorded by the HSM to an EEPROM 

array so that the data can be downloaded and analyzed once the flight has finished and 

the payload box is recovered. 
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Comparison to Previous Systems 

 

 There have been two systems that were previously assembled and flown earlier in 

the ballooning program. The first system consisted of a simple GPS/TNC module without 

digital data telemetry. The only telemetry data (other than GPS) that was sent was an 

analog temperature tone. This tone was generated using a 555 timer connected to a 

thermistor. As the temperature changed, the thermistor resistance value changed and the 

tone responded. The tone was received and analyzed on the ground using expensive 

LabVIEW software.  

The transmitter used in the first system, was a Kenwood TH-D7A. This 

transmitter has an internal TNC. The cut down mechanism for this payload was a hotwire 

cut down. During the flight, failures of the TH-D7A and the hot wire cut down occurred. 

Transmissions from the TH-D7A were sporadic after launch and completely stopped after 

20 minutes. It was later discovered that other ballooning programs had also experienced 

reliability issues with the TH-D7A when used in similar systems. 

 This flight failure, combined with the reliability and cost associated with the TH-

D7A component prompted a telemetry system redesign. The second payload system used 

a TinyTrak3 TNC and a TH-K2A transceiver for telemetering data. The flight was 

moderately successful. The payload was tracked to an altitude of over 90,000 feet. 

However, the GPS telemetry signal was lost during the descent at an altitude of 20,000 

feet due to battery depletion. This prevented recovery of the payload. 

 These flights showed that a fully integrated, reliable and affordable system needed 

to be designed, in house. It was also determined that it was necessary to develop an 
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integrated, task specific system to achieve the goal of a stable, reliable balloon payload 

system. A system comprised of both COTS (commercial off the shelf) and engineered 

circuit components was developed to realize these goals, while reducing overall system 

cost. A more specific battery analysis was also performed to remedy the problems of the 

second flight. 

 The system discussed here is improves on previous systems by providing a fully 

capable telemetry, data logging, and communication solution. Costs have been reduced 

through component selection. Previous systems contained no onboard data collection. 

The new design records data from multiple data sources and sensors. The mechanical cut 

down mechanism eliminates the power and fragility problems of a hot wire cut down. 

Using the newly developed TinyTrak4 allows for building on the proven success of the 

TNC system while adding the ability to telemeter other sensor data along with the GPS 

data. Battery testing and current draw calculations were performed on this system to 

reduce the probability of repeating the second flight failure. 
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PIC Microcontrollers 

 The SDM, LSM and HSM must be built from electronic components. A circuit 

diagram and detailed system explanation is contained in the chapter of each module. 

However, each one of these modules has one, very important, component in common. 

The SDM, LSM and HSM all use a PIC Microcontroller to control the module. A 

microcontroller is basically a very small computer that is capable of being programmed 

and carrying out simple computing tasks. Microcontrollers have become very common 

and are found in devices such as calculators, automobiles and televisions.  

 A microcontroller must be loaded with an assembly language program. This 

program is run once the microcontroller is powered. In the event of a power interruption, 

the microcontroller will reset and run the program from the beginning. The assembly 

programming language can be very hard to understand and follow. This is why assembly 

compilers have been created. A compiler is simply a computer program that transforms a 

program written in one computer language into another. Many compilers have been 

created for use with the PIC microcontrollers.  The Swordfish Compiler is a compiler that 

converts code written in Swordfish BASIC (very similar to most forms of BASIC) into an 

assembly program that can be run on series 18 PIC's. All of the code written for the 

SDM, LSM and HSM is written in Swordfish BASIC and compiled using the Swordfish 

Compiler. The programs written for the SDM and HSM can be compiled using the free 

evaluation version of the Swordfish Compiler (Swordfish SE). The LSM record program 

must be compiled using the full version of the Swordfish Compiler, because this program 

uses a large amount of PIC RAM. 
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 Once the program has been written in Swordfish BASIC it must be loaded onto 

the microcontroller. Microchip, the makers of the PIC microcontrollers, provides a free 

program to do this. It is named MPLAB. This project was completed using MPLAB IDE 

V8.10. The MPLAB program must be setup to work with the Swordfish Compiler. 

Instructions for this are included on the Swordfish Compiler website. Once the Swordfish 

Compiler has been setup to run with MPLAB and a program to be downloaded to an 18 

series PIC has been written, MPLAB is used to call on the Swordfish Compiler, compile 

the program to assembly, and then download the program into the PIC.To do this, the PIC 

must be connected to the computer running MPLAB through a PIC programmer. The PIC 

programmer used for this project is the PICkit 2. This programmer can also be used in 

conjunction with the PICkit 2 software to provide a UART interface with the PIC 

microcontroller. The following is a list of the steps to programming and checking the 

program run with a PIC. 

 Write a program using the Swordfish editor. 

 Connect the PICkit 2 to the microcontroller and to the computer. 

 Open the MPLAB IDE program.  

 Compile (Build) the program and program the microcontroller using MPLAB. 

 Close MPLAB and Open the PICkit 2 software 

 Open the PICkit 2 software UART interface to view UART communication 

sent by the microcontroller. 
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More information about using MPLAB, the Swordfish Compiler and the PICkit 2 

software can be found through either the Microchip website, the Swordfish Compiler 

Forum or through digital-diy.com. Most of the Swordfish programming libraries used in 

the development of this system are available with the Swordfish compiler. The other 

libraries have been developed by digital-diy.com. All of the libraries used are available 

through the Department of Aerospace Engineering at MSU. 

 

Battery Selection 

 Possibly the most important component in the balloon payload box is the flight 

battery. This battery provides power to all of the flight systems including all of the 

modules, the release servo, the GPS and the radio transceiver. It is important that the 

battery chosen be at a voltage that is compatible with all of these components and have 

enough capacity to run all of these systems for at least 4 hours. It is also important that 

the battery consists of a chemistry that is tolerant of cold temperatures and be light 

weight. The battery chosen for use with the balloon payload system is a Lithium Ion 7.2V 

5200mAh pack. This pack consists of four 3.6V 2600mah cells. These cells are wired in a 

2S2P configuration, meaning that two sets of two cells are wired in series. Then the two 

sets are wired in parallel. Figure 1.9 shows the battery pack cell configuration. 
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Figure 1.9 Battery Pack Cell Configuration 

 

It is important to test the system with the flight battery at the temperatures that are 

expected during the flight. For this test, the completed system was taken to the 

Gulfstream High Altitude Test Chamber in Savannah, GA. The entire payload box was 

placed inside the high altitude chamber and turned on. For three hours the payload box 

and the electronics inside were subjected to pressures and temperatures that simulated a 

balloon flight to 100,000 feet and return. Once the simulation was complete, the once 

fully charged payload system battery was allowed to stabilize to room temperature, and 

then was recharged.  During the recharge the payload battery received 1863mAh. This is 

a good approximation to the amount of battery capacity that was used during the 

simulation. According to the 3 hour test the battery should be able to power the payload 

electronics for a period of over 8 hours, showing that the 7.2V 5200mAh Lithium Ion 

battery pack is appropriate for use with the payload system. A secondary, component 

buildup/duty cycle, analysis is provided in Appendix A. 
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Payload Environment 

 

Thermal 

A major challenge faced by high altitude balloons is the low temperature that 

exists at the altitudes at which they are intended to operate.  An analysis of the 

temperature in the payload box as the balloon and box ascend has been performed and is 

described here. 

The equation for temperature in the payload box as a function of time will now be 

derived.  The box is assumed to be a cube with constant thickness walls.  Airflow into 

and out of the box will be neglected.  The fundamental equation is the energy equation 

applied to a control volume which has a control surface composed of the interior surface 

of the box.  The analysis will be done for the balloon ascent. 

Since the box has constant contents and size the energy equation reduces to 

     (1) 

where the source is heat dissipated by the electrical components within the box.  

Conduction is heat conducted through the walls of the box. 

The thermal energy is 

               (2) 

where M is the mass of air inside the box, Cv is the specific heat at constant volume of the 

air in the box and T is the temperature inside the box.  M and Cv are assumed to be 

constant. 
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The rate at which heat is conducted through the walls is 

        (3) 

where 

         (4) 

and Tatm is the local atmospheric temperature.  The quantities k, x and A are the 

conductivity, thickness and effective surface area of the walls of the box, respectively.  

x, which is the 

effective conduction length Lc.  This length has been determined for rectangular boxes
6
 in 

terms of their dimensions and is 

       (5) 

when evaluated for a cube with side S. 

Equations (2) through (5) are substituted into Eq. (1) to give 

`      (6) 

This is a first order, ordinary differential equation for the temperature in the box, T, as a 

function of time. 

One step remains before Eq. (6) can be solved.  As the balloon climbs it will 

experience a continuously changing atmospheric temperature.  The atmospheric 

temperature, Tatm, must be expressed as a function of time.  This expression is found by 

evaluating the following integral. 

        (7) 
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C in Eq. (7) is a constant of integration.  The time derivative in Eq. (7) is evaluated using 

the chain rule. 

        (8) 

The derivatives on the right hand side of Eq. (8) are obtained with the standard 

atmosphere model and experimental data on balloon ascent rates. 

The Earth’s temperature varies with altitude in a series of nearly linear segments.  

The standard atmosphere model
7
 is 

     for h ≤ 11,000 m 

    for 11,000 m  for 11,000 < h ≤ 25,000 m   (9) 

     for 25,000 < h ≤ 47,000 m 

The temperatures at the end points of the segments are used to find the constant of 

integration in Eq. (7).  The segment temperature expressions also give 

  for h ≤ 11,000 m 

  for 11,000 < h ≤ 25,000 m      (10) 

   for 25,000 < h ≤ 47,000 m 

The derivative dh/dt in Eq. (8) is the ascent rate of the balloon.  Remarkably, a 

typical small high altitude balloon has a virtually constant ascent rate of about 300 

m/min
8,9

 until very near its peak altitude.  Therefore, during the ascent 

           (11) 
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Equations (8) through (11) are substituted into Eq. (7) to give the temporal 

variation in atmospheric temperature that the balloon will experience as it ascends.  This 

result is 

  for t ≤ 36.7 min 

  for 36.7 min < t ≤ 83.3 min     (12) 

  for 83.3 min < t ≤ 157 min 

Equation (6) with Eqs. (5) and (12) has been solved for the case of a balloon 

payload box that is 0.305 m on a side and has a wall thickness of 0.0254 m.  The walls 

are made of Owen Corning “pink” Foamular™ insulation board.  This insulation has a 

conductivity k = 0.03 W/(m K)
10

.  The box contains 0.033 kg of air (based on standard 

sea level conditions) at 15 C.  The specific heat at constant volume is 717 J/(kg K).  The 

power dissipated is assumed to be 1 W.  This is based on assuming that a 7.2 volt battery 

is supplying an average of 0.4 amps to the systems in the box (see App. A) and that about 

1/3 of this power is lost as heat.  The solution of Eq. (6) for these conditions, done 

numerically in Mathcad with a time step of 1 second, appears in Fig. 1.10. 
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Figure 1.10 Temperature Time Histories for a Typical Balloon Ascent. 

 

 

The heat from the electrical systems causes the box temperature to rise for a very 

brief period of time.  This heat is not sufficient to balance the conduction losses once the 

balloon has gained a little altitude.  Consequently, the box temperature follows the 

atmospheric temperature with only a very small offset.  The average air temperature is 

below the operating values for typical electronic components (40 C) during much of the 

ascent. 

For comparison Figures 1.11 and 1.12 show results from a relatively recent EOSS 

flight, EOSS-138
11

.  The balloon was launched from near Greeley, Colorado on May 9, 

2009 and carried a payload for the National Oceanic and Atmospheric Administration.  

The altitude history appears in Fig. 1.11 and histories of internal and external 

temperatures are shown in Fig. 1.12.  No information is available on the payload box for 
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this flight (nor for most of the other EOSS flights).  Consequently, the internal 

temperature sensor location and heater details are not known.  That there is a heater is 

fairly clear from the high internal temperatures. 

 

 
 

Figure 1.11 Altitude Profile of EOSS Balloon Flight May 9, 2009. 

 

 

 
 

Figure 1.12 Temperature Time Histories of EOSS Balloon Flight May 9, 

2009. 
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To gain a sense of the heater that would be required to create the temperature 

shown in Fig. 1.12, the calculations have been repeated for a box that has 1/3 the volume 

of the box used for Fig. 1.10.  (The boxes used by EOSS tend to be considerably smaller 

than the one used in Fig. 1.10.)  A 5 W heater was added to the 1 W heat dissipated to 

give a total source strength of 6 W.   The result appears in Fig. 1.13. 

 
 

Figure 1.13 Calculated Temperature Time Histories for a Smaller Box 

with Heater. 

 

 

There is a significant improvement in the internal temperature, although not to the level 

reported by EOSS-138.  The minimum temperature in Fig. 1.13 is at the limit of most 

electronics, but may be tolerable.  Judicious placement of a heater should eliminate 

temperature concerns. 
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Structural 

The most severe structural situation the payload box will encounter in normal 

operation is the sudden load imposed upon it when the parachute deploys.  An analysis of 

this situation has been performed to assess the adequacy of the design. 

When the parachute deploys there will be a rapid increase in the aerodynamic 

drag acting on the system.  The increase in drag over the value that exists without the 

parachute must be supported by the rope which encircles the payload box.  The rope will 

transfer this load to the foam box.  If the stress applied to the box by the rope is too large, 

the foam may collapse or be cut.  The following analysis determines this stress and 

compares it to empirical data for the foam used here. 

The analysis is performed by integrating Newton’s second law for the 

box/parachute system during the descent.  The temporal variation of altitude, velocity and 

drag are results of this integration.  The drag increase during parachute deployment 

creates an impulse acting on the payload box and this impulse is found.  Finally, the 

stress of the rope on the box is determined. 

Newton’s second law applied during descent is 

        (13) 

Here M is the mass of the box/parachute system, V is velocity (positive up), t is time,  is 

the air density, CD is drag coefficient, A is frontal area and g is gravity.  The air density 

changes as the system descends and the drag coefficient and frontal area change as the 

parachute is deployed.  Variations in drag coefficient due to Reynolds number and 
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compressibility effects are neglected in the present analysis.  Reynolds number and 

compressibility effects will make the chute opening impulse smaller.  By neglecting these 

effects the solution here is conservative in nature. 

A second equation describing the descent comes from kinematics. 

          (14) 

Here h is altitude and is positive up from the ground.  Equations (13) and (14) form a pair 

of coupled, nonlinear, first order, ordinary differential equations for h and V as functions 

of time.  This system must be solved numerically. 

Density variation with altitude is modeled here with a simple expression 

commonly used in space vehicle reentry analyses
12

. 

         (15) 

Here 0 is sea level density, 1.225 kg/m
3
, and h0 is scale height, 7,386 m. 

Prior to parachute deployment the box has a drag coefficient CDb and frontal area 

Ab.  After the parachute has deployed and the flow field has adjusted there are new 

values, CDp and frontal area Ap.  For the present analysis the drag coefficient and area 

vary linearly with time between these limits during the deployment process as shown in 

Fig. 1.14.  The deployment begins at time tdi and ends at time tdf. 
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Figure 1.14 Drag Coefficient and Frontal Area Time Histories. 

 

 

Equations (13) and (14) have been solved for the following conditions. 

 

These conditions are typical of small payload/parachute combinations.  The deployment 

time is based on experiments done at MSU which involved dropping payload/parachute 

combinations from a helicopter.  The parachute deployment altitude was chosen to give a 

relatively severe deceleration load. For the solution the balloon starts its descent at 

30,480 m (100,000 ft) and the parachute begins to deploy at 9,144 m (30,000 ft).  The 

integration is numerical (in Mathcad) and the time step is 0.1 second.  The results are 

shown in Fig. 1.15. 

tdi tdf

CDb

CDp

tdi tdf

Ab

Ap
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Figure 1.15 Balloon Descent with Parachute Deployment. 

 

In these results the payload velocity immediately prior to the parachute release is 

199 m/s and the drag force is 28 N.  At the end of the 5 s deployment process the velocity 

has decreased to 11 m/s and the drag force is 32 N.  The peak drag during the deployment 

is 85 N. 

For a conservative estimate it is assumed here that the drag during the deployment 

process acts entirely on the parachute and is, therefore, transferred to the payload by the 

rope contacting the two components.  (In reality, some of the drag acts directly on the box 

and will not be applied via the rope.)  It is also assumed here that, because of the short 

time of action, the effective force applied to the box by the rope is the average of the drag 

during the deployment process, as given by Eq. (16). 
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        (16) 

Equation (16) gives 56 N for the trajectory in Fig. 1.12.  The rope to be used will 

be at least 3 mm in diameter and will span the box, which here is a distance of 305 mm.  

These values give a stress distributed under the rope of 60,700 Pa.  Experiments done at 

MSU have shown that the material from which the payload box will be made can handle 

concentrated linear compressive loads of more than 500,000 Pa before damage becomes 

noticeable.  The conclusion is that the payload box should be more than capable of 

tolerating the deceleration stresses. 
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CHAPTER II 

 

GPS / TELEMETRY MODULE 

 

 

The GPS / Telemetry Module is a part of the balloon payload that decodes GPS 

signals received from the GPS satellites and relays the information to the ground station. 

Along with the GPS data, other information is also sent to the ground station. The 

information is received by the ground station and is used to track and monitor the balloon 

payload. The GPS / Telemetry Module also provides GPS time information to the Low 

Speed Data Collection Module.  

The GPS / Telemetry Module is made of the following components: 

 GPS Receiver – Garmin 18X LVC -  Receives GPS signals and calculates 

position 

 TNC – TinyTrak4 - Packets GPS and other data for transmission 

 Radio Transceiver – Kenwood TH-K2 - Transmits Data to Ground 

Stations 

These components are connected, as shown in the system diagram Figure 2.1, to form the 

GPS / Telemetry Module. Figure 2.1 shows only the basic system configuration of the 

GPS / Telemetry Module. The specific wiring details are located throughout the chapter.  
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Figure 2.1 GPS/ Telemetry System Diagram 

 

 

 Power is provided to the entire system through the eight volt (7.2V nominal), 

Lithium Ion flight battery. Power for the GPS is regulated by the TinyTrak4 TNC to five 

volts. This system is the simplest module located in the balloon payload. The GPS 

receiver receives, decodes and sends GPS data to the TinyTrak4 and the Low Speed Data 

Collection Module. The GPS information is split by simply connecting it to both the 

LSM GPS input and the TinyTrak4 input. The TinyTrak4 also receives Analog Data from 

other sensors. This data is then formed into an APRS packet and transmitted to the 

ground station through the Radio Transceiver. This Module is quite simple to connect and 

wire. The complex aspect of this system lies in configuring the components to work 

together properly. The next three sections contain setup and connection information 

relating to the three main components of the GPS / Telemetry Module. 
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Garmin 18X LVC GPS Receiver Connections and Settings 

 There are some aspects of GPS systems and receivers that must be understood 

before the proper GPS receiver can be selected. GPS is a system that uses signals from 

multiple satellites to determine a three dimensional position on or above the earth. These 

signals are received by a GPS receiver that is mounted on the top of the balloon payload.  

The GPS receiver then decodes these signals and computes a position. For security 

reasons, GPS receivers that are available to the public can not report data if both the 

altitude is above 60,000 feet and the speed is above 1000 knots
13

. This restriction is only 

in effect if both the altitude and speed limits have been exceeded. Some GPS system 

manufacturers comply with these requirements by not allowing their GPS receivers to 

report position data if either the speed or altitude limit is exceeded. High altitude balloon 

flights usually exceed 60,000 feet. Therefore, it is important to verify that the GPS 

receiver used operates at altitudes greater than 60,000 feet. This is best done by 

contacting the GPS receiver manufacturer  

The GPS receiver chosen for this balloon payload system is a Garmin 18X LVC. 

This GPS was chosen because of its small size, ease of configuration, and proven 

capability of operation at over 100,000 feet. Firmware of the 18X LVC earlier than 

version 2.80 contain a bug that would not allow position reporting of altitudes greater 

than 60,000 feet. This bug was corrected and all later firmware versions operate 

successfully above 60,000 feet.
 
The LVC version was chosen because it operates on 

CMOS voltage levels (4-5.5 volts) and can communicate using either TLL or RS232 

voltage level serial communication. The Garmin 18x LVC reports position data once 
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every second and reports data in standard National Marine Electronics Association 

(NMEA) sentences. NMEA is a standard communication protocol that is used by most 

GPS receiver manufacturers. This GPS receiver comes from the factory with a factory 

installed diagnostic connector. This connector will not work with the TinyTrak4 TNC. It 

must be removed, exposing the bare wires. If necessary, the wire length of the GPS can 

also be shortened at this time.  

Connecting the Garmin 18X LVC to a computer or a TNC requires a female 9 pin 

serial connector, a soldering iron, and solder. Figure 2.2 shows the pin assignment for the 

female serial connector. This serial connector is soldered onto the Garmin 18X LVC 

leads.  Table 2.1 describes the connections that must be made for the Garmin 18X LVC 

to be connected to either a TinyTrak4 or a computer. Wire color and pin assignments can 

change; it is best to use the product data sheet as a reference to ensure proper connection. 

The TinyTrak4 can be configured to supply +5V to the GPS through the J2 serial pin 4; 

however, when the GPS is connected to a computer, pin 4 should not be connected to the 

GPS and, instead, a +5V regulated power supply will need to be connected to the GPS 

input power pin.  
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Figure 2.2 Pin Assignment as Seen When Looking into a Female Serial 

Connector 

 

 

Table 2.1 Pinout for Connecting a Garmin 18X LVC to a Byonics TinyTrak4. Colors 

Correspond to Garmin 18X LVC Wire Colors. 

 

Pin Number Connection 

2 GPS RX (White) 

3 GPS TX (Green) 

4 +5V (Red) 

5 Ground (Black) 

6,7,8,9 Not Connected 

  

 

Once the serial connector has been attached to the GPS, without pin 4 being connected, 

the configuration settings can be altered by connecting the GPS to a computer. 

Configuration of the Garmin 18x LVC is done by first powering the GPS with a 5V 

regulated power supply and then connecting the GPS to a computer. 
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Figure 2.3 Configuration Software with the Settings Used. 

 

 

Garmin X-Series Sensor Configuration Software is used to set the desired 

configuration. This software is available from the Garmin support website. A screen shot, 

including the settings used, is shown in Figure 2.3. Using the Garmin X-Series 

Configuration Software, the Garmin 18x LVC can be configured to send up to 12 

different NMEA format sentences. The 12 NMEA sentences are unique, may contain 

different data and are usually ordered differently. Using the configuration software, baud 

rates between 480 and 11520 may be selected. It is very important that the GPS receiver 

is configured to send GPS data in a format and rate that are compatible with the devices 

that will receive the GPS data. The GPS used in this particular system was set to transmit 
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GPGGA and GPMRC NMEA sentences, at a rate of 4800bps. GPGGA and GPRMC 

format sentence examples appear below. 

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A 

NMEA sentence fields are located between coma delimiters. Table 2.2 describes the 

fields located in the GPGGA and GPRMC sentence format NMEA, GPS sentences. 

 

Table 2.2 GPGGA and GPRMC Sentence Fields and Labels 

 

Field  

Number 

GPGGA GPRMC 

0 NMEA sentence label NMEA sentence label 

1 Time HHMMSS Time HHMMSS 

2 Latitude Status 

3 Latitude Hemisphere N or S Latitude 

4 Longitude Latitude Hemisphere N or S 

5 Longitude Hemisphere E or W Longitude 

6 Fix Quality  Longitude Hemisphere E or W 

7 Number of satellites being 

tracked 

Speed over ground 

8 Horizontal dilution of position Course over ground 

9 Altitude Magnetic variation 

10 Altitude units Magnetic variation 

11 Height of geoid Checksum 

12 Height of geoid units  

13 Age of  DGPS data  

14 DGPS station ID  

15 Checksum  

 

 

At minimum, the GPGGA NMEA sentence must be sent because it contains 

altitude data, whereas the GPRMC NMEA sentence does not contain altitude data. In 
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addition to position, the GPRMC sentence contains ground speed and ground heading 

information, whereas the GPGGA sentence does not contain this information 

GPS signals sent from a satellite are often skewed by the troposphere. This skew 

affects the accuracy of the GPS position information. To regain the lost accuracy, a 

second signal can be sent to correct the GPS position information. This second signal is 

referred to as a Differential GPS signal, or DGPS. The receiver is configured to use 

WAAS method DGPS, if WAAS is available. If a WAAS signal is not available, the 

receiver will not use other DGPS methods to increase the accuracy of the calculated 

position. 

This Garmin 18X LVC GPS is capable of being configured to output a pulse 

every second. The pulse output timing is very accurate and is synched using GPS. This 

pulse is referred to as a PPS (pulse per second). Because the PPS signal is synched to the 

GPS satellite signal, it can be used as an external reference for timing of onboard devices.  

Figure 2.4 further explains the waveform of this pulse.  

 

Figure 2.4 PPS Pulse Depiction 
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This pulse is sent from the GPS through the yellow wire. The length of the PPS pulse can 

be set using the Garmin X-Series Sensor Configuration Software. Further details of the 

PPS can be found in the Garmin 18X LVC datasheet.   

Once configuration is complete, the GPS is disconnected from the computer and 

the external 5V power source.  The GPS power lead is then connected to serial pin 4 on 

the female serial connector so that the GPS can receive its power from the TinyTrak4 

TNC during flight operation. 

 

TinyTrak4 TNC Device Overview and Tracker Settings 

A TNC, or Terminal Node Controller, is a device that packs data so that it may be 

sent using a radio. A TNC is very similar to a radio modem. The TNC used in the GPS / 

Telemetry Module will receive GPS data from the Garmin 18X LVC and other analog 

data sources, package it and send it to the Ground Station Module, using the radio 

transceiver. The TinyTrak4 from Byonics was chosen because of its small size, 

reliability, ease of use, and its ability to relay analog data along with the GPS 

information. The TinyTrak4 is a TNC that is very small in size and is easily connected to 

a GPS receiver, radio, and power supply. The GPS receiver is connected to the 

TinyTrak4 through the serial connector that was described in the previous section. The 

TinyTrak4 is connected to the power supply and radio transceiver by using the Byonics 

HTK cable that is specially designed to connect the TinyTrak4 to radio transceivers made 

by Kenwood.  
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The TinyTrak4 requires a power supply between six and twelve volts. This supply 

is connected to the Byonics HTK cable through the included power pole style connector. 

However, because power pole connectors are not locking connectors these were replaced 

by Tamiya RC locking style connectors. The Tamiya connector is readily available from 

hobby dealers and is usually used in connecting remote controlled car batteries.  

The TinyTrak4 is capable of supplying 5V, regulated, to the GPS. This eliminates 

the need of adding a 5V regulator to power the GPS receiver. The TinyTrak4 must be 

configured to supply power to a GPS by placing a jumper on the left side of JP6, located 

in the upper right corner of the TinyTrak4. Figure 2.5 shows a TinyTrak4 without the 

outer case and the locations of all connectors and jumpers. Table 2.3 provides a brief 

description of the pins and how they are configured or connected. The connectors and 

jumpers will be better explained throughout the chapter.  
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Figure 2.5 The TinyTrak4 without the Protective Enclosure. 

 Photo from Reference 14. 

 

 

Table 2.3 Listing and Brief Connection Explanation of all Connectors 

and Jumpers Located on the TinyTrak4 

 

Connector / 

Jumper 

Description Connection 

J1 Radio / Power Connector Connected to radio and power using the Byonics 

HTK cable. Pin 4 Not Connected 

J2 GPS / Computer Connector Connected to the GPS using a created serial 

connector 

J3 Alternate Power Input Not Used 

JP1 Used to select Tracker configuration 

(Primary or Secondary) 

If grounded internally connected to J1 pin 4, Open 

JP2 Analog Input Not Used 

JP3 Analog Input Connected to LSM Chute release notification pin 

JP4 Analog Input Not Used 

JP5 Analog Input Internally connected to 2.2K pull up resistor, NC 

JP6 Power Select for GPS Left two pins should be connected for 5V 

JP7 Secondary Serial Select Jumpers Secondary Serial Port Not Used. 

JP8 PTT mode select Jumper Shorted, for use with Kenwood radios 

Open, for use with other radios 

JP9 Digital Input Pins Not Used 

R1 Transmit Audio Level Pot. Adjust as needed 

R24 Temperature Sensor Calibration Pot. Adjust as needed to calibrate TinyTrak4 on board 

temperature sensor. 
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 The TinyTrak4 is a very versatile TNC. It can be configured for use as a ground 

station TNC or a Payload TNC. When received, the TinyTrak4 contains only diagnostic 

firmware. Its use as either a ground station TNC or Payload TNC is determined by the 

firmware downloaded to the TinyTrak4. The firmware used for the payload system is 

Tracker_v4.07. The Byonics Tracker firmware for the TinyTrak4 is very easy to use, 

because it is configured using the included Windows based interface.  This interface 

allows two, completely independent, user determined, TinyTrak4 TNC configurations 

(Primary and Secondary) to be loaded to the TinyTrak4. Jumper JP1 located on the 

TinyTrak4 board is used to select between the two configurations. If the jumper is in 

place the TinyTrak4 uses the Secondary configuration. If the jumper is not in place it uses 

the Primary Configuration. Jumper JP1 will be used as an analog input, so the jumper 

will not be connected. The GPS / Telemetry Module TinyTrak4 TNC Primary and 

Secondary configurations will be set the same, because there is no need for the TNC to 

change configurations and it is very important that the settings are correct. 

 There are numerous settings that may be selected using the TT4 Tracker Config 

configuration program. This section will give a brief explanation of the settings chosen 

for the GPS / Telemetry Module. Figure 2.6 shows a screen shot of the 

TT4TrackerConfig.exe program. A more in depth description of the TinyTrak4 Tracker 

Configuration setting options is available from the TinyTrak4 Tracker documentation
13

 

The Alpha firmware, available from Byonics, may also be used to configure the 

TinyTrak4 for use as a payload TNC, but it must be configured using a command line 

interface through a terminal program, such as Tera Term Pro. 
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Figure 2.6 Screen shot of the TinyTrak4 Tracker Configuration 

Software, Including the Settings Used. 

 

 

The settings outlined and shown in Figure 2.6 are preliminary settings for the 

tracker firmware and should be checked with the data sheet so that the TinyTrak4 is 

configured for desired operation. The first TinyTrak4 Tracker setting that must be chosen 

is the call sign. This is the user’s amateur radio call sign. An amateur radio call sign is 

given by the FCC upon completion of the FCC technician license test. A call sign is 

unique, proprietary, and should not be used by anyone but the assigned user. 

Unauthorized use of amateur radio frequencies or an individual’s call sign may lead to 
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fines and/or a prison sentence. The call sign is used to determine which station is sending 

a message. It is an important setting for the GPS / Telemetry Module because multiple 

stations may be sending data and the data needs to be identified, as coming from the 

payload.  

The next setting is the Digi Path setting. This setting tells repeaters on the ground 

that might pick up the signal whether or not to re-send the signal. The recommended 

setting from Byonics is WIDE1-1, WIDE2-1. This setting will be used for the Balloon 

Payload. The Symbol and Table/Overlay settings determine what icon will be displayed 

by the ground station's APRS program. The O symbol and / table correspond to a hot air 

balloon. A high altitude balloon is a weather balloon not a hot air balloon, but there is not 

a weather balloon symbol and no one (or almost no one) would believe a car is at 100,000 

feet. 

The Timing section contains settings that relate to transmit timing.  This section 

determines the rate that data is sent and other timing aspects. The Status portion of the 

TinyTrak4 Tracker settings allows a text string to be added to the end of a position 

transmission. This setting will send the text “MSU Balloon”, followed by an e-mail 

address. The e-mail address can be used after the flight to receive reports from other 

amateur radio operators that may have received transmissions from the balloon payload. 
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The Telemetry section of the TinyTrak4 Tracker software contains settings that 

relate to the telemetry data that will be sent by the TNC to the ground station. The ground 

station will receive a string similar to the following: 

T#002,297,610,999,999,560,00000000 

The first three digit number following the “#” is the reading number. This number is 

incremented for each telemetry transmission. The next number is the system voltage. To 

convert the received voltage number into an actual voltage, multiply the number by 

0.0272. The supply voltage in the sample string is 8.08V. The next number “610” is the 

reading associated with the temperature. To convert this reading to a Celsius Temperature 

divide it by 2.04 and then subtract 273. The temperature that corresponds to the reading 

in the sample string is 26 degrees Celsius The fourth, fifth and sixth numbers are 

associated with the voltage readings of pins JP5, JP4 and JP3, respectively. It appears that 

pins JP4 and JP3 are connected, although this is not discussed in the TinyTrak4 manual. 

At this time only pin JP5 is connected to an external component. Other telemetry 

configurations can be used; it is best to determine the telemetry needs and use the TT4 

Tracker manual to properly configure the Telemetry unit.  

The field of check boxes at the upper right portion of the Windows interface is 

used for setting special settings. It is important that the Send Altitude and Timestamp 

HMS settings are checked. The LED disable option was chosen to save battery life. All 

other options on the interface should not be enabled. Not selecting the send NMEA 

allows the TinyTrack4 to format the data into a more readable format.  
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With the settings shown in Figure 2.6, the TinyTrack4 will transmit a string of the 

form shown below, to the ground every 10 seconds.  

00:20:11R KE5FNM>APT407,WIDE1-1,WIDE2-1 

/062408h3510.12N/09003.20WO000/000/A=000000 

 

This string is transmitted using APRS standards and is decoded by the ground station to 

track and monitor the ground station. The first line consists of the relay information. The 

second line includes the time of the GPS reading (to the left of the h), the location of the 

payload (to the left of the N and W) and the altitude in feet (after the A=).  

 

Kenwood TH-K2AT Transceiver and Settings 

The radio used to transmit the APRS GPS/Telemetry Module data is the Kenwood 

TH-K2AT hand held transceiver. This transceiver was chosen because of its ease of 

operation. The Kenwood TH-K2AT operates on the 2 meter wavelength, or 144 MHz, 

band.  This band is controlled by the FCC and requires a valid FCC license to use. This 

radio is fairly simple and requires only changing a few menu options to properly 

configure it for use with the TinyTrak4.  

In addition to the TH-K2AT radio, it is recommended that the BT-14 alkaline 

battery holder be used. Alkaline batteries will not be used in the radio, but the BT-14 

allows for soldering to the battery holder, rather than soldering directly to the radio. This 

is important because the radio may be used in another project later. 

Connecting the flight battery to the transceiver is a matter of soldering leads onto 

the BT-14 battery case, connecting those leads (in the correct polarity) to the 8V Lithium 
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Ion flight battery, and installing the BT-14 case onto the TH-K2AT radio. To allow the 

TinyTrak4 TNC to work properly with the TH-K2AT a few menu options on the TH-

K2AT must be changed. These menu options may change as other versions of this radio 

become available. It is best to check with the radio manual to ensure proper operation. 

Menu item twenty, named VOX, enables voice activation and sets the gain associated 

with the voice activation. This menu option should be set to five. This allows the 

TinyTrak4 to send a signal to the transmitter through the microphone port and for the 

transmitter to activate when the signal is received. If the VOX setting is not enabled, the 

transmitter will not activate when the TinyTrak4 sends a signal to the microphone input. 

With the VOX setting enabled any voltage signal present on the microphone port is 

transmitted. Menu option 21, VXB, should be turned on. This allows the transceiver to 

transmit a microphone input signal even if the transceiver is currently receiving data. All 

other settings on the TH-K2AT should remain at the factory defaults. Before the launch 

of the payload it is important to lock the keys on the TH-K2AT by holding down the 

function button. This prevents accidental changes to the settings during the balloon flight. 

Once the entire Module is operational, it is tested using the ground station. If 

correct, the ground station should be able to accurately receive and record positions and 

other data sent from the GPS Module.  
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CHAPTER III 

 

SERVO DRIVER MODULE (SDM) 

 

 

The purpose of the Servo Driver Module, or SDM, is to receive commands from 

the ground station and the Low Speed Data Collection Module (LSM), and to drive the 

cut down servo. This module is capable of later being expanded to include other 

commanded functions, but is currently only used to trigger release of the balloon and the 

payload parachute. The SDM consists of the following main components: 

 Ham Radio – Kenwood TH-K2A (Shared with the GPS/Tele Module) 

 Microcontroller -  PIC 18F1320 

 DTMF Tone Decoder – TDK 75T204 

 Metal Gear Mini Servo – Hitec HS-225MG 

These components are connected as shown in Figure 3.1. Figure 3.1 shows the general 

flow of the system and all the main components. A complete circuit diagram for this 

system is located in Figure 3.3 and 3.4. A dotted line has been drawn around the 

components that are dedicated to the Servo Driver Module.  
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Figure 3.1 Servo Driver Module System Diagram. 

 

 

Signals sent from the ground station are received by the radio transceiver and 

passed on to the Servo Driver Module through the speaker port of the radio. This signal is 

then decoded using a DTMF tone decoder and is read by a PIC 18F1320 microcontroller. 

The servo receives commands from the Microcontroller and operates the release 

mechanism. Servo movement may be triggered by commands from either the Ground 

Station via the Radio Transceiver or by the LSM. The Microcontroller relays the servo 

position to the LSM so that it may be recorded and stored for later analysis. The 

microcontroller receives power from the 8V Lithium Ion battery through a 5V regulator. 

This regulator also powers the DTMF chip. The servo is powered through a dedicated 5V 

regulator to allow for sustained current draws of greater than 1A by the servo. These 

components and their use are explained in the following sections. 
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Hitec HS-225MG Cut Down Servo and PWM Explanation 

The servo used to operate the cut down release mechanism is a Hitec HS-225MG. 

The HS-225MG is a rotational servo that has a maximum rotation angle of 120deg. This 

type of servo is usually used in hobby related remote controlled applications such as 

airplanes or helicopters. The HS-225MG servo was chosen because of its shock resistant 

metal gear train, small size (32x60x30mm), light weight (31g), and relatively high torque 

rating (55in-oz). A metal gear train is important because the release mechanism might be 

subjected to large shocks throughout the flight. The HS-225MG operates using a three 

wire interface.  The three wires are ground, usually black or brown, +5V (4.5-6V), 

usually red or orange (located in the center), and the signal wire, usually white or yellow.  

The ground wire should be connected directly to the system ground. The +5V should be 

supplied using a regulator dedicated to the servo. A separate regulator should be used 

because a servo can draw a large amount of current. The voltage output of multiple 

regulators should not be directly connected; doing this could cause damage or failure of 

the regulator. The servo position is determined using pulse width modulation, or PWM.  

PWM is a communication method that uses a single wire and outputs a pulse 

along that wire. The wire voltage goes from 0V to +5V, stays there for a period of time, 

usually between 1000 and 2000 microseconds. The wire voltage then returns to 0V and 

remains there for approximately 17-20 milliseconds, until the next pulse is sent.  The 

servo rotation angle is determined by the time that the signal wire voltage is at +5V. 

Figure 3.2 better shows how the servo angular position is related to the incoming pulse.   
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Figure 3.2 Servo Arm Position as it Relates to the Received Pulse 

Length. 

 

 

One very important note, if an analog servo, such as the HS-225MG, does not receive 

pulses, the servo responds as if it is not powered and will not hold its position. Another 

detail about working with hobby servos, servos made by different companies will often 

rotate in opposite directions with respect to the servo pulse. For instance, if a servo made 

by Hitec rotates counterclockwise as the servo pulse length increases, a Futaba servo 

might rotate clockwise as the servo pulse length increases. Also, some servos may require 

a different pulse range to operate properly. For instance, some servos require an output 
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pulse between 1ms and 2ms instead of between 0.5ms and 2.5ms. It is best to fully test 

the settings calculated for proper operation with the servo used. 

 

TDK 75T204 DTMF Tone Decoder Chip Use and Connections 

The DTMF Tone Decoder receives the DTMF tone signal from the speaker port 

of the ham radio. The ham radio transceiver is shared with the GPS/Telemetry Module 

and is connected to both modules through the use of a 2.5mm (3/32”) splitter (Radio 

Shack part number 274-948). The TDK 75T204 chip recognizes and decodes the DTMF 

tones into a digital number that corresponds to a DTMF character
15

. This chip was chosen 

because of its ease of use and CMOS compatibility. The DTMF chip transmits the digital 

number to other devices using 5 pins, DV, D1, D2, D4, and D8. All five pins have a low 

default state when the chip is powered. When a valid tone signal is detected by the 

DTMF chip, pin DV is high. Pins D1, D2, D4 and D8 are used to relay the specific tone 

that was received. The pins are assigned to the DTMF digits using standard binary.  

The easiest way to understand how to read the DTMF chip pins is to view each 

pin as a value. D1=1, D2=2, D4=4, and D8=8. The pins values are added to determine the 

digital number. If all pins are high the digital number would be 1+2+4+8=15. If no pins 

are in the high state the digital number is 0. This number is then used to determine the 

DTMF character received. The pins are connected to the microcontroller and the digital 

number and corresponding DTMF character are decoded by the microcontroller.  
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Figure 3.3 Servo Driver DTMF Chip Connection Schematic 

 

 

Figure 3.3 shows the DTMF chip circuit schematic. Currently, the DTMF chip 

circuit is built on its own small board and connected to the microcontroller using a 5x2 

male header and 5x2 ribbon cable. The 5x2 male header is labeled in Figure 3.3 as 

DTMF_HD1. Through this header the chip circuit receives power, and outputs to the 

microcontroller. Pins 1, 2, 12, 13 and 14 are signal pins that are read by the 

microcontroller. These pins are all connected to 10K pull down resistors. The pull down 

resistors keep the pins at the low state in the event that the DTMF chip loses power or 

fails. A standard color burst crystal (3.58MHz) is connected between pins 9 and 10 and is 

used by the chip to separate the two frequencies that make up the DTMF tone. Pins 3, 4 

and 6 are connected to +5V. Pin 8 is connected to ground and to the incoming signal 
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ground. The signal from the transceiver speaker port is connected to the chip through pin 

7. Table 3.1 further describes the pins and their uses. 

 

Table 3.1 DTMF Chip Pin and Connection Descriptions 

 

Pin # Name Description Connection 

1 D2 Digital output pin, second bit of 

binary number, low or high  (0 or 1) 

Connected to microcontroller, pulled low through 

10K resistor 

2 D1 Digital output pin, first bit of binary 

number, low or high (0 or 1) 

Connected to microcontroller, pulled low through 

10K resistor 

3 EN Output enable pin, if pulled high 

output pins are enabled 

Connected to VP (+5V) 

4 VP Power pin, used to power the chip Connected to +5V through header and ribbon 

cable 

5 N/C Not Used Not Connected, Left Floating 

6 XEN Crystal enable pin, used to enable the 

crystal pins XIN and XOUT 

Connected to VP (+5V) 

7 Analog 

In 

Analog Input Connected to the positive signal coming from the 

transceiver speaker port 

8 GND Ground pin Connected to system ground through header and 

ribbon cable 

9 XOUT Crystal oscillator output pin Connected to XIN through crystal and 1M  

10 XIN Crystal oscillator input pin Connected to XOUT through crystal and 1M   

11 ATB Oscillator Frequency Output Not Connected, can be used to run multiple chips 

off of one crystal 

12 DV Digital output pin, used to signal that 

a valid tone is being received 

Connected to microcontroller, pulled low through 

10K resistor 

13 D8 Digital output pin, fourth bit of binary 

number, low or high (0 or 1) 

Connected to microcontroller, pulled low through 

10K resistor 

14 D4 Digital output pin, third bit of binary 

number, low or high (0 or 1) 

Connected to microcontroller, pulled low through 

10K resistor 

 

 

Pins 3 and 6 are used to disable or enable the output pins and the crystal oscillator to 

reduce the overall power consumption of the system; these two pins may be controlled. 

These pins are externally connected to VP (+5V) in the SDM because the current saved 
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by controlling them would be minute, compared to the current consumption of the entire 

system. 

 

Microchip PIC 18F1320 and ServoDriver.bas Firmware  

The Microcontroller chosen to receive the DTMF digital number and drive the 

servo is the PIC 18F1320. PIC microcontrollers were used because of their ease of 

programmability and their compatibility with the Swordfish Basic compiler. The 

microcontroller is the brain behind this module and performs tasks of decoding the 

DTMF number, driving the servo and relaying servo position to the LSM. These 

functions can best be understood by understating the SDM microcontroller firmware. The 

firmware program used by the SDM module is named “ServoDriver.bas”. This firmware 

is written using the Swordfish Basic Compiler language. A very important detail to keep 

in mind when reviewing the firmware for this system is that the PIC 18F1320 does not 

have a typical CPU clock that can be sampled. Therefore, most timing in this program is 

achieved by knowing the approximate time it takes the program to run. Changing the 

clock speed (10MHz) will change the timing values located within the program. The 

ServoDriver.bas program is segmented into 3 sections--header, subroutines and main 

program.   

The ServoDriver.bas header contains general information about the program, 

names of other programs that are included, dimensioning of variables, and aliasing of the 

microcontroller pins. The general information section contains notes on the firmware, the 

device name the firmware is meant for, the oscillator speed, and oscillator settings. The 
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“include” portion of the header contains information about other .bas program libraries 

that will be called -throughout the firmware. These included library programs were not 

written uniquely for this project. The next portion of the ServoDriver.bas header contains 

lines of code that dimensions the variables that will be used, and gives names (aliases) to 

the Input/Output pins. 

The largest portion of the firmware contains the subroutines that will be called by 

the main program to perform tasks. There are nine subroutines that perform various tasks 

for the main program. One thing to note, subroutines in Swordfish Basic are not 

recursive. In other words, subroutines cannot be entered from subroutines. Subroutines 

can only be entered from the main program; however, functions contained in the included 

files can be called upon within subroutines.  

The initialization routine is named “PinInit”. This subroutine sets all the pins to 

their initial states and activates them as either input or output pins. This subroutine also 

initializes some variables to their initial states.  

The “Pointer” subroutine restores the last pointer and state variable to their last 

defined values. If these variables have not been defined since the firmware has been 

downloaded the values are set to 0. This subroutine guards against a momentary power 

loss resetting either the servo position or the password state. 

The “TMR0_Initialize” subroutine contains settings for the PIC special function 

registers that enable and setup Timer0 in the PIC. Timer0 is an interrupt timer that can be 

used to interrupt the program at a specific time. The time the interrupt occurs is defined 
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by special function register values and the clock cycle. The Timer interrupt timer is used 

by the interrupt subroutine “Servo” to generate the servo pulse. 

The subroutine “Servo” generates a PWM signal that is used to drive the cut down 

servo. This is done by using Timer0 to interrupt the program every 0.2 millisecond. There 

is also an offset associated with the timer. The formula that relates the count variable, in 

the Servo subroutine, to actual time values is the following: 

Count = 5(millisecond)+2.5 

Where Count is the value of the count variable in the Servo subroutine and millisecond is 

the number of milliseconds that the event should take place. An example of how this 

formula is used can be seen upon further investigation of the Servo subroutine. To output 

a servo pulse to send the servo to the initial (endpoint2) position of the servo, the servo 

pin must be high for precisely 2.5 milliseconds and low for approximately 20 

milliseconds. Using the preceding formula the servo pin should be high for 15 counts and 

then low until count 100. At this point the Count variable should be reset so the next 

pulse can be sent. When the servo needs to change positions to the midpoint (balloon 

release position), the Pos variable changes to a value of 2, and the count when the pin 

goes high is reduced by the “if” structure to a value of 10. This outputs a high pulse that 

is 1.5 milliseconds long. When the Pos variable changes to 1 the pin stays high for 5 

counts and a pulse length of 0.5 milliseconds is sent to the servo. This moves the servo to 

the release all position (endpoint1).  

 The PTPcom subroutine allows commands to be received from the LSM 

microcontroller. It also relays the servo position to the LSM, where it is recorded. The 
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input pins are connected to pull down resistors and held high by the LSM 

microcontroller. In the event that the LSM malfunctions or loses power the pins will be 

pulled low thorough the pull down resistors and the “cut down all” state will be triggered. 

The LSM can also intentionally change the servo position by pulling one or both of the 

input pins low.  

 There are four subroutines that are related to the DTMF input. They are GetDGT, 

Pswd, PasswordEXP, and Command. The GetDGT subroutine reads the four DTMF chip 

character output pins (D1, D2, D4, D8) and assigns the appropriate DTMF character to 

the Digit variable. The Digit variable is returned to the main program.  

 The Pswd subroutine sets up a DTMF character password that consists of 4 states. 

The base state for the password, state=0, indicates that no password characters have been 

detected in the current password cycle. The current DTMF password is “C”, “*”, “9”. 

Each time the correct password digit is entered the state variable is increased. If state=3 

all of the password characters have been received and the next DTMF digit received will 

be a command digit. If a wrong digit is detected, for instance “C”, “A”, “*”, “6”, “9” is 

received, the program will ignore the wrong digits and the state=3. The state variable can 

be reset by the reception of a command digit (which completes the sequence), or through 

the PasswordEXP subroutine.   

 The PasswordEXP subroutine is used to reset the password state variable after a 

period of time has been elapsed. This time period is set by the constant variable EXP. 

When the expiration time, EXP, has been reached the password state will be reset. The 

expiration time is reset each time a recognized password character is detected. This 
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means that for a command digit to be sent to the Servo Driver Module, the password 

must be entered, in order, followed by the command digit with no more than 

approximately 10 seconds (for EXP=10) between each character. If “C”, “*” is entered 

and is not followed by “9”, after approximately 10 seconds the PasswordEXP subroutine 

will reset the password state and the entire password string will have to be entered before 

a command digit may be accepted. For approximately the first 0.5 seconds after the 

password state is reset the status LED pin will be high and the status LED will be lit. The 

status LED is used to visually confirm that the Servo Driver Module is operational If no 

password digit is detected the PasswordEXP subroutine will continue resetting the state 

variable every 10 seconds. This means that every 10 seconds the LED will be illuminated 

for 0.5 seconds 

 The Command subroutine receives the command digit and performs the 

appropriate task. Currently, the only two tasks that have been programmed are moving 

the servo to two different positions, by changing the Pos variable used by the Servo 

subroutine.  

 The main program section of the firmware calls upon the subroutines in the 

appropriate order. The first subroutines to run are the initialization subroutines 

TMR0_Initialize and PinInit. Then the Pointer subroutine is run and the saved values of 

state and Pos are restored. When the pointer subroutine is run, or the Pos variable is 

updated, the Servo interrupt is disabled, the update is performed, and then the Servo 

interrupt is re-enabled. This prevents the Servo interrupt from interrupting a write to the 
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Pos variable. If this occurred, the Servo interrupt could use a bad value for Pos which 

could damage the Servo. 

 The DTMF subroutines are triggered when the DTMF chip tone detect pin DV 

goes to the high state and is read by the microcontroller. When the DV pin goes high, the 

GetDGT subroutine runs and returns the detected DTMF character. Then the password 

subroutine is run and the state variable is updated, if needed. If the state variable is equal 

to 3 and DV is high, then the command digit subroutine is called and the action 

corresponding to the command digit tone is performed. 

To prevent multiple readings of a DTMF tone that is held down, a While loop in 

the Main program “traps” the program until the DV pin goes low, indicating that the 

detected tone has ended. If a tone is held down for approximately three seconds, the 

while loop will exit and the program will continue running. This exit prevents a constant 

tone from not allowing the LSM to update the servo position. In other words, this exit 

every three seconds keeps a constant DTMF tone from, effectively, freezing the system. 

After the DTMF DV pin is checked, the pins that are used to communicate with 

the LSM are checked, by calling on the PTPcom subroutine. The PTPcom subroutine also 

updates the servo position, if needed. Finally, the PasswordEXP subroutine is run to 

update the time that has elapsed since the last password digit was detected. Most of the 

main program is contained with an infinite while loop. This means that the DV pin and 

input pins are constantly being polled. 
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Figure 3.4 Complete Circuit Diagram for SDM 

 

 

Figure 3.4 is the complete circuit diagram for the SDM. This diagram does not 

include the DTMF chip circuitry previously discussed, but does include a male 5x2 

header that connects to the DTMF chip board through a 5x2 ribbon cable. Jumpers J1 and 

switch SW2 are used to disconnect the release output state wires from the LSM; this must 

be done so that programming may be accomplished. To program the SDM 

microcontroller requires disconnecting the DTMF cable, opening jumper JP1, and turning 

switch SW2 off. This disconnects the pins used for programming the microcontroller 

from their other connections. The red LED's connected to the SDM regulators are used to 

show when the system is being powered. 
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CHAPTER IV 

 

HIGH SPEED DATA COLLECTION MODULE (HSM) 

 

 

The purpose of the High Speed Data Collection Module, or HSM, is to record 

acceleration and angular rate data. This module is named the High Speed Data Collection 

Module because data is collected by this module several times a second. The HSM 

consists of the following main components: 

 IMU – Sparkfun 6 degree of freedom IMU 

 Microcontroller –  PIC 18F2520 

 EEPROM Array – 8 - 512 kilobit external EEPROM's 

These components are connected as shown in Figure 4.1. Figure 4.1 shows the general 

flow of data throughout the system main components. The HSM is powered by the +8V 

flight battery. The battery voltage is reduced to +5V, for use with the HSM components, 

through the use of a 5V regulator. A complete circuit diagram for this system is located in 

Figures 4.2 and 4.3. A dotted line has been drawn around the components that are 

dedicated to the HSM.  
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Figure 4.1 High Speed Data Collection Module System Diagram 

 

 

The HSM collects acceleration and angular data through the use of a Sparkfun six 

degree of freedom IMU (Sparkfun part number SEN-09184). This data is then sent to the 

HSM microcontroller by way of UART serial. The data is then broken up by the 

microcontroller and written to an external EEPROM array. Timing information is 

provided to the HSM microcontroller by the Low Speed Data Collection Module.  The 

stored data can later be retrieved and sent to a computer by using the HSM 

microcontroller read firmware, a PICkit 2, and the PICkit 2 software UART tool. By 

using the clear firmware program the HSM microcontroller can clear the EEPROM array. 

The three HSM microcontroller firmware programs and the use of the other components 

that make up the HSM will be discussed in the following sections. 
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HSM Timing 

 Timing information is provided to the HSM by the LSM. The LSM records a very 

accurate hhmmss time, received from the GPS every second. The LSM microcontroller 

code contains a variable, Tstat, that is incremented every minute (60 GPS readings) and 

recorded by the LSM every second. This variable is transmitted to the HSM by four pins. 

The four pins are used as a standard binary communication method. These pins are pulled 

high or low by the LSM and read in by the HSM. Pins Tin1 through Tin4 are bits 1 

through 4 of the Tsat variable, respectively. Because the Tstat variable is recorded by 

both the HSM and the LSM, the time at which the Tstat variable changes will be recorded 

by both modules. This change point can be combined with the GPS time information, 

recorded by the LSM, to create a time basis for the HSM data.  

 

EEPROM Array Connection and Use 

 The memory device used to store the values collected from the IMU is an external 

EEPROM array. This array consists of eight Microchip 24LC512 EEPROM's. This 

section discusses their use and connection. It should be understood that each EEPROM is 

a standalone device and does not require the other seven EEPROM's to function properly. 

Eight EEPROMS are used in order to meet the data storage requirements of the HSM. 

EEPROM's were chosen because of their stability and simplicity of use.  A main 

drawback to using the 24LC512 external EEPROM is that it requires a delay of 

approximately 10 milliseconds between byte size writes to the same device. Also, writes 
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that are larger than a byte must be done as multiple byte size writes. It is recommended 

that the EEPROM array be replaced by a SD card or less complex data storage device for 

future versions of the HSM.  

 The 24LC512 EEPROM operates using the I2C communication protocol. A full 

description of the I2C communication protocol is beyond the scope of this project. 

However, it should be understood that I2C is a two wire communication protocol that is 

similar to that used in a typical LAN, or local area network. Each device has its own 

unique ID number that is set. Data is sent to the device by targeting the ID number and 

sending data. While all devices in the network, or array, are connected to the same two 

wires, only the device with the corresponding ID number recognizes and acts on the 

incoming data. Device ID numbers for the HSM EEPROM's are set by pulling three pins 

(A0, A1, A3) located on each EEPROM high or low. Figure 4.2 shows how the address 

pins A0, A1 and A2 are used to set a unique address for each EEPROM. If all the pins are 

low the I2C device address is set to 0. If A0=0, A1=1 and A2=1, the device address is set 

to 6. This means that a total of eight EEPROMS may be commanded using the I2C 

network. Figure 4.2 shows the wiring schematic for the HSM EEPROM Array. 
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Figure 4.2 HSM EEPROM Array Wiring Schematic 

 

 Located at the top right of Figure 4.2 is a 5x2 male header that can be used by an 

external device to access the EEPROM array. The EEPROM Array is connected to the 

HSM microcontroller through four wires: ground, +5V, SDA, and SCL. SDA and SCL 

are wires that carry the I2C communications The SDA and SCL pins must be connected 
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to the +5V supply voltage through a 4.7KΩ pull up resistor. Table 4.1 further describes 

the 24LC512 EEPROM pins and their connections. 

 

Table 4.1 EEPROM Pin and Connection Descriptions 

 

Pin # Name Description Connection 

1 A0 Digital input pin, first bit of binary 

address, tied low or high (0 or 1) 

Connected to either +5V or ground, depending on 

what I2C address is used for the EEPROM  

2 A1 Digital input pin, second bit of binary 

address, tied low or high (0 or 1) 

Connected to either +5V or ground, depending on 

what I2C address is used for the EEPROM  

3 A2 Digital input pin, third bit of binary 

address, tied low or high (0 or 1) 

Connected to either +5V or ground, depending on 

what I2C address is used for the EEPROM  

4 GND Power pin, used to power the chip Connected to system ground 

5 SDA I2C Data input/output pin Used to transfer data to the EEPROM 

6 SCL I2C Clock input pin Used to synchronize transmissions to the 

EEPROM 

7 WP Write protect enable pin Connected to Ground, to allow for writes to the 

EEPROM 

8 VCC Power pin, used to power the chip Connected to +5V supplied by system battery, 

through HSM regulator 

 

Additional information about I2C and the 24LC512 EEPROM is available in the 

24LC512 Data Sheet
16

. 

 

Sparkfun IMU Description and Use 

 The Sparkfun IMU is a collection of 3 accelerometers and 3 gyros that are 

arranged on a single board. These sensors are sampled by the Sparkfun IMU 

microcontroller. The IMU microcontroller formats, scales, and applies temperature 

compensation to the data. The IMU microcontroller then sends the data to the SDM or 

other device using UART serial at a rate of 115,200 bits per second.  
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 The Sparkfun IMU can be configured using a USB to 3.3V TTL Serial Cable. 

This cable is connected to a computer and a terminal program such as Tera Term Pro is 

used to interface with the IMU. For use with the HSM, the Sparkfun IMU factory default 

settings must be changed. The Sparkfun IMU can be configured to send data in either 

ASCII characters, able to be viewed on screen using the Tera Term Pro program, or in 

binary. For use with the HSM, the Sparkfun IMU must send the data in binary format. 

Binary transmissions read by the Tera Term Pro program are viewed as a string of 

gibberish, but binary format is easily read in correctly by the HSM microcontroller. The 

Sparkfun IMU can also be configured to output data at different rates. The minimum data 

output rate is 10Hz. The IMU maximum output rate is not limited. It should be noted that 

the recorded data frequency of the HSM will be half that of the IMU; this will be further 

discussed in the HSM microcontroller section. To be sure the IMU collects data within 

the desired range the accelerometer sensitivity should also be set. The IMU accelerometer 

sensitivity can be set to 1.5g, 2g, 4g or 6g. It is also important to enable all six data 

channels of the IMU. The final setting that should be changed is that the auto-run feature 

should be enabled. Enabling the auto-run feature means that when the IMU is powered it 

immediately begins sending out data. If this feature is not enabled, the IMU will be 

waiting for a start command, and will not function properly with the HSM.  

 The resolution of the IMU data readings is limited by the IMU microcontroller's 

internal analog to digital converter resolution. This is because the IMU gyro and 

accelerometer analog outputs are being read by the IMU microcontroller. The IMU 

currently uses a microcontroller that contains 10 bit analog to digital converters. This 
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means that all values for the accelerations and angular rates are 10 bit and have values of 

between 0 and 1023. Calibration of this unit should be performed, but is not included in 

the scope of this project.    

 The Sparkfun IMU outputs data using TTL serial. It is important to understand 

how the IMU sends out the data so that it can be properly read in by the HSM 

microcontroller. The first byte sent by the Sparkfun IMU is an ASCII “A” (decimal 65) 

character. This signifies the beginning of the IMU data output string. The last byte that is 

sent by the IMU is an ASCII “Z” (decimal 90) character. This character signifies the end 

of the transmitted string that contains IMU data. Even though the IMU is set up to run 

using binary transmission, the beginning and ending characters do not change format. 

Each value for acceleration and angular rate is transmitted as two bytes (MSB and LSB), 

because each value is a 10 bit (1 byte, 2 bit) number. The most significant byte of the 

value, or MSB, is transmitted first. Then the least significant byte for the value being 

transmitted, or LSB, is transmitted. The first value transmitted after the starting character 

“A” is the count.  The count value is the number of the reading that is sent. This value is 

actually a 15 bit number and will change sequentially from 0 to 32767 each time a data 

string is transmitted. Once it reaches 32767 it will start over “counting” from 0. The first 

string sent (or data set) is count=0. The second string sent (or data set) is count=1, and so 

on.  

 Acceleration values for the X, Y, and Z axes are then sent in that order. Then the 

readings from the pitch, roll, and yaw gyros are sent. Repeating from above, each 10 bit 

value is transmitted as two bytes. This means that although there are only 10 bytes of data 
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(composed of 6 x 10 + 15 = 75 bits), they are transmitted as 7 x 2 = 14 bytes. The count 

variable is not recorded, meaning that only 60 bits (7 bytes, 4 bits) of data received from 

the IMU, are actually used by the HSM. Combined with the 4 bits of timing data received 

from the LSM, this makes 8 full bytes of data. A visual representation for the data 

arrangement is shown in the before package portion of Figure 4.4. The 8 bytes are written 

to the EEPROM array in parallel. This means that the first byte is written to the first 

EEPROM in the array, the second byte is written to the second EEPROM in the array, 

and so on. Writing to the EEPROM's this way allows for the 10ms delay to occur after 

writing an entire data string, rather than after each write. Theoretically, a write can occur 

as fast as 100 times per second. Obviously, because the program needs time to run, 

written data rates cannot occur at this frequency. Understanding how the data is 

structured becomes important in the HSM microcontroller section. 

 

Microchip PIC 18F2520 Use and HSM Firmware 

The brain of the HSM is the Microchip PIC 18F2520 microcontroller. This 

microcontroller receives input from both the LSM and the IMU and records those 

received values to the EEPROM array. Both the microcontroller circuitry and the 

firmware programs used to run the HSM will be discussed in this section. Figure 4.3 

shows the complete circuit schematic for the HSM, excluding the previously discussed 

EEPROM array circuitry. The connections and components that are specific to the HSM 

will be discussed in this section. 
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Figure 4.3 HSM Circuit Diagram, Excluding EEPROM Array 

 

 

The power for the entire module is supplied through regulator Reg3, by 

connecting the +8V flight battery to male pin header Bat2. A red LED is used to show 

that the module is being powered. The six pin male header SV7 is used to program the 

microcontroller, by connecting it directly to a PICkit 2. The five pin header SV1 is used 

to receive UART transmissions from the microcontroller. This is done by using the 

PICkit 2 programmer and the PICkit 2 software UART tool. The IMU is connected to the 

5x2 pin male header IMU_HD. The microcontroller is connected to the EEPROM array 
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through wire nets SDA and SCL. Nets TIN_1, TIN_2, TIN4, and TIN_8 are connected to 

the LSM and are pulled low through 10K resistors in the event of a LSM malfunction. 

 There are three firmware programs that have been written for the HSM. The first 

program, High_Speed_Record.bas, is used to record values collected throughout the 

balloon flight from the LSM and the IMU. The second program, High_Speed_Read.bas, 

is used to read the values collected in the EEPROM and to write these values to the 

screen or a file, via a PICkit 2 and the PICkit2 user software. The third program, 

EE_Clear_HS.bas, is used to write 0's to all the EEPROM addresses of the eight 

EEPROMS contained in the HSM EEPROM array. These firmware programs have been 

written using the Swordfish Basic compiler language. It is not possible to download the 

three programs to the 18F2520 at the same time. It may be possible, in the future, to 

combine the three HSM programs and to use a switch to determine which of the three 

should be run. However, to prevent confusion and to make certain the wrong program is 

not accidentally run during a balloon flight, the programs have been kept separate. All 

firmware programs used with the HSM output UART serial communicate at a rate of 

38400 bits per second.  

The High_Speed_Record.bas program is used to record data during the balloon 

flight. This program's purpose is to collect data from the IMU and the LSM then write 

this data to the EEPROM array. This program consists of the following three sections: 

header, subroutines, and main program.  

The headers used for the HSM firmware programs are very similar to the headers 

of the other module firmware programs. The header contains general information about 
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the program, names of other programs that are included, dimensioning of variables, and 

aliasing of the microcontroller pins. The general information section contains notes on 

the firmware, the device name the firmware is meant for, the oscillator speed, and 

oscillator settings. The include portion of the header contains information about other 

.bas program libraries that will be called upon throughout the firmware. These included 

library programs were not written uniquely for this project. The next portion of the 

header contains lines of code that dimension the variables that will be used, and gives 

names (aliases) to the Input/Output pins. 

There are 9 subroutines that are used by the High_Speed_Record.bas firmware 

program. These subroutines are labeled Header, Out, Package, Write, Read, GetData, 

GetData2, Avj, and ChkStat. These subroutines perform the major tasks the firmware is 

responsible for and are called, in the appropriate order, by the main program. 

The Header subroutine is the first called by the main program. This subroutine 

outputs the data column header to the UART computer screen when the PIC is connected 

to a computer via the PICkit 2 and the PICkit 2 UART software. The Header subroutine 

also initializes the variables used for data collection and flashes the HSM status LED to 

signify the start of the program. 

The GetData and GetData2 subroutines are almost identical. They are only 

differentiated by the fact that GetData returns a set of data stored in the primary set of 

variables (AccX, AccY, AccZ, Pitch, Roll, Yaw) and GetData2 returns a set of data 

stored in the secondary set of variables (AccX2, AccY2, AccZ2, Pitch2, Roll2, Yaw2). 

These two sets of data are averaged to form a single set of data that is written to the 
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EEPROM's. The purpose of the GetData subroutines is to collect the data string from the 

IMU and to write the received data to the appropriate variable. The GetData subroutines 

will actually wait for the lead character “A” sent by the IMU to signify that a data string 

is incoming. This means that if the IMU has been disconnected, or has malfunctioned the 

HSM will continue waiting to receive the start character and will be “stuck”. This also 

means that the data rate for the HSM is determined by the data rate of the IMU, and that 

it will ignore the transmission if it begins “listening” during the middle of a data string. If 

the HSM needs to record for a time period longer than 3 hours, the IMU data rate must be 

slowed below 10Hz. With two data collections being averaged to produce one written 

value, the written data frequency is half that of the IMU data rate setting. 

The Avj subroutine averages the data sets collected from the two readings taken 

using the GetData and GetData2 subroutines. The returned values are stored in the 

GetData variables. Disabling the GetData2 and the Avj subroutine would change the 

HSM data write frequency from half the IMU data frequency to the IMU data frequency. 

The written frequency can be changed to 1/3 or less of the IMU data frequency by adding 

more GetData subroutines, and by modifying the Avj subroutine to include the other 

values collected.  

The ChkStat subroutine sets the stat input pins to digital inputs and reads those 

pins. The time stat variable, sent from the LSM, is returned as a four bit number stored in 

the Stat variable. 

The Out subroutine occasionally outputs the data collected by the microcontroller 

using UART. This data is received by a computer through the PICkit 2 and PICkit 2 
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software UART tool. The data is only output every few readings so that it does not clutter 

the UART tool screen. The Out subroutine is meant to be used in conjunction with the 

Read subroutine to check that the HSM is functioning correctly. 

 

 

Figure 4.4 Visual Representation of Package Subroutine Function 

 

 

The Package subroutine packages the data collected from the LSM and the IMU 

into 8 bytes that can be written to the EEPROM array. This subroutine takes the 6 – 10 

bit values that were received by the IMU, and breaks them down into 6 byte length 

variables, the remaining 12 bits are written to two overflow byte size variables. The 4 bits 

of space left in the second overflow variable are used to store the 4 bit state variable. The 
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subroutine returns 8 byte size variables that are now ready to be written to the 

EEPROM's. Figure 4.4 shows how the data is arranged before and after the Package 

subroutine runs. 

The Write subroutine is used to write the packaged variables to the EEPROM 

array. This subroutine also increases the memory address variable, and writes the new 

address to the Pointer location. The pointer keeps the program from overwriting data 

previously taken in the event of a loss of power or microcontroller malfunction. 

The Read subroutine is meant to be used in conjunction with the Out subroutine to 

check the operation of the HSM. The Read subroutine occasionally reads, unpacks, and 

outputs the written data to a computer via the UART software tool. 

The main program part of the High_Speed_Record.bas firmware calls on the 

subroutines in the correct order. On startup the main program checks the status of the 

reset pin. If the reset switch, SW1, is in the on position, the reset pin will be read as high 

(1) and the program will begin recording, starting at memory address 0. If the switch is in 

the off position the reset pin will be read as low (0) and the program will pull the starting 

write address from the Pointer memory location in the internal EEPROM. It is important 

for the reset pin to be in the off position during flight to prevent data from being 

overwritten due to a momentary power failure. Once the external EEPROM is filled the 

program will quit running and will enter a low power state. However, this will not 

prevent the IMU from continuing to run and draw power.  

To calculate how long the HSM will record data, simply divide the total number 

of address bytes in an EEPROM (64000 bytes) by the written data frequency (5 writes 
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per second). This means that with a written frequency of 5Hz (IMU frequency of 10Hz), 

the HSM will record data for 12800 seconds, or 3.56 hours. The number of writes that 

can be performed is 64000 and not eight times that because each time data is taken a byte 

of data is written to each EEPROM (8 bytes of data, 8 EEPROMS). The IMU data rate 

can easily be increased to 20Hz without problems, but if write rates of faster than 5Hz are 

required, it is recommended that output subroutines in the High_Speed_Record.bas main 

program (Read and Out) be removed by commenting them out. This will allow for the 

fastest data write rates. 

The High_Speed_Read.bas program is very similar to the Read subroutine located 

in the High_Speed_Record.bas program. The purpose of the High_Speed_Read.bas 

program is to read the EEPROM's, unpack the variables, and then to output those 

variables, along with the memory address the variables have been read from, to a file. 

The microcontroller sends this data using UART TTL serial. It is received by a computer 

through the PICkit 2 and the PICkit 2 software UART tool. This tool has the ability to log 

the communication it receives to a file. The data that is output from the microcontroller is 

in tab delimited format. Therefore, the file created by the PICkit 2 software will be in the 

same format and is easily read by a spreadsheet program. Before the data is sent by this 

program, a column header, labeling the data columns is sent. 

The simplest program is the EE_Clear_HS.bas program. This program writes a 0 

to the first address of all 8 EEPROM's, sequentially. The program delays 10 milliseconds 

to allow the EEPROM's to perform their writes. Then the address variable is incremented 

and the write is done again. Once all 64000 addresses of the  EEPROM have been written 
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to a “done”, “All 8 EEPROMS set to 0” message is sent to the screen and the HSM status 

LED is flashed 5 times quickly every 2 seconds.  To allow the program to run the fastest 

it possibly can, current memory addresses are output to the screen every 2048 addresses. 

To be able to tell that the program is running without connecting it to the PICkit 2 the 

HSM status LED changes state every 128 addresses. Clearing the EEPROM array takes 

approximately 30 minutes. If power is lost, or disconnected during the clear, the program 

resets and starts clearing from address 0. 
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CHAPTER V 

 

LOW SPEED DATA COLLECTION MODULE (LSM) 

 

 

The Low Speed Data Collection Module, or LSM, performs several tasks 

associated with the different modules. The primary task of the LSM is to sample and 

record pressure, temperature and GPS coordinates associated with the balloon payload. 

This module also sends cut down commands to the SDM, and provides timing 

information to the HSM. This module is named the Low Speed Data Collection Module 

because data is collected by this module once a second. The LSM consists of the 

following main components: 

 GPS – Garmin 18XLVC (shared with GPS/Telemetry Module) 

 Microcontroller –  PIC 18F2520 

 EEPROM Array – 8 - 512 kilobit external EEPROM's 

 Temperature Sensors – 4 x Dallas DS18B20 one wire temperature sensor 

 Pressure Sensors – 2 x Honeywell ASDX 015A24R 

These components are connected as shown in Figure 5.1. Figure 5.1 shows the general 

flow of data throughout the system main components. A circuit diagram for this system is 

located in Figures 4.2, 5.2 and 5.3. The LSM is powered by the +8V flight battery. The 

battery voltage is reduced to +5V for use with the LSM components through the use of a 
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5V regulator. A dotted line has been drawn around the components that are dedicated to 

the LSM. A portion of the LSM has been created to operate within the high altitude 

balloon instead of the payload box. This subsystem is contained on its own circuit board, 

Balloon Board. The components have been outlined with a second dotted line.  

 

Figure 5.1 Low Speed Data Collection Module System Diagram. 

 

 

The LSM receives data from four different sources that use different 

communication methods. The different source types and communication methods are 

GPS (serial), DS18B20 temperature sensors (one wire), pressure transducers (analog 
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voltages) and servo driver module (digital input pins). The data from these sources is 

collected and formatted by the LSM microcontroller. It is then written to the EEPROM 

array for storage.  

 Four pins connect the SDM to the LSM. Two of these pins are used to send the 

current servo position to the LSM. The other two pins are used to send cut down signals 

to the SDM.  Four pins also connect the LSM to the HSM. These digital pins are used to 

transmit timing information to the HSM. The use of these four pins and the timing 

method is discussed in detail in the HSM Timing section of the HSM Chapter. 

 

General Data Flow and LSM EEPROM Array Use 

The GPS signal is used to trigger a data collection event. If the GPS signal is not 

present due to a malfunction, data is collected from the other components approximately 

every 3 seconds. The GPS signal provides three dimensional position, heading, ground 

speed, satellite tracking, and time information to the LSM. The LSM receives 

temperature data from four Dallas DS18B20 one wire temperature sensors. Balloon 

internal temperature and pressure are provided from the pressure transducer and 

temperature sensor mounted on a board that is placed inside the balloon. This board is 

connected to the main circuit board using two standard servo wires and connectors. Once 

the balloon is released the servo wire connectors are pulled apart and the Balloon Board 

is disconnected from the main payload. The Balloon Board is considered expendable and 

will not be recovered after the flight. Once the data is collected from the GPS, 
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temperature sensors, pressure transducers, and the SDM, it is written sequentially to the 

EEPROM array. 

The EEPROM array circuitry used by the LSM is identical to that used by the 

HSM. As such, a circuit diagram and EEPROM use explanation will not appear in the 

LSM chapter. The slight differences in the use of the two EEPROM arrays will be 

covered in this section. For the complete EEPROM array circuit diagram and external 

EEPOM details, please refer to the EEPROM Array Connection and Use section of the 

High Speed Module chapter.  It is recommended that both of these EEPROM arrays be 

replaced by another memory device, such as a SD card, in future versions of the balloon 

payload system.  

The only difference between the HSM EEPROM array and the LSM EEPROM 

array is how they are written to. The HSM writes to each of the eight EEPROM's, then 

increments the write address, and then writes to all eight EEPROMS again. This method 

fills all the EEPROM's equally with each write. The LSM writes all 30 bytes of the LSM 

data to the first EEPROM, and continues to write all data sets to the first EEPROM. Once 

the first EEPROM is full, the LSM begins to fill the second EEPROM. This sequence 

continues until all the EEPROMS are full, at which point the LSM microcontroller 

terminates the program and enters a low power state. One detail to note is that because 

the writes are being performed as individual byte writes, there is no need to consider the 

page boundaries of the external EEPROM. The difference in the writing methods can be 

attributed to the amount of data collected by each module and the speed requirements of 

the module. It would be best if the HSM method of writing was modified to be used with 
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the LSM in future versions. Using the HSM method of writing would allow compatibility 

of the LSM with 5Hz GPS receivers. With the current circuitry and programming the 

LSM is only compatible with the Garmin 18XLVC 1Hz GPS receiver. With the current 

LSM recording firmware program settings and EEPROM array size the LSM can record 

data for 4.74 hours. This time was found using the following formula: 

 

 

 

LSM GPS Connection and Use 

The GPS unit is shared by both the LSM and the GPS/Telemetry module and 

must be connected to both. The LSM GPS is used as the basis for the main, payload 

triggered, cut down sequence. This cut down sequence is a responsibility of the LSM and 

will be further described in the microcontroller firmware section of this chapter.  

The GPS outputs RS-232 serial communication at 4800 baud. The GPS output 

signal voltage is not standard RS-232 (+-12V). The signal output voltage is equal to the 

power input voltage of the GPS (+5V). It is also at RS-232 polarity, meaning the voltage 

output is ± 5V. The LSM microcontroller cannot read RS-232 serial, so it must be 

converted into TTL (0 to 5V) polarity before it is connected to the microcontroller. The 

circuit in Figure 5.2 converts the RS-232 GPS signal into a TTL polarity signal that can 

be received by the microcontroller. The following portion of this section will describe the 

signal conversion circuitry and its use. 

64000 Bytes/ EEPROM × 8 EEPROM ' s

30 Bytes/ sec× 3600 sec /hr
= 4.74hrs
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Figure 5.2 Circuit Used to Convert GPS Serial Signal to TTL 

 

 

The GPS signal is connected to the main board through a 3 pin male header, and a male 

servo connector. The RS-232 GPS signal comes in on pin 1 of the header, and is 

grounded through pin 3. The grounding connection is optional, because the GPS is 

grounded to the system battery through the TinyTrak4. The signal comes in to the circuit 

through a 1KΩ resistor. This resistor is only needed if the GPS signal is needed by the 

TinyTrak4 and may need to be changed if the TinyTrak4 internal circuitry changes. The 

Diode D1 and resistor R16 are used to ground the negative portion of the GPS signal. The 

transistor, T, is an NPN transistor. It is used to invert the remaining 0-5V GPS signal. 

When the positive portion of the GPS signal is present at the base, the transistor is active 

and the output to the microcontroller, GPS_TTL/USART_RX(C), is grounded. When the 

0V portion of the GPS signal is present at the base, the transistor is not active and the 

output to the microcontroller is pulled high through the 5.7K, R15, resistor. The value of 
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the 5.7K resistor is very important, because it must be large enough so that the 

microcontroller sees a low state when the transistor is active, but not so large that the 

voltage at the microcontroller pin is not pulled high when the transistor is not active. It is 

best to test different resistor values for R14 and R15, and select resistors that operate well 

with the entire system.   

 

Dallas DS18B20 One Wire Temperature Sensor Connection and Use 

 The DS18B20 Temperature Sensor, by Dallas Semiconductor (MAXIM), is a 

temperature sensor that communicates the temperature at the sensor, in Celsius, using a 

digital communication known as one wire communication. A full explanation of one wire 

communication protocols is beyond the scope of this paper. However, it should be 

understood that each one wire device is programmed by the manufacturer to have a 

unique, 64 bit, Rom ID. This allows many one wire devices to be connected to the 

microcontroller through the same wire. To receive data from a specific one wire device, 

the receiving device targets the desired device Rom ID and then retrieves the data 

associated with that device. The name one wire comes from the fact that the device uses 

only one wire to communicate and power the device. Actually, despite its name, the 

device uses two wires, a power/data line and a ground.  

 Although one wire devices can communicate using only one wire, sometimes it is 

best to use more than one wire because some complications can arise when using long 

leads and one wire circuitry. The DS18B20 temperature sensor can be connected in either 

a one wire configuration, or it can be connected using two (three) wires. The three wires 
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are ground, power (+5V) and the signal wire. This means that power is supplied to the 

device through a pin other than the signal pin. With this configuration, there are fewer 

concerns to running multiple devices on the same data line, or having long distances 

between the devices and the microcontroller. The only unique connection that must be 

made for the device to operate properly is a 4.7KΩ resistor between the data and power 

line. 

 Currently the LSM microcontroller firmware is configured for use with four 

DS18B20 devices. One sensor is mounted on the main board. One sensor is mounted on 

the Balloon Board that is placed inside the balloon during flight. The other two sensors 

have been mounted to a typical servo wire and male servo connector so that standard 

servo extensions may be added and the temperature sensors may be placed wherever 

needed. If a temperature sensor is not connected, the LSM microcontroller firmware 

program will operate correctly, except that the value recorded for the not connected 

temperature sensor will always be -1. The DS18B20 temperature sensor is specified to 

have an accuracy of 0.5˚C between -10˚C and +85˚C. The default temperature resolution 

is 12 bit, which corresponds to 0.0625˚C. The microcontroller firmware program has 

been set up to ignore the decimal values because the temperature accuracy is reduced at 

temperatures below -10˚C. The temperature values are recorded by the LSM 

microcontroller as short integers. This means that the recorded values are integers 

between -128 and +128.  
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Honeywell ASDX 015A24R Pressure Transducer Connection and Use 

 The Honeywell ASDX 015A24R Pressure Transducer is a fairly standard analog 

pressure transducer. This device is connected using three wires, Power, Ground, and 

Vout. The pressure transducer is powered by the LSM system voltage of +5V. The output 

of the pressure transducer, Vout, is proportional to the input voltage and varies with 

changes in pressure. The LSM uses two ASDX pressure transducers. One of the pressure 

transducers is mounted on the Balloon Board and is used to sense the pressure inside the 

balloon. This transducer has a relatively long lead that is used to connect the transducer to 

the main circuit board. Therefore, it is very important that this pressure sensor be 

calibrated with the lead in place. Ideally, the resistance change of the wire due to changes 

in temperature, at the current output of the transducer, would be taken into account. 

However, changes in the voltage due to these factors will probably be small compared to 

the 10 bit resolution of the microcontroller analog to digital converter. So, calibration at 

room temperature with the lead in place should yield sufficient accuracy. 

 The other pressure transducer is mounted on the main circuit board. This pressure 

transducer is used to sense the local atmospheric pressure around the balloon payload.  

This pressure transducer receives the atmospheric pressure through tubing that runs to 

ports that are located on all sides of the balloon payload. The pressure on each side of the 

balloon payload is physically averaged by connecting all of the port tubes to a small 

reservoir. The pressure transducer is also connected to this reservoir. It is important that 

the pressure be an average of all sides of the balloon payload because when the balloon is 

falling the pressure on the side leading the descent will be much greater than the pressure 
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on the trailing side. Therefore, measuring the pressure on only one side of the balloon 

payload would, most likely, not give pressure readings that could accurately be use for 

determining altitude. 

 In the event that the GPS does not have a valid fix on the payload location, the 

main board mounted pressure transducer is used as the basis for a secondary, pressure 

related, cut down sequence.  These cut down sequences will be discussed in the 

microcontroller firmware portion of this chapter.  

 

Microchip PIC 18F2520 Use and LSM Firmware 

 This section will discuss the circuitry and the three firmware programs associated 

with the LSM microcontroller. The LSM microcontroller receives input from the 

temperature sensors, pressure transducers, GPS receiver and Servo Driver Module. The 

data is received, formatted, and then written to the LSM external EEPROM array.  Both 

the microcontroller circuitry and the firmware programs used to operate the LSM will be 

discussed in this section. Figure 5.3 shows the complete circuit schematic for the LSM, 

excluding the LSM EEPROM array and the GPS connection and conversion circuitry. 

The LSM EEPROM array circuit diagram can be found in the EEPROM Array 

Connection and Use section of the High Speed Module chapter. The GPS connection and 

conversion circuit diagram can be found in the LSM GPS section of this chapter. The 

other connections and components, specific to the LSM, will be discussed in this section.  
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Figure 5.3 Low Speed Module Microcontroller Circuit Diagram.  

 

 

 The power for the entire module is supplied through regulator Reg4, by 

connecting the +8V flight battery to male pin header Bat3. A red LED, located next to the 

regulator, is used to show that the module is being powered. The six pin male header SV5 

is used to program the microcontroller by connecting it directly to a PICkit 2. The five 

pin header SV3 is used to receive UART transmissions from the microcontroller. This is 

done by using the PICkit 2 programmer and the PICkit 2 software UART tool. Three pin 

male headers OW_2, OW_3 and OW_4 are used to connect the one wire temperature 
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sensors. The placement of these sensors on the three pin headers does not matter. The 

other one wire temperature sensor is soldered to the board and located in the upper left 

quadrant of the schematic.  The main board mounted pressure transducer is connected 

using two 8 pin IC sockets placed side by side (PRESSURE_SOCKETS). A small 

amount of low temp hot glue may be used to better secure the transducer to the socket. 

The Balloon Board pressure transducer is connected using the 3 pin male header 

BAL_PRESS. The microcontroller is connected to the EEPROM array through wire nets 

SDA and SCL. Nets TIN_1, TIN_2, TIN4, and TIN_8 are connected to the HSM and are 

pulled low through 10K resistors located on the HSM side of the schematic. 

Microcontroller pin 4 can be used later to connect an additional analog or digital device. 

The current microcontroller firmware would have to be changed to include this 

expansion. 

 Three programs have been written for the LSM. The first program, 

Low_Speed_Record.bas, is used to record values collected throughout the balloon flight 

from the various LSM devices. The second program, Low_Speed_Read.bas, is used to 

read the values collected in the EEPROM and to write these values to the screen or a file, 

via a PICkit 2 and the PICkit2 user software. The third program, EE_Clear_LS.bas, is 

used to write 0's to all the EEPROM addresses of the eight EEPROMS contained in the 

LSM EEPROM array. These firmware programs have been written using the Swordfish 

Basic compiler language.  

 It is not possible to download the three programs to the LSM 18F2520 

microcontroller at the same time. The 18F2520 must be loaded with the program that is to 
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be used. All firmware programs used with the LSM output UART serial communication 

at a rate of 4800 bits per second.  

 The Low_Speed_Record.bas program is used to record data during the balloon 

flight. This program's purpose is to collect data from the various LSM data sources and 

then write this data to the LSM EEPROM array. This program consists of the following 

three sections: header, subroutines, and main program.  

The headers used for the three LSM firmware programs are very similar to the 

headers of the other module firmware programs. The header contains general information 

about the program, names of other programs that are included, dimensioning of variables, 

and aliasing of the microcontroller pins. The general information section of the header 

contains notes on the firmware, the device name the firmware is meant for, the oscillator 

speed, and oscillator settings. The include portion of the header contains information 

about other .bas program libraries that will be called upon throughout the firmware. 

These included library programs were not written uniquely for this project. The next 

portion of the header contains lines of code that dimension the variables that will be used, 

and gives names (aliases) to the Input/Output pins. 

 Thirteen subroutines are used by the Low_Speed_Record.bas firmware program. 

These subroutines are labeled Timer, Release, Parse, Header, Print, GetGPS, FixInd, 

SenCHK, Pointer, Init, Record, GetData, and CheckK. These subroutines perform the 

major tasks the firmware is responsible for and are called, in the appropriate order, by the 

main program. 
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 The Init subroutine is used to initialize all variables to 0. This is very important, 

especially when performing bit writes to variable locations. When the microcontroller is 

programmed or when the program begins, the flash memory variable locations may not 

necessarily be cleared. The Init subroutine clears these addresses, making them ready to 

use. 

 The SenCHK subroutine is used to check for the one wire sensors, check the 

initial output voltage of the pressure transducers, check the reset pin, and initialize the 

digital input/output pins to either input or output. The results of each check are output to 

the screen using the UART interface and can be used to determine if the module 

components have been connected correctly and are operational. The SenCHK subroutine 

also checks the EEPROM array connection and operation by writing a value to address 0 

of each EEPROM and reading the address. If the check determines that an EEPROM is 

not working, a STOP message is sent to the screen along with the EEPROM number that 

is not functioning properly. Detecting a faulty EEPROM will not stop the program from 

continuing. 

 The Pointer subroutine checks the state of the reset pin connected to LSM 

memory reset switch SW3. The LSM reset switch performs the same function for the 

LSM as the HSM reset switch performs for the HSM. If the switch is in the off position, 

the LSM microcontroller begins writing data to the first EEPROM at the first address and 

the release variable Rstat is set to 0. If the switch is in the on position the last written 

memory address, EEPROM, and Rstat values are restored from the internal EEPROM 

and the microcontroller begins recording data at the last saved data point. This portion of 
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the program also has an if statement that detects the initial “FF” state of the internal 

EEPROM and sets the restored variable values to 0, if this condition is detected. With the 

Reset switch in the off position the system is protected from writing over already stored 

data in the event of a system reset due to a momentary loss of power or malfunction.  

 The Header subroutine outputs column header labels to the screen. These column 

headers label the data output to the screen by the Print subroutine. The Print subroutine is 

used to output the data collected to the screen in tab delimited format. The values output 

to the screen are used to check proper function of the LSM sensors. The Print subroutine 

should be commented out before the actual flight to allow for maximum program 

efficiency and to make certain that the program has ample time to perform all tasks in 

between receiving GPS strings. 

 The GetGPS subroutine is used to determine when a new GPS string has been 

received. If a GPS string has been received, the GetGPS subroutine returns the string 

variables associated with the data that was received. If a string has not been received then 

no action is taken. The received string data cannot be immediately written to the 

EEPROM because a string variable is larger than a decimal variable. To be written to the 

EEPROM the collected GPS string variables must be converted into decimal variables.  

 The Parse subroutine converts the string variables returned from the GetGPS 

subroutine into byte, word, or long word type variables. Once converted, the variables are 

ready to be broken down into byte size variables and written to the EEPROM array. 

 The GetData subroutine is used to collect new values from the pressure 

transducers, temperature sensors and digital pins. The values received are in byte or word 
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format and only need to be broken into byte size values to be written to the EEPROM 

array. A 15 millisecond delay is used in between readings of the one wire temperature 

sensors to improve the chances of receiving accurate data from these sensors. 

 The Record subroutine writes both the converted GetGPS variables and variables 

returned from the GetData subroutine to the EEPROM array. The function 

ExtEEPROM.Write2 function is used to perform each write. Unlike the 

ExtEEPROM.Write function, the ExtEEPROM.Write2 function contains a 10 

millisecond delay to allow time for the EEPROM to make the write. This delay is 

mandatory when writing to an external EEPROM. Variables that are larger than one byte 

are broken up by calling on the specific bytes within that larger variable. The bytes that 

make up the variables are written to sequential addresses. These variables are later 

reassembled by the LS_Read.bas firmware program. Other details about this subroutine 

are explained in the EEPROM array section of this chapter. 

 The FixInd subroutine is quite short and simply checks to see if the GPS fix 

variable returned by the GetData subroutine is greater than 0. If this value is greater than 

0, the FixInd sets the LED2 pin high. This pin is connected to a green LED that can be 

checked to be sure the GPS has a fix before the balloon payload is launched. If the GPS 

does not have a fix, the returned fix value is equal to 0 and the green LED is not lit. 

 The Release subroutine is used by the LSM main program to sense when to send 

release commands to the SDM. Two release states can be commanded by the LSM. These 

states can be detected by the LSM through either the GPS data (if fix>1) or by reading 
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the board mounted pressure transducer in the event that the GPS does not have a fix 

(fix=0). 

  The GPS trigger portion of this subroutine first checks to determine if, according 

to the GPS altitude, the balloon has fallen 10 meters since the last reading was taken. If 

this has occurred, the subroutine does two things. First, it updates the Fall variable. The 

Fall variable is used to determine how far the balloon has fallen in total. When this 

variable gets to 300, signifying a fallen distance of 300 meters the balloon release servo 

position is commanded. The second action that takes place, once the balloon has fallen 10 

meters, is that the address associated with the decrease in altitude is reset and stored in 

the FallStart variable. If the altitude continues to decrease at a rate of at least 10 meters 

per second, the FallStart variable is constantly reset. If the GPS altitude begins to 

increase, the FallStart variable is not reset. There is a second if loop in the Release 

subroutine that waits for a period of 5 seconds without detecting a fall and then resets the 

Fall variable. This means that in order for the balloon release to be triggered from the 

LSM GPS data, the GPS must have a fix and the balloon must have fallen at least 300 

meters in 10 seconds. If a fall is detected, but the payload does not fall 300 meters in 10 

seconds, the balloon release is not triggered. The GPS triggers a parachute release if the 

balloon release has been triggered, and the altitude is below 21,336 meters (70,000 ft).  

 If the GPS does not have a valid position fix, the pressure release portion of the 

Release subroutine is activated.  This portion of the subroutine uses the readings taken 

from the on board pressure transducer to detect rises in pressure, signaling that the 

balloon is falling. If the pressure has risen continually for 10 seconds the balloon release 
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is triggered. If a pressure decrease is detected during that time, one second is added to the 

time for which continually increasing pressure readings must be received. The parachute 

release is triggered by the pressure portion of the Release subroutine when the balloon 

release has been triggered and 6 pressure readings corresponding to altitudes less than 

70,000 feet are detected.  The pressure portion of the Release subroutine is currently 

commented out because inaccuracies are suspected in the calibration of the on board 

pressure sensor.  

 The Timer subroutine uses the incoming GPS data to count one minute and then 

increase the Tstat variable and change the state of the Tstat pins used to synchronize 

timing with the HSM. 

 The CheckK subroutine is used to trigger a data collection sequence if data has 

not been received from the GPS after checking for it 88752 times (3 seconds without 

data). When triggered, this subroutine places a GPS error bit in the WRStat variable that 

is recorded and can later be read. This subroutine also alternates both LED's very rapidly 

to signify that no data from the GPS is being detected, possibly due to a loose or missing 

connection. 

 The Main portion of the Low_Speed_Record.bas firmware program calls on the 

subroutines in the appropriate order. It also performs a few system initialization tasks. 

First, this portion of the program disables the MCLRE pin, so that the microcontroller 

cannot be reset by this pin. Then the pins used for analog reception, and the pins used for 

digital reception/transmission are set (ADCON1). Values are then written to the special 

function register ADCON2 to set microcontroller timing associated with the internal A/D 
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converter. Setting the ADCON1 and ADCON2 registers is quite tricky and is 

microcontroller model specific. The microcontroller data sheet should be used to ensure 

that the proper values are written to these registers.  

 Once the general system setup is complete the main program flashes both the GPS 

fix LED and the status LED, and outputs a UART transmission that signifies the program 

is running. Then the variables are initialized and the sensors are checked using the Init 

and SenCHK subroutines. The recorded variables are then restored, or not, using the 

pointer subroutine and the Header subroutine is run to output data column headers to the 

screen.  

 The next portion of the program runs inside an infinite loop. The GetGPS 

subroutine is constantly run. When a new data set is detected, signifying one second has 

passed, the program calls on the Parse, GetData, Print (if not commented out), Record, 

FixInd, Release, and Timer subroutines, in that order. If new GPS data is not detected 

(valid or not) the K timeout will trigger and data will be collected approximately every 3 

seconds. When the K timeout is triggered the Tstat pins will also be updated, but at a 

slower rate.  

 The Low_Speed_Read.bas LSM microcontroller firmware reads the external 

EEPROM array and outputs this data to the screen or file using 4800bps TTL serial, 

PICkit 2, and the PICkit 2 software UART tool. This program also unpacks and 

reassembles all variables that had been modified before the values are sent to the screen, 

or file. The columns output by this program are shown and explained in Table 5.1. 
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Table 5.1 Variables Recorded By and Output from the LSM. 

 

Variable Description 

Fix  Variable used to signify the type of fix associated with the GPS position 

data 

Time GPS time received from GPS receiver 

Sats Number of Satellites the GPS is tracking (max 12) 

Lat Non decimal portion of the GPS Latitude 

LatDec Decimal portion of the GPS Latitude 

Long Non decimal portion of the GPS Longitude 

LongDec Decimal portion of the GPS Longitude 

Alt Altitude reading received from the GPS (in meters) 

Speed Ground speed received from the GPS (in knots) 

Heading Heading received from the GPS 

Press Analog voltage reading taken from the pressure transducer located on the 

main board  

BPress Analog voltage reading taken from the pressure transducer located on the 

balloon board 

BoardT Temperature reading taken from the temperature sensor mounted on the 

main board 

BallT Temperature reading taken from the temperature sensor mounted to the 

balloon board 

T2A Temperature reading taken from the T2 sensor  

T3A Temperature reading taken from the T3 sensor 

LSMstat Release stat variable determined by LSM 

SDMstat Release stat variable received from the SDM 

Tstat Timing variable used to synchronize the LSM and HSM 

GPSerr Value of 1 signifies that GPS data was not received and the K timeout 

triggered collection of the data set 

 

 

 The EE_Clear_LS.bas LSM microcontroller firmware writes 0's to every address 

in the EEPROM array. This clears all data that is held in the array. It is recommended 

that this program be run before each flight to clear the EEPROM and keep from 

improperly assigning data sets. 
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CHAPTER VI 

 

GROUND STATION MODULE (GSM) 

 

 

The Ground Station Module, or GSM, is used to receive information sent from the 

payload by the GPS/Telemetry Module and to send commands to the balloon payload. 

The Ground Station Module consists of the following components:  

 Laptop Computer 

 UIView software (requires ham radio license)  

 TinyTrak4 – used as receiving KISS TNC 

 Power Inverter – used to supply power to laptop during tracking. 

 Radio Transceiver – Kenwood TH-K2 – Receives/Sends Data From/To 

Payload 

These components are connected as shown in Figure 6.1. Figure 6.1 shows the general 

flow of data throughout the system main components. The system is designed to run off 

of a chase vehicle 12V power supply. This enables the payload to be stalked on the 

ground by a recovery team. The Power inverter component is used to convert the 12V DC 

chase vehicle voltage to 120AC voltage for use with the computer and radio power 

supply. It is best to check that the chase vehicle alternator is capable of running these 

devices and that the port supplying the 12V supply (cigarette lighter) is capable of 
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handling this level of current draw.  It is always best to have a few spare fuses for the 

chase vehicle 12V port circuit during balloon payload tracking. Power for the TinyTrak4 

TNC can be supplied from a separate 7-12V DC battery, or it may be connected to the 

chase vehicle 12V port. 

 

 

Figure 6.1 Ground Station Module System Diagram 

 

 

The GSM receives radio transmissions that are packaged by the TinyTrak4 

payload TNC. These data transmissions are received by the ground station radio 

transceiver and unpackaged by the ground station TinyTrak4. The TinyTrak4 sends the 

data to the GSM computer through a serial port and a standard null modem RS-232 cable. 



 

 101 

The UIView program is run on the computer to log and display the data received and to 

display the location of the balloon payload on a map. The data collected can be used to 

assess the condition of the balloon payload. The position information is used by the 

ground team to stalk the payload during flight, and to retrieve the payload after the flight. 

In the event that the data transmitted by the balloon payload indicates a payload system 

malfunction the ground station radio transceiver may be used to trigger release of the 

payload balloon or parachute, by transmitting the appropriate DTMF tone sequence to the 

payload. The next section of this chapter contains a more detailed setup discussion of the 

GSM components. 

 

GSM Component Setup and Configuration 

 The GSM is fairly easy to setup. Unlike the setup and configuration of the 

payload modules, the setup of the GSM can be done with minimum circuitry and 

programming knowledge. Setup of the GSM Transceiver involves changing only one of 

the transceiver default settings. This is done by accessing the transceiver menu and 

changing the default state of menu item 17 (APO, Automatic Power Off) to Off. This 

setting disables the transceiver power saving automatic shut off function. If this setting is 

not changed the transceiver will shut off after a period of time. 

 Setup of the TinyTrak4 consists of simply downloading the KISS TinyTrak4 

firmware to the GSM TinyTrak4. This firmware is used to receive KISS TNC 

transmissions and to send them to the connected computer serial port. A standard female 

to female 9-pin null modem adapter (Radio Shack Part No. 55010600) is used to connect 
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the TinyTrak4 to the GSM laptop computer serial port. If the GSM laptop does not have a 

serial port, a serial to USB adapter will need to be used in conjunction with the null 

modem adapter  

 Setup of the GSM Laptop Computer involves installing and configuring the 

UIView software. The UIView software license is free, but is only granted to people with 

a valid Ham radio license At this point it is a good idea to capture a few maps that cover 

the projected flight path of the balloon payload. Because the UIView program is 

constantly being updated it is best to consult the UIView website or forum for 

instructions on map capturing.  

 To communicate properly with the TinyTrak4 the program must be “pointed” at 

the TNC.  This can be done by opening the UIView program and choosing Setup-

>Comms Setup. This will open a window used to setup the communication port use to 

communicate with the TinyTrack4. The proper settings for use with the TinyTrack4 with 

the KISS firmware are located in Figure 6.2.  



 

 103 

 

Figure 6.2 Comms Setup Settings for UIView and TinyTrack4 TNC 

 

 

Once the Comm Setup is complete, it can be checked by first opening the UIView 

terminal window by selecting Terminal from the menu UIView menu bar. Then 

connecting the GSM and powering up the GPS/Telemetry module. Upon power up the 

GPS/Telemetry TNC will send a complete set of transmissions to the Ground Station. 

This transmission should be received by the Ground Station and appear in the UIView 

Terminal window as shown in Figure 6.3.  
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Figure 6.3 View from the UIView Terminal of Data Sent by Payload 

TNC  

 

 

The terminal window is a useful tool to use when tracking the balloon payload as well. 

From this tool the GPS coordinates may be captured and transferred to a mapping 

program that contains more detailed road maps. 

 Before a flight begins it is very important to start logging the data collected by the 

GSM TNC. This is done by choosing Logs->Start a Log. This setting creates a text file 

containing all the information collected by the TNC. When the flight has finished the log 

may be stopped and retrieved from within the UIView program folder. The location for 

the log file can best be found by performing a file search for the file name associated with 

the log file. It is usually found at the address C:\Program Files\Peak Systems\UI-
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View32\LOGS. Once found, the log file may be imported into a spread sheet program for 

analysis. 

 In the event that the Ground Station must trigger a cut down, the push to talk 

button must be pressed on the radio transceiver and the appropriate tones buttons must be 

pressed on the front of the transceiver. Currently, the DTMF cut down key is (C, *, 9) 

followed by either a 6, to release the balloon, or a “#” to release the balloon and chute. 

Once the parachute is released, the Servo Driver will set the chute release pin high and 

the last A/D value sent by the payload TNC will change from 000 to 999 signifying that 

the release all command has been received. 
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CHAPTER VII 

 

CONCLUSION 

 

 

This system has been designed as a solution for the data collection, control and 

telemetry needs of a high altitude balloon payload. This system combines the flexibility 

of microcontrollers with the availability of commercial off the shelf components to create 

a modular system capable of being modified, simplified or expanded upon. The flexibility 

and functionality of this design creates the foundation for development of further High 

altitude testing capabilities.  

The modular structure of this design allows for components and capabilities to be 

tailored to fit the needs of individual mission requirements. Separate microcontrollers 

were used for each module to allow for increased computational function and to allow for 

modules to have ample capability to be modified for future system iterations. 

 The payload box design and construction techniques create a buffer from the 

harsh environment. This buffer allows the system components to operate properly even 

when subjected to the low temperature and high shock loads that are associated with high 

altitude balloon flight. This and other parts of the system design were driven by the 

system requirements outlined in Chapter I. These system requirements are presented 

again in Table 7.1 and are matched with the system module or component designed to 

fulfill these requirements.  
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Table 7.1 System Requirements and Designed Solutions 

 

System Requirements Designed Solutions 

Data Collection I2C external EEPROM array 

Reduced Cost Modular System, PIC 

Microcontrollers 

Deployable Chute SDM, Release Mechanism 

Increased Reliability Altitude Chamber Testing 

IMU Data Acquisition High Speed Module 

GPS Data Acquisition Low Speed Module 

Temp/Pressure Acquisition Low Speed Module 

Automatic Balloon/Chute 

Release 

Low Speed Module 

Commanded Emergency 

Release 

SDM (DTMF tones sent from 

GSM) 

Ground Tracking GPS/Telemetry Module, GSM 

Telemetry GPS/Telemetry Module, GSM 

 

Table 7.1 shows how the system design aspects (modules) were directly driven by 

the outlined system requirements. Additional functionality was added because it did not 

interfere with the fulfillment of the targeted system requirements. 

 

Future Possibilities and System Improvements 

The system that has been discussed and explained is a baseline system that was 

built and tested. This system is an initial design iteration prototype and is intended to be 

improved upon as new technology, requirements, and better solutions are found. A few 

recommended system changes will be outlined in this section.  

 Changing a few basic components of the LSM, HSM, and Servo Driver module 

circuitry could greatly improve the stability of the circuitry. One change is to replace the 
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four +5V regulators to LDO (low drop out) regulators. This change will provide greater 

stability to the system voltages throughout the voltage range of the flight battery. This 

change is highly recommended, because it is quite inexpensive and prevents possible drift 

of the analog sensor voltages as the flight battery becomes discharged.   

 It is also recommended that decoupling capacitors be placed between the power 

and ground traces at each integrated circuit component. This will better filter the supply 

voltage and allow for a more stable supply for the different boards and components. A 

better supply voltage filtering system, possibly consisting of a capacitor array or possibly 

adding inductors, would greatly reduce the susceptibility of the system to outside noise 

and interference, such as that generated by the payload transceiver. Proper supply voltage 

filtering will also increase the longevity and reliability of all of the associated system 

components. 

 It is possible that greater in-flight telemetry range can be achieved through proper 

antenna selection. A no ground plane (NGP) antenna should improve the in-flight 

performance of the system without raising cost significantly. However, the possible loss 

of range, once the payload has landed should also be considered when deciding what 

antenna to use for the balloon payload transceiver. 

 The system presented is a stepping stone that is to be used as the basis for future 

development of the high altitude ballooning capabilities of the program. It has been built 

and the baseline functionality of the system has been proven. Future testing and design 

iterations are recommended to allow for further development of the components and 

implementation of better technology. The system, in its current form, fully fulfills the 
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outlined requirements, and has been tested to perform all the outlined and described 

tasks. 
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APPENDIX A 

 

BATTERY CURRENT/DUTY CYCLE ANALYSIS 
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Table A.1   Current Draw of the Various Components During a Nominal Balloon Flight 

 

Device  Description 
Consumption 

(A) 

Duty 

Cycle 

Number of 

Devices 

Amp 

Hours 

LED Red LED Regulator 0.0150 1.00 3 0.0450 

LED Yellow LED Status 0.0150 0.10 3 0.0045 

LED Green LED GPS Fix 0.0150 1.00 1 0.0150 

18F1320 

(p.247) 
SDM Micro 0.0150 1.00 1 0.0150 

18F2520 

(p.332) 
LSM, HSM Micro 0.0250 1.00 2 0.0500 

24LC512 

Active 

EEPROM (HSM, 

LSM) 
0.0004 0.05 16 0.0003 

24LC512 

Passive 

EEPROM (HSM, 

LSM) 
0.0001 0.95 16 0.0015 

015A24R Pressure Transducer 0.0060 1.00 2 0.0120 

DS18B20 Temperature Sensor 0.0040 1.00 4 0.0160 

TDK 75T204 DTMF Chip 0.0160 1.00 1 0.0160 

18X LVC GPS 0.0900 1.00 1 0.0900 

TH-K2A TX Transmit 2.0000 0.05 1 0.1000 

TH-K2A RX (Standby) 0.1000 0.95 1 0.0950 

HS-225MG 
Servo Active (No 

Load) 
0.3000 1.00 2 0.6000 

Sparkfun IMU IMU 0.0240 1.00 1 0.0240 

 

 

From this Table, the total current draw is 1.08 A-hr.  The battery selected for this 

system has a capacity of 5.2 A-hr and an estimated cold capacity of 75% of that value, or 

3.9 A-hr.  Using the cold capacity gives an estimated battery life of 3.6 hr. 
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