
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-1-2010

Development of a high altitude balloon payload data collection, Development of a high altitude balloon payload data collection,

telemetry, and recovery system telemetry, and recovery system

Nathan Michael King

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
King, Nathan Michael, "Development of a high altitude balloon payload data collection, telemetry, and
recovery system" (2010). Theses and Dissertations. 1411.
https://scholarsjunction.msstate.edu/td/1411

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1411&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1411?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1411&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DEVELOPMENT OF A HIGH ALTITUDE BALLOON PAYLOAD DATA

COLLECTION, TELEMETRY, AND RECOVERY SYSTEM

By

Nathan Michael King

A Thesis

 Submitted to the Faculty of

 Mississippi State University

 In Partial Fulfillment of the Requirements

for the Degree of Master of Science

 in Aerospace Engineering

in the Department of Aerospace Engineering

Mississippi State, Mississippi

May 2010

DEVELOPMENT AND TESTING OF A HIGH ALTITUDE BALLOON PAYLOAD

DATA COLLECTION, TELEMETRY,

AND RECOVERY SYSTEM

By

Nathan Michael King

Approved:

_______________________________ ____________________

Keith Koenig Randolph F. Follett

Professor of Aerospace Engineering Assistant Professor of Electrical

(Major Professor) and Computer Engineering

(Committee Member)

_______________________________ ______________________________

Jerry W. Bruce, II Bryan A. Jones

Associate Professor of Electrical Assistant Professor of Electrical

and Computer Engineering and Computer Engineering

(Committee Member) (Committee Member)

_______________________________ ______________________________

J. Mark Janus Lori Bruce

Associate Professor and Associate Dean for Research and

Graduate Coordinator for Graduate Studies

Aerospace Engineering

Name: Nathan Michael King

Date of Degree: May 1, 2010

Institution: Mississippi State University

Major Field: Aerospace Engineering

Major Professor: Dr. Keith Koenig

Title of Study: DEVELOPMENT OF A HIGH ALTITUDE BALLOON PAYLOAD

DATA COLLECTION, TELEMETRY, AND RECOVERY SYSTEM

Pages in Study: 113

Candidate for Degree of Master of Science

High altitude balloons are an effective, inexpensive and readily available conduit

for conducting near space and low Reynolds number experimentation. Experiments are

being developed that will use high altitude balloons as carriers for near space and low

Reynolds test vehicles. The first step in developing this capability is to create a system

that is able to log collected data and track and control a high altitude balloon payload. It

is also beneficial that this system be flexible enough to accept different sensor types,

communication methods and connection and release linkages.

 By combining the flexibility of microcontroller biased circuitry and the

availability of commercial off the shelf products an economical design solution to this

problem has been be achieved. Analysis of this system has been performed and the

design has been fabricated, tested and specially modified to withstand the extreme

conditions of high altitude flight.

Key words: balloon payload, data collection, high altitude balloon, telemetry

 ii

ACKNOWLEDGEMENTS

The author expresses his sincere gratitude to the many people without whose

assistance this thesis could not have been completed. First of all, sincere thanks is due to

Dr. Keith Koenig, my committee chairman, for the time and effort he spent to guide and

assist me throughout the project and the writing of this document. The author would also

like to thank Graham Mitchell of Digital-DIY and Brian Bremer for their help in the

development of the firmware programs.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ...v

LIST OF FIGURES ... vi

CHAPTER

 I. MISSION OVERVIEW AND SYSTEM BACKGROUND1

 Project Context ..1

 Payload Enclosure Design ...3

 Balloon and Parachute Release Mechanism ..6

 System Breakdown and Module Overview ...10

 Comparison to Previous Systems ..13

 PIC Microcontrollers ...15

 Battery Selection ...17

 Payload Environment ..19

 Thermal ...19

 Structural ...26

 II. GPS/TELEMETRY MODULE ...31

 Garmin 18X LVC GPS Receiver Connections and Settings33

 TinyTrak4 TNC Device Overview and Tracker Settings39

 Kenwood TH-K2AT Transceiver and Settings46

 III. SERVO DRIVER MODULE (SDM) ..48

 Hitec HS-225MG Cut Down Servo and PWM Explanation50

 TDK 75T204 DTMF Tone Decoder Chip Use and Connections52

 Microchip PIC 18F1320 and ServoDriver.bas Firmware54

 iv

 IV. HIGH SPEED DATA COLLECTION MODULE (HSM)62

 HSM Timing ..64

 EEPROM Array Connection and Use ...64

 Sparkfun IMU Description and Use ..67

 Microchip PIC 18F2520 Use and HSM Firmware70

 V. LOW SPEED DATA COLLECTION MODULE (LSM)79

 General Data Flow and LSM EEPROM Array Use81

 LSM GPS Connection and Use.. ...83

 Dallas DS18B20 One Wire Temperature Sensor Connection

 and Use ..85

 Honeywell ASDX 015A24R Pressure Transducer Connection

 and Use ..87

 Microchip PIC 18F2520 Use and LSM Firmware88

 VI. GROUND STATION MODULE (GSM) ...99

 GSM Component Setup and Configuration ..101

 VII. CONCLUSION ...106

 Future Possibilities and System Improvements...................................107

REFERENCES ...110

APPENDIX

 A. BATTERY CURRENT/DUTY CYCLE ANALYSIS112

 v

LIST OF TABLES

2.1 Pinout for Connecting a Garmin 18X LVC to a Byonics TinyTrak4. Colors

Correspond to Garmin 18X LVC Wire Colors.. 35

2.2 GPGGA and GPMRC Sentence Fields and Labels ...37

2.3 Listing and Brief Connection Explanation of All Connectors and Jumpers

 Located on the TinyTrak4 ..41

3.1 DTMF Chip Pin and Connection Descriptions ..54

4.1 EEPROM Pin and Connection Descriptions..67

5.1 Variables recorded by and output from the LSM ..98

7.1 System Requirements and Designed Solutions..107

A.1 Current Draw of the Various Components During a Nominal

 Balloon Flight ...113

 vi

LIST OF FIGURES

1.1 View from the Top of the Payload Box with the

 Payload Box Top Removed ...4

1.2 Side View Drawing of the Payload Box ..5

1.3 Side View Detail Drawing of Release Mechanism

 Design ..7

1.4 Top View Detail Drawing of Release Mechanism

 Design ..8

1.5 Release Mechanism Shown in Initial, Hold, Position..8

1.6 Release Mechanism Shown in Balloon Release Position9

1.7 Release Mechanism Shown in Parachute Release

 Position ..9

1.8 Payload System Breakdown and Information Paths ..11

1.9 Battery Pack Cell Configuration ..18

1.10 Temperature Time Histories for a Typical Balloon Ascent23

1.11 Altitude Profile of EOSS Balloon Flight May 9, 200924

1.12 Temperature Time Histories of EOSS Balloon Flight May 9, 2009................24

1.13 Figure 1.13: Calculated Temperature Time Histories for a Smaller Box

 with Heater. ..25

1.14 Drag Coefficient and Frontal Area Time Histories ..28

 vii

1.15 Balloon Descent with Parachute Deployment ...29

2.1 GPS/ Telemetry System Diagram ..32

2.2 Pin Assignment as Seen When Looking into a Female

 Serial Connector...35

2.3 Configuration Software with the Settings Used...36

2.4 PPS Pulse Depiction ..38

2.5 The TinyTrak4 without the Protective Enclosure.

 Photo from Reference 14. ..41

2.6 Screen Shot of the TinyTrak4 Tracker Configuration

 Software, Including the Settings Used ...43

3.1 Servo Driver Module System Diagram..49

3.2 Servo Arm Position as it Relates to the Received Pulse

 Length ..51

3.3 Servo Driver DTMF Chip Connection Schematic ...53

3.4 Complete Circuit Diagram for SDM..61

4.1 High Speed Data Collection Module System Diagram63

4.2 HSM EEPROM Array Wiring Schematic ...65

4.3 HSM Circuit Diagram, Excluding EEPROM Array ..71

4.4 Visual Representation of Package Subroutine Function75

5.1 Low Speed Data Collection Module System Diagram80

5.2 Circuit Used to Convert GPS Serial Signal to TTL ...84

5.3 Low Speed Module Microcontroller Circuit Diagram89

6.1 Ground Station Module System Diagram ..100

 viii

6.2 Comms Setup Settings for UIView and

 TinyTrack4 TNC ..103

6.3 View from the UIView Terminal of Data Sent by

 Payload TNC ..104

 1

CHAPTER I

MISSION OVERVIEW AND SYSTEM BACKGROUND

Project Context

It is the purpose of this project to serve as a preparatory step in the development

of a system to explore aircraft flight in the lower Martian atmosphere. An airplane can

provide information about Mars at levels of extent and detail that are intermediate to

those provided by orbiters and rovers. NASA has been interested in developing this

capability and has created one prototype vehicle that has undergone some Earth testing
1
.

The current project is intended to support additional research into this concept.

Mars airplane concepts need to first be tested on or near Earth, but in an

environment similar to what will be experienced at Mars. Nominal values of Mars

surface pressure and density are 14.6 lbf/ft
2
 and 2.93·10

5
 slug/ft

3
, respectively

2
. There

are only a few wind tunnels on Earth that can simulate these conditions for testing.

However, these values do correspond to conditions in the Earth’s atmosphere near

100,000 ft (more precisely, standard atmosphere at 110,000 ft and 102,000 ft,

respectively). Consequently, if an aircraft can be operated at altitudes near 100,000 ft in

the Earth’s atmosphere it will experience aerodynamic loads similar to those it would

encounter near the surface of Mars.

 2

It is extremely difficult for an airplane to takeoff from the surface of the Earth and

climb to 100,000 ft altitude. Only a few altitude record attempts by modified military

aircraft have actually achieved this height, although the extremely large (247 ft

wingspan) Helios unmanned solar airplane has ascended to 96,000 ft
3
. A small aircraft

needs assistance to reach this altitude; this assistance can be provided by a high altitude

balloon. For example, a half-scale version of the NASA proposed Mars aircraft has been

carried to 103,500 ft by a balloon, released, successfully flown and recovered
1
.

The present project focuses on the development of a high altitude balloon system.

This system, or subsequent generations of this system, will eventually be incorporated

into a high altitude balloon that will carry a fixed wing glider to altitudes near 100,000 ft

above the Earth. Of particular interest here are control, communication, sensor, data

acquisition and actuator subsystems.

The system discussed in this document is designed to be placed inside a payload

box instead of a glider and flown to approximately 100,000 feet, using latex, or other

high altitude balloon. At approximately 100,000 feet, the balloon ruptures and the

payload descends using a parachute. During the flight the payload system performs three

main tasks recording data, telemetering data, and releasing the balloon and parachute. To

perform these tasks, five in-flight subsystems, or modules, have been created. They are

the GPS/Telemetry Module, Servo Driver Module (SDM), Low Speed Module (LSM),

High Speed Module (HSM), and the Ground Station Module (GSM). Another module

exists on the ground and is used to receive the telemetered data and track the balloon,

while in flight.

 3

Payload Enclosure Design

High altitude ballooning is conducted throughout the world by a wide variety of

amateur as well as governmental and corporate organizations. As an example, Edge of

Space Sciences, or EOSS, is a non-profit worldwide organization that promotes amateur

and university high altitude ballooning
4
. EOSS provides guidelines on successful

strategies and methods for payload box and subsystem design and construction. The

design described here is guided by EOSS principles where appropriate.

Throughout the flight, the balloon payload will be subjected to temperatures

ranging from -60ºC to 30ºC. The balloon payload will also be subjected to moderate

turbulence and to atmospheric pressures as low as 0.1 psi. Constructing the payload box

to withstand these conditions requires a unique construction technique. Therefore, it is

recommended that the payload box be made of foam and covered in a plastic covering

such as Monokote. However, the payload box should have minimal gaps between pieces

to allow for maximum heat retention. The payload box should not be completely airtight

so that the internal box pressure does not differ greatly from the atmospheric pressure. If

the box is built airtight it might explode when subjected to very low atmospheric

pressures.

Because of the low temperatures that the balloon payload structure will be

exposed to, special considerations must be used when selecting an adhesive for

constructing the payload box and for mounting components. Most adhesives, such as

epoxy and super glue, become very brittle at low temperatures; in contrast low

temperature hot glue is able to withstand the low temperatures and maintain its bonding

 4

strength. Larger components are mounted within the balloon box using hook and loop

straps. When connecting components to a foam board using a hook and loop straps, it is

best to glue a small piece of wood (such as a tongue depressor) that will more evenly

distribute the force the strap will exert on the balloon. If the pieces of wood are not glued

in place, it is likely that the strap will pull through the foam and the mounted component

will become loose within the payload box.

 To minimize the possibility of component damage when the payload box contacts

the ground, the payload box has been designed with a piece of foam that runs crosswise

within the box. This allows the components to be suspended in the center of the box and

for them to be more protected from the cold and from landing damage. Figure 1.1 depicts

the payload box and the cross brace as viewed from above.

Figure 1.1 View from the Top of the Payload Box with the Payload

Box Top Removed

 5

 To distribute the shock load of the parachute deployment a metal bottom should

be added to the base of the balloon payload box. This metal piece will distribute the force

exerted by the parachute strings on the payload box and prevent the sudden motion of the

parachute deployment from pulling the mounting strings through the foam and “gutting”

the payload box. Figure 1.2 shows the payload box as viewed from the side.

Figure 1.2 Side View Drawing of the Payload Box

The FAA sets certain guidelines that must be followed when performing a balloon

launch. These guidelines are contained within Part 101 of the Federal Aviation

Regulations
5
. These guidelines set weight, density, construction and other regulations for

the operation of unmanned balloons. The specifics of the guidelines for launching an

unmanned balloon will not be discussed in this document. It is the responsibility of the

balloon operator to review and comply with these regulations.

 6

Balloon and Parachute Release Mechanism

 A typical high altitude balloon flight lasts approximately 3 hours. It takes about

two hours for the balloon to reach its maximum altitude and it takes about one hour for

the payload to descend with a parachute. To reduce the descent time, and the associated

drift, the current system incorporates a parachute deployment mechanism that is triggered

after the payload has reached its peak and then fallen through 70,000 feet. The balloon is

released once it has ruptured and the descent has begun. This prevents the balloon

remnants from entangling the parachute. Both the balloon release and the parachute

deployment are programmed to be automatically triggered. However, it is possible to

send a signal (through DTMF tones) from the ground station radio to trigger either the

balloon release or the parachute deployment.

The release mechanism is used to release the balloon and to deploy the parachute. The

release mechanism described, including the servo, represents two separate release

mechanisms. These mechanisms are located on opposite sides of the balloon. The two

release mechanism servos are connected to the same module output through a servo “Y-

harness”. Both mechanisms are operated using a standard hobby servo. (The details and

use of the servos will be discussed in Chapter 3.) The actual release mechanism consists

of a metal wire and a metal tube. The metal tube is mounted to a piece of wood that is

mounted to the balloon payload box. Two gaps are cut through the metal tube and

through the wood. A loop of string that connects the balloon to the payload box is placed

in the gap. A second loop of string that keeps the parachute packed is placed through the

second slit. The metal rod is then inserted through the tube, locking the loops of string in

 7

place. When a release is triggered, the servo retracts the rod and the loop of string is

released. Figures 1.3 and 1.4 show the details of the release mechanism. Figures 1.5, 1.6

and 1.7 show how the release mechanism operates using a side view perspective.

Figure 1.3 Side View Detail Drawing of Release Mechanism Design

 8

Figure 1.4 Top View Detail Drawing of Release Mechanism Design.

Figure 1.5 Release Mechanism Shown in Initial, Hold, Position

 9

Figure 1.6 Release Mechanism Shown in Balloon Release Position

Figure 1.7 Release Mechanism Shown in Parachute Release Position

 10

 Figure 1.5 shows the release mechanism in its initial position. In this position the

loops of string (not shown) are held in place by the metal rod. The balloon and parachute

are held in place by the string connected to the loops. To release balloon, the servo is

moved to its midpoint. This retracts the metal rod and allows the loop of string to pull

through the opening, releasing the balloon. This release mechanism position is shown in

Figure 1.6. Figure 1.7 shows the release mechanism in its final position. When a

parachute release or a release all is commanded the servo moves to its final position. In

this position the string holding the parachute to the side of the balloon is released,

deploying the parachute. The parachute is still attached to the payload by the loop of

string shown in Figure 1.2.

System Breakdown and Module Overview

 This section will discuss the organization of the payload box and give a general

description of the subsystems (modules). The payload data recording and telemetry

system has been broken down into four flight modules and one ground module. The flight

modules are contained within the payload box attached to the balloon and the ground

module is located on the ground. Figure 1.8 shows the different modules and the general

flow of information throughout the system.

 11

Figure 1.8 Payload System Breakdown and Information Paths

The Ground Station Module is connected to the GPS/Telemetry Module and the Servo

Driver Module by dotted lines, signifying that there is no physical link between GSM and

the other flight stations. Information is sent/received by the GSM by using a ham radio 2

meter transceiver. Information is exchanged among the flight modules through wire

connections.

 The Ground Station Module (GSM) is used to receive telemetered data from the

balloon payload. Among the data sent are the balloon’s ground track position and its

altitude. This data is used by recovery teams on the ground to track and recover the

balloon payload after the flight. The ground station may also trigger a release of the

balloon or the parachute in the event that the payload system malfunctions.

 12

 The GPS/Telemetry Module relays collected data to the ground station. The main

purpose of this information is to track and recover the payload. The GPS/Telemetry

module also relays payload temperature, payload battery voltage and one other analog

voltage to the ground.

 The Servo Driver Module (SDM) controls the release servo. The SDM receives

commands from the ground station that can be used to trigger a release or perform

another, yet to be determined action. The SDM may also receive release commands from

the Low Speed Module.

 The Low Speed Module (LSM) is the most complex module. It reads data from

various analog and digital sensors and records this data to an EEPROM array. The

recording rate is 1 Hz. The data can be downloaded and analyzed once the flight has

finished and the payload box is recovered. This module also provides timing information

to the High Speed Module.

 The High Speed Module (HSM) samples a 6 degree of freedom inertial

measurement unit (IMU). The IMU collects acceleration and angular rate information

about the balloon payload box. This information is recorded by the HSM to an EEPROM

array so that the data can be downloaded and analyzed once the flight has finished and

the payload box is recovered.

 13

Comparison to Previous Systems

 There have been two systems that were previously assembled and flown earlier in

the ballooning program. The first system consisted of a simple GPS/TNC module without

digital data telemetry. The only telemetry data (other than GPS) that was sent was an

analog temperature tone. This tone was generated using a 555 timer connected to a

thermistor. As the temperature changed, the thermistor resistance value changed and the

tone responded. The tone was received and analyzed on the ground using expensive

LabVIEW software.

The transmitter used in the first system, was a Kenwood TH-D7A. This

transmitter has an internal TNC. The cut down mechanism for this payload was a hotwire

cut down. During the flight, failures of the TH-D7A and the hot wire cut down occurred.

Transmissions from the TH-D7A were sporadic after launch and completely stopped after

20 minutes. It was later discovered that other ballooning programs had also experienced

reliability issues with the TH-D7A when used in similar systems.

 This flight failure, combined with the reliability and cost associated with the TH-

D7A component prompted a telemetry system redesign. The second payload system used

a TinyTrak3 TNC and a TH-K2A transceiver for telemetering data. The flight was

moderately successful. The payload was tracked to an altitude of over 90,000 feet.

However, the GPS telemetry signal was lost during the descent at an altitude of 20,000

feet due to battery depletion. This prevented recovery of the payload.

 These flights showed that a fully integrated, reliable and affordable system needed

to be designed, in house. It was also determined that it was necessary to develop an

 14

integrated, task specific system to achieve the goal of a stable, reliable balloon payload

system. A system comprised of both COTS (commercial off the shelf) and engineered

circuit components was developed to realize these goals, while reducing overall system

cost. A more specific battery analysis was also performed to remedy the problems of the

second flight.

 The system discussed here is improves on previous systems by providing a fully

capable telemetry, data logging, and communication solution. Costs have been reduced

through component selection. Previous systems contained no onboard data collection.

The new design records data from multiple data sources and sensors. The mechanical cut

down mechanism eliminates the power and fragility problems of a hot wire cut down.

Using the newly developed TinyTrak4 allows for building on the proven success of the

TNC system while adding the ability to telemeter other sensor data along with the GPS

data. Battery testing and current draw calculations were performed on this system to

reduce the probability of repeating the second flight failure.

 15

PIC Microcontrollers

 The SDM, LSM and HSM must be built from electronic components. A circuit

diagram and detailed system explanation is contained in the chapter of each module.

However, each one of these modules has one, very important, component in common.

The SDM, LSM and HSM all use a PIC Microcontroller to control the module. A

microcontroller is basically a very small computer that is capable of being programmed

and carrying out simple computing tasks. Microcontrollers have become very common

and are found in devices such as calculators, automobiles and televisions.

 A microcontroller must be loaded with an assembly language program. This

program is run once the microcontroller is powered. In the event of a power interruption,

the microcontroller will reset and run the program from the beginning. The assembly

programming language can be very hard to understand and follow. This is why assembly

compilers have been created. A compiler is simply a computer program that transforms a

program written in one computer language into another. Many compilers have been

created for use with the PIC microcontrollers. The Swordfish Compiler is a compiler that

converts code written in Swordfish BASIC (very similar to most forms of BASIC) into an

assembly program that can be run on series 18 PIC's. All of the code written for the

SDM, LSM and HSM is written in Swordfish BASIC and compiled using the Swordfish

Compiler. The programs written for the SDM and HSM can be compiled using the free

evaluation version of the Swordfish Compiler (Swordfish SE). The LSM record program

must be compiled using the full version of the Swordfish Compiler, because this program

uses a large amount of PIC RAM.

 16

 Once the program has been written in Swordfish BASIC it must be loaded onto

the microcontroller. Microchip, the makers of the PIC microcontrollers, provides a free

program to do this. It is named MPLAB. This project was completed using MPLAB IDE

V8.10. The MPLAB program must be setup to work with the Swordfish Compiler.

Instructions for this are included on the Swordfish Compiler website. Once the Swordfish

Compiler has been setup to run with MPLAB and a program to be downloaded to an 18

series PIC has been written, MPLAB is used to call on the Swordfish Compiler, compile

the program to assembly, and then download the program into the PIC.To do this, the PIC

must be connected to the computer running MPLAB through a PIC programmer. The PIC

programmer used for this project is the PICkit 2. This programmer can also be used in

conjunction with the PICkit 2 software to provide a UART interface with the PIC

microcontroller. The following is a list of the steps to programming and checking the

program run with a PIC.

 Write a program using the Swordfish editor.

 Connect the PICkit 2 to the microcontroller and to the computer.

 Open the MPLAB IDE program.

 Compile (Build) the program and program the microcontroller using MPLAB.

 Close MPLAB and Open the PICkit 2 software

 Open the PICkit 2 software UART interface to view UART communication

sent by the microcontroller.

 17

More information about using MPLAB, the Swordfish Compiler and the PICkit 2

software can be found through either the Microchip website, the Swordfish Compiler

Forum or through digital-diy.com. Most of the Swordfish programming libraries used in

the development of this system are available with the Swordfish compiler. The other

libraries have been developed by digital-diy.com. All of the libraries used are available

through the Department of Aerospace Engineering at MSU.

Battery Selection

 Possibly the most important component in the balloon payload box is the flight

battery. This battery provides power to all of the flight systems including all of the

modules, the release servo, the GPS and the radio transceiver. It is important that the

battery chosen be at a voltage that is compatible with all of these components and have

enough capacity to run all of these systems for at least 4 hours. It is also important that

the battery consists of a chemistry that is tolerant of cold temperatures and be light

weight. The battery chosen for use with the balloon payload system is a Lithium Ion 7.2V

5200mAh pack. This pack consists of four 3.6V 2600mah cells. These cells are wired in a

2S2P configuration, meaning that two sets of two cells are wired in series. Then the two

sets are wired in parallel. Figure 1.9 shows the battery pack cell configuration.

 18

Figure 1.9 Battery Pack Cell Configuration

It is important to test the system with the flight battery at the temperatures that are

expected during the flight. For this test, the completed system was taken to the

Gulfstream High Altitude Test Chamber in Savannah, GA. The entire payload box was

placed inside the high altitude chamber and turned on. For three hours the payload box

and the electronics inside were subjected to pressures and temperatures that simulated a

balloon flight to 100,000 feet and return. Once the simulation was complete, the once

fully charged payload system battery was allowed to stabilize to room temperature, and

then was recharged. During the recharge the payload battery received 1863mAh. This is

a good approximation to the amount of battery capacity that was used during the

simulation. According to the 3 hour test the battery should be able to power the payload

electronics for a period of over 8 hours, showing that the 7.2V 5200mAh Lithium Ion

battery pack is appropriate for use with the payload system. A secondary, component

buildup/duty cycle, analysis is provided in Appendix A.

 19

Payload Environment

Thermal

A major challenge faced by high altitude balloons is the low temperature that

exists at the altitudes at which they are intended to operate. An analysis of the

temperature in the payload box as the balloon and box ascend has been performed and is

described here.

The equation for temperature in the payload box as a function of time will now be

derived. The box is assumed to be a cube with constant thickness walls. Airflow into

and out of the box will be neglected. The fundamental equation is the energy equation

applied to a control volume which has a control surface composed of the interior surface

of the box. The analysis will be done for the balloon ascent.

Since the box has constant contents and size the energy equation reduces to

 (1)

where the source is heat dissipated by the electrical components within the box.

Conduction is heat conducted through the walls of the box.

The thermal energy is

 (2)

where M is the mass of air inside the box, Cv is the specific heat at constant volume of the

air in the box and T is the temperature inside the box. M and Cv are assumed to be

constant.

 20

The rate at which heat is conducted through the walls is

 (3)

where

 (4)

and Tatm is the local atmospheric temperature. The quantities k, x and A are the

conductivity, thickness and effective surface area of the walls of the box, respectively.

x, which is the

effective conduction length Lc. This length has been determined for rectangular boxes
6
 in

terms of their dimensions and is

 (5)

when evaluated for a cube with side S.

Equations (2) through (5) are substituted into Eq. (1) to give

` (6)

This is a first order, ordinary differential equation for the temperature in the box, T, as a

function of time.

One step remains before Eq. (6) can be solved. As the balloon climbs it will

experience a continuously changing atmospheric temperature. The atmospheric

temperature, Tatm, must be expressed as a function of time. This expression is found by

evaluating the following integral.

 (7)

 21

C in Eq. (7) is a constant of integration. The time derivative in Eq. (7) is evaluated using

the chain rule.

 (8)

The derivatives on the right hand side of Eq. (8) are obtained with the standard

atmosphere model and experimental data on balloon ascent rates.

The Earth’s temperature varies with altitude in a series of nearly linear segments.

The standard atmosphere model
7
 is

 for h ≤ 11,000 m

 for 11,000 m for 11,000 < h ≤ 25,000 m (9)

 for 25,000 < h ≤ 47,000 m

The temperatures at the end points of the segments are used to find the constant of

integration in Eq. (7). The segment temperature expressions also give

 for h ≤ 11,000 m

 for 11,000 < h ≤ 25,000 m (10)

 for 25,000 < h ≤ 47,000 m

The derivative dh/dt in Eq. (8) is the ascent rate of the balloon. Remarkably, a

typical small high altitude balloon has a virtually constant ascent rate of about 300

m/min
8,9

 until very near its peak altitude. Therefore, during the ascent

 (11)

 22

Equations (8) through (11) are substituted into Eq. (7) to give the temporal

variation in atmospheric temperature that the balloon will experience as it ascends. This

result is

 for t ≤ 36.7 min

 for 36.7 min < t ≤ 83.3 min (12)

 for 83.3 min < t ≤ 157 min

Equation (6) with Eqs. (5) and (12) has been solved for the case of a balloon

payload box that is 0.305 m on a side and has a wall thickness of 0.0254 m. The walls

are made of Owen Corning “pink” Foamular™ insulation board. This insulation has a

conductivity k = 0.03 W/(m K)
10

. The box contains 0.033 kg of air (based on standard

sea level conditions) at 15 C. The specific heat at constant volume is 717 J/(kg K). The

power dissipated is assumed to be 1 W. This is based on assuming that a 7.2 volt battery

is supplying an average of 0.4 amps to the systems in the box (see App. A) and that about

1/3 of this power is lost as heat. The solution of Eq. (6) for these conditions, done

numerically in Mathcad with a time step of 1 second, appears in Fig. 1.10.

 23

Figure 1.10 Temperature Time Histories for a Typical Balloon Ascent.

The heat from the electrical systems causes the box temperature to rise for a very

brief period of time. This heat is not sufficient to balance the conduction losses once the

balloon has gained a little altitude. Consequently, the box temperature follows the

atmospheric temperature with only a very small offset. The average air temperature is

below the operating values for typical electronic components (40 C) during much of the

ascent.

For comparison Figures 1.11 and 1.12 show results from a relatively recent EOSS

flight, EOSS-138
11

. The balloon was launched from near Greeley, Colorado on May 9,

2009 and carried a payload for the National Oceanic and Atmospheric Administration.

The altitude history appears in Fig. 1.11 and histories of internal and external

temperatures are shown in Fig. 1.12. No information is available on the payload box for

 24

this flight (nor for most of the other EOSS flights). Consequently, the internal

temperature sensor location and heater details are not known. That there is a heater is

fairly clear from the high internal temperatures.

Figure 1.11 Altitude Profile of EOSS Balloon Flight May 9, 2009.

Figure 1.12 Temperature Time Histories of EOSS Balloon Flight May 9,

2009.

 25

To gain a sense of the heater that would be required to create the temperature

shown in Fig. 1.12, the calculations have been repeated for a box that has 1/3 the volume

of the box used for Fig. 1.10. (The boxes used by EOSS tend to be considerably smaller

than the one used in Fig. 1.10.) A 5 W heater was added to the 1 W heat dissipated to

give a total source strength of 6 W. The result appears in Fig. 1.13.

Figure 1.13 Calculated Temperature Time Histories for a Smaller Box

with Heater.

There is a significant improvement in the internal temperature, although not to the level

reported by EOSS-138. The minimum temperature in Fig. 1.13 is at the limit of most

electronics, but may be tolerable. Judicious placement of a heater should eliminate

temperature concerns.

 26

Structural

The most severe structural situation the payload box will encounter in normal

operation is the sudden load imposed upon it when the parachute deploys. An analysis of

this situation has been performed to assess the adequacy of the design.

When the parachute deploys there will be a rapid increase in the aerodynamic

drag acting on the system. The increase in drag over the value that exists without the

parachute must be supported by the rope which encircles the payload box. The rope will

transfer this load to the foam box. If the stress applied to the box by the rope is too large,

the foam may collapse or be cut. The following analysis determines this stress and

compares it to empirical data for the foam used here.

The analysis is performed by integrating Newton’s second law for the

box/parachute system during the descent. The temporal variation of altitude, velocity and

drag are results of this integration. The drag increase during parachute deployment

creates an impulse acting on the payload box and this impulse is found. Finally, the

stress of the rope on the box is determined.

Newton’s second law applied during descent is

 (13)

Here M is the mass of the box/parachute system, V is velocity (positive up), t is time, is

the air density, CD is drag coefficient, A is frontal area and g is gravity. The air density

changes as the system descends and the drag coefficient and frontal area change as the

parachute is deployed. Variations in drag coefficient due to Reynolds number and

 27

compressibility effects are neglected in the present analysis. Reynolds number and

compressibility effects will make the chute opening impulse smaller. By neglecting these

effects the solution here is conservative in nature.

A second equation describing the descent comes from kinematics.

 (14)

Here h is altitude and is positive up from the ground. Equations (13) and (14) form a pair

of coupled, nonlinear, first order, ordinary differential equations for h and V as functions

of time. This system must be solved numerically.

Density variation with altitude is modeled here with a simple expression

commonly used in space vehicle reentry analyses
12

.

 (15)

Here 0 is sea level density, 1.225 kg/m
3
, and h0 is scale height, 7,386 m.

Prior to parachute deployment the box has a drag coefficient CDb and frontal area

Ab. After the parachute has deployed and the flow field has adjusted there are new

values, CDp and frontal area Ap. For the present analysis the drag coefficient and area

vary linearly with time between these limits during the deployment process as shown in

Fig. 1.14. The deployment begins at time tdi and ends at time tdf.

 28

Figure 1.14 Drag Coefficient and Frontal Area Time Histories.

Equations (13) and (14) have been solved for the following conditions.

These conditions are typical of small payload/parachute combinations. The deployment

time is based on experiments done at MSU which involved dropping payload/parachute

combinations from a helicopter. The parachute deployment altitude was chosen to give a

relatively severe deceleration load. For the solution the balloon starts its descent at

30,480 m (100,000 ft) and the parachute begins to deploy at 9,144 m (30,000 ft). The

integration is numerical (in Mathcad) and the time step is 0.1 second. The results are

shown in Fig. 1.15.

tdi tdf

CDb

CDp

tdi tdf

Ab

Ap

 29

Figure 1.15 Balloon Descent with Parachute Deployment.

In these results the payload velocity immediately prior to the parachute release is

199 m/s and the drag force is 28 N. At the end of the 5 s deployment process the velocity

has decreased to 11 m/s and the drag force is 32 N. The peak drag during the deployment

is 85 N.

For a conservative estimate it is assumed here that the drag during the deployment

process acts entirely on the parachute and is, therefore, transferred to the payload by the

rope contacting the two components. (In reality, some of the drag acts directly on the box

and will not be applied via the rope.) It is also assumed here that, because of the short

time of action, the effective force applied to the box by the rope is the average of the drag

during the deployment process, as given by Eq. (16).

 30

 (16)

Equation (16) gives 56 N for the trajectory in Fig. 1.12. The rope to be used will

be at least 3 mm in diameter and will span the box, which here is a distance of 305 mm.

These values give a stress distributed under the rope of 60,700 Pa. Experiments done at

MSU have shown that the material from which the payload box will be made can handle

concentrated linear compressive loads of more than 500,000 Pa before damage becomes

noticeable. The conclusion is that the payload box should be more than capable of

tolerating the deceleration stresses.

 31

CHAPTER II

GPS / TELEMETRY MODULE

The GPS / Telemetry Module is a part of the balloon payload that decodes GPS

signals received from the GPS satellites and relays the information to the ground station.

Along with the GPS data, other information is also sent to the ground station. The

information is received by the ground station and is used to track and monitor the balloon

payload. The GPS / Telemetry Module also provides GPS time information to the Low

Speed Data Collection Module.

The GPS / Telemetry Module is made of the following components:

 GPS Receiver – Garmin 18X LVC - Receives GPS signals and calculates

position

 TNC – TinyTrak4 - Packets GPS and other data for transmission

 Radio Transceiver – Kenwood TH-K2 - Transmits Data to Ground

Stations

These components are connected, as shown in the system diagram Figure 2.1, to form the

GPS / Telemetry Module. Figure 2.1 shows only the basic system configuration of the

GPS / Telemetry Module. The specific wiring details are located throughout the chapter.

 32

Figure 2.1 GPS/ Telemetry System Diagram

 Power is provided to the entire system through the eight volt (7.2V nominal),

Lithium Ion flight battery. Power for the GPS is regulated by the TinyTrak4 TNC to five

volts. This system is the simplest module located in the balloon payload. The GPS

receiver receives, decodes and sends GPS data to the TinyTrak4 and the Low Speed Data

Collection Module. The GPS information is split by simply connecting it to both the

LSM GPS input and the TinyTrak4 input. The TinyTrak4 also receives Analog Data from

other sensors. This data is then formed into an APRS packet and transmitted to the

ground station through the Radio Transceiver. This Module is quite simple to connect and

wire. The complex aspect of this system lies in configuring the components to work

together properly. The next three sections contain setup and connection information

relating to the three main components of the GPS / Telemetry Module.

 33

Garmin 18X LVC GPS Receiver Connections and Settings

 There are some aspects of GPS systems and receivers that must be understood

before the proper GPS receiver can be selected. GPS is a system that uses signals from

multiple satellites to determine a three dimensional position on or above the earth. These

signals are received by a GPS receiver that is mounted on the top of the balloon payload.

The GPS receiver then decodes these signals and computes a position. For security

reasons, GPS receivers that are available to the public can not report data if both the

altitude is above 60,000 feet and the speed is above 1000 knots
13

. This restriction is only

in effect if both the altitude and speed limits have been exceeded. Some GPS system

manufacturers comply with these requirements by not allowing their GPS receivers to

report position data if either the speed or altitude limit is exceeded. High altitude balloon

flights usually exceed 60,000 feet. Therefore, it is important to verify that the GPS

receiver used operates at altitudes greater than 60,000 feet. This is best done by

contacting the GPS receiver manufacturer

The GPS receiver chosen for this balloon payload system is a Garmin 18X LVC.

This GPS was chosen because of its small size, ease of configuration, and proven

capability of operation at over 100,000 feet. Firmware of the 18X LVC earlier than

version 2.80 contain a bug that would not allow position reporting of altitudes greater

than 60,000 feet. This bug was corrected and all later firmware versions operate

successfully above 60,000 feet.

The LVC version was chosen because it operates on

CMOS voltage levels (4-5.5 volts) and can communicate using either TLL or RS232

voltage level serial communication. The Garmin 18x LVC reports position data once

 34

every second and reports data in standard National Marine Electronics Association

(NMEA) sentences. NMEA is a standard communication protocol that is used by most

GPS receiver manufacturers. This GPS receiver comes from the factory with a factory

installed diagnostic connector. This connector will not work with the TinyTrak4 TNC. It

must be removed, exposing the bare wires. If necessary, the wire length of the GPS can

also be shortened at this time.

Connecting the Garmin 18X LVC to a computer or a TNC requires a female 9 pin

serial connector, a soldering iron, and solder. Figure 2.2 shows the pin assignment for the

female serial connector. This serial connector is soldered onto the Garmin 18X LVC

leads. Table 2.1 describes the connections that must be made for the Garmin 18X LVC

to be connected to either a TinyTrak4 or a computer. Wire color and pin assignments can

change; it is best to use the product data sheet as a reference to ensure proper connection.

The TinyTrak4 can be configured to supply +5V to the GPS through the J2 serial pin 4;

however, when the GPS is connected to a computer, pin 4 should not be connected to the

GPS and, instead, a +5V regulated power supply will need to be connected to the GPS

input power pin.

 35

Figure 2.2 Pin Assignment as Seen When Looking into a Female Serial

Connector

Table 2.1 Pinout for Connecting a Garmin 18X LVC to a Byonics TinyTrak4. Colors

Correspond to Garmin 18X LVC Wire Colors.

Pin Number Connection

2 GPS RX (White)

3 GPS TX (Green)

4 +5V (Red)

5 Ground (Black)

6,7,8,9 Not Connected

Once the serial connector has been attached to the GPS, without pin 4 being connected,

the configuration settings can be altered by connecting the GPS to a computer.

Configuration of the Garmin 18x LVC is done by first powering the GPS with a 5V

regulated power supply and then connecting the GPS to a computer.

 36

Figure 2.3 Configuration Software with the Settings Used.

Garmin X-Series Sensor Configuration Software is used to set the desired

configuration. This software is available from the Garmin support website. A screen shot,

including the settings used, is shown in Figure 2.3. Using the Garmin X-Series

Configuration Software, the Garmin 18x LVC can be configured to send up to 12

different NMEA format sentences. The 12 NMEA sentences are unique, may contain

different data and are usually ordered differently. Using the configuration software, baud

rates between 480 and 11520 may be selected. It is very important that the GPS receiver

is configured to send GPS data in a format and rate that are compatible with the devices

that will receive the GPS data. The GPS used in this particular system was set to transmit

 37

GPGGA and GPMRC NMEA sentences, at a rate of 4800bps. GPGGA and GPRMC

format sentence examples appear below.

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

NMEA sentence fields are located between coma delimiters. Table 2.2 describes the

fields located in the GPGGA and GPRMC sentence format NMEA, GPS sentences.

Table 2.2 GPGGA and GPRMC Sentence Fields and Labels

Field

Number

GPGGA GPRMC

0 NMEA sentence label NMEA sentence label

1 Time HHMMSS Time HHMMSS

2 Latitude Status

3 Latitude Hemisphere N or S Latitude

4 Longitude Latitude Hemisphere N or S

5 Longitude Hemisphere E or W Longitude

6 Fix Quality Longitude Hemisphere E or W

7 Number of satellites being

tracked

Speed over ground

8 Horizontal dilution of position Course over ground

9 Altitude Magnetic variation

10 Altitude units Magnetic variation

11 Height of geoid Checksum

12 Height of geoid units

13 Age of DGPS data

14 DGPS station ID

15 Checksum

At minimum, the GPGGA NMEA sentence must be sent because it contains

altitude data, whereas the GPRMC NMEA sentence does not contain altitude data. In

 38

addition to position, the GPRMC sentence contains ground speed and ground heading

information, whereas the GPGGA sentence does not contain this information

GPS signals sent from a satellite are often skewed by the troposphere. This skew

affects the accuracy of the GPS position information. To regain the lost accuracy, a

second signal can be sent to correct the GPS position information. This second signal is

referred to as a Differential GPS signal, or DGPS. The receiver is configured to use

WAAS method DGPS, if WAAS is available. If a WAAS signal is not available, the

receiver will not use other DGPS methods to increase the accuracy of the calculated

position.

This Garmin 18X LVC GPS is capable of being configured to output a pulse

every second. The pulse output timing is very accurate and is synched using GPS. This

pulse is referred to as a PPS (pulse per second). Because the PPS signal is synched to the

GPS satellite signal, it can be used as an external reference for timing of onboard devices.

Figure 2.4 further explains the waveform of this pulse.

Figure 2.4 PPS Pulse Depiction

 39

This pulse is sent from the GPS through the yellow wire. The length of the PPS pulse can

be set using the Garmin X-Series Sensor Configuration Software. Further details of the

PPS can be found in the Garmin 18X LVC datasheet.

Once configuration is complete, the GPS is disconnected from the computer and

the external 5V power source. The GPS power lead is then connected to serial pin 4 on

the female serial connector so that the GPS can receive its power from the TinyTrak4

TNC during flight operation.

TinyTrak4 TNC Device Overview and Tracker Settings

A TNC, or Terminal Node Controller, is a device that packs data so that it may be

sent using a radio. A TNC is very similar to a radio modem. The TNC used in the GPS /

Telemetry Module will receive GPS data from the Garmin 18X LVC and other analog

data sources, package it and send it to the Ground Station Module, using the radio

transceiver. The TinyTrak4 from Byonics was chosen because of its small size,

reliability, ease of use, and its ability to relay analog data along with the GPS

information. The TinyTrak4 is a TNC that is very small in size and is easily connected to

a GPS receiver, radio, and power supply. The GPS receiver is connected to the

TinyTrak4 through the serial connector that was described in the previous section. The

TinyTrak4 is connected to the power supply and radio transceiver by using the Byonics

HTK cable that is specially designed to connect the TinyTrak4 to radio transceivers made

by Kenwood.

 40

The TinyTrak4 requires a power supply between six and twelve volts. This supply

is connected to the Byonics HTK cable through the included power pole style connector.

However, because power pole connectors are not locking connectors these were replaced

by Tamiya RC locking style connectors. The Tamiya connector is readily available from

hobby dealers and is usually used in connecting remote controlled car batteries.

The TinyTrak4 is capable of supplying 5V, regulated, to the GPS. This eliminates

the need of adding a 5V regulator to power the GPS receiver. The TinyTrak4 must be

configured to supply power to a GPS by placing a jumper on the left side of JP6, located

in the upper right corner of the TinyTrak4. Figure 2.5 shows a TinyTrak4 without the

outer case and the locations of all connectors and jumpers. Table 2.3 provides a brief

description of the pins and how they are configured or connected. The connectors and

jumpers will be better explained throughout the chapter.

 41

Figure 2.5 The TinyTrak4 without the Protective Enclosure.

 Photo from Reference 14.

Table 2.3 Listing and Brief Connection Explanation of all Connectors

and Jumpers Located on the TinyTrak4

Connector /

Jumper

Description Connection

J1 Radio / Power Connector Connected to radio and power using the Byonics

HTK cable. Pin 4 Not Connected

J2 GPS / Computer Connector Connected to the GPS using a created serial

connector

J3 Alternate Power Input Not Used

JP1 Used to select Tracker configuration

(Primary or Secondary)

If grounded internally connected to J1 pin 4, Open

JP2 Analog Input Not Used

JP3 Analog Input Connected to LSM Chute release notification pin

JP4 Analog Input Not Used

JP5 Analog Input Internally connected to 2.2K pull up resistor, NC

JP6 Power Select for GPS Left two pins should be connected for 5V

JP7 Secondary Serial Select Jumpers Secondary Serial Port Not Used.

JP8 PTT mode select Jumper Shorted, for use with Kenwood radios

Open, for use with other radios

JP9 Digital Input Pins Not Used

R1 Transmit Audio Level Pot. Adjust as needed

R24 Temperature Sensor Calibration Pot. Adjust as needed to calibrate TinyTrak4 on board

temperature sensor.

 42

 The TinyTrak4 is a very versatile TNC. It can be configured for use as a ground

station TNC or a Payload TNC. When received, the TinyTrak4 contains only diagnostic

firmware. Its use as either a ground station TNC or Payload TNC is determined by the

firmware downloaded to the TinyTrak4. The firmware used for the payload system is

Tracker_v4.07. The Byonics Tracker firmware for the TinyTrak4 is very easy to use,

because it is configured using the included Windows based interface. This interface

allows two, completely independent, user determined, TinyTrak4 TNC configurations

(Primary and Secondary) to be loaded to the TinyTrak4. Jumper JP1 located on the

TinyTrak4 board is used to select between the two configurations. If the jumper is in

place the TinyTrak4 uses the Secondary configuration. If the jumper is not in place it uses

the Primary Configuration. Jumper JP1 will be used as an analog input, so the jumper

will not be connected. The GPS / Telemetry Module TinyTrak4 TNC Primary and

Secondary configurations will be set the same, because there is no need for the TNC to

change configurations and it is very important that the settings are correct.

 There are numerous settings that may be selected using the TT4 Tracker Config

configuration program. This section will give a brief explanation of the settings chosen

for the GPS / Telemetry Module. Figure 2.6 shows a screen shot of the

TT4TrackerConfig.exe program. A more in depth description of the TinyTrak4 Tracker

Configuration setting options is available from the TinyTrak4 Tracker documentation
13

The Alpha firmware, available from Byonics, may also be used to configure the

TinyTrak4 for use as a payload TNC, but it must be configured using a command line

interface through a terminal program, such as Tera Term Pro.

 43

Figure 2.6 Screen shot of the TinyTrak4 Tracker Configuration

Software, Including the Settings Used.

The settings outlined and shown in Figure 2.6 are preliminary settings for the

tracker firmware and should be checked with the data sheet so that the TinyTrak4 is

configured for desired operation. The first TinyTrak4 Tracker setting that must be chosen

is the call sign. This is the user’s amateur radio call sign. An amateur radio call sign is

given by the FCC upon completion of the FCC technician license test. A call sign is

unique, proprietary, and should not be used by anyone but the assigned user.

Unauthorized use of amateur radio frequencies or an individual’s call sign may lead to

 44

fines and/or a prison sentence. The call sign is used to determine which station is sending

a message. It is an important setting for the GPS / Telemetry Module because multiple

stations may be sending data and the data needs to be identified, as coming from the

payload.

The next setting is the Digi Path setting. This setting tells repeaters on the ground

that might pick up the signal whether or not to re-send the signal. The recommended

setting from Byonics is WIDE1-1, WIDE2-1. This setting will be used for the Balloon

Payload. The Symbol and Table/Overlay settings determine what icon will be displayed

by the ground station's APRS program. The O symbol and / table correspond to a hot air

balloon. A high altitude balloon is a weather balloon not a hot air balloon, but there is not

a weather balloon symbol and no one (or almost no one) would believe a car is at 100,000

feet.

The Timing section contains settings that relate to transmit timing. This section

determines the rate that data is sent and other timing aspects. The Status portion of the

TinyTrak4 Tracker settings allows a text string to be added to the end of a position

transmission. This setting will send the text “MSU Balloon”, followed by an e-mail

address. The e-mail address can be used after the flight to receive reports from other

amateur radio operators that may have received transmissions from the balloon payload.

 45

The Telemetry section of the TinyTrak4 Tracker software contains settings that

relate to the telemetry data that will be sent by the TNC to the ground station. The ground

station will receive a string similar to the following:

T#002,297,610,999,999,560,00000000

The first three digit number following the “#” is the reading number. This number is

incremented for each telemetry transmission. The next number is the system voltage. To

convert the received voltage number into an actual voltage, multiply the number by

0.0272. The supply voltage in the sample string is 8.08V. The next number “610” is the

reading associated with the temperature. To convert this reading to a Celsius Temperature

divide it by 2.04 and then subtract 273. The temperature that corresponds to the reading

in the sample string is 26 degrees Celsius The fourth, fifth and sixth numbers are

associated with the voltage readings of pins JP5, JP4 and JP3, respectively. It appears that

pins JP4 and JP3 are connected, although this is not discussed in the TinyTrak4 manual.

At this time only pin JP5 is connected to an external component. Other telemetry

configurations can be used; it is best to determine the telemetry needs and use the TT4

Tracker manual to properly configure the Telemetry unit.

The field of check boxes at the upper right portion of the Windows interface is

used for setting special settings. It is important that the Send Altitude and Timestamp

HMS settings are checked. The LED disable option was chosen to save battery life. All

other options on the interface should not be enabled. Not selecting the send NMEA

allows the TinyTrack4 to format the data into a more readable format.

 46

With the settings shown in Figure 2.6, the TinyTrack4 will transmit a string of the

form shown below, to the ground every 10 seconds.

00:20:11R KE5FNM>APT407,WIDE1-1,WIDE2-1

/062408h3510.12N/09003.20WO000/000/A=000000

This string is transmitted using APRS standards and is decoded by the ground station to

track and monitor the ground station. The first line consists of the relay information. The

second line includes the time of the GPS reading (to the left of the h), the location of the

payload (to the left of the N and W) and the altitude in feet (after the A=).

Kenwood TH-K2AT Transceiver and Settings

The radio used to transmit the APRS GPS/Telemetry Module data is the Kenwood

TH-K2AT hand held transceiver. This transceiver was chosen because of its ease of

operation. The Kenwood TH-K2AT operates on the 2 meter wavelength, or 144 MHz,

band. This band is controlled by the FCC and requires a valid FCC license to use. This

radio is fairly simple and requires only changing a few menu options to properly

configure it for use with the TinyTrak4.

In addition to the TH-K2AT radio, it is recommended that the BT-14 alkaline

battery holder be used. Alkaline batteries will not be used in the radio, but the BT-14

allows for soldering to the battery holder, rather than soldering directly to the radio. This

is important because the radio may be used in another project later.

Connecting the flight battery to the transceiver is a matter of soldering leads onto

the BT-14 battery case, connecting those leads (in the correct polarity) to the 8V Lithium

 47

Ion flight battery, and installing the BT-14 case onto the TH-K2AT radio. To allow the

TinyTrak4 TNC to work properly with the TH-K2AT a few menu options on the TH-

K2AT must be changed. These menu options may change as other versions of this radio

become available. It is best to check with the radio manual to ensure proper operation.

Menu item twenty, named VOX, enables voice activation and sets the gain associated

with the voice activation. This menu option should be set to five. This allows the

TinyTrak4 to send a signal to the transmitter through the microphone port and for the

transmitter to activate when the signal is received. If the VOX setting is not enabled, the

transmitter will not activate when the TinyTrak4 sends a signal to the microphone input.

With the VOX setting enabled any voltage signal present on the microphone port is

transmitted. Menu option 21, VXB, should be turned on. This allows the transceiver to

transmit a microphone input signal even if the transceiver is currently receiving data. All

other settings on the TH-K2AT should remain at the factory defaults. Before the launch

of the payload it is important to lock the keys on the TH-K2AT by holding down the

function button. This prevents accidental changes to the settings during the balloon flight.

Once the entire Module is operational, it is tested using the ground station. If

correct, the ground station should be able to accurately receive and record positions and

other data sent from the GPS Module.

 48

CHAPTER III

SERVO DRIVER MODULE (SDM)

The purpose of the Servo Driver Module, or SDM, is to receive commands from

the ground station and the Low Speed Data Collection Module (LSM), and to drive the

cut down servo. This module is capable of later being expanded to include other

commanded functions, but is currently only used to trigger release of the balloon and the

payload parachute. The SDM consists of the following main components:

 Ham Radio – Kenwood TH-K2A (Shared with the GPS/Tele Module)

 Microcontroller - PIC 18F1320

 DTMF Tone Decoder – TDK 75T204

 Metal Gear Mini Servo – Hitec HS-225MG

These components are connected as shown in Figure 3.1. Figure 3.1 shows the general

flow of the system and all the main components. A complete circuit diagram for this

system is located in Figure 3.3 and 3.4. A dotted line has been drawn around the

components that are dedicated to the Servo Driver Module.

 49

Figure 3.1 Servo Driver Module System Diagram.

Signals sent from the ground station are received by the radio transceiver and

passed on to the Servo Driver Module through the speaker port of the radio. This signal is

then decoded using a DTMF tone decoder and is read by a PIC 18F1320 microcontroller.

The servo receives commands from the Microcontroller and operates the release

mechanism. Servo movement may be triggered by commands from either the Ground

Station via the Radio Transceiver or by the LSM. The Microcontroller relays the servo

position to the LSM so that it may be recorded and stored for later analysis. The

microcontroller receives power from the 8V Lithium Ion battery through a 5V regulator.

This regulator also powers the DTMF chip. The servo is powered through a dedicated 5V

regulator to allow for sustained current draws of greater than 1A by the servo. These

components and their use are explained in the following sections.

 50

Hitec HS-225MG Cut Down Servo and PWM Explanation

The servo used to operate the cut down release mechanism is a Hitec HS-225MG.

The HS-225MG is a rotational servo that has a maximum rotation angle of 120deg. This

type of servo is usually used in hobby related remote controlled applications such as

airplanes or helicopters. The HS-225MG servo was chosen because of its shock resistant

metal gear train, small size (32x60x30mm), light weight (31g), and relatively high torque

rating (55in-oz). A metal gear train is important because the release mechanism might be

subjected to large shocks throughout the flight. The HS-225MG operates using a three

wire interface. The three wires are ground, usually black or brown, +5V (4.5-6V),

usually red or orange (located in the center), and the signal wire, usually white or yellow.

The ground wire should be connected directly to the system ground. The +5V should be

supplied using a regulator dedicated to the servo. A separate regulator should be used

because a servo can draw a large amount of current. The voltage output of multiple

regulators should not be directly connected; doing this could cause damage or failure of

the regulator. The servo position is determined using pulse width modulation, or PWM.

PWM is a communication method that uses a single wire and outputs a pulse

along that wire. The wire voltage goes from 0V to +5V, stays there for a period of time,

usually between 1000 and 2000 microseconds. The wire voltage then returns to 0V and

remains there for approximately 17-20 milliseconds, until the next pulse is sent. The

servo rotation angle is determined by the time that the signal wire voltage is at +5V.

Figure 3.2 better shows how the servo angular position is related to the incoming pulse.

 51

Figure 3.2 Servo Arm Position as it Relates to the Received Pulse

Length.

One very important note, if an analog servo, such as the HS-225MG, does not receive

pulses, the servo responds as if it is not powered and will not hold its position. Another

detail about working with hobby servos, servos made by different companies will often

rotate in opposite directions with respect to the servo pulse. For instance, if a servo made

by Hitec rotates counterclockwise as the servo pulse length increases, a Futaba servo

might rotate clockwise as the servo pulse length increases. Also, some servos may require

a different pulse range to operate properly. For instance, some servos require an output

 52

pulse between 1ms and 2ms instead of between 0.5ms and 2.5ms. It is best to fully test

the settings calculated for proper operation with the servo used.

TDK 75T204 DTMF Tone Decoder Chip Use and Connections

The DTMF Tone Decoder receives the DTMF tone signal from the speaker port

of the ham radio. The ham radio transceiver is shared with the GPS/Telemetry Module

and is connected to both modules through the use of a 2.5mm (3/32”) splitter (Radio

Shack part number 274-948). The TDK 75T204 chip recognizes and decodes the DTMF

tones into a digital number that corresponds to a DTMF character
15

. This chip was chosen

because of its ease of use and CMOS compatibility. The DTMF chip transmits the digital

number to other devices using 5 pins, DV, D1, D2, D4, and D8. All five pins have a low

default state when the chip is powered. When a valid tone signal is detected by the

DTMF chip, pin DV is high. Pins D1, D2, D4 and D8 are used to relay the specific tone

that was received. The pins are assigned to the DTMF digits using standard binary.

The easiest way to understand how to read the DTMF chip pins is to view each

pin as a value. D1=1, D2=2, D4=4, and D8=8. The pins values are added to determine the

digital number. If all pins are high the digital number would be 1+2+4+8=15. If no pins

are in the high state the digital number is 0. This number is then used to determine the

DTMF character received. The pins are connected to the microcontroller and the digital

number and corresponding DTMF character are decoded by the microcontroller.

 53

Figure 3.3 Servo Driver DTMF Chip Connection Schematic

Figure 3.3 shows the DTMF chip circuit schematic. Currently, the DTMF chip

circuit is built on its own small board and connected to the microcontroller using a 5x2

male header and 5x2 ribbon cable. The 5x2 male header is labeled in Figure 3.3 as

DTMF_HD1. Through this header the chip circuit receives power, and outputs to the

microcontroller. Pins 1, 2, 12, 13 and 14 are signal pins that are read by the

microcontroller. These pins are all connected to 10K pull down resistors. The pull down

resistors keep the pins at the low state in the event that the DTMF chip loses power or

fails. A standard color burst crystal (3.58MHz) is connected between pins 9 and 10 and is

used by the chip to separate the two frequencies that make up the DTMF tone. Pins 3, 4

and 6 are connected to +5V. Pin 8 is connected to ground and to the incoming signal

 54

ground. The signal from the transceiver speaker port is connected to the chip through pin

7. Table 3.1 further describes the pins and their uses.

Table 3.1 DTMF Chip Pin and Connection Descriptions

Pin # Name Description Connection

1 D2 Digital output pin, second bit of

binary number, low or high (0 or 1)

Connected to microcontroller, pulled low through

10K resistor

2 D1 Digital output pin, first bit of binary

number, low or high (0 or 1)

Connected to microcontroller, pulled low through

10K resistor

3 EN Output enable pin, if pulled high

output pins are enabled

Connected to VP (+5V)

4 VP Power pin, used to power the chip Connected to +5V through header and ribbon

cable

5 N/C Not Used Not Connected, Left Floating

6 XEN Crystal enable pin, used to enable the

crystal pins XIN and XOUT

Connected to VP (+5V)

7 Analog

In

Analog Input Connected to the positive signal coming from the

transceiver speaker port

8 GND Ground pin Connected to system ground through header and

ribbon cable

9 XOUT Crystal oscillator output pin Connected to XIN through crystal and 1M

10 XIN Crystal oscillator input pin Connected to XOUT through crystal and 1M

11 ATB Oscillator Frequency Output Not Connected, can be used to run multiple chips

off of one crystal

12 DV Digital output pin, used to signal that

a valid tone is being received

Connected to microcontroller, pulled low through

10K resistor

13 D8 Digital output pin, fourth bit of binary

number, low or high (0 or 1)

Connected to microcontroller, pulled low through

10K resistor

14 D4 Digital output pin, third bit of binary

number, low or high (0 or 1)

Connected to microcontroller, pulled low through

10K resistor

Pins 3 and 6 are used to disable or enable the output pins and the crystal oscillator to

reduce the overall power consumption of the system; these two pins may be controlled.

These pins are externally connected to VP (+5V) in the SDM because the current saved

 55

by controlling them would be minute, compared to the current consumption of the entire

system.

Microchip PIC 18F1320 and ServoDriver.bas Firmware

The Microcontroller chosen to receive the DTMF digital number and drive the

servo is the PIC 18F1320. PIC microcontrollers were used because of their ease of

programmability and their compatibility with the Swordfish Basic compiler. The

microcontroller is the brain behind this module and performs tasks of decoding the

DTMF number, driving the servo and relaying servo position to the LSM. These

functions can best be understood by understating the SDM microcontroller firmware. The

firmware program used by the SDM module is named “ServoDriver.bas”. This firmware

is written using the Swordfish Basic Compiler language. A very important detail to keep

in mind when reviewing the firmware for this system is that the PIC 18F1320 does not

have a typical CPU clock that can be sampled. Therefore, most timing in this program is

achieved by knowing the approximate time it takes the program to run. Changing the

clock speed (10MHz) will change the timing values located within the program. The

ServoDriver.bas program is segmented into 3 sections--header, subroutines and main

program.

The ServoDriver.bas header contains general information about the program,

names of other programs that are included, dimensioning of variables, and aliasing of the

microcontroller pins. The general information section contains notes on the firmware, the

device name the firmware is meant for, the oscillator speed, and oscillator settings. The

 56

“include” portion of the header contains information about other .bas program libraries

that will be called -throughout the firmware. These included library programs were not

written uniquely for this project. The next portion of the ServoDriver.bas header contains

lines of code that dimensions the variables that will be used, and gives names (aliases) to

the Input/Output pins.

The largest portion of the firmware contains the subroutines that will be called by

the main program to perform tasks. There are nine subroutines that perform various tasks

for the main program. One thing to note, subroutines in Swordfish Basic are not

recursive. In other words, subroutines cannot be entered from subroutines. Subroutines

can only be entered from the main program; however, functions contained in the included

files can be called upon within subroutines.

The initialization routine is named “PinInit”. This subroutine sets all the pins to

their initial states and activates them as either input or output pins. This subroutine also

initializes some variables to their initial states.

The “Pointer” subroutine restores the last pointer and state variable to their last

defined values. If these variables have not been defined since the firmware has been

downloaded the values are set to 0. This subroutine guards against a momentary power

loss resetting either the servo position or the password state.

The “TMR0_Initialize” subroutine contains settings for the PIC special function

registers that enable and setup Timer0 in the PIC. Timer0 is an interrupt timer that can be

used to interrupt the program at a specific time. The time the interrupt occurs is defined

 57

by special function register values and the clock cycle. The Timer interrupt timer is used

by the interrupt subroutine “Servo” to generate the servo pulse.

The subroutine “Servo” generates a PWM signal that is used to drive the cut down

servo. This is done by using Timer0 to interrupt the program every 0.2 millisecond. There

is also an offset associated with the timer. The formula that relates the count variable, in

the Servo subroutine, to actual time values is the following:

Count = 5(millisecond)+2.5

Where Count is the value of the count variable in the Servo subroutine and millisecond is

the number of milliseconds that the event should take place. An example of how this

formula is used can be seen upon further investigation of the Servo subroutine. To output

a servo pulse to send the servo to the initial (endpoint2) position of the servo, the servo

pin must be high for precisely 2.5 milliseconds and low for approximately 20

milliseconds. Using the preceding formula the servo pin should be high for 15 counts and

then low until count 100. At this point the Count variable should be reset so the next

pulse can be sent. When the servo needs to change positions to the midpoint (balloon

release position), the Pos variable changes to a value of 2, and the count when the pin

goes high is reduced by the “if” structure to a value of 10. This outputs a high pulse that

is 1.5 milliseconds long. When the Pos variable changes to 1 the pin stays high for 5

counts and a pulse length of 0.5 milliseconds is sent to the servo. This moves the servo to

the release all position (endpoint1).

 The PTPcom subroutine allows commands to be received from the LSM

microcontroller. It also relays the servo position to the LSM, where it is recorded. The

 58

input pins are connected to pull down resistors and held high by the LSM

microcontroller. In the event that the LSM malfunctions or loses power the pins will be

pulled low thorough the pull down resistors and the “cut down all” state will be triggered.

The LSM can also intentionally change the servo position by pulling one or both of the

input pins low.

 There are four subroutines that are related to the DTMF input. They are GetDGT,

Pswd, PasswordEXP, and Command. The GetDGT subroutine reads the four DTMF chip

character output pins (D1, D2, D4, D8) and assigns the appropriate DTMF character to

the Digit variable. The Digit variable is returned to the main program.

 The Pswd subroutine sets up a DTMF character password that consists of 4 states.

The base state for the password, state=0, indicates that no password characters have been

detected in the current password cycle. The current DTMF password is “C”, “*”, “9”.

Each time the correct password digit is entered the state variable is increased. If state=3

all of the password characters have been received and the next DTMF digit received will

be a command digit. If a wrong digit is detected, for instance “C”, “A”, “*”, “6”, “9” is

received, the program will ignore the wrong digits and the state=3. The state variable can

be reset by the reception of a command digit (which completes the sequence), or through

the PasswordEXP subroutine.

 The PasswordEXP subroutine is used to reset the password state variable after a

period of time has been elapsed. This time period is set by the constant variable EXP.

When the expiration time, EXP, has been reached the password state will be reset. The

expiration time is reset each time a recognized password character is detected. This

 59

means that for a command digit to be sent to the Servo Driver Module, the password

must be entered, in order, followed by the command digit with no more than

approximately 10 seconds (for EXP=10) between each character. If “C”, “*” is entered

and is not followed by “9”, after approximately 10 seconds the PasswordEXP subroutine

will reset the password state and the entire password string will have to be entered before

a command digit may be accepted. For approximately the first 0.5 seconds after the

password state is reset the status LED pin will be high and the status LED will be lit. The

status LED is used to visually confirm that the Servo Driver Module is operational If no

password digit is detected the PasswordEXP subroutine will continue resetting the state

variable every 10 seconds. This means that every 10 seconds the LED will be illuminated

for 0.5 seconds

 The Command subroutine receives the command digit and performs the

appropriate task. Currently, the only two tasks that have been programmed are moving

the servo to two different positions, by changing the Pos variable used by the Servo

subroutine.

 The main program section of the firmware calls upon the subroutines in the

appropriate order. The first subroutines to run are the initialization subroutines

TMR0_Initialize and PinInit. Then the Pointer subroutine is run and the saved values of

state and Pos are restored. When the pointer subroutine is run, or the Pos variable is

updated, the Servo interrupt is disabled, the update is performed, and then the Servo

interrupt is re-enabled. This prevents the Servo interrupt from interrupting a write to the

 60

Pos variable. If this occurred, the Servo interrupt could use a bad value for Pos which

could damage the Servo.

 The DTMF subroutines are triggered when the DTMF chip tone detect pin DV

goes to the high state and is read by the microcontroller. When the DV pin goes high, the

GetDGT subroutine runs and returns the detected DTMF character. Then the password

subroutine is run and the state variable is updated, if needed. If the state variable is equal

to 3 and DV is high, then the command digit subroutine is called and the action

corresponding to the command digit tone is performed.

To prevent multiple readings of a DTMF tone that is held down, a While loop in

the Main program “traps” the program until the DV pin goes low, indicating that the

detected tone has ended. If a tone is held down for approximately three seconds, the

while loop will exit and the program will continue running. This exit prevents a constant

tone from not allowing the LSM to update the servo position. In other words, this exit

every three seconds keeps a constant DTMF tone from, effectively, freezing the system.

After the DTMF DV pin is checked, the pins that are used to communicate with

the LSM are checked, by calling on the PTPcom subroutine. The PTPcom subroutine also

updates the servo position, if needed. Finally, the PasswordEXP subroutine is run to

update the time that has elapsed since the last password digit was detected. Most of the

main program is contained with an infinite while loop. This means that the DV pin and

input pins are constantly being polled.

 61

Figure 3.4 Complete Circuit Diagram for SDM

Figure 3.4 is the complete circuit diagram for the SDM. This diagram does not

include the DTMF chip circuitry previously discussed, but does include a male 5x2

header that connects to the DTMF chip board through a 5x2 ribbon cable. Jumpers J1 and

switch SW2 are used to disconnect the release output state wires from the LSM; this must

be done so that programming may be accomplished. To program the SDM

microcontroller requires disconnecting the DTMF cable, opening jumper JP1, and turning

switch SW2 off. This disconnects the pins used for programming the microcontroller

from their other connections. The red LED's connected to the SDM regulators are used to

show when the system is being powered.

 62

CHAPTER IV

HIGH SPEED DATA COLLECTION MODULE (HSM)

The purpose of the High Speed Data Collection Module, or HSM, is to record

acceleration and angular rate data. This module is named the High Speed Data Collection

Module because data is collected by this module several times a second. The HSM

consists of the following main components:

 IMU – Sparkfun 6 degree of freedom IMU

 Microcontroller – PIC 18F2520

 EEPROM Array – 8 - 512 kilobit external EEPROM's

These components are connected as shown in Figure 4.1. Figure 4.1 shows the general

flow of data throughout the system main components. The HSM is powered by the +8V

flight battery. The battery voltage is reduced to +5V, for use with the HSM components,

through the use of a 5V regulator. A complete circuit diagram for this system is located in

Figures 4.2 and 4.3. A dotted line has been drawn around the components that are

dedicated to the HSM.

 63

Figure 4.1 High Speed Data Collection Module System Diagram

The HSM collects acceleration and angular data through the use of a Sparkfun six

degree of freedom IMU (Sparkfun part number SEN-09184). This data is then sent to the

HSM microcontroller by way of UART serial. The data is then broken up by the

microcontroller and written to an external EEPROM array. Timing information is

provided to the HSM microcontroller by the Low Speed Data Collection Module. The

stored data can later be retrieved and sent to a computer by using the HSM

microcontroller read firmware, a PICkit 2, and the PICkit 2 software UART tool. By

using the clear firmware program the HSM microcontroller can clear the EEPROM array.

The three HSM microcontroller firmware programs and the use of the other components

that make up the HSM will be discussed in the following sections.

 64

HSM Timing

 Timing information is provided to the HSM by the LSM. The LSM records a very

accurate hhmmss time, received from the GPS every second. The LSM microcontroller

code contains a variable, Tstat, that is incremented every minute (60 GPS readings) and

recorded by the LSM every second. This variable is transmitted to the HSM by four pins.

The four pins are used as a standard binary communication method. These pins are pulled

high or low by the LSM and read in by the HSM. Pins Tin1 through Tin4 are bits 1

through 4 of the Tsat variable, respectively. Because the Tstat variable is recorded by

both the HSM and the LSM, the time at which the Tstat variable changes will be recorded

by both modules. This change point can be combined with the GPS time information,

recorded by the LSM, to create a time basis for the HSM data.

EEPROM Array Connection and Use

 The memory device used to store the values collected from the IMU is an external

EEPROM array. This array consists of eight Microchip 24LC512 EEPROM's. This

section discusses their use and connection. It should be understood that each EEPROM is

a standalone device and does not require the other seven EEPROM's to function properly.

Eight EEPROMS are used in order to meet the data storage requirements of the HSM.

EEPROM's were chosen because of their stability and simplicity of use. A main

drawback to using the 24LC512 external EEPROM is that it requires a delay of

approximately 10 milliseconds between byte size writes to the same device. Also, writes

 65

that are larger than a byte must be done as multiple byte size writes. It is recommended

that the EEPROM array be replaced by a SD card or less complex data storage device for

future versions of the HSM.

 The 24LC512 EEPROM operates using the I2C communication protocol. A full

description of the I2C communication protocol is beyond the scope of this project.

However, it should be understood that I2C is a two wire communication protocol that is

similar to that used in a typical LAN, or local area network. Each device has its own

unique ID number that is set. Data is sent to the device by targeting the ID number and

sending data. While all devices in the network, or array, are connected to the same two

wires, only the device with the corresponding ID number recognizes and acts on the

incoming data. Device ID numbers for the HSM EEPROM's are set by pulling three pins

(A0, A1, A3) located on each EEPROM high or low. Figure 4.2 shows how the address

pins A0, A1 and A2 are used to set a unique address for each EEPROM. If all the pins are

low the I2C device address is set to 0. If A0=0, A1=1 and A2=1, the device address is set

to 6. This means that a total of eight EEPROMS may be commanded using the I2C

network. Figure 4.2 shows the wiring schematic for the HSM EEPROM Array.

 66

Figure 4.2 HSM EEPROM Array Wiring Schematic

 Located at the top right of Figure 4.2 is a 5x2 male header that can be used by an

external device to access the EEPROM array. The EEPROM Array is connected to the

HSM microcontroller through four wires: ground, +5V, SDA, and SCL. SDA and SCL

are wires that carry the I2C communications The SDA and SCL pins must be connected

 67

to the +5V supply voltage through a 4.7KΩ pull up resistor. Table 4.1 further describes

the 24LC512 EEPROM pins and their connections.

Table 4.1 EEPROM Pin and Connection Descriptions

Pin # Name Description Connection

1 A0 Digital input pin, first bit of binary

address, tied low or high (0 or 1)

Connected to either +5V or ground, depending on

what I2C address is used for the EEPROM

2 A1 Digital input pin, second bit of binary

address, tied low or high (0 or 1)

Connected to either +5V or ground, depending on

what I2C address is used for the EEPROM

3 A2 Digital input pin, third bit of binary

address, tied low or high (0 or 1)

Connected to either +5V or ground, depending on

what I2C address is used for the EEPROM

4 GND Power pin, used to power the chip Connected to system ground

5 SDA I2C Data input/output pin Used to transfer data to the EEPROM

6 SCL I2C Clock input pin Used to synchronize transmissions to the

EEPROM

7 WP Write protect enable pin Connected to Ground, to allow for writes to the

EEPROM

8 VCC Power pin, used to power the chip Connected to +5V supplied by system battery,

through HSM regulator

Additional information about I2C and the 24LC512 EEPROM is available in the

24LC512 Data Sheet
16

.

Sparkfun IMU Description and Use

 The Sparkfun IMU is a collection of 3 accelerometers and 3 gyros that are

arranged on a single board. These sensors are sampled by the Sparkfun IMU

microcontroller. The IMU microcontroller formats, scales, and applies temperature

compensation to the data. The IMU microcontroller then sends the data to the SDM or

other device using UART serial at a rate of 115,200 bits per second.

 68

 The Sparkfun IMU can be configured using a USB to 3.3V TTL Serial Cable.

This cable is connected to a computer and a terminal program such as Tera Term Pro is

used to interface with the IMU. For use with the HSM, the Sparkfun IMU factory default

settings must be changed. The Sparkfun IMU can be configured to send data in either

ASCII characters, able to be viewed on screen using the Tera Term Pro program, or in

binary. For use with the HSM, the Sparkfun IMU must send the data in binary format.

Binary transmissions read by the Tera Term Pro program are viewed as a string of

gibberish, but binary format is easily read in correctly by the HSM microcontroller. The

Sparkfun IMU can also be configured to output data at different rates. The minimum data

output rate is 10Hz. The IMU maximum output rate is not limited. It should be noted that

the recorded data frequency of the HSM will be half that of the IMU; this will be further

discussed in the HSM microcontroller section. To be sure the IMU collects data within

the desired range the accelerometer sensitivity should also be set. The IMU accelerometer

sensitivity can be set to 1.5g, 2g, 4g or 6g. It is also important to enable all six data

channels of the IMU. The final setting that should be changed is that the auto-run feature

should be enabled. Enabling the auto-run feature means that when the IMU is powered it

immediately begins sending out data. If this feature is not enabled, the IMU will be

waiting for a start command, and will not function properly with the HSM.

 The resolution of the IMU data readings is limited by the IMU microcontroller's

internal analog to digital converter resolution. This is because the IMU gyro and

accelerometer analog outputs are being read by the IMU microcontroller. The IMU

currently uses a microcontroller that contains 10 bit analog to digital converters. This

 69

means that all values for the accelerations and angular rates are 10 bit and have values of

between 0 and 1023. Calibration of this unit should be performed, but is not included in

the scope of this project.

 The Sparkfun IMU outputs data using TTL serial. It is important to understand

how the IMU sends out the data so that it can be properly read in by the HSM

microcontroller. The first byte sent by the Sparkfun IMU is an ASCII “A” (decimal 65)

character. This signifies the beginning of the IMU data output string. The last byte that is

sent by the IMU is an ASCII “Z” (decimal 90) character. This character signifies the end

of the transmitted string that contains IMU data. Even though the IMU is set up to run

using binary transmission, the beginning and ending characters do not change format.

Each value for acceleration and angular rate is transmitted as two bytes (MSB and LSB),

because each value is a 10 bit (1 byte, 2 bit) number. The most significant byte of the

value, or MSB, is transmitted first. Then the least significant byte for the value being

transmitted, or LSB, is transmitted. The first value transmitted after the starting character

“A” is the count. The count value is the number of the reading that is sent. This value is

actually a 15 bit number and will change sequentially from 0 to 32767 each time a data

string is transmitted. Once it reaches 32767 it will start over “counting” from 0. The first

string sent (or data set) is count=0. The second string sent (or data set) is count=1, and so

on.

 Acceleration values for the X, Y, and Z axes are then sent in that order. Then the

readings from the pitch, roll, and yaw gyros are sent. Repeating from above, each 10 bit

value is transmitted as two bytes. This means that although there are only 10 bytes of data

 70

(composed of 6 x 10 + 15 = 75 bits), they are transmitted as 7 x 2 = 14 bytes. The count

variable is not recorded, meaning that only 60 bits (7 bytes, 4 bits) of data received from

the IMU, are actually used by the HSM. Combined with the 4 bits of timing data received

from the LSM, this makes 8 full bytes of data. A visual representation for the data

arrangement is shown in the before package portion of Figure 4.4. The 8 bytes are written

to the EEPROM array in parallel. This means that the first byte is written to the first

EEPROM in the array, the second byte is written to the second EEPROM in the array,

and so on. Writing to the EEPROM's this way allows for the 10ms delay to occur after

writing an entire data string, rather than after each write. Theoretically, a write can occur

as fast as 100 times per second. Obviously, because the program needs time to run,

written data rates cannot occur at this frequency. Understanding how the data is

structured becomes important in the HSM microcontroller section.

Microchip PIC 18F2520 Use and HSM Firmware

The brain of the HSM is the Microchip PIC 18F2520 microcontroller. This

microcontroller receives input from both the LSM and the IMU and records those

received values to the EEPROM array. Both the microcontroller circuitry and the

firmware programs used to run the HSM will be discussed in this section. Figure 4.3

shows the complete circuit schematic for the HSM, excluding the previously discussed

EEPROM array circuitry. The connections and components that are specific to the HSM

will be discussed in this section.

 71

Figure 4.3 HSM Circuit Diagram, Excluding EEPROM Array

The power for the entire module is supplied through regulator Reg3, by

connecting the +8V flight battery to male pin header Bat2. A red LED is used to show

that the module is being powered. The six pin male header SV7 is used to program the

microcontroller, by connecting it directly to a PICkit 2. The five pin header SV1 is used

to receive UART transmissions from the microcontroller. This is done by using the

PICkit 2 programmer and the PICkit 2 software UART tool. The IMU is connected to the

5x2 pin male header IMU_HD. The microcontroller is connected to the EEPROM array

 72

through wire nets SDA and SCL. Nets TIN_1, TIN_2, TIN4, and TIN_8 are connected to

the LSM and are pulled low through 10K resistors in the event of a LSM malfunction.

 There are three firmware programs that have been written for the HSM. The first

program, High_Speed_Record.bas, is used to record values collected throughout the

balloon flight from the LSM and the IMU. The second program, High_Speed_Read.bas,

is used to read the values collected in the EEPROM and to write these values to the

screen or a file, via a PICkit 2 and the PICkit2 user software. The third program,

EE_Clear_HS.bas, is used to write 0's to all the EEPROM addresses of the eight

EEPROMS contained in the HSM EEPROM array. These firmware programs have been

written using the Swordfish Basic compiler language. It is not possible to download the

three programs to the 18F2520 at the same time. It may be possible, in the future, to

combine the three HSM programs and to use a switch to determine which of the three

should be run. However, to prevent confusion and to make certain the wrong program is

not accidentally run during a balloon flight, the programs have been kept separate. All

firmware programs used with the HSM output UART serial communicate at a rate of

38400 bits per second.

The High_Speed_Record.bas program is used to record data during the balloon

flight. This program's purpose is to collect data from the IMU and the LSM then write

this data to the EEPROM array. This program consists of the following three sections:

header, subroutines, and main program.

The headers used for the HSM firmware programs are very similar to the headers

of the other module firmware programs. The header contains general information about

 73

the program, names of other programs that are included, dimensioning of variables, and

aliasing of the microcontroller pins. The general information section contains notes on

the firmware, the device name the firmware is meant for, the oscillator speed, and

oscillator settings. The include portion of the header contains information about other

.bas program libraries that will be called upon throughout the firmware. These included

library programs were not written uniquely for this project. The next portion of the

header contains lines of code that dimension the variables that will be used, and gives

names (aliases) to the Input/Output pins.

There are 9 subroutines that are used by the High_Speed_Record.bas firmware

program. These subroutines are labeled Header, Out, Package, Write, Read, GetData,

GetData2, Avj, and ChkStat. These subroutines perform the major tasks the firmware is

responsible for and are called, in the appropriate order, by the main program.

The Header subroutine is the first called by the main program. This subroutine

outputs the data column header to the UART computer screen when the PIC is connected

to a computer via the PICkit 2 and the PICkit 2 UART software. The Header subroutine

also initializes the variables used for data collection and flashes the HSM status LED to

signify the start of the program.

The GetData and GetData2 subroutines are almost identical. They are only

differentiated by the fact that GetData returns a set of data stored in the primary set of

variables (AccX, AccY, AccZ, Pitch, Roll, Yaw) and GetData2 returns a set of data

stored in the secondary set of variables (AccX2, AccY2, AccZ2, Pitch2, Roll2, Yaw2).

These two sets of data are averaged to form a single set of data that is written to the

 74

EEPROM's. The purpose of the GetData subroutines is to collect the data string from the

IMU and to write the received data to the appropriate variable. The GetData subroutines

will actually wait for the lead character “A” sent by the IMU to signify that a data string

is incoming. This means that if the IMU has been disconnected, or has malfunctioned the

HSM will continue waiting to receive the start character and will be “stuck”. This also

means that the data rate for the HSM is determined by the data rate of the IMU, and that

it will ignore the transmission if it begins “listening” during the middle of a data string. If

the HSM needs to record for a time period longer than 3 hours, the IMU data rate must be

slowed below 10Hz. With two data collections being averaged to produce one written

value, the written data frequency is half that of the IMU data rate setting.

The Avj subroutine averages the data sets collected from the two readings taken

using the GetData and GetData2 subroutines. The returned values are stored in the

GetData variables. Disabling the GetData2 and the Avj subroutine would change the

HSM data write frequency from half the IMU data frequency to the IMU data frequency.

The written frequency can be changed to 1/3 or less of the IMU data frequency by adding

more GetData subroutines, and by modifying the Avj subroutine to include the other

values collected.

The ChkStat subroutine sets the stat input pins to digital inputs and reads those

pins. The time stat variable, sent from the LSM, is returned as a four bit number stored in

the Stat variable.

The Out subroutine occasionally outputs the data collected by the microcontroller

using UART. This data is received by a computer through the PICkit 2 and PICkit 2

 75

software UART tool. The data is only output every few readings so that it does not clutter

the UART tool screen. The Out subroutine is meant to be used in conjunction with the

Read subroutine to check that the HSM is functioning correctly.

Figure 4.4 Visual Representation of Package Subroutine Function

The Package subroutine packages the data collected from the LSM and the IMU

into 8 bytes that can be written to the EEPROM array. This subroutine takes the 6 – 10

bit values that were received by the IMU, and breaks them down into 6 byte length

variables, the remaining 12 bits are written to two overflow byte size variables. The 4 bits

of space left in the second overflow variable are used to store the 4 bit state variable. The

 76

subroutine returns 8 byte size variables that are now ready to be written to the

EEPROM's. Figure 4.4 shows how the data is arranged before and after the Package

subroutine runs.

The Write subroutine is used to write the packaged variables to the EEPROM

array. This subroutine also increases the memory address variable, and writes the new

address to the Pointer location. The pointer keeps the program from overwriting data

previously taken in the event of a loss of power or microcontroller malfunction.

The Read subroutine is meant to be used in conjunction with the Out subroutine to

check the operation of the HSM. The Read subroutine occasionally reads, unpacks, and

outputs the written data to a computer via the UART software tool.

The main program part of the High_Speed_Record.bas firmware calls on the

subroutines in the correct order. On startup the main program checks the status of the

reset pin. If the reset switch, SW1, is in the on position, the reset pin will be read as high

(1) and the program will begin recording, starting at memory address 0. If the switch is in

the off position the reset pin will be read as low (0) and the program will pull the starting

write address from the Pointer memory location in the internal EEPROM. It is important

for the reset pin to be in the off position during flight to prevent data from being

overwritten due to a momentary power failure. Once the external EEPROM is filled the

program will quit running and will enter a low power state. However, this will not

prevent the IMU from continuing to run and draw power.

To calculate how long the HSM will record data, simply divide the total number

of address bytes in an EEPROM (64000 bytes) by the written data frequency (5 writes

 77

per second). This means that with a written frequency of 5Hz (IMU frequency of 10Hz),

the HSM will record data for 12800 seconds, or 3.56 hours. The number of writes that

can be performed is 64000 and not eight times that because each time data is taken a byte

of data is written to each EEPROM (8 bytes of data, 8 EEPROMS). The IMU data rate

can easily be increased to 20Hz without problems, but if write rates of faster than 5Hz are

required, it is recommended that output subroutines in the High_Speed_Record.bas main

program (Read and Out) be removed by commenting them out. This will allow for the

fastest data write rates.

The High_Speed_Read.bas program is very similar to the Read subroutine located

in the High_Speed_Record.bas program. The purpose of the High_Speed_Read.bas

program is to read the EEPROM's, unpack the variables, and then to output those

variables, along with the memory address the variables have been read from, to a file.

The microcontroller sends this data using UART TTL serial. It is received by a computer

through the PICkit 2 and the PICkit 2 software UART tool. This tool has the ability to log

the communication it receives to a file. The data that is output from the microcontroller is

in tab delimited format. Therefore, the file created by the PICkit 2 software will be in the

same format and is easily read by a spreadsheet program. Before the data is sent by this

program, a column header, labeling the data columns is sent.

The simplest program is the EE_Clear_HS.bas program. This program writes a 0

to the first address of all 8 EEPROM's, sequentially. The program delays 10 milliseconds

to allow the EEPROM's to perform their writes. Then the address variable is incremented

and the write is done again. Once all 64000 addresses of the EEPROM have been written

 78

to a “done”, “All 8 EEPROMS set to 0” message is sent to the screen and the HSM status

LED is flashed 5 times quickly every 2 seconds. To allow the program to run the fastest

it possibly can, current memory addresses are output to the screen every 2048 addresses.

To be able to tell that the program is running without connecting it to the PICkit 2 the

HSM status LED changes state every 128 addresses. Clearing the EEPROM array takes

approximately 30 minutes. If power is lost, or disconnected during the clear, the program

resets and starts clearing from address 0.

 79

CHAPTER V

LOW SPEED DATA COLLECTION MODULE (LSM)

The Low Speed Data Collection Module, or LSM, performs several tasks

associated with the different modules. The primary task of the LSM is to sample and

record pressure, temperature and GPS coordinates associated with the balloon payload.

This module also sends cut down commands to the SDM, and provides timing

information to the HSM. This module is named the Low Speed Data Collection Module

because data is collected by this module once a second. The LSM consists of the

following main components:

 GPS – Garmin 18XLVC (shared with GPS/Telemetry Module)

 Microcontroller – PIC 18F2520

 EEPROM Array – 8 - 512 kilobit external EEPROM's

 Temperature Sensors – 4 x Dallas DS18B20 one wire temperature sensor

 Pressure Sensors – 2 x Honeywell ASDX 015A24R

These components are connected as shown in Figure 5.1. Figure 5.1 shows the general

flow of data throughout the system main components. A circuit diagram for this system is

located in Figures 4.2, 5.2 and 5.3. The LSM is powered by the +8V flight battery. The

battery voltage is reduced to +5V for use with the LSM components through the use of a

 80

5V regulator. A dotted line has been drawn around the components that are dedicated to

the LSM. A portion of the LSM has been created to operate within the high altitude

balloon instead of the payload box. This subsystem is contained on its own circuit board,

Balloon Board. The components have been outlined with a second dotted line.

Figure 5.1 Low Speed Data Collection Module System Diagram.

The LSM receives data from four different sources that use different

communication methods. The different source types and communication methods are

GPS (serial), DS18B20 temperature sensors (one wire), pressure transducers (analog

 81

voltages) and servo driver module (digital input pins). The data from these sources is

collected and formatted by the LSM microcontroller. It is then written to the EEPROM

array for storage.

 Four pins connect the SDM to the LSM. Two of these pins are used to send the

current servo position to the LSM. The other two pins are used to send cut down signals

to the SDM. Four pins also connect the LSM to the HSM. These digital pins are used to

transmit timing information to the HSM. The use of these four pins and the timing

method is discussed in detail in the HSM Timing section of the HSM Chapter.

General Data Flow and LSM EEPROM Array Use

The GPS signal is used to trigger a data collection event. If the GPS signal is not

present due to a malfunction, data is collected from the other components approximately

every 3 seconds. The GPS signal provides three dimensional position, heading, ground

speed, satellite tracking, and time information to the LSM. The LSM receives

temperature data from four Dallas DS18B20 one wire temperature sensors. Balloon

internal temperature and pressure are provided from the pressure transducer and

temperature sensor mounted on a board that is placed inside the balloon. This board is

connected to the main circuit board using two standard servo wires and connectors. Once

the balloon is released the servo wire connectors are pulled apart and the Balloon Board

is disconnected from the main payload. The Balloon Board is considered expendable and

will not be recovered after the flight. Once the data is collected from the GPS,

 82

temperature sensors, pressure transducers, and the SDM, it is written sequentially to the

EEPROM array.

The EEPROM array circuitry used by the LSM is identical to that used by the

HSM. As such, a circuit diagram and EEPROM use explanation will not appear in the

LSM chapter. The slight differences in the use of the two EEPROM arrays will be

covered in this section. For the complete EEPROM array circuit diagram and external

EEPOM details, please refer to the EEPROM Array Connection and Use section of the

High Speed Module chapter. It is recommended that both of these EEPROM arrays be

replaced by another memory device, such as a SD card, in future versions of the balloon

payload system.

The only difference between the HSM EEPROM array and the LSM EEPROM

array is how they are written to. The HSM writes to each of the eight EEPROM's, then

increments the write address, and then writes to all eight EEPROMS again. This method

fills all the EEPROM's equally with each write. The LSM writes all 30 bytes of the LSM

data to the first EEPROM, and continues to write all data sets to the first EEPROM. Once

the first EEPROM is full, the LSM begins to fill the second EEPROM. This sequence

continues until all the EEPROMS are full, at which point the LSM microcontroller

terminates the program and enters a low power state. One detail to note is that because

the writes are being performed as individual byte writes, there is no need to consider the

page boundaries of the external EEPROM. The difference in the writing methods can be

attributed to the amount of data collected by each module and the speed requirements of

the module. It would be best if the HSM method of writing was modified to be used with

 83

the LSM in future versions. Using the HSM method of writing would allow compatibility

of the LSM with 5Hz GPS receivers. With the current circuitry and programming the

LSM is only compatible with the Garmin 18XLVC 1Hz GPS receiver. With the current

LSM recording firmware program settings and EEPROM array size the LSM can record

data for 4.74 hours. This time was found using the following formula:

LSM GPS Connection and Use

The GPS unit is shared by both the LSM and the GPS/Telemetry module and

must be connected to both. The LSM GPS is used as the basis for the main, payload

triggered, cut down sequence. This cut down sequence is a responsibility of the LSM and

will be further described in the microcontroller firmware section of this chapter.

The GPS outputs RS-232 serial communication at 4800 baud. The GPS output

signal voltage is not standard RS-232 (+-12V). The signal output voltage is equal to the

power input voltage of the GPS (+5V). It is also at RS-232 polarity, meaning the voltage

output is ± 5V. The LSM microcontroller cannot read RS-232 serial, so it must be

converted into TTL (0 to 5V) polarity before it is connected to the microcontroller. The

circuit in Figure 5.2 converts the RS-232 GPS signal into a TTL polarity signal that can

be received by the microcontroller. The following portion of this section will describe the

signal conversion circuitry and its use.

64000 Bytes/ EEPROM × 8 EEPROM ' s

30 Bytes/ sec× 3600 sec /hr
= 4.74hrs

 84

Figure 5.2 Circuit Used to Convert GPS Serial Signal to TTL

The GPS signal is connected to the main board through a 3 pin male header, and a male

servo connector. The RS-232 GPS signal comes in on pin 1 of the header, and is

grounded through pin 3. The grounding connection is optional, because the GPS is

grounded to the system battery through the TinyTrak4. The signal comes in to the circuit

through a 1KΩ resistor. This resistor is only needed if the GPS signal is needed by the

TinyTrak4 and may need to be changed if the TinyTrak4 internal circuitry changes. The

Diode D1 and resistor R16 are used to ground the negative portion of the GPS signal. The

transistor, T, is an NPN transistor. It is used to invert the remaining 0-5V GPS signal.

When the positive portion of the GPS signal is present at the base, the transistor is active

and the output to the microcontroller, GPS_TTL/USART_RX(C), is grounded. When the

0V portion of the GPS signal is present at the base, the transistor is not active and the

output to the microcontroller is pulled high through the 5.7K, R15, resistor. The value of

 85

the 5.7K resistor is very important, because it must be large enough so that the

microcontroller sees a low state when the transistor is active, but not so large that the

voltage at the microcontroller pin is not pulled high when the transistor is not active. It is

best to test different resistor values for R14 and R15, and select resistors that operate well

with the entire system.

Dallas DS18B20 One Wire Temperature Sensor Connection and Use

 The DS18B20 Temperature Sensor, by Dallas Semiconductor (MAXIM), is a

temperature sensor that communicates the temperature at the sensor, in Celsius, using a

digital communication known as one wire communication. A full explanation of one wire

communication protocols is beyond the scope of this paper. However, it should be

understood that each one wire device is programmed by the manufacturer to have a

unique, 64 bit, Rom ID. This allows many one wire devices to be connected to the

microcontroller through the same wire. To receive data from a specific one wire device,

the receiving device targets the desired device Rom ID and then retrieves the data

associated with that device. The name one wire comes from the fact that the device uses

only one wire to communicate and power the device. Actually, despite its name, the

device uses two wires, a power/data line and a ground.

 Although one wire devices can communicate using only one wire, sometimes it is

best to use more than one wire because some complications can arise when using long

leads and one wire circuitry. The DS18B20 temperature sensor can be connected in either

a one wire configuration, or it can be connected using two (three) wires. The three wires

 86

are ground, power (+5V) and the signal wire. This means that power is supplied to the

device through a pin other than the signal pin. With this configuration, there are fewer

concerns to running multiple devices on the same data line, or having long distances

between the devices and the microcontroller. The only unique connection that must be

made for the device to operate properly is a 4.7KΩ resistor between the data and power

line.

 Currently the LSM microcontroller firmware is configured for use with four

DS18B20 devices. One sensor is mounted on the main board. One sensor is mounted on

the Balloon Board that is placed inside the balloon during flight. The other two sensors

have been mounted to a typical servo wire and male servo connector so that standard

servo extensions may be added and the temperature sensors may be placed wherever

needed. If a temperature sensor is not connected, the LSM microcontroller firmware

program will operate correctly, except that the value recorded for the not connected

temperature sensor will always be -1. The DS18B20 temperature sensor is specified to

have an accuracy of 0.5˚C between -10˚C and +85˚C. The default temperature resolution

is 12 bit, which corresponds to 0.0625˚C. The microcontroller firmware program has

been set up to ignore the decimal values because the temperature accuracy is reduced at

temperatures below -10˚C. The temperature values are recorded by the LSM

microcontroller as short integers. This means that the recorded values are integers

between -128 and +128.

 87

Honeywell ASDX 015A24R Pressure Transducer Connection and Use

 The Honeywell ASDX 015A24R Pressure Transducer is a fairly standard analog

pressure transducer. This device is connected using three wires, Power, Ground, and

Vout. The pressure transducer is powered by the LSM system voltage of +5V. The output

of the pressure transducer, Vout, is proportional to the input voltage and varies with

changes in pressure. The LSM uses two ASDX pressure transducers. One of the pressure

transducers is mounted on the Balloon Board and is used to sense the pressure inside the

balloon. This transducer has a relatively long lead that is used to connect the transducer to

the main circuit board. Therefore, it is very important that this pressure sensor be

calibrated with the lead in place. Ideally, the resistance change of the wire due to changes

in temperature, at the current output of the transducer, would be taken into account.

However, changes in the voltage due to these factors will probably be small compared to

the 10 bit resolution of the microcontroller analog to digital converter. So, calibration at

room temperature with the lead in place should yield sufficient accuracy.

 The other pressure transducer is mounted on the main circuit board. This pressure

transducer is used to sense the local atmospheric pressure around the balloon payload.

This pressure transducer receives the atmospheric pressure through tubing that runs to

ports that are located on all sides of the balloon payload. The pressure on each side of the

balloon payload is physically averaged by connecting all of the port tubes to a small

reservoir. The pressure transducer is also connected to this reservoir. It is important that

the pressure be an average of all sides of the balloon payload because when the balloon is

falling the pressure on the side leading the descent will be much greater than the pressure

 88

on the trailing side. Therefore, measuring the pressure on only one side of the balloon

payload would, most likely, not give pressure readings that could accurately be use for

determining altitude.

 In the event that the GPS does not have a valid fix on the payload location, the

main board mounted pressure transducer is used as the basis for a secondary, pressure

related, cut down sequence. These cut down sequences will be discussed in the

microcontroller firmware portion of this chapter.

Microchip PIC 18F2520 Use and LSM Firmware

 This section will discuss the circuitry and the three firmware programs associated

with the LSM microcontroller. The LSM microcontroller receives input from the

temperature sensors, pressure transducers, GPS receiver and Servo Driver Module. The

data is received, formatted, and then written to the LSM external EEPROM array. Both

the microcontroller circuitry and the firmware programs used to operate the LSM will be

discussed in this section. Figure 5.3 shows the complete circuit schematic for the LSM,

excluding the LSM EEPROM array and the GPS connection and conversion circuitry.

The LSM EEPROM array circuit diagram can be found in the EEPROM Array

Connection and Use section of the High Speed Module chapter. The GPS connection and

conversion circuit diagram can be found in the LSM GPS section of this chapter. The

other connections and components, specific to the LSM, will be discussed in this section.

 89

Figure 5.3 Low Speed Module Microcontroller Circuit Diagram.

 The power for the entire module is supplied through regulator Reg4, by

connecting the +8V flight battery to male pin header Bat3. A red LED, located next to the

regulator, is used to show that the module is being powered. The six pin male header SV5

is used to program the microcontroller by connecting it directly to a PICkit 2. The five

pin header SV3 is used to receive UART transmissions from the microcontroller. This is

done by using the PICkit 2 programmer and the PICkit 2 software UART tool. Three pin

male headers OW_2, OW_3 and OW_4 are used to connect the one wire temperature

 90

sensors. The placement of these sensors on the three pin headers does not matter. The

other one wire temperature sensor is soldered to the board and located in the upper left

quadrant of the schematic. The main board mounted pressure transducer is connected

using two 8 pin IC sockets placed side by side (PRESSURE_SOCKETS). A small

amount of low temp hot glue may be used to better secure the transducer to the socket.

The Balloon Board pressure transducer is connected using the 3 pin male header

BAL_PRESS. The microcontroller is connected to the EEPROM array through wire nets

SDA and SCL. Nets TIN_1, TIN_2, TIN4, and TIN_8 are connected to the HSM and are

pulled low through 10K resistors located on the HSM side of the schematic.

Microcontroller pin 4 can be used later to connect an additional analog or digital device.

The current microcontroller firmware would have to be changed to include this

expansion.

 Three programs have been written for the LSM. The first program,

Low_Speed_Record.bas, is used to record values collected throughout the balloon flight

from the various LSM devices. The second program, Low_Speed_Read.bas, is used to

read the values collected in the EEPROM and to write these values to the screen or a file,

via a PICkit 2 and the PICkit2 user software. The third program, EE_Clear_LS.bas, is

used to write 0's to all the EEPROM addresses of the eight EEPROMS contained in the

LSM EEPROM array. These firmware programs have been written using the Swordfish

Basic compiler language.

 It is not possible to download the three programs to the LSM 18F2520

microcontroller at the same time. The 18F2520 must be loaded with the program that is to

 91

be used. All firmware programs used with the LSM output UART serial communication

at a rate of 4800 bits per second.

 The Low_Speed_Record.bas program is used to record data during the balloon

flight. This program's purpose is to collect data from the various LSM data sources and

then write this data to the LSM EEPROM array. This program consists of the following

three sections: header, subroutines, and main program.

The headers used for the three LSM firmware programs are very similar to the

headers of the other module firmware programs. The header contains general information

about the program, names of other programs that are included, dimensioning of variables,

and aliasing of the microcontroller pins. The general information section of the header

contains notes on the firmware, the device name the firmware is meant for, the oscillator

speed, and oscillator settings. The include portion of the header contains information

about other .bas program libraries that will be called upon throughout the firmware.

These included library programs were not written uniquely for this project. The next

portion of the header contains lines of code that dimension the variables that will be used,

and gives names (aliases) to the Input/Output pins.

 Thirteen subroutines are used by the Low_Speed_Record.bas firmware program.

These subroutines are labeled Timer, Release, Parse, Header, Print, GetGPS, FixInd,

SenCHK, Pointer, Init, Record, GetData, and CheckK. These subroutines perform the

major tasks the firmware is responsible for and are called, in the appropriate order, by the

main program.

 92

 The Init subroutine is used to initialize all variables to 0. This is very important,

especially when performing bit writes to variable locations. When the microcontroller is

programmed or when the program begins, the flash memory variable locations may not

necessarily be cleared. The Init subroutine clears these addresses, making them ready to

use.

 The SenCHK subroutine is used to check for the one wire sensors, check the

initial output voltage of the pressure transducers, check the reset pin, and initialize the

digital input/output pins to either input or output. The results of each check are output to

the screen using the UART interface and can be used to determine if the module

components have been connected correctly and are operational. The SenCHK subroutine

also checks the EEPROM array connection and operation by writing a value to address 0

of each EEPROM and reading the address. If the check determines that an EEPROM is

not working, a STOP message is sent to the screen along with the EEPROM number that

is not functioning properly. Detecting a faulty EEPROM will not stop the program from

continuing.

 The Pointer subroutine checks the state of the reset pin connected to LSM

memory reset switch SW3. The LSM reset switch performs the same function for the

LSM as the HSM reset switch performs for the HSM. If the switch is in the off position,

the LSM microcontroller begins writing data to the first EEPROM at the first address and

the release variable Rstat is set to 0. If the switch is in the on position the last written

memory address, EEPROM, and Rstat values are restored from the internal EEPROM

and the microcontroller begins recording data at the last saved data point. This portion of

 93

the program also has an if statement that detects the initial “FF” state of the internal

EEPROM and sets the restored variable values to 0, if this condition is detected. With the

Reset switch in the off position the system is protected from writing over already stored

data in the event of a system reset due to a momentary loss of power or malfunction.

 The Header subroutine outputs column header labels to the screen. These column

headers label the data output to the screen by the Print subroutine. The Print subroutine is

used to output the data collected to the screen in tab delimited format. The values output

to the screen are used to check proper function of the LSM sensors. The Print subroutine

should be commented out before the actual flight to allow for maximum program

efficiency and to make certain that the program has ample time to perform all tasks in

between receiving GPS strings.

 The GetGPS subroutine is used to determine when a new GPS string has been

received. If a GPS string has been received, the GetGPS subroutine returns the string

variables associated with the data that was received. If a string has not been received then

no action is taken. The received string data cannot be immediately written to the

EEPROM because a string variable is larger than a decimal variable. To be written to the

EEPROM the collected GPS string variables must be converted into decimal variables.

 The Parse subroutine converts the string variables returned from the GetGPS

subroutine into byte, word, or long word type variables. Once converted, the variables are

ready to be broken down into byte size variables and written to the EEPROM array.

 The GetData subroutine is used to collect new values from the pressure

transducers, temperature sensors and digital pins. The values received are in byte or word

 94

format and only need to be broken into byte size values to be written to the EEPROM

array. A 15 millisecond delay is used in between readings of the one wire temperature

sensors to improve the chances of receiving accurate data from these sensors.

 The Record subroutine writes both the converted GetGPS variables and variables

returned from the GetData subroutine to the EEPROM array. The function

ExtEEPROM.Write2 function is used to perform each write. Unlike the

ExtEEPROM.Write function, the ExtEEPROM.Write2 function contains a 10

millisecond delay to allow time for the EEPROM to make the write. This delay is

mandatory when writing to an external EEPROM. Variables that are larger than one byte

are broken up by calling on the specific bytes within that larger variable. The bytes that

make up the variables are written to sequential addresses. These variables are later

reassembled by the LS_Read.bas firmware program. Other details about this subroutine

are explained in the EEPROM array section of this chapter.

 The FixInd subroutine is quite short and simply checks to see if the GPS fix

variable returned by the GetData subroutine is greater than 0. If this value is greater than

0, the FixInd sets the LED2 pin high. This pin is connected to a green LED that can be

checked to be sure the GPS has a fix before the balloon payload is launched. If the GPS

does not have a fix, the returned fix value is equal to 0 and the green LED is not lit.

 The Release subroutine is used by the LSM main program to sense when to send

release commands to the SDM. Two release states can be commanded by the LSM. These

states can be detected by the LSM through either the GPS data (if fix>1) or by reading

 95

the board mounted pressure transducer in the event that the GPS does not have a fix

(fix=0).

 The GPS trigger portion of this subroutine first checks to determine if, according

to the GPS altitude, the balloon has fallen 10 meters since the last reading was taken. If

this has occurred, the subroutine does two things. First, it updates the Fall variable. The

Fall variable is used to determine how far the balloon has fallen in total. When this

variable gets to 300, signifying a fallen distance of 300 meters the balloon release servo

position is commanded. The second action that takes place, once the balloon has fallen 10

meters, is that the address associated with the decrease in altitude is reset and stored in

the FallStart variable. If the altitude continues to decrease at a rate of at least 10 meters

per second, the FallStart variable is constantly reset. If the GPS altitude begins to

increase, the FallStart variable is not reset. There is a second if loop in the Release

subroutine that waits for a period of 5 seconds without detecting a fall and then resets the

Fall variable. This means that in order for the balloon release to be triggered from the

LSM GPS data, the GPS must have a fix and the balloon must have fallen at least 300

meters in 10 seconds. If a fall is detected, but the payload does not fall 300 meters in 10

seconds, the balloon release is not triggered. The GPS triggers a parachute release if the

balloon release has been triggered, and the altitude is below 21,336 meters (70,000 ft).

 If the GPS does not have a valid position fix, the pressure release portion of the

Release subroutine is activated. This portion of the subroutine uses the readings taken

from the on board pressure transducer to detect rises in pressure, signaling that the

balloon is falling. If the pressure has risen continually for 10 seconds the balloon release

 96

is triggered. If a pressure decrease is detected during that time, one second is added to the

time for which continually increasing pressure readings must be received. The parachute

release is triggered by the pressure portion of the Release subroutine when the balloon

release has been triggered and 6 pressure readings corresponding to altitudes less than

70,000 feet are detected. The pressure portion of the Release subroutine is currently

commented out because inaccuracies are suspected in the calibration of the on board

pressure sensor.

 The Timer subroutine uses the incoming GPS data to count one minute and then

increase the Tstat variable and change the state of the Tstat pins used to synchronize

timing with the HSM.

 The CheckK subroutine is used to trigger a data collection sequence if data has

not been received from the GPS after checking for it 88752 times (3 seconds without

data). When triggered, this subroutine places a GPS error bit in the WRStat variable that

is recorded and can later be read. This subroutine also alternates both LED's very rapidly

to signify that no data from the GPS is being detected, possibly due to a loose or missing

connection.

 The Main portion of the Low_Speed_Record.bas firmware program calls on the

subroutines in the appropriate order. It also performs a few system initialization tasks.

First, this portion of the program disables the MCLRE pin, so that the microcontroller

cannot be reset by this pin. Then the pins used for analog reception, and the pins used for

digital reception/transmission are set (ADCON1). Values are then written to the special

function register ADCON2 to set microcontroller timing associated with the internal A/D

 97

converter. Setting the ADCON1 and ADCON2 registers is quite tricky and is

microcontroller model specific. The microcontroller data sheet should be used to ensure

that the proper values are written to these registers.

 Once the general system setup is complete the main program flashes both the GPS

fix LED and the status LED, and outputs a UART transmission that signifies the program

is running. Then the variables are initialized and the sensors are checked using the Init

and SenCHK subroutines. The recorded variables are then restored, or not, using the

pointer subroutine and the Header subroutine is run to output data column headers to the

screen.

 The next portion of the program runs inside an infinite loop. The GetGPS

subroutine is constantly run. When a new data set is detected, signifying one second has

passed, the program calls on the Parse, GetData, Print (if not commented out), Record,

FixInd, Release, and Timer subroutines, in that order. If new GPS data is not detected

(valid or not) the K timeout will trigger and data will be collected approximately every 3

seconds. When the K timeout is triggered the Tstat pins will also be updated, but at a

slower rate.

 The Low_Speed_Read.bas LSM microcontroller firmware reads the external

EEPROM array and outputs this data to the screen or file using 4800bps TTL serial,

PICkit 2, and the PICkit 2 software UART tool. This program also unpacks and

reassembles all variables that had been modified before the values are sent to the screen,

or file. The columns output by this program are shown and explained in Table 5.1.

 98

Table 5.1 Variables Recorded By and Output from the LSM.

Variable Description

Fix Variable used to signify the type of fix associated with the GPS position

data

Time GPS time received from GPS receiver

Sats Number of Satellites the GPS is tracking (max 12)

Lat Non decimal portion of the GPS Latitude

LatDec Decimal portion of the GPS Latitude

Long Non decimal portion of the GPS Longitude

LongDec Decimal portion of the GPS Longitude

Alt Altitude reading received from the GPS (in meters)

Speed Ground speed received from the GPS (in knots)

Heading Heading received from the GPS

Press Analog voltage reading taken from the pressure transducer located on the

main board

BPress Analog voltage reading taken from the pressure transducer located on the

balloon board

BoardT Temperature reading taken from the temperature sensor mounted on the

main board

BallT Temperature reading taken from the temperature sensor mounted to the

balloon board

T2A Temperature reading taken from the T2 sensor

T3A Temperature reading taken from the T3 sensor

LSMstat Release stat variable determined by LSM

SDMstat Release stat variable received from the SDM

Tstat Timing variable used to synchronize the LSM and HSM

GPSerr Value of 1 signifies that GPS data was not received and the K timeout

triggered collection of the data set

 The EE_Clear_LS.bas LSM microcontroller firmware writes 0's to every address

in the EEPROM array. This clears all data that is held in the array. It is recommended

that this program be run before each flight to clear the EEPROM and keep from

improperly assigning data sets.

 99

CHAPTER VI

GROUND STATION MODULE (GSM)

The Ground Station Module, or GSM, is used to receive information sent from the

payload by the GPS/Telemetry Module and to send commands to the balloon payload.

The Ground Station Module consists of the following components:

 Laptop Computer

 UIView software (requires ham radio license)

 TinyTrak4 – used as receiving KISS TNC

 Power Inverter – used to supply power to laptop during tracking.

 Radio Transceiver – Kenwood TH-K2 – Receives/Sends Data From/To

Payload

These components are connected as shown in Figure 6.1. Figure 6.1 shows the general

flow of data throughout the system main components. The system is designed to run off

of a chase vehicle 12V power supply. This enables the payload to be stalked on the

ground by a recovery team. The Power inverter component is used to convert the 12V DC

chase vehicle voltage to 120AC voltage for use with the computer and radio power

supply. It is best to check that the chase vehicle alternator is capable of running these

devices and that the port supplying the 12V supply (cigarette lighter) is capable of

 100

handling this level of current draw. It is always best to have a few spare fuses for the

chase vehicle 12V port circuit during balloon payload tracking. Power for the TinyTrak4

TNC can be supplied from a separate 7-12V DC battery, or it may be connected to the

chase vehicle 12V port.

Figure 6.1 Ground Station Module System Diagram

The GSM receives radio transmissions that are packaged by the TinyTrak4

payload TNC. These data transmissions are received by the ground station radio

transceiver and unpackaged by the ground station TinyTrak4. The TinyTrak4 sends the

data to the GSM computer through a serial port and a standard null modem RS-232 cable.

 101

The UIView program is run on the computer to log and display the data received and to

display the location of the balloon payload on a map. The data collected can be used to

assess the condition of the balloon payload. The position information is used by the

ground team to stalk the payload during flight, and to retrieve the payload after the flight.

In the event that the data transmitted by the balloon payload indicates a payload system

malfunction the ground station radio transceiver may be used to trigger release of the

payload balloon or parachute, by transmitting the appropriate DTMF tone sequence to the

payload. The next section of this chapter contains a more detailed setup discussion of the

GSM components.

GSM Component Setup and Configuration

 The GSM is fairly easy to setup. Unlike the setup and configuration of the

payload modules, the setup of the GSM can be done with minimum circuitry and

programming knowledge. Setup of the GSM Transceiver involves changing only one of

the transceiver default settings. This is done by accessing the transceiver menu and

changing the default state of menu item 17 (APO, Automatic Power Off) to Off. This

setting disables the transceiver power saving automatic shut off function. If this setting is

not changed the transceiver will shut off after a period of time.

 Setup of the TinyTrak4 consists of simply downloading the KISS TinyTrak4

firmware to the GSM TinyTrak4. This firmware is used to receive KISS TNC

transmissions and to send them to the connected computer serial port. A standard female

to female 9-pin null modem adapter (Radio Shack Part No. 55010600) is used to connect

 102

the TinyTrak4 to the GSM laptop computer serial port. If the GSM laptop does not have a

serial port, a serial to USB adapter will need to be used in conjunction with the null

modem adapter

 Setup of the GSM Laptop Computer involves installing and configuring the

UIView software. The UIView software license is free, but is only granted to people with

a valid Ham radio license At this point it is a good idea to capture a few maps that cover

the projected flight path of the balloon payload. Because the UIView program is

constantly being updated it is best to consult the UIView website or forum for

instructions on map capturing.

 To communicate properly with the TinyTrak4 the program must be “pointed” at

the TNC. This can be done by opening the UIView program and choosing Setup-

>Comms Setup. This will open a window used to setup the communication port use to

communicate with the TinyTrack4. The proper settings for use with the TinyTrack4 with

the KISS firmware are located in Figure 6.2.

 103

Figure 6.2 Comms Setup Settings for UIView and TinyTrack4 TNC

Once the Comm Setup is complete, it can be checked by first opening the UIView

terminal window by selecting Terminal from the menu UIView menu bar. Then

connecting the GSM and powering up the GPS/Telemetry module. Upon power up the

GPS/Telemetry TNC will send a complete set of transmissions to the Ground Station.

This transmission should be received by the Ground Station and appear in the UIView

Terminal window as shown in Figure 6.3.

 104

Figure 6.3 View from the UIView Terminal of Data Sent by Payload

TNC

The terminal window is a useful tool to use when tracking the balloon payload as well.

From this tool the GPS coordinates may be captured and transferred to a mapping

program that contains more detailed road maps.

 Before a flight begins it is very important to start logging the data collected by the

GSM TNC. This is done by choosing Logs->Start a Log. This setting creates a text file

containing all the information collected by the TNC. When the flight has finished the log

may be stopped and retrieved from within the UIView program folder. The location for

the log file can best be found by performing a file search for the file name associated with

the log file. It is usually found at the address C:\Program Files\Peak Systems\UI-

 105

View32\LOGS. Once found, the log file may be imported into a spread sheet program for

analysis.

 In the event that the Ground Station must trigger a cut down, the push to talk

button must be pressed on the radio transceiver and the appropriate tones buttons must be

pressed on the front of the transceiver. Currently, the DTMF cut down key is (C, *, 9)

followed by either a 6, to release the balloon, or a “#” to release the balloon and chute.

Once the parachute is released, the Servo Driver will set the chute release pin high and

the last A/D value sent by the payload TNC will change from 000 to 999 signifying that

the release all command has been received.

 106

CHAPTER VII

CONCLUSION

This system has been designed as a solution for the data collection, control and

telemetry needs of a high altitude balloon payload. This system combines the flexibility

of microcontrollers with the availability of commercial off the shelf components to create

a modular system capable of being modified, simplified or expanded upon. The flexibility

and functionality of this design creates the foundation for development of further High

altitude testing capabilities.

The modular structure of this design allows for components and capabilities to be

tailored to fit the needs of individual mission requirements. Separate microcontrollers

were used for each module to allow for increased computational function and to allow for

modules to have ample capability to be modified for future system iterations.

 The payload box design and construction techniques create a buffer from the

harsh environment. This buffer allows the system components to operate properly even

when subjected to the low temperature and high shock loads that are associated with high

altitude balloon flight. This and other parts of the system design were driven by the

system requirements outlined in Chapter I. These system requirements are presented

again in Table 7.1 and are matched with the system module or component designed to

fulfill these requirements.

 107

Table 7.1 System Requirements and Designed Solutions

System Requirements Designed Solutions

Data Collection I2C external EEPROM array

Reduced Cost Modular System, PIC

Microcontrollers

Deployable Chute SDM, Release Mechanism

Increased Reliability Altitude Chamber Testing

IMU Data Acquisition High Speed Module

GPS Data Acquisition Low Speed Module

Temp/Pressure Acquisition Low Speed Module

Automatic Balloon/Chute

Release

Low Speed Module

Commanded Emergency

Release

SDM (DTMF tones sent from

GSM)

Ground Tracking GPS/Telemetry Module, GSM

Telemetry GPS/Telemetry Module, GSM

Table 7.1 shows how the system design aspects (modules) were directly driven by

the outlined system requirements. Additional functionality was added because it did not

interfere with the fulfillment of the targeted system requirements.

Future Possibilities and System Improvements

The system that has been discussed and explained is a baseline system that was

built and tested. This system is an initial design iteration prototype and is intended to be

improved upon as new technology, requirements, and better solutions are found. A few

recommended system changes will be outlined in this section.

 Changing a few basic components of the LSM, HSM, and Servo Driver module

circuitry could greatly improve the stability of the circuitry. One change is to replace the

 108

four +5V regulators to LDO (low drop out) regulators. This change will provide greater

stability to the system voltages throughout the voltage range of the flight battery. This

change is highly recommended, because it is quite inexpensive and prevents possible drift

of the analog sensor voltages as the flight battery becomes discharged.

 It is also recommended that decoupling capacitors be placed between the power

and ground traces at each integrated circuit component. This will better filter the supply

voltage and allow for a more stable supply for the different boards and components. A

better supply voltage filtering system, possibly consisting of a capacitor array or possibly

adding inductors, would greatly reduce the susceptibility of the system to outside noise

and interference, such as that generated by the payload transceiver. Proper supply voltage

filtering will also increase the longevity and reliability of all of the associated system

components.

 It is possible that greater in-flight telemetry range can be achieved through proper

antenna selection. A no ground plane (NGP) antenna should improve the in-flight

performance of the system without raising cost significantly. However, the possible loss

of range, once the payload has landed should also be considered when deciding what

antenna to use for the balloon payload transceiver.

 The system presented is a stepping stone that is to be used as the basis for future

development of the high altitude ballooning capabilities of the program. It has been built

and the baseline functionality of the system has been proven. Future testing and design

iterations are recommended to allow for further development of the components and

implementation of better technology. The system, in its current form, fully fulfills the

 109

outlined requirements, and has been tested to perform all the outlined and described

tasks.

 110

REFERENCES

1 Braun, R., Wright, H., Croom, H., Levine, J., Spencer, D., “Design of the ARES Mars

Airplane and Mission Architecture”, Journal of Spacecraft and Rockets, vol.43 no.5,

2006, pp. 1026-1034.

2 http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmrm.html, accessed April 6,

2010.

3 Shearer, C., Cesnik, C., “Nonlinear Flight Dynamics of Very Flexible Aircraft“,

Journal of Aircraft, vol.44 no.5, 2007, pp.1528-1545.

4 http://www.eoss.org, accessed April 6, 2010.

5 Electronic Code of Federal Regulations, Title 14, Part 101-Moored Balloons, Kites,

Amateur Rockets and Unmanned Free Balloons,

http://ecfr.gpoaccess.gov/cgi/t/text/text-

idx?c=ecfr&rgn=div5&view=text&node=14:2.0.1.3.15&idno=14, accessed April 6,

2010.

6 Brown, C. D., Elements of Spacecraft Design, AIAA Education Series, Reston, VA,

2002, p. 381.

7 Anderson, J. D., Jr., Introduction to Flight, 6
th

 ed., McGraw-Hill, Boston, 2008.

8 http://www.kaymont.com/pages/sounding-balloons.cfm, accessed April 6, 2010.

9 Conner, J. P., Jr. and Arena, A. S., Jr., “Near Space Balloon Performance

Predictions,” AIAA 2010-37, 48
th

 AIAA Aerospace Sciences Meeting, Orlando, Jan.

4–7, 2010.

10 Kendziora, C., Marinelli, M. and Ruschman, M., “TPG and PGS Thermal

Conductivity,” BTeV-doc-1801-v3, Fermi National Accelerator Laboratory, June 9,

2003.

11 http://www.eoss.org/ansrecap/ar_160/recap138_139.htm, accessed April 8, 2010.

http://pdf.aiaa.org/getfile.cfm?urlX=%2D%3CWI%277D%2FQKS%2B%2AS%40%23LVP%20%20%0A&urla=%25%2ARH%26%220%24%20%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A%20%20%20%0A&urld=%28%2A%22L%2E%21PJET%214%20%0A&urle=%27%282L%20%23%40JKT%40%20%20%0A&urlf=%27%282L%20%23%40JKTP%20%20%0A
http://pdf.aiaa.org/getfile.cfm?urlX=%2D%3CWI%277D%2FQKS%2B%2AS%40%23LVP%20%20%0A&urla=%25%2ARH%26%220%24%20%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A%20%20%20%0A&urld=%28%2A%22L%2E%21PJET%214%20%0A&urle=%27%282L%20%23%40JKT%40%20%20%0A&urlf=%27%282L%20%23%40JKTP%20%20%0A
http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmrm.html
http://www.eoss.org/
http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div5&view=text&node=14:2.0.1.3.15&idno=14
http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div5&view=text&node=14:2.0.1.3.15&idno=14
http://www.kaymont.com/pages/sounding-balloons.cfm
http://www.eoss.org/ansrecap/ar_160/recap138_139.htm

 111

12 Griffin, M. D. and French, J. R., Space Vehicle Design, 2
nd

 ed., AIAA Education

Series, Reston, VA, 2004, p. 275.

13 Wallio, R., “GPS Receivers vs 60kft,” http://showcase.netins.net/web/wallio/,

(homepage), accessed April 6, 2010.

14 “TinyTrak4 Built Hardware Manual V0.63,” http://www.byonics.com/tinytrak4,

accessed April 7, 2010.

15 “75T204 5V Low-Power Subscriber DTMF Receiver,” TDK Semiconductor Corp.,

April 2000, http://www.datasheetcatalog.com, accessed April 7, 2010.

16 “24AA512/24LC512/24FC512 512K I2C™ Serial EEPROM,” Microchip

Technology Inc., 2009, http://www.microchip.com/, accessed April 7, 2010.

http://showcase.netins.net/web/wallio/
http://www.byonics.com/tinytrak4
http://www.datasheetcatalog.com/
http://www.microchip.com/

 112

APPENDIX A

BATTERY CURRENT/DUTY CYCLE ANALYSIS

 113

Table A.1 Current Draw of the Various Components During a Nominal Balloon Flight

Device Description
Consumption

(A)

Duty

Cycle

Number of

Devices

Amp

Hours

LED Red LED Regulator 0.0150 1.00 3 0.0450

LED Yellow LED Status 0.0150 0.10 3 0.0045

LED Green LED GPS Fix 0.0150 1.00 1 0.0150

18F1320

(p.247)
SDM Micro 0.0150 1.00 1 0.0150

18F2520

(p.332)
LSM, HSM Micro 0.0250 1.00 2 0.0500

24LC512

Active

EEPROM (HSM,

LSM)
0.0004 0.05 16 0.0003

24LC512

Passive

EEPROM (HSM,

LSM)
0.0001 0.95 16 0.0015

015A24R Pressure Transducer 0.0060 1.00 2 0.0120

DS18B20 Temperature Sensor 0.0040 1.00 4 0.0160

TDK 75T204 DTMF Chip 0.0160 1.00 1 0.0160

18X LVC GPS 0.0900 1.00 1 0.0900

TH-K2A TX Transmit 2.0000 0.05 1 0.1000

TH-K2A RX (Standby) 0.1000 0.95 1 0.0950

HS-225MG
Servo Active (No

Load)
0.3000 1.00 2 0.6000

Sparkfun IMU IMU 0.0240 1.00 1 0.0240

From this Table, the total current draw is 1.08 A-hr. The battery selected for this

system has a capacity of 5.2 A-hr and an estimated cold capacity of 75% of that value, or

3.9 A-hr. Using the cold capacity gives an estimated battery life of 3.6 hr.

	Development of a high altitude balloon payload data collection, telemetry, and recovery system
	Recommended Citation

	DEVELOPMENT AND TESTING OF A HIGH ALTITUDE BALLOON PAYLOAD DATA COLLECTION, TELEMETRY,

