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Current diesel technologies involve a broad spectrum of combustion regimes.  

Previous diesel combustion models either lack the universality across various combustion 

regimes or suffer computational cost.  This dissertation discusses the development of a 

phenomenological framework to identify and understand key in-cylinder processes that 

influence the overall performance of a compression ignition engine.  The first part of this 

research is focused on understanding the ignition delay (ID) of diesel fuel in a pilot-

ignited partially premixed, low temperature natural gas (NG) combustion engine.  Lean 

premixed low temperature NG combustion is achieved by using small pilot diesel sprays 

(2-3% of total fuel energy) injected during early compression stroke (about 60° BTDC).  

Modeling ignition delay at advanced pilot injection timings (50°-60°BTDC) presents 

unique challenges. In this study, single component droplet evaporation model in 

conjunction with the Shell hydrocarbon autoignition (SAI) model is used to obtain 

ignition delay predictions of pilot diesel over a wide range of injection timings (20°-60° 

BTDC). Detailed sensitivity analysis of several SAI model parameters revealed that the 

model parameter Aq, which influences chain initiation reactions, was most important to 
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predict ignition delays at very lean equivalence ratios.  Additional studies performed to 

ascertain critical model parameters revealed that ignition delay was particularly sensitive 

to intake manifold temperature over the range of injection timings investigated.  Finally, 

the validated SAI model was used to predict ignition delays of pilot diesel fuel at various 

exhaust gas recirculation (EGR) substitutions, intake manifold temperatures and engine 

loads (bmep = 6 bar and 3 bar, respectively). 

The second part of this research involved the development of a phenomenological 

simulation of diesel/biodiesel combustion, which included sub-models for diesel spray 

entrainment, evaporation, ignition and premixed and mixing-controlled combustion.  In 

the simulation, the cylinder contents consisted of an unburned zone, packet zones, and a 

burned zone. The simulation, after appropriate calibration, was capable of predicting 

cylinder pressure and heat release rates at different engine load conditions over the 

injection timing range of 0°BTDC to 10°BTDC.  The total number of packets, droplet 

evaporation rates, air entrainment rates; ignition delay and premixed/mixing-controlled 

reaction rate parameters had a profound influence on combustion predictions.  
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CHAPTER I 

INTRODUCTION 

Background 

The progressive evolution of diesel engine technologies has enabled engineers to 

overcome many barriers related to clean and efficient power generation.  However, there 

are still several challenges that must be surmounted, including increasingly restrictive 

emissions norms and the need for better fuel conversion efficiencies.  To reduce the 

adverse effects of particulate matter (PM) and nitrogen oxides (NOx) emissions on human 

health and the environment, the US Environmental Protection Agency (EPA) has 

imposed very stringent emissions standards for heavy-duty diesel engines as shown in 

Figure 1.1. Moreover, since global crude oil resources are finite (Wood et al. 2004), 

energy security and sustainability concerns have dictated the search for alternatives to 

conventional petroleum-based fuels.  Therefore, tough emissions regulations combined 

with diminishing crude oil resources provide ample justification for adopting advanced 

combustion strategies and alternative fuels.  

Biodiesel is currently being considered as a sustainable alternative to conventional 

(petroleum) diesel fuel since it is produced from renewable sources.  There are several 

advantages of using biodiesel as an alternative fuel in diesel engines.  It is completely 

miscible with petroleum diesel fuel, hence different blends with varying percentages of 

biodiesel and diesel can be used.  Biodiesel significantly reduces carbon dioxide (CO2), 

carbon monoxide (CO), unburned hydrocarbon (UHC) and particulate matter (PM) 
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emissions (Agency 2002). The substantial reduction in net CO2 by 78.45% is credited to 

biodiesel produced from crops that consume CO2 from the atmosphere (Sheehan et al. 

1998; Hill et al. 2006). Furthermore biodiesel is an oxygenated fuel, containing 

approximately 11% oxygen by weight (Yuan 2005).  This is believed to yield more 

complete combustion, resulting in lower CO, UHC and PM emissions (Wang et al. 2000; 

USEPA 2002; McCormick et al. 2005). 

Figure 1.1 Heavy duty diesel engine emissions standards (US-EPA) 
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Figure 1.2 Average emission impacts of biodiesel for heavy-duty high-way engines 

There are some disadvantages associated with biodiesel, including lower energy 

density and higher nitrogen oxides (NOx) emissions than conventional diesel. The lower 

heating value of biodiesel is about 12% lower than that of diesel, which means that 

biodiesel has lower energy content. The lower heating value of diesel is approximately 

43 MJ/kg while that of biodiesel is approximately 37 MJ/kg.  Hence the fuel efficiency is 

reduced, which implies more biodiesel fuel (approximately 8%) (Tat 2003) is required to 

achieve the same amount of torque or power as compared to diesel fuel (Yuan 2005).  

Another problem faced in the use of biodiesel on unmodified diesel engines is higher 

smog-generating NOx emissions (Szybist et al. 2007).  These biodiesel emissions trends 

are shown in Figure 1.2 for fuel blends from conventional diesel (B0) to 100% biodiesel 

(B100) (USEPA 2002). 
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Significant reductions in CO, PM and UHC emissions were observed with an 

increase in biodiesel blend ratio. In contrast, a 10% increase in NOx emissions is 

typically observed with B100. Several different theories have been proposed as the cause 

for this biodiesel NOx effect increase (McCormick et al. 2001; Ban-Weiss et al. 2007).  

The NOx increases observed in modern engines have been more significant (McCormick 

et al. 2005). Though diesel engines can be operated with biodiesel without any 

modifications to the engine hardware, significant variations in engine performance and 

emissions have been reported because of the inherent differences in physical and 

chemical properties between biodiesel and petroleum diesel (Knothe 2001; Rakopoulos et 

al. 2008). Several mechanisms have been hypothesized to explain these performance and 

emissions differences.  These include the possible effects related to differences in 

viscosity (Patterson et al. 2006), bulk modulus (Szybist et al. 2005), boiling point (Choi 

et al. 1997), adiabatic flame temperature (Ban-Weiss et al. 2007),  radiative heat loss 

(Szybist et al. 2007) and their effects on thermal NOx and/or prompt NOx production 

(Szybist et al. 2007). In general, it is reported that biodiesel usage in diesel engines leads 

to shorter ignition delays, which tend to decrease the level of premixed combustion, and 

also results in longer combustion durations relative to petroleum diesel (Hashimoto et al. 

2002; Canacki 2007). Considerable research has been conducted in order to determine 

the cause of and to develop strategies for mitigating biodiesel-induced increases in NOx 

emissions.  The prime objective of such efforts has been to improve the combustion 

process by studying the effects of engine parameters on engine performances.  

Both experiments and calculations can be used to evaluate the effects of 

individual parameters on engine performance and emissions.  Experimental investigations 

provide relatively precise results for a specific test, but the cause and effect of individual 
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parameters in the test results are difficult to conclude when many parameters are 

involved. Therefore, time consuming and expensive experimental approaches are 

impractical to evaluate the combined effects of multiple variables.  On the other hand, the 

numerical approach, although possibly less precise in prediction, is very useful in finding 

the impact of a particular parameter.  Combustion models range from zero-dimensional 

and single-zone to quasi-dimensional, multi-zone and multi-dimensional models based 

their thermodynamic resolution of working mixtures.  

Zero-dimensional single-zone models assume that the cylinder charge is uniform 

in both composition and temperature at all times during the cycle (Foster 1985; Assanis 

and Heywood 1986). Computationally efficient single-zone models have been widely 

used for predicting engine performance.  However, it is difficult to use this type of model 

to account for fuel spray evolution and for spatial variations of mixture composition and 

temperature.  On the other hand, multidimensional simulation (Amsden et al. 1985; 

Amsden et al. 1987; Patterson et al. 1994; Varnavas and Assanis 1996) resolves the space 

of the cylinder on a fine scale and solves governing equations of conservation of mass, 

momentum and energy, as well as governing equations for species and chemical kinetics. 

However, computational time and storage constraints prevent it from being used for the 

practical application of an engine simulation.  Also, multidimensional models are not 

computationally efficient for engine cycle simulation and integrated vehicle system 

simulation.  

On the other hand, quasi-dimensional, multi-zone models (Li and Assanis 1993; 

Tauzia et al. 2000), which are an intermediate step between zero-dimensional and multi-

dimensional models, have been effectively used to model diesel engine combustion 

systems.  These models need significantly less computing resources compared to 
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multidimensional models.  Instead of solving the full momentum equation, which is one 

of the main reasons of computational inefficiencies of multi-dimensional models, these 

models depend on a blend of fundamental theory.  Quasi-dimensional models can also 

offer the fastest and least expensive means of generating the spatial information required 

to predict emission products.  Various quasi-dimensional models have been developed 

with different levels of complexity to predict engine combustion.  

Many advanced combustion concepts such as homogeneous charge compression 

ignition (HCCI) (Epping et al. 2002), premixed charge compression ignition (PCCI) (Cao 

et al. 2009), etc. are being examined by researchers to meet NOx and PM emissions 

standards for heavy-duty diesel engines.  Various low temperature combustion (LTC) 

strategies such as the Nissan modulated kinetics (MK) concept (Kimura et al. 1999) are 

used in modern diesel engines to control NOx and PM emissions, and in all of these 

strategies, the phasing of the combustion process is of critical importance vis-à-vis engine 

performance and emissions.  Studies have shown that the start of combustion and hence, 

the ignition delay, plays a very important role in the appropriate phasing of the 

combustion process with respect to the top dead center (TDC).  For conventional diesel 

combustion, fuel injection timings and the start of combustion are usually close to TDC, 

and the fuel injection and combustion events may occur simultaneously; consequently, 

the associated NOx emissions are relatively high.  By comparison, for early injection 

timings associated with some LTC strategies, the fuel injection and combustion events 

are separated from each other, and therefore, the NOx emissions are much lower.  Clearly, 

direct control of the ignition delay period, which separates the fuel injection and 

combustion events, is critical for achieving LTC and reducing NOx and PM emissions.  

Therefore, it is very important to understand the underlying processes governing fuel 
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autoignition and develop a robust ignition delay model to simulate the low temperature 

combustion process. 

This dissertation focuses on the simulation of different combustion phenomena of 

diesel engines employing diesel and biodiesel as primary fuels.  This work will also 

discuss the autoignition chemistry for diesel and biodiesel and demonstrate the need for 

change in the shell autoignition model to obtain accurate ignition delay predictions.  The 

specific objectives of the present research effort are described in the next section. 

Objectives 

The principal motivation for the current research, as stated in the previous section, 

is to analyze the combustion process in a diesel engine with alternative fuels such as 

diesel, biodiesel and blends of diesel and biodiesel.  To accomplis this, the dissertation 

focuses on numerical investigations of combustion in diesel engines with the following 

primary objectives: 

Objective 1: To develop and validate a reduced-kinetic ignition delay model for 

conventional and low temperature diesel and alternative fueled combustion engines 

Objective 2: To develop and validate a phenomenological simulation of diesel, 

and biodiesel combustion using models for physical processes such as fuel evaporation, 

air entrainment, ignition delay, premixed and mixing-controlled spray combustion. 

Organization of the dissertation 

This work is organized into four chapters.  Chapter I provides the background, 

motivation and primary objectives of this research.  Chapter II deals with detailed 

investigations of the ignition delay process of diesel fuel using the Shell Auto Ignition 

(SAI) model.  This chapter first reviews past research published in the open literature on 
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chemical kinetic pathways to describe the ignition delay of diesel-like fuels.  Later on, it 

discusses approaches to the modeling of autoignition and fuel evaporation and effect of 

different parameters on ignition delay using the SAI model.  Chapter III discusses the 

phenomenological simulation of diesel and biodiesel combustion.  This chapter starts 

with a literature review of diesel and biodiesel combustion.  This is followed by a 

discussion of the development of a phenomenological simulation with detailed calibration 

of varioussub-models based on sensitivity analyses.  Finally, the phenomenological diesel 

and biodiesel simulations are validated extensively against experimental measurements.  

The fourth chapter presents a summary of the simulation research efforts, and reiterates 

the main conclusions attained in this dissertation research.  The final chapter itemizes 

some recommendations for future work on diesel and biodiesel combustion. 
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CHAPTER II 

IGNITION PROCESS MODELING 

Autoignition can be described as a phenomenon leading to the start of combustion 

in a reactive medium of an air-fuel mixture (Kuo 1986).  At times autoignition is termed 

as spontaneous ignition, self-ignition or homogeneous ignition.  Fuel-air mixture can be 

lit off by quick compression, as in diesel engines (or by pressure waves due to quick heat 

release, as in spark ignition engines). In diesel engines, there are several phenomena that 

lead to autoignition of a fuel vapor-air mixture along with evaporation of fuel droplets.  It 

has been found that the fuel in evaporation rate influences vapor availability for the 

autoignition to take place.  Moreover, increase in temperature during the autoignition 

process augments droplet heating and evaporation processes; therefore, the investigation 

of fuel droplet heating and evaporation in engine-like conditions should be coupled with 

the research of autoignition.  In this chapter, the focus will be on the discussion of 

approaches to the modeling of autoignition and fuel evaporation. 

Background 

Estimation of ignition delay in diesel engines is of great significance because of 

its impact on startability, engine noise and pollutant formation.  It is also important from 

the perspective of preparing the fuel before injecting into the engine. Ignition delay is the 

time from the instant when the first packet of fuel enters the combustion chamber (start of 

injection) to the moment when the first flame is observed in the spray (start of 

combustion).  This delay period includes (a) physical delay, wherein atomization, 
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vaporization and mixing of air/fuel occur and (b) chemical delay attributed to pre-

combustion reactions.  Both physical and chemical delays occur simultaneously.  

Many ignition delay correlations have been formulated based on experiments 

conducted in constant volume bombs, rapid compression machines and engines (Wolfer 

1938; Halstead et al. 1975; Kadota et al. 1976; Hardenberg and Hase 1979; Watson et al. 

1980; Hiroyasu et al. 1983; Schapertons and Lee. 1985; Lahiri et al. 1997; Assanis et al. 

2003). Wolfer (1938) developed the earliest correlation for predicting ignition delay 

based on exponential dependence on temperature as in Arrhenius’ equation for rate of 

reaction. Kadota et al. (1976) and Hiroyasu et al. (1983) further studied the effect of 

equivalence ratio on ignition delay prediction. In order to make the expression suitable 

for oxygenated fuels, Lahiri et al. (1997) modified the equivalence ratio used in 

expression by Hiroyasu et al. (1983) to fuel-oxygen ratio.  However, these correlations 

are not robust enough to calculate the ignition delay under transient diesel engine 

conditions as they are based on experiments conducted in a constant volume bomb.  

Another reason for their limited predictability is their application outside the temperature 

and pressure range of their validity. On the other hand, a few correlations have been 

developed considering engine data under steady state operating conditions (Hardenberg 

and Hase 1979, Watson et al. 1980).  These correlations also failed to yield accurate 

predictions under widely varying operating conditions.  Assanis et al. (1999) later 

compared these correlations and presented a modified Watson correlation (1980).  

Furthermore, numerous efforts have been devoted to understand the fundamental 

chemical reaction mechanisms governing the autoignition of hydrocarbon fuels and/or 

their surrogates (Minetti et al. 1995; Curran et al. 1998; Curran et al. 2002; Soyhan et al. 

2002; Tanaka et al. 2003). These studies range from detailed kinetic mechanisms of 
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hydrocarbon oxidation (Minetti et al. 1995; Kumar et al. 2009; Westbrook et al. 2009) 

(applicable over a very wide range of temperature and pressure conditions) to reduced 

kinetic mechanisms (Halstead et al. 1975; Griffiths 1995; Soyhan et al. 2002; Tanaka et 

al. 2003; Ra and Reitz 2008) that are of a more limited scope.  Since fuel ignition 

chemistry is quite complicated even for n-alkanes larger than C5, reduced kinetic 

mechanisms are often desirable, especially when ignition chemistry is coupled with other 

combustion computations such as fluid and heat transport.  Since the chemistry of fuel 

autoignition is very complex, simplifications are often necessary to simulate autoignition 

in practical combustion systems.  

The Shell autoignition (SAI) model is one example of a simplified reduced kinetic 

model for hydrocarbon autoignition.  The SAI model, originally proposed by Halstead et 

al. (Halstead et al. 1977) for simulating the onset of knock in spark ignition engines, is a 

generic reduced kinetic mechanism that is currently widely used to simulate autoignition 

in diesel engines. The original SAI model has been subsequently improved (Schapertons 

and Lee. 1985; Sazhin et al. 1999; Hamosfakidis and Reitz 2003) to account for mass 

conservation, overall energy balance, and preignition energy release calculations. 

Griffiths (Griffiths 1995) analyzed various reduced kinetic models for hydrocarbon 

oxidation including the SAI model and its subsequent development (Cox and Cole 1985; 

Hu and Keck 1987). Griffiths found that in fuels with two-stage autoignition, the shell 

model seemed to be biased towards longer duration of first stage evolution and towards 

shorter duration in the development of second stage.  While the SAI model has been 

shown to predict ignition processes fairly accurately in engines for fuel injection timings 

close to top dead center (i.e. at high temperatures), its performance for early injection 

timings that involve low- and intermediate-temperature ignition chemistry is not very 
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well understood. The proposed work is an attempt to fill this knowledge gap in the 

applicability of the SAI model to LTC conditions.  

In addition, physical properties such as Cetane number, fuel viscosity, injector 

nozzle-hole size, injected fuel quantity and injection pressure contribute to the delay 

phenomenon in diesel engines (Chandorkar et al. 1988).  There is strong influence of 

injection parameters like the hole size, injection pressure and types of fuel on the ignition 

delay. These parameters have a cumulative consequence on atomization, vaporization 

and mixing of air/fuel vapor.  Ignition delays due to these physical phenomena mentioned 

above are normally grouped together as physical delay (Thelliez and Ji 1987, Woschni 

and Anisits 1974). Among several phenomena, studies have shown that fuel droplet 

heating and evaporation have a lot of importance in diesel ignition/combustion study 

(Faeth 1983; Sirignano 1983; Kuo 1986). Some researchers (Aggarwal 1998; Chiu 2000; 

Babinsky and Sojka 2002) have discussed simplified models for droplet heating and 

evaporation. These models focused on simulating droplet convective and radiative 

heating, evaporation and the ignition of fuel vapor/air mixture.  Loth (Loth 2000) and 

Orme (Orme 1997; Loth 2000) investigated the effects of the temperature gradient inside 

fuel droplets on droplet evaporation, break-up and the ignition of fuel vapor-air mixture 

based on a zero-dimensional code.  Investigations (e.g., (Sazhina et al. 2000)) of ignition 

in a mono-disperse diesel spray have shown that for droplets with an initial radius of 6 

µm or larger, the physical ignition delay due to droplet heating and evaporation 

dominated the chemical ignition delay.  The present work describes an attempt to 

incorporate the effects of droplet evaporation and autoignition phenomenon into a 

comprehensive ignition delay model. 

12 



 

 Advanced low Pilot-ignited natural gas LTC concept 

The Advanced Low Pilot-Ignited Natural Gas partially premixed low temperature 

combustion (ALPING LTC) concept was demonstrated in previous research by extending 

conventional dual fuel combustion to very low pilot quantities and early (advanced) pilot 

injection (Krishnan et al. 2004; Singh et al. 2004; Srinivasan et al. 2006; Srinivasan et al. 

2006). 

Figure 2.1 shows a schematic of the ALPING LTC combustion process.  The 

ALPING LTC process employs early injection (approximately 60° Before Top Dead 

Center) of small (pilot) diesel sprays (about 1-5 percent on an energy basis) to ignite 

homogeneous natural gas-air mixtures (greater than 90 percent on an energy basis).  Early 

injection provides sufficient time for the pilot diesel spray to mix with the ‘fuel-lean’ 

natural gas-air mixture.  When the charge is compressed further, the autoignition of diesel 

will ensure multiple, spatially distributed ignition centers (as opposed to a single, fixed 

ignition source in conventional spark-ignition), which in turn will ignite the natural gas-

air mixture.  Since this combustion strategy leads to locally-lean LTC, both PM and NOx 

emissions are reduced.  The presence of distributed ignition centers accelerates overall 

combustion rates, resulting in high fuel conversion efficiencies.  Since robust ignition is 

critical to achieving controlled ALPING LTC, it is necessary to understand the pilot 

ignition process over a range of engine operating conditions.   

Description of quasi-two zone combustion model 

The essential feature of ALPING LTC is the presence of ‘distributed ignition 

centers’ that enable faster combustion rates in lean, premixed natural-gas air mixtures 

(can be seen in figure 2.1). Distributed ignition centers present a unique challenge in 
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modeling ALPING LTC with a phenomenological approach.  Several simplifying 

assumptions have been made to model ignition phenomena in ALPING LTC.   

1. The quasi-two zone model considers the closed thermodynamic system 

between IVC and SOC. 

2. The closed system is a mixture of ideal gases 

3. After BOI, the combustion chamber is divided into two zones as depicted 

in Figure 2.2: the autoignition zone and the ‘main reaction zone.’ 

Figure 2.1 Schematic of ALPING combustion 
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Figure 2.2 Schematic representation of quasi two-zone combustion model 

4. The quasi two-zone model is assumed to investigate the behavior of 

“knock-free” combustion conditions only. Therefore, the pressures of the 

autoignition zone and the main reaction zone are equal at any given crank 

angle. 

In the autoignition zone, pilot diesel sprays undergo evaporation and ignition in 

the presence of natural gas and air.  The autoignition zone is an ensemble of all the 

autoignition sites (distributed ignition centers) present in the combustion chamber.  

Diesel evaporation is modeled using an isolated droplet evaporation model.  Further, the 

diesel sprays are assumed mono-disperse with droplets of uniform initial Sauter Mean 

Diameter (SMD).  Finally, to capture the effect of distributed ignition centers without 

resorting to a detailed entrainment model, it is assumed that upon evaporation, diesel 

mixes adiabatically with the surrounding natural gas-air mixture at a user-specified 

autoignition zone equivalence ratio (φauto). Bulk of the combustion occurs in the main 

reaction zone, which includes unburned reactants, diluents (if EGR is present) and post-
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combustion products.  The autoignition zone ceases to exist as soon as pilot diesel ignites 

and combustion of the premixed natural gas-air mixture begins in the main reaction zone. 

Ignition delay kinetic mechanisms 

There is an ever-increasing need to utilize consistent complex chemical kinetic 

mechanisms in engine combustion modeling, particularly in the prediction of ignition 

timing.  The complexity of the mechanisms ranges from tens of species to hundreds of 

species used in precise depictions of fuel ignition.  Validation of these kinetic 

mechanisms over a wide range of engine operating conditions is necessary for predictive 

engine modeling.  Engine measurements are in general not most favorable for testing and 

validating chemical kinetic mechanisms since there are several factors that affect the data 

in addition to chemical kinetics, such as turbulence, spray effects and heat loss.  

Consequently, it is universal to use better-controlled, fundamental laboratory 

experiments, such as ignition-delay measurements in closed and constant volume reactors 

for kinetic mechanism validation.  Data for several fuels are available in the literature 

over a wide range of temperatures, pressures, and equivalence ratios and diluents 

concentrations using rapid compression machines, shock tubes and constant volume 

bombs.  There have been several attempts to utilize these data to establish both detailed 

and reduced kinetic mechanisms for the calculation of ignition delay. 

Detailed kinetic mechanisms 

Detailed kinetic mechanisms aim to include all of the important elementary steps 

and many of the subsidiary processes for a given reaction system with appropriate rate 

data assigned; for example, the complete reaction mechanism for iso-octane oxidation 

includes 3,600 elementary reactions with 860 chemical species.  There have been 
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substantial efforts to construct the detailed kinetic mechanism for hydrocarbon 

combustion over wide temperature ranges.  Several numerical methods have been applied 

in the initial selection of reaction schemes and optimization of groups of rate parameters.  

The progress in the development of kinetic mechanism took the route from smaller 

hydrocarbon such as ethane, ethene, propane, n-butane and then proceeded to larger 

hydrocarbons such as heptanes and isooctane.  Earlier, the major focus was towards high 

temperature mechanisms such as temperature beyond 1000K.  Later on, after the analysis 

of butane oxidation by Pitz and westbrook (1986) at low temperature up to 600K, 

importance of low temperature mechanisms were addressed.  The complexity of models 

increased henceforth. 

At higher temperatures, unimolecular fuel and alkyl radical species decomposition 

and isomerization reactions are more important, while at low temperatures H atom 

abstraction from the fuel molecule and successive additions of alkyl radicals to molecular 

oxygen, leading to chain branching, dominate the oxidation process.  The degradation of 

the hydrocarbons tend to follow a sequential breakdown of the carbon backbone (such as 

C4 → C3 → C2 → C1) rather than fragmentation into smaller carbon containing units that 

may occur at high temperature (C4 → 2C2). In addition, the selectivity of different 

propagating free radicals (especially OH, HO2, RO2 or RO) is emphasized at low 

temperature and the reactivity at particular C-H bonds of the alkane may differ 

appreciably. These kinetic aspects have an increased importance at low temperature 

because the relative magnitudes of rate constants for individual reactions are more 

dependent on the activation energies in the Arrhenius expression at lower temperatures.  

Previous experimental studies have focused on shock tubes (Bilger et al. 1991; 

Warnatz 1992), jet-stirred reactors (Ritter and Bozzell 1991), rapid compression 
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machines, flow reactors [Griffiths and Scott, 1989], amongs others.  All of these systems 

demonstrate phenomena such as self-ignition, cool flame, and negative temperature 

coefficient (NTC) behavior. Furthermore, variation in pressure from 1 to 45 bar changes 

the temperature range over which the NTC region occurs.  Ranzi et al. used a semi-

detailed model to simulate the oxidation of PRF mixtures (Ranzi et al. 1997).  Curran et 

al. (Curran et al. 1998) used a detailed chemical kinetic mechanism to simulate the 

oxidation of PRF mixtures.  Many works have been documented previously for different 

fuels such as propane (Koert et al. 1996), neopentane (Curran et al. 1996 and Wang et al. 

1999), the pentane isomers (Ribaucour et al. 2000), the hexane isomers (Curran et al. 

1996), n-heptane (Curran et al. 1998), and primary reference fuel blends (Curran et al. 

1998). 

Reduced Kinetic mechanisms 

Effective computer modeling of ignition process requires a simple, robust and 

efficient autoignition model. At the same time, it should adequately describe the main 

features of the process. This clearly shows the need of reduced kinetic models of 

autoignition despite the development of many detailed kinetic models discussed above.  

In fact, it is required that a reduced kinetic model, with parameters fitted to a certain 

range of fuels, should allow wider range of fuels and physical conditions.  These 

prerequisites have been attempted to be satisfied in the Shell autoignition model 

(Halstead et al. 1975). It has remained most popular since its inception largely due to its 

simplicity, combined with a generalized description of the kinetic mechanism, which 

proves to be satisfactory for many applications.  The reduced kinetic mechanisms 

developed by other authors have considerably more reactions and species than the Shell 
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model (Griffiths et al. 1994 and Sahetchian et al. 1995).  This makes them substantially 

more complicated for practical implementation.  Some of the models (Cox and Cole, 

1985; Hu and Keck 1987) were derived largely as a further development of the Shell 

model. They incorporate more explicit representations of the elementary reactions of the 

low temperature oxidation of alkanes (Griffiths 1995) and contain considerably more 

reactions than the Shell model. 

An alternative to the Shell model for practical applications was suggested by 

Schreiber et al. (1994), which comprises five species in six reactions.  Muller et al. 

(1992) suggested an even simpler approach to autoignition modeling, but this model was 

developed only for n-heptane. 

The Shell autoignition model, which was originally designed to simulate the 

autoignition for spark-ignition gasoline engines, was successfully extended to modeling 

the combustion of diesel fuels (Theobald 1986, Kong et al. 1996).  At the same time, the 

validation of the autoignition of diesel fuels is highly complicated, since we need to take 

into account the uncertainty of the available models of spray atomization, evaporation 

and mixing with air.  This means that, autoignition modeling for diesel sprays is 

intrinsically multi-phenomenal.  In contrast to the well-defined conditions in an RCM, the 

autoignition in diesel spray occurs over a wide range of equivalence ratios and 

temperatures due to fuel evaporation and mixing.  This obviously hinders the validation 

of the numerical models for diesel fuels. 

Arrhenius type empirical ignition delay correlations 

Several Arrhenius-type ignition delay correlations have been proposed by various 

researchers based on experimental data from constant volume pressure vessels, steady 
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flow reactors, rapid compression machines, and IC engines for different fuels as shown in 

Table 2.1. All of these correlations are based on the estimation of pre-ignition reaction 

rates, which are a function of the pressure, temperature, and equivalence ratio.  Ignition 

delay is inversely proportional to the rate of pre-ignition reactions prior to the combustion 

process. A general form of Arrhenius-type ignition delay correlations is given by  
E 

a 
R T n  m (P,T ,)  A  P   e u  2.1 

t
i dt 
  1  2.2 

t  (P,T ,) 
o 

where τ is the ignition delay time, P is the pressure, T is the temperature, φ is the 

equivalence ratio, A is the pre-exponential factor, Ea is the activation energy, Ru is the 

universal gas constant and m and n are model parameters.  These ignition delay 

correlations can be used to determine the ignition delay using instantaneous pressure, 

temperature and equivalence ratio following Livengood and Wu’s (Livengood and Wu 

1955) method (Equation 2.2).  

Figure 2.3 shows ignition delay behavior predicted using Arrhenius-type 

empirical ignition models and experimental results at 6 bar BMEP and 1700 rev/min for 

ALPING LTC combustion in a single-cylinder engine.  As evident from these results, the 

ALPING LTC experiments covered a wide range of pilot injection timings.  At most of 

these injection timings, the empirical Arrhenius-type models were unable to predict 

ignition delays satisfactorily except at the most advanced injection timing of 60° BTDC.  

One reason for the poor performance of these models is perhaps the fact that the 

pressures, temperatures, and equivalence ratios spanning the wide range of injection 
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timings are beyond the range of their validity.  Most Arrhenius-type ignition delay 

correlations were formulated for typical end-of-compression conditions of temperature 

and pressure in diesel engines.  All these models except Watson et al. (1980) over 

predicted ignition delays and led to an almost linear ignition delay trend with respect to 

injection timing.  Even the inclusion of an equivalence ratio term in ignition delay models 

like Hiroyasu et al. (1980) and Hernandez et al. (2010) did not help in modeling ALPING 

ignition delays satisfactorily. 

Table 2.1 Parameters of Arrhenius-type ignition models 

References Temperature 
Range 

Arrhenius Equation Parameters 

A EA/R (K) m n 

Hernandez et al (2010) Low -18.98e  10915.8 1.5573 0.493 

Intermediate 0.7156e  -1959.0 1.5715 1.269 
High -21.3e  17324.5 0.6101 0.520 

Spadaccini & Tvelde (1982) Low – High 2.43×10-9 20895 -2 0 

Hiroyasu et al. (1980) Low – High 0.845 4350 -1.31 -2.02 

Watson (1980) Low – High 3.45 2100 -1.02 0 

Wolfer (1938) Low – High 0.44 4650 -1.19 0 
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 Figure 2.3 Comparison of ignition delay predictions from various Arrhenius-type 
ignition delay correlations(Wolfer 1938; Hiroyasu et al. 1980; Watson et al. 
1980; Spadaccini and TeVelde 1982) with experimental ignition delay 
values 

Ignition Delay Model Development 

Shell Autoignition (SAI) mechanism 

The original SAI model developed by Halstead, Kirsch and Quinn is based on a 

reduced mechanism for cool flames and two-stage ignition of non-aromatic saturated 

hydrocarbons (Halstead et al. 1975; Halstead et al. 1977).  This model was validated 

using experiments performed on a rapid compression machine.  The eight-step chain-

branching reaction schemes involved in this model are shown here:  

Initiation: 
k 

q *    2.3RH  O  2R
2 

22 



 

 

 

 

 

 

 

 

 

 





Propagation: 

k
P* * R  R  P  q  2.4 

f k
1
.

* p * R   R  B  2.5 

f k
4

.
* p * R R Q  2.6 

f k
2

.
* p * R Q R  B  2.7 

Branching: 

k
b  *  2.8B  2R 

Termination: 

f k
3
.

* pR  out  2.9 

t2R *  
k 
 out  2.10 

Here RH represents hydrocarbon fuel (CnH2m), R* the radical, B the branching 

species, Q the intermediate species, and P the products. A very notable assumption in the 

SAI model is that although the radicals R* refer to different radicals encountered before 

ignition; they are treated as a single group. 

The five conservation equations that describe the above mechanisms are as 

follows: 

d[R *] 
 2(k [RH ][O

2
]  k

B
[B]  k [R *])  f k [R *]  2.11 

q t 3 pdt 

d[B] 
 f k [R *]  [ ]  f k [Q][R *]  2.12

1 p 2 pdt 
k

B
B 
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d[Q] 
 f k [R *]  f k [Q][R *]  2.13

4 p 2 pdt 

d[O
2
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p
[R *]  2.14

dt 
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2

]  [O
2

]
t  0RH   [RH ]  2.15 

pm t  0 

The specific reaction rate obtained using Arrhenius expressions with pre-exponential 

factors (A) and activation energies (E) are expressed as ki = Aiexp(-Ei/RT). On the other 

hand, the rate constant, kP in the rate expressions is obtained as kp = (1/(kP1[O2]) + 1/kP2 

+ 1/(kP3[RH]))-1 . The factor fi can be expressed as fi = Afi.exp(-Ei/RT).[O2]
xi.[RH]yi. 

Exothermicity, q, of the reaction is calculated as the heat release during the propagation 

cycle for oxidation of a single -CH2- fuel molecule from the fuel assuming a fixed 

proportion (λ) of CO and CO2 in the products. Effect of species R*, B and Q were 

neglected in the energy and mass balances in the original SAI model.  The oxygen 

consumption rate which is one of the important rate determining steps is defined as 

[n(2   )  m]
p   2.16 

m 

Twenty six kinetic parameters were used and optimized for the simulation of autoignition 

in the original SAI model. 

Modifications to the SAI mechanism 

Schapertons and Lee (S&L) (Schapertons and Lee. 1985) later modified the 

elementary steps in the original SAI model to account for mass conservation and 

proposed the main propagation cycle as follows 
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*  1  * R  ( 1) C H  pO   R  qP  f B  f Q  heat  2.17 
n 2m 2 1 4 m  

where, ∧ = (f1WB + f4WQ)/(WCnH2m/m + pWO2) and q = 1 + n/m. Molecular weight of 

generic species R*, B and Q is given by WR* = (WCnH2m + WO2)/2, WB = 2WR* and WQ = 

WB.  The modified propagation cycle results in increased fuel consumption and 

consequently, a factor of (∧ + 1) increase in pre-ignition energy release.  In addition, the 

reaction rates were frozen to their corresponding values at 950 K even if the actual 

temperature was higher.  As seen in Equation 2.17, the elementary steps have been 

incorporated into the main propagation cycle.  Finally, for mass conservation purposes 

the two termination reactions were assumed to lead to nitrogen.  

W 
* 

R* RLinear termination:                 N2  2.18
W

N
2 

W 
* 

Quadratic termination:                R*  2 R N
2

 2.19 
W

N
2 

More recently, Hamosfakidis and Reitz (Hamosfakidis and Reitz 2003) suggested 

additional modifications to remove three deficiencies associated with the SAI model.  

First, instead of using a constant CO/CO2 ratio (constant λ), they employed the following 

energy balance to calculate heat release. 

1 
C H  p(O

2 
c

N 
N c

H O
H Oc

CO 
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n 2m 2 2m 2 2 2  2.20 
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CO n
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C H
2 2 2 2 2 H n 2m

2 2 2 2 2 n 2m 

where, p = (n/m + 0.5)/φ and φ is the equivalence ratio of the mixture.  The coefficients c 

in the reactant side is based on molar ratio of corresponding reactant species with respect 
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to coefficients of the constituents of the product.  Thus the energy release of the reaction 

at temperature T can be given by 

N
P 

N 
r" 0 0 ) ' 0 0 )H   (  h   (  h  2.21r,T 

n
i 

H
f ,i s,i 

n
i 

H
f ,i s,i

i  1 i  1 

where, ΔH0
f,i represents the enthalpy of formation and ΔH0

s,i represents the sensible 

enthalpy of the species i. With Equation 2.21, the propagation cycle proposed by 

Schapertons and Lee can be altered into the following Equation 

 1 
 C H  p(O

2 
 c

N 
N n 2m 2*  m 2  * R  (1)  R  P  f B  f Q  heat

  1 4 c
H O

H O  c
CO 

CO
2

) 2 
 2 2   2.22 

where, p = nO2.O2 + nN2.N2 + nCO2.CO2 + nCO.CO + nH2.H2 + nCnH2m. CnH2m. 

The second modification in the Hamosfakidis and Reitz (H&R) model was based 

on the assumption that autoignition and combustion are closely related phenomena.  

Thus, instead of converting radicals into inert N2, the same products can be assumed in 

radical termination reactions from combustion of the same reactants, excluding nitrogen 

in the product side.  . In the original SAI and Schapertons and Lee models, the species 

contributions were only considered in the mass balance.  In this study, the H&R model, 

with only the activation energy (Aq) for the chain initiation reaction modified (Table A2 

(Appendix)), was used to predict ignition delays for ALPING LTC. 

Diesel evaporation model 

An isolated droplet evaporation model based on Kanury (1975) is used to 

calculate droplet evaporation rates.  Quasi-steady conditions are assumed with the 

evaporation rates corresponding to temperature and species concentration changes.  The 
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liquid diesel in droplet form is not considered to be active part of the autoignition zone.  

Only evaporated diesel is allowed to enter the autoignition zone.  In order to further 

simplify the model all fuel droplets are assumed to have the same initial sauter mean 

diameter (SMD) of 30 microns.  

The steady-state energy and species (diesel) conservation equations (in spherical 

coordinates) for evaporation of a single diesel droplet, assuming constant properties and 

no combustion, are 

d 2 dT d
K

g 
(4r )  C

g 
([W"4r 2]T )  0 

dr dr dr  2.23 

dY
Fd 2 d 2] 

g 
D

F 
(4r )  ([W"4r Y

F 
)  0

dr dr dr  2.24 

where T is the temperature, YF is the mass fraction of diesel; Kg, Cg, and ρg are thermal 

conductivity, specific heat at constant-pressure, and density of diesel-air mixture in 

autoignition zone, respectively; and DF is the diffusion coefficient of diesel vapor in the 

diesel-air mixture.  The mass of liquid evaporated from the diesel droplet per unit droplet 

area per unit time is given by W”.  The first terms in Equations 2.23 and 2.24 represent 

conductive heat flux and diffusive mass flux, respectively, while the second terms 

represent convective heat and mass fluxes.  Equations 2.23 and 2.24 can be written in 

terms of normalized temperature (bT) and diesel mass fraction (bD) as follows: 
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where, αg is the thermal diffusivity of gas  in autoignition zone and R is the instantaneous 

diesel droplet radius. The subscript W refers to droplet “wall” conditions at r = R, where 

T = TW, YF = YFW. 

Cg T  T  bT  
L  Cl (TW  TR )  2.27 

where T∞ is the temperature of gas “away” from droplet surface (r →∞), TR is the 

interior temperature of the droplet (“liquid reservoir”), Cl is the specific heat of liquid 

diesel, and L is the latent heat of vaporization of diesel.  

Y
F 
 Y

Fb
D 

   2.28 
Y

FW 
 Y

FR 

Equations 25 and 26 are subject to the following boundary conditions: 

At r = R, bT = bTW, bD = bDW and as r →∞, bT = bT∞ = 0 and bT = bT∞ = 0 

Also,  

b
T 

b
DW" 

W 
  

g 
 

g 
  

g 
D

Fdr dr  2.29W W 

The final expression for evaporated diesel mass per unit droplet area per unit time 

is 

 
* 0 

W " 
W 

 h 
ln(1  B)

C 
g  2.30 

 

where, h0  is the average heat transfer coefficient for heat transfer between droplet and 

surroundings which is evaluated with a Nusselt number value of 2 (which is the 

conduction limit value for low Reynolds number flows), and assuming that the diesel 
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droplets are very small and are carried along with the mean gas flow.  B is the mass 

transfer number, which is defined as follows for Le = 1: 

 2.31 
In Equation 2.31, the middle term is from energy considerations (BT) and the last 

term is from species considerations (BD). In this chapter, only diesel evaporation without 

combustion is considered.  

Sensitivity analysis 

Sensitivity analysis is a valuable tool in model assessment as it shows how the 

model behavior responds to changes in parameter values.  It helps in establishing 

confidence in the model by studying the uncertainties associated with parameters in 

models.  Sensitivity analysis can also specify which parameter values are reasonable to 

use in the model.  If the model performs as expected from experimental observations, it 

indicates that the parameter values replicate at least in part the desired output.  In this 

study, the sensitivity analysis was performed with ignition delay as the model output of 

interest.  

For performing the sensitivity analysis, the ignition delay is expressed as a 

function of different parameters: 

ID  f (x
1

, x x )  2.322 n 

where, xi refers to different experimental variables and model parameters on which ID 

depends. First, the sensitivity of ID to different variables is determined.  Then, 

uncertainty magnification factors (UMF) that indicate important model parameters are 

estimated.  Subsequently, uncertainties in the ID are determined due to each variable. 
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Finally, the uncertainty percentage contributions (UPC) of different variables are 

quantified.  The sensitivities (Si), uncertainty magnification factor (UMFi), the overall 

uncertainty (UID) and the uncertainty percentage contribution (UPCi) can be evaluated as 

follows (Coleman and Steele 1999) 

 2.33

 2.34 

 2.35

 2.36
ID 

where, Uxi are the estimated uncertainties in the variable xi. In Table 2.2, several 

experimental variables are presented with their nominal values and their estimated 

uncertainties based on measurement and expected errors. 
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 Parameter  Nominal  Estimated 

Inlet Pressure  203.7 kPa  2% 
Initial Temp.  348 K  2% 
Engine Speed (Ne) 1700 rpm  1% 
Wall Temp (Twall) 400 K  5% 
Compression Ratio  14.5  1% 
Bore  0.13716 m  0.1% 
Stroke (sc) 0.16510 m  0.1% 
Connecting Rod  0.26162 m  0.1% 
nRH 14  1 
mRH 30  2 
Air flow rate, ma

Diesel flow rate,  
 0.062 kg/s 

5.58×10-5   
 1% 

1% 
NG flow rate, mNG  1.35×10-3   1% 
Droplet diameter  3×10-5 m  5×10-6 m 
φauto 1.0  1% 

 

Table 2.2 Estimated Uncertainties for Experimental Variablesand Model Parameters 

Results and discussions 

Studies of Ignition delay using rapid compression machine 

Experimental RCM results (Halstead et al., 1977) are compared to model 

predictions for primary reference fuels (PRF) RON90 and RON70 in Figure 2.4.  The 

experimental conditions used in the Thornton RCM experiment (Halstead et al., 1977) (Ф 

= 0.9, compression ratio = 9.6:1, pre-compression pressure 103.42 kPa) are used to 

estimate the ignition delay.  The end-of-compression molar concentration of the mixture 

was 0.324 kmol/m3. The end-of-compression pressure was calculated using the ideal gas 

equation of state. The temperature and the concentration of all generic species were 

calculated using SAI model.  It can be inferred from Figure 2.4 that fuel reactivity plays 

an important role in the ignition mechanism, and therefore, a separate set of model 

parameters is needed to predict ignition delays for different fuels even though other 

experimental variables remain same.  Also, the values of the parameters used in the shell 
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model are subjective (Hamosfakidis and Reitz 2003) and their selections can be done 

independently, after having assigned values to the other parameters. 

Hamosfakidis and Reitz (2003) modified the Shell model to decrease the number 

of model parameters from twenty-six to twenty and thus reduced the computational 

efforts. Unlike constant end-of-compression molar concentration in the Thornton RCM 

experiment (Halstead et al. 1977), constant end-of-compression pressure (80 bar) was 

used as in (Hamosfakidis and Reitz 2003) as an initial condition to compute ignition 

delays. Figure 2.5 shows the comparison of ignition delay predictions using original SAI 

model and the modified SAI model (Hamosfakidis and Reitz 2003).  It can be seen that 

the relative error is higher at high and low temperature where as error reduces at medium 

temperature.  Also, shown in this figure are presumably more accurate ID results from 

CHEMKIN with detailed kinetics incorporated for n-tetradecane.  In all cases the original 

SAI model underpredicted the actual ignition delay whereas the modified SAI model 

matched the CHEMKIN predictions.  
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 Figure 2.4 Comparison of experimental IDs (Halstead et al. 1977) and model 
predictions showing the effect of temperature on ignition delay for PRF 
RON 70 and PRF 90 (Ф = 0.9 , compression ratio 9.6:1, wall temperature = 
373 K) 

In order to further verify the SAI model, experimental autoignition data for n-

heptane obtained from measurements in the Lille RCM (Minetti et al. 1995) for an initial 

pressure at the start of combustion of 17.33 kPa and 21.74 kPa are used.  In Figure 2.6, 

the experimental ignition delays and ID predictions with the modified SAI model 

(Hamosfakidis and Reitz 2003) are plotted against the end-of-compression temperatures 

for the Lille RCM. In addition, Figure 2.6 also includes pressure dependence of ignition 

delays in a rapid compression machine.  Here, increase in pressure led to increase in 

charge density, which has profound effect on chain initiation and chain propagation 

reactions. As the end-of-compression pressure is reduced, ignition delay increased and 

negative temperature coefficient (NTC) region became more prominent.  The NTC region 
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Figure 2.5 Ignition delay vs. inverse temperature for n-tetradecane for stoichiometric 
mixture at 8 MPa (Hamosfakidis and Reitz 2003) 

 

 

 

is the range of temperature where increase in temperature leads to increase in ignition 

delay as can be seen in the Figure 2.6 (between 750 K and 850 K). 
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 Figure 2.6 Measured and predicted ignition delays for stoichiometric n-heptane-air 
mixtures plotted as functions of core gas temperature T in the Lille RCM 
(compression ratio, r = 9.8 and T, = 355 K) (Minetti et al. 1995) 

 

Further, ignition delays predicted by the original SAI model (Halstead et al. 1977) 

are compared to experimental results from the Leeds RCM [24] (with compressed gas 

densities of about 0.131 kmol/m3) as shown in Figure 2.7. The agreement between 

original SAI model predictions for PRF RON 70 and experimental results was good at for 

temperatures higher than 750 K but less satisfactory at lower temperatures.  Short ignition 

delays throughout the entire temperature range and lower threshold compressed gas 

temperature for the onset of ignition are evident from the high reactivity of n-C7H16. 
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Figure 2.7 Ignition delay variation with compressed gas temperature for n-heptane 
(Griffiths 1995) 

Delineation of temperature regime for autoignition phenomenon 

In the section above ignition delay prediction using SAI model was compared to 

several RCM experiment results.  These RCM experiments were performed in order to 

capture the chemistry of autoignition .  However, due to certain assumptions associated 

with RCM, it is necessary to study the difference in ignition delays obtained from the 

RCM and those obtained from anengine. Figure 2.8 shows the ignition delays of 70 RON 

PRF in a rapid compression machine (RCM) environment for end-of-compression RCM 

conditions similar to the start of injection conditions for ALPING LTC in the single-

cylinder engine. Also illustrated in Figure 2.8 are the predicted and measured ignition 

delays (re-plotted in milliseconds) for ALPING LTC engine operation.  The modified 

SAI model by Hamosfakidis and Reitz (Hamosfakidis and Reitz 2003) was used to 
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predict ignition delays in both the RCM and engine cases.  It was observed that for the 

range of injection timings considered (20°-60° BTDC), the temperatures at the start of 

injection in ALPING combustion fall under the low temperature regime or negative 

temperature coefficient regime, that is, less than 800 K.  In the RCM, preignition 

reactions occur in the fuel-air mixture at constant volume (after compression) whereas in 

the engine, the volume continues to decrease (due to compression) after the start of 

injection when preignition reactions begin.  Thus, in the engine, apart from the energy 

release due to preignition reactions, compression also leads to a further increase in 

temperature and charge density, resulting in shorter ignition delays compared to the 

RCM. Moreover, in ALPING combustion, physical phenomena such as fuel spray 

formation, droplet atomization, droplet evaporation, air entrainment and mixing with fuel 

result in a significant physical ignition delay.  In contrast, in the RCM, fuel and air 

mixture at the end of compression are considered to be evaporated and homogeneously 

mixed.  It can be noticed from the figure that as injection timing is retarded towards TDC, 

the engine ignition delays approach the RCM ignition delays.  These trends show that the 

SAI mechanism, which was originally developed and calibrated with experimental ID 

results from an RCM, may be more suitable for engine ignition delay predictions at high 

temperatures (towards the end of compression). 
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Figure 2.8 Ignition delay vs. temperature in RCM(Halstead et al. 1977) and ALPING 
combustion engine 

Uncertainty Analysis 

In the section above, it was shown that for similar experimental conditions, there 

were differences between actual experimental ALPING ignition delays and predicted 

ignition delay predictions from the RCM ALPING-like conditions.  Since the SAI model 

involves 26 model parameters to predict the ignition delay based on RCM autoignition 

kinetics, it is necessary to understand the sensitivity of these parameters for tuning the 

ignition delay model to match experimental ALPING IDs.  Sensitivity analysis will help 

in finding how the model behavior responds to changes in parameter values and will also 

help in creating confidence in the model by studying the uncertainties associated with 

parameters in models. 
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Figures 2.9 and 2.10 illustrate the sensitivities of predicted IDs to the SAI model 

parameters.  The Arrhenius reaction rate expressions (ki = Aiexp(-Ei/RT)) in the SAI 

model (Halstead et al. 1977; Hamosfakidis and Reitz 2003) use two sets of constants, 

viz., pre- exponential factors (Ai) and activation energies (Ei). It can be seen that among 

Ai, the predicted IDs were most sensitive to AP3, Aq, Af1 and Af3 at all end-of-compression 

temperatures in the RCM and for all injection timings in the engine.  Among Ei, the IDs 

were most sensitive to Eq, EP3, Eb and Ef3. In both the RCM and the engine, comparing 

sensitivity of all the parameters, it can be seen that ID was most sensitive to Eq. All of 

these model parameters (e.g., Aq and Eq) showed higher sensitivities at the retarded BOI 

of 20° BTDC.  By comparison, ID sensitivities at 60° BTDC BOI was moderate, while 

40° BTDC BOI showed very low sensitivities.   

In engine combustion simulations, since model parameters play a crucial role in 

the accuracy of model predictions, the uncertainty analysis outlined above provides a 

basic framework for discerning the most sensitive parameters and the largest contributors 

to model uncertainties.  While experimental input variables cannot be modified, model 

parameters can be calibrated.  Clearly, as demonstrated in Figures 2.9 and 2.10, proper 

choice of the most sensitive model parameters such as AP3, Aq and Ab can ensure the best 

ID predictions under ALPING LTC conditions. 
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Figure 2.9 Sensitivities of predicted IDs at different end-of-compression temperature 
inside RCM to pre-exponential factors used in modified H&R model. 
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Figure 2.10 Sensitivities of predicted IDs at different BOIs to pre-exponential factors 
used in modified H&R model. 

Validation of ignition delay prediction using modified SAI model from ALPING 
engine 

Ignition delay in diesel engines typically includes both physical and chemical 

components.  In general, the physical delay is a consequence of the finite time taken for 

spray atomization, evaporation, and fuel-air mixing while the chemical delay is due to the 

finite rate of preignition reactions.  In this analysis, n-tetradecane (C14H30) is considered 

as the surrogate for diesel fuel. Ignition delay is defined as the period (in crank angle 

degrees) between BOI and the onset of ignition in the autoignition zone, which is 

assumed to occur when its temperature increases above 1100 K or the rate of increase of 

its temperature exceeds 107 K/s. The predicted and measured ID results were obtained at 
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a medium load (BMEP = 6 bar), engine speed of 1700 rpm, and intake manifold 

temperature (Tin) of 75°C.  

Figure 2.11 compares the ID predictions from the modified H&R model (present 

work) and the original H&R model (Griffiths 1995) to the experimental IDs obtained for 

ALPING LTC. It must be noted that the experimental IDs were obtained over a range of 

injection timings, 20° BTDC – 60° BTDC at a medium load (BMEP = 6 bar), a constant 

speed of 1700 rpm, and fixed intake manifold conditions (PIVC = 212 kPa, Tin = 75° C).  

The model inputs were fixed: SMD= 30 µm, φauto = 1.0, and EGR = 0%.  It is clear that 

the original H&R model (Hamosfakidis and Reitz 2003) systematically over-predicted 

IDs throughout the range of BOIs. 

The original H&R model was developed for diesel-type combustion and was 

fitted well at relatively high SOI temperatures .  To improve ID predictions for low and 

intermediate SOI temperatures, several parametric studies were performed with the 

original H&R model constants as the baseline.  A parametric study showed that AP3 and 

Aq were the most sensitive model parameters that affected ignition delay predictions.  

Therefore, Aq was modified to the value shown in Table A2 (APPENDIX) so as to 

minimize the difference between experimental and predicted IDs.  The parameters Aq in 

the model determine the rate of the initiation reaction (Theobald and Cheng 1987).  

Increasing Aq to 2.5 × 1013 (instead of the baseline H&R value of 5.74 × 1012) resulted in 

a better match between predicted and experimental IDs as shown in Figure 2.11. 
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Figure 2.11 Comparison of predictions from H&R model and present work (Aq = 2.5 × 
1013) with experimental ID values for ALPING LTC at different BOIs, half 
load (BMEP = 6 bar; 1700 rpm, PIVC = 212 kPa, Tin = 75° C, SMD= 30 
µm, φauto = 1.0, EGR = 0%) 

 Parametric studies based on simulation 

In Figures 2.12 to 2.15, variations in ID and Δθevap are analyzed over a range of 

BOIs for different parameters such as initial droplet SMD, intake temperature, 

autoignition zone equivalence ratio (φauto), and EGR.  In all of these parametric studies, it 

was found that evaporation duration (Δθevap) and ID increased as the BOI was advanced 

from 20° BTDC to 60° BTDC.  This is due to the progressive decrease in temperature at 

the time of injection as BOI occurs earlier with respect to TDC.  Since both evaporation 

and ignition are temperature-dependent phenomena, higher temperatures closer to TDC 

lead to accelerated evaporation rates and pre-ignition energy release rates, thereby 

leading to shorter Δθevap and ID. 
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Effect of Initial Droplet Sauter Mean Diameter (SMD) 

Figure 2.12 shows the predicted ID and Δθevap as a function of BOI for three 

initial droplet SMD values: 10, 30, and 50 microns.  For this study, the engine speed of 

1700 rpm , PIVC of 212 kPa, Tin of 75°C, and mass of diesel injected per cycle (md) of 

3.94 mg/cycle were held constant.  The autoignition zone equivalence ratio (please see 

figure 2.2 for details of the autoignition zone) was fixed at unity (stoichiometric) with no 

EGR. Larger droplet SMDs decreased evaporation rates, thereby resulting in longer 

Δθevap. Similarly, larger SMDs also led to longer IDs for BOIs closer to TDC.  However, 

as BOI was advanced beyond 35° BTDC, there was no significant impact of SMD on the 

predicted IDs, which remained approximately constant.  For the retarded BOIs (20°-30° 

BTDC), the onset of ignition occurred even before evaporation was complete for the 

SMD of 50 microns. 

Figure 2.12 Ignition delay and Δθevap vs. BOI for different diesel droplet diameters at 
half load (BMEP = 6 bar), 1700 rpm, PIVC = 212 kPa, Tin = 75° C, φauto 
= 1.0, EGR(%) = 0 
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Shorter evaporation durations and shorter IDs were observed for smaller SMDs 

for different reasons.  For constant diesel injected mass, smaller SMDs led to more 

droplets having larger total surface areas at identical in-cylinder conditions.  Larger 

droplet surface areas resulted in faster evaporation rates.  A visible difference was 

observed in IDs for different SMDs at retarded BOIs because at these timings, 

evaporation was incomplete due to longer Δθevap for larger SMDs. Slower evaporation 

rates of droplets with larger SMDs resulted in longer Δθevap and slower increase of diesel 

and oxygen concentrations in the autoignition zone.  These effects decreased radical 

formation rates for droplets having larger SMDs, thus increasing IDs for retarded BOIs.  

The SMD effect diminished as BOI was advanced beyond 40° BTDC due to the fact that 

Δθevap was shorter than the ID.  Therefore, relatively small changes in Δθevap caused by 

changes in SMD did not have any significant impact on ID since the chemical component 

of ID overshadowed the physical component at advanced BOIs. 

Effect of Intake Charge Temperature 

Intake charge temperature is considered to be one of the most important factors 

affecting IDs and Δθevap (Sazhin 2005) In Figure 2.13, at the effect of different intake 

temperatures (50°, 75° and 100°C) on ID and Δθevap is presented. Again, at different 

intake temperatures, other engine variables were held constant: Ne = 1700 rpm, PIVC = 

212 kPa, md = 3.94 mg/cycle, SMD= 30 µm, φauto = 1.0, and EGR = 0%. It can be 

observed that for each intake temperature chosen in the study, Δθevap and ID increased as 

the BOI was advanced from 20° to 60° BTDC.  Also, ID and Δθevap decreased with 

increasing intake temperature at all BOI.  This may be explained from the preignition 

reaction rate expressions (ki = Ai.exp(-Ei/RT)), where higher temperatures led to faster 
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reaction rates, thus decreasing IDs. This relation between intake temperature and ID has 

been observed by several researchers in the past (Halstead et al. 1977; Schapertons and 

Lee. 1985; Sazhin et al. 1999; Hamosfakidis and Reitz 2003).  Also from Equations 25 

and 26, it can be seen that the evaporation rates increase with increasing temperature, 

thereby reducing the total Δθevap at higher temperatures. 

Figure 2.13 Ignition delay and Δθevap vs. BOI for different intake temperatures at half 
load (BMEP = 6 bar); 1700 rpm, PIVC = 212 kPa, SMD = 30 µm, φauto = 
1.0, EGR(%) = 0 

Effect of Autoignition Zone Equivalence Ratio (φauto) 

The autoignition zone equivalence ratio (φauto) is an important model parameter in 

the quasi-two-zone combustion model.  The effect of φauto on ID predictions is shown as 

percent relative error trends in Figure 2.14.  Relative error in ID was calculated as the 

difference between predicted ID and experimental ID for a given BOI and φauto, 

normalized with the experimental ID, and expressed as a percent relative error in 

predicted ID.  For this parametric study, φauto was varied from lean to rich values while 
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other engine variables were held constant: Ne = 1700 rpm, PIVC = 212 kPa, Tin = 75° C, 

SMD = 30 µm, md = 3.94 mg/cycle, and EGR = 0%. The purpose of this study was to 

determine the optimal φauto, which provided the least percent relative error over the range 

of BOIs encountered in ALPING LTC. From Figure 2.14, it can be seen that 

stoichiometric autoignition zone equivalence ratio (φauto = 1.0) resulted in the least error 

(±10%) in predicted IDs between 20° and 60° BTDC injection timings.  Consequently, 

the optimal φauto for the present model (all results shown except Figure 2.14) was 

assumed to be 1.0 over the range of BOIs in ALPING LTC.  The percent relative error 

trends also show that the impact of φauto variation on predicted IDs was more pronounced 

at retarded BOIs, possibly due to the increased importance of the physical component of 

ID at retarded BOIs. 

Figure 2.14 Relative error in predicted ignition delays vs. BOI for different autoignition 
zone equivalence ratios (φauto) at half load (BMEP = 6 bar); 1700 rpm, 
PIVC = 212 kPa, SMD = 30 µm, Tin = 75° C, EGR(%) = 0 
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Effect of EGR 

Exhaust gas recirculation (EGR) involves slip-streaming some of the exhaust back 

into the intake manifold to mix with fresh intake charge to reduce NOx emissions.  The 

amount of EGR in the total intake charge is usually expressed as EGR %, which is 

defined as: 

m
EGREGR(%)  100  2.37 
m

i 

where mi = ma + mNG + mEGR and mEGR is the mass of EGR.  Since diesel engines do not 

employ any intake throttling, they operate at 95-100 percent volumetric efficiencies at 

most engine operating conditions. The use of EGR results in displacement of a portion of 

air causing a reduction in the air available for combustion.  This decreased combustion 

air lowers the air–fuel ratio at which the engine operates and can affect exhaust emissions 

significantly. Also, when uncooled EGR is mixed with the air delivered to a diesel 

engine, the temperature of the  charge increases and can considerably affect the 

compressed charge temperature and the combustion process (Mitchell et al. 1993; 

Ladommatos et al. 1998).  The displacement of intake charge with CO2 and H2O can 

impact the combustion process in many ways.  For instance, addition of EGR can lead to 

a net reduction in intake oxygen concentration, which influences the flame temperature 

and thus NOx emissions (Mitchell et al. 1993).  On the other hand, the higher specific 

heats of both CO2 and H2O in comparison to that of O2 and N2 being displaced results in 

a net diluent effect. In ALPING LTC, when the intake natural gas-air mixture mixes at 

intake temperature (Tin) with recycled, uncooled, exhaust gas at a higher temperature 

(TEGR), the resulting natural gas-air-EGR mixture temperature (Tmix) will be higher. An 

important effect while using EGR can be a net stratification in temperature and/or 
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composition of the final intake mixture.  However, the extent of homogenization of the 

in-cylinder mixture is dependent on available mixing times (Srinivasan et al. 2007). 

Figure 2.15 shows both experimental and simulated IDs as a function of BOI at 

different EGR substitutions.  A reduction in experimental ID was observed with 

increasing percent EGR for the entire range of BOIs, except at the most retarded BOI of 

20° BTDC. There may be several competing factors that led to this behavior.  For 

example, increasing hot EGR substitutions led to higher intake charge temperatures, 

thereby causing shorter ignition delays for most BOIs.  On the other hand, oxygen 

concentrations also decreased as percent EGR was increased; therefore, the charge was 

hotter and depleted of oxygen when it entered the combustion chamber.  Also, the higher 

specific heats (Cp) of CO2 and H2O introduced by EGR increased the effective Cp of the 

intake mixture.  This increase in effective Cp resulted in lower temperatures at the time of 

pilot diesel injection. Lower temperatures at BOI coupled with oxygen depletion resulted 

in lower preignition energy release in the autoignition zone.  This decrease in preignition 

energy release competed with the effects of higher intake charge temperatures at different 

BOIs, affecting the actual ignition delay times. However, from Figure 2.15 it is clear that 

ID decreases with increasing EGR substitutions for most BOIs.  This demonstrates that 

for most BOIs, the most significant effect of uncooled EGR is a net increase in intake 

charge temperature, and therefore, a net reduction in IDs  However, the simulated IDs do 

not follow the experimental trends for 20° BTDC BOI but continue to show a decreasing 

trend with increasing EGR.  These differences indicate a shortcoming of the present 

model. 
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 Figure 2.15 Ignition delay and Δθevap vs. BOI for different EGR (%) at half load 
(BMEP = 6 bar); 1700 rpm; PIVC = 212 kPa, Tin = 75° C, SMD = 30 µm, 
φauto = 1.0 

 

 

Ignition delay of biodiesel 

Chemical kinetic studies of biodiesel combustion, either experimentally or using 

computational modeling are very limited.  The most important reason for this is that the 

chemical structure of biodiesel considerably differs from that of fossil fuels due to the 

inclusion of oxygen atoms into the alkyl chain.  Biodiesel in general is composed of 

several fatty acid methyl esters.  Therefore modeling biodiesel ignition kinetics is 

complicated.  In addition, the large fuel molecules of biodiesel make the capabilities of 

kinetic modeling even more difficult.  A general method used to get rid of this problem is 

to choose a surrogate molecule that corresponds to the chemical properties of the real fuel 

to be studied (Herbinet et al. 2010; Westbrook et al. 2011). Consequently, related 

research has followed two major pathways.  In order to address the ester component of 

major constituents of biodiesel, experiments and kinetic modeling of smaller methyl 

esters have been performed.  Methyl butanoate is the largest methyl ester that has been 
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studied kinetically and it is concluded that this fuel reproduces kinetic features of the 

oxidation of the ester component of biodiesel molecules.  On the other hand, combustion 

of large biodiesel molecules has been studied by assuming that large methyl esters can be 

considered as being fundamentally the same as large n-alkanes. Other researchers have 

used kinetic models for n-alkanes as large as n-hexadecane to simulate the combustion of 

the large methyl ester molecules in actual biodiesel fuels.  A brief review of past work in 

the area of methyl ester combustion is presented here. 

A detailed chemical kinetic mechanism for the combustion of methyl butanoate 

was developed by Fisher et al. (Fisher et al. 2000), which was validated against the 

limited available data obtained under low-temperature, subatmospheric conditions in 

closed vessels, using pressure measurements as the main diagnostic.  Later, Metcalfe and 

co-workers studied the oxidation of methyl butanoate and ethyl propanoate in a jet-stirred 

reactor (Metcalfe et al. 2007). A revised detailed kinetic mechanism based on the work 

of Fisher et al. (Fisher et al. 2000) for methyl butanoate and a new sub-mechanism for 

ethyl propanoate were used to simulate measured ignition delay times.  Gaïl and co-

workers carried out a wide-ranging kinetic modeling study of the oxidation of methyl 

butanoate using a jet-stirred reactor, a variable-pressure flow reactor, and an opposed-

flow diffusion flame (Gaïl et al. 2007).  Sarathy et al. (Sarathy et al. 2007) performed an 

experimental study of methyl crotonate (C5H8O2 unsaturated methyl ester) in a jet-stirred 

reactor and an opposed-flow diffusion flame.  Vaughn et al. studied the combustion of 

biodiesel fuel droplets in microgravity and measured ignition times of methyl esters (such 

as methyl butanoate, methyl decanoate, methyl dodecanoate, and methyl oleate) and 

commercial soy oil methyl esters (Vaughn et al. 2006).  Ignition delay times obtained 

during this study showed that methyl decanoate and methyl dodecanoate are better 
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surrogates for commercial soy oil methyl esters than methyl butanoate, in agreement with 

conclusions of Fisher et al. (2000) and Gaïl et al. (2007). 

Dagaut et al. studied the oxidation of rapeseed oil methyl ester (RME) in a jet-

stirred reactor (JSR) at 1–10 atm over the temperature range 800–1400 K (Dagaut et al. 

2007). Experimental data obtained were compared with computational mechanisms for 

oxidation of n-hexadecane and has been confirmed against experiments in a JSR (Ristori 

et al. 2001). The agreement was reasonable and n-hexadecane was considered to be a 

good surrogate for rapeseed oil methyl ester under the conditions of the study.  However, 

the n-hexadecane mechanism was unable to predict the early production of CO2 that was 

observed in experiments.  

Ignition delay model for methyl butanoate 

A good knowledge of the kinetics of the reaction of biodiesel fuels at both high 

and low temperature is necessary to perform reliable simulations of ignition, combustion, 

and emissions in diesel engines.  Modeling of the oxidation of methyl butanoate provided 

a better understanding of the chemistry of methyl ester combustion (Dooley et al. 2008). 

As mentioned earlier, the multistep SAI model containing 26 model parameters 

can be tailored to model a particular fuel.  The model parameters include the activation 

energy, E, the pre-exponential factor, A, and the exponents x and y of the reaction rate 

equation for each of the reactions in the model: ki = Aiexp(-Ei/RT). Among 26 

parameters adjustable to each fuel, there is kinetic information available to the rates of 

the chain propagation steps, which are related to alkyl peroxy isomerization theory 

(Halstead et al. 1977). Thus, the values of Ap1, Ep1, Ap2, Ep2, Ap3, and Ep3 used here 

were those used by Halstead et al. (1977) from literature data and were not altered, as 
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although methyl butanoate shows only single stage ignition, other longer chain methyl-

esters components of biodiesel do show negative temperature coefficient behavior 

(Dooley et al. 2008). Among PRF 90 and PRF 100 parameters published by Halstead 

et al. (1975) the remaining 20 constants were individually increased and decreased to 

determine their effect on the ignition delay and this information was then used to match 

the ignition delay found from detailed CHEMKIN modeling (Toulson et al. 2010). 

Summary 

This chapter reviewed literature on autoignition mechanisms of diesel surrogate 

fuels in RCMs, shock tubes and constant volume pressure vessels.  The shortcomings of 

traditional Arrhenius type ignition delay model fits were addressed in the context of 

advanced low temperature combustion, such as lean premixed natural gas combustion 

using very small diesel pilot sprays.  The need for reduced chemistry-based autoignition 

models such as the Shell Auto Ignition (SAI) model and several modifications made to 

the original SAI was established to capture the ignition delay behavior at low temperature 

conditions. Further, the modified SAI model proposed by Hamosfakidis and Reitz (2003) 

was identified as a suitable candidate to estimate ignition delays at low temperature 

conditions. Detailed examination of model parameters using sensitivity analysis 

indicated that preexponential factors such as Ap3 and Aq exerted maximum influence on 

ignition delay predictions.  Finally, parametric studies to investigate intake charge 

pressure, temperature and amount of exhaust gas recirculation were performed and the 

predictions of the modified H&R model were validated against experimental data at 

various operating conditions. 
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CHAPTER III 

MULTI-ZONE MODELING OF DIESEL AND BIODIESEL COMBUSTION 

In diesel engines, fuel is injected into the engine cylinder near the end of the 

compression stroke.  During a phase known as ignition delay, the fuel spray atomizes into 

small droplets, vaporizes, and mixes with air.  As the piston continues to move closer to 

top dead center, the mixture temperature reaches the fuel’s auto-ignition temperature 

range, causing ignition of some premixed quantity of fuel and air.  The remaining fuel 

that had not participated in premixed combustion is consumed in the mixing-controlled 

combustion phase.  In this chapter, the combustion behavior of diesel andbiodiesel fuels 

in a compression ignition engine will be studied.  The chapter will begin with a review of 

the research on combustion models for the conventional diesel engine.  Thereafter, 

properties of diesel andbiodiesel with associated combustion phenomena will be 

described. Later, model formulation and the simulation results of the different phases of 

combustion and experimental data will be compared. 

Diesel Combustion Process 

Combustion in diesel engines is very complex and until recently, its detailed 

mechanisms were not well understood.  Since engine performance, fuel consumption, and 

emitted pollutants depend on the combustion process in the engine, it is necessary to 

understand the mechanisms of combustion in diesel engines.  The basis of diesel 

combustion is its unique way of releasing the chemical energy stored in the fuel.  To 

perform this process, oxygen must be made available to the fuel to facilitate combustion. 
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One of the most important aspects of this process is the mixing of fuel and air, which is a 

process often referred to as mixture preparation. 

In diesel engines, fuel is often injected into the engine cylinder near the end of the 

compression stroke, just a few crank angle degrees before top dead center (Heywood 

1988). The liquid fuel when injected through small orifices or nozzles atomizes into 

small droplets and penetrates into the combustion chamber.  The atomized fuel which is 

heated by the hot air at or near TDC, vaporizes, and mixes with the surrounding air.  The 

mixture temperature continues to rise until it reaches the fuel’s autoignition temperature.  

Some premixed fuel and air ignites immediately thereafter.  This rapid ignition is 

considered the start of combustion and is marked by a sharp pressure rise in cylinder 

pressure. The delay between start of combustion and the start of injection is termed as 

Ignition Delay as described in chapter II. Increased pressure resulting from the premixed 

combustion compresses and heats the unburned portion of the charge and shortens the 

delay. It also increases the evaporation rate of the remaining fuel. Atomization, 

vaporization, fuel vapor-air mixing, and combustion continue until all the injected fuel 

has combusted.  Therefore, inducted charge air and injected fuel play primary roles in the 

diesel combustion process.  It is therefore important to study the effect of the inducted 

charge air temperature, the injected fuel’s atomization, spray penetration, temperature, 

and chemical reaction characteristics.  While these two factors are most important, there 

are other parameters that may play important role in the combustion process.  For 

instance, intake port design, intake valve size, compression ratio, injection pressure, 

nozzle hole geometry, spray geometry, valve configuration and top piston ring position 

have a significant impact on combustion.  Therefore, it is significant to realize that the 

combustion system of the diesel engine is not limited to the combustion bowl, injector 
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sprays, and their immediate surroundings.  Rather, a combination of various systems and 

processes may affect the final outcome of the combustion process. 

Heat Release Rates in DI Diesel Engines 

Many researchers have studied cylinder pressure traces to determine heat release 

rates (Austen and Lyn 1961; Lyn 1963; Shipinski et al. 1968; Henein and Patterson 1972; 

Barba et al. 2000; Chmela and Orthaber 2004).  Figure 3.1 shows an example of a rate of 

net heat release diagram (Qn) together with cylinder pressure (P), and fuel injection rate 

(mfi) (Heywood 1988). Details of the work done to obtain these traces were given by Lyn 

(Lyn 1963). The initial sharp rise in the heat release rate results from burning the 

premixed portion of the fuel.  During the ignition delay period which is the time between 

start-of-injection (SOI) and the time at which the net rate of heat release returns to zero, 

evaporation from the spray forms a fuel rich fuel vapor-air mixture, first at the sides and 

then at the tip of the fuel jet. The negative heat release after the start of injection is due 

mainly to the heat transfer from the air to the evaporating liquid fuel. 

Figure 3.1 Heat Release Rate, Cylinder Pressure, and Injection Rate (Heywood, 1988) 
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At the point of maximum heat release rate, the cumulative heat release is about 

5% of the total computed heat release (Xingcai et al. 2006; García et al. 2009). This 

percentage reflects the approximate portion of fuel burned soon after ignition. However, 

this portion may vary according to the fuel properties, engine design choices and engine 

operating conditions. 

Three Phases of Diesel Combustion 

Diesel combustion includes both physical and chemical phenomena that have 

been described by many researchers (Henein and Patterson 1972; Heywood 1988). The 

combustion process is usually described in terms of three distinct phases, namely, 

ignition delay, premixed combustion and mixing-controlled combustion (Figure 3.2). 

Figure 3.2 Different Phases of Combustion in Diesel Engines (Heywood, 1988) 

Ignition Delay 

Ignition delay in diesel engine combustion is the time between the start of 

injection and the start of detectable combustion (a → b in Figure 3.2). There are several 
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ways to identify the start of combustion which include abrupt changes in cylinder 

pressure, light emission from combustion reactions, temperature rise due to combustion, 

combustion of a defined amount of fuel and a fixed point on the heat release rate curve 

(Heywood 1988). One of the many definitions for ignition delay is the time between 

start-of-injection (SOI) and the time at which the net rate of heat release returns to zero.  

It is the time when the integrated amount of heat released by reactions becomes equal to 

that absorbed by the evaporated fuel.  Net heat release rate is normally negative shortly 

after injection due to liquid fuel heating and evaporation (Figure 3.1).  

Depending on methods used for the measurement of start-of-injection, ignition 

delay may include injector lag—the time taken between the injector receiving the signal 

driving it open and fuel exiting the injector nozzle into the combustion chamber.  For 

example, using a Hydraulically-actuated Electronic Unit Injection (HEUI) injector with a 

maximum injection pressure of 142 MPa, an injector lag of about 1.5 ms was measured 

(Cheng et al. 2007). Others have measured injection lags in common rail systems ranging 

from 0.30 to 0.75 ms (Laguitton et al. 2002; Kastengren et al. 2008). The duration of the 

ignition delay is an important variable. It has a significant impact on the combustion 

process, mechanical stresses, engine noise and exhaust emissions.  Figure 3.3 gives a 

summary of the physical and chemical steps before and after autoignition. 
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 Figure 3.3 Steps Before and After Autoignition (Henein and Patterson 1972) 

The physical processes involved in the ignition delay period (ID) are spray break 

up, droplet formation, fuel and air mixing, heating of the liquid fuel and evaporation, 

mixing of the vapor and air to form a combustible mixture. The chemical processes that 

take place in the ignition delay period are pre-ignition reactions that break-down the 

hydrocarbon fuel and generate radicals and localized ignition that takes place in several 

areas within the combustion chamber. The early stages of pre-ignition can be considered 

to be dominated by the physical processes that result in the formation of a combustible 

mixture and the later stages by the chemical changes which lead to autoignition (Henein 

and Patterson 1972). 

While it is difficult to draw a distinct line separating the physical and chemical 

processes because they overlap, an estimate can often be made of the point at which the 

chemical process starts to dominate.  In addition to the fuel type (chemical structure), 

temperature, and pressure conditions, ignition delay is also affected by injection pressure 

and injector nozzle orifice diameter (Kobori et al. 2000). 
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Premixed Combustion 

The term premixed combustion refers to the rapid premixed combustion of a 

portion of the fuel injected during the ignition delay period.  This period is indicated as 

b→c in Figure 3.2. This portion of the fuel would have undergone atomization, 

evaporation, and the pre-ignition chemical reactions.  It would also have mixed with air 

to form a fuel-rich mixture that is ready to ignite once the autoignition temperature is 

reached. When autoignition occurs, the premixed fuel burns at a very high rate, 

producing high temperature and high rates of pressure rise in the combustion chamber 

(Gerpen 2001). The rate of premixed burning is governed mainly by chemical kinetics.  

Engine speed, load and injection timing can all affect the proportion of fuel burned in this 

premixed phase.  An examination of several correlations found that the mass of fuel 

burned in the premixed burn phase increased linearly with the product of engine speed 

and ignition delay time (Alkidas 1987). 

Mixing-Controlled Combustion 

In the mixing-controlled combustion phase, the consumption rate of this fuel is 

controlled by its rate of injection and subsequent mixing with air. The mixing-controlled 

combustion phase is represented by the curve between c→d in Figure 3.2. The 

combustion paths of three types of mixtures—rich, stoichiometric, and lean—are 

presented in Figure 3.4 (Gerpen 2001). 
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Figure 3.4 Three Paths from Mixture to Combustion (Gerpen, 2001) 

While the combustion process has been treated as consisting of three distinct 

phases, a fourth phase can also be defined that describes the activity in the final stages 

after the end of injection and prior to opening the exhaust valve.  In this final phase any 

remaining fuel that has not been consumed will continue to burn, perhaps at a much 

lower rate as shown in Figure 3.2 (d → e). Therefore, as long as fluid motion still exists 

inside the cylinder, mixing will continue to occur and provide opportunities for the fuel 

as well as partially-burned products to completely burn. 

Conceptual Diesel Combustion Model – the current view 

The understanding of the phases of the “conventional” diesel combustion process 

discussed above advanced significantly in the 1990s with the application of laser-sheet 

visualization techniques with optical access into the combustion chamber (Dec 1997; 

Flynn et al. 1999). Earlier, it was assumed that the quasi-steady portion of diesel 

combustion shortly after ignition and up to the end of injection was in steady-state such 

as those found in furnaces and gas turbines.  These early models of diesel combustion had 
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three important characteristics.  First, the liquid phase penetrated with fuel droplets being 

present up to or within the combustion zone.  Second, after the premixed burn, 

combustion occurred solely in a diffusion flame and was confined to the peripheral 

region of the jet. Third, soot occurred mainly in the shell-like region around the jet 

periphery. 

Early laser-sheet imaging studies showed features inconsistent with early 

conceptual models. According to these studies, soot is distributed throughout the cross 

section of the downstream portion of the reacting diesel jet.  There are no liquid fuel 

droplets in the reacting jet. Also, soot particles in the upstream portion of the jet are 

much smaller than those in the head vortex region.  Further imaging studies provided 

additional details which lead to significant changes in the conceptual model of the 

conventional diesel combustion process as can be seen in Figure 3.5.  The belief that 

ignition occurs at a few locations around the periphery turned out not to be the case.  

Ignition actually occurs at multiple points across the downstream regions of the jet.  

Rather than penetrating to the end of the reacting jet, the length of the liquid portion of 

the jet core is actually very short in normal burning.  Even after the end of the premixed 

burn phase, fuel is partially consumed through rich premixed burning before the fuel 

reaches the diffusion flame where burning is completed.  
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 Figure 3.5 Comparison Between “Old” and “New” Diesel Combustion Models (Dec 
1997) 

Spray Characterization 

The role of injection system characteristics has been widely studied.  Empirical 

and semi-empirical correlations between macroscopic and microscopic spray features and 

injection parameters are available in literature (Naber and Siebers 1996; Arrègle et al. 

1999; Gupta et al. 2000; Morgan et al. 2001).   

The macroscopic description of a diesel spray generally emphasizes the 

interaction of the latter and the control volume where it is injected and mixed.  The diesel 

spray is often described by three parameters namely, spray tip penetration, spray angle 

and break up length. Several researchers have studied the front penetration and have 

found a series of correlations that allow us to establish the main variables that affect or 

favor the penetration of a pulsed diesel spray (Dent 1971; Hay and Jones 1976).  

The microscopic description is characterized by the content of droplets of diverse 

sizes and the changes in their special kinetics.  For example, the atomization mechanism 

is responsible for distribution of the droplet sizes in the injection.  Generally, the quality 

of the atomization of a liquid spray can be estimated on the mean diameter of the 

droplets. One common indicator of mean droplet size is the Sauter mean diameter 
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(SMD). The SMD can be viewed as the diameter of a droplet that has the same surface-

to-volume ratio as that of the entire spray.  In DI diesel engines equipped with modern 

fuel injection systems that provide high injection pressures, SMD can be as low as 6 to 15 

microns (Henein and Patterson 1972; Heywood 1988).  The diameter of the droplets 

obtained as a result of atomization is based on a series of parameters such as rate of 

injection, working fluid temperature, spatial evolution of the size of the drops and 

evolution of the diameter of droplets during time (Hiroyasu et al. 1989).  

A greater number of smaller size droplets leads to a greater surface area that 

facilitates heat transfer from the hot compressed air to the small fuel volume contained in 

those droplets. It is also important to note that the injection process is not a steady 

stabilized process during which pressure, effective spray hole geometry, and injection 

rate are fixed. In fact, they do vary from the start to the end of injection.  Therefore, one 

might expect the droplet size distribution to vary during the injection process.  To further 

complicate the combustion process, temperature inside the combustion chamber is non-

uniform and this non-uniformity varies throughout combustion.  Therefore, mixing rates 

vary according to many parameters such as droplet size distribution, temperature 

distribution within the combustion chamber, spray penetration and atomization, fuel 

quality and its evaporation rates, as well as many other parameters (EL-Hannouny et al. 

2007 ). The ability to model or to simply understand diesel combustion depends to a great 

extent on the ability to define each of the parameters involved in this process including 

droplet size distribution.  
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Air Entrainment 

As the air-fuel mixing process is a key event in diesel combustion, a good 

understanding of the spray formation is essential to improve mixing efficiency.  The 

spray penetration length and spray penetration rate from a fuel injector are the two 

important parameters to evaluate fuel spray performance.  The significance of high or low 

penetration mainly depends on engine design and geometry.  Shorter spray penetration 

may be suitable to reduce fuel impingement, but in larger engines may slow down 

maximum air utilization (Bergstrand and Denbratt 2001).  It has been found that liquid 

and vapor penetration is dependent on ambient density and injection pressure.  Initial 

researches of spray performance were focused on low-pressure sprays injected into 

ambient or low density conditions (Kuniyoshi et al. 1980).  Investigations by Hiroyasu 

and Arai (1990), Naber and Siebers (1996) have shown a strong dependency of spray 

penetration upon both in-cylinder pressure and fuel injection pressure (Hiroyasu and Arai 

1990; Naber and Siebers 1996). Hiroyasu and Arai (1990) showed that the spray behavior 

is strongly dependent on in-cylinder density and found that in a higher density 

environments, wider dispersion of the spray occurred with increased amounts of air 

entrainment.  This entrainment had a direct effect on the momentum of the spray and 

hence reduced the penetration rate of the spray. 

Hiroyasu and Arai (1990) also observed that the in-cylinder temperature has a 

significant effect on spray penetration, reducing the penetration by as much as 20% 

compared to sprays injected at non-evaporating conditions.  Dent (1971) included a term 

to compensate for these temperature effects (Dent 1971). However, the observations of 

Naber and Siebers (1996) and Morgan et al. (2001) showed that this term does not fully 

compensate for the temperature effect on the liquid phase penetration(Naber and Siebers 
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1996; Morgan et al. 2001). Modern common rail fuel injection equipment was used in the 

investigations of Naber and Siebers (1996) and Morgan et al. (2001), while injecting into 

high-density environments.  Their results showed that this correlation over-predicts the 

liquid penetration length. It is clear that although the influence of injection parameters 

has been widely investigated, information on the effects of in-cylinder density and fuel 

rail pressure on spray and fuel vapor distribution are still not conclusive. 

It has also been shown that injection rate profile and injection nozzle geometry 

have a major influence on both the penetration and distribution of the fuel spray within 

the cylinder (Bae and Kang, 2000). The decreased size of droplets produced by smaller 

diameter nozzle causes faster mixing and evaporation and thus leads to shorter ignition 

delays. Change in the nozzle orifice diameter has also been shown to have an effect on 

the emissions (Bergstrand & Denbratt, 2001).  The internal flow structures within the 

nozzle are also thought to affect the spray performance.  Hence different spray structures 

may not be attributed to differences in nozzle diameter alone, but also to the nozzle type 

and internal nozzle geometry.  Investigations into these flow processes have been 

undertaken in both large scale and full size nozzles (Soteriou et al. 1995; Badock et al. 

1999). The variation in the behavior of various nozzle types and the influence of 

injection rate may help explain the apparent differences in the correlations for penetration 

with time and dispersion found in the literature.  This, again, highlighted the strong 

dependence of the fuel spray behavior on the nozzle geometry and hence the dangers of 

applying generic correlations derived from experiments based on a limited specific 

nozzle type. 

The fuel evaporation, penetration with time and dispersion is important to the 

combustion process as it provides the transport of the fuel vapor into the chamber. The 
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ambiguity over the effect of nozzle types on liquid phase penetration also extends to the 

vapor phase propagation. It is therefore clear that the effect of nozzle type and in-cylinder 

conditions on the injection and mixing processes are not fully understood. 

Biodiesel—Mono Alkyl Esters 

Global crude oil resources are finite (Wood et al. 2004);  energy security and 

sustainability concerns have dictated the search for alternatives to conventional 

petroleum-based fuels.  Therefore, tough emissions regulations combined with 

diminishing crude oil resources provide ample justification for adopting advanced 

combustion strategies and alternative fuels.  Biodiesel is currently being considered as a 

sustainable alternative to conventional (petroleum) diesel fuel since it is produced from 

renewable sources. In the following, section, a review on biodiesel properties and its 

effect on engine performance and emissions will be discussed.   

Bio-fuels in diesel engines have been used since the invention of diesel engine by 

Rudolph Diesel. While unprocessed vegetable oils are useful for some diesel engine 

applications (Cloin 2007), pure or partially esterified oils may cause a variety of engine 

problems such as long-term engine deposits, piston ring sticking, fuel injector plugging, 

or lube oil gelling which can cause engine failure or require more frequent maintenance 

and shorter engine overhaul intervals.  Exhaust from engines fueled with raw vegetable 

oils can also have more adverse health effects compared to exhaust from the same engine 

using diesel fuel (Bunger et al. 2007).  Unprocessed or partially esterified vegetable oils 

are therefore, generally considered unsuitable as diesel fuels and do not meet the 

requirements set by existing biodiesel standards and specifications.  Eventually, biodiesel 

research focused on alkyl esters in the recent past due to their properties similar to diesel. 
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Many vegetable oils and animal fats have been suggested and investigated as 

feedstocks for the production of diesel fuel substitutes.  The most common source of 

biodiesel in the USA is soybeans. Other significant biodiesel resources are greases and 

animal fats (Tyson et al. 2004).  In Europe, the main source of biodiesel is rapeseed. Oil 

from jatropha (Jatropha curcas) nuts is an increasingly important biodiesel feedstock in 

tropical climates (Openshaw 2000) in India and in some African countries. Palm (Elaeis 

guineensis) oil is another cost effective biodiesel feedstock.  Palm oil biodiesel has been 

increasingly produced in Southeast Asia (Malaysia, Indonesia) and in South America.  If 

the demand for biodiesel continues to increase, the capacity to grow bio-oil plants for fuel 

may become limited.  Methods have also been developed to make diesel fuel substitutes 

from oils naturally produced by certain species of algae (Sheehan et al. 1998). These oils, 

made of fatty acid triglycerides are converted into methyl esters before they are used as 

diesel fuel. 

In the USA, the ASTM (American Society for Testing of Materials) Biodiesel 

Task Force adopted a definition of biodiesel that limited it to “mono alkyl esters of long 

chain fatty acids derived from renewable lipid feedstocks, such as vegetable oils and 

animal fats, for use in compression ignition (diesel) engines” (Howell 1997). The mono 

alkyl ester definition eliminates pure vegetable oils as well as monoglycerides and 

diglycerides from consideration as biodiesel. 

Biodiesel due to its renewable character and greenhouse gas (GHG) emission 

reduction potential is favorable as an alternative to diesel fuel.  However, high prices 

often present a barrier for widespread biodiesel use.  Renewable fuel feedstocks, such as 

vegetable oils, have been supported by legislation and incentive programs in a number of 

countries. In markets with no government subsidies, the initial retail prices of biodiesel 
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are typically about 2 to 3 times higher compared to petro-diesel.  As the volumes increase 

and the technology for producing fuel grade materials matures, the price may be reduced.  

A common approach to reduce cost and maximize potential engine compatibility 

is blending biodiesel with petroleum diesel fuels. Such blends are commercialized as 

diesel fuel in many parts of the world.  Blend levels in the USA vary from a few percent 

up to 20% biodiesel and 80% conventional petrodiesel.  This is sometimes referred to as 

B20 (under the same convention, neat biodiesel is termed B100).  In Europe, biodiesel is 

largely used as low level blends. Blends of up to 5% biodiesel in petrodiesel are broadly 

accepted for use in existing diesel engines by engine and fuel injection equipment 

manufacturers (FIE 2007).  

Properties and Specifications 

The ASTM specification D6751 for biodiesel was adopted in the USA in 2002 

(ASTM 2002). The D6751 standard covers biodiesel (B100) for use as a blend 

component with petroleum diesel fuels.  No standards currently exist in the USA that 

cover B100 for use as an automotive fuel.  The D6751 specification is modified based on 

the existing ASTM standard for petrodiesel, D975.  Development work on new analytical 

methods for a number of biodiesel properties was initiated in relation to the ASTM 

biodiesel standard (Stavinoha and Howell 1999).  In 2008, D975 was modified to allow 

up to 5% biodiesel to be added to diesel fuel, and a B6 to B20 standard, D7467, was 

adopted. In Europe, biodiesel quality is described by the European standard EN 14214.  

This standard applies to neat biodiesel used as both automotive fuel and a blend 

component. The diesel fuel standard, EN 590, allows up to 7% biodiesel.  Selected 

requirements for biodiesel blend stock, as defined by ASTM, and for biodiesel fuel 
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according to the European standard are listed in Table 3.1 (NREL 2009).  Average 

properties of neat biodiesel fuels compiled from various literature data are compared with 

those of petroleum diesel in Table 3.2 (EPA 2002; Kinast 2003; McCormick et al. 2005).  

The biodiesel data included soybean and rapeseed oil based fuels, as well as animal-based 

biodiesels. Bio-fuels made from different feedstocks tend to show variations in 

properties. 

In comparison with petrodiesel, biodiesel is characterized by: lower heating value 

(by about 10-12%), higher cetane rating (typically 45-60), about 11% oxygen content by 

weight (petro-diesel contains no oxygen), no aromatic content (and no PAHs), no sulfur 

or ultra low sulfur content, better lubricity, higher viscosity, higher freezing temperature 

(higher cloud point, pour point,...), higher flash point, higher boiling temperature (T10, 

T50, T90), lower toxicity, rapid biodegradability and different corrosive properties. 
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Parameter Value (Method) Value (Method) 

Flash Point (°C), min  93 (ASTM D93)  120 (EN ISO 3679) 

Water & Sediment (%  0.050 (ASTM D2709) -
vol), max  

 Kinematic viscosity 
(mm2/s) @ 40°C 

 1.9 - 6.0 (ASTM D445) 3.5 - 5.0 (EN ISO 3104)  

Sulfated Ash (% wt), max  0.020 (ASTM D874)  0.020 (EN ISO 3987) 

 Sulfur, max 0.0015 or 0.05% (wt) 10 mg/kg (EN ISO 
 (ASTM D5433)  20846/84) 

Copper Strip Corrosion,  No. 3 (ASTM D130)  Class 1 (EN ISO 2160) 
max  

Cetane Number, min  47 (ASTM D613)  51 (EN ISO 5165) 

Carbon Residue (% wt),  0.05 (ASTM D4530)  0.3 (EN ISO 10370) 
max  

Acid Number (mg  0.5 (ASTM D664) 0.5 (EN 14104) 
KOH/g), max  

Free Glycerin (% wt), max   0.02 (ASTM D6584)  0.02 (EN 14105/6) 

Total Glycerin (% wt),  0.24 (ASTM D6584)  0.25 (EN 14105) 
max  

Distillation, 90%  360°C (ASTM D1160) -
recovered, max 

 

 

 
  

  
  
  
  
  

  

 

Table 3.1 Biodiesel Standard Specifications (NREL 2009) 

Table 3.2 Comparison between Biodiesel and Petro-diesel properties 

Property Biodiesel Petrodiesel 
Natural Cetane Number 55 44 
Sulfur, ppm 9 333 
Nitrogen, ppm 18 114 
Aromatics, vol% 0 34 
T10, °C 346 217 
T50, °C 351 263 
T90, °C 359 317 
Specific Gravity 0.88 0.85 
Kinematic Viscosity @40°C, mm2/s 4.2 2.6 

71 



 

In comparison with petrodiesel, biodiesel is characterized by: lower heating value 

(by about 10-12%), higher cetane rating (typically 45-60), about 11% oxygen content by 

weight (petro-diesel contains no oxygen), no aromatic content (and no PAHs), no sulfur 

or ultra low sulfur content, better lubricity, higher viscosity, higher freezing temperature 

(higher cloud point, pour point,...), higher flash point, higher boiling temperature (T10, 

T50, T90), lower toxicity, rapid biodegradability and different corrosive properties. 

Typical heating value (LHV) for biodiesel is 32.6 MJ/litre (117,000 BTU/gal), as 

compared to 36.2 MJ/litre (130,000 BTU/gal) for the US No. 2 diesel (McCormick 

2002). As a result, a loss of engine power of about 8% is measured with neat biodiesel, 

and of about 2% with the B20 blend (Sharp et al. 2000).  Fuel consumption penalties of 

13% and higher have been reported with heavy-duty engines over the US FTP Transient 

test cycle (Sharp et al. 2000). 

Emissions 

Several studies have been conducted on the tailpipe exhaust emissions from 

biodiesel fuels and their blends.  The results of these studies are often inconclusive or 

contradictory due to various reasons, making it difficult to quantify emission trends.  

Variability exists between the properties of various biodiesel fuels, especially in their 

cetane number, as well as between properties of the petroleum blending stock in the case 

of blends. Studies have been conducted on different types of engines (heavy-duty 

onroad, nonroad, light-duty) which, in general, may show different emission trends with 

biodiesel. Studies use different test cycles, including an array of steady-state and 

transient testing conditions which result in obvious emission differences.  Relative 

emission effects reported with biodiesel may be distorted due to the use of different 
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baseline fuels. For a valid emission comparison, engines should be recalibrated to their 

original power output to account for the lower heating value of biodiesel—a requirement 

that is too often neglected.  

A comprehensive summary of biodiesel emission effects was compiled by the US 

EPA as guidance for States in claiming emission credits for the use of biodiesel and its 

blends (EPA 2002). Figure 3.6 illustrates the correlation between the percentage 

emission impact and the biodiesel content in the blend.  

NOx Emissions 

NOx emissions with B100 typically increase by about 10-30% relative to diesel 

fuel (Gragg 1994; Krahl et al. 1995; Sharp et al. 2000; McCormick et al. 2005).  NOx 

emissions with B20 biodiesel blends are typically increased by 1-7% (McCormick 2002; 

Sze et al. 2007).  There are also claims that on average, there is no increase in NOx 

emissions up to blend levels as high as B20 (McCormick 2006). 
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Figure 3.6 Average Impact of Biodiesel on Emissions from Heavy-Duty Engines 
(NREL 2009) 

The NOx increase depends on the type of the biodiesels feedstock; the highest 

NOx emissions were reported with the most highly unsaturated fuels (soybean, rapeseed, 

and soapstock-based) (Graboski et al. 2003). Biodiesel from more saturated feedstocks, 

such as animal fats, yields a smaller NOx increase. 

The NOx increase also depends on the engine technology. According to a study 

with two heavy-duty engines meeting US 2004 emission standards—one with a common 

rail and one with an electronic unit injector (EUI) fuel system—the NOx increase effect 

can be higher in newer engines, where a 30% NOx emission increase was measured with 

B100 fuel over the FTP cycle (McCormick et al. 2005).  

The biodiesel NOx increase has been shown to be test cycle specific.  The 

difference in NOx emissions between diesel fuel and biodiesel blends has been shown to 

correlate very well with average cycle power regardless of whether the test is carried out 

on a chassis or engine dynamometer.  As average drive cycle power increases, the NOx 
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emissions increases with biodiesel fuelling(Sze et al. 2007). This is consistent with 

steady state tests with biodiesel blends, which show that NOx emission increases with 

biodiesel are highest at high loads.  At low loads, increases are much smaller, and in 

some cases NOx emissions can be lower than with diesel fuel (McGill et al. 2003). 

Explanation for the NOx increases observed with biodiesel is still unclear. 

Rather, NOx increases can occur for multiple reasons, the relative importance of which is 

dependent on both the particular engine being considered and its operating condition 

(Cheng et al. 2006; Sze et al. 2007). 

Start of Combustion 

Because of its higher specific gravity, the bulk modulus of compressibility of 

biodiesel is 5-10% higher that of diesel fuel (Tat 2003; Tat and Gerpen 2003; Boehman et 

al. 2004). This difference in bulk modulus can result in a more rapid transfer of the 

pressure wave from the fuel pump to the injector needle and an earlier needle lift 

(Morgan et al. 2001; Szybist and Boehman 2003). The effect would be most noticeable in 

pump-line-nozzle mechanical injection systems where pressure waves must travel 

relatively long distances. Injection timing advances of up to 2.3 degrees have been 

observed (Monyem et al. 2001). Unit injector systems show very little change in start of 

injection timing due to differences in fuel bulk modulus (Cheng et al. 2006). Common 

rail systems are expected to show little impact as well since the injector opening is 

controlled electronically. 

Engine control systems may also advance timing to compensate for the ~10% 

lower energy density of biodiesel or for differences in other fuel properties.  Increased 

fuel delivery may have various performance and emissions effects, including, in some 
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injection systems, injection timing advance.  Some researchers, who modeled fuel 

injection and combustion with biodiesel, suggested that the high kinematic viscosity of 

biodiesel may also be responsible for the increased NOx through fuel injection system 

interactions [May 1998].  The mechanisms involved, however, are complex and 

ultimately difficult to explain.  In the experimental part of the same work, some biodiesel 

fuels were found to cause the opposite effect of delayed injection timing and decreased 

NOx in certain low speed/load areas of the engine map.  Biodiesel also has a higher 

cetane number than diesel fuel which can reduce ignition delay and also advance the start 

of combustion. 

Changes in Other Controlled Parameters 

 To maintain a given load, a higher volume of biodiesel must be injected into the 

cylinder because of the lower volumetric heating value.  On newer electronic diesel 

engines, the ECM can interpret the increased injector opening time as an increased load, 

and adjust injection timing, rail pressure, EGR, and other parameters accordingly. 

Premixed Burn Fraction 

A relation between premixed burn fraction and NOx emissions has been widely 

reported with increased premixed burn fractions resulting in increased NOx emissions.  

While the premixed burn is generally too rich to produce NOx [Dec 1997], it can affect 

the time-temperature history of the combustion process and in this way impact NOx 

emissions.  Based on the higher cetane number of biodiesel, the ignition delay could be 

shorter and premixed burn fraction lower.  This may offset increases in NOx due to other 

factors. Cetane number, however, may not accurately reflect the ignition delay behavior 

of fuels whose ignition characteristics have a temperature dependence different from the 
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primary reference fuel blends used in ASTM D 613 (Taylor 2004).  Other fuel properties 

like ester group attached to the biodiesel molecule, lesser aromatic hydrocarbon etc. 

could yield a higher premixed burn fraction and higher NOx for biodiesel/diesel fuel 

blends in spite of the higher cetane number. 

Diffusion Flame Temperature

 Diesel engine NOx formation is exponentially affected by the temperature of the 

diffusion flame. Oxygenated fuels such as biodiesel produce less soot in the combustion 

zone. Soot particles are important in radiating heat away from the flame region and 

providing some reduction in flame temperature.  With less soot in the combustion zone, 

even a small increase in temperature due to lower heat transfer would result in some NOx 

emissions increase (Guo et al. 2004). 

It is well known that adiabatic flame temperatures increase as the number of 

unsaturated carbon-carbon bonds in a molecule increases (Ban-Weiss et al. 2007).  Since 

biodiesel is rich in unsaturated fatty acid esters, it may be reasonable to assume that this 

could result in a measurable increase in adiabatic flame temperature over diesel fuel.  

While calculating adiabatic flame temperatures is relatively straight forward, the 

challenge is the lack of the detailed thermophysical data for biodiesel components.  

Thermophysical data are available for methyl oleate (one unsaturated bond and the 

predominant ester in rapeseed methyl ester) and a calculation of adiabatic flame 

temperature for methyl oleate and primary reference fuel blends showed that there is no 

discernible difference (Cheng et al. 2006).  It should be kept in mind however that soy 

based biodiesel is predominantly methyl linoleate (2 unsaturated bonds) and thus may 

give different results from methyl oleate.  Commercial diesel fuels also contain 
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significant aromatics which would increase adiabatic flame temperatures for diesel fuels 

relative to the primary reference fuels used by (Cheng et al. 2006).  It is not clear what 

effect biodiesel would have on the flame temperature when blended with diesel fuel with 

significant aromatics. 

Mixture Stoichiometry and Combustion Chemistry 

 Differences in fuel properties such as viscosity, density, surface tension and 

volatility can influence fuel spray parameters and evaporation rates.  Fuel mass injection 

rates and spray tip penetration can increase when biodiesel is blended with diesel fuel.  

This could influence fuel-air mixing and the stoichiometry of the fuel-rich premixed burn 

and change species concentrations and the relative importance of the prompt NO 

formation mechanism.  The stoichiometry of the pre-mixed burn has a strong influence 

on soot formation. 

While there are several factors that can impact NOx emission differences between 

petroleum diesel and biodiesel, some of them would be dependent on engine design 

parameters and thus highly variable.  Where as, differences in flame temperature and 

mixture stoichiometry and chemistry, is more fuel specific and therefore less likely to 

vary. In order to determine if there are fundamental factors tied to the fuel itself that 

contribute to NOx emission differences, Cheng (2006) maintained a constant start-of-

combustion and premixed burn fraction between the biodiesel and primary reference 

diesel fuels. It was found the NOx still increased by ~10% with biodiesel (B100). While 

it was not possible to positively identify the specific cause of the difference, the results 

strongly suggested that reduced soot radiative heat transfer from the combustion zone 

(resulting in higher flame temperatures) and mixture stoichiometry at the lift-off length 
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are both important.  Further work is needed to better understand the relative importance 

of these two factors. 

CO & HC Emissions 

There is widespread agreement in the literature that biodiesel and its blends 

decrease CO and HC emissions.  This effect is attributed to the oxygen content in 

biodiesel, which enables more complete oxidation in the engine cylinder.  The magnitude 

of these reductions varies.  A comprehensive study by SwRI reported a 40% CO emission 

reduction and total elimination of HCs with neat biodiesel (Sharp et al. 2000).  According 

to the EPA correlations, CO emissions are reduced by 12% using the B20 blend, and by 

48% using B100. 

It was also suggested that higher CO and HC emission reductions are seen at 

higher engine loads. A study investigating the effects of biodiesel on a diesel engine 

emissions at different engine operating conditions found an increase of both CO and HC 

at low loads (Choi et al. 1997). 

PM Emissions 

Biodiesel decreases the carbon particulate emissions and increases the SOF. As a 

result, the visible smoke and opacity are decreased.  The effect of biodiesel on total 

particulate matter (TPM) depends on the composition of diesel particulates, and so it is 

specific to the engine and the test cycle.  Most studies reported a decrease in TPM 

emission with biodiesel, in some cases by as much as 25-50% (Sharp et al. 2000).  The 

EPA analysis (Fig. 3.6) found that PM emissions were reduced by 12% using the B20 

blend, and by 47% using B100. Increased TPM emissions, however, are also possible 

(Schroeder et al. 1999). 
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PM emission reductions in a study with two US 2004 engines were significantly 

larger than those in old engines (McCormick et al. 2005).  Particulate matter (PM) 

emissions were reduced by 25% using B20 blends; PM emission reductions in excess of 

70% were seen with neat biodiesel. 

The PM reduction with biodiesel can be attributed to a combination of factors. 

First, a dilution effect which provides a reduction in the concentration of compounds 

found in diesel fuel, such as aromatics, that are more prone to generating soot.  These are 

replaced with compounds, such as the straight chain hydrocarbon attached to the ester 

group in biodiesel, which are less prone to generating soot (Pepiot-Desjardinsa et al. 

2008). Second, an oxygen effect which increases the probability that fuel carbon atoms 

attached to fuel oxygen, in the ester functional group of biodiesel, for example, will be 

converted directly to CO before finally being converted to CO2. Without the oxygen 

present, there is a higher likelihood of fuel carbon generating soot precursors before the 

conversion to CO and then ultimately to CO2 (Pepiot-Desjardinsa et al. 2008). 

When compared to EPA certification diesel fuel with 350 ppm sulfur, two straight 

chain hydrocarbons (hexadecane (C16H34) and dodecane (C12H26)) resulted in PM 

reduction of about 45-50%. Soy-based biodiesel, methyl oleate (C18:1), methyl 

palmitate (C16:0) and methyl laurate (C12:1) showed PM reductions of about 75-85% 

reductions relative to EPA certification fuel (350 ppm sulfur) (Knothe et al. 2006).  The 

shift of PM emission towards higher SOF content, as well as the absence of sulfur, make 

biodiesel compatible with diesel oxidation catalysts, which can maximize the PM benefit 

by controlling SOF. 

Thus, we can say that although biodiesel is quite similar in physical properties of 

diesel, there are some distinct properties of biodiesel which can have different impact on 
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the combustion phenomenon.  In the following section, model development for different 

phenomena associated with diesel and biodiesel combustion will be discussed. 

Sub-Model Development for Multi-zone Combustion 

A multi-zone phenomenological combustion model that simulates closed cycle 

engine operation has been developed. When the simulation starts, the air inside the 

cylinder constitutes the unburned zone.  The initial charge in the cylinder is assumed not 

to have any residual exhaust gas from the previous engine cycle.  Mass is transferred 

from the unburned zone to the packet zone after the start of injection (SOI).  The state of 

the unburned zone, primarily it’s mass and temperature amongst other properties, is 

calculated as long as there is some unburned mass in the cylinder.  Conceptual schematic 

of zone evolution (Krishnan 2005) is shown in figure 3.7. 

At SOI, the packet zones that account for the combustion of diesel-air mixture 

entrained in the diesel spray, come into existence.  Fuel injected into the combustion 

chamber during each time step is divided into small packets that are distributed in the 

radial direction. The total number of packets in the spray direction is determined by the 

injection duration and the computational time step.  Each packet is assumed to have the 

same mass of fuel.  No mixing and heat or mass transfer among packets is considered. 

Each individual packet experiences its own history of temperature, pressure and 

equivalence ratio. However, the total number of packets in the radial direction is fixed 

regardless of amount of fuel injected, the injection duration or time step. 
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Figure 3.7 Conceptual schematic of zone evolution (Krishnan, 2005) 

Figure 3.8 Division of spray into packet zones at a certain instance (Krishnan 2005) 

Packets are classified based on their time of entry into the cylinder (I) and the 

stratification in unburned mixture entrainment across the spray (J) (shown in Fig 3.8).  

Although actual packet locations are not determined in this model, this method of packet 

identification allows for appropriate stratification of mixture entrainment across the 

spray, i.e., in this sense, the entrainment model is “quasi-dimensional.” 

The fuel injected into the chamber is initially assumed to form a liquid column at 

a speed equal to the fuel injection speed until the fuel break-up time.  After that, the 

injected fuel is distributed, which is unique to each packet and varies from one time step 
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to another depending on the injection pressure and the cylinder conditions.  The velocity 

of each packet is calculated from the spray tip penetration correlations.  

It is assumed that the fuel atomizes to droplets with a diameter equal to the Sauter 

mean diameter.  The effect of droplet size distribution within a packet is neglected.  

However, the droplet sizes in different packets may change depending on in-cylinder 

conditions at the start of injection. All the calculations related to the droplet evaporation 

are based on this Sauter mean diameter.  

The air entrainment rate depends on the physical position of each packet, with 

centre line (innermost) packets receiving the least and the peripheral (outermost) packets 

receiving the most air.  The amount of entrained air is calculated based on characteristic 

entrainment time and momentum conservation within each packet.  It is assumed that the 

momentum of the packet at the exit of a nozzle is equal to that of the packet at every 

subsequent instant. Since the mass of the fuel and the injection velocity of each packet is 

initially determined, and the velocity of the packet can be calculated.  Thus, the amount 

of air entrained can be obtained by the momentum conservation equation.  

Evaporation of fuel is considered to begin immediately after the break-up.  Both 

heat and mass transfer for a single evaporating droplet are considered in order to compute 

the instantaneous droplet temperature, rate of evaporation and droplet diameter. 

The ignition delay is measured from the point of injection and is calculated with 

packet temperature and pressure.  During the ignition delay period, some of the injected 

fuel is evaporated and mixed with air, forming a combustible mixture.  Combustion is 

assumed to start individually in each packet after the ignition delay period.  In the early 

stage, combustion occurs under premixed conditions.  The premixed combustion in each 

packet is assumed to take place until the amount of fuel evaporated at the end of ignition 
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delay period of the corresponding packet has been consumed.  Diesel evaporated in each 

packet after the occurrence of ignition is assumed to burn in the mixing-controlled phase.  

In this study, both premixed and mixing-controlled phase of combustion are considered 

to start simultaneously at the onset of ignition.  During the combustion process, pollutant 

emissions can be calculated from the known pressure, temperature and composition of 

each packet.  Each packet is “dumped” or adiabatically mixed with the remaining 

combustion products and ceases to exist as an individual packet when certain “dumping 

criteria” (to be discussed later) are satisfied.  Some key assumptions (similar to the 

assumption considered by Krishnan (2005) of the model include the following:  

1. Each zone is treated as an open thermodynamic system.  However, the 

cylinder as a whole is a closed system.  

2. Heat transfer occurs only between each zone and the cylinder walls.  

Although, mass transfer is allowed between zones, inter-zonal heat 

transfer is neglected.  

3. When diesel burns it is assumed to be converted into products of complete 

combustion (CO2 
and H

2
O). 

4. Spatial variations in instantaneous cylinder pressure are negligible.  

5. End of combustion is attained when the unburned zone mass becomes 

very small (less than 0.1 percent of its initial value) or more than 99.9 

percent of the total entrained air has been consumed.  

6. Crevice flows are neglected; therefore, the entire cylinder contents are 

treated as a closed system present within the combustion chamber.  

The simulation starts from intake valve closure (IVC) and proceeds until exhaust 

valve opening (EVO).  The cylinder pressure and temperature at intake BDC are 
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specified. Depending on the stage of the simulation, the cylinder contents are divided 

into an unburned zone, packets and burned zone.  In the following sections, detailed 

mathematical expressions for the essential processes are presented. 

Fuel Injection 

The rate of fuel injected into the chamber and the injection timing affect the spray 

dynamics and combustion characteristics.  If the pressure upstream of the injector nozzle 

is known, and the flow through each nozzle is quasi-steady, incompressible and one 

dimensional, the mass flow rate of fuel injected through the nozzle is given by 

[Heywood, 1988]: 

  2 	 ∆  3.1 

Where CD = a discharge coefficient 

An = nozzle hole area 

P =pressure drop across the injection nozzle. 

Since   , the fuel injection velocity, ui, can be expressed as: 

u  C 2P / i D l  3.2 

Spray penetration 

The multi-zone model depends on an empirical correlation for spray evolution 

and therefore the validity of the spray penetration model is critically important for 

accuracy. The break-up length, lb, of a liquid jet is given by [Levich, 1962]: 

 3.3 

Where ub = jet velocity within the intact core 
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  28.65 
a P

tb = breakup time 

α = a constant 

dn = nozzle hole diameter. 

With the assumption that jet velocity within the intact core, ub, is equal to the initial jet 

velocity, ui, the breakup time can be expressed as follows: 

 3.4 
Based on continuous jet theory, the spray tip penetration can be expressed as: 

S   t  3.5 

The expression for β can be obtained from the condition of S = lb at t = tb. 

0.25 

20.25 0.5  P   Cd d n    
  a   3.6 

Hiroyasu and Arai (1980) determined α and CD from the experimental data as: 

α = 15.8 

CD = 0.39 

With these values of α and CD, they proposed the following correlation for spray 

penetration before and after the spray breakup.  

 2P 
0.5 

a. Before breakup, 0<t<tb(I) S  0.39  t  3.7
 l  

 P 
0.25 

0.5b. After breakup, tb(I)<t S  2.95  dnt  3.8
 l  

Where tb

 3.9 
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These correlations have been widely used in multi-zone models (Hiroyasu et al. 

1983; Bazari 1992). However, considering that the nozzle discharge coefficient depends 

on the nozzle geometry and that the discharge coefficient of injector nozzles of modern 

diesel engines is usually between 0.6 and 0.8, the discharge coefficient of 0.39 seems too 

small.  Schihl et al. (1996) developed a phenomenological cone penetration model and 

compared their model with Hiroyasu’s model (Hiroyasu, 1983) and several experimental 

data sets from different sources. Discharge coefficients of the nozzles in the 

experimental data sources ranged from 0.64 to 0.74.  Since Schihl’s model is not valid 

before or near the breakup region, they compared the penetration after the breakup time.  

The comparison shows that Hiroyasu’s model exhibits fairly good agreement with 

experimental data sufficiently long after the breakup time.  

Dan et al. (1997) measured the temporal change in spray tip penetration with 

injection pressure and the discharge coefficient of the nozzle in the correlation used by 

them is 0.66.  The discharge coefficient in Dent’s correlation (Dent 1971) is 0.8. Jung 

(Jung 2001) showed that the correlation by Hiroyasu and Arai (1983) fits the 

experimental data better that the other correlations. The spray penetration after the 

breakup is valid for nozzles with different discharge coefficients.  However, the 

penetration correlation before breakup is not applicable in those cases, since the injection 

velocity is directly a function of discharge coefficient.  Therefore, Jung and Assanis 

(2001) proposed a modified penetration correlation to allow the correlation to handle 

different nozzles with an arbitrary discharge coefficient.  They proposed the following 

correlation for spray penetration: 

 2P 
0.5 

a. Before breakup: S  CD   t
 l   3.10 
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0.25 

20.25 0.5  P  0.5b. After breakup: S  C     D    d nt
 a   3.11 

Where α is given by 

2.952 

  
20.5 CD  3.12 

Hence, the velocity of the spray, V(J) is derived from the temporal differentiation of the 

equation of the spray tip penetration as follows: 

 2P 
0.5 

a. Before breakup, 0<t<tb(J) S  CD   t  3.13  l  

 2P 
0.5 

V (J )  CD    3.14 
  l  

 
0.25

P 0.5b. After breakup, tb(J)<t      S  2.95   d nt  3.15
 l  

0.25
 P  0.5 0.5  dV (J )  1.48   t  t (1)  t (J )  n b b a   3.16 

where the index J stands for the J-th packet in radial direction.  Since the breakup time at 

the edge of the spray is shorter than that at the centre, the radial variation of the breakup 

time in the spray is incorporated as follows: 

 d 
t (J )  4.351 l n Y (J )b 2 0.5C  PD a  3.17 

 2  J 1
Y (J )  exp 0.8557   J  t     3.18 
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Where Jt is the total number of packet in radial direction.  

Droplet diameter after breakup 

The droplet size distribution within the packet is neglected.  All droplets in a 

packet are assumed to have the same diameter equal to the Sauter Mean Diameter.  The 

number of droplets in each packet can be determined from the Sauter mean diameter and 

the total mass of fuel in the packet.  The Sauter mean diameter, SMD, in the packet 

located along the spray centerline, is calculated by following equation (Jung and Assanis, 

2001). 
LS HSSMD SMD SMD

 MAX ( , )
d d dn n n  3.19 

0.54 0.18LSSMD 0.75   l    l  4.12 Re i 
0.12 Wei     d  n  a   a   3.20 

0.37 0.47
SMD HS 

0.32   l    l  0.38 Re i 
0.25 Wei     d  n  a   a   3.21 

 luidnRe i Where l  3.22 

 u 2 dl i nWei  
  3.23 

And μl = viscosity of liquid 

σ = surface tension 

Air entrainment based on characteristic entrainment time 

Air entrainment rate into the diesel spray is simultaneously governed by several 

factors (Krishnan, 2005). Entrainment rate is proportional to the available air (unburned 

zone mass, mu) and all of this available air can be estimated to be entrained into the spray 
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in a time period to penetrate a distance equal to the cylinder bore radius known as the 

characteristic entrainment time, (θch).  Spray penetration is determined using the 

correlation recommended by Dent (1971).  The total unburned entrained air is distributed 

amongst a total number of Itot×Jtot. Decay in air entrainment towards the center of the 

radial axis and with the progress in injection process must be captured. 

The mass of air entrained (ment) into any packet (I, J) in one calculation step (Δθ) 

is expressed as follows (Bell 1985): 

mu   I J  
m (I , J )  K exp ent I .J .(1 Y )  I Jtot chtot  tot tot   3.24 

where K is the entrainment constant, Y is the ratio of time elapsed since SOI to total 

injection duration, and Itot and Jtot are the highest values of I and J, respectively. The 

exponential term in Equation above accounts for stratification of entrainment in the radial 

(J) direction and gradually lower entrainment in packets in the spray direction (higher I 

values). It can be seen that the term (1+Y) has been added in to the expression in order to 

ensure that the overall rate of air entrainment in the spray decreases with increasing 

elapsed time since SOI. 

Air entrainment based on momentum equation 

Another way of estimating air entrainment rate into the spray is using the 

conservation of packet momentum.  It is assumed that the momentum of the spray at the 

exit of a nozzle is equal to the momentum of spray at any distance i.e. 

m u  m  m dS 
f i f a dt  3.25 

Where mf is the mass of fuel in a packet and ma is mass of air in the packet.  Therefore, 
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 dt  ma  m f 
 
ui dS 

1


* m f ui d 2 S 
ma  

dS 2 dt 2 dt

 3.26 

The air entrainment rate can be obtained as (Jung and Assanis, 2001) 

 3.27 

 
Combustion model 

Combustion models range from zero-dimensional and single-zone to quasi-

dimensional, multi-zone and multi-dimensional models based their thermodynamic 

resolution of working mixtures.  The simplest single-zone combustion model specifies 

the heat release pattern in advance so that the cycle calculation merely involves adding 

energy to the cylinder contents in a pattern at the appropriate points in the calculations.  

This approach considers the cylinder contents to be a homogeneous mixture of air and 

gases that are always in thermodynamic equilibrium and deals as ideal gases.  However, 

it is difficult to use this type of model to account for fuel spray evolution and for spatial 

variations of mixture composition and temperature.  On the other hand, multidimensional 

simulation (Amsden et al. 1985; Amsden et al. 1987; Patterson et al. 1994; Varnavas and 

Assanis 1996) resolves the space of the cylinder on a fine scale and solves governing 

equations of conservation of mass, momentum and energy, as well as governing 

equations for species and chemical kinetics. However, computational time and storage 

constraints prevent it from being used for the practical application of an engine 

simulation.  

In contrast, quasi-dimensional, multi-zone models (Li and Assanis 1993; Tauzia 

et al. 2000; Jung 2001), as an intermediate step between zero-dimensional and multi-

dimensional models, have been effectively used to model diesel engine combustion 
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systems. These models need significantly less computing resources compared to 

multidimensional models.  Instead of solving the full momentum equation, which is one 

of the main reasons of computational inefficiencies of multi-dimensional models, these 

models depend on a blend of fundamental theories.  In the following section, first 

Wiebe’s combustion function for single-zone combustion model and then two-phase heat 

release function for multi-zone model will be presented. 

Wiebe’s combustion function 

Probably the most widely used heat release model is based on the Wiebe’s 

combustion function.  Weise specifies function to represent combustion curve, for the 

cumulative fuel burnt, as a function of the total fuel injected,  

x  1 exp(a.yn1)  3.28 

Alternatively, in differential form (fuel burnt rate): 

dx n n1 a(n 1).y .exp(a.y )
dy  3.29 

The variable x represents the fraction of the mass of fuel burnt relative to the fuel 

injected and the variable y the time relative to the duration of combustion.  The 

parameters a and n characterizes the shape of combustion curve.  Therefore, the heat 

release pattern is defined by the total amount of fuel injected, the start of combustion, the 

combustion duration and the shape parameters of Wiebe function.  The combustion 

duration is an arbitrary period in which combustion must be completed.  The actual point 

at which combustion ceases has little real significance since the combustion rate decays 

exponentially to almost zero long before combustion really stops.  
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Parameter a in the Wiebe function can be considered as a combustion efficiency 

term, since the fraction of the cumulative fuel burnt to the total fuel injected is only 

dependent upon the parameter a. Therefore a may be chosen such that all the fuel is 

burnt at the end of combustion duration (for example, x = 0.99 at y = 1 if a 6.9). Then 

one may easily have a good approximation of a heat release pattern by varying the shape 

parameter n. 

Two-phase Heat Release 

During the ignition delay period, some of the injected fuel is evaporated and 

mixed with air, forming a combustible mixture.  In the early stage, combustion occurs 

under premixed conditions at a rate equal to the following Arrhenius type equation 

(Nishida and Hiroyasu, 1989): 

2 5 
 1200  

RR p  Bl .mix .x fv .xox .exp .Vp T p  

Where RRp = reaction rate during premixed combustion phase 

Bl = frequency factor 

ρmix = density of the mixture 

xfv = the mass fraction of the fuel vapor 

xox = the mass fraction of oxygen 

Tp = temperature of the packet 

Vp = volume of the packet 

Equation 3.30 is assumed valid until the amount of fuel evaporated at the end of the 

ignition delay period in each packet has been consumed.  Generally, the combustion 

during the second phase is mixing limited, so the availability of fuel vapor and entrained 
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air determine its rate.  Mixing-controlled combustion is assumed to start simultaneous to 

the premixed phase.  During this phase, the combustion kinetics proceeds at very high 

rate. However, the combustion kinetics slows down exponentially during this phase 

when the gas temperature becomes low and when the mixture is very lean.  The 

combustion rate for the mixing controlled phase, RRm, is governed by (Jung and Assanis, 

2001): 

Pox 0.25 
 2500  

RRm  B2 .m fv . P .exp 
P T p   3.31 

Where B2 is a constant; mfv is mass of fuel vapor, Pox is oxygen partial pressure; P is total 

pressure. 

Heat Transfer Model 

The heat transfer coefficient correlation of Woschni (1967) is used to calculate the 

spatially-averaged instantaneous heat transfer rate from the cylinder gases to the cylinder 

walls. Thereafter, the overall heat transfer rate with the corresponding area and 

temperature of the zone is weighted to find heat transfer rate from each zone. 

2 / 3dQi dQtot Vi (Ti  Twall ) 
2 / 3d

 
d V (T  T )i i wall 

i  3.32 

where dQtot/dθ is the overall heat transfer rate, dQi/dθ is the heat transfer rate from 

zone i, Vi is the zone volume, Ti is the zone temperature, and Twall is the specified 

cylinder wall temperature. 
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Solution Procedure 

In this section, the implementation of the multi-zone combustion model into the 

thermodynamic simulation is presented.  Each packet can be treated as an open 

thermodynamic system.  Each packet zone includes the entrainment of air from the 

unburned zone and mass transfer of fuel vapor from the liquid fuel spray by evaporation.  

Heat transfer takes place between the zones and the cylinder wall while the heat transfer 

between zones is ignored. The conservation equations for the gaseous contents of an 

open thermodynamic system are described in the following sections. 

Conservation of mass 

The rate of change of total mass in an open system is equal to the sum of the mass 

flow rates into and out of the system.  

  ∑ , … 3.33 

Where i denote i-th zone and j denotes mass flow to and from the zone.  Once the fuel is 

injected, air entrainment is the mass flow for each packet zone and unburned zone.  In 

particular, conservation of fuel species can be expressed as: 

,   ∑  , ,  3.34 

Where mf,i denotes the fuel content in the i-th zone.  

An average fuel-air equivalence ratio, φ can be defined as 

 3.35
 

Where ma is the mass of air in the system and subscript stoich denotes the stoichiometric 

fuel to air ratio.  

95 



 

 
	 	

	

	

 

 

 

 

 

 

Conservation of Energy 

The first law of thermodynamics for the entire chamber as an open system is: 

   	 ∑  3.36 

where last term in the equation above is the net rate of influx of enthalpy;  is the total 

heat transfer to the system; and  is the rate at which the system does work by boundary 

displacement.  The dot denotes differentiation with respect to time.  Thus, the generic 

form of the energy equation for any zone and the specific energy equations for different 

zones are given below: 

d m C T  dQ PdV dmi vi i i i i    hid netin d d netin dGeneric form  3.37 

dT 1 m R T dP dQ u u u u uUnburned zone  
d muC pu 

 P d d   3.38 

 mij RijTij dP dmij dmuij  
dT 1   C pijTij  C puTu  

ij P d d dPacket zones    
d mijC pij  dQij dQijevap dQijcomb 

    d d d   3.39 

mb RbTbj dP dmb 
 C T  pb b P d ddTb 1  Burned zone  

d mbC pb 
  dmij  dQij  
  C pijTij     
 dump ndump  d  d   3.40 

In equations given above, the subscripts u, ij, and b refer to the unburned, packet 

(I, J) and burned zones, respectively.  In general, the variables m, R, T, P, cp, and Q refer 

to the mass, characteristic gas constant, temperature, pressure, specific heat at constant 

pressure, and heat transfer (from a given zone to the cylinder walls) associated with a 

zone, respectively. The subscripts u-ij signifies the mass transferred from the unburned 
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zone to packet (I, J).  The energy transferred out of packet (I, J) due to diesel evaporation 

is denoted by the subscript ij-evap and the energy release accompanying combustion in 

packet (I, J) is denoted by the subscript ij-com.  The summation term in equation above 

accounts for the total energy associated with dumped packets (variables identified by the 

subscript dump) that is transferred to the burned zone. 

Simulation procedure 

First, using the mass conservation equations, the masses of all zones are 

calculated.Then the energy conservation equations for all the zones (after BOI) are 

numerically integrated and zone temperatures are determined using the Livermore Solver 

for Ordinary 
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Figure 3.9 Flowchart illustrating the main processes (or sub-models) and the sequence 
of execution of the simulation (Krishnan 2005) 

Differential Equations (LSODE) (Hindmarsh, 1983).  Once the zone temperatures 

are evaluated, the average cylinder temperature is determined from the following 

equation: 
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 3.41 

where mi is the mass, cvi the specific heat at constant volume, and Ti the temperature of 

zone i. The summation is taken over all zones present in the cylinder.  Instantaneous 

cylinder pressure is determined using the average cylinder temperature, instantaneous 

cylinder volume, and the ideal gas relation for the overall cylinder contents.  Zone 

volumes are then computed from individual zonal ideal gas relationships.  The nominal 

computational time step during compression is 1 degree (at least 2 ms) and after BOI, the 

time step is reduced to 0.03125 degrees (at least 0.05 ms).  

The overall sequence of execution of the computer simulation and the important 

processes modeled therein are illustrated as a flowchart in Figure 3.9.  Briefly, the 

simulation may be summarized as consisting of three primary stages – preliminary 

calculations, modeling of the compression process (until the beginning of fuel injection) 

and detailed modeling of the combustion process in packets.  Within these three stages, 

several sub-models are utilized to provide the required quantities at different crank 

angles. For example, the heat transfer model is used throughout the simulation, while the 

spray entrainment and diesel evaporation models are used only after BOI, and the packet 

combustion model is used only after ignition.  Mass balance, energy balance, and ideal 

gas equations of state are solved throughout the simulation to obtain the mass, 

temperature, and volume of all zones present at a given crank angle and the instantaneous 

cylinder pressure is calculated. The thermodynamic properties (e.g., constant-pressure 

specific heats) for the instantaneous mix of species present in a zone are then evaluated 

from expressions provided by NASA coefficients for calculating thermodynamics and 

transport properties for individual species and updated every time step. 
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Experimental Set-up 

All experiments in the present work were performed on a turbocharged direct-

injected (TDI), 1.9L, in-line 4-cylinder compression ignition engine.  Relevant engine 

details are provided in Table 3.3.  The stock ECU of the engine was utilized in the 

experiments, thus limiting control of the engine.  Engine speed was controlled with a 

Froude Hoffman AG80 (Imperial) eddy current dynamometer and engine torque was 

measured with a calibrated load cell.  The ECU controlled biodiesel injection with a 

throttle position sensor, which was actuated by the Texcel 4.0 dynamometer control 

software. All gaseous exhaust emissions and smoke were measured downstream of the 

turbocharger turbine. Gaseous emissions were routed through an emissions sampling 

trolley to an integrated emissions bench (EGAS2M) manufactured by Altech 

Environnement S.A and smoke was measured using an AVL 415S variable sampling 

smoke meter.  

Engine coolant temperatures, pre- and post-turbo air temperatures, intake mixture 

temperature, and post-turbo exhaust temperatures were measured with Omega Type-K 

thermocouples.  The coolant temperatures were held between 85±2 degrees Celsius, 

while post turbo intake temperatures were held between 35±2 degrees Celsius.  Intake air 

mass flow rates were measured with a FlowMaxx venturi flow meter.  Diesel/Biodiesel 

mass flow rate was measured with a Max Machinery Model 213 piston flow meter.  

Absolute ressure in the test cell was measured with an Omega PX 429 sensor, differential 

pressure across the venturi flow meter was measured with a Validyne P55 differential 

pressure transducer (0.25% accuracy of full scale), and intake boost pressure was 

measured with a Setra 209 pressure transducer. In-cylinder pressure was measured using 

a Kistler 6056A piezo-electric pressure transducer mounted in a Kistler 6544Q series 
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Engine Type 1997 4-cylinder TDI 
Bore x Stroke (mm) 79.5 x 95 
Aspiration Turbocharged 
Displacement 1.9 Liters 
Nominal compression ratio 17:1 
Number of valves per cylinder  4 
Injection system Stock mechanical; direct injection  
Number of nozzle holes 5 
Nominal orifice diameter (μm) 205 
Nominal Injection timing (static)  4°BTDC 

glow plug adapter. The charge amplifier used was a Kistler 5010B using a medium time 

constant setting. 

Needle lift was measured using a stock injector that was instrumented with a 

Wolff needle lift sensor coupled to a signal conditioner.  In this study, the Start of 

Injection (SOI) is defined as the crank angle when the injector needle lift reaches 5% of 

its maximum lift for the cycle.  Both in-cylinder pressure and needle lift measurements 

were recorded with National Instruments PXI S- Series hardware using a BEI encoder of 

0.1° crank angle resolution.  All in-cylinder data were recorded for 100 successive engine 

cycles after engine operation attained steady state.  To ensure consistency over all 

cylinder pressure and heat release measurements, the engine was motored for 40 cycles 

before firing data were taken to ensure that no slippage of the encoder had occurred. 

Table 3.3 Engine specifications 
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 Figure 3.10 Schematic of experimental set-up (Gibson et al. 2010) 

Matching Experimental and Predicted Motoring Pressure Curves 

A good comparison between the experimental and predicted motoring (without 

combustion) pressure curves helps in establishing a baseline.  In this study, the simulation 

begins at inlet valve closure (IVC) and continues until exhaust valve opening (EVO).  

Initial air mass at IVC for the motoring case remains the same as that for the combustion 

case. The initial value of in-cylinder pressure at IVC is obtained from experiments and 

the intake manifold temperature is measured at IVC.  The model parameters used for 
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simulating motoring are provided in Table 3.4.  The experimental and simulated motoring 

pressure curves are compared in Figure 3.11.  

Clearly, the baseline simulation under predicts pressure throughout the 

compression as well as the expansion stroke.  To diagnose this issue, several measures 

including changing the compression ratio, modifying the heat transfer model parameters 

and reducing the computational time step were tried.  The compression ratio of 17 led to 

a good match in peak pressures (not shown) but still the pressures during compression 

were well under predicted. Changing the heat transfer model parameters or 

computational time steps showed negligible impact on the motoring pressure predictions. 

Later it was found that the intake manifold temperature at IVC could lead to 

considerable uncertainties. Since the ideal gas equation is used to compute the simulated 

pressure from the temperature, adjustment on in-cylinder total mass (MTOT) was done.  

This adjustment is justifiable since gas-exchange modeling is not considered in this 

study. Therefore, in order to capture the physics of the gas exchange process, an 

adjustment factor to adjust the MTOT in the cylinder is introduced.  Accordingly, the 

motoring pressure predictions were compared to the measured pressures as MTOT was 

slowly increased.  In this way, it was observed that for the specific initial conditions of 

pressure and temperature given in Table 3.4, the best match in between experimental and 

predicted pressures was obtained with a 4 percent higher MTOT, albeit with a slight over 

prediction of the pressures during expansion.  
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Figure 3.11 Experimental and predicted motoring pressures (for the baseline simulation 
and the simulation with trapped total mass, MTOT, increased by 4 percent) 
for PIVC = 2.15 bar, Tin = 330 K. 

Table 3.4 Model Parameters for Motoring Pressure Comparisons 

Parameter  Value 

Compression ratio  17 : 1 

Air flow rate (g/min) 2896 

Initial pressure (obtained from experiments) at IVC (bar) 2.15 

Initial charge temperature (K) 330 

Computational time step for motoring, DCADM (crank angle 1.0 

degrees) 
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Single-zone simulation validation 

A single-zone Wiebe function-based thermodynamic model of diesel/biodiesel 

combustion is presented below.  The objective is to develop a simulation that predicts 

cylinder pressure histories by assuming a finite heat release (Wiebe function) model 

(Hiroyasu, 1988). The contents of an engine cylinder are modeled as a closed system.  

Applying energy conservation to the cylinder, the rate of change of cylinder pressure (P) 

with respect to crank angle (θ) can be expressed as a function of the cylinder volume (V), 

the ratio of specific heats (γ), the rate of chemical energy release during the combustion 

process (Qc), and the rate of heat transfer through the cylinder walls (Qht): 

 dQ dQ dP P dV   1  c ht     
d V d V  d d 

   3.42 

The chemical heat release rate is calculated using the assumed mass burn rate as follows: 

dQc dxb dxb   Qt   m  d LHVd . 
d d d  3.43 

where Qt is the total chemical energy released during the combustion process and xb is the 

mass burned fraction, md is the mass of diesel in the cylinder in one engine cycle and 

LHVd is the lower heating value of diesel.  The Wiebe function can be expressed as 

follows: 

  n  1 
  

    
   

SOC   xb    x  1  exp a 
   

b, max       
  d     

     3.44 

According to Equations 3.43 and 3.44, the characteristics of the heat release rate 

depend on the injected fuel mass md, the start of combustion θSOC, the total combustion 

duration, Δθd, the efficiency parameter “a” and the form factor “n”. The injected fuel 
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mass is determined by the engine control module.  It is also reasonable to maintain the 

combustion duration Δθd as constant.  Therefore, the start of combustion, the efficiency 

parameter (a) and the form factor (n) largely control the accuracy of the wiebe model.   

Heywood (1988) used the Wiebe function to calculate the mass fraction burned of 

the charge within the cylinder for each crank angle.  Several values of a and n were used 

to obtain a good match for the experimental pressure curves and concluded that the set of 

a = 5 and n = 2 can provide a reasonable estimate for many conditions.  The values 

suggested in their study can indeed achieve a reasonably good match for pressure curves 

at full operating range. To test the values of a and n in this study, cylinder pressures and 

the engine configuration of a Volkswagen 1.9L four cylinder turbocharged engine were 

used. In addition, when combustion proceeds to completion, xb,max reaches unity and 

therefore it is usually not considered in the Wiebe function for mass burned fraction.  

However, combustion is often incomplete and so xb,max must be considered.  In addition, 

it is necessary to modify the Wiebe function parameters a and n. These values are 

provided in Table 3.5. 

It is important to ensure that the Wiebe function-based combustion model 

faithfully reproduces the experimentally observed cylinder pressure histories in 

diesel/biodiesel combustion.  The measured pressure curves were processed using a 

single-zone heat release analysis code to derive gross heat release rates and mass burned 

fraction curves.  In fact, the Wiebe function parameters (Table 3.5) were chosen to 

minimize the least-squares error between the experimental and simulated mass burned 

fraction curves.   

The heat release results for diesel fuel presented in Figure 3.12 provide validation 

of the overall combustion model.  Again, the start and end of heat release and the overall 
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heat release rates from the simulation and experiments match quite well.  The peak heat 

release rate is slightly under-predicted by the combustion model.  The predicted heat 

release rates for biodiesel is compared with the experimentally derived heat release rates 

in Figures 3.13. Again, for biodiesel, the start and end of heat release are predicted well 

but the peak heat release is under-predicted.  The simulated heat release curves shown in 

Figures 3.12 - 3.13 are the best predictions possible with the simple Wiebe function-

based combustion model and some discrepancies between the predictions and 

measurements may be expected.  It can be observed that the accuracy of the predicted 

heat release for all the fuels is maximum at half load and the accuracy decreases as the 

load is either increased or decreased.  

Several fraction burned curves and the rate of fraction change are shown in 

literature for various a and n [Heywood 1988]. For a fixed form factor n, the larger the 

value of a, the more rapid the mass burned fraction change occurring around the midpoint 

of the total combustion duration.  For larger value of a, the maximum heat release rate 

shifts to the first half of the combustion period.  For a fixed efficiency parameter a, a 

larger n value causes the second half of the combustion period to have a larger heat 

release. According to the effects of these two parameters and the analysis of 

experimental data, a high efficiency parameter and form factor are suggested for high 

IMEP, while estimation in a low IMEP can be modeled with a low parameter a and low 

factor n. Even though a and n are adjusted for different IMEP levels, combustion 

variations can still cause modeling error to produce errors in pressure estimation.  The 

information about the estimated combustion heat release and its rate can be utilized to 

identify an appropriate a and n. 
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Efficiency parameter a is higher for biodiesel than diesel in table 3.5.  This shows 

that maximum heat release for biodiesel shifts more in the first half of combustion period 

than the diesel.  Table 3.5 also shows that form factor n is higher for biodiesel in compare 

to diesel. It can be inferred that higher heat released in the second half of the combustion 

period for biodiesel than diesel.  Higher a and n value for biodiesel clearly shows that 

overall heat release using biodiesel is more than diesel. 

Table 3.5 Wiebe function parameters 

IMEP SOI 
Diesel Biodiesel 

a n a n 

2.5 

10 4.49 0.18 4.88 0.33 

4 5.15 0.19 5.55 0.27 

0 5.45 0.18 5.69 0.29 

5 

10 4.77 0.27 4.75 0.25 

4 5.22 0.36 5.55 0.43 

0 5.29 0.24 5.64 0.51 

7.5 

10 4.62 0.43 4.62 0.68 

4 5.37 0.45 5.50 0.46 

0 5.47 0.43 5.90 0.58 

10 

10 4.53 0.50 4.49 0.58 

4 5.46 0.68 5.31 0.42 

0 5.48 0.55 6.00 0.55 
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Figure 3.12 Comparison of experimental and simulated cylinder pressure (a, c, e, g) and 
heat release rate (b, d, e, f) using single-zone wiebe model of diesel at 
different load conditions 
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Figure 3.13 Comparison of experimental and simulated cylinder pressure (a, c, e, g) and 
heat release rate (b, d, e, f) using single-zone wiebe model of biodiesel at 
different load conditions 
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Multi-zone Simulation Results 

The sub-models that were presented earlier in the chapter are grouped together for 

the purpose of model validation as follows: 

 Spray evolution model and air entrainment 

 Spray droplet diameter after breakup and evaporation model 

 Ignition delay model 

 Combustion model 

Correlations for spray penetration play very important roles in the quasi-

dimensional multi-zone model because they determine the spray shape and the location of 

packet zones.  The multi-zone model is computationally much more efficient than the 

multi-dimensional model because it relies on empirical correlations to describe spray 

evolution, instead of solving the full momentum equation.  In addition, spray penetration 

is the key factor that affects the air entrainment rate calculation.  As can be seen in the 

momentum conservation equation for the air entrainment rate (equation 3.25), the air 

entrainment rate is a function of the first and second derivatives of spray penetration.  

Since the air entrainment rate subsequently affects the combustion process, the 

importance of the spray penetration correlation cannot be underestimated.  The behavior 

of the various sub-models needs to be studied with respect to the experimental data taken 

from real diesel engines.  The behavior of the model with respect to zonal resolution and 

time step choice will be determined. 

The spray evaporation process occurs relatively faster compared to other 

processes. Evaporation takes place within a few crank angles after start of injection.  The 

rate of evaporation determines the combustion characteristics as either mixing limited or 

evaporation limited.  The total mass of fuel injected, the total mass of fuel mixed with air 
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and the total mass of fuel evaporated are monitored with respect crank angle in the 

following sections. 

Combustion models are validated by comparison of calculated cylinder pressure 

and apparent heat release rate with experimental data.  By this approach, the start of 

combustion, the premixed combustion phase and the mixing controlled combustion phase 

can be checked at the same time.  The engine operating conditions for the validation 

covered a wide range of engine speeds and engine loads.  

Baseline Model Results 

In this section, important predictions of the simulation such as cylinder pressure, 

heat release rate, and cumulative gross heat release histories will be presented for the 

baseline model constants shown in Table 3.6.  Proper calibration of the simulation against 

experimental data may involve the simultaneous adjustment of several model 

parameters.In addition, the model predictions may be sensitive to different degrees for 

different model parameters.  At first, it is important to discuss the selection of parameter 

values shown in Table 3.6.  The diesel injection pressure and initial charge temperature 

are experimental values that are used as model inputs.  As discussed in the previous 

sections of this chapter, air entrainment is one of the important phenomena that affect 

combustion.  Two previously used air-entrainment models (Jung 2001; Krishnan 2005) 

are used to estimate the entrained air in the packet.  The entrainment constant KBell was 

chosen as 2.0 instead of 0.05 as used by Krishnan (Krishnan 2005) to estimate the 

entrainment rate in the injected pilot fuel (diesel) in pilot-ignited natural gas combustion.  

The significant difference between the K values used by Krishnan and that of the present 

study may be due to the size of the fuel spray.  The pilot fuel spray associated with 
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ALPING combustion by Krishnan (2005) was much smaller with significantly less 

entrainment while, entrainment occurred into a much larger fuel spray in this study. 

Table 3.6 Baseline Model Constants 

Model Parameters Value 

Diesel injection pressure (bar) 160 

Diesel injected quantity (g/min) 113 

Diesel injection duration (crank angle degrees) (full load) 15 

Initial charge temperature (K) 330 

Entrainment constant (Krishnan, 2005), KBell 2.0 

Entrainment constant (Hiroyasu, 1980), KHiroyasu 2.5 

Constant factor in premixed phase reaction rate, B1 1.5 x 106 

Constant factor in mixing-controlled phase reaction rate, B2 800000 

Nozzle discharge coefficient, CD 0.7 

Total number of I packets, I
tot

 61 

Total number of J packets, J
tot

 3 

Shell model OSAM RON90 constant, AQ (for diesel) 2.5x1013 

Shell model (methyl butanoate) constant, AQ (for biodiesel) 3.0x1013 

Computational time step after BOI, DCAD (crank angle degrees) 0.03125 

Air entrainment models based on spray penetration and momentum conservation 

based on Jung and Assanis (2001) were used to evaluate the effects of air entrainment on 

the whole combustion process.  Jung and Assanis (2001) modified the spray penetration 

correlation proposed by Hiroyasu and Arai (1980) to include discharge coefficients of 

fuel injection nozzles. In this study, the entrainment model was further modified to 

address the zonal variation in air entrainment rate.  It is assumed that zones at the edge of 
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the spray will entrain more air than those chosen to the axis of the spray.  In addition, it 

was found in this study that the baseline air entrainment rate using Hiroyasu and Arai 

(1980) model was low.  Therefore, the baseline entrainment constant was adjusted by a 

factor of 2.5 to tackle the low entrainment rate issue.  

The total number of injected packets (Itot) depends on injection duration and 

injection time step.  Injection duration is a measured engine variable.  Therefore, it is 

important to vary the injection time step to fix the number of Itot. For the chosen 

computational time step of 0.03125 degrees crank angle, the value of Itot represents the 

maximum value possible.  For injection duration of 15 CA degrees, the total number of 

injected packets equal to 183 (choosing the injection time step to be 0.25 CA degrees) is 

used to set the baseline for the selected Jtot of 3. 

The experimental heat release rates are determined using a single-zone 

thermodynamic combustion model (Krishnan, 2001) and are dependent on the measured 

overall cylinder pressure. On the other hand, the predicted heat release rate is profoundly 

influenced by local (packet) reaction rates.  Therefore, experimental and predicted heat 

release rates may not match due to fundamental differences between the combustion 

models used in the simulation and the experimental heat release analysis (Krishnan, 

2005). This can be due to the difference in treatment (between the simulation and the 

single-zone model) accorded to the estimation of temperature and equivalence ratio 

distribution in different zones Hountalas et al. (2004). 

The reaction rate during the premixed combustion phase is governed by Equation 

(3.30). It is assumed valid until the amount of fuel evaporated at the end of the ignition 

delay period has been consumed.  According to Dec’s model (1997), both premixed and 

mixing-controlled combustion regions occur simultaneously.  Therefore, in this study, the 
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Figure 3.14 
heat release rates (b, d) for diesel and biodiesel at full load condition 
(BMEP = 10 bar). 

 

 

 

 

mixing-controlled phase starts in simultaneity with the premixed phase.  Diesel mass 

evaporated after ignition delay mixes with air and burns during the mixing control phase.  

It should be mentioned here that the combustion model used in this study is referred from 

Jung (2001). Jung considered the mixing controlled phase to start after the premixed 

phase (when the entire initial fuel vapor has been consumed).  The combustion rate of 

mixing controlled phase is determined using equation (3.31).  
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Figure 3.15 Comparison of experimental and predicted cylinder pressures (a, c) and 
heat release rates (b, d) for diesel and biodiesel at engine half load 
condition (BMEP = 5 bar). 
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The combustion model parameters, B1 and B2 are calibrated to match the 

calculated pressure at an operating point of 1800 rpm and 10 bar load.  The injection 

timing of 0° BTDC is chosen as the representative timing for performing all the 

sensitivity studies presented later.  The B1 and B2 values of 1.5 x 106 and 800000 were 

selected respectively for diesel fuel.  These two values were used for different loads and 

SOI. Figure 3.14 and Figure 3.15 compare experimental heat release rates and cylinder 

pressures to model predictions (named Hiroyasu and Bell) over full and half loads and 

SOIs. Both cylinder pressures and heat release rate predictions compare favorably to the 

corresponding experimental values, with only the heat release duration being slightly 
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over-predicted. For all the operating conditions, the pressures, in general, were predicted 

satisfactorily. 

The experimental and predicted cumulative gross heat release for all injection 

timings is illustrated in Figure 3.16 and Figure 3.17.  The cumulative gross heat release 

allows us to understand the total combustion heat release for a given injection timing in a 

better way than does the apparent heat release rate.  Evidently, the experimental and 

predicted cumulative heat release histories and the final values both match quite well for 

the SOIs of 0° BTDC and 10° BTDC. For 4° BTDC, the over-prediction of heat release 

rates led to very poor prediction of both the cumulative heat release history as well as the 

final heat release value. 

The differences in the heat release rate and cumulative heat release prediction 

based on Hiroyasu and Bell entrainment models can be noticed.  To explain the 

difference in the predictions between the two models, it is important to look into the  

predictions of cumulative air entrained and its effect on the cumulative fuel evaporated 

mass, equivalence ratio, and temperature of the first injected packet (XPAC = 1, YPAC = 

1). It can be seen in Figure 3.19 that the modified Hiroyasu model predicts more air 

entrainment than the modified Bell model that affects the corresponding equivalence ratio 

of the packet. More the air entrained into the packet, the leaner is the packet.  In addition, 

as more air from the unburned zone entrains into the packet, the temperature of the packet 

reduces and therefore evaporation rate of diesel reduces.  It can be seen in Figure 3.18 

that the diesel evaporation rate corresponding to the modified Hiroyasu model is lower 

than the modified Bell model.  This rapid increase in evaporation rate is reflected in the 

peak heat release rate of Figure 3.14 and Figure 3.15 where heat release rate using 

modified Bell model is higher in most of the cases.  
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 Figure 3.16 Comparison of experimental (HRcum-expt) and predicted (HRcum-
Hiroyasu and HRcum-Bell) cumulative gross heat release with baseline 
model constants at full load condition (BMEP = 10 bar). 
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 Figure 3.17 Comparison of experimental (HRcum-expt) and predicted (HRcum-
Hiroyasu and HRcum-Bell) cumulative gross heat release with baseline 
model constants at half load condition (BMEP = 5 bar). 
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 Figure 3.18 Cumulative fuel evaporated mass (a), cumulative air entrained (b), 
equivalence ratio (c) and temperature (d) of the first injected packet (XPAC 
= 1, YPAC = 1) 
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 Figure 3.19 Temperature histories for full load condition for SOI at 0° BTDC 
(unburned zone temperature (TU), burned zone temperature (TB), average 
temperature (Tavg), maximum instantaneous packet temperature (Tinst_max) 

 

 

 

It is appropriate to examine the model predictions in greater detail.  Zone-wise 

temperatures histories are illustrated in Figure 3.19.  In this figure, the subscripts u, b, 

avg, and inst_max refer to the unburned zone, burned zones, average and maximum 

instantaneous respectively. The variables Tavg and Tinst-max indicate the mass-averaged 

cylinder temperature and the instantaneous maximum temperature among all zones inside 

the cylinder, respectively.  Burned zone starts forming at the moment when the first 

packet is “dumped”.  Packets are dumped when combustion of the evaporated diesel is 

99% complete or if the packet temperature decreases below 1900K.  It is evident that the 

peak temperatures of the packet zone and burned zone were approximately 2250 K. 

When combustion started, T was equal to T but as it progressed, T increased until 
avg u avg 

dumping of the packet into burned zone begins. Towards the end of combustion Tavg 

equal to T
b 
since most of the cylinder contents had burned.  The unburned zone 

temperature is quite close to simple compression.  The temperature of unburned zone 

therefore reaches its peak close to TDC and drops as the piston moves down.  The 

average temperature is average temperature of burned zone and unburned zone.  As can 
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be seen in Figure 3.19, the average temperature is much lower than burned zone 

temperature.  This explains why the zero-dimensional or single-zone model is not 

suitable for emission predictions. 

Figure 3.20 shows a comparative analysis of packets in terms of ignition delay 

and evaporation duration of diesel.  Each of the parameters has significant influence on 

the combustion performance.  At the beginning, when the first few packets ignite, 

ignition delay is close to 3 crank angle degrees but as the ignition of more packets takes 

place there is a sudden decrease in the ignition delay value.  Similar drop in droplet 

evaporation time is also observed.  This is due to a sudden increase in the average 

temperature of the cylinder.  The increase in temperature leads to faster evaporation rate 

and thus lower ignition delay.  In addition, close observation of Figure 3.20 shows that 

initially packets close to the edge (YPAC = 1) of the spray evaporates and ignites before 

packets close to the axis of injection (YPAC = 3).  The reason behind this can be 

explained in terms of greater air entrainment in the outermost packet and hence better 

availability of oxygen to ignite faster.  Nevertheless, later on axial packets evaporate and 

ignite faster than packets at the edge.  This is due to the reverse impact of entrained air on 

temperature of packet. As more air entrains from unburned zone into the packet, the rate 

of increase of packet temperature slows down due to lower unburned zone temperature 

and this lower temperature slows down evaporation rate and leads to increase in ignition 

delay. In this regard, Krishnan (2005) suggested that increasing the mixture entrainment 

in packets leads to two opposite possibilities: (a) a decrease in packet heat release due to 

“excessive leaning” of packets by the entrained mixture to equivalence ratios well below 

stoichiometric, or (b) an increase in packet heat release if the entrained mixture results in 

driving packet equivalence ratios from very rich values (φ>> 1) toward stoichiometric 
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conditions. These observations can also be inferred from Figure 3.21.  Figure 3.21 shows 

the variation of equivalence ratio and droplet sauter mean diameter among packets.  The 

farther the packet is from the axis of injection, the faster the entrainment rate; also slower 

evaporation causes leaner mixture of air and fuel and therefore lesser is the equivalence 

ratio. Similarly, droplet diameter reduces at slower rate and consequently complete 

evaporation time increases for packets away from injection axis.  

Figure 3.22 shows the wide variation in the dumping time of packets that is a very 

important parameter as it shows the variation in combustion duration.  The packets that 

are injected early are dumped in earlier than the packets injected later.  This means that 

early injected packets burn faster after ignition.  However, the later the packets are 

injected; the longer the combustion duration.  This may be due to a reduction in the 

average temperature and excess leaning of the packet.  It can also be observed that the 

dump time increases for the packets closer to the injection axis.  The simulated peak 

packet temperature trends are also shown in Figure 3.22, which shows the number of 

packets that fall within a given peak packet temperature range.  Figure 3.22 also presents 

the peak packet temperatures and the corresponding normalized packet combustion 

durations (representing the in-cylinder residence times of hot regions) for all packets.  In 

this figure, the actual combustion duration (from the SOC until the EOC) for each ignited 

packet was normalized with respect to the overall combustion duration to obtain the 

normalized packet combustion duration. 
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Figure 3.20 Packet wise variation of evaporation time (a, b) and Ignition delay (c, d) 
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Figure 3.21 Packet wise variation in equivalence ratio (a, b) and droplet diameter (c, d). 
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Figure 3.22 Packet wise variation in packet dump timing (a, b), peak packet 
temperature relative to normalized packet combustion duration (c, d) and 
percentage of number of packets in different temperature zones (e, f). 
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Sensitivity Analyses 

For the sensitivity analysis studies in this section, the model parameters given in 

Table 3.6 were used. As mentioned before, the injection timing of 0° BTDC was chosen 

as the representative timing for performing all the sensitivity studies presented here.  The 

various parameters that are investigated in the sensitivity analyses include Computational 

time step (DCAD), entrainment constant (Kent), pre-exponential factor in the heat release 

rate model (B1), exponential factor in the heat release rate model (B2), nozzle discharge 

constant (CD), total number of packets in axial direction, Itot, and total number of packets 

in radial direction, Jtot. 

The first parameter to be examined is the computational time step (DCAD) used 

after BOI. This study allows us to ascertain the minimum computational time step 

required to obtain time step-independent results.  Later studies focus on important packet 

and combustion parameters as regards their effects on heat release and pressure 

predictions. 

To compare the effects of DCAD alone, Itot was fixed at 61 for all DCAD values. 

The predicted pressures did not change much when DCAD was increased from 0.03125 

to 0.125 degrees. The heat release duration, however, showed a modest decrease when 

DCAD was increased from 0.0625 to 0.125 degrees.  Nevertheless, both predicted heat 

release rates and onset of ignition for DCAD values of 0.03125 and 0.0625 degrees were 

virtually identical, providing reason to believe that a minimum DCAD value of 0.0625 

degrees is required for obtaining time step-independent results.  Truncation error starts 

increasing up as the time step decreases because the values of computational variables 

become too small.  Moreover decreasing DCAD consumes increasing time in 
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computation.  To maintain uniformity among all the results presented in this chapter, the 

computational time step after BOI was fixed at 0.03125 degrees.  

After ascertaining the appropriate DCAD, sensitivity analysis of SAI model 

parameter, AQ, is presented in Figure 3.23. Complete set of modified SAI model 

parameter is shown in Table 2 (Appendix). AQ which determines the initian reaction in 

autoignition mechanism impacts the ignition delay value as discussed in the chapter 2. 

Although it does not show impact on largely on the overall heat release and cylinder 

pressure, it does show the impact on premixed heat release. Higher the AQ value, larger is 

the ignition delay value and hence better fuel evaporation and air entrainment before 

ignition leads to more premixed heat release.  

Later on, the effect of the mixture entrainment constant, Kent, was examined.  In 

addition to the baseline value of 2.5, one higher value (3.0) and one lower value (2.0) 

were tested. Figure 3.24 shows that increasing KHiroyasu led to the higher peak pressures 

and vice versa. Similar effects were observed in the case of heat release rates.  Both 

initial and peak heat release rates were increased as Kent was increased from 2.0 to 3.0. 

The reason behind this can be the better air entrainment and thus better air and fuel 

mixing.  
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Figure 3.23 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters AQ 
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Figure 3.25 shows the effect of model constant for premixed heat release rate 

model, B1 on predicted pressure and heat release rates.  Cylinder pressure increased on 

increasing B1. B1 does not show profound effect on the peak heat release rate and later 

part of heat release; however, it does have profound impact on the premixed phase of heat 

release. Since the evaporated diesel mass at the onset of ignition is a very small fraction 

of the total injected fuel mass, mass of fuel available for premixed burn is small and 

therefore B1 does not have much impact on the overall heat release.  

Figure 3.26 shows the impact of increasing model constant for mixing controlled 

heat release rate, B2 on pressure and heat release.  B2 shows large impact on mixing 

control part of heat release.  Peak cylinder pressure reduces as B2 is decreased. Since 

major fraction of diesel evaporates after ignition, mixing control phase dictates the 

overall combustion phase. Hence changing B2 will have a huge impact on the prediction 

of the entire combustion process.  

The next important parameter used for sensitivity analysis was the coefficient of 

nozzle discharge, CD. Coefficient of nozzle discharge plays a very important role in 

shaping the whole combustion process.  CD mainly influences the rate of injection into 

the cylinder that has major impact on the determination of the sauter mean diameter.  

Since the Hiroyasu model of entrainment is based on the conservation of spray 

momentum, CD, which plays a very important role in the momentum of the injected 

spray, influences the rate of air entrainment too.  As evident from Figure 3.27, reducing 

the CD led to a decrease in cylinder pressure. As CD is increased, peak heat release rate 

increased and the combustion duration reduced.  On further analysis, it was found that 

increasing CD decreases the liquid droplet SMD. In addition, higher value of CD causes 
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higher momentum of injected fuel momentum and therefore the entrainment of air also 

improves in the packet zone. 
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Figure 3.24 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters entrainment constant (Kent) 

 

132 



 

 

 

 

B1=1.5x106(Total) 
B1=1.5x106(Premixed) 

B1=1.5x106(Mixing-controlled) 
B1=1x106(Total) 
B1=1x106(Premixed) 

B1=1x106(Mixing-controlled) 
B1=2x106(Total) 
B1=2x106(Premixed) 

B1=2x106(Mixing-controlled)H
ea
t r
el
ea
se

 ra
te

 (J
/d
eg
) 

60 

40 

20 

0 

Experiment 

360 380 400 420 
Crank angle (degree) 

Figure 3.25 Sensitivity of predicted pressures (a) and heat release (b) rates to model 
parameters pre-exponential factor in heat release rate (B1) 
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Figure 3.26 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters exponential factor (B2) 
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Figure 3.27 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters nozzle discharge constant (CD) 
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Figure 3.28 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters Itot 
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Figure 3.29 Sensitivity of predicted pressures (a) and heat release rates (b) to model 
parameters Jtot 
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To investigate the behavior of the multi-zone model with respect to the zonal 

resolution, the number of packets in both the axial and radial directions of injection was 

varied. At first, the number of packets in the axial direction (Itot) was changed by 

changing the injection time step.  When Itot was decreased from 121 to 31 while 

maintaining Jtot constant (equal to 3), the predicted peak pressures increased because the 

predicted heat release rates were also increased (Figure 3.28).  Interestingly, changing Itot 

did not appear to significantly alter the onset of ignition or the initial heat release rates 

immediately following ignition.  Later Jtot was changed keeping Itot constant (equal to 61). 

As can be seen in the Figure 3.29, there is not much difference in the pressure and heat 

release rates when Jtot is changed from 3 to 7. Thus it can be concluded that combustion 

performance can be predicted with a minimal number of packets (Jtot = 3) in the radial 

direction without losing much accuracy. 

Multi-zone Model Validation 

The model sensitivity and baseline calibration studies discussed above were 

useful in determining the model parameters to be readjusted to predict pressure and heat 

release histories at different injection timings and load conditions.  In this study, a set of 

model constants for both diesel and biodiesel was determined which could be used to 

obtain an optimal match between experimental and predicted cylinder pressures and heat 

releases. For a different engine operating at different conditions, these constants may be 

modified, if necessary. The model constants can be readjusted to simulate 

diesel/biodiesel condition for different engine/conditions.  The final set of model 

parameters that was used to obtain optimal combustion predictions in the present work is 
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given in Table 3.7. Most of the variables were retained at their baseline values shown in 

Table 3.6. 

Simultaneous adjustment of multiple parameters was done to match the 

experimental and predicted heat release rates at a given injection timing and engine load.  

To obtain satisfactory predictions, the effects of all the parameters were observed for 

different injection timings and loads.  Injection timing sweep at each load was performed 

to find how a slight change in one parameter affected the predictions over the entire 

experimental conditions.  

 Of the several parameters that were used in the model sensitivity studies, the 

nozzle discharge coefficient, CD was very significant.  CD affects the sauter mean 

diameter of diesel/biodiesel droplets.  It also determines the air entrainment into the 

packet calculated using momentum conservation equations.  Therefore, it is very much 

necessary to calibrate the value of CD which governs the entire process of combustion.  A 

value of 0.75 was fixed for CD to study the effect of other parameters. 

To fix the number of packets, the injection time step was changed.  Since 

injection duration for different load conditions are different, there will be different 

number of Itot packets for each load conditions.  Injection time step was fixed at 0.25 CA 

degrees. Therefore, for injection duration of 15 CA degree for full load conditions, the 

total number of packets in axial direction, Itot, was 61. Since it was observed using 

sensitivity analysis that number of packets in radial-direction does not affect the 

prediction, jtot was fixed at three to avoid complexity and to save computational time.  
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Table 3.7 Final Set of Optimized Model Constants 

Model parameters Value 

Diesel injection pressure (bar) 160 

Diesel injected quantity (g/min) 113 

Diesel injection duration (crank angle degrees) 15 

Initial charge temperature (K) 330 

Entrainment constant (Bell), KBell 2.0 

Entrainment constant (Hiroyasu), KHiroyasu 2.5 

Constant in premixed phase reaction rate, B1 1.5x106 

Constant in mixing-controlled phase reaction rate, B2 (Diesel) 200x103 

Constant in mixing-controlled phase reaction rate, B2 (Biodiesel) 600x103 

Nozzle discharge coefficient, CD 0.75 

Total number of I packets, I
tot

 61 

Total number of J packets, J
tot

 3 

Shell model OSAM RON90 constant, Aq (for diesel) 2.5x1013 

Shell model (methyl_butanoate) constant, Aq (for biodiesel) 3.0x1013 

Computational time step after BOI, DCAD (crank angle degrees) 0.03125 

From the sensitivity analysis, it was found that constant factors B1 and B2 for 

premixed and mixing-controlled phase heat release rate are very important.  Since each 

factor determines the rate of heat release of the corresponding phase, both the factors 

need to be calibrated simultaneously to match the peak heat release rates and combustion 

durations. Moreover, the evaporation rate influences the combustion phasing.  The more 

rapid the evaporation rate, the greater the amount of evaporated fuel available in the 

premixed combustion phase.  In this study, it was found that only 15-20 percent of the 

fuel mass was evaporated at the time of the onset of ignition.  Therefore, the evaporated 

mass available for the premixed phase of combustion was limited compared to that 
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available for the mixing controlled phase.  It can be observed in Figure 3.25 and Figure 

3.26 that the premixed burn phase contributed only a small portion of the total heat 

release.  Apart from this, B1 and B2 influence the rate of reaction during combustion, 

which determines the peak heat release rate and also combustion duration.  

To match the cylinder pressures and the corresponding heat release rates, for both 

diesel and biodiesel, the value of B1 was kept same i.e. equal to 1.5x106. However, for 

biodiesel, a higher value of B2 than diesel was required. 

Figures 3.30 and 3.31 show the comparison of the prediction and experimental 

heat release rates for diesel and biodiesel at three injection timings and two engine loads.  

Diesel or Biodiesel was injected at 0° BTDC, 4° BTDC and 10° BTDC.  The load 

conditions selected for the study were half (BMEP = 5 bar) and full (BMEP = 10 bar) 

engine load.  It can be seen that for a given load condition, the peak heat release rate is 

higher as the fuel is injected closer to top dead center.  This might be due to the higher 

temperature at the onset of ignition.  

Figure 3.32 shows predictions of cumulative air entrained and cumulative 

evaporated fuel mass in the first injected packet.  The air entrainment rate increases as the 

fuel is injected closer to top dead center.  However, the evaporation rate slows down as 

the injection timing is retarded.  Air entrainment rate and evaporation rate are inter-

related. The higher the evaporation rate, faster the air entrainment.  Nevertheless, the rate 

of increase in air entrainment can play another role in influencing the evaporation rate.  

Better air entrainment will enable better mixing of evaporated fuel with the air by rapid 

removal of fuel vapor surrounding the fuel droplet.  On the other hand, air from the lower 

temperature unburned zone will reduce the packet temperature and thus the evaporation 

rate will reduce.  Thus, a complex interaction occurs between air entrainment and droplet 
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evaporation which needs a very good understanding of physics to understand the 

phenomena.  
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Figure 3.31 Comparison of experimental and predicted (multi-zone) cylinder pressures 
(a, b) and heat release rates (c, d) for diesel and biodiesel at half- load 
condition (BMEP = 5 bar). 

 

 

 

Figure 3.33 shows the equivalence ratio and the temperature of the first packet. It 

can be seen that as the injection is advanced the equivalence ratio increases. This might 

be due to two facts. One, the ignition delay of first packet is less at 10° BTDC than 4° 

BTDC and 0° BTDC. This allows lesser air to get entrained before ignition. Other reason 

can be the faster evaporation rate at 10° BTDC. Maximum temperature of the first packet 

remains similar for all the injection timing. This can be observed in the packet wise 

variation of maximum temperature in figure 3.34.  

Figure 3.34 clearly shows that the overall maximum temperature of the packet 

reduces as the injection timing is retarded from 10° BTDC to 0° BTDC. This might be 
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due to a portion of heat release occuring during compression when fuel is injected at 10° 

BTDC where as in the case of the injection timing of 0° BTDC, heat release takes place 

during expansion. Close observation of packet-wise variation of maximum temperature 

shows that for initial few packets injected, the maximum temperature is highest at 4° 

BTDC injection timing when the compression temperature is highest and the piston is in 

compression stroke. Figure 3.34 also shows the packet-wise variation in ignition delay 

and evaporation duration. On comparing the ignition delay of biodiesel and diesel, it is 

clear that ignition delay of biodiesel is lower than that of diesel. Literature shows that the 

biodiesel is composed of several esters which increases the availability of oxygenated 

radical during ignition delay period.  Thus increased radical formation rate for biodiesel 

leads to shorter ignition delay. 
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Figure 3.32 Prediction of cumulative evaporated fuel mass (a, b) and cumulative air 
entrained (c, d) in 1st injected packet (i=1, j=1) for three different injection 
timing at full engine load condition 
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 Figure 3.33 Prediction of equivalence ratio (a, b) and temperature (c, d) in first injected 
packet (i=1, j=1) for three different injection timing at full engine load 
condition. 
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 Figure 3.34 Packet wise variation in maximum temperature in packets (a, b), ignition 
delay (c, d) and evaporation duration (e, f) at three different injection 
timing at full engine load condition 
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Summary 

In this chapter, development of the phenomenological simulation of diesel and 

biodiesel combustion was described in detail. Specifically, various sub-models used to 

simulate diesel/biodiesel combustion were discussed. At first, a brief literature review of 

previous research on diesel/biodiesel combustion was presented.  Then, solution 

procedure followed by model calibration procedure was outlined. Thereafter, the results 

from model sensitivity studies performed with important model parameters were 

discussed. A “final” set of model constants were identified and used to validate the model 

predictions against experimental results over the entire range of injection timing and load 

condition for both diesel and biodiesel.  
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CHAPTER IV 

CONCLUSIONS 

Conclusions from Quasi Two-zone Simulation Results 

A modified version of a generic hydrocarbon autoignition model was developed, 

validated and used in a quasi-two-zone combustion model to simulate diesel ignition 

delays (ID) for partially premixed Advanced Low Pilot Ignited Natural Gas Low 

Temperature Combustion (ALPING LTC).  The effects of hot EGR on predicted and 

measured IDs in ALPING LTC were evaluated.  Finally, a detailed uncertainty analysis 

of the ID model was performed to identify critical model parameters and experimental 

input variables. The following conclusions can be drawn from the predicted and 

measured ID results at a medium load (BMEP = 6 bar), engine speed of 1700 rpm, and 

intake manifold temperature (Tin) of 75°C: 

 With the present ID model, the predicted IDs matched the measured IDs (within ± 

10 percent error) over a range of BOIs from 20° to 60° BTDC, with only the pre-

exponential constant for chain initiation (Aq) modified to 2.5 × 1013 from the 

baseline value of 5.74 × 1012. 

 Diesel evaporation times (Δθevap) increased with increasing droplet sauter mean 

diameter (SMD).  Initial droplet SMDs of the monodisperse diesel spray 

influenced IDs at retarded BOIs but had very little or no impact at advanced BOI. 
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 Increasing Tin, which was the most sensitive among all experimental input 

variables, led to a reduction in both the physical (Δθevap) and chemical 

components of ID. 

 Hot EGR led to shorter predicted and measured IDs over the range of BOIs, 

except 20° BTDC. In general, thermal effects of hot EGR were found to be more 

pronounced than either dilution or chemical effects for most BOIs. 

 Uncertainty analysis results indicated that ID predictions were most sensitive to 

model parameters AP3, Aq, and Af1, and the experimental input variable Tin, which 

also contributed the most to overall uncertainties in IDs. 

Conclusions from Phenomenological Multi-zone Simulation Results 

A phenomenological, multi-zone, spray combustion model has been developed 

and used in a direct injection diesel engine for predicting combustion performance.  The 

multi-zone spray combustion model includes details of spray evolution, evaporation, air 

entrainment, ignition and combustion.  A broad validation of multi-zone model against 

experiments in a multi-cylinder engine has been conducted over a range of injection 

timings and engine loads for diesel and biodiesel. 

The major conclusions are the following: 

 The sensitivity analysis showed that engine performance could be predicted with 

a minimal number of zones in radial direction to be three with accuracy in the 

range of 95-98%. 

 The total number of packets used in the simulation was recognized as an 

important model parameter.   
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 Igniton delay of biodiesel was found to be smaller than diesel. Furthermore, for 

both diesel and biodiesel, packets closer to the axis of spray ignite earlier than 

packets farther from the axis.  

 The spray entrainment process was observed to have a strong effect on the 

combustion process in packets.  In particular, the spray entrainment constant 

(Kent) was found to immensely impact the packet combustion rates. 

 The nozzle discharge coefficient (CD) was found to be another very important 

parameter that has profound impact on estimation of combustion performance 

since it has a role in droplet size estimation and air entrainment into the packets. 

 Residence time studies showed that both the magnitude of maximum temperatures 

and the time for which these temperatures persisted during combustion were 

higher for biodiesel combustion compared to diesel combustion.  This is believed 

to be one of the reasons for higher nitrogen oxides emissions with biodiesel 

fuelling.  

 The modified combustion models for premixed and mixing controlled phase have 

shown a great potential to estimate engine performance over a wide range of 

engine loads and injection timings for diesel and biodiesel.  The predicted 

cylinder pressure and heat release from the phenomenological model were 

compared to and were found in close agreement (95-98% accuracy) with 

experimental data over a wide range of engine loads and injection timings for 

diesel and biodiesel 
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CHAPTER V 

FUTURE WORKS AND RECOMMENDATIONS 

The purpose of this research was to study the in-cylinder combustion process in 

diesel engines. It has focused mainly on developing the phenomenological models to 

simulate the ignition and combustion of diesel and biodiesel in diesel engine.  Even with 

considerable encouraging initial results, there exists substantial scope for improvement.  

Following studies are recommended for future research: 

 Ignition chemistry: Ignition model could be improved to include different ignition 

chemistry pathways, particularly low temperature chemistry for diesel 

autoignition, which is especially relevant in early injection low temperature 

combustion. 

 Split-injection strategy: The present model should be validated for split injection 

and if needed modification should be done in the model to account for different 

injection strategies. 

 Range of injection pressure: The model should be broadened to cover the impact 

of wide range of injection pressure on fuel atomization and hence on ignition and 

combustion process.  

 Spray cone angle: Spray angle should be considered in estimating the number of 

packets in radial direction.   

 Full cycle simulation: The present model should be extended to include the full 

engine cycle simulation.  It will help in understanding the impact of variable valve 
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opening/closing timing on the effective compression and expansion ratio.  It will 

also help in studying the role of trapped exhaust gas in the cylinder on the 

combustion process. 

 Exhaust gas recirculation (EGR): The present simulation model can be modified 

to study the role of EGR on in-cylinder distribution of packet temperature and 

different emissions. 

 Emission model: Improved phenomenological sub-models for NOx, HC,CO and 

soot emissions can be used to predict emissions behavior with diesel and/or 

biodiesel combustion. 
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Parameter 70 RON 90 RON 100 RON 
 

 Ap1  1 × 1012 1 × 1012 1 × 1012  
Ep1 
Ap2 
Ep2 
Ap3 
Ep3 

 Aq 

 Eq 

 Ab 

0 
 1 × 1011 

 1.5 × 104 

 1 × 1013 

 8.5 × 102 

 6.96 × 1011 

 3.5 × 104 

 3.35× 1018 

0 
1 × 1011

 1.5 × 104 

1 × 1013

 8.5 × 102 

 1.2 × 1012 

3.5 × 104

4.4 × 1017

0 
 1 × 1011  

 1.5 × 104 

 1 × 1013  
 8.5 × 102 

 3.96 × 1013 

  4 × 104 

  6.512× 1015 

 Eb  4.7 × 104  4.5 × 104  4.0 × 104 

 At  2.5 × 1012  3 × 1012  3.5 × 1012 

 Et 0 0 0 
 Af1  1.6 × 10-6  7.3 × 10-4  7.3 × 10-4 

Ef1  -1.5 × 104  -1.5 × 104  -1.5 × 104 

 Af2 180 180 180 
 Ef2 -7.0 × 103   -7.0 ×103  -7.0 × 103 

 Af3 0.75 1.47 2.205 
 Ef3  1 × 104 1 × 104   1 × 104 

 Af4  1.21 × 106  1.88 × 104  1.7 × 104 

 Ef4  3 × 104 3 × 104   3 × 104 

 x1 1 1 1 
 y1 -0.5 0 0 
 x3 0 0 0 
 y3 0 0 0 
 x4 -1 -1 -1.3 
 y4 1.0 0.35 0.35 

  

Table A.1 Original Autoignition Model Constants (Halstead et al. 1977) 
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 Parameter Tetradecane Methyl Butanoate 
(Hamosfakidis and (Toulson et al. 2010) 
Reitz 2003)   

 Ap1 

Ep1 
Ap2 
Ep2 
Ap3 
Ep3 

 Aq 

 Eq 

 Ab 

 Eb 

 At 

 Et 

 Af1 

Ef1 
 Af2 

 Ef2 

 Af3 

 Ef3 

 Af4 

 Ef4 

 x1 

 y1 

 x3 

 y3 

 x4 

 y4 

 3.98 × 1013 

9.25 × 102

 8.95 × 1012 

 2.092 × 104 

 2.17 × 1013 

6.92 × 103

2.5 × 1013

 4.159 × 104 

 4.90 × 1017 

 4.972 × 104 

 1.10 × 1013 

7.57 × 103

6.80 × 10-4

 -3.39 × 103 

2.68 × 102

-7.19 × 103

8.19 
 1.45 × 104 

3.70 × 105

 3.264. ×.104 

0 
0 
0 
0 
0 
0 

 1 × 1012 

 0 
 1 × 1011 

 1.5 × 104 

 1 × 1013 

 850 
  3× 1013 

 5 × 104 

 6.512 × 1015 

 6 × 104 

 3 × 105 

 0 
 9.3 

 -1.5 × 104 

 180 
  -7.0 ×103 

1.205 
 1.5 × 104 

  1.88 × 104 

 4 × 104 

1.5 
0 
0 
0 
-0.3 
0.35 

 

Table A.2 Modified Autoignition Model Constants 
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