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An aircraft may experience in-flight ice accretion and corresponding reductions in 

performance and control when the vehicle encounters clouds of super-cooled water 

droplets.  In order to study anti-icing coatings, the EADS-IW Surface Engineering Group 

is building a refrigerated wind tunnel.  Several variations of droplet delivery systems 

were explored to determine the most effective way to introduce mono-dispersed droplets 

into the wind tunnel.  To investigate this flow, time-accurate, unsteady viscous flow 

simulations were performed using the Loci/CHEM flow solver with a multi-scale hybrid 

RANS/LES turbulence model.  A Lagrangian droplet model was employed to simulate 

the movement of water droplets in the wind tunnel.  It was determined that the droplet 

delivery system required pressure relief to properly orient the flow inside the droplet 

delivery tube.  Additionally, a streamlined drop tube cross-section was demonstrated to 

reduce turbulence in the wake and decrease the variability in droplet trajectories in the 

test section. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

An aircraft may experience in-flight ice accretion and a corresponding reduction 

in performance and control when the vehicle encounters clouds of super-cooled water 

droplets.  Federal Aviation Administration (FAA) Code of Federal Regulations (FAR) 

Part 25 Appendix C [1] addresses icing conditions that aircraft may experience in flight.  

Aircraft certified for ice protection must operate safely in the continuous and intermittent 

maximum icing conditions specified in Appendix C.  Aircraft that are certified with ice 

protection systems generally employ one of three types of mechanical deicing systems 

[2]: pneumatic, electro-mechanical expulsion, or thermal deicing systems.  Pneumatic 

deicing boots are rubber bladders attached to the leading edge of the wing and, when 

inflated, break ice off the surface of the boot.  Similarly, electro-mechanical systems use 

mechanical vibrations to break the ice off of critical surfaces.  Another variant of an 

electro-mechanical system, known as a weeping wing, secretes a chemical coating to 

cover these critical surfaces to prevent ice accretion.  Thermal systems use either a series 

of flexible coils or bleed air from the engine to apply heat to critical surfaces thereby 

melting any accreted ice.   

The tragic accidents involving American Eagle Flight 4184 [3] in October 1994 

near Roselawn, IN and Comair Flight 3272 [4] in January 1997 near Monroe, MI 

prompted extensive research into aircraft icing prevention.  Most of the resulting research 
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focused on super-cooled large droplet (SLD) icing conditions that were most likely the 

cause of both accidents.   Although both aircraft were equipped with pneumatic deicing 

boots, the presence of SLD ice and warm ambient temperatures allowed significant 

runback, which caused ice accretion to occur behind the deicing boot on unprotected 

surfaces of the wing.   

The European Aeronautics Defence and Space Company Innovation Works 

(EADS-IW) Surface Engineering Group is exploring passive deicing systems, such as 

anti-icing coatings, to prohibit ice accretion on aircraft surfaces.  Unlike active systems, 

passive systems seek to prevent ice accretion instead of attempting to remove ice after 

formation.  The circumstances of the Comair Flight 3272 accident show that ice may 

accrete rapidly and that ice formation on unprotected surfaces may prove unrecoverable 

for the pilots.  A passive system would protect all surfaces during flight, which would 

reduce the possibility of ice formation.   

The von Karman Institute for Fluid Dynamics (VKI) designed an icing tunnel for 

EADS-IW [5].  The icing tunnel is a low speed, closed loop system dedicated to studying 

the effects of in-flight aircraft icing.  Figure 1.1 shows a schematic top view and cross 

sectional areas of the icing tunnel.  Figure 1.2 shows a schematic side view of the test 

section side of the icing tunnel.  
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Figure 1.1 Schematic Top View of the VKI Icing Tunnel Designed for EADS-IW. 

 

 

 

 

 

Figure 1.2 Schematic Side View of the EADS-IW Icing Tunnel. 

The EADS-IW team desires to introduce mono-dispersed water droplets into the 

wind tunnel flow and have them impact a specimen located in the test section.  The 

proposed system for introducing the droplets into the flow is shown in Figure 1.3, where 

the black arrows represent the direction of flow, the blue circles represent the water 
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droplets, and the grey cylinder represents the droplet delivery device referred to as the 

drop tube.  This drop tube is intended to introduce the droplets into the flow upstream of 

the test specimen and to ensure that the droplets impact the test specimen.  Figure 1.4 

shows the approximate location of the proposed drop tube, which is colored red for 

clarity.  This drop tube is not restricted to a circular cross section and may have any shape 

that facilitates delivery of the droplets so they impact the test specimen. 

 

 

 

 

 

 

 

 

 

Figure 1.3 Initial Concept for Drop Tube. 
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Figure 1.4 Approximate Location of Drop Tube in Settling Chamber. 

1.2 Primary Contributions 

The primary contributions of this research include: 

1.  Validation of a drop tube design to introduce super-cooled liquid water 

droplets into the wind tunnel flow:  The proposed design introduces a slot on the 

downstream side of a circular tube, which is an extension of the droplet creation device.  

This slot serves as a form of pressure relief that ensures that air flows through the 

cylindrical tube in the proper direction.  Figure 1.5 shows the pressure relief slot and 

Figure 1.6 shows the exit of the drop tube where droplets enter the tunnel flow. 

 



 

6 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Pressure Relief Slot Location on the Downstream Side of the Drop Tube. 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Exit of Drop Tube where Droplets Are Introduced to the Flow. 
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2.  Reduction of wake effects on droplet delivery:  Another component of this 

research was dedicated to analyzing the unsteady wake created by the drop tube.  A 

hybrid geometry was introduced that combined a cylinder at the top of the wind tunnel 

and an airfoil-shaped collar around the lower portion of the tube.  The cylindrical cross 

section allowed easy incorporation of the pressure relief slot while the airfoil collar 

introduced a more streamlined geometry in critical regions of the flow.  Three different 

airfoil sections were tested as possible cross sectional geometries for this hybrid drop 

tube.  Figure 1.7 shows a cut through view of each of the proposed hybrid droplet 

injection tube designs, which are fitted with collars based on NACA0020, NACA0030, 

and NACA0040 cross sections. 
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Figure 1.7 Left: NACA0020, Middle: NACA0030, Right: NACA0040. 

 

1.3 Outline of Thesis 

A literature review was performed to examine several important aspects of the 

present research.  A survey of existing refrigerated wind tunnels was performed to 

document some of the current capabilities and features of wind tunnels dedicated to 

aircraft icing research.  Since the present work models droplet trajectories in the wind 

tunnel to study their behavior, Eulerian and Lagrangian particle simulation methods are 

examined to determine which method might provide the most accurate simulations of the 

particle behavior. The next section focuses on the agreement between experimental and 

computational results, the accuracy of turbulence models, and the need for hybrid 

turbulence models.  Since the results of the present study are based upon numerical 
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calculations of the flow in the wind tunnel, the next section focuses on the typical errors 

associated with numerical simulations.  This section also explores mesh quality and mesh 

convergence as precautionary measures to avoid errors in simulations.   

The general geometric design of the EADS-IW icing tunnel is then considered.  

This discussion covers the dimensions of the tunnel as provided by the schematic shown 

in Figure 1.1.  The section also describes the drop tube geometry and the rationale behind 

the multiple cross-section designs.  The next section provides general information about 

the computational methods used to simulate the flow through the wind tunnel.  A general 

description of SolidMesh [6], the mesh generation tool used to create the discrete 

computational domain, is included.  Finally, a brief overview of the Loci/CHEM [7] code 

covers the fundamentals of the numerical fluid dynamics calculations.   

The results of the present work are then discussed.  Within this section, the 

general description of the problem including the features of the mesh generation process 

and the boundary conditions that drive the numerical simulation are discussed.  The next 

section deals with the design of the cylindrical drop tube and includes the time step size 

calculation, mesh convergence statistics, as well as droplet trajectory performance.  The 

final section of results covers the alternate drop tube designs and compares their 

performance with the cylindrical drop tube.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Existing Refrigerated Wind Tunnels 

There are several refrigerated wind tunnels of varying size and capabilities 

throughout the world.  These tunnels include but are not limited to the tunnels at NASA 

Glenn, Boeing, the Canadian National Research Council, and the Italian Aerospace 

Research Centre.  The Icing Research Tunnel (IRT) at NASA Glenn [8] is a closed loop 

refrigerated wind tunnel that simulates atmospheric conditions as low as -25
o
F.  The 

tunnel produces a velocity in the test section between 50 and 350 knots.  The test section 

of the IRT is six feet tall, nine feet wide, and 20 feet long.  A turntable in the test section 

rotates 20 degrees in either direction to simulate a variety of pitch conditions for the test 

specimen.  Eight spray bars are used to produce a droplet cloud five feet tall and six feet 

wide.  The cloud varies in liquid water content (LWC) from 0.5 to 2.5 g/m
3
 of super-

cooled droplets ranging from 15 to 50 microns in diameter. 

The Boeing Research Aero-Icing Tunnel (BRAIT) [9] has a test section that is 

four feet tall by six feet wide and operates between -45
o
F and 100

o
F with airspeeds up to 

250 knots. External turntables mounted about a horizontal axis allow rotation of the test 

specimen to simulate various angles of attack during flight.  This facility also employs a 

spray bar system to generate droplet clouds three feet high by four feet wide.  The cloud 

LWC varies from 0.25 to 2.5 g/m
3
 consisting of droplets ranging from 15 to 40 microns 

in diameter.  
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The Extreme Icing Environment (EXTICE) research project utilizes the Italian 

Aerospace Research Center (CIRA) Icing Wind Tunnel (IWT) [10] to perform testing 

under natural icing conditions up to altitudes of 7000m.  The tunnel operates over a 

temperature range between -40
o
C and 35

o
C at airspeeds up to Mach 0.7.  The tunnel 

offers four different test sections to accommodate a variety of test specimens.  The 

smallest of these test sections is 1.15 meters tall by 2.35m wide and the largest test 

section is 3.6m tall by 2.35m wide.  A turntable rotates the test specimen 45 degrees 

about a horizontal axis to simulate various pitch angles typical of aircraft flight 

conditions.  This tunnel also uses a modular nozzle, spray bar system to create a droplet 

cloud in the test section.  Water and compressed air are fed through nozzles on 20 spray 

bars located 18m upstream of the test section.  This system produces clouds made of 

water droplets ranging from five to 300 microns in diameter and LWC up to 4.0g/m
3
.  

This system is capable of generating the conditions specified by the regulations of FAR 

Part 25 Appendix C as well as SLD conditions.  

The Canadian National Research Institute for Aerospace Research (NRC 

Aerospace) Altitude Icing Wind Tunnel (AIWT) [11] is another tunnel dedicated to 

studying the effects of icing under realistic flight conditions.  The test section is 57cm tall 

by 57cm wide and 183cm long.  The tunnel operates at airspeeds up to 194 knots with a 

temperature range of -35
 o
C to 40

o
C.  An insert may be added to reduce the height of the 

test section to 30cm and increase the maximum airspeed to 320 knots.  Like the CIRA 

IWT, this tunnel is capable of replicating flight conditions up to seven kilometers.  The 

droplet cloud ranges in LWC from 0.1 to 3.0g/m
3
 with droplets ranging between eight 

and 120 microns in diameter.  The NRC does not specify the method of droplet 
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introduction, but the specification of LWC in the droplet cloud indicates some form of 

droplet spray as opposed to mono-dispersed droplets.  

Existing refrigerated wind tunnels are capable of producing icing conditions 

specified by the regulations in FAR Part 25 Appendix C.  These regulations do not 

currently cover SLD icing conditions although the CIRA IWT and NRC AIWT are 

capable of producing large droplets consistent with natural SLD conditions.  Each of the 

reviewed refrigerated tunnels employ a series of spray bars to generate a cloud of 

particles.  Typically, water is pushed through these spray bars by pressurized air and out 

of nozzles producing a mist of water droplets in the chilled air.  The CIRA IWT and NRC 

AIWT tunnels also provide a range of altitudes whereas the NASA Glenn IRT and 

BRAIT operate at sea level conditions.  Since the studies focus on in-flight ice accretion 

instead of ground icing, altitude simulation may provide more realistic test conditions.   

2.2 "umerical Simulation Techniques 

There are three ways to introduce turbulent flow physics within numerical 

simulations: direct numerical simulations (DNS), large eddy simulations (LES), and 

Reynolds Averaged Navier-Stokes (RANS) simulations.  The objective of the DNS 

approach is to simulate the complete statistical range of turbulent fluctuations at all 

relevant length and time scales.  Hirsh [12] notes that integrating the Navier-Stokes (NS) 

equations in time requires temporal and spatial resolution small enough to resolve the 

smallest eddies and concludes that solving the Navier-Stokes equations for turbulent 

flows using DNS requires on the order of Re
3
 arithmetic operations, where Re is the 

Reynolds number.  Thus, due to the extreme computational requirements, DNS is not 
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currently a viable option for full-scale geometries and some type of turbulence modeling 

is required.   

A somewhat less computationally intensive approach is LES, which attempts to 

compute the turbulent fluctuations of the large-scale eddies and model fluctuations in the 

smallest scales, sometimes referred to as the sub-grid scales (SGS).  Hirsh shows that the 

number of arithmetic operations required for LES is on the order of Re
9/4
.  Although the 

LES methods require significantly less computational resources than DNS methods, these 

models suffer computationally by requiring highly refined, isotropic grids at the sub-grid 

level.  Spalart [13] projected that three or four decades of advancements in technology 

might produce the computing resources required for performing full three-dimensional 

LES for complete aircraft configurations.  

RANS methods are the most commonly used approach for solving the Navier-

Stokes equations.  These methods rely on empirical or semi-empirical models for the 

effects of the turbulent fluctuations, since RANS averages the unsteady quantities over 

time.  Brueur [14] concludes that RANS models only produce marginal results for 

complex turbulent flows. Nichols and Nelson [15] note that typical RANS models suffer 

because they predict excessive eddy viscosity and tend to over-damp the motion of the 

fluid.  In regions of strong vortices and unsteadiness, this results in under prediction of 

the motion of the fluid.  

2.2.1 Turbulence Modeling for Flow around a Cylinder 

From many years of experimental studies, it is well known that laminar flow 

separation generates a turbulent unsteady wake downstream of a cylinder.  Thus, the flow 

around a cylinder is fundamentally an unsteady problem, which requires computationally 
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intensive approaches to simulate.  Tutar et al. [16] support this idea by stating that, while 

the flow around a cylinder is a common application, it presents numerous problems from 

a simulation perspective.  They also suggest that, although turbulence increases 

dramatically at higher Reynolds numbers, the low Reynolds number conditions may also 

require models to resolve the transition from laminar to turbulent flow.  Their work 

presents finite element solutions to flow around a two-dimensional circular cylinder using 

various turbulence models to determine if turbulence models affect the accuracy of the 

simulation, as determined by comparison to experimental results.  Tutar et al. [16] 

studied standard k-ε, the Re-Normalization Group (RNG) k-ε, and LES methods of 

predicting turbulent flow.  They concluded that the standard and modified k-ε models 

tended to under predict significant flow characteristics in the turbulent regions.  They 

suggest that this may be the result of numerical dissipation introduced to the simulation in 

regions where vortex shedding occurs.  They also note that LES predicted stronger, less 

elongated vortices than the experimental data presents, which they suggest may lead to 

the over prediction of the vortex motion.  This may be a function of the two-dimensional 

geometry that the authors used to simulate the flow field.  Vortex shedding is 

fundamentally a complex three-dimensional problem, and simplifications in two 

dimensions might lead to some of the inaccuracies predicted by this approach.   

Celik [17] notes that LES simulations were too computationally expensive to be 

performed on sufficiently refined meshes.  However, Breuer [14] suggests that the 

concept behind LES simulations might offer a suitable means for solving for the flow 

around bluff bodies.  Breuer adds that LES simulations were generally performed on 

Cartesian or spectral grids; but curvilinear body-fitted grids are needed to solve more 

complex problems.  
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2.2.2 Hybrid Turbulence Modeling Approaches 

In an attempt to more accurately resolve large-scale turbulent flow features, 

Spalart [13] developed a hybrid RANS/LES method which he coined detached-eddy 

simulation (DES).  DES combines Smagorinski’s [18] LES model with Spalart’s standard 

one-equation turbulence model [19].  Fundamentally, DES computes the fluctuations due 

to large eddies directly and transitions to RANS to model small-scale turbulence in 

regions where the grid scale is smaller than the distance to the wall: 

 

with a DES coefficient, CDES=0.65 and local grid spacing, Lg=max(dx,dy,dz).  The 

distance to the wall  replaces the wall distance in the eddy destruction term of Spalart’s 

standard model. This modification serves as the filtering function between RANS and 

LES.  This method does not include any turbulent length scale consideration when 

filtering between the models.  

Travin [20] describes the DES method as a combination of RANS in the boundary 

layer with LES in the separated regions.  The turbulence model maintains full control of 

the solution in the RANS regions of the simulation; however, these models are applied 

only in regions where RANS assumptions are well justified.  The regions of flow 

separation use the LES method to resolve the large eddies.   Travin applied DES to flow 

past a circular cylinder. Although the DES results did not match experimental results, 

they matched the features of the separated flow such as the pressure on the downstream 

side of the cylinder better than unsteady RANS methods.  Roy et al. [21] compared DES 

with steady-state RANS models and determined that DES produced better predictions of 

wake velocity and turbulent fluctuations.   

(2.1) ),min( gDES LCdd ⋅=
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Nichols and Nelson [14] present a hybrid RANS/LES method that filters between 

Menter’s [22] SST model and an LES method [7].  They refer to their method as a multi-

scale (MS) model because it relies upon a turbulent length scale to transition between 

LES and RANS.  The filtering function controlling the transition must fundamentally not 

harm the accuracy of the solution or the performance of the models.  Such a resulting 

hybrid model should transition from LES to RANS when the grid scale no longer 

resolves the turbulence scales.  The multi-scale model is the method employed in the 

present work.  Nichols and Nelson [15] examined both DES and multi-scale hybrid 

RANS/LES to determine the most accurate approach.  In general, they found the DES to 

transition from RANS to LES abruptly, whereas the multi-scale method performed well 

on the test cases observed.  Their findings concluded by showing that the DES model did 

not sufficiently predict the motion of the flow in regions outside of the boundary layer.  

2.2.3 Agreement between Experimental and "umerical Models 

Experimental studies show that flow around a cylinder in the subcritical Reynolds 

number range generates a laminar boundary layer that separates at φ = 80o [23].  Celik 

[17] notes several typical traits of subcritical flow around cylindrical bluff bodies as 

presented by prior experimental studies.  His research supports Bloor’s [23] analysis that 

suggests flow separation occurs at φ = 80o.  Celik also concludes that RANS simulations 

tend to agree well with experimental solutions up to and including the point of separation.  

RANS solutions do not, however, provide consistent agreement with experimental results 

beyond the separation point since these methods average turbulent fluctuations over time.  

Celik also notes that the presence of the vortices fundamentally affects the flow in this 

region.  Holloway et al. [24] further suggest that turbulence models used with RANS 
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solutions are incapable of simulating the effects of transition.  The authors also note that 

current models may only be applicable to fully turbulent flow due to this inability to 

resolve this transition phase and the conditions are only exactly satisfied as the Reynolds 

number approaches infinity.  Tutar et al. [16] studied the application of several 

turbulence models to this problem and showed that LES accurately predicted separation, 

especially when compared to the standard k-ε models, which suggested that this 

separation occurs near 90
o
.  They state that this may indicate the ability of LES to more 

adequately model the free shear layer flow when compared to the RANS models.  

Celik [17] adds that other factors such as surface roughness and adverse pressure 

gradient also greatly affect the flow; but like the presence of the vortices, RANS 

simulations largely ignore these factors.  Breuer [25] suggests that turbulent flow around 

a cylinder is not only a function of Reynolds numbers, but rather a more complicated 

solution dependent on the aspect ratio of the cylinder, blockage ratio of the wind or water 

tunnel, downstream conditions, surface roughness of the cylinder, free stream turbulence, 

and Mach number.  This complicated situation may explain the wide variety in the 

experimental and numerical predictions of the transition to turbulent flow. 

2.3 Eulerian and Lagrangian Droplet Simulation 

Both Eulerian and Lagrangian droplet simulation techniques couple particle 

motion and fluid motion for time-accurate simulations. The Eulerian method treats 

droplets as a continuum and couples particle concentration equations with the flow 

equations [26]. This method is appropriate for tracking collections of droplets or multi-

fluid interactions.  Zheng and Chen contend that the Eulerian method is particularly 

effective at predicting concentration distributions of particles in enclosed environments 
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[27]. Lagrangian droplet simulations model a discrete number of droplets interacting with 

the fluid. Since each droplet in the field is modeled individually, the motion of individual 

droplets is resolved using this technique [28].  The Lagrangian method is most effective 

at predicting dispersion patterns of large numbers of particles.  [27]. 

2.4 Typical Errors in "umerical Simulations 

Brueur [14] examines the errors associated with numerical simulations and divides 

these errors into three distinct subsets: modeling error, discretization error, and 

convergence error.  Modeling error addressed the difference between the physics and the 

exact solution of the mathematical model.  Discretization error refers to the difference 

between the exact mathematical solution and the solution of the discrete equations used 

in the numerical simulation.  Lastly, the convergence error describes the difference 

between the iterated solution and the exact solution of the discrete solution.  The next 

section discusses both mesh quality and mesh refinement and their impacts on solution 

error.   It should be noted that improving mesh quality does not guarantee improvement 

in solution accuracy; however, it may identify possible error sources such as inverted and 

sliver elements.   

2.4.1 Mesh Quality 

Simply stated, a high quality mesh is one that produces an acceptable answer from 

a numerical simulation.  Knupp [29] states “mesh quality concerns the characteristics of a 

mesh that permit a particular numerical PDE simulation to be efficiently performed, with 

fidelity to the underlying physics, and with the accuracy required for the problem.”  

Quantifying mesh quality presents problems since most quality metrics are designed with 
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specific problem parameters in mind.  Criteria for grid quality are generally based on 

geometric quantities such as angle, shape, twist, and aspect ratio of cells.  Mavriplis et al. 

[30] add element type and orthogonality for structured or semi-structured grids to the list 

of possible quality metrics.  While these quantities are easily obtainable, they do not 

provide any direct connection to the physical problem that is being simulated.   

Mavriplis et al. [30] alludes to the use of varying types of elements within a given 

mesh and states that the associated grid quality metrics may differ substantially for 

different types of meshes.  We can classify meshes in one of two distinct categories: 

structured and unstructured.  Luke et al. [31] acknowledge that structured meshes tend to 

produce the best solutions when the elements are orthogonal and the cells are smoothly 

stretched.  As they also note that this is a result of the coupling between stretching and 

orthogonality for structured curvilinear grids.  The term unstructured mesh describes a 

much more loosely defined category since these meshes may include all-tetrahedral 

elements, all-hexahedral elements, or a hybrid mix of tetrahedral, prismatic, and 

pyramidal elements.  Mavriplis et al. [30] point out that a precise quantification of the 

effects on solution accuracy of using fully tetrahedral elements versus hybrid tetrahedral-

prismatic meshes is still lacking.  Most common unstructured meshes employ a mix of 

element types to ensure that the boundary-layer region consists of smoothly stretched, 

orthogonal elements.  They continue by stating that unstructured meshes consisting of all 

hexahedral elements may reduce small angle elements by stretching the grid in multiple 

directions, thus producing more accurate solutions for separated flow conditions.  

Knupp [29] reiterates that the term mesh quality metric is somewhat of a 

misnomer since the metrics only measure element or local properties.  He points out that 
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valid uses of such metrics include automatic defect detection, assessment of mesh 

generation results coupled with engineering judgment, non-adaptive calculations, and a 

priori mesh improvement methods.  Automatic defect detection refers to the application 

of metrics during the initial mesh generation process to ensure that small angles and 

inverted elements are removed from the final mesh.  Similarly a priori mesh 

improvement employs metrics to improve local element quality through the use of edge 

swapping and node insertion techniques.  This local quality enhancement produces the 

highest quality elements locally, which in theory produces a higher quality global mesh.  

2.4.2  Mesh Convergence 

The process of determining mesh convergence aims to ensure that the numerical 

simulation is not adversely affected by the element structure or refinement of the mesh.  

Salas [32] notes that mesh convergence is an important process in verifying that discrete 

numerical solutions are valid representations of the governing partial differential 

equations describing the phenomenon under investigation.  Mavriplis et al. [29] add that 

the principle concept of mesh convergence states that, as the mesh resolution is increased 

in all areas of the domain, the discretization error in the solution should vanish and the 

discretized solution should gradually tend towards the continuous solution.  Most mesh 

convergence studies attempt to obtain a consistent refinement through several levels of 

refinement.  For a structured mesh, consistent refinement is a relatively simple procedure 

since neighboring cells can be divided similarly throughout the mesh.  Similar refinement 

techniques exist for two-dimensional unstructured meshes, which simply divide each 

element.  Refinement of general unstructured meshes in three dimensions proves more 
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difficult since most unstructured mesh generation techniques produce interior elements in 

a somewhat random order.   

Thomas et al. [33] state that a consistent refinement satisfies the condition that the 

characteristic distance across cells decreases consistently with increase of total number of 

degrees of freedom, �.  The characteristic distance should tend to zero as �
-1/d

 where d is 

the number of spatial dimensions.  Therefore, changing the characteristic distance by a 

factor of 2
-1/3

 roughly doubles the number of elements in the mesh.  Similarly, changing 

the characteristic distance by a factor of 2
1/3
 reduces the number of elements in the mesh 

by a factor of 2.  Consistent mesh refinement of unstructured grids is analogous to 

refinement families of structured grids.  

Most consistent refinement techniques require three and prefer four levels of 

refinement to determine mesh convergence from the numerical simulations.  Mavriplis et 

al. [30] suggest that this requirement presents a problem in terms of generating and 

employing sufficiently fine meshes.  Employing Thomas et al.’s [33] consistent 

refinement technique on four meshes produces a finest mesh that is 16 times larger than 

the coarsest mesh.  Since the coarsest mesh of the sequence must contain several million 

elements to fall within the asymptotic range, this level of refinement might well exceed 

current computational capabilities.  
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CHAPTER III 

GEOMETRIC DESIGN 

3.1 EADS-IW Icing Tunnel 

The schematic drawings of the EADS-IW icing tunnel [5], which was designed by 

the von Karman Institute for Fluid Dynamics, are shown in figure 1.1.  The EADS-IW 

Icing Tunnel is a closed loop wind tunnel.  Flow leaving the fan passes through the return 

diffuser, corner 3, base leg, corner 4, settling chamber, contraction, test section, diffuser 

1, corner 1, and cross leg closing the loop at the inlet to the fan.  The settling chamber, 

contraction, test section, and diffuser 1 are the only elements included in the 

computational model employed here in order to reduce computational requirements.  The 

length of the modeled segment of the icing tunnel is 2.25m from the inlet of the settling 

chamber to the outlet of diffuser 1. Figure 3.1 displays both the (a) VKI design, repeated 

here for convenience, and (b) the computational domain used in the present study. 

Since the flow entering the settling chamber is exiting a ninety-degree turn in 

corner four, the VKI design calls for a series of screens to smooth and align the flow.  

The screens were not modeled in these simulations.  The settling chamber is a 45cm tall 

by 30cm wide by 30cm long segment.  The contraction smoothly reduces the cross-

sectional area of the tunnel by a factor of nine.  The exact shape of the contraction walls 

was not specified.  Here, the bounding edges of the contraction were modeled as cubic 

splines.  The test section is a constant area 10cm wide by 15cm tall by 50cm long segment 

of the tunnel.  The diffuser is a 100cm long segment that expands to 20cm by 20cm and 
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includes a breather opening.  The breather is important for any closed loop tunnel to 

maintain the proper pressure and temperature during continuous operation.  

 

 

 

 

 

 

 

(a) VKI Design 

 

 

 

 

 

(b) Computational Model 

Figure 3.8 VKI Schematic and Computational Model Design. 

3.2 Drop Tube Design 

For the purpose of this study, the main feature of the icing tunnel is the drop tube.  

Computational geometries were produced with considerable refinement in the region 

around the drop tube.  The region downstream of the drop tube was refined to capture the 

vortex shedding in its wake.  Fluctuations in the downstream flow may potentially change 

the droplet trajectories and their impact locations on the test specimen.   
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Several variations in drop tube geometry were investigated to determine their 

effects on the downstream flow and resulting droplet trajectories.  The baseline design 

was a 22.5cm long cylindrical tube with a 22mm outer diameter.  The thickness of the 

drop tube walls was taken to be 2mm so that the inner diameter measures 18mm.  This 

design evolved to include a pressure relief slot located on the downstream side of the tube 

near the upper wall of the settling chamber.  Without some form of pressure relief, the 

longitudinal tunnel flow will entrain flow from the drop tube and produce a recirculating 

flow in the drop tube. This design is based on the observation that the pressure on the 

downstream side of the circular drop tube will be higher than the “freestream” pressure at 

the exit of the drop tube.  The higher pressure at the slot will ensure that the flow enters 

the slot and proceeds downward inside the drop tube.  The pressure relief slot, shown in 

figure 3.2, is located 2.5mm below the upper wall of the settling chamber and measures 

36.3mm tall by 6.74mm wide. This size was selected so that the area of the slot is equal to 

the cross sectional area of the drop tube.  



 

25 

 

 

 

 

 

 

 

Figure 3.9 Pressure Relief Slot. 

A concentrically mounted tube inside the slotted drop tube was introduced to 

produce a predominantly axial flow and reduce effects associated with the unsteady flow 

in the pressure relief slot.  The exit of the inner tube is located 36.2mm lower than the 

bottom of the pressure relief slot to protect the droplets from the flow from the slot, 

which might adversely affect the droplet trajectories.  Figure 3.3 shows the outline of the 

pressure relief slot and the inner tube, which is colored yellow for better visualization.  

The inner tube is a 7.5cm long cylindrical tube measuring 8mm in outer diameter.  The 

walls of the inner tube were assumed to have a thickness of 1mm such that the inside 

diameter measures 6mm.  The outer diameter of the inner tube was chosen to limit 

blockage inside the drop tube.  For a given volume flow rate, an inner tube that occupies 

½ of the area of the drop tube will increase the average velocity of the flow in that section 

of the drop tube by a factor of two.   
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Figure 3.10 Outline of the Pressure Relief Slot and the Inner Tube. 

This circular cylinder cross-section design may be preferable due to similarity to 

the droplet emitting apparatus, but it introduces unsteady artifacts to the flow.  In order to 

reduce the fluctuations of the flow downstream of the drop tube, a series of airfoil shaped 

collars were introduced.  NACA0020, NACA0030, and NACA0040 airfoils, shown in 

figure 1.7, were considered as possible cross sections to reduce the unsteadiness in the 

flow and its effects on the droplet trajectories.  

 

Pressure relief slot 
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CHAPTER IV 

COMPUTATIONAL METHODS 

4.1 Flow Solver 

The numerical simulations were performed using Loci/CHEM, a reactive flow 

application based on the Loci framework introduced by Luke et al [7].  Loci is a rule-

based system intended to automate the process of assembling numerical solver 

component, thereby reducing the complexity of the simulation process.  The Loci/CHEM 

code is a set of rules that operates within the Loci framework that is specifically geared 

towards multiphase, chemically reacting flows.  The code is a cell-centered, finite-

volume scheme for computing flows on three-dimensional domains discretized using 

arbitrary polyhedral elements.  The code is also capable of simulating non-reacting flows 

and includes droplet trajectory simulation capabilities.  

For an arbitrary control volume, the general form the governing equations for 

three-dimensional flow with non-equilibrium chemistry and equilibrium internal energy 

may be written in the form of equation 4.1.       
 

 

 

The term Q represents the conservative state variables, Fi and Fv are the inviscid and 

viscous flux terms, respectively, and  &W is a source term [7] that accounts for production 

and destruction of species and turbulent quantities. 
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Time-accurate unsteady simulations were performed using the multi-scale, hybrid 

RANS/LES technique [14].  This approach uses LES to resolve large scale eddies in the 

flow, but switches to Menter’s [21] SST turbulence model for the sub-grid scale.    

Menter [21] concludes that the SST model is the most accurate model for aerodynamic 

applications for its ability to predict pressure-induced separation and the associated 

viscous-inviscid interaction.  A listing of a typical input vars file is included in the 

appendix.   

4.2 Mesh Generation 

The computational domain of the icing tunnel was modeled using an unstructured 

mesh generated using SolidMesh [6] and Marcum and Weatherill’s [34] Advancing-

Front/Local-Reconnection (AFLR) method.  An unstructured surface mesh was generated 

on the bounding walls of the icing tunnel. This surface mesh serves as the initial front for 

the volume grid generation technique. The volume mesh was created using AFLR, which 

employs an advancing front technique to generate the positions of new points.  The local 

reconnection portion of the method employs a min/max criterion to produce optimal 

quality for each cell in the domain.  The min/max criterion seeks to minimize the 

maximum angle between any adjoining faces of a cell.  The AFLR code is capable of 

generating hexahedral, pyramid, prismatic, and tetrahedral elements.  

Since many turbulence models prefer elements that have faces parallel to the flow 

direction, the regions near the walls consist of stacked, semi-structured prismatic 

elements.  The height of the initial prismatic elements is based on an estimated y
+
 value 

of unity. The height of a cell grows proportionally to its distance from the wall.  Once the 

height-length ratio reaches a predetermined value, the growth of these semi-structured 
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elements is terminated.  The remainder of the domain is filled with tetrahedral elements 

created by the AFLR algorithm.   
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CHAPTER V 

RESULTS 

5.1 Problem Definition 

Numerical trial and error demonstrated that fixing the total pressure at 

atmospheric pressure at the inflow and imposing a constant mass flow condition at the 

exit was the best combination of boundary conditions for this problem. The test section 

design Mach number M=0.2, a fixed total temperature of 268K, and test section cross-

sectional area dictated a mass flow rate in the wind tunnel of 1.2967kg/s.  Trial and error 

dictated the use of the PETSc [35] matrix inversion procedure instead of the Gauss-Seidel 

method.  The PETSc routines used here employ the generalized minimal residual method 

(GMRES) [36] with a blocked incomplete lower-upper (ILU) preconditioner.  In an effort 

to reduce negative effects of the boundary conditions on the flow simulation, an extruded 

segment was added to the exit of diffuser 1.  The mesh in diffuser 1 was split into five 

sections and successively coarsened to promote diffusion of the solution.  Diffusing the 

solution by coarsening the mesh in this region should have little effect on the motion of 

the flow in the test section and other critical segments of the wind tunnel.   

As noted in the literature review, flow around a cylinder necessarily includes a 

transition from laminar to turbulent flow. However, predicting this transition using a 

RANS-based approach is not possible [24].  Therefore, the flow solution employed for 

this study assumed that the flow was fully turbulent throughout the domain. It is 
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suggested that the EADS-IW wind tunnel employ surface roughness near the stagnation 

line of the drop tube to ensure transition from laminar to turbulent flow.   

Finally, water droplets are introduced into the computational domain via a circular 

injection surface with a diameter of 6mm for all of the geometry cases with or without the 

inner tube inside the drop tube.  The droplets measure 60 microns in diameter and are 

injected at their terminal velocity of 0.11m/s.  The droplet creation device emits droplets 

at a rate based upon the size of the droplet. For the 60 micron droplets, the emission rate 

is 80 droplets per minute.  A droplet mass flow rate may be calculated based upon this 

predefined rate of droplets emission. The droplets are assumed to enter the domain at 

random locations in the entrance of the inner tube. It should be noted that, while this 

simulation will account for all possible droplet paths over time, it is not an exact 

simulation of the droplets emitted in the EADS-IW wind tunnel.  The droplets simulated 

in this study cover all possible emission locations across the opening of the inner tube, 

whereas the real droplets are introduced individually across a much smaller portion of the 

inner tube opening.  This will provide a conservative prediction for droplet trajectories 

and, at the same time, account for any statistical outliers.  The prescribed droplet mass 

flow rate boundary condition will emit multiple droplets simultaneously, which is also 

contrary to the individual droplets released by the EADS-IW emitting apparatus.  

However, the droplets are not allowed to interact with each other. 

5.2 Cylindrical Drop Tube 

5.2.1 Definition of Temporal and Spatial Scales 

Hirsch [12] notes that both the length scale and the time scale are crucial to 

accurately resolving the physical flow features.  An estimate for the time scale required to 
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sufficiently resolve the flow is based on known flow characteristics.  Using equation 5.2 

with known values for the fluid velocity in the settling chamber, V=7.32m/s, the fluid 

density, ρ=1.317kg/m
3
, diameter of the drop tube, d=0.022m, and the fluid viscosity, 

µ=1.70975e-5�s/m
2
, the Reynolds number is calculated to be Re=12404. 

 

 

The Strouhal number is a dimensionless number that describes a periodic flow 

[37].  This dimensionless number measures the ratio of local acceleration to convective 

acceleration.  There is much debate over the implementation and use of the Strouhal 

number in numerical simulations of flow past a circular cylinder since there is some 

variation found in the experimental results.  While this variation may be explained by a 

number of factors in the experimental setup, the Strouhal number is generally 

approximated as 0.2 in sub-critical flow regimes [37].  Fey, König, and Eckelmann [37] 

investigated vortex shedding from a circular cylinder to determine the Reynolds number–

Strouhal number relationship.  They developed equation 5.3, a piecewise empirical 

formula to approximate the Strouhal number, which is valid for Reynolds numbers 

between 47 and 2x10
5
.   

                                             

The term Sr represents the Strouhal number and Sr* and m are coefficients that depend 

on the Reynolds number.  A graphical representation of their findings, shown in Figure 

5.1, displays the variation in Strouhal numbers across a broad range of Reynolds 

numbers.   
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Figure 5.1 Strouhal Number–Reynolds Number Dependency in the Range 

47<Re<2x10
5
. [37] 

Table 5.1 Coefficients Sr* and m for Various Reynolds Number Intervals.  δr is the 

Estimated Error for the Straight-Line Approximation. [37] 

Reynolds Number 

Range 

 

Sr* m δr L/D  

47<Re<180 0.2684 -1.0356 0.0010 >50 laminar parallel shedding 

180<Re<230 0.2437 -0.8607 0.0015 >50 wake transition 

230<Re<240 0.4291 -3.6735 0.0015 >50 vortex adhesion 

240<Re<360 depends on boundary conditions A- and B- mode shedding 

360<Re<1300 0.2257 -0.4402 0.0015 >50 B-Mode shedding 

1300<Re<5000 0.2040 0.3364 0.0015 >50 
Kelvin Helmholtz 

instability in shear layer 

5000<Re<200000 0.1776 2.2023 0.0030 >15 subcritical regime 

The Strouhal number only depends on the Reynolds number and the associated 

coefficients that can be obtained from Table 5.1.  Since the Reynolds number of the flow 

of interest falls into the subcritical regime (5000<Re<200,000), Table 5.1 suggests using 

the coefficients Sr*=0.1776 and m=2.2023 for the Strouhal number calculation.  Using 
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these variables with Fey et al.’s equation 5.3, the Strouhal number is calculated to be 

St=0.197685, with an estimated error, δr=0.003.  Knowing the Strouhal number, the 

periodic shedding frequency of the flow fluctuations may be obtained using equation 5.4 

 

 

where f is the frequency of shed vortices, d=0.022m is the characteristic length of the 

object present in the flow, and V=7.32m/s is the velocity of the flow.  According to 

equation 5.4, the shedding frequency of the vortices for the cylindrical drop tube is 

65.67Hz.  

Travin [19] suggests sampling ten times the rate of the von Karman vortex 

shedding frequency to adequately resolve the shedding cycle.  The present work employs 

20 time steps per estimated vortex shedding cycle, or approximately 1313 samples per 

second.  The amount of time between each numerical calculation is the inverse of the 

sampling frequency, which is calculated to be ∆t=0.0007614s.  Although strictly only 

valid for the circular cylinder cross sections, the time step was held constant for all cross-

sectional designs of the drop tube, including the streamlined cross sections.   

The length scale is the second crucial element required to resolve the motion of 

the flow.  A mesh refinement study was performed to determine the effect of length 

scales on the flow solution.  This mesh refinement study followed Thomas et al.’s [33] 

method for consistent refinement of unstructured meshes.  The most refined mesh 

included a refined wake region downstream of the drop tube with element length scales 

of 1.64mm.  Statistics for each of the three meshes are provided in table 5.2.  The three 

levels of refinement are displayed in figure 5.2 

(5.4) 
V

df
St =
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Table 5.2 Mesh Statistics for the Mesh Refinement Study. 

 "umber 

of "odes 
Total 

"umber of 

Elements 

"umber 

of Hex 

Elements 

"umber of 

Pyramid 

Elements 

"umber of 

Prismatic 

Elements 

"umber of 

Tetrahedral 

Elements 

Coarse 1389124 4784485 2592 2648 1693090 3086155 

Baseline 2389231 8844402 3052 2276 2610440 6228666 

Refined 4231645 16671702 3744 2430 4130278 12535250 

 

 

 

 

 

 

                     (a) Coarse Mesh                                             (b) Baseline Mesh 

 

 

 

 

 

 

(c) Refined Mesh 

Figure 5.2 Mesh Refinement on the Element Sizes in the Wake behind the Drop Tube. 

5.2.2  Effect of Slot in Drop Tube on Particle Delivery 

It was anticipated that the pressure relief slot on the drop tube would encourage a 

more uniform flow for the droplets; but does it enhance the flow enough to warrant the 

additional complexity?  The slot and inner tube were removed from the drop tube design 
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to determine the effect of the slot on the flow inside the drop tube and its subsequent 

effect on the droplet trajectories.  First, the magnitude of the fluctuations inside the drop 

tube is examined to determine behavior of the flow.  Figure 5.3 shows that the vertical 

flow inside the drop tube suffers from fluctuations near the exit that might adversely 

affect the droplet trajectories.   
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                              (a) Drop Tube                           (b) Slotted Drop Tube 

Figure 5.3 Transverse Turbulent Component Parallel to the Wake. 

Ultimately, the most important function of the drop tube is introducing droplets into the 

flow in the wind tunnel.  Repeatable droplet impact on the test specimen is the 

benchmark for each drop tube design.  Therefore, the scatter of droplet trajectories in the 

test section is one way to assess the performance of each drop tube design.  Figure 5.4 

displays the scattering of droplets in the test section for the configuration with the slot 

and the inner tube and an unmodified single tube. The scatter plots are sampled at the 

middle of the test section and include all droplets that cross the middle of the test section 

over a sample time of 0.152s. Forty temporal samples were taken in each test case.  

Examination of the scatter plot shows that the non-uniform flow inside the drop tube does 



 

38 

not prohibit droplets from exiting the drop tube.  However, the droplet trajectories do 

suffer from more left to right scatter in the test section than if there is no pressure relief 

slot or inner tube.   As will be seen in all of the trajectory plots for the circular cross 

section drop tubes, the trajectories are deflected upward relative to the exit of the drop 

tube. This is a result of the mean flow in the wake behind the cylinder. The fluctuations 

in the wake are responsible for the side-to-side and bottom-to-top variability in the 

trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Droplet Scatter of the Non-Slotted and Slotted Drop Tube. 

Examination of droplet paths inside the drop tube reveals more information about 

the effects of the slot.  The droplets are colored by their velocities in figure 5.5 to provide 

insight to instantaneous flow patterns inside the drop tube.  The droplets inside the drop 



 

39 

tube with no slot fall unaffected for some length until adverse vertical air flow reduces 

the droplet velocities, alters their trajectories, and increases the scattering of droplets in 

the tube as shown in figure 5.5.  Inspection of the slotted drop tube reveals that the 

velocity of the droplets increases as they fall through the drop tube.  The swirl of droplets 

in the drop tube is evidence of residual effects of flow around the inner tube.  The 

dispersion of droplets created by swirling flow does not affect the scatter of droplets as 

much as the dispersion caused by the adverse flow.   

 

 

 

 

 

 

 

 

 

 

 

               (a) Drop Tube               (B) Slotted Drop Tube 

Figure 5.5 Instantaneous Droplets Inside the Drop Tube at 1.52s after Initial Release. 

The rate of droplets exiting the drop tube can also be used to assess the effect of 

the slot on the droplet trajectories.  In both cases, several droplets impact the inside of the 

drop tube and fail to exit the tube.  Figure 5.6 displays droplet impact locations inside the 
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drop tube for both the (a) drop tube and (b) slotted drop tube. The surface elements of the 

drop tube are colored by the mean of the droplet mass flux through the tube wall. Figure 

5.6 shows that droplets in the slotted drop tube are less likely to impact the walls of the 

drop tube. It was assumed that, when a droplet impacts a wall, it is instantaneously 

removed from the domain.  This assumption ignores the possible accretion of ice inside 

the drop tube over time if droplet impacts are frequent.  Eventually, this accretion may 

block all flow from exiting the drop tube preventing any droplets from exiting the tube.   

 

 

 

 

 

 

 

 

 

 

                 (a) Drop Tube                                          (b) Slotted Drop Tube 

Figure 5.6 Comparison of Droplet Impacts Inside the Drop Tubes over 0.152s. 

Another way to assess the quality of flow in the drop tube is to plot the scatter of 

droplets at the exit of the drop tube.  Figure 5.7 displays this scattering of droplets that 

exit the different drop tube designs.  The droplets in the unmodified tube are displayed by 

red symbols and those in the slotted drop tube are displayed by blue symbols.  The plot 
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tracks all of the droplets that cross the exit plane of the drop tube over a time interval of 

0.152 seconds.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Comparison of Droplets Exiting the Drop Tube over 0.152s. 

Figures 5.6 and 5.7 show that, in the slotted drop tube, significantly more droplets 

exit the drop tube and fewer impact the inside of the drop tube.  The scatter plots show 

that 116 droplets exit the drop tube and 491 droplets exit the slotted drop tube during the 

specified time interval.  Thus, the slotted drop tube increases the rate of droplets 

successfully exiting the drop tube during this time interval and improves the scattering of 

droplet trajectories in the test section.  Although these plots show that significantly more 

droplets pass through the drop tube exit over this time period; the disparity between the 

two designs may not be as significant as the sample period increases.  The initial sample 
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only proves that the slotted drop tube emits droplets at a greater rate than the drop tube 

with no slot.   

5.2.3 Effect of Slot Dimensions on Particle Delivery 

One possible modification to the drop tube design is to reduce the size of the 

pressure relief slot.  Presumably, changes to the slot will affect the flow moving through 

the drop tube and may alter the trajectories of the droplets.  Figure 5.8 shows the 

instantaneous droplet positions and scattering of droplets in the test section.  The vertical 

deflection and scattering of the droplets in the test section are the products of the 

cylindrical cross-section drop tube design. In this case, there are several more outlying 

particles scattered across the width of the test section in comparison with the trajectories 

for the larger slot. 
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Figure 5.8 Scatter of Droplets Inserted Through the Drop Tube with Smaller Slot. 

Inspection of the instantaneous droplet positions inside the drop tube, displayed in 

figure 5.9, shows that swirl in the flow affects the droplets as in the drop tube with the 

larger slot.  However, for the smaller slot, the effect of the swirling flow does not affect 

the droplet trajectories until the droplets travel further in the drop tube.  Also, the smaller 

slot increases the flow velocity in the drop tube, thus increasing the droplet velocities.  
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Figure 5.9 Left: Drop Tube with Slot and Right: Drop Tube with ½ Size Slot. 

5.2.4 Effect of Turbulent Wake on Droplet Trajectories 

It is apparent that the wake of the drop tube has a significant impact on the droplet 

trajectories. One way to quantitatively assess the effects of the wake is through the 

fluctuations, i.e., the root mean square (RMS) of the deviation between the instantaneous 

velocity and the mean velocity.  Schlichting [38] contends that typical investigations of 

mean flow values are usually sufficient, but examination of the turbulent components 

reveals the full motion of the flow.  Adopting Schlichting’s nomenclature, the RMS of 

the x component is referred to as the longitudinal turbulent component, the y component 

as the transverse component parallel to the wake, and the z component as the transverse 

component at a right angle to the wake.  Examining the transverse turbulent component at 
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right angles to the wake provides some insight into motion of the flow and the effects of 

mesh refinement on the simulated fluctuations. 

 

 

 

 

 

 

 

               (a) Coarse Mesh                                                    (b) Baseline Mesh 

 

 

 

 

 

 

(c) Refined Mesh 

Figure 5.10 RMS Values of the Transverse Turbulent Component at Right Angles to 

the Wake in the Mid-Plane of the Wind Tunnel. 

Inspection of figure 5.10 shows a significant change in the turbulent intensity as 

the mesh is refined.  The images in figure 5.10 display the magnitudes of transverse 

turbulent components at the mid-plane of the wind tunnel.  Over 200 samples were used 

to calculate the mean and RMS flow values for each of these test cases.  The most refined 

mesh exhibits strong turbulent fluctuations behind the drop tube, but the fluctuation 

strength decreases by 25% as the mesh is coarsened.   
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5.2.5 Impact of Mesh Refinement on Droplet Trajectories 

The scatter of droplets trajectories in the test section for each of the meshes 

examined in the refinement study is shown in Figure 5.11.  As before, the droplets were 

released randomly across the opening of the inner tube at a rate of 0.56kg/s/m
2
.  As the 

flow passes through the converging section, it experiences longitudinal acceleration and a 

corresponding decrease in cross-sectional area, which focuses the droplet paths. Figures 

5.11(a), 5.11(b), and 5.11(c) display the scatter of particles calculated from 40 

instantaneous samples over 0.151s of simulation. 
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                        (a)Coarse Mesh                                        (b) Baseline Mesh 

 

 

 

 

 

 

 

(c) Refined Mesh 

Figure 5.11 Comparison of Droplet Scatter in Slotted Drop Tube. 

Examination of Figure 5.11 shows that the cylindrical drop tube design exhibits a 

considerable scatter across the width of the test section.  The scatter increases as the mesh 

is refined.  This is due to the weakened fluctuations caused by insufficient spatial 

resolution in the coarser meshes.  The scatter plots also show that the droplet trajectories 

are deflected above the centerline of the wind tunnel when released from cylindrical drop 

tubes. The upward deflection is also increased as the mesh is refined. 
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5.3 Alternate Drop Tube Designs 

The cylindrical cross-section drop tube design tends to scatter the droplets, due to 

the fluctuating velocity components, as well as deflect them upwards, due to the mean 

flow. Presumably, less scatter and therefore more reliable droplet trajectories would be 

the result of employing other cross-sections for the drop tube that produce less turbulence 

in the wake. The intensity of transverse turbulent fluctuations at right angles to the wake, 

as shown in Figure 5.12, may be employed to determine the cross-section that produces 

the least turbulence downstream. The cylindrical cross-section drop tube shows a strong, 

very active turbulent wake. Presumably, if the drop tube were made more streamlined, 

the turbulent intensity in the wake would be reduced.  
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(a) Cylindrical Cross-Section.  Left: Right Angle to the Wake. Right: Parallel to 

the Wake. 

(b) NACA0020 Cross-Section.  Left: Right Angle to the Wake. Right: Parallel to 

the Wake. 

Figure 5.12 Transverse Turbulent Fluctuations for Different Airfoil Cross Sections. 
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(c) NACA0030 Cross-Section.  Left: Right Angle to the Wake. Right: Parallel to 

the Wake. 

 

(d) NACA0040 Cross-Section.  Left: Right Angle to the Wake. Right: Parallel to 

the Wake. 

Figure 5.12   (continued) 

Not surprisingly, each of the drop tubes with airfoil cross-sections produces 

significantly smaller regions of high intensity turbulent flow than the cylindrical drop 

tube.  The NACA0020 cross-section nearly eliminates all of the turbulence near the exit 

of the drop tube, which has more impact on the droplets.  The other airfoil cross-section 

drop tubes produce higher turbulence levels in this region.   

However, the most important feature of the drop tube design is its effect on the 

droplet trajectories.  The droplet scatter in the test section is shown in figure 5.15 for the 
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cylinder cross-sections and each of the drop tubes with airfoil cross-sections.  

Examination of figure 5.15 reveals that all of the drop tubes with airfoil cross-sections 

produce droplet trajectories with minimal scatter in the test section.   

 

 

 

 

 

 

 

(a) Cylindrical Cross-Section              (b) NACA0020 Cross Section 

 

 

 

 

 

 

 

             (c) NACA0030 Cross Section            (d) NACA0040 Cross Section 

Figure 5.13 Scatter Plots of Droplets Passing through the Test Section over 0.152s. 

Examination of figure 5.13 shows that all of the airfoil cross-sections produce less 

scatter in the droplet trajectories than the cylindrical cross section. The unpredictable 

nature of the cylindrical drop tubes is probable cause for using one of the hybrid drop 
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tube designs. Figures 5.11 and 5.12 show that the NACA0020 cross-section drop tubes 

produce the least amount of turbulence. The length of the NACA0020 airfoil required to 

maintain a thickness of 24mm is quite large though, and could overly restrict the flow in 

the wind tunnel. The NACA0030 drop tube shows a tighter scattering of particles in 

figure 5.13 part (c). 
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CHAPTER VI 

CONCLUSIONS 

 

The geometric design of the droplet delivery device can significantly alter the 

flow in the wind tunnel. In addition, the turbulent wake behind the drop tube can 

influence the trajectories of the water droplets. Limiting the variation in droplet 

trajectories is critical to ensuring that the droplets will impact a test specimen.  

The findings of this research are summarized below: 

1. It was demonstrated that droplets released through a cylindrical drop tube exit 

the tube and enter the flow in the wind tunnel. Adding a pressure relief slot and inner tube 

to the drop tube design significantly improves the rate of particle exits from the drop tube 

and reduces the scatter of the droplet trajectories.  However, the cylindrical drop tube 

creates a strong turbulent wake that tends to deflect the droplets off of their course down 

the center of the test section. 

2.  Adding an airfoil shaped collar to the lower portion of the drop tube reduces 

the intensity of the turbulent wake behind the drop tube and reduces the variability of 

droplet trajectories in the test section. This reduced wake intensity produces a 

significantly smaller scattering of droplets downstream. All of the airfoil shaped cross 

sections significantly decreased the scatter in the droplet trajectories. The drop tube with 

the NACA0020 cross section significantly reduced the turbulent intensity in the wake 

behind the drop tube, but did not produce the most reliable droplet trajectories. The 

NACA0030 cross section produced the smallest scattering of droplets in the test section.  
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Figure 6.1 displays the improvement of the airfoil collars on droplet trajectories in the 

test section.  The droplets released from the slotted cylindrical drop tube are displayed by 

the blue symbols and the droplets released from the NACA0020 airfoil-shaped drop tube 

are displayed in red.  Each of the airfoil-shaped drop tubes produce results similar to the 

NACA0020 shown below.  Figure 6.1 shows that the effect of the mean flow in the wake 

downstream of the cylindrical drop tube is to deflect the droplets upward.  The droplets 

released from the airfoil shaped drop tubes pass through the center of the test section with 

only small deflections.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Comparison of Droplet Scatter in the Test Section over 0.152s. 

The airfoil shaped drop tubes emit droplets in a more consistent pattern than the 

cylindrical shaped drop tube.  Figures 5.12 and 5.13 show that the NACA0020 and 
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NACA0030 shapes produce a more consistent droplet scatter than the NACA0040 by 

reducing the turbulent fluctuations in the flow.  Figure 6.2 compares the droplet scatter 

from the NACA0020 and NACA0030 shaped drop tubes.  Overall, the droplets emitted 

from the NACA0030 drop tube exhibit less upward deflection and less horizontal 

scattering than the droplets emitted from the NACA0020 drop tube.  For a fixed 

thickness, the chord length of the NACA0020 is significantly larger than the chord length 

of the NACA0030 and may be the root cause of inferior performance in terms of droplet 

scatter.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Comparison of Droplet Scatter in the Test Section over 0.152s. 

For the conditions of interest, the best performing drop tube design includes a 

pressure relief slot, an inner tube, and a NACA0030-shaped collar. While this design is 



 

56 

not the best in terms of the level of turbulence in the wake of the drop tube, it does 

produce the tightest pattern of droplet trajectories in the test section.  
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APPENDIX A 

INPUT VARS FILE FOR TIME ACCURATE FLOW SIMULATIONS 

WITH LAGRANGIAN PARTICLE TRACKING
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loadModule: Particle 

{ 

//------Icing Tunnel with Lagrangian Particle Traces------- 

//-----------Grid file and Boundary Conditions------------- 

grid_file_info: <file_type = VOG,Lref = 1.0m> 

boundary_conditions: < 

//Transient BC 

// 

//Inflow = isentropicInflow(p0=1.0atm,T0=270.144K,k=0.3518,w=7735), 

//OuterTube = viscousWall(adiabatic), 

//Outflow = fixedMassOutflow(mdot=1.2967kg/sec), 

//Tunnel =  viscousWall(adiabatic), 

//InnerTube =  viscousWall(adiabatic), 

//Opening =  viscousWall(adiabatic), 

//Spray = viscousWall(adiabatic), 

//Extension =  viscousWall(adiabatic) 

//> 

//boundary_conditions: < 

//Particle Trace BC 

// 

Inflow = isentropicInflow(p0=1.0atm,T0=270.144K,k=0.3518,w=7735), 

OuterTube = viscousWall(adiabatic,stickwall), 

Outflow = fixedMassOutflow(mdot=1.2967kg/sec), 

Tunnel = viscousWall(adiabatic,stickwall), 

InnerTube = viscousWall(adiabatic,stickwall), 

Opening = viscousWall(adiabatic,stickwall), 

Extension = viscousWall(adiabatic,stickwall), 

Spray = reflecting(particleType=water, 

    particleSizes=60e-6m, 

    particleSpeed=0.11m/s, 

    particleMassFlux=0.56kg/s/m/m, 

    particleInjectDensity=5e5) 

> 

 

//-----------Initial Conditions--------------------------- 

initialConditions: <p=1.0atm,T=268.0K,u=0.0m/s> 

p0:1atm 

//interpolateInitialConditions: output/put.0_Inner0020_ext 

 

//--------Chem and Turb Model Setup------------------------ 

chemistry_model: air_1s0r        

transport_model: sutherland 

turbulence_model: SST 

multi_scale: LES 
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//--------Numerical Algorithm Setup------------------------ 

plot_interval: 7.61e-3 sec 

 

print_freq: 25 

plot_modulo: 0 

plot_freq: 5 

restart_freq: 50 

restart_modulo: 0 

stop_iter: 1000 

 

 

// Setting up the code for steady stat convergence 

// number of newton iterations, must be 1 or greater 

newton_iter: 6 

 

// number of gauss seidel iterations used in linear system solution 

// 0 will do local block jacobi 

gauss_seidel_iter: 5 

 

// time integration method, options are: euler, second_order 

// euler is typically used to relax to steady state 

time_integration: time_accurate 

 

//Gravity 

gravity: <g=[0,-9.81,0],rhoref=1.317> 

 

// Maximum cfl, this enables local timestepping used for steady state 

// computations 

cflmax:  100000 

 

// Underrelaxation parameter that controls how much the solution is allowed to 

// change in any given timestep (Also a local timestep control) 

urelax: 1.0 

 

// The maximum timestep 

dtmax:  7.61e-4 

 

// Use numerical jacobian instead of Roe matrix 

inviscid_fjmat: numerical 

 

 

// Use Venkat's limiter 

limiter: venkatakrishnan 
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// This option turns on the petsc solver for the linear system.   

// Generally this makes timesteps much slower, but may allow convergence 

// with fewer timesteps. 

fluidLinearSolver: petsc 

 

//Preconditioning 

Minf: 0.9 

 

// Output the turbulent viscosity as well as other flow variables 

plot_output: r,v,P 

 

//particle time step 

p_dtmax: 7.61e-4 

particle_model: water 

} 
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