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CHAPTER I 

INTRODUCTION 

Continuum robots mimic the principle of a special biological structure known as 

muscular hydrostat. An elephant trunk, mammalian tongues, and octopus arms provide 

examples of the biological species which extensively use this hydrostatic muscular 

structure [1]. The invertebrate mechanism of the octopus arms provides agility in 

catching prey and locomotion. Similarly, the elephant trunk can bend with ease, exhibits 

strength while carrying logs of wood. Researchers are being inspired by amazing 

capabilities exhibited by the biological structures and are mimicking the fundamental 

properties using robotic counterparts. 

Like their biological counterparts, continuum robots do not posses any rigid links 

or discrete joints; instead, these robots are modeled on a flexible backbone which allows 

unconstrained movement at any point on its structure. This unique flexibility enables a 

wide range of practical applications which prove difficult to achieve with traditional 

rigid-link robots. Potential applications of continuum robots include search and rescue 

[2], exploring unstructured environments [3], handling hazardous nuclear material [4], 

performing complex medical examinations and surgeries [5-16], in addition to many 

other applications discussed in [17]. 

Several barriers prevent the widespread use of continuum robots in these essential 

tasks. Primarily the ability to reach a particular location in the workspace of a continuum 

robot is defined as accessibility can be improved with multi-sections. Next, for a cable 
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actuated robot the cable guides produce additional deformations on the backbone. There 

is a need to account these additional deformations for a cable driven robot. Alternate 

torque calculations using cable length can help in shaping the robot without requiring 

usage of load cells. The following chapters present solutions to these important problems. 

In particular, the second chapter presents an overview of the approach used to 

determine the 3-D shape of a single section continuum robot [18] by applying Cosserat 

theory of rod presented by Antman [19]. This theory treats any rod with few 

mathematical approximations and geometric assumptions. This model allows the rod to 

experience bending and shear strains at every point. With a set of initial and boundary 

conditions, this chapter concludes by formulating the necessary differential equations 

which describe the mechanics of deformations produced in the rod. This powerful model, 

however, applies only to a single-section robot. 

Therefore, chapter three discusses extension to the model in order to define the 

statics of a multi-section model. A single-section design can be extended to multi-

sections via analysis of the section transitions. A continuous backbone without any 

section transitions can be treated as a single section. The analysis of a multi-section 

continuum robot begins by treating the section transition as a discontinuity. It is essential 

to determine the jump conditions which define this discontinuity and therefore connect 

one section to the next section. These jump conditions are derived by applying the 

principles of mechanics and kinematics at the section transition. This results in a set of 

new initial conditions necessary in computing the shape of the remaining sections. 

This chapter also discusses the effects of cable guide mass on the robot. The main 

components of a cable-driven mechanism are the cable guides and cables. The cable 

guides provide a means for the cables to run the length of the robot. The inclusion of the 
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cable guides causes additional deformation to rod; two methods are presented to account 

this additional mass. First, the average mass model takes the mass of rod and cable guides 

together. Alternately, since cable guides are spaced out evenly, the second approach, 

termed the accurate mass method, reflects the change in the density and the cross 

sectional area due to the presence and absence of the cable guide through the length of 

the rod. 

Finally, the chapter concludes by nothing that cable lengths act as valuable source 

for determining the shape of the robot. A set of three cables separated by 120 degrees are 

passed through the cable guides. The length of each cable for a given tip loading is 

derived for a single section continuum manipulator with circular cable guides, opening 

the door for the use of simple, economic cable length sensors such as encoders to 

determine the shape of a continuum robot. 

Chapter four presents the verification of the multi-section static model and of the 

effects of cable guide mass. The test bench comprises of a laser-etched grid, balances, rod 

clamps, and weights. To validate the multi-section model, a nickel-titanium (NiTi) shape 

memory alloy is used as the backbone of the continuum robot. The rod clamps provide a 

way to mount the NiTi on the laser-etched grid. A set of weights provides a wide range of 

tip loading. The rod is mounted on the laser etched grid using the rod clamps and, since it 

is a multi-section robot comprised of two sections, two sets of weights are attached at the 

end of each of the two sections. The predicted and actual Cartesian tip locations of both 

the sections are measured. Next, a set of five circular cable guides laser cut from acrylic 

are press fit on the rod. A single cable is passed through these five guides, then the 

change in length of the cable for set of tip loadings are recorded. Comparison of these 

experimental results helps to assess the accuracy of the various models developed. 
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Specifically, the results of this thesis show that the developed multi-section model 

is accurate to within 3.4% in predicting the Cartesian tip coordinates and the model with 

the cable guides shows less than 1.26% error in predicted versus the observed Cartesian 

tip coordinates of the trunk with the cable guides. The following chapter begins this 

process by presenting a single-section model for a continuum robot. 
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CHAPTER II 

THREE-DIMENSIONAL STATICS OF A CONTINUUM ROBOT 

2.1 Introduction 

Continuum robots are biologically inspired, hyper-redundant manipulators built 

on a flexible backbone. The flexible backbone mimics the behavior of an octopus arm, an 

elephant’s trunk, squid tentacles and mammalian tongues. These biological structures do 

not have any rigid skeletal system but instead have a group of muscles which operate on a 

constant volume principle. Due to this principle, changes to the cross-sectional area and 

its shape provide the organism the ability to extend, bend, and twist by producing an 

inverse change in the length of the organ. Organisms operating on this principle are 

termed as muscular hydrostats [1]. With the help of this muscular arrangement, an 

elephant trunk is capable of curling over a log of wood, octopus arms can bend and 

extend while catching prey and locomoting, and mammalian tongues can twist and bend 

while consuming food. In a similar way, the flexible backbone of a continuum robot 

mimics the behavior of the muscular hydrostats. Hence, the flexible backbone of a 

continuum robot can be used to curl around objects for grasping or can be used like an 

octopus arm for exploring unstructured environments and have many potential 

applications because of their ability to bend along any point on the backbone. 

With these unique capabilities, continuum robots are natural candidates for use in 

search-and-rescue operations [2], in performing medical surgeries such as the use of an 

active cannula [14, 17, 20], and when performing medical examinations such as 

5 



 

 

  

     

  

  

 

 

 

  

 

   

  

 

  

   

      

  

   

    

   

   

      

 

    

endoscopy [10-12] and colonoscopy [6-9]. They also find application in hot cell 

decontamination [21], open loop grasping [22] and many more areas as detailed in [17]. 

The accessibility and accuracy of the tip of a continuum arm plays a vital role in 

many applications. Accessibility, the ability of a continuum trunk to reach a particular 

location in its workspace, poses a challenge in unstructured and confined environments. 

One definition for accuracy is the difference between predicted Cartesian end effector 

locations of a continuum trunk obtained from the model with the observed experimental 

values on a physical robot. For instance, in search-and-rescue operations, a continuum 

robot is required to bend in order to pass through debris. Also, in medical surgeries due to 

lack of space, accessing a particular target organ would require additional degrees of 

freedom. Enhanced accessibility leads to lower accuracy due to the increased 

complexities in the physical structure. However, by careful design and improved 

modeling, accessibility and accuracy can be improved. 

The primary means of enhancing the accessibility in continuum robots is by using 

a multiple section continuum trunk. A set of serially connected, single section trunks 

form a multiple section arrangement capable of bending in complex shapes, providing 

enhanced accessibility. 

The most common models [17] which predict the tip location of a continuum 

robot lack accuracy, due to a simplifying assumption which excludes the effectors gravity 

on the robot’s shape. Hence, an improved model incorporating the underlying physical 

properties of the backbone and the deformations due to gravity loading would 

significantly enhance the accuracy of the continuum manipulator. 

This thesis presents a 3-D statics model of a cable driven multi-section continuum 

robot which improves both its accuracy and accessibility. The accuracy is enhanced by 
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using an approach which models the underlying bending and deformations of a 

continuum trunk in presence of gravity [23]. The accessibility is provided by using a 

multi-section arrangement, in contrast to the cable driven, single section robots designed 

at our robotics research laboratory [18, 24]. This thesis also provides a generic platform 

for testing and verification of these models. 

2.2 Background 

There are multiple approaches to model a continuum robot. Two widely used 

approaches are the constant curvature approximation and the application of Cosserat rod 

theory. The constant curvature model approximates the curved shape of the robot as an 

arc of a circle [17]. In the absence of external loading such as gravity, moments applied at 

the tip of the trunk cause the backbone of the continuum robot to bend in a constant arc. 

This assumption allows in the development of an analytical formulation for traditional 

forward and inverse kinematics. This model has been successfully implemented in robots 

which could perform medical surgeries, such as an active cannula [14, 17, 20] and in 

medical examinations such as colonoscopes [6-9], endoscopes [10-12],  in designing 

various robots such as OctArm [22, 25, 26], Air-Octor [27], [24], and in many other 

applications [17]. Some robots built using the constant curvature modeling assumption 

demonstrated high accuracy [28] because the stiffness of the backbone counteracts the 

effects of the gravity. However, in the common and more general case, the presence of 

gravity creates a significant difference between the shape of the predicted versus the 

actual robot [22, 24, 29, 30]. For example, the constant curvature model produces an 

average error of 50% in predicted verses actual position for the OctArm robot [30]. 

These problems demonstrate the need for a more accurate model. 
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Cosserat rod theory provides an alternative way to model continuum robots. Work 

by Antman [23] presents the deformation of a thin elastic rod with few geometrical and 

mathematical assumptions. This approach has been extended to continuum robots by 

modeling the continuous backbone as a thin elastic rod in 3-D space. This model, in 

contrast to the constant curvature model, incorporates the presence of forces and torques 

acting on the backbone in 3-D while the constant curvature model includes only single 

moment at the tip of the backbone. Also, the model accounts for internal deformations 

produced by shear and bending strain along every point on the rod 

This more accurate approach based on Cosserat rod theory provides a significant 

increase in accuracy in predicting the tip location of the continuum trunk. A 3-D model 

built using Cosserat rod theory, experimentally validated on OctArm, shows less than 

five percent average error in predicting the tip location measured in centimeters [30], 

compared to 50% error with the constant curvature model. Recently, 2-D verification on 

a 3-D static model built using the Cosserat rod framework, based on experimental 

measurements of a nickel titanium rod, shows an average error of 0.61% in the predicted 

versus the measured Cartesian tip coordinates of the physical rod [18]. A geometrically 

exact model developed based on Cosserat rod theory, for active cannulas using Nickel 

Titanium alloy tubes [31] achieved a 2.91 mm error in their predictions of the tip 

locations. Although the existing models based on the comprehensive approach 

demonstrated significant accuracy and accessibility, they have been restricted to medical 

applications or the model was developed to suit OctArm. 

However, a generic 3-D static multi-section continuum model based on Cosserat 

rod theory and the usage of cables for actuation has not been studied and implemented 

yet. The  3-D statics presented in [18] describe the shape of a single section continuum 
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r o b ot. T his m o d el c a n b e e xt e n d e d t o m ulti pl e s e cti o ns b y li n ki n g i n di vi d u al si n gl e-

s e cti o n str u ct ur es. T h e m ai n a d v a nt a g e of t his m o d el [ 1 8] is t h at t h er e is n o n e e d f or 

a d diti o n al li n ks, j oi nts or s h o c ks t o r e ali z e a m ulti- s e cti o n str u ct ur e. T his c h a pt er f o c u s es 

o n r e vi e wi n g t h e 3- D st ati cs pr es e nt e d i n [ 1 8]. T h e n e xt c h a pt er pr o vi d es t h e e xt e nsi o ns 

f or a m ulti-s e cti o n m o d el. 

2. 3 O v e r vi e w of 3 D St ati cs 

T h e c o nti n u o us b a c k b o n e of a c o nti n u u m r o b ot is tr e at e d as a c ur v e a n d is 

p ar a m et eri z e d wit h a n u ns tr et c h e d l e n gt h, r ef err e d b y t h e v ari a bl e s as s h o w n i n  1. T o 

s p e cif y t h e gl o b al c o or di n at es of a p arti c ul ar p oi nt c al o n g t h e r o d , a t hr e e el e m e nt v e ct or 

r ( )c ∈    3 i s us e d. A r ot ati o n m atri x R ( )c ∈  S O ( )3 gi v es t h e ori e nt ati o n of t h e r o d at t his 

p oi nt wit h r es p e ct t o t h e gl o b al fr a m e b y d efi ni n g a l o c al c o or di n at e fr a m e f or m e d usi n g 

el e m e nts of t h e r ot ati o n m atri x. 

T h e s h a p e of t h e r o d is d et er mi n e d b y t h e s p ati al li n e ar v el o cit y v e ct or v l ( )s a n d 

s p ati al a n g ul ar v el o cit y v e ct or u l ( )s as s h o w n i n  2 a n d  3, w hi c h a r e d efi n e d at e v er y 

p oi nt s o n t h e r o d . T h e s u p ers cri pt ld e n ot es t h at t h e el e m e nt r esi d es i n t h e l o c al 

c o or di n at e fr a m e. F or a n y v e ct or a l , i n l o c al c o or di n at es c a n b e tr a nsf or m e d t o 
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Global Frame 
'If 

I 

Local Frame j 
' rod 

R( C) I ,,// 
~ / 

,, .... ," 
/ 

s r(c) 

,;--------------______. z 

y 

Figure 2.1 The continuous backbone is represented by a curve with the reference 
length s denoted by a dotted line. At an arbiatrary point c along the rod, 
r ( )c gives the position in global coordiantes and R ( )c , the rotation matrix, 
describes the orientation of the rod in global cooridinates. 

the global coordinate frame by multiplying with the rotation matrix a = Ral ; to map it 

back to a local coordinate, an element in the global coordinate frame is multiplied by RT . 

The spatial velocity vector vl ( )s defines the shear in the rod illustrated in Figure 

2.2. This vector is composed of three elements given by 

l l l lv ( )s = v v v 
T

 (2.1) 1 2 3  

l l lwhere v1,2 are shear strains and v3 gives the dilation or stretch. The stretch v3 is 

parameterized by its unstretched length; that is, v3 
l = 1implies no shear or stretch, while 

0 < v3 
l < 1 implies compression and v3 

l > 1 is extension or stretch. 
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The rod extends along the z axis, Figure 2(a) shows the shear strain produced by 

v1 
l along in the xz plane while Figure 2(b) shows the stretch v3 

l along the z axis; the initial 

position is denoted by soand final position by s f . The internal shears which are spatial 

velocities produces a sliding motion along the direction of shear. This velocity is also 

represented by the internal position vector r ( )s . The dot denotes that it is a derivative 

with respect to the reference lengths . The local coordinate frame given by the rotation 

matrix R ( )s slides along the xz plane without changing the orientation due to the effects 

of shear strain, illustrated in Figure 2(a). The direction of propagation is along the vector 

r ( )s and β is the angle between the direction of propagation and the local coordinate 

frame also known as shear angle. 

The spatial angular velocity vector ul ( )s defines the bending strain produced in 

the rod. This vector is composed of three elements given by 

l l l lu ( )s = u1 u2 u3 
T 

(2.2) 

l lwhere u1,2 specify bending about the x and y axes and u3 is the twist or torsion 

produced about the z axis. Figure 2.3 illustrates the bending and twist experienced by the 

rod. The orientation of the local coordinate frame changes due to the bending strains ul as 

shown in Figure 2.3(a) and Figure 2.3(b).  Specifically, in Figure 2.3(b) a reference line 

AA’ is chosen before the twist is applied. On application of the twist u3 
l the reference line 

AA’ shows torisional deformation. 
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' R(s) 
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v' 1 

(a) 

R(s) 
' 

j( 
, 

(b) 

r(s) 

Rr ( s1 ) 
. r r (sf ) 

-
Ji . z 

Rr (s1 ) 
r 

' 
j( 

, 
j( 

, 

Figure 2.2 Side view of a thin rod placed along the z axis. In (a), the shear velocity v1 
l 

produces a shear along the x axis; initial and final position and orientation 
vectors are also shown. Note that identical initial and final coordinate 
frames shows that no bending occurred. Instead, the local coordinate frame 
slides along the direction of shear. In (b), the stretch v3 

l causes the rod to 
extend along the z axis. 
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t 

R(s. ) 
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R(s) 

r (s) 

z 
: R r (sf ) r ( .. ) 
I I r sf 

y A~r:-;---___J~J 
r (s. ) :R(s0 ) 

"' 
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u' 3 

Figure 2.3 Side view of a thin rod placed along the z axis. In (a), the bending strain u2 
l 

produces a bending along the y axis; comparison of the initial and final 
position and orientation vectors shows the results of this deformation as the 
local coordinate frame changes orientation due to bending. In b): The twist 
strain u3 

l causes the rod to twist about the z axis. The reference line AA’ 
shows a torisional deformation 
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2.4 3D Static Analysis 

The previous section provides an overview of the elements which define the 

deformation of one infinitesimal slice of the rod. To see the global effects of these 

deformations, the analysis is done in three steps. The first step provides the initial and 

boundary conditions and the arrangement of the rod in global coordinates. In the second 

section, kinematics describes the shape and orientation of a particular point on the rod 

using the shear and bending strains. The last section, Mechanics, connects the internal 

and external forces and torques acting on the rod with their corresponding displacements 

obtained from kinematics. This section also provides constitutive equations which relate 

the internal forces and torques to the shear and bend strains. Finally, by combining all the 

three sections, a set of differential equations which describe the shape of the rod in 3-D 

are obtained. 

2.5 Initial and Boundary Conditions 

This model is subject to the following initial conditions: the rod is placed at the 

origin of global coordinate system, implying r ( )0 = [0 0 0]T , and extends along the z 

axis. The rotation matrix R ( )0 provides the initial orientation of the rod. If there is no 

initial rotation, then R ( )0 is treated as an identity matrix, R ( )0 = I . To counteract 

external torque τtip applied to the tip of the rod, there exists an unknown initial bending 

ul ( )0 . This initial bending ul ( )0 is found iteratively by minimizing the error between 

the actual tip torque τtip and calculated tip torque. Hence, finding the initial bending 

ul ( )0 requires a solution of the boundary condition τtip . The shear strains vl are 

computed analytically. The initial and boundary conditions are summarized in Table 1. 
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Table 2.1 Shows the initial and boundary conditions 

Initial Conditions Boundary Conditions 
r ( )0 (x, y, z) of rod origin 

( ) R 0 Initial orientation 
lu ( )0 Initial bending (found 

iteratively) 
τtip Tip force (known) 

lv ( )0 Initial stretch and shear νtip Tip moment (known) 

2.6 Kinematics 

The change in position of a particular location on the rod in global coordinates is 

given by 

r ( )s = R ( )s vl ( )s . (2.3) 

where the dot indicates a derivative according to s, and vl ( )s is composed of the shear 

strains. 

The orientation of a particular point in global coordinates is given by 

R ( )s = R ( )s û l ( )s , (2.4) 

where R ( ) u ×s is a rotation matrix and ˆ l is a skew symmetric matrix defined by the 3 3  

matrix 
 0 −u3 u2  

l  û =  u3 0 −u1  (2.5) 

−u2 u1 0   

2.7 Mechanics 

The mechanics section describes the shape of the rod by enforcing force and 

torque balances. The deformations produced by the resultant forces and torques are 

connected to kinematics using constitutive equations. This section is divided in two 

components: the force balance and torque balance. The force balance equation sums all 
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t h e f or c es a cti n g o n t h e r o d w hil e t h e t or q u e b al a n c e e q u ati o n s u ms all t h e t or q u es o n t h e 

r o d. 

2. 7. 1 F o r c e b al a n c e e q u ati o n 

T w o cl ass es of f or c es a ct o n t h e r o d. C o nt a ct f or c e r es ults fr o m el asti c 

d ef or m ati o ns a n d c a us es o n e s e cti o n of t h e r o d t o a p pl y a r est ori n g el asti c f or c e t o 

a n ot h er s e cti o n of t h e r o d. A ll ot h er f or c es ar e t er m e d b o d y f or c es. T h e fr e e b o d y 

di a gr a m s h o w n i n  Fi g ur e 4 d e pi cts t h es e f or c es. 

T h e c o nt a ct f or c e is d efi n e d b y a t hr e e el e m e nt v e ct or n ( )s ∈    3 . T h e p ositi v e a n d 

t h e n e g ati v e assi g n m e nts f or t h es e f or c es ar e m er e si g n c o n v e nti o ns. C o nsi d er a 

d ef or m e d s e g m e nt fr o m c t o s o n a r o d as s h o w n i n Fi g ur e 2. 4. T h e p orti o n of t h e r o d 

fr o m [ s c e x p eri e n c es a n e g ati v e f or c e fr o m t h e r e m ai ni n g s e cti o n of t h e r o d c s1 ] ( 2 ] 

w h er e as t h e p orti o n of t h e r o d fr o m [ s s  e x erts a p ositi v e f or c e o n t h e [ s s ) p orti o n 2 ] 1 

of t h e r o d. All t h e ot h er f or c es a cti n g o n t h e r o d b et w e e n [c s ]ot h er t h a n t h e c o nt a ct 

f or c es ar e t er m e d b o d y f or c e or distri b ut e d l o a ds; t h e y ar e d e n ot e d b y f (ξ  ), a f or c e p er 

r ef er e n c e u nit l en gt h of t h e r o d. All b o d y f or c es a cti n g o n t h e r o d b et w e e n [c s ]is gi v e n 
s 

b y ∫f (ξ  )d ξ  
c 
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I 
I 
I 
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n(c) 1 
I 
I 
I 
I 
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-1 
I 

n(s) 

Figure 2.4 An illustration of force balance equation. The contact forces n (c) and n (s) 
are observed at points cand son the rod, while f (ξ )denotes body forces, 
which comprise all forces acting on the rod between [ ].c s  

The body force is expressed as force per unit reference length. By summing all 

the forces acting on the rod from [ ] at equilibrium, c s  

∫ 
s 

( ) ( ) ( )s −n c + f d = 0.                                                            (2.6) n ξ ξ  
c 

Differentiating the above equation with respect to s , n s) (s = 0.  In the  ( + f ) 
presence of gravity, at any arbitrary point along the backbone, the body force in the 

above equation can be represented by the mass per reference length times the acceleration 

due to gravity. The mass per reference length is expressed as ρAwhere ρ is the density 

of the rod at that point and A is the cross sectional area at that point. For a fixed density 

and area of cross section, the body force is given as, 

f (s) = ρAgseg ,                                                  (2.7) 
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where g is the acceleration due to gravity and eg is the unit vector in the direction of 

gravity. 

If a known force νtip is present at the tip of the trunk then the force balance 

equation can be rewritten by changing s to stip and rewriting, 
stip 

n (c = n stip + f )d) ( ) ∫ (ξ ξ = 0. 
c 

Specifically, ( )can be replaced by νtip n stip ; by substituting, the above equation 

can be rewritten 

n (c) = ν + ρAg (s − c)e . (2.8) tip tip g 

2.7.2 Constitutive equation 

Constitutive equations describe the relation between the shear strains and the 

internal contact forces at any particular point along the rod. Contact forces are assumed to 

obey a linear Hookean relationship. The constitutive equation for the resultant contact 

force at an arbitrary point s in global coordinates is given by 

ln (s) = RD(v (s) − e ) , (2.9) e 

where R is the rotation matrix which maps the local internal force nl (s) to the global 

frame, D =  diag ([D D D ]) are material constants analogous to the constant K in 1 2 3 

the linear Hookean relation F = Kx . In particular, D = D = GA, and D = EAwhere Ais 1 2 3 

the area of the cross section, E is the modulus of elasticity of the material and G the shear 

modulus. 

lBy substituting the constitutive equation in,RD(v (s) − e ) = ν + ρAg (s − c)e .e tip g 

Solving for vl (s) , the above equation can be reduced to 

l −1 Tv (s) = D R ν + ρAg (stip − s)eg  + ee (2.10)   
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T h e s h e ar str ai ns at a n y p oi nt al o n g t h e r o d c a n b e a n al yti c all y c o m p ut e d wit h t h e 

a b o v e e q u ati o n. 

2. 7. 3 M o m e nt b al a n c e 

T hr e e t y p es of t or q u es a ct o n t h e r o d. First, c o nt a ct m o m e nts r es ult fr o m el asti c 

d ef or m ati o ns a n d c a us e o n e s e cti o n of t h e r o d t o a p pl y a r est ori n g i nt er n al m o m e nt t o 

a n ot h er s e cti o n of t h e r o d. S e c o n d, c o nt a ct f or c es a cti n g at a dist a n c e pr o d u c e t or q u es. 

Fi n all y, a ll ot h er t or q u es ar e t er m e d b o d y m o m e nts a n d s p e cifi e d p er u nit r ef er e n c e 

l e n gt h. 5 ill ustr at es t h e v ari o us t or q u es a cti n g o n t h e r o d. 

T h e c o nt a ct m o m e nt at a p oi nt s is d efi n e d b y a t hr e e el e m e nt v e ct or m ( )s ∈    3 . 

C o nsi d er a d ef or m e d s e g m e nt of t h e r o d fr o m c t o s as s h o w n i n Fi g ur e 2. 5. T h e r o d 

e x p eri e n c es i nt er n al m o m e nts at p oi nts c a n d s . T h e r o d als o e x p eri e n c es a t or q u e 

pr o d u c e d b y t h e c o nt a ct f or c es n ( )s a n d n ( )c a cti n g at a dist a n c e r ( )s a n d r ( )c . T h e 

r es ulti n g m o m e nts ar e  r ( )s × n ( )s a n d r ( )c × n ( )c . Fi n all y, all t h e ot h er t or q u es a cti n g 

o n t h e r o d fr o m [c s ]ar e t er m e d as t h e b o d y m o m e nts, m e as ur e d p er r ef er e n c e u nit 
s 

l e n gt h a n d r e pr es e nt e d as ∫  r (ξ  ) × f (ξ  ) +  l (ξ  ) d ξ . w h er e r (ξ  ) × f (ξ  ) i s t h e t or q u e   
c 

pr o d u c e d b y a distri b ut e d b o d y f or c e a cti n g at a dist a n c e r (ξ  ) a n d l (ξ  ) is t h e b o d y 

m o m e nt p er r ef er e n c e l e n gt h. T y pi c all y t h e b o d y m o m e nt is c o nsi d er e d t o b e z er o. 

T h e s u m of all m o m e nts a cti n g o n t h e r o d fr o m c t o s is gi v e n as 

s 

m ( )s −  m ( )c +  r ( )s × n ( )s −  r ( )c × n ( )c = −   r (ξ  ) × f (ξ  ) +  l (ξ  ) d ξ  , ( 2. 1 1) ∫   
c 

w h er e m ( )s a n d m ( )c ar e t h e c o nt a ct m o m e nts at c a n d s a n d t or q u es pr o d u c e d b y t h e 

c o nt a ct f or c es a cti n g at a dist a n c e ar e gi v e n b y r ( )s × n ( )s , −  r ( )c × n ( )c n oti n g t h at t h e 

si g n c o n v e nti o n r e m ai ns t h e s a m e as t hat us e d i n t h e f or c e b al a n c e e q u ati o n. Fi n all y, t h e 
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sum of all the external moments acting on the rod is given by ∫ r (ξ )× f (ξ ) + l (ξ ) dξ .  
c 

 Differentiating (2.10) with respect to s , m + r  ×n = 0. 

Figure 2.5 An illustration of moment balance equation on a rod from c to s. Contact 
moments m ( )c and m ( )s  are produced by the internal moments. External 
contact moments other than contact forces acting on the rod between[c s] 

s 

are given by ∫ r (ξ )× f (ξ ) + l (ξ ) dξ .  
c 

2.7.4 Constitutive equation 

The internal moments acting on a rod can be related to the local angular bending 

velocities using the constitutive equations. The relation between the resultant internal 

moments at any arbitrary point s and the angular bending velocities in global coordinates 

is given by 

m ( )s = R ( )s Cul ( )s ,                                                  (2.12) 

where R ( )s is the rotation matrix which maps between the local to global frame and C is 

a material constant given by C = diag [C C C ]. In particular, C = EI , C = EI  and 1 2 3 1 1 2 2 
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C3 = GJ where E is the modulus of elasticity, I1, are the first moment of inertia about I2 

the local x and y axis, G is the shear modulus, and J is the polar moment of inertia. 

l l lDifferentiating the above equation, m = ˆ + RCu . where û l is the skew symmetric Ru Cu  

matrix defined. 

Substituting the result from constitutive equation into the moment balance 

equation and solving for u l ( )s , 

l −1 l T  l l u ( )s = −C v̂ R νtip + ρ Ag (stip − c)eg  + ˆ (2.13) u Cu     

2.7.5 Final ODE 

The shape of the rod can be computed by integrating the above equations, 

simultaneously. This concludes the derivation of 3D statics of a single section continuum 

robot. The next chapter provides the extension of the derivation to multiple sections. The 

final integration inputs for the ODE solver are, r ( )s = R ( )s vl ( )s , R ( )s = R ( )s û l ( )s ,, 
l −1 l T l lv R  ) ˆ ,where &, u ( )s = −C  ̂  ν + ρ Ag (s − c e  + u Cu  tip tip g    

l −1 Tv ( )s = D R νtip + ρ Ag (stip − c)eg  + ee .  

2.8 Conclusion 

Continuum robots are a type of biologically inspired robot built on a flexible 

continuous backbone. The structure of these robots looks similar to the biological 

structures such as an octopus arm or an elephant trunk. Due to the flexibility of 

continuum robots, they can be used in cluttered and congested environments. Describing 

the shape of a continuum robot has been a challenge for many years. The shape predicted 

by the widely used constant curvature model lacks accuracy because of the exclusion of 

gravity loading. Alternately, Cosserat rod theory describes the shape of the continuum 
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robot by accounting for gravity. This chapter presented the necessary equations which 

contribute to the deformations of the rod for a single section continuum model. The 

analysis is performed in three steps: the Initial and Boundary Conditions, Kinematics, and 

Mechanics. This model lays a foundation for the multi-section model discussed in the 

next chapter. 
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CHAPTER III 

TWO-DIMENSONAL STATICS OF A MIULTI-SECTION CONTINUUM ROBOT 

3.1 Introduction 

As discussed previously, accessibility is defined as the ability of a continuum 

trunk to reach a particular location in its workspace. The accessibility of a continuum 

trunk can be enhanced by using a multiple section continuum robot. A serially cascaded 

single section continuum robot forms a multiple section continuum trunk. While there are 

many snake-like structures with a single section backbone proposed for performing 

complex medical surgeries [28, 32], for applications such as grasping [22] or working in 

constrained and unstructured environments, multi-section structures prove to be useful 

[22, 25, 27, 30]. 

This chapter is divided in two parts. The first part of the chapter extends the single 

section statics model discussed in [18] to encompass multiple sections by defining the 

changes occurring in the connecting region between each section; this area is termed the 

section transition. The second part presents the foundations for a cable-actuated robot by 

studying the deformations due to the addition of cable guides on the single section model. 

Cable guides are circular disks which support cables which run along the length of the 

backbone. The verification of both multi-section statics and single-section statics 

including cable guides is presented in the next chapter. 
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3.2 Background 

Various prototypes built on the most widely used constant curvature model 

demonstrate impressive abilities in grasping geometric objects while maintaining stability 

[22], grasping long wooden pieces [25], in whole arm manipulation [33], when employed 

as an active cannula [14], and in many other applications [17]. However, since these 

models exclude the effects of gravity, the predicted versus the actual shape and tip 

location of these robots are inaccurate. 

This lack of accuracy can be enhanced by modeling multiple section continuum 

robots using a more comprehensive approach based on Cosserat rod theory. For example, 

an active cannula [14, 15, 20] modeled using this approach was extended to encompass 

multiple sections. Although this approach demonstrated accurate predictions with an 

average error of 0.61% in predicting the tip location of the robot, the model is confined to 

a specific type of robot. A geometrically exact continuum robot with three sections also 

modeled on the basis of Cosserat rod theory presented less than five percent accuracy in 

the average tip position error in actual versus observed Cartesian tip location [30]. But 

the model applies specifically to the Oct-Arm robot. Hence there is a need for a multi-

section model which can provide accessibility with accuracy and also be generic 

3.3 Multi-Section Statics of a Continuum Robot Overview 

The 3D static analysis begins by defining a section transition for a multi-section 

continuum robot; the analysis is then sub-divided in three sections: kinematics, 

mechanics and initial and boundary conditions. For simplicity, the static analysis is 

applied to only two- sections; however, the analysis is extendable to an n-section 

continuum model. 
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3.3.1 Section transition 

The connecting region between two single sections is defined as a section 

transition. The section transition is assumed to be smooth and continuous. In other words, 

there is no hinge, no additional links to join both sections, and no shocks. The section 

transition treated as a discontinuity and the necessary boundary conditions are derived; 

however it is assumed of zero length, though this assumption can easily be relaxed by 

adding an arbitrary offset. The shape of the rod is now subject to external, internal forces 

and torques observed at each section as shown in Figure 3.1. 

Figure 3.1 A 2D view of a two-section continuum model with the section transition 
shown as dotted line. Here, τ ν are the external tip torque and force at st , st 

the section transition and τ ν are the external tip torque and force at the tip , tip 

tip of section two. The section transition is assumed to be of zero length. 

3.4 Multi-section kinematics 

Kinematics determines the orientation and position along any point on the rod. 

The objective is to obtain the initial position and orientation of the second section based 

on the known position and orientation of the first section combined with effects produced 

by the section transition. The following notation is used throughout the derivation: s+ 

signifies the beginning of the second section and s− the end of first section as shown in 

Figure 3.2 
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The position and orientation along any point on the rod for a single section are 

given by r ( )s = R ( )s vl ( )s and, R ( )s = R ( )s û l ( )s , where vl ( )s is gives the shear 

strains, R ( )s is a rotation matrix specifying the orientation of the backbone, and û l is a 

skew symmetric matrix containing spatial bending velocities. Hence,  at the end of 

−section one the position and the orientation of the rod are represented by r (s )and 

−R (s ) where s−signifies the end of first section. 

By the earlier assumptions, the position and orientation at the beginning of the 

second section match the position and orientation of the end of the first section are 

therefore given by 

r (s− ) = r (s+ ) (3.1) 
− +R (s ) = R (s ). (3.2) 

3.5 Multi-section mechanics 

The mechanics section describes the deformations of the rod when subject to 

resultant forces and torques coupled with constitutive equations and kinematics. This 

section is divided in two sections: force balance and moment balance. The objective of 

the force balance equation is to determine the shear strains vl ( )s for a multi-section 

configuration. The force balance equation sums all the forces acting on the rod, which 

includes a known force at the section transition. Similarly, the objective of the moment 

l +balance equation for a multi-section robot is to determine the initial bending u (s )of 

section two. The moment balance sums all the torques acting on the rod, which includes a 

known torque at the section transition. 
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Section Transition 

z 
Figure 3.2 A two-section continuum model in a bent configuration with the section 

transition. Although the section transition is of zero length, for illustration 
purposes it is denoted as a dotted line. By definition, the end of one section 
is the beginning of the second section. The symbol s+denotes the beginning 
of the second section while s−denotes the end of section one. 

3.5.1 Force balance equation 

Three types of force act on the rod: first, point forces consists of the tip force νtip 

and the section transition force ν st . The point force at the location of the section 

transition sst is mathematically represented with the help of a unit impulse function δ ( )s 

st st )and is given by ν δ (s ) where δ (s . Second, a contact force n ( )s due to the elastic st 

nature of the backbone as discussed in chapter 2 shapes the rod.  Finally, body forces 

represented by f ( )s must be included. Figure 3.3 illustrates various forces on the rod. 
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Figure 3.3 This diagram depicts some of the forces present on two-section robot. The 
external tip force is given by νtip , the external force at the section transition 

st
is given by ν δs and the body force per unit length is given by f () s . 

By picking an arbitrary point c in the first section andson the second section, the 

st () 

st
force balance equation is given by n () s ( )+∫ 

s 

νstδξ s )+f ( ))ξ −n c ((− ξ d =0, 
c 

where n () s is the contact force at some arbitrary point in section two, n () c is the contact 

st 
) force at some arbitrary point in section one, and ν δξ(−s is the external force if st 

present at the section transition, and the body force is f ξ. () 
Replacing s with s

tip 
, the unstretched length of the rod, allows inclusion of the 

force present at the tip of the rod. Rewriting the force balance equation, 
tip 

tip st tip 
n () s −n() c + ν (−s +f ξ dξ=0 s ν 

s 

∫(stδξ )()) . Replacing n()with tip and recalling 
cs 

st 
) the sifting property of the delta function, ∫νstδξ(−sdξ=νst. Therefore, 

tip s c 

νtip −n ( )+νst +∫f ()d =0. c ξξ 
c 

Solving for n () c and computing the integral of the body force for a constant rod 

tip 
density and cross-sectional area, n() c =ν +ν +ρAg (s −c)e . tip st g 
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3.5.2 Constitutive equation 

From the linear constitutive relationship as discussed in of the previous chapter, 

ln ( )s = RD( v ( )s − ee ) . By substituting in the above equation and solving for vl ( )s , the 

local shear strains along any point on the rod can be analytically computed by 

l −1 T tip v ( )s = D R  (ν + ν + ρ Ag (s − s)e ) + e . Note that the analytical computation tip st g e 

begins at stip and proceeds backwards to the desired location on the trunk. When the 

tip lportion of the rod (s s, ) does not include the section transition, the equation for v must 

reflect its lack. The following Table 3.1 summarizes the shear strain equation where sst is 

the location of the section transition on the rod. 

Table 3.1 Shear strain equations for a multi-section model 

l 1− T tip v ( ) c = D R (ν + ν + ρ Ag s − c e + etip st ( ) g ) e 
stIf s s< 

l 1− T tip v ( ) c = D R (ν + ρ Ag s − c e + etip ( ) g ) e 
stIf s s> 

3.5.3 Moment balance at section transition 

There are three types of torques present at the section transition. They are the 

contact moments m ( )s as defined in the previous chapter, the torques produced by the 

contact forces n ( )s acting at a distance r ( )s , and point torques. The point torques consist 

of the applied external point torque τst at the section transition which is represented with 

the help of a unit impulse function as defined in the force balance section, and the torque 

l +produced by the point force ν at the section transition.  The initial bending strain u (s )st 

+for section two can be obtained fromm (s ), the contact couple observed at s+, which can 

be obtained with the help of the moment balance equation. 

By replacing c with s− and s with s+ in the moment balance equation (2.10) from 

chapter two, 
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+ 

+ − − − + + + st st(s ) − r(s )×n(s ) + r( )×n( )  + 
s 

∫ (r( )×ν ( − s ) + τst ( − s )) = 0,m( )s −m s s s stδ ξ  δ ξ  dξ 

where m ( )s+ andm ( )s− are the bending moments produced at the section transition 
s− 

− − + +whiler( )s ×n( )  r s × s are the contact torques produced by the contact s and ( )  n( )  

+forces andn ( ) at s+ and ss −. Finally, the integral 
+s 

st st∫ (r(s+ )×ν δ ξ( − s ) + τ δ ξ( − s ))dξ is the resultant of all other torques experienced st st 
−s 

s sst ) 

produced due to external force present at the section transition acting at r ( )
by the rod other than internal torques. Specifically, r( )+ ×νstδ ξ( − is the torque 

s+ and 

st ( )  is the body couple applied to the section two. τ δ sst 

− + +Since the position r ( ) ( )s for consistency, s is used. The above s = r r ( ) 
equation is reduced as follows: 

+ − + + + − +( )  −m(s ) + r( )×n s − r( )×n(s ) + r s ×ν + τ = 0.  m s s ( )  s ( )  st st 
+ − + + −m s s  ( )  st  st( )  −m(s ) + r( )× n s −n(s ) + ν  + τ = 0.  (3.3) 

− 

+ − st − +s ) n(s + st .From(2.5), n(s ) −n( )  + 
s 

∫ νstδ ξ( − s dξ = 0 , so n( )s = ) ν 

− + − + −Substituting n ( )s in (3.3), m(s ) 
s 

=
+ 

m( )s − τst . Noting that m ( )s and m ( )s can be 

+ + +replaced by their constitutive equations in global coordinates, ( ) = R s l ( ) m s ( )Cu s 

− − −and ( ) = R s l ( ) . The above equation is reduced to, m s ( )Cu s 

+ l + + l − l + l − −1 +R s Cu s = R s Cu s − τ  and u s = u s −C R s τst .The following 

summarizes the necessary equations which defined the shape of the rod at the beginning 

section two, given the shape at the end of section one and a known force and torque 

( ) ( ) ( ) ( ) st ( ) ( ) ( )T 

+ − + −applied to the section transition r s = r s , R s = R s &( ) ( ) ( ) ( ) 
l + l − −1 +u ( ) = u ( ) −C R s 

T 
τst .s s ( ) This concludes the derivation for the multi-section 

statics of a two-section continuum robot. The next chapter introduces a test bench which 

validates the multi-section model. The next section discusses the effects of cable guide 

mass on a single section continuum model. 
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3.6 Robotics applications of Cosserat rod theory 

Cable guides are essential for routing the cables to pass along the length of the 

rod. However, these cable guides add additional weight along the length of the rod as 

illustrated in Figure 4. The equations which describe the model should be adjusted to 

account for the additional mass and compute the overall shape. This has been 

implemented in two different ways. 

The first approach, termed the average mass model, takes the combined mass of 

the rod with the cable guides into a single overall density of the rod rather than 

specifically placing the mass of each cable guide at the specific locations. In contrast, the 

second approach accurately models the change in the density and the cross sectional area 

due to the presence or absence of each cable guide. This approach is named the accurate 

mass model. 

Mechanical details such as size, dimensions, and material properties of the cable 

guide and the rod, along with the experimental results, are presented in the next chapter.  

This section focuses on how the Cosserat rod equations are modified by the addition of 

cable guides using the above mentioned methods. 

3.7 Average mass model 

The average mass method provides one approach to incorporate this additional 

weight produced by the cable guide. The body force at a particular point s given by 

f ( )s = ρ Ag ( )s eg , where ρ is the density, A is the cross sectional area of the material, and 

g is the acceleration due to gravity. The only parameter which varies when compared to a 

rod with no cable guides is the averaged density of the rod and cable guides ρ . 

The local shear strains contained in vl ( )s is the only equation which changes 

because it contains the density of the materialρ . Specifically, the new average density is 
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m + m 
given byρ = r cg , where m is the mass of the rod, m is the mass of the cable avg r cgrl 

guide and rl is the length of the rod. The revised body force is then computed using this 

new average densityρavg . Experimental results resulting from this approach are presented 

in the next chapter. 

3.8 Accurate mass model 

As seen in the average mass method, local shears vl ( )s must be adjusted to add 

the additional weight produced by the cable guides. The accurate mass method accurately 

reflects the changing density ρ and cross-sectional area A due to the presence or absence 

of cable guides at each point along the rod. 

As the cable guides are spaced out evenly along the rod and have a specific 

volume, the effective density of the rod with the cable guide should be employed only at 

those locations where the cable guide is present. The analysis is divided into two sections. 

The first section shows the calculation of the effective density of the rod combined with 

the cable guide. The second section provides a method to determine the total length of the 

portion of the rod which contains cable guides between a given point on the rod and the 

tip of the rod. 
 m h   

m +  
r cg 

cg  
 rl The effective density ρe is calculated as ρe = , where mcg is the 
Vcg 

mass of the cable guide, mr mass of the rod, hcg is the thickness of the cable guide, rl is the 

unstretched length of the rod, and Vcg is the volume of the cable guide. The effective 

density is specifically reflected in the force balance equation. For all the locations on rod 

where the cable guide is present the effective density ρe is used instead of ρ , the density 

of the rod. 
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For the locations on the portions of the rod which do not contain a cable guide, 

the body force is given by f ( )s = ρ Ag ( )s eg where s is an arbitrary point on the rod, ρ is 

the density of the material, and A is the cross sectional area of the rod. For all the 

locations on the rod which contain a cable guide, the effective density ρe and the cross 

sectional Acg of the cable guide are used. 

ρ Ag ( )s eg s in rod 
f ( )s = 

 

ρe A gcg ( )s eg s in cable guide  

With the effective densities calculated, the next step is to compute the total length 

of the portion of the rod which contains cable guides between a given point on the rod 

and the tip of the rod. To determine this, the backbone is divided into four sections: 

offset, end-effector region, cable guide, and rod. 5 shows a side view of a thin rod 

mounted along the z axis, with cable guides uniformly separated. For simplicity of 

illustration, the rod is in a zero gravity environment; as a result, the sag due to gravity is 

not shown. 

Figure 3.4 A 2D view of a single section continuum backbone with a set of circular 

Offset is the length of the rod measured from s = 0 to the beginning of the first 

cable guide; this length is defined aso . Length y defines the length of the end-effector-
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region, which is measured from the tip of the rod s f to the last cable guide. From earlier, 

hcg is the thickness of the cable guide. Since the cable guides are equally spaced, the 

cable guide spacing is a periodic value which is represented by G and is given by 

G α hcg defines the distance between the cable guides. There are four cases = + where α 

to consider in implementing the accurate mass model. Thebody force function f (s)varies 

depending on the position s on the rod. In particular, there are four cases. In the first 

case, s  lies within the offset, in the second s  lies in the end effector region, in the third it 

lies on the rod where a cable guide is absent, and in fourth it lies on the cable guide as 

shown in Figure 3.5. The next section determines how the body force function varies in 

the above mentioned cases. 

If the current locations  is in the offset region, then the total length of portion of 

the rod under consideration which contains cable guides is given by Nhcg where N is the 

number of cable guides and the body force equation is given by 

s = ρAge N −1 α + +  − s + ρe A ge Nh f ( ) g ( ) y (o )) cg cg( g ( ) 

Figure 3.5 This diagram depicts a side view of a thin rod with cable guides. The 
various regions of the rod are also shown. 

If the current locations is in the end-effector region, then the total length of the 

cable guides is zero and the body force equation is given by f ( )s = ρAgeg (s f − s) .If the 

34 



 

  

   

  

   

 

    

 

 

    

   

 

 

 

 

    

  

 

/ n, 

G n 

current location is not on the offset or in the end effector region then it either lies at a 

point on the rod where no cable guide is present or a point where there is a cable guide. 

Therefore a modulus operator can be used to break the rod into a serious of sections, 

where each of the sections consists of a cable guide and rod. Also, the modulus operator 

is used to determine whether the point lies in the cable guide portion of the section or if it 

lies within the rod portion of the section, then compute the desired body force. The mod 

operator is used as follows: r = mod ( y  s G, ) .The mod operator returns a reminder, s f − −  

which is compared with a set of predefined values which are specific to the dimensions of 

the cable guide and the rod as shown in Figure 3.6. 

If the remainder r from the mod operator lies between n1and n2, then the chosen 

point s lies within a cable guide. Therefore the total length of the portion of the rod under 

consideration which contains cable guides, abbreviated cgl , is given by  
 s f − −  y s   

c = h + rgl   cgG  

Figure 3.6 A section of cable guide and rod. The n1, n2 , and n3 points are the 
predetermined reminder values which are specific to the dimensions of the 
cable guide and the rod. 
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The total length of the portion of rod under consideration which does not contain 

cable guides, termed rod length rl , is given by l = s f − − gl . The body force for the all r  s c  

the points inside the cable guide is given by 

f ( )s = ρAge r + ρ A ge c (3.4) g l e cg g gl 

If the returned value from the mod operator lies between n2and n3 , then the point 

lies within the rod but not within the cable guide. Therefore length of rod rl which does 

not contain a cable guide, measured from the end of the rod till the current location of s , 
 s − −  y s  

is given by rl = 
f 

α + r and the length of the rod containing cable guidescglG  
is given by cgl = s f − − l . The body force for the all the points on the rod is again given s r  

by (3.4). 

In conclusion, Table 3.2 summarizes the various body force equations. The 

experimental results of the effects of cable guide mass, determined by comparing the 

predicted versus the actual tip locations, for both the average and accurate mass models 

are presented in the next chapter. 
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Table 3.2 Body force equations for accurate mass model 

f ( ) s = ρAg eg ((N − )1 α y (o+ +  − s)) + ρ A ge Nh e cg g ( )cg 
If s is in the offset 

f ( ) s = ρAg e sg ( − sf ) If s is in the end-effector 

region 

f ( ) s = ρAg e ( ) r +g l ρ A gee cg g 

 
n r≤ ≤  1 
(cgl )  
 n 2 
 

 s  y s − −  f  
n  in cable guide; c = h + ,r r  = s s− −  c2 gl   cg l f glG  

 s  y s − −  f  
r≤ ≤  n  in rod; r = α + ,r c  = s s− −  r3 l   gl f lG  

3.8.1 Shaping robot using cable guides 

For all cable-actuated robots, it is essential to have a set of cable guides along the 

length of the rod separated by a fixed distance. These cable guides provide a means to 

route the cables along the rod. By controlling the length of the cables, the shape of the 

robot can be changed. Hence, cable lengths act as a valuable source for determining the 

shape of the robot, rather than requiring measurement of tip force and torque to determine 

the robot’s shape. 

The length of each of the three cables for a given tip loading is derived for a 

single-section continuum manipulator with circular cable guides in the following 

paragraphs. Consider a single cable guide. Assume a set of three cables separated at 120 

intervals as shown in 8 run the length of the rod. The cable guide is assumed to lie in a 

local yz plane. The distance between the center of the rod to the center where the cable 
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II II 

passes is denoted by d . Let dl  be the local coordinates of the location on the cable guide 

dl 
where the cable passes. Since there are three cables there are three 1..3 Cartesian 

coordinates for each cable guide which are strictly local. In order to determine the shape 

of the robot, it is essential to convert d
l
i  from local to global coordinates. 

The global locations of the cable guides can be obtained with the help of r ( )s  and 

R ( )s produced by the ODE solver. The vector r ( )s provides the global location of points 

on the rod at location s  and R ( )s provides the orientation of the rod at that point. For 

ease of manipulation, the location and the orientation are represented by a homogenous 
R (s ) r (si ) transformation matrix T(si ) =  i 

 , where si represents the location of a cable 
0 1  

guide along the rod. The local coordinates of the cable guides are converted to global 

coordinates by multiplying dl
i, j with the transformation matrix. Specifically, in global 

coordinates, the location of a point on the cable guide is represented by di, j = Tdi
l 
, j , 

where i  refers to the section index ranging from i = 1..3,and j refers to the cable index 

ranging from j = 1..3.The over-bar indicates the use of homogenous coordinates. 

The sum of the distance traversed by a cable between each cable guide in global 

coordinates produces the calculated shape of the robot. For n  cable guides, the length of 
n−1 

Tdl − T dlthe cables can be obtained byL =∑i, j i i, j i−1 i−1, j 
i=2 

The results of predicting the shape of the robot based on cable lengths are 

experimentally determined and discussed in the next chapter. 
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Figure 3.7 A 2D view of a cable guide. The three cables provides up to three degrees 
of freedom and are separated by 120 . 

3.9 Conclusion 

Multiple sections enhance the accessibility of a continuum robot. A model for a 

multi-section trunk was based on the serial connections of single sections; the region 

between the two sections is termed a section transition. Analysis of the section transition 

provides the necessary information to determine an analytical relationship between trunk 

shape and the end of the previous section and the beginning of the next section. 

The cable-actuated design for a continuum robot provides an ideal base for rapid 

prototyping with low cost and complexity. For a cable-driven robot, a set cable guides 

separated by a known distance provide a housing for the cables to run through the length 

of the rod.  The cable guides add significant mass which must be included in the model. 

This additional weight can be included using two different approaches, the average mass 
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model and the accurate mass model. Finally, measurement of the cable lengths provides a 

simple way to determine the shape of the robot. The next chapter discusses the 

verification setup and experiments performed to verify the effects of cable guide mass on 

the model, perform deflection analysis for measuring change in cable length, and validate 

the multi-section model. 
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CHAPTER IV 

2D VERIFICATION OF CONTINUUM MODEL AND 2D VERIFICATION OF THE 

CABLE GUIDE MODEL FOR A SINGLE SECTION CONTINUUM ROBOT 

4.1 Introduction 

A number of potential applications of continuum robots require accuracy in 

placing the tip of the trunk at a desired location [7, 14]. In this thesis, the accuracy of the 

proposed model is defined by the difference between the Cartesian tip locations predicted 

by the model compared with the physical rod’s tip location. 

This chapter introduces two verification methods in 2D. The first section validates 

the multi-section model, presented in the previous chapter. The second section verifies 

the modeled effects of cable guide mass on the shape of the robot. Both efforts are based 

on the verification procedure used in [18]. 

4.2 Background 

Various models of a multi-section continuum robot developed using Cosserat rod 

theory have been verified in many innovative ways. A geometrically exact model 

developed using Cosserat rod theory [30] was validated on the OctArm V, a three section 

soft robotic manipulator. OctArm consists of three sections made of rubber and equipped 

with pneumatic actuators as shown in Figure 4.1. The shape of OctArm is photographed 

under a wide range of actuator pressures and the tip positions are measured. This 

observed experimental data is then compared with the predicted shape and tip position 

[30]. The results of this verification demonstrate an average error which is less than five 
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percent in the tip predictions with respect to the overall length of each section. The 

OctArm robot also served as a verification platform for other models, including the 

constant curvature formulation [17]. This thesis seeks to extend the results which apply to 

specifically to OctArm to a wider range of cable-actuated continuum robots 

Figure 4.1 OctArm manipulator [25] 

The same theory was used to model an active cannula robot designed for surgical 

assistance. This robot, composed of pre-curved, hollow thin tubes made of a nickel-

titanium alloy (Nitinol), is shown in 4.2 [31]. This robot is manually actuated and the 

verification bench consisted of two cameras to triangulate the location of markers placed 

at various points along the robot. The average tip error under load of 1.5%–3%, with 

respect to the overall length of the cannula for a set of experiments. However, this 

approach is suitable to active cannulas, but does not directly apply to modeling cable-

driven continuum robots. 
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Figure 4.2 Active cannula with three sections. This robot is built using three hollow 
Nitinol tubes [31]. 

Finally, 2D verification of a 3D statics model of a single section continuum robot 

uses a thin rod made of a nickel-titanium alloy as the backbone [18]. The 2D verification 

bench primarily consists of a 45.72 cm x 60.96 cm machine etched grid with 1 mm 

accuracy shown in Figure 4.3. The rod is mounted on the grid and various point forces in 

the form of weights measured in grams is attached to the tip of the rod. The average error 

in predicted versus the Cartesian tip locations is 2.01% mm. The verification method 

adopted is generic, easy to implement and can be mounted just about anywhere without 

taking too much space. Although this approach is not suitable for 3D verification, this 

approach offers rapid verification with low cost and time. This verification setup is 

amenable to verify multi-section robots. Due to these advantages, this method has been 

used to verify the models presented in the previous chapter. 
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Actual rod 

Figure 4.3 Nitinol backbone [18] 

4.3 Overview 

The main goal of the verification is to determine the accuracy of the models 

presented in the previous chapter. The 2D verification method developed in [18] is used 

as a base for the verification. The verification process is subdivided into a verification 

bench and a verification procedure. The verification bench presents the choice of material 

for the backbone, cable guides and other key components used when performing the 

experiments. 

The verification procedure discusses the actual process of performing two 

experiments. The first experiment validates the multi-section continuum model and the 

second experiment verifies the effects of cable guide mass on a single-section continuum 

rod. Specifically, for the multi-section experiment, a set of point forces in the form of 

loads are attached at the tip of both sections. The various Cartesian tip locations of both 

sections of the rod are then recorded and compared with the predicted coordinates. 

Similarly, a set of cable guides are press fit onto the rod and a of series point forces in the 

form of loads are attached the tip of the rod. As in the previous experiment, the tip 
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coordinates from the rod recorded for the various loads are compared with the predicted 

coordinates from the model 

4.4 Robot components 

This section discusses the various components of the verification bench used for 

the experiments. 

4.4.1 Backbone of the continuum robot 

The backbone of the continuum robot is the most important element. The 

backbone must exert a restorative force and moment in response to bending and shear 

strains. A shape memory alloy called Nitinol, composed of nickel and titanium, was 

chosen as the backbone of the model. 

Figure 4.4 Nitinol rod 

Nitinol is being used as the backbone for many continuum models as it 

demonstrates a wide range of elastic deformation, allowing it to return to its original 

shape after bending with no permanent (plastic) deformation. Unfortunately, the modulus 

of elasticity for the material varies based on manufacturing properties and ambient 

temperature, but it is in between 45GPa-75Gpa. Figure 4.4 shows the Nitinol used for the 

experiments. 

45 



 

  

  

  

 

 

        

  

 

 

    

 

  

    

 

I I 

The rod has a diameter 1.56 mm, a length of 40 cm, and a calculated density of 

g6.8 . The moment of inertia for a rod with circular cross section is given by 
3mm 

d 4 d 4I = π  and the second moment of inertia is given by J = π where d is the 64 32 

diameter of the rod. For the dimensions of the given rod, I = 0.291pm4  and 

J = 0.581pm4 . 

Finally, the experimentally determined values for the modulus of elasticity varied 

between 61.6GPa and 62.7GPa. The shear modulus of elasticity is given by G E  (1+υ)= 

where υ is Poisson’s ratio of 0.3 giving a calculated shear modulus of 20.8GPa. 

4.4.2 Cable guides and cables 

Figure 4.5 A cable guide with three holes for the cables to pass through 

Cable guides serve as a support for the cables to run along the length of the rod. 

Circular cable guides made from acrylic are used for the experiments. The cable guides 

are laser cut then press fit on the Nitinol rod. Figure 4.5 shows the cable guide used in the 

experiments 
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~itinol Rod 

The cable guide diameter is 5.85 mm, its thickness 3.01 mm, and its mass 2.2 

grams. Five cable guides placed along the rod are separated by a ~9.5 cm center to center 

spacing. 

Figure 4.6 The Nitinol rod with cable and five cable guides 

Three holes at 120 intervals provide an opening for the cables to pass through. 

The distance from the center of the cables to where cables pass is approximately 1 cm. 

For the cables, a special fiber cable manufactured by Dyneema was used. These cables 

are very strong, provide a low-friction surface, and show good tear resistance. The rod 

with the cable guides and a single cable is shown in Figure 4.6. 

4.4.3 Grid 

To accurately measure the tip locations of the rod, a flat acrylic panel is used as 

the reference plane as shown in Figure 4.7. The dimensions of the grid are 45.72 

cmx60.96 cm; it has a 1 mm laser-etched grid. The grid is mounted on a vice with the 

help of two levels. 

47 

https://cmx60.96


 

 

 

   
  

  

 

 

   

  

    

 

  

   

 

   

  

Figure 4.7 Verification setup with various components. Note the small scale refers to a 
small ruler of 70mm length 

4.4.4 Clamps 

A set of two clamps are used to firmly attach the rod to the grid. To hold the rod 

firmly, a 1 cm portion of the rod is securely held between two clamps as shown in Figure 

4. With the help of the lower layer clamp, the mounting angle of the rod can be varied 

between three specific intervals, 0 − 30 − 60. However, throughout the experiments the 

0 mounting angle is used. The clamps are laser cut from acrylic and have a provision for 

six screws. 

4.4.5 Levels, weights and small scale 

The grid is the main element of the verification setup and a pair of two levels 

helps in aligning the grid vertically as shown in Figure 4.7. These levels help in 

eliminating out-of-plane forces due to gravity loading. 

A force exerted on the tip of the robot in the form of weights was applied to the 

rod for the two experiments. Using a small pen scale, a set of known weights was 
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measured, ranging from 10 grams to 103 grams. Finally, a small ruler was used for 

measuring the change in the length of the cables.  The ruler can measure up to 70 mm and 

is glued firmly to the grid as shown in Figure 4.7. 

The next section explains the procedure for the two experiments. 

4.5 Verification process 

This section discusses the procedure for performing 2D validation of the multi-

section model and of a model which includes the effects of cable guide mass. The data 

obtained from both experiments are compared with predicted values from the model then 

possible sources of errors are discussed. 

In particular, the multi-section model is validated in two experiments. In the first 

experiment, a set of known forces in the form of calibrated masses are applied only to the 

end of section one while the second section has no load. For the second test, a set of two 

different loads are applied at the tip of both sections. Specifically, the force at section two 

is measured using a small pen scale, while a known tip force is applied at the end of first 

section. In both the tests, the tip coordinates are measured using the grid. 

The effect of cable guides on the shape of a single section continuum rod is 

experimentally measured in the following way. The rod with five cable guides is mounted 

on the grid as shown in Figure 4.8. A single cable is passed through the length of the rod, 

terminating at the rod tip. A set of known weights are applied to the tip of the rod; similar 

to the previous experiment, the tip coordinates are measured using the grid. Also, with 

the help of a small ruler affixed to the grid, the change in the length of a reference point 

on the cable is also measured. 
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4.6 Experiment 1: 2D validation of multi-section model 

The multi section model is validated with two experiments. The first experiment 

applies load at the end of the first section while the second section applies loads at the 

end of both sections. The next section describes the setup required before performing the 

experiments. 

4.6.1 Initial setup 

The grid is attached to the vise and with the help of two levels, the grid is aligned 

properly. The Nitinol rod is firmly attached to the grid with the help of clamps. The 

length of the rod is reduced by one centimeter due to clamps. For the first experiment, a 

load is attached at 19.5 cm of the unstretched reference length of section one, while the 

second section remains unloaded as shown in Figure 8(a). For the second experiment, a 

load is attached the end of the second section, connected by a cable of length 26.5 cm 

tied to a pen scale as shown in Figure 4.8(b). An addition load is placed at the end of first 

section. 
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a) 

19,5cm 

\ 

(b) 

Figure 4.8 The verification setup is ready for the both the experiments. In (a) the rod is 
mounted on the grid and at the end of first section a point force ν st  in the 
form of a load is attached. The second section is left unloaded. In (b), both 
the sections are loaded. In particular, the second section is connected to a 
pen scale with a cable of fixed length. 

4.6.2 Experimental procedure test 1a 

In the first experiment a load is applied to the first section while the second 

section is left unloaded as shown in Figure 4.8(a). A set of five different weights ranging 

from 2.2 to 43 grams were measured using a pen scale and attached to the end of the 
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section one. For each tip load the corresponding tip coordinates of both the sections are 

recorded as shown in Table 9. 

4.6.3 Obtaining data from model 

Obtaining the data from the model begins by initializing the physical properties of 

rod and the initial conditions. The physical properties of the rod include: diameter, length, 

density and the elasticity. The initial conditions for the differential equations include 

initial position r (0) , mounting angle R ( )0 and the initial bending ul ( )0 . The next step is 

to enter various tip forces used in for the physical model and to record the values 

predicted by the model.  Figure 10 shows a comparison of the shape of the physical rod 

with the shape predicted by the model for a -0.2059N load applied at the tip of the 

section. 

Figure 4.9 The actual and the predicted shapes of a multi section rod with a load of -
0.2059N applied at the tip of section one and zero tip force at the tip of 
section two. The predicted shape shown in blue color is generated from 
MATLAB 

4.6.4 Comparisons for experiment 1a 

The observed and the predicted Cartesian tip coordinates for the both the sections 

for a range of tip forces are shown in Table 4.1. The percentage error gives the distance 
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between the Cartesian tip coordinates of both the sections divided by the unstretched 

reference length of the rod. The average percentage error for section one is less than 1% 

and for section two it is less than 1.4%, which validates the correctness of the proposed 

theory. 

4.6.5 Experiment 1b: 2D validation of multi-section model 

Interesting shapes can be obtained if a force is applied at both sections in the 

opposite directions. In this experiment, known tip forces are applied in the opposite 

directions and the corresponding tip coordinates are recorded and compared with the 

predicted values. 
The verification setup has a slight modification in comparison to the previous setup. The 

setup is shown in Figure 8(b). Due to the design of the verification bench, a known force 

is applied at section one while the force experienced at the end of section two is measured 

using a pen scale. Throughout the experiment the length of the cable connected to the pen 

scale is kept constant. The procedure for performing the experiment is the similar to the 

previous experiment. 
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Table 4.1 Observed and predicted results for experiment 1a 

Observed Predicted Error 

Section 
1(cm) Section 

2(cm) Section 
1(cm) 

Section 2(cm) Section 1 Section 2 

Tip 
mass 
(g) X Y X Y X Y X Y err(cm) err 

% 
err(cm) err 

% 

2.2 19.5 -1 39 -2.8 19.4 
6 

-1.03 38.8 
8 

-2.81 0.046 0.238 0.116 0.59 

10 19.4 -
2.2 

38.8 -5.5 19.3 
6 

-2.07 38.5 
7 

-5.41 0.129 0.661 0.238 1.22 

21 19.3 -
3.2 

38.1 -8.8 19.1 
2 

-3.48 37.8 
5 

-8.89 0.334 1.716 0.264 1.35 

32 18.9 -5 37.2 -
12.2 

18.7 
7 

-4.78 36.8 
5 

-
12.08 

0.248 1.272 0.358 1.84 

43 18.5 -6 36 -15 18.3 
6 

-5.95 35.6 
7 

-
14.93 

0.138 0.710 0.328 1.68 

Avg 
err 

0.179 0.919 0.261 1.33 

4.6.6 Comparison for experiment 1b 

Table 4.2 shows the Cartesian tip coordinates of both the sections in contrast to 

the predicted values from the model. Also Figure 11 shows an overlay of the predicted 

model onto the actual shape of the robot for a tip force of -0.3311 N applied at the tip of 

section two and 1.01 N applied to the tip of section two. Accuracy of tip predictions of 

section one are less than 1%; however, for the section two the accuracy is less than 3.4% 

.The increased error is discussed in the next section. 
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Table 4.2 Predicted and observed results of experiment 1b 

Observed Predicted Error 

Sectio 
n 1 

Sectio 
n 2 

Section 
1(cm) 

Section 
2(cm) 

Section 
1(cm) 

Section 
2(cm) 

Section 1 Section 2 

tipMas 
s 

(g) 

tipMas 
s 

(g) 

X Y X Y X Y X Y err(cm 
) 

err % err(c 
m) 

err 
% 

2.2 0 19. 
5 

-1 39 -3 19.4 
6 

-1.02 38.8 
8 

-2.78 0.03 0.20 0.23 1.2 
2 

9 -3.1 19. 
5 

-1 39 -
2.5 

19.4 
7 

-0.89 38.9 
5 

-1.73 0.10 0.55 0.76 3.9 
2 

20.5 -6.35 19. 
5 

-
1.4 

39 -
2.5 

19.4 
4 

-1.34 38.9 
3 

-2.08 0.07 0.40 0.42 2.1 
7 

32 -9.83 19. 
5 

-
1.8 

39 -
2.5 

19.4 
1 

-1.70 38.9 
0 

-2.16 0.12 0.65 0.34 1.7 
8 

43.5 -13.6 19. 
5 

-2 39 -
2.5 

19.3 
8 

-1.97 38.8 
7 

-1.94 0.11 0.59 0.56 2.9 
0 

55 -17.06 19. 
5 

-
2.3 

39 -
2.5 

19.3 
4 

-2.32 38.8 
1 

-2.01 0.15 0.81 0.51 2.6 
6 

66.5 -20.2 19. 
4 

-
2.6 

38. 
9 

-
2.5 

19.2 
7 

-2.79 38.7 
3 

-2.45 0.22 1.17 0.17 0.8 
7 

78 -24.53 19. 
4 

-3 38. 
9 

-
2.5 

19.2 
6 

-2.87 38.6 
7 

-1.66 0.18 0.96 0.86 4.4 
3 

89.5 -27.6 19. 
4 

-
3.1 

38. 
8 

-
2.5 

19.1 
7 

-3.32 38.5 
7 

-2.09 0.31 1.63 0.46 2.4 
0 

103 -33.76 19. 
3 

-
3.6 

38. 
6 

-
2.5 

19.2 
0 

-3.15 38.4 
0 

-0.31 0.45 2.34 2.19 11. 
25 

Avg 
err 

0.18 0.93 0.65 3.3 
6 

4.6.7 Sources of errors 

When performing any experiments it is expected to have errors. The source of 

errors can be the design of the experiment or how the data is measured. Although from 
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Table 1 it can be seen that the model is accurate to less than 1.4% in predicting the tip 

coordinates, from Table 2 the average percentage error has increased to 3.4%. 

The average percentage error for section two varies dramatically from 0.875% to 

11.25%. However, for section the percentage error variations which vary from 0.2% to 

2.34% are not that significant. Hence it can be observed that the model is sensitive to 

slight changes with respect to the applied external tip force. 

The pen scale at section two, acts as a load cell in determining the force at the tip. 

The sensitivity of the pen scale has a significant impact. The coordinates of the tip of the 

rod are manually measured and is not accurate to a millimeter scale, the human induced 

error in obtaining the coordinates could also be a source of error. 

4.7 Experiment 2: Effects of cable guides on a single section continuum robot 

As discussed previous chapter, two methods were presented in studying the 

effects of cable guide mass on the backbone. This section verifies the effects of the 

deformations due to loading produced by cable guide mass. It also experimentally 

investigates the accuracy of the modeled relationship between shape and cable lengths. A 

set of five cable guides are placed along the Nitinol rod, separated by 9.5 cm. In addition, 

a single cable is passed through the five cable guides and terminates at the tip of the rod. 

A set of loads are then attached to the tip of the rod. For each tip loading, the 

corresponding Cartesian tip coordinates are measured with the help of the grid. With the 

help of a small scale, the change in the length of the cable is also measured by using a 

reference notch. The complete verification setup is shown in Figure 4.10. 
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Figure 4.10 Experimental setup for the studying the effects of rod shape and 
corresponding cable lengths on a Nitinol backbone. Figure 13 shows a 
detailed photo of the small scale 

4.7.1 Cable guide experiment overview 

The Nitinol rod with the cable guides is mounted carefully on the vise with the 

help of levels. A set of five different loads ranging from 0 to 83.2 grams are attached to 

the tip of the rod. Once the rod settled, the tip coordinates are measured with the help of 

the grid. For the cable length calculations, a reference notch was tied at the end of the 

cable as shown in the Figure 13.  The location of the notch is recorded at zero tip loading. 

This value is taken as reference length; as the tip is then loaded with a mass, the change 

in the position of the notch is recorded 

Figure 4.11 Shows a reference notch on the cable. Deflection of the rod changes the 
position of the notch. 
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4.7.2 Average mass model 

To obtain data from the average model, the first step is to enter the physical 

properties of the Nitinol rod mechanical details of Nitinol can be found under backbone 

of continuum robot section discussed in the beginning of the chapter. Next, the combined 

weight of the rod with cable guides was measured with a pen scale to be 14.9 grams. To 

obtain modeled locations for cable guide centers, the ODE45 solver is required to 

compute its results at a set of specific locations corresponding to the five cable guides 

present on the rod. The final step is recording the observed tip locations for various tip 

masses. Figure 4.12 shows an overlapped image of the actual versus observed shape of 

the rod. Note that the even though the predicted shape of obtained from the model is 

straight line,  this is due to the nature of the solver, which only outputs locations at the 

requested points while internally computing a smooth curve for the reminder of the rod. 

The locations of the cable guides are hard coded in the model which forces the ODE 

solver to solve the equations at that particular location. Table 4 summarizes the tip 

locations of the observed versus the actual shape of the rod. 
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Figure 4.12 Shows comparison of the predicted versus actual shape for a tip mass of 
83.2 grams. Note that the predicted shape shown in blue color is in straight 
lines due to the nature of the solver 

Table 4.3 Predicted and observed results of average mass model 

Observed Predicted Error 

Tip of rod Tip of rod Tip of rod 

Mass (g) x_act y_act x_pred y_pred err(cm) err % 

0 38.8 -6.8 38.42 -6.24 0.674 1.729 

17.2 33.3 -18.9 33.09 -18.86 0.205 0.527 

27.2 30.5 -22.7 29.91 -22.77 0.591 1.516 

40.2 27 -26.1 26.57 -25.89 0.471 1.209 

62.2 22.5 -29.3 22.58 -28.77 0.532 1.364 

83.2 19.9 -31 19.96 -30.31 0.688 1.764 

Avg err 0.495 1.269 

4.7.3 Accurate mass model 

The first step in obtaining the data from the accurate model is by entering the 

physical properties of the Nitinol rod and the cable guide. The next step is to require the 

MATLAB ODE45 solver to integrate the differential equations at the locations of the 

cable guides on the rod. The primary difference between the average and accurate mass 

models is the way the shear strains vl ( )s are computed. As discussed in the previous 
59 



 

 

   

  

  

 

 

 

   

  

   

   

       

       

       

       

       

       

       

   

   

  

 

  

   

chapter, the following readings are taken from the Nitinol rod which are used in the 

analytical computation of vl ( )s : the number of cable guides N = 5, offset o = 0.39 cm , 

y = 2.495 mm and the cable guide spacing G = 9.5 cm. The data obtained from the model 

is fitted with the observed data and the elasticity of the rod was found to be 62.7 GPa. 

Table 3 shows the observed versus the predicted Cartesian tip locations of the tip of the 

rod. 

The accurate mass model although it physically reflects the structure of the rod 

with the cable guides does not produce an increase in the overall measured error. From a 

computation perspective it is reasonable to use the average mass model because the 

overall percentage error is comparable with the accurate model. 

Table 4.4 Predicted and observed results of accurate mass model 

Observed Predicted Error 

Tip of rod Tip of rod Tip of rod 

Mass (g) x_act y_act x_pred y_pred err(cm) err % 

0 38.8 -6.8 38.42 -6.24 0.674 1.729 

17.2 33.3 -18.9 33.09 -18.86 0.205 0.527 

27.2 30.5 -22.7 29.91 -22.77 0.591 1.516 

40.2 27 -26.1 26.57 -25.89 0.471 1.209 

62.2 22.5 -29.3 22.58 -28.77 0.532 1.364 

83.2 19.9 -31 19.96 -30.31 0.688 1.764 

Avg err 0.495 1.269 

4.7.4 Deflection of cable length 

The method adopted for calculating the change in the length of the cable for a 

given tip load is same for both accurate and average mass models. The cable deflection 

analysis begins by measuring the length of the cable at zero tip loading. This is reference 

length, for subsequent tip loads the measured change in length is subtracted with the 
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reference length. Table 5 summarizes the deflection analysis for the average and accurate 

mass models. 

In particular, Table 5 is filled out as follows. There are two reference lengths 

refLenObs and refLenPre. The refLenObs refers to reference length of the cable for an 

unloaded tip measured on the small scale as per Figure 4.13 and was measured as 4.7 cm, 

and the refLenPre stands for reference length predicted by the model for a zero tip mass 

and is found to be 38.72cm.for the average mass model and 38.75cm for the accurate 

mass model. For each tip loading the change in the length of the cable is recorded and 

entered in the observed column abbreviated as obs. The delta column gives the change in 

length with respect to the observed reference length. The changes in the length predicted 

by the model are calculated in similar way. Finally the percentage error is the difference 

of the observed and predicted delta. The same procedure is used for both accurate and 

average mass readings. 

Table 4.5 Predicted and observed deflection readings 

Avg mass model Acc mass model 

obs(cm) delta(cm) pred(cm) delta(cm) del dif (cm) Err/reflen pred(cm) delta(cm) delta(cm) Err/reflen 

4.7 0 38.72 0 0 0 38.75 0 0 0 

5.2 0.5 39.18 0.458 0.041 0.083 39.19 0.434 0.066 0.132 

5.3 0.6 39.32 0.597 0.002 0.004 39.32 0.5697 0.030 0.050 

5.5 0.8 39.42 0.705 0.095 0.118 39.43 0.674 0.126 0.157 

5.6 0.9 39.52 0.796 0.103 0.115 39.52 0.7632 0.136 0.152 

5.7 1 39.55 0.833 0.166 0.166 39.55 0.800 0.199 0.199 

Avg err 0.0819 0.0977 0.111 0.138 
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4.7.5 Sources of errors 

Although the percentage error of the tip of the rod for average and accurate mass 

model is less than 1.5%, the error in measured versus modeled deflection of the cables is 

significant. Due to elastic nature of the material, the model and the physical rod are very 

sensitive to external forces. There are mainly two sources of error in the experiment. The 

cable guides might slip from the rod on repeated usage because they are press fitted to the 

rod. Since the location of the cable guides are hard coded in the code, there might be 

some differences in the observed versus the predicted values. Secondly, the observed 

reading could be off because the rod is attached to the grid using clamps. Due to 

manufacturing tolerance in the clamps, the rod might not be aligned to exit the clamps at 

the claimed angle of 0° . 

4.8 Conclusion 

This chapter verified two models in 2D presented in the previous chapter. A 

nickel titanium alloy, Nitinol, was chosen as the backbone for the experiments; for the 

multi-section validation two experiments were conducted. In the first experiment an 

external load is applied at the tip of the first section and the second section is left free. 

For the second experiment both the sections are loaded with a known force. The 

validation concludes by recording the Cartesian tip locations for a set of known forces. 

This chapter also verifies the effects of cable guide mass on a single section rod. 

Five cable guides laser cut from acrylic sheet were press fit on the Nitinol rod. A thin 

cable is then passed through these five cables and terminated at the tip of the rod. As set 

of known weights are attached to the tip of the rod and the Cartesian tip coordinates are 

recorded. Finally the experiments conclude by comparing the tip locations with the 

model. The results show that the developed multi-section model is accurate to within 
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3.4% in predicting the Cartesian tip coordinates and the model with the cable guides 

shows less than 1.26% error in predicted versus the observed Cartesian tip coordinates of 

the trunk with the cable guides. However the verification process was limited to 2D and 

results are for a static model which motivates for a future work discussed in the next 

chapter. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis presents a 3D model of a multi-section continuum robot and provides 

experimental verification for the proposed model. The accessibility of a continuum robot, 

which significantly improves the ability to place the tip of the continuum trunk at a 

desired location within its workspace, can be enhanced by using a multi-section model. 

The statics of a single section continuum robot which lay foundations for developing the 

multi-section model are presented in chapter two. 

The next chapter shows the necessary modifications required to expand a single 

section model to correctly describe multiple sections. The analysis for a multi-section 

model begins by the definition of a section transition. This transition on the backbone of 

the continuum robot is treated as a discontinuity and the necessary jump conditions are 

derived by applying mechanics and kinematics. Next the foundations for a cable driven 

continuum robot are presented by determining the effects of cable guide mass on the 

model. The additional mass of the cable guide has been studied using two methods, 

namely the average mass and accurate mass models. Also, the change in the length of the 

cable for given tip loading is calculated, which provides an excellent alternative to force 

and torque measurement in predicting the shape of the robot. 

Chapter four presents the verification of the proposed models. A shape memory 

alloy made of a nickel titanium alloy is chosen as the backbone of the continuum robot. A 
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set of five circular cable guides, laser cut from acrylic, are press fit on nickel-titanium 

backbone. The main component of the verification bench is the laser-etched grid which is 

used in recording the tip coordinates for a loaded backbone. Two sets of experiments 

were performed on the grid. The first experiment validated the multi-section model by 

mounting the rod on the grid and applying loads at the end of both the first and second 

section. The second experiment verifies the effects of cable guide mass by mounting the 

rod with five cable guides then measuring its tip location. In both the experiments, the 

Cartesian tip coordinates are recorded and compared with the predicted values which are 

generated from the model developed in MATLAB. 

Finally, the results of this thesis show that the developed multi-section model is 

accurate to within 3.4% in predicting the Cartesian tip coordinates when both the sections 

are loaded and to within 1.33% in predicting the Cartesian tip coordinates when only 

section one is loaded. The model with the cable guides shows less than 1.26% error in 

predicted versus the observed Cartesian tip coordinates of the trunk with the cable guides 

for the accurate mass model and 1.44% for the average mass model. 

Hence the results show that the multi-section model is accurate and due to the 

inclusion of cable guides there is significant change in the overall mass of the system. 

However, the average mass model can be used due to the similarity in results observed 

among the both the methods. 

5.2 Future Work 

Future work includes designing a 3D verification test bench. Also, throughout the 

experiments, only the tip of the continuum robot has been verified; however, methods to 

compare and contrast all the points on the rod should be formulated. The essential step 
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for modeling continuum robots is dynamics. The work presented in this thesis lays a 

foundation for multi-section dynamics and real time shape computation. These shape and 

the tip predictions can be better visualized by building physical multi-section continuum 

robot with a nickel-titanium alloy and with a set of stepper motor 
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