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Ordinary Least Squares (OLS) models are popular tools among field scientists, 

because they are easy to understand and use. Although OLS estimators are unbiased, it is 

often advantageous to introduce some bias in order to lower the overall variance in a 

model. This study focuses on comparing ridge regression and the LASSO methods which 

both introduce bias to the regression problem. Both approaches are modeled after the 

OLS but also implement a tuning parameter. Additionally, this study will compare the 

use of two different functions in R, one of which will be used for ridge regression and the 

LASSO while the other will be used strictly for the LASSO. The techniques discussed are 

applied to a real set of data involving some physiochemical properties of wine and how 

they affect the overall quality of the wine. 
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CHAPTER I 

INTRODUCTION 

When data sets contain a large number of variables, it may be difficult to 

determine the “best” regression model for the data. Just because information about a 

covariate is available does not mean that the information is significant and should be 

included in the regression model. In some cases, an independent variable that was 

thought helpful in explaining the variation in response may actually offer only a small 

decrease in the Mean Square Error (MSE). Therefore, variable selection should be 

considered in the regression setting. 

Many regression techniques have been developed over the years, including ridge 

regression and the Least Absolute Shrinkage and Selection Operator (LASSO). Ridge 

regression “shrinks” coefficient estimates in a model towards zero via a bounded ℓ2-norm 

regression penalty. This continuous process is more reliable than most subset selection 

methods such as Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC), because dropping and retaining predictors can drastically change the prediction 

accuracy of a model. However, since ridge regression does not actually set any 

coefficient estimate to zero, it can be difficult to interpret a model. The LASSO is seen as 

a sort of hybrid of the subset selection and shrinkage techniques. A small change in the 
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tuning parameter allows the LASSO to remove some covariates from the model by 

setting their estimates to zero [23]. 

As new discoveries about various regression techniques are made (i.e. how they 

relate to other methods), new software functions are also developed. The glmnet and lars 

functions in R, a statistical programming language, are of particular interest when using 

ridge regression and the LASSO. The glmnet function was published by J.H. Friedman, 

T. Hastie, and R. Tibshirani as a tool for inference on general linear models using the 

LASSO, ridge regression, and mixtures of the two [11,12]. After connections were made 

from the LASSO to least angle regression and infinitesimal forward stagewise regression, 

the lars function was created, which fits models using each of the three [7,13]. The ridge 

regression model can be fit in SAS using the reg procedure, and the LASSO model can 

be fit using procedures such as quantselect or glmselect. This thesis will focus on the 

comparison of ridge regression and the LASSO, as well as the outcome of using both the 

glmnet and lars functions in R as applied to a real-world data set. 
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CHAPTER II 

THE MODELS 

Ordinary Least Squares 

Consider the standard linear model 

(2.1)𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 

for i=1,…,n and j=1,…,p where 𝑦𝑖 is the ith response and 𝑥𝑖𝑗 is the jth covariate of the ith 

𝑛 observation. Let {𝜀𝑖}𝑖=1 be an independently and identically distributed (i.i.d.) mean zero 

sequence of errors with finite variance. In matrix form, equation (2.1) may be denoted 

𝒚 = 𝑿𝜷 + 𝜺 

where 𝒚 is the nx1 vector of responses, 𝑿 is the nxp matrix of covariates, 𝜷 is the px1 

parameter vector, and 𝜺 is the nx1 vector of errors. In the Ordinary Least Squares (OLS) 

setting, �̂� solves the normal equations: 

�̂� = (𝑿𝑇𝑿)𝑔𝑿𝑇𝒚 (2.2) 

where the generalized inverse (𝑿𝑇𝑿)𝑔 = (𝑿𝑇𝑿)−1 when 𝑿 is full column rank. In this 

manner, �̂�’s minimize the sum of squared errors 

𝑇 
(𝒚 − 𝑿�̂�) (𝒚 − 𝑿�̂�). 

Assuming (𝑿𝑇𝑿)−1 exists, the fitted residuals are 

�̂� = 𝒚 − 𝑿�̂� = (𝑰 − 𝑿(𝑿𝑇𝑿)−1𝑿𝑇)𝒚, 
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and the Residual Sum of Squares (RSS) is found to be 

𝑅𝑆𝑆 = �̂�𝑇�̂� = 𝒚𝑇(𝑰 − 𝑿(𝑿𝑇𝑿)−1𝑿𝑇)𝒚. 

When 𝑿 is not full column rank, (𝑿𝑇𝑿)−1 is replaced with (𝑿𝑇𝑿)𝑔 . While �̂� may not be 

unique in this case, any �̂� solving equation (2.2) will produce the same RSS. While some 

assumption violations may be worked around, generally for OLS to work properly the 

data must have a few characteristics: strict exogeneity, no linear dependence within 

errors, and spherical errors (i.e. homoscedasticity and no autocorrelation) [15]. The 

Gaussian distribution is the only optionally invariant distribution with finite moments [2]. 

While not absolutely necessary, normality is frequently assumed when using OLS. 

However, Central Limit Theorem (CLT) results exist for �̂� in equation (2.2) under mild 

design and error assumptions [24]. 

OLS is frequently used to fit linear models, because it is easy to understand, easy 

to implement, and maintains nice statistical properties (e.g. 𝐸[�̂�] = 𝐸[𝑦]). However, it 

may sometimes be helpful to introduce a small amount of bias in order to decrease the 

variance of the model estimates. OLS estimates will not be unique if the design matrix 𝑿 

is not full column rank, i.e. rank(𝑿) = k < p. In some cases even if k < p, it may be 

helpful in the regression setting to look at a model with less than k variables in the model 

via a model or subset selection method [9,16]. 

OLS models often do not predict well, especially when there are a large number 

of predictors. For this reason, it is often a good idea to look at a model’s Prediction Error 

(PE) in addition to its MSE. PE can be expressed as 

PE(𝑋0�̂�) = 𝜎2 + MSE(𝑋0�̂�) 
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where 

2 
MSE(𝑋0�̂�) = [Bias(𝑋0�̂�)] + Var(𝑋0�̂�) 

for a particular covariate, 𝑋0 [22]. Hence, having a “good” PE implies that a model also 

has a “good” MSE. Because OLS is unbiased, its PE 

𝑛 𝑛 
1 2 1 

𝑃𝐸(𝑋�̂�) = 𝜎2 + ∑[𝐵𝑖𝑎𝑠(𝑥𝑖
𝑇�̂�)] + ∑ 𝑉𝑎𝑟(𝑥𝑖

𝑇�̂�)
𝑛 𝑛 

𝑖=1 𝑖=1 

𝑝𝜎2 
= 𝜎2 + 0 + 

𝑛 

is heavily dependent on the number of covariates. Adjusting the flexibility of the OLS 

model through the addition of a tuning parameter will allow a tradeoff between bias and 

variance [22]. Ideally, a small amount of bias can be introduced in order to decrease the 

variance by a larger margin, reducing the overall PE of the model. Shrinkage methods, 

such as LASSO and ridge regression, restrict the coefficient estimates to some 

constrained parameter space usually centered about the origin. This helps reduce the 

variance of prediction, because it keeps estimates close to zero. In this manner, shrinkage 

methods can sometimes outperform OLS as seen in Figure 2.1 [22]. 

Figure 2.1. Prediction error of shrinkage methods compared to OLS estimates 
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The LASSO Method 

The LASSO technique was originally introduced by Tibshirani [23]. In this 

method, �̂�𝐿𝐴𝑆𝑆𝑂 is chosen to minimize 

2𝑝 𝑝 

∑ (𝑦𝑖 − [𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗]) subject to ∑|𝛽𝑗| ≤ 𝑡(𝜆) 
𝑛 

𝑖=1 𝑗=1 𝑗=1 

where 𝑡(𝜆) is a tuning parameter. In other words, 

̂𝐿𝐴𝑆𝑆𝑂𝜷 = argmin 𝑅𝑆𝑆 + 𝜆‖𝜷‖1 
𝛽𝜖ℝ𝑝 

where ‖𝛽‖1 is the ℓ1-norm of the vector (β1,…,βp). The ℓ1-norm of 𝜷 is defined by 

𝑝 

‖𝜷‖1 = ∑|𝛽𝑗|. 
𝑗=1 

For the case when p=2, 

|𝛽1| + |𝛽2| ≤ 𝑡(𝜆). 

It is easy to see that there are instances when either 𝛽1 or 𝛽2 will be equal to zero, leaving 

only the other parameter in the model. For large 𝑡(𝜆), both 𝛽1 and 𝛽2 will be included. 

This can be applied to higher dimensions of p, justifying that LASSO is indeed a valid 

subset selection method [9,16]. 

Ridge Regression 

The LASSO method is in a sense similar to ridge regression, which also 

regularizes the coefficients of the regression model. However, for ridge regression, 

̂𝑟𝑖𝑑𝑔𝑒 minimizes 𝛽 
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2𝑝 𝑝 𝑛 
2∑ (𝑦𝑖 − [𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗]) subject to ∑ 𝛽𝑗 ≤ 𝑡(𝜆) 

𝑖=1 𝑗=1 𝑗=1 

 

 

 

        

 

 

 

     

      

     

  

  

Alternatively, 

̂𝑟𝑖𝑑𝑔𝑒 2𝜷 = argmin 𝑅𝑆𝑆 + 𝜆‖𝜷‖2 
𝛽𝜖ℝ𝑝 

where ‖𝜷‖2 is the ℓ2-norm of the vector (β1,…,βp). The ℓ2-norm of 𝜷 is defined by 

𝑝 

‖𝜷‖2 = √∑ 𝛽𝑗
2. 

𝑗=1 

For p=2, this can be written as 

2𝛽1 + 𝛽2
2 ≤ 𝑡(𝜆). 

From Figure 2.1 below, it is shown that 𝛽𝑗 will almost surely never be equal to zero for 

j=1,…,p in ridge regression. However, there are instances in which the LASSO will force 

some subset of the coefficients to equal zero [9,16]. The LASSO and ridge regression 

typically both follow the same assumptions as OLS. However, these subset selection 

methods are better equipped to handle multicollinearity than OLS. 
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  (a) (b) 

Figure 2.2 Contours of the RSS in comparison to the shaded region of restraint parameter 

for LASSO (a) and Ridge Regression (b) [16] 

 
 

 

 

 

     

   

 

  

 

 

   

 

 

Selection of Lambda 

The goal is to select a λ such that the error of the model is minimized. There are 

several ways to do this including multiple iterations of forward stepwise regression or a 

choice of different cross-validation techniques. This study will focus on k-fold cross-

validation, which is detailed in a later section [16]. 

Least Angle Regression 

Another well-known technique for model selection is forward stagewise 

regression. In this method, coefficients are initially set to zero. Each model produced 

includes one more variable than the last, choosing the covariate that leads to the largest 

drop in Residual Sum of Squares (RSS) for the model. Alternatively, some variations of 
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forward stagewise regression select the covariate which is most highly correlated with the 

residuals [14]. This continues until either the residuals are zero or all covariates have 

been added to the model. Similarly, the Least Angle Regression (LAR) method starts 

with all variables set to zero and introduces the covariates most highly correlation to the 

residuals one at a time. However, for LAR the coefficient for a variable is only increased 

until a point in which another covariate has as much correlation with the current residuals 

[7,14]. The LAR then moves in the direction of the joint least squares coefficient, 

referred to as the “least angle direction” [7], until the next highly correlated variable is 

introduced. This process continues until all covariates have been added. The only 

modification to the LAR method used in lars from R necessary to follow LASSO 

regression is that if a coefficient that has been introduced to the model reaches zero, it is 

removed from the active joint least angle direction [14]. Further comparisons of these 

methods can be seen in Efron et. al. (2004) [7] and Hastie et. al. (2007) [14]. 

Information Criterion-Based Subset Selection Methods 

Criterion-based procedures are often used to choose the number of predictors in a 

statistical model and thus may be seen as competing methods for LASSO and ridge 

regression. Each information criteria aims to select the model with the “best” penalized 

log-likelihood. The likelihood function may be written 

𝑛 

𝐿(𝜃) = ∏ 𝑓𝑖(𝑦𝑖|𝜃) 
𝑖=1 
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where 𝜃 is the Maximum Likelihood Estimator (MLE) of the parameters in the function 

and 𝑓𝑖(𝑦𝑖|𝜃) is the fitted density of the ith observation. Unlike LASSO and ridge 

regression, note that a statistical distribution for 𝒚 must be assumed before criterion-

based methods may be applied. The log-likelihood function is expressed as 

𝑛 

ℓ(𝜃) = 𝑙𝑛[𝐿(𝜃)] = ∑ 𝑙𝑛[𝑓𝑖(𝑦𝑖|𝜃)] . 
𝑖=1 

One method that utilizes this function is the AIC, which is 

𝐴𝐼𝐶 = −2ℓ(𝜃) + 2𝑝. 

AIC is an estimate of the relative distance between the fitted likelihood function of the 

model and the unknown true likelihood function of the data [6]. Another criterion-based 

procedure is BIC, which is written as 

𝐵𝐼𝐶 = −2ℓ(𝜃) + 𝑝 ∗ ln(𝑛) . 

In each case, the model with the lowest value is considered the “best” model. A major 

difference is that BIC penalizes more against models with more complexity [6]. It is 

worth noting that the criterion-based methods as well as the LASSO and ridge regression 

methods are of the form of a function plus a penalty term. While models based on AIC 

and BIC usually agree with each other, AIC is more likely to choose too large of a model, 

and BIC is more likely to choose too small of a model. This is a very different approach 

from the LASSO, which does not require an assumed distributional function of 𝒚, and 

hence no likelihood needs to be evaluated. 
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Principle Component Analysis 

Before beginning to model a set of data, a preliminary exploratory data analysis is 

performed on 𝑿. Principle Component Analysis (PCA) involves taking a set of correlated 

variables and transforming them into a smaller set of uncorrelated variables without 

losing much information. This is particularly useful when there are a large number, p, of 

covariates. PCA is a means of dimensionality reduction. These principle components are 

linear combinations of the covariates that sequentially maximize the amount of variance 

accounted for by the principle components (i.e. the first component accounts for the 

largest amount of variance, the second component accounts for the second largest amount 

of variance, and so on). Let 𝑧𝑖 represent the ith principle component. Then 

𝑧1 = 𝑢1
𝑇𝑿 maximizes 𝑉𝑎𝑟(𝑢1

𝑇𝑿) subject to 𝑢1
𝑇𝑢1 = 1 

𝑧2 = 𝑢2
𝑇𝑿 maximizes 𝑉𝑎𝑟(𝑢2

𝑇𝑿) subject to 𝐶𝑜𝑣(𝑢1
𝑇𝑿, 𝑢2

𝑇𝑿) = 0 and 𝑢2
𝑇𝑢2 = 1 

and 

𝑧𝑖 = 𝑢𝑖
𝑇𝑿 maximizes 𝑉𝑎𝑟(𝑢𝑖

𝑇𝑿) subject to 𝐶𝑜𝑣(𝑢𝑘
𝑇𝑿, 𝑢𝑖

𝑇𝑿) = 0 and 𝑢𝑖
𝑇𝑢𝑖 = 1 

∀𝑘 < 𝑖 

where 𝑢𝑖 is a linear rotation vector [9,17]. 

Logit Function 

When dealing with discrete data, as will be used in this study, logistic regression 

is generally used to fit a model. Logistic regression is a form of the Generalized Linear 

Model (GLM) which assumes the response variable follows a Bernoulli distribution as 

11 



 
 

 

  

 

       

 

 

   

   

 

  

    

   

 

 

  

   

 

  

 

 

opposed to a normal distribution. Instead of fitting a linear model, logistic regression fits 

a probability curve between 0 and 1 using the logit function, 

𝑝 
𝜋𝑖 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔 ( ) = ∑ 𝛽𝑗𝑥𝑖𝑗 1 − 𝜋𝑖 
𝑗=0 

where 𝜋𝑖 is the probability of the ith response being a success (i.e. 𝑃(𝑦𝑖 = 1) = 𝜋𝑖) [10]. 

The Data 

The data considered in this study contains eleven physiochemical properties on 

the quality of wine courtesy of the University of California, Irvine, Machine Learning 

Repository [5]. The quality of each wine was determined by professional wine judges. 

When determining the quality of a wine, there are many things to consider. A wine expert 

typically marks on a few specific areas: appearance – the color and clarity, aroma – the 

smell at the wine and above the glass, body – how the wine feels in the mouth, taste – the 

actual flavor of the wine, and finish – how the wine lingers on the taste buds after it has 

been swallowed. These characterizations are molded based on the variety of grape, region 

and climate that the vineyard is located, the fermentation process, and how the wine is 

aged. The wine in the data set for this study comes from the northwest region of Minho in 

Portugal. The wines were tested for several common physiochemical traits and then 

evaluated by a minimum of three sensory judges for overall quality on a scale of 0 to 10 

with 10 being the best. The median score of quality was recorded for each wine. Data was 

collected from May 2004 to February 2007 [4]. While data on both red and white wines 

12 



 
 

    

  

 

  

     

 

 

  

    

   

 

  

 

  

    

   

 

   

is available, this study will focus on the analysis of the white wine. However, there is a 

similar study by L.E. Melkumova et al. who analyzed red wine data [19]. 

The covariates sampled for this study are now more precisely defined. Fixed 

acidity refers to the amount of tartaric acid (g/dm3) in the wine. Tartaric acid controls the 

acidity of wine and contributes to the overall tartness. The volatile acid measured is 

acetic acid (g/dm3), which may lead to a sour taste in high concentrations. Citric acid 

(g/dm3) is essential for fermentation and adds a “freshness” to wine. However, a large 

portion of the citric acid is consumed by bacteria during this process. The overall 

sweetness of a wine can be quantified by the amount of residual sugar (g/dm3) left in the 

wine after the yeast has been absorbed [3,4]. A high amount of sodium chloride (g/dm3), 

referenced in this study more broadly as “chlorides,” may result in a salty or soapy taste. 

Total sodium dioxide (mg/dm3) is broken into two groups: free and bound. Bound SO2 

combines with pigment and sugar, but it does not have much influence on the overall 

taste or smell of the wine. Free SO2 is able to react with the oxygen in the wine and affect 

the flavor as well as the bouquet and aroma. Too much SO2 can lead to a pungent odor 

similar to that of a recently struck match. Generally, sweeter, fruitier wines have a higher 

amount of SO2 [4,8]. The density (g/cm3) of a wine is highly correlated to the amount of 

dry extract in a wine, which helps determine the mouthfeel [4,20]. The pH of a wine is an 

assessment of the fixed acidity, including tartaric, malic, citric, and succinic acid. 

Potassium sulphate (g/dm3), referred to here as “sulphates,” is important for the 

improvement of the aroma of a wine [4]. The alcohol content (percent by volume) is a 

natural result of fermentation and affects the aroma, taste, mouthfeel, and finish of a wine 

[3,4]. Each of these properties helps to shape the overall quality of a wine. 
13 



 
 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 2.1 

Table of Covariates and Corresponding Variable Names 

y quality 

X1 fixed.acidity 

X2 volatile.acidity 

X3 citric.acid 

X4 residual.sugar 

X5 chlorides 

X6 free.sulfur.dioxide 

X7 total.sulfur.dioxide 

X8 density 

X9 pH 

X10 sulphates 

X11 alcohol 
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CHAPTER III 

METHODS 

Data Preparation 

To begin the analysis, summary statistics of the data and the OLS regression 

model are reported. Diagnostic plots of the residuals are also included. Additionally, the 

data are checked for multicollinearity using Variance Inflation Factors (VIF). The VIF is 

calculated using OLS regression for each explanatory variable as a function of all of the 

other explanatory variables [19]. For example, 

𝑋1 = 𝛼0 + 𝛼2𝑋2 + ⋯ + 𝛼𝑝𝑋𝑝 + 𝜖 (3.1) 

is the model for variable 𝑋1 = [𝑥11 𝑥12 ⋯ 𝑥1𝑛]𝑇 where 𝜖 is the nx1 error vector. Then 

the VIF for 𝛽𝑗 from equation (2.1) is 

1 
𝑉𝐼𝐹𝑗 = 21 − 𝑅𝑗 

where 𝑅𝑗
2 is the coefficient of determination associated with a regression of 𝑋𝑗 onto all of 

the other predictors as established in equation (3.1). For the purposes of this study, the 

VIF factors were calculated using the “car” package in R. As a rule of thumb, a VIF 

value greater than 10 indicates a high level of multicollinearity. Exploratory 

investigations into the covariates were also made using PCAs of the centered data. The 

15 



 
 

 

  

 

  

   

  

  

    

 

 

     

    

    

   

 

   

  

  

  

loadings associated with each principle component tell which covariates make up that 

component and how much each contributes to the variance. 

The quality of the different regression models used in this study will be verified 

by a comparison of the residual sum of squares (RSS) between a set of data used to 

determine the coefficient estimates and another set of data in which to fit the model. To 

begin, the wine data set was randomly and evenly split into a “training” subset and a 

“testing” subset. The training data set was used to create the regression models using the 

techniques that follow. Those models were then used to predict the responses of both the 

training and testing data set. 

Statistical Computations 

The computations of ridge regression estimators and LASSO estimators are 

evaluated using two main packages in R, glmnet and lars. The glmnet function can be 

used to fit a generalized linear model for either LASSO or ridge regression by changing 

the value of alpha for the parameter 

(1 − 𝛼) 
2‖𝛽‖2 + 𝛼‖𝛽‖1. 

2 

Clearly, a value of 1 will result in the LASSO tuning parameter while a value of 0 will 

result in the ridge regression parameter [11,12]. Alternatively, the lars function fits a 

LASSO regression sequence as well as least angle regression and forward stagewise 

regression, which are related to the LASSO. Note that the default of this function is the 

LASSO [13]. 
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To begin using the glmnet function, a range of 100 values for λ was chosen with 

equally-spaced powers from 10 -2 to 105. Using R, the coefficients for both ridge 

regression and LASSO were plotted against log(λ) on the lower axis. The upper axis 

represents the number of coefficients in the model for that value of log(λ). The values for 

coefficients seen in these plots are standardized, but the results are ultimately given on 

the original scale of the data. Using the lars function, a similar yet very distinctive plot is 

depicted. Instead of plotting against log(λ), the lars function plots against fraction of the 

𝑝 𝑝 ℓ1 -norm, i.e. ∑ |𝛽𝑗| /max ∑ |𝛽𝑗|. As opposed to starting with every coefficient and 𝑗=1 𝑗=1 

slowly removing them as in the glmnet plots, this approach starts with all but one 

coefficient set to zero and introduces another with each step. The number of steps taken is 

displayed on the top horizontal axis while the number corresponding to the variable 

appears on the right vertical axis. 

Mean Square Error Computations 

The next step of the process is to select the λ tuning parameter. This parameter 

̂controls the magnitude of the absolute value of the parameter estimates, 𝛽𝑖. It is 

important that λ is large enough to give an accurate representation of the data without 

being so large that the model is overfitted. Cross-validation is then used to determine a 

“best” λ to use. Both the glmnet and lars functions have an existing k-fold cross-

validation procedure built in. During cross-validation, the data are split into k equal-sized 

subsamples. Each subsample is then used to validate the model as the other k-1 

subsamples are used as training data. This is repeated using each of the k subsamples as 
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the testing set. Note that this study uses k=10 as this is widely accepted as a value that is 

large enough for proper validation without causing overfitting of the data. For a 

discussion on other methods of selecting λ, see Marron, J.S. [18]. The “best” λ is chosen 

such that the model has the lowest MSE. The MSE for a model based on λs, s=1,…,t,  can 

be written as 

𝐾 
1 

𝑀𝑆𝐸𝜆𝑠 = ∑ 𝑅𝑆𝑆𝑘,𝜆𝑠 𝐾 
𝑘=1 

where there are k=1,…,K subsamples and 

2𝑝 𝑛 

𝑅𝑆𝑆𝑘,𝜆𝑠 = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗(𝑘, 𝜆𝑠)) 
𝑖=1 𝑗=1 

is the RSS for a given set of regression coefficients [19]. To avoid overfitting the models, 

the λs with the highest MSE within 1 Standard Error (s.e.) of the minimum MSE was also 

considered for future analysis. Plots of the MSE for each log(λs) were produced for both 

ridge regression and the LASSO method. 

Once the values for λ are established, the estimates for each ridge regression and 

the LASSO are calculated. Then each set of coefficient estimates are used to predict the 

values of both the training set and testing set of data. For each of these models, the RSS 

for the predicted values is calculated. These are the values that will ultimately judge how 

well each type of regression model worked for this data set. 
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Binomial Computations 

The data being analyzed in this study are discrete and ordinal, not binary. While 

functions have been created in R to analyze ordinal data using Ridge Regression and 

LASSO [1], those functions have been removed from the Comprehensive R Archive 

Network (CRAN) database because errors were found and not addressed. However, 

studies have been done to show that categorical data with at least 5-7 categories may be 

treated as continuous [21]. Thus, the data in this study do not require a logistic regression 

approach. For the remainder of this study, the data are treated as continuous unless 

otherwise stated. 

It may be of interest to model the data from the standpoint of separating 

“superior” wines from those that are “not superior.” For the purposes of this study, a wine 

with a quality rating of 8 or above is considered “superior.” Wines with a superior quality 

rating are considered a success and given a response value of 1. All other wines are given 

a response value of 0. The data are then analyzed similarly to previous calculations using 

the binomial family for the glmnet function. 
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CHAPTER IV 

RESULTS 

Analysis of Covariates 

A summary of the sampled data can be seen in the Table 4.1. The OLS regression 

for parameter estimates from equation (2.2) are listed in Table 4.2. This model has a 

coefficient of multiple determination of R2 = 0.2818704. Diagnostic plots of the residuals 

are included in Figure 4.1. In the plot of Residuals vs Fitted in Figure 4.1 (a), there is 

some fluctuation in variance, but most values appear to be centered around zero. This 

near-linear trend is also depicted in the Normal Q-Q plot in Figure 4.1 (b). The Scale-

Location plot in Figure 4.1 (c) shows an increase in the standardized residuals as fitted 

values approach 6, indicating that the data may be heteroscedastic. The plot of Residuals 

vs Leverage in Figure 4.1 (d) suggests that data point number 2782 may be an outlier. 

The Variance Inflation Factors, VIFj, for each of the explanatory variables can be found 

in Table 4.3. There are multiple factors with values over 10, implying that the 

multicollinearity is high. This multicollinearity combined with the heteroscedasticity 

suggests OLS may not provide a good model for the data. 
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Figure 4.1 Diagnostic plots of residuals 

Table 4.3 

Variance Inflation Factors for j=1,…,11 Predictors 

VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 VIF11 

3.30 1.14 1.15 15.38 1.26 1.82 2.38 39.29 2.52 1.18 11.19 

Further analysis of the covariates involved a look at the PCAs. The data was first 

centered so that the mean of each covariate was zero. This centered data was used to 
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ensure that the resulting components are orthogonal. A summary of the first four 

components and their loadings are depicted in the figures below. The first component 

accounts for almost 91% of the total variation of the covariates. Combining this with the 

second component makes up nearly 99% of the total variation. This is further exemplified 

in the scree plot in Figure 4.4. From the loadings, it is shown that the amount of free 

sulfur dioxide and total sulfur dioxide make up the first two components. Note that the 

loadings are orthogonal. This is a product of using the centered data for analysis. This 

relationship can also be seen in Figure 4.5 where the amount of variation from each 

covariate is plotted for the first principle component on the x-axis and the second 

component on the y-axis. 

Figure 4.2 Summary of first four principle components 

Figure 4.3 Loadings of first four principle components 
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       Figure 4.4 Scree plot of principle components for centered data 
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Figure 4.5 Plot displaying the amount each covariate contributes to the first and second 

principle components 

k-Fold Cross Validation 

Displayed in Figure 4.6 are the plots of the standardized coefficient estimates for 

ridge regression and the LASSO method using glmnet. The top horizontal axis shows that 

for ridge regression, the coefficients begin equivalent to those of the OLS model and 

move closer to zero, but they never actually reach it. Until λ becomes larger than e5, the 

density appears to have the most influence on the quality of the wine. On the other hand, 

the plot of LASSO coefficients shows that the model essentially ends up with no 
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covariates for large enough λ (e.g. when log(λ) is equal to or greater than 0). The plot of 

LASSO coefficients gives further insight into the process. Covariates are added into this 

model in the following order: alcohol, volatile acidity, free sulfur dioxide, residual sugar, 

fixed acidity, chlorides, sulphates, pH, density, total sulfur dioxide, -fixed acidity, fixed 

acidity, citric acid. The negative sign here implies that a covariate was removed after it 

had been introduced to the model. Note that the covariates which contributed most to the 

variation in the PCA analysis are not necessarily of most importance to these regression 

models. This is because the parameters which have the most variability do not necessarily 

have a higher effect on the response than those covariates with less variability. For 

instance, total sulfur dioxide has a larger variance than volatile acidity, because the units 

of measurement are several orders of magnitude different. However, volatile acidity 

appears to have a much more drastic effect on the quality of wine than total sulfur 

dioxide. For this reason, it is better to use LASSO or ridge regression than PCA for this 

data set. 
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  (a) (b) 

Figure 4.6 Coefficient estimates for ridge regression (a) and LASSO (b) using glmnet 

function 

 

 
 

27 



 

 
 

 
        

 

     

     

  

 

Figure 4.7 Plot of coefficients of LASSO regression using lars function 

For the k-fold cross validation to determine which λ to use, k was left at a default 

of 10 for both the glmnet and lars functions. The plots in Figure 4.8 show the MSE in 

relation to log(λ) as a result of the 10-fold cross validation from glmnet. The numbers on 

the top x-axis represent the number of non-zero coefficients in the model for that log(λ). 

The first dotted line in each plot aligns with the minimum MSE𝜆𝑠 , and the second dotted 
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  (a) (b) 

Figure 4.8 Plots of MSE𝜆𝑠 for each log(λ) and the corresponding number of coefficients 

in the model produced by glmnet for ridge regression (a) and 

LASSO (b) 

 

 
 

 

   

   

  

  

line corresponds to the smallest MSE𝜆𝑠 within 1 s.e. of the minimum. The plot produced 

by lars is not quite as informative as it lacks the upper x-axis and the dotted lines 

associated with the MSE𝜆s . Note that the x-axis for the lars LASSO plot is 

𝑝 𝑝 ∑ |𝛽𝑗| /max ∑ |𝛽𝑗|, so it appears as almost a mirror image of the plot of the LASSO 𝑗=1 𝑗=1 

produced by glmnet. 
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Figure 4.9 Plot of MSE𝜆s as a function of a fraction of the ℓ1-norm produced by lars 

for LASSO 

The glmnet function allows for easy extraction of the “best” λ and the λ 1 s.e. 

above the minimum MSE. For ridge regression, λbest=0.04364007 and λ1se=0.2328939 

whereas, for the LASSO method, λbest=0.0007805678 and λ1se=0.02938788. These values 

were then used to find the model coefficients for ridge regression and the LASSO. The λ 

values are not readily available from lars, so additional coding was necessary to find the 

coefficients for the LASSO model in this format. All of the resulting coefficients can be 

seen in Table 4.4. It is worth noting that the models for the minimum MSE𝜆𝑠 using the 

LASSO have a different number of coefficients for each function used. However, the 

LASSO models 1 s.e. above the minimum MSE𝜆𝑠 have nearly identical coefficients. 

Finally, each model was then used to predict the quality values of both the training set 
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and testing set of data. The resulting RSS’s for each model are listed in Table 4.5. The 

similarities between the LASSO model found using the glmnet function and the lars 

function are evident in these tables as would be expected. The RSS values for 1 s.e. 

above the minimum are reasonably higher than those calculated for the minimum MSE𝜆𝑠 . 

The OLS model is still the “best” for the training set, but the LASSO, particularly when 

using lars funcion, is a better fit than ridge regression for the white wine data. However, 

ridge regression is the “best” fit, followed by the LASSO and then OLS, for the testing 

set. 
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A scatterplot matrix is provided in Figure 4.10 for each of the six covariates 

present in the LASSO model for λs within 1 s.e. of MSE𝜆𝑠 . It is easy to see trends in these 

particular covariates for “good” wines marked by green circles for a quality rating of 8 

and brown circles for a quality rating of 9. Similarly, the “bad” wines marked by blue 

circles for a quality rating of 3 and pink circles for a quality rating of 4 tend to be 

aggregated together for each of the covariates. It appears that sensory judges preferred 

wines that were medium to high in alcohol level, had a light aroma due to the lack of free 

SO2, were not very sweet or had a small amount of residual sugar, and had moderate to 

low amounts of both tartaric acid (fixed acidity) and acetic acid (volatile acidity). 

34 



 

 
 

 
    

                      

Figure 4.10 Scatterplot matrix of six covariates introduced into LASSO model within 1 

s.e. of minimum MSE𝜆𝑠 
 

 

 

   

  

 

  

Binomial Analysis 

The VIF values in Table 4.6 show that there is still a high amount of 

multicollinearity in the binary data, suggesting that Ridge Regression and LASSO may 

be better options for fitting the model. It is obvious from Figure 4.11 that density still 

plays a large role in the model, but the coefficient estimates are vastly different from 
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  (a) (b) 

Figure 4.11 Coefficient estimates for binary data for ridge regression (a) and LASSO 

(b) using glmnet function 

 

 
 

  

    

 

 

   

           

           

 

 

 

 

 

 

those of the model treated as continuous data. These differences are seen even more 

clearly by the choice of λ in the plot of MSE𝜆𝑠 in Figure 4.12. 

Table 4.6 

Variance Inflation Factors for Binary Data 

VIF1 VIF2 VIF3 VIF4 VIF5 VIF6 VIF7 VIF8 VIF9 VIF10 VIF11 

4.22 1.33 1.18 19.30 1.30 2.19 2.84 55.20 2.88 1.26 15.05 
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  (a) (b) 

Figure 4.12 Plots of MSE𝜆𝑠 for each log(λ) produced by glmnet for ridge regression (a) 

and LASSO (b) for binary data 

 

 
 

 

 

    

  

  

   

  

   

 

 

 

 

The coefficients for the binary data for each model using the “best” λ and the λ 1 

s.e. above the minimum MSE are compared to the logistic regression model in Table 4.7. 

The “best” λ for ridge regression and the LASSO produce similar coefficient estimates 

for this data. However, the estimates for λ 1 s.e. above the minimum MSE appear vastly 

different for ridge regression and the LASSO. The RSS’s in Table 4.8 show that ridge 

regression and LASSO fit the binary data much more efficiently than the standard logistic 

model. For this particular data set, LASSO using the “best” λ produces the smallest RSS 

for the training data while ridge regression using the λ 1 s.e. above the minimum MSE 

produces the smallest RSS for the testing data. 
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Table 4.7 

Coefficient Estimates of Binary Data for Each Regression Model 

R function glm glmnet 

Regression Model Logistic Ridge, min Ridge, 1 s.e. LASSO, min LASSO,1s.e. 

(Intercept) 

fixed.acidity 

volatile.acidity 

citric.acid 

residual.sugar 

chlorides 

free.sulfur.dioxide 

total.sulfur.dioxide 

density 

pH 

sulphates 

alcohol 

576.7 

0.5985 

-2.101 

-0.9714 

0.321 

-1.547 

0.01698 

-0.002733 

-600.5 

2.679 

1.201 

0.2013 

9.122772763 

0.009085571 

-0.01651811 

-0.27006172 

0.006689001 

0.069864531 

0.000774085 

-0.0001312 

-9.66458017 

0.046345164 

0.020690385 

0.025300048 

2.642726 14.67172 

-0.00032256 0.01356793 

-0.00169704 -0.01401589 

-0.01125881 -0.02545494 

0.001782247 0.008870137 

-0.1728456 0.1020844 

0.000444592 0.000748073 

-0.00007885 -0.00010958 

-2.842664 -15.3032 

0.0109989 0.06601116 

0.00221647 0.02868537 

0.0179908 0.01958325 

-0.0938288 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

0.01316304 
̂NOTE: A period represents a covariate not included in the model (i.e. 𝛽𝑗 = 0). 

Table 4.8 

RSS Values of Binary Data for Each Regression Model 

R function glm glmnet 

Regression Model Logistic Ridge, min Ridge, 1 s.e. LASSO, min LASSO, 1 s.e. 

Training data set 

Testing data set 

35639.94 

36691.6 

100.2675 

66.41774 

101.18 100.2261 

66.26058 66.45467 

102.6142 

66.96833 
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CHAPTER V 

CONCLUSIONS 

With the addition of a tuning parameter to form a penalized OLS for ridge 

regression and LASSO, there are definite differences in the outcomes from the models as 

seen by the coefficient estimates and the error values. The OLS model remains unbiased, 

but it is shown by the RSS values that there may be times when a model with some bias 

is a better fit. Additionally, there may be instances when it is better to “shrink” the 

coefficient estimates so small that a variable is removed completely from the model. This 

is the case in using the LASSO method. The glmnet and lars functions are both adequate 

for modeling continuous data using the LASSO. While the available commands and plots 

are slightly different, the general outcomes are very similar between the two. For 

continuous data, it is essentially a choice of whether the user is more comfortable 

speaking in terms of log(λ) or a fraction of the ℓ1-norm. However, using data sets with 

binary responses limits the options. Comparing all of the RSS values from this study to 

those of the study by L.E. Melkumova et al. shows that there is no single “best” 

regression model to use [19]. Each data set is unique and must be treated as such. More 

time should be spent on developing ways to use ridge regression and LASSO for ordinal 

data and other discrete data that is not necessarily binary. 
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