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Sinkhole collapse is a common karst land-use risk around the world. In the 

Bahamas cover-collapse sinkholes do not exist because soil cover is thin; almost all 

collapse is due to cave ceiling failure. The most common cave types in the Bahamas are 

flank margin caves and banana holes. Flank margin caves have three entrance types: 

dissolution pit, side breach, or ceiling collapse. Both side breach and ceiling collapse are 

the result of mass erosional forces; pits by focused dissolution.  It was previously 

proposed that slope was a controlling factor in Bahamian cave collapse. This study 

demonstrated that 7.5 minute topographic maps cannot resolve slopes accurately enough 

to predict potential collapse locations. Field surveys with 1 m contours allowed for a 

more concise slope range in which each entrance type preferentially occurred; collapse 

breaches and pits were common on gentle slopes and side breaches on steep slopes. 
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CHAPTER I 

INTRODUCTION 

Cave roof-collapse is a land-use hazard that has long been of concern in the 

carbonate island setting, but field reconnaissance costs and difficulties have left much 

unanswered about cave roof-collapse risk. Caves and karst landscapes are recognized as a 

geologic hazard (White, 1988), including the special issue of islands (Wilson et al., 

1995).  Flank margin caves (Fig 1.1), which form by dissolution at the margin of the 

freshwater lens, are a major type of cave in carbonate islands. Flank margin caves 

commonly have portions that have collapsed (Fig 1.2), as well as areas where the roof is 

thin and prone to collapse. Banana holes (Fig 1.3), typically found in progradational 

strand plains, are small, immature flank margin caves with thin roofs that were 

abandoned during formation (Ho et al., 2013). Banana holes are thought to pose the 

greatest potential collapse hazard (in terms of frequency) due to their location beneath the 

relatively level terrace where most development occurs (Wilson et al., 1995).  Because 

flank margin caves form near the flank of the enclosing landmass near the saltwater 

contact, and banana holes form in progradational strand plains, their general locations are 

relatively easy to predict. Flank margin caves, as well as banana holes, form as 

entranceless caves that cannot be observed from the surface until it is breached by hill 

retreat, roof collapse, or a pit intersection. Remote sensing and GIS technology provide 

venues by which spatial research on cave roof-collapse can be conducted (e.g. Ho et al., 
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2013). The slope of the overlying topography is the only parameter that can be viewed 

remotely in efforts to infer what is happening beneath the surface.  The slope would have 

an effect of roof thickness, leading to risk of collapse. The problem is that highly accurate 

satellite data are not available for this study area. The resolution of the topographic data 

will affect the possibility to calculate roof thickness and in turn diminish the ability to 

predict flank margin cave collapse. 

Figure 1.1 The margin of the freshwater lens is boxed in red showing where flank 
margin caves develop, due to the mixing of fresh and marine waters. 
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Figure 1.2 Flank margin cave demonstrating collapse in the Bahamas. 

Figure 1.3 A banana hole in the Bahamas showing the result of bedrock roof collapse. 
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Flank margin caves differ from continental stream caves and sinkholes. Since the 

1970’s, the development of a comprehensive conceptual model for carbonate island karst 

has been under construction.  After  nearly a decade of field work, it was discovered that 

the continental interior stream-cave model was not functioning in the island setting 

(Mylroie and Mylroie, 2007). Over the years, advancements in the karst model have 

changed the way scientists identify specific karst features on islands. The Carbonate 

Island Karst Model (CIKM) was developed and validated via extensive fieldwork that 

included surveying and mapping each cave’s location and extended profile (Jenson et al., 

2006). Cave maps with detailed surveys were created for caves on many islands 

throughout the Bahamas over the past 38 years. Though the rationale behind the search 

for caves has not been to predict cave roof-collapse, years of data from the development 

of the CIKM, funded primarily by petroleum-influenced research, can now be used to 

assist in dealing with a potentially dangerous land-use hazard. The CIKM explains that 

the caves on many of these islands are not conduits, but rather mixing chambers - lacking 

evidence of turbulent flow (Mylroie and Mylroie, 2007).  Vacher and Mylroie (2002, p. 

183) differentiated “island karst” from “karst on islands” by explaining that  “island 

karst”  are those features which formed  under the influence of the CIKM rather than the 

typical continental interior stream-cave model; “karst on islands” represents karst 

behavior similar to that seen on continents, commonly in large island interiors.  The 

CIKM led to much advancement in karst related research that was previously difficult 

due to the lack of understanding of “island karst”. 

Can cave location along with the slope of the overlying topography address cave 

roof-collapse potential? The goal of this research is to establish a set of protocols to 
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assess cave roof-collapse risk for flank margin caves in the Bahamas. More specifically, 

the objective is to determine whether the 1972 Bahamas Lands and Surveys 7.5-minute 

topographic quadrangle map sheets  have the resolution necessary to predict flank margin 

cave collapse. Can the distal slope of the overlying dune be used to predict where 

bedrock is suspected to be the thinnest? Roof thickness and maximum chamber width are 

the two factors that cause collapse in caves. Neither of the two factors that lead to 

collapse can be viewed from the surface. Since the slope of the topography can be 

remotely sensed/calculated, this project will test to see if the slope can be used as a proxy 

for roof thickness. This research is important to the literature because up to this point, 

there is no way to predict flank margin cave roof collapse. Finding a way to predict flank 

margin cave collapse would be a huge step in land development practices in the Bahamas 

(as well as other carbonate islands and coastlines). 
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CHAPTER II 

LITERATURE REVIEW 

Study Area 

Located off the SE coast of Florida, the Bahamas make up a 1000 km portion of a 

NW-SE trending archipelago.  Starting in the NW (27° 30’ N, 79 10’ W), the islands are 

positioned on large carbonate banks, but the farther SE islands are on much smaller, 

isolated banks, often not much bigger than the island itself (Fig 2.1).  Between the banks 

are deep troughs in excess of 3000 m depth. The archipelago terminates in the SE with 

the Turks and Caicos Islands and the Silver and Navidad Banks, a separate political entity 

from the Bahamas (19° 50’ N, 68°42'W). Made up of 29 major landmasses (islands), 661 

cays (pronounced “keys”, minor islands), and 2387 rocks (Albury, 1975), the Bahamas 

cover 300,000 km2 (Meyerhoff and Hatten, 1974). At the current sea level position, 

136,000 km2 is shallow bank and 11,400 km2 exists as land above sea level (Meyerhoff 

and Hatten, 1974). Sea level change can greatly affect the size of the Bahamian islands; 

with a 10-meter drop in sea level, the banks would be exposed causing the island to 

increase more than 10 times in size. The current sea level, if referenced from the 

Quaternary sea-level curve of the past 450 thousand years presented in Fig 2.2, is not the 

norm, yet more the exception. The Bahamas have been in a sea-level lowstand condition 

85 – 90 percent of the past 450,000 years, meaning the banks were exposed (Mylroie and 

Carew, 2013).  Sea level was at its highest and lowest points respectively, - 125 m 
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(25,000 - 19,000 ka) and +6 m (124,000-115,000 ka) (Mylroie and Mylroie, 2013a).  

Glacio-eustatic sea-level changes during the Quaternary alternately flooded and exposed 

the Bahamian banks, therefore causing cycles of deposition and dissolution, respectively. 

Carbonate deposition is only significant when platforms are flooded; the platforms have 

been flooded <15% of the past 450 ka (Mylroie and Carew, 2013). Deposition has 

resulted in a minimum sediment thickness of 5.4 km (Meyerhoff and Hatten, 1974) and 

up to 10 km (Uchupi et al., 1971) since the late Cretaceous. The previous sea-level 

highstand (MIS 5e ~ 120 ka) resulted in the surface being dominated by eolianites 

(fossilized carbonate sand dunes) and subtidal faces (including fossil reefs); above 8 m, 

the surface is expressed solely as eolianites (Mylroie and Mylroie, 2013a).   Subsidence 

of 1-2 m per 100,000 years (Carew and Mylroie, 1995) due to isostacy results in rocks at 

the surface being less than a couple 100,000 years old , i.e., as the island subsides, beach  

and eolian processes build/deposit new dunes  on top. Given the Bahamas are tectonically 

stable yet steadily subsiding, the only explanation for cave formations at +2 to +6 m 

above modern sea level is a previous glacioeustatic sea-level highstand. Therefore, any 

cave above sea level today had to form when sea level was higher, but also within recent 

enough history that it would not have subsided below sea level today. Karst features that 

formed during the Marine Isotope Substage 5e (MIS 5e) sea-level highstand would only 

have subsided approximately 1-2 m corresponding to the amount of time that has passed; 

remnant features from the past sea-level highstands such as MIS 9 or 11 would have 

subsided to or beneath current sea level. This only leaves the sea-level highstand MIS 5e 

(124-115 ka) to have raised the freshwater lens and formed the caves observed at +2 to 

+6m today (Mylroie and Mylroie, 2013a). 
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Figure 2.1 Map of the Bahamian archipelago showing the size of the shallow banks in 
dark grey and land above sea level in white. From Mylroie and Mylroie 
(2013a). 
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Figure 2.2 Sea level curve of the past 450 ka; note that nearly 85% of the past 450 ka 
has been spent below modern sea level.  From Lascu (2005). 

The processes including subsidence, lack of uplift, and continued deposition 

results in carbonates at the surface being diagenetically immature or eogenic. Choquette 

and Pray (1970, p. 215) described the maturation of limestone and broke them into three 

classes by the postdepostional evolution of carbonate porosity: eogenetic, mesogenetic, 

and telogenetic. 

1. Eogenetic – “the time of early burial” 

2. Mesogenetic – “the time of deeper burial” 

3. Telogenetic – “the late stage associated with erosion of long buries carbonates” 

Vacher and Mylroie (2002, p. 183) went on to define eogenetic karst as, “the land 

surface evolving on, and the pore system developing in, rocks undergoing eogenetic, 
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meteoric diagenesis.” Other terms including telogenetic karst, “the karst developed on 

and within ancient rocks that are exposed after the porosity reduction of burial 

diagenesis”, were created at this time. While karst can form in the mesogenetic 

environment, they would have to move into the telogenetic environment to be observed. 

The Bahamas being tectonically stable prohibits telogenic limestones and/or karst 

features from being present, therefore the karst and caves in the Bahamas are considered 

eogenetic in nature. 

Geology of The Bahamas 

The stratigraphy of the Bahamas is relatively simple; individual packages are 

marked by each sea-level highstand, and separated by erosional unconformities (often 

marked with a terra-rossa paleosol), indicative of a sea-level lowstand. There is no 

terrigeneous sediment present on the Bahamian banks because strong ocean currents 

isolate the banks from continental influence (Mylroie and Mylroie, 2013a); insolubles 

arrive as atmospheric dust. With ~ 100 percent carbonate composition and all exposed 

rocks only a couple 100,000 years in age, (Mayaguana is an exception that does not apply 

here), there are only three geologic formations to review (Mylroie and Carew, 2013). 

These units are as follows from oldest to youngest: the Owl’s Hole Formation, the Grotto 

Beach Formation, and the Rice Bay Formation (Fig 2.3). 
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Figure 2.3 Simplified stratigraphy of the Bahamas, from Mylroie and Carew (2013). 
For a more detailed stratigraphy, see Kindler et al. (2010) 

Owls Hole Formation 

The Owl’s Hole Formation, comprised entirely of eolianites, is the oldest 

formation expressed at the surface on all Bahamian islands, except on Mayaguana 

(Mylroie and Carew, 2013). This formation has multiple paleosols indicating platform 
11 



 

 

 

 

  

  

 

   

 

  

 

 

  

 

  

emergence during glacio-eustatic sea-level lowstands, as well as multiple carbonate 

deposition events as the platform was flooded and exposed alternately (Mylroie and 

Carew, 2013).  Carbonate rocks from the Miocene through early Pleistocene have been 

described on Mayaguana (Kindler et al., 2010), most likely exposed by a slight platform 

tilt to the south, but there is no need to break down the Owl’s Hole Formation any further 

since no other surface expression of these older rocks is found elsewhere in the Bahamas.  

Note that there would be older formations at depth but are not discussed as they have 

subsided and will not be of any diagnostic value. There are many dry caves in the Owl’s 

Hole Formation.  There are no subtidal units known in the Owl’s Hole Formation as they 

too have subsided below modern sea level. 

Grotto Beach Formation 

Separated by a terra-rossa paleosol or erosional unconformity, the Grotto Beach 

Formation overlies the Owl’s Hole Formation. The Grotto Beach Formation developed 

during the last interglacial, Marine Isotope Substage 5e (MIS 5e), 124,000 to 115,000 

years ago (Mylroie and Carew, 2013).  This span of only 9,000 years resulted in the 

deposition of the entire Grotto Beach Formation, as well as the phreatic karst features that 

subsequently formed within the rock. Once again, the time constraints in which these 

caves form is remarkable.  Given that sea level was +6m during the last interglacial, 

subtidal facies (fossil reef or lagoons) are found above sea level in the Grotto Beach 

Formation. This formation is broken into two members, the French Bay Member 

represents a transgressive phase (when sea level was rising), and the Cockburn Town 

Member represents a stillstand and a regressive phase (when sea level was falling).  

These two members are distinctly different, but ooids are a diagnostic feature for both 
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members of the Grotto Beach Formation (ooids are rare in the Owl’s Hole Formation on 

San Salvador). A wave cut bench is indicative of a transgressive cycle; as sea level rises, 

the dunes are attacked by wave action.  Shallow water over a wave cut bench makes coral 

growth prominent. The Cockburn Town Member, younger and more complex, is made up 

of subtidal and intertidal facies overlain by stillstand and regressive dunes.  Subtidal 

facies above modern sea level help easily identify the Cockburn Town Member in the 

field. 

Stillstand episodes during the Cockburn Town Member highstand allowed for 

progradational growth of strandplains (Fig 2.4) along coastlines.  Progradation of the 

shoreline results in a beach-ridge system with dune ridges and swales parallel to the 

coastline.  Strandplains build outwards during stillstand phases as sediments pile up in the 

foreshore environment until reaching wave base and being pushed onshore forming new 

land. This progradational process allows banana holes to form as the freshwater lens 

moves into new land. Dissolution is always occurring at the freshwater/saltwater contact, 

but when the freshwater lens advances seaward into new land and abandons the previous 

freshwater lens position, immature flank margin caves are formed and in turn, abandoned 

(Fig 2.5). Banana holes found in the progradational strand plains developed in this 

manner. All caves +6m above modern sea level are from the Cockburn Town Member 

time (124-115 ka), the last time sea level was above modern in the Bahamas; the caves 

are found in both Grotto Beach and Owl’s Formation rocks. 
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Figure 2.4 Sandy Hook is a good example of a Holocene progradational strandplain on 
the south end of San Salvador. 

Notice the parallel dune ridges along the easternmost portion of the image. This area is 
expected to hold many developing  immature flank margin caves, referred to as banana 
holes. From Mylroie et al. (2012). 
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Figure 2.5 Diagram representing the formation of banana holes in progradational 
strandplains. From Mylroie et al (2012). 

Rice Bay Formation 

The Holocene Rice Bay Formation is the youngest unit of rock found in the 

Bahamas, and is separated from the Grotto Beach Formation by a terra-rossa paleosol or 

other erosional surface.  It is made up of the North Point Member (transgressive phase) 

where eolian beds dip below modern sea level, and the Hannah Bay Member (stillstand 

phase), where eolian beds grade into beach facies at modern sea level.  The Rice Bay 

Formation is entirely eolianites, with beach rock in the Hanna Bay Member.  Because of 

their very young age, rocks of the Rice Bay Formation do not have a terra-rossa paleosol 

covering them, and do not have karst caves expressed at the surface today. This is not to 

say that flank margin caves have not formed in the Rice Bay Formation, just that cliff 

retreat has not breached these caves creating an entrance, which would be at modern sea 

level. While caves are not expressed at the surface, small dissolution caves throughout 

modern strandplains are anticipated due to the stillstand phases of the Hanna Bay 

Member.  
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Karst 

Karst is widely known as, “the landscape created by dissolution and solution on 

the soluble rock, such as limestone, halite, and gypsum” (Ford and Williams, 2007, p. 1). 

According to White (1988), in 1967 Gvozdetskii estimated that 20 percent of the earth’s 

land surface qualifies as karst.  Mylroie (1995) goes on to say karst processes dominate 

carbonate islands. We will adhere to White’s (1988, p. 4) definition of karst for this 

paper, “all landforms produced by the solution process-regardless of scale, surface 

expression, or rock type”. 

Karst Classification 

In the literature today, there are multiple ways that cave and karst features are 

characterized. Palmer (1991) described karst in a new way; he characterized karst by the 

mode of recharge to the soluble rock. Epigene karst, the karst typically described in the 

literature, refers to karst that formed by meteoric recharge (i.e., the continental interior 

stream-cave model). 

As stated by Mylroie and Mylroie (2007), after nearly a decade of fieldwork on 

islands, it was discovered that the continental interior stream-cave model was not 

functioning in the island setting, and it was then that Palmer coined the two terms, 

epigene and hypogene. Palmer (1991) described epigene karst as karst formed by the 

movement of water across the surface and from vadose into phreatic conditions, which 

increases the dissolution potential of the solution at depth by increasing the amount of 

carbonic acid from the atmosphere and soil. Hypogene caves dissolution potential is 

driven by carbonic acid and hydrosulfuric acid, as well as a variety of other possibilities 

including: where water becomes solutionally aggressive because of mixing, oxidation of 
16 



 

 

 

 

 

  

 

  

 

 

 

 

  

 

  

 

  

  

 

  

H2S, or a drop in temperature (Palmer, 1991). Hypogene caves form in phreatic 

conditions, decoupled from the surface hydrology, and gain their dissolution potential 

from mixing waters of different chemistries (Palmer, 1991).  Flank margin caves are 

thought to be hypogene in nature because the aggressive solutions origin is below the 

surface, and the caves are not directly coupled to surface hydrology. 

There is debate in the karst community today whether flank margin caves are 

actually a subtype of hypogene cave or whether flank margin caves should be considered 

“island karst” (e.g. Klimchouk, 2007). Vacher and Mylroie (2002, p. 183) differentiated 

“island karst” from “karst on islands” by explaining that  “island karst”  are those features 

which formed  under the influence of the CIKM rather than the typical continental 

interior stream-cave model. “Karst on islands” represents karst behavior similar to that 

seen on continents, commonly in large island interiors.  A recent conference on hypogene 

caves (Klimchouk et al., 2014) did not reach a conclusion about flank margin caves, and 

many workers place them in a category called “coastal caves”. 

For this study, the choice is, “Island karst caves” are hypogenic in nature and 

form under the influence of the CIKM; “Karst on islands” are epigenic in nature and form 

under the influence of the continental interior stream-cave model.  There is no part of the 

definition of hypogene caves that flank margin caves do not conform to, therefore it 

should stand that flank margin caves are a subtype of hypogene cave. 

Flank margin cave model 

The flank margin cave model explains the dissolution process in coastal 

carbonates as the result of the following three phenomena that occur at the lens margin 

(Mylroie and Mylroie, 2007). 
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1. Mixing of freshwater and seawater result in a solution with renewed dissolution 

potential. 

2. The decreasing cross sectional area of the lens margin increases flow velocity, 

speeding up dissolution by getting the reactants in and products out quickly (i.e. 

as the rock is dissolved chemically, it is also transported away).  

3. Organics collect at density interfaces near the top and bottom of the freshwater 

lens. The increased CO2 from oxidation increases dissolution. With extremely 

high organic loading, anoxic conditions can allow H2S and other acidic solutions 

to further drive dissolution. 

The Carbonate Island Karst Model (CIKM) 

The Bahamas were the host site for the development of an island karst model, 

which began in the mid 1970’s, first with the flank margin cave model and then the 

CIKM. The CIKM was initiated when the flank margin cave model was extended to more 

and more complex islands (Mylroie and Mylroie, 2007). The CIKM consists first of the 

flank margin cave model plus the increasingly complex factors that add to the equation 

such as tectonics, sea-level change, and non-carbonate rocks. The CIKM summarizes the 

principles that control the development of karst on carbonate islands in an attempt to 

characterize the levels of complexity found within carbonate islands. The principles of 

the CIKM have been updated since first outlined by Mylroie and Vacher (1999) as new 

studies have been completed (e.g. Mylroie, 2013). 

The principles of the CIKM, from Mylroie (2013), are: 

1.) The mixing of freshwater and saltwater results in an aggressive fluid in respect to 

CaCO3 (Fig 2.6). Two fluids, both which are saturated with respect to CaCO3, 
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when combined, will have a renewed dissolution potential.  These mixing zones 

occur in two areas, at the vadose/phreatic interface, as well as the contact of the 

bottom of the freshwater lens with the seawater below (Fig 2.7). The top and 

bottom of the freshwater lens create a density interface, resulting in the collection 

of organics at these density interfaces. The oxidation of these organics increases 

levels of CO2, further driving the dissolution process. These two mixing zones 

are superimposed near the margin of the freshwater lens, resulting in the 

maximum amount of dissolution at the lens margin (Fig 2.7); exceptional organic 

loading can create anoxic conditions and production of exotic acids such as H2S. 

In essence, the first part of the CIKM is the flank margin cave model. 

2.) Sea-level change moves the position of the freshwater lens. As the freshwater 

lens moves up and down, this mixing zone follows creating dissolution features 

at the new location of the mixing zone. Sea level has moved up and down 100 m 

or more throughout the Quaternary as a result of glacioeustasy. Tectonics can 

move local sea level independent of glacioeustasy.  Overprinting of features 

developed during different glacio-eustatic events can occur by local tectonic 

movement, sediment compaction, and isostatic adjustment. 

3.) Many continental carbonates around the world are millions of years old, but the 

carbonates found on almost all tropical islands are young, eogenetic rocks. The 

CIKM is a model developed to deal specifically with eogenetic carbonate rock 

that has never been buried below the zone of meteoric diagenesis.  Note that 

telogenic rocks, those that have been buried before, do occur on carbonate islands 
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and this model can be used for those areas, especially if conditions are favorable 

(see Mylroie and Mylroie, 2013b).    

4.) There are four classifications of islands: Simple, Carbonate-Cover, Composite, 

and Complex. These classifications are based on their respective carbonate vs 

non-carbonate geology, and sea level position (Fig 2.8). While not all islands fit 

into a single classification scheme, these classifications are idealized boundary 

conditions that can be applied to portions of islands when necessary. 

I. Simple Island – Fig 2.8 A 

 Only carbonate rocks at the surface 

 Only carbonate rocks in range of the freshwater lens 

 Autogenic catchment 

II. Carbonate-cover Island – Fig 2.8  B 

 Only carbonate rocks at the surface 

 But consists of non-carbonate rock underneath which can partition 

the freshwater lens 

 Conduit cave systems can form at the contact of the carbonate and 

non-carbonate rocks 

 Autogenic catchment 

III. Composite Island – Fig 2.8 C 

 Both carbonate and non-carbonate rocks at the surface 
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 Conduit cave systems can form at the contact of the carbonate and 

non-carbonate rocks 

 Autogenic and allogenic catchment (allogenic due to non-

carbonate rock) 

IV. Complex Island – Fig 2.8 D 

 Carbonate and non-carbonate rocks are complexly mixed together 

due to 

depositional relationships and/or faulting 

 The freshwater lens can be perched, isolated, or confined 

 Autogenic and allogenic catchment (allogenic due to non-

carbonate rock) 
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Figure 2.6 Saturation curve for CaCO3. From Dreybrodt (2000). 

Mylroie and Mylroie (2007, p. 60) explains: 
“Because the saturation curve for CaCO3 is convex upward, waters saturated at two 
different initial conditions, as at A and B in the figure, when mixed create a water body, 
C, that is beneath the saturation curve, and so is unsaturated. This water body now has 
renewed dissolutional potential and will dissolve CaCO3 until it again reaches the 
saturation curve at D.” 
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Figure 2.7 The freshwater lens within the carbonate rock mixes with seawater from 
below to create flank margin caves at the margin of the freshwater lens 
under the flank of the dune.  

This diagram also illustrates most of the karst features found on the islands except blue 
holes. From Mylroie and Mylroie (2013a) 
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Figure 2.8 The four classifications of islands addressed in the CIKM. 

The Bahamas are classified as a type (A), simple carbonate island. From Mylroie (2013). 
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Impact of karst on carbonate islands 

Caves and karst landscapes have much to offer people from all walks of life 

including nature enthusiasts who enjoy dramatic landscapes and adventures, as well as 

scientists who study caves, their environments, and their geomorphologic processes for 

various reasons (White, 1988). Unfortunately, along with the natural beauty that many 

karst features provide, there are many land-use hazards that must be considered. First, 

karst land-use hazards will be addressed from a global perspective and then more 

specifically from an island karst perspective. 

Karst terrains affect two important factors of land development: 

1. Water resources 

2. Land stability 

Water Resources 

Karst landscapes and the dissolution pathways that form within the rock 

throughout the subsurface bring forth two issues. The immediate infiltration of surface 

water deems both water quantity and water quality vulnerable in the carbonate setting 

(not to mention soil loss). White (1988, p. 380) states, “Water management in the karst is 

a special problem as is, for example, water management in deserts or on small islands”. 

Water is difficult to obtain due to a combination of things such as the absence of surface 

drainage, rapid infiltration, and internal runoff in karst terrains (White, 1988). Obtaining 

freshwater requires well extraction, but well siting and effective collection is difficult in 

limestone areas (Ford and Williams, 2007). With a limited water budget, contamination is 

critical. In a non-carbonate setting, water infiltrates through the soil, slowly being filtered 

and cleaned as it moves through the surface, but the direct fast flow connections to the 
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water table provided by dissolution pathways in limestone allow contaminants to travel 

further distances and to be a greater risk than once anticipated. Dye traces performed by 

Aley (1972) confirmed flow routes of 25 km to distant springs. White (1988) covers a 

variety of possible water contamination sources for karst freshwater including: dumps, 

hydrocarbon spills/leaks, floods, concentrated runoff (from road salt/parking lot/feedlot 

or barnyard), leaking tanks or pipes, industrial waste, organic chemicals, and saltwater 

intrusion. These contamination issues are more prevalent in karst hydrology than other 

settings due to the ability for these conduits to transmit water, unfiltered, over long 

distances, with turbulent flow, to unexpected destinations. The mixing chambers of the 

“island karst” features do not transmit water through conduits, but the danger of 

contamination is still critical. 

Land Stability 

Land stability issues in karst landscapes can be a nuisance to farm practices, 

yielding acres of worthless land (Ford and Williams, 2007). Mayan agricultural practices 

such as slash-and-burn (milpa) farming transformed the Yucatan Peninsula into a karst 

desert, as the soils were lost to the subsurface (Doehring and Butler, 1974). Cutter-and-

pinnacle topography (Fig 2.9) at depth can result in differential compaction and 

foundation damage (White, 1988). White (1988) refers to Knight (1971) which said, 

“Karst lands are the bane of building construction”.  Limestone bedrock under a 

streambed can have solution conduits in excess of 100 meters in length near dams 

(Moneymaker, 1941). This suggests the channels may not support the dam if waters drain 

via conduit flow. Assessment of the channel bedrock must be performed when 

considering creating a reservoir in karst terrains. 
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Figure 2.9 This road cut shows cutter-and- pinnacle topography at depth (arrows), 
which allows for differential compaction if a structure is built on the land 
surface (i.e. compacting more on the right than on the left). 

 

 

 

  

 

  

 

Modified from Lace and Mylroie (2013). 

Karst landscapes vary in expression due to the geomorphological processes that 

formed the karst feature. Depending on geographical presentation, karst features may be 

interpreted as sinkholes, irregular rocky landscapes, shallow collapse features, blue holes, 

or underground caves, all of which pose different land-use hazards for water resources 

and land stability.  Karst features are characterized by the geomorphological processes 

that sculpture them (White, 1988). Understanding the process and environment in which 

each feature occurs allows land management strategies to be adjusted for various feature 

types or terrains. While most karst research in the past has been conducted on the 

continents, the process and environment in which “island karst” form has not been 

previously understood and applied to land use management. 
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Breakdown 

White (1988) discusses roof breakdown in the continental cave setting. There are 

two factors to consider when evaluating roof breakdown, beam thickness (roof thickness) 

and beam length (maximum chamber width). White goes on to explain that many island 

settings are more homogeneous than the continental setting, especially the carbonate 

islands.  The beam thickness that White (1988) refers to is unit layers of overburden, i.e., 

each layer of homogeneous rock type. Beam thickness is especially important when there 

are alternating layers of rock, some rock units being stronger than others are due to 

differences in density and flexural strength (White, 1988). In the Bahamas, the carbonate 

is young and relatively homogeneous in nature from the surface to kilometers at depth 

(Meyerhoff and Hatten, 1974; Uchupi et al., 1971). Rather than referring to the overlying 

singular rock type as a beam, for the remainder of this paper, the beam thickness may be 

referred to as the roof thickness. Now, with a homogenous overburden, it is simpler to 

calculate the overhead roof strength. Whether it is a fixed beam or a cantilever, the 

density and flexural strength of the beam rock will be the same in all calculations. The 

fixed beam, the stronger of the two, is supported on both sides by beds above and below, 

while the cantilever beam is supported only on one side. The roof span or beam length, 

density, and flexural strength of the rock are used to calculate the critical thickness or the 

thickness in which the overburden must be to support the air-filled void. This study will 

focus in part on the critical thickness in which collapse occurs in carbonates. 

Collapse Hazards 

The common dictionary definition of collapse reads, “to fall down or inward 

suddenly; cave in” (American Heritage, 2003). Collapse poses perhaps the biggest threat 
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among the many land-use hazards of karst landscapes. There are two types of collapse 

hazards: 

1. Cover-collapse 

2. Cave roof-collapse 

Cover-collapse 

Cover-collapse sinkholes (Fig 2.10), formed by the washout of sediment 

overlying cavernous bedrock, are dangerous due to the unpredictable timing of collapse. 

Sinkholes form by processes termed, epigenic, receiving water from the surface and 

dissolving limestone as it makes its way to the water table (Palmer, 1991). Sinkholes and 

pit caves alike transmit water vertically through vadose fast flow routes. The collapse 

occurs after processes have created a void in the overlying sediments, which collapses 

instantaneously as illustrated in Fig 2.11.  Pit caves (Fig 2.12) occur in locations where 

the carbonates are expressed at the surface (i.e., when there is not a thick soil layer 

available to create the soil arch).  Continental stream caves, pit caves, and typical 

sinkholes formed by epigenic processes are not of real concern for the scope of this 

paper; therefore, cover collapse sinkholes and other epigenic karst features can be 

disregarded for the remainder of this paper.  The Bahamas lack thick soils, or “cover”, so 

large voids cannot be hosted with such a thin cover, and cover collapse therefore does not 

occur. 
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Figure 2.10 Sinkhole formed under a Chevrolet Corvette car museum in Kentucky. 

When the collapse occurred , the cars fell into the cavity.  Thankfully, the collapse 
occurred at night when no one was in the museum. (USA Today, 2014) 

Figure 2.11 Cartoon diagram of how a cover-collapse sinkhole forms and collapses into 
the void at depth (USGS, 2013). 
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Figure 2.12 Pit caves, which form by epigenic processes, act as fast flow routes to the 
subsurface. 

Cave roof collapse 

Water resources and minor land stability issues seem dangerous enough, but 

collapse events (Fig 2.13) are often catastrophic and even fatal (e.g. Barbados, see 

Kambesis and Machel, 2013, p. 241-242). Cave roof collapse is associated with flank 

margin caves; a karst feature formed by processes decoupled from interactions with 

surface waters. As previously noted by Palmer (1991), flank margin caves are formed in 

phreatic conditions with mixing waters of different chemistries at the location of the 

island margin at the time of cave formation (sea-level change means that the location of 
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the margin of the freshwater lens then may not be the margin now). With sea level in a 

different position today than when these voids were created, it is important to locate flank 

margin caves before developing the land surface in order to mitigate the effects of cave 

roof collapse (Fig 2.14). The objective of this study requires the remainder of this thesis 

to specifically address the island karst cave roof-collapse issue and disregard all other 

land-use hazards associated with the karst environment. 

Figure 2.13 A) Collapse of a thin bedrock roof.  B) A view from below, looking out of 
the hole in the roof. 
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Figure 2.14 Images and map of banana holes from San Salvador Island, Bahamas.  

A) Map of a partially collapsed banana hole. B) Large, partially collapsed banana hole; 
note the 2m of wall exposure (man for scale).  C) Image of another partially collapsed 
banana hole; note the depth of the void is chest high on the man in the image.  D) Banana 
hole chamber with intact roof.  From Mylroie et al. (2012). 

It has been suggested that dune slope could have a significant effect on the 

collapse of flank margin caves (Wilson et al., 1995; Ho et al., 2013). It was proposed that 

the distal slope of the overlying dune could render some insight for determining the 

overburden thickness of subsurface voids, and therefore their collapse potential.  The 

problem with this approach is that the topographic maps that would be used to determine 

slope and infer bedrock thickness over potential flank margin caves may lack the contour 

resolution necessary to accurately display slope at the scale of the caves themselves. The 
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subtle variations in hillslope may not be recognized due to the 20 ft (6 m) contour 

resolution, limiting the predictive capabilities of derived slope as a proxy.  An analysis of 

slope, as determined from topographic maps, coupled with maps of known caves, will be 

conducted to determine if those slopes are a predictor of cave collapse.  The hypothesis to 

be tested is: 

Topographic maps produced by the Bahamas Lands and Surveys 

Department are insufficient in resolution to be used as a predictor of flank margin 

cave collapse risk in The Bahamas. 
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CHAPTER III 

METHODS 

The Bahamas are classified as a Simple Carbonate Island under the conditions of 

the CIKM. The Bahamas provide an ideal study area to develop a test model for 

hypogenic cave roof-collapse due to the islands’ youth, relatively simple geology, and 

lack of tectonics. The majority of this research is based on cave data that has been 

archived over the past 38 years during the development of the Carbonate Island Karst 

Model (CIKM) (e.g. Mylroie and Mylroie, 2007). The work was conducted under a 

Bahamian government research permit issued to Dr. John Mylroie. 

Data Collection 

There are three types of data needed to complete this project: cave location data 

(GPS points, 15 m accuracy), cave maps, and topographic maps for the entire study area. 

The SRTM (Shuttle Radar Topography Mission) DEMs available from the US 

government have 90 m accuracy. The STRM DEMs provide less accuracy than 1972 topo 

maps, which have 20 ft (6 m) contours. For this reason, topographic maps from the Lands 

and Surveys Department of the Bahamas were used to obtain the slope overlying each 

cave. These topo maps have 20 ft (6 m) contour lines and allow the position of the cave 

to be plotted on the surface, as well as calculate the slope for that area.  Some maps have 
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a 10 ft (3 m) contour line placed between the 20 ft (6 m) elevation and sea level in coastal 

areas, for better resolution of coasts. 

Slope Analysis 

First, the caves are positioned on the topographic map using GPS location data 

acquired from Dr. Mylroie (Dr. Mylroie is the Chief Scientist of the Coastal Cave 

Survey). Each cave’s x-y location was loaded into Google Earth and then manually 

plotted onto each island’s topographic map. The topographic map set for each island 

consisted of 2 to 28 sheets to cover the entire island and various cays surrounding each 

island. Cave maps and/or topographic maps were not available for every cave that had a 

GPS point; only the caves with GPS location, a detailed cave map, and the corresponding 

topographic map sheet were used in the study. Each cave was located on the topographic 

map, and the slope inputs (rise/run) were manually measured using calipers and the map 

scale. The slope inputs were then recorded in Microsoft Excel to populate rise and run 

columns. Next, using functions offered in Excel, the slope was derived by using the 

following formula:  Slope=DEGREES (ATAN (rise/run)). By analyzing the slope of the 

flank of the dune, properly placing the cave and its vertical profile in relation to that 

slope, which sections demonstrate collapse and how thick the roof (overburden) is in 

those areas can be estimated. 

Cave Entrances 

The secondary analysis should aid in the prediction of cave collapse risk in 

potentially dangerous regions with unknown caves using a slope/collapse relationship. 

Some caves have many entrances and areas with collapse, while others may have a single 
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entry point with little to no evidence of collapse.  When analyzing each cave map, each 

cave entrance was recorded in Excel and categorized by the following entrance types: 

side breach (cliff retreat), roof collapse, or pit intersection. The differentiation between 

collapse and pit intersection was subjective but used the following criteria: if the hole in 

the roof was small and no collapse breccia was noted on the floor of the cave, the 

entrance classification was assigned as a pit intersection. The total number of entrances 

was also recorded. The slope of the overlying topography was plotted against each of the 

three categories of entrances and the sum of the entrances in efforts to determine if a 

relationship between slope and entrance type exists.  Subsequently, during analysis, side 

and collapse entrances were treated as a single entrance type (mass wasting), to 

differentiate them from the simple downward dissolution formation mechanism of pit 

entrances. 

Unsupported Span (maximum chamber width) 

The maximum chamber width was recorded to help determine the relationship 

between roof span and roof collapse. By documenting the maximum unsupported span, 

along with the overlying slope, it can be further demonstrated what effect slope has on 

roof thickness, that in turn allows collapse. For example, a cave with chamber size (x) 

and an overlying slope (z) does not demonstrate collapse, but another cave with equal 

chamber size (x) and lessor overlying slope (y) does demonstrate collapse. This approach 

reveals how chamber size, effects collapse potential when coupled with roof thickness. It 

is not believed that cave chamber size alone is the cause for collapse, as there are caves 

with huge chambers with very little to zero collapse. The cause for collapse is beam 
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thickness (roof thickness) coupled with the maximum unsupported span, neither of the 

two causes collapse by itself. 

Data Analysis 

The data collected will not have a normal distribution.  The data will be presented 

by histograms as a nonparametic display to determine if there is a relationship between 

the cave entrances and cave chambers, and the slopes that surround them. 
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CHAPTER IV 

RESULTS 

A total of 107 caves across eight islands (consisting of over 70 topographic map 

sheets) were analyzed to determine if slopes calculated from topographic maps were 

predictive of the degree of flank margin cave collapse. Figures 4.1, 4.2, 4.2, 4.4, 4.5, 4.6, 

4.7, 4.8, and 4.9 show the study area with the cave locations plotted into Google Earth 

using GPS data points. The full table of results for slope, entrance type/quantity, and 

maximum chamber width for each cave are shown in Appendix A. 
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Figure 4.1 The study area with each island used in the topographic map analysis of 
The Bahamas labeled. 

Other nearby political entities are also labeled for geographic reference. (Google Earth, 
2014). 
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Figure 4.2 Caves used in the topographic map analysis plotted on Abaco Island  
(Google Earth, 2014). 

Figure 4.3 Caves used in the topographic map analysis plotted on Acklins Island 
(Google Earth, 2014). 

41 



 

 

 

 
 

 

 
 

 

Figure 4.4 Caves used in the topographic map analysis plotted on Cat Island (Google 
Earth, 2014). 

Figure 4.5 Caves used in the topographic map analysis plotted on Crooked Island  
(Google Earth, 2014). 
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Figure 4.6 Caves used in the topographic map analysis plotted on Eleuthera 
(Google Earth, 2014). 

Figure 4.7 Caves used in the topographic map analysis plotted on Long Island  
(Google Earth, 2014). 
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Figure 4.8 Caves used in the topographic map analysis plotted on New Providence 
(Google Earth, 2014) 

Figure 4.9 Caves used in the topographic map analysis plotted on San Salvador 
(Google Earth, 2014) 
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A summary of those results is as follows: There were a total of 408 cave 

entrances. Of the 408 total, there were 123 side breach entrances, 185 pit entrances, and 

100 collapse entrances recorded. Signs of roof collapse were absent in 61 of the 107 

caves analyzed. As previously stated, if the hole in the roof was small and no collapse 

breccia was noted on the floor of the cave, the entrance classification was assigned as a 

pit intersection. Histograms of slope vs entrance type are shown in Figures 4.10, 4.11, 

4.12, 4.13. Rare slopes greater than 14 degrees are not included (all having side 

entrances). These slopes range from 17 to 45 degrees, accounting for 12 slopes and 15 

side entrances. The four caves with 45-degree slopes are actually short caves in bedrock 

towers with vertical walls and flat tops.  The calculation of rise over run in these cases 

creates a 45-degree slope value, where the slope starts as a 90-degree wall and ends as a 

zero degree flat top.  The full data are in Appendix A. The histograms of slope vs 

entrance type (total, side, collapse, and pit) do not indicate a relationship detectable 

between slope and any single type of entrance type (Fig 4.14) from topographic data of 

20 ft (6 m) resolution.   
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Figure 4.10 A) Histogram of slope vs the number of total entrances for each of the 103 
caves in the topographic map study. B) Histogram of slope vs the number 
of total entrances for 95 of the caves in the topographic map analysis. For 
Figures 4.10B to 4.17, slope values above 14 degrees not displayed; see 
text for explanation. 
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Figure 4.11 Histogram of slope vs the number of side breach entrances for each of the 
95 caves in the topographic map analysis. 

Figure 4.12 Histogram of slope vs the number of collapse entrances for each of the 95 
caves in the topographic map analysis. 
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Figure 4.13 Plot of slope vs the number of pit entrances for each of the 95 caves in the 
topographic map analysis. 
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Figure 4.14 Histogram of each entrance type for 95 caves using a three degree bin size. 
Note that the entrance types occur across all slopes from gentle to steep. 
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Each cave in the study had one slope measurement. The total number of slope 

measurements of each unit slope value was plotted to determine the slope abundance for 

each slope (14 degrees or below) used in the study (Fig 4.15). Both side and collapse 

breaches are a result of large scale surface erosion (mechanical processes), unlike pit 

entrances which form by dissolution (chemical processes).  For this reason the number of 

surface erosion cave entrances (side and collapse) per cave were plotted along with slope 

abundance (Fig 4.16); the number of cave entrances exceeds slope abundance. Therefore, 

most caves have more than one macroscopic entrance, expected as 408 entrances were 

recorded for 107 caves.  Combining side and collapse entrances produces an entrance-to-

cave ratio of 223/107 = 2.08.  Figure 4.16 shows that the approximate ratio of 2 side-

plus-collapse entrances per cave is also observed as approximately 2 side-plus-collapse 

entrances per slope segment.  The distribution of pit entrances differed from that of side 

and collapse entrances (Fig. 4.17). The ratios of entrance type abundance per slope 

abundance is shown in Table 4.1. 
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Table 4.1 The ratio of entrance type abundance per slope abundance 

Slope 

Ratio of Total 
Entrances to 

Slope 
Abundance 

Ratio of Side 
Entrance to Slope 

Abundance 

Ratio of Collapse 
Entrance to Slope 

Abundance 

Ratio of Pit 
Entrance to 

Slope 
Abundance 

Ratio of 
Surface 
Erosion 

Entrances to 
Slope 

Abundance 

0 4.00 0.00 2.00 2.00 2.00 

1 15.75 1.00 1.00 13.75 2.00 

2 4.80 1.00 1.40 2.40 2.40 

3 2.83 0.83 1.00 1.00 1.83 

4 2.33 1.33 0.50 0.42 1.83 

5 3.00 1.06 1.38 0.56 2.44 

6 1.75 0.88 0.75 0.13 1.63 

7 5.60 1.70 0.70 3.20 2.40 

8 2.25 1.75 0.50 0.00 2.25 

9 5.38 0.88 2.00 2.50 2.88 

10 0.00 0.00 0.00 0.00 0.00 

11 2.73 1.09 0.82 0.82 1.91 

12 0.00 0.00 0.00 0.00 0.00 

13 11.50 1.00 0.00 10.50 1.00 

14 2.33 1.33 0.67 0.33 2.00 

The number of each cave entrance type is divided by each slope values’ number of 
occurrences in the study. 

50 



 

 

 

  
  

Figure 4.15 Shows the frequency of each slope measurement for 95 caves used in the 
study. 

51 



 

 

 

 
 

 
 

Figure 4.16 Side and collapse breaches combined comparing to the abundance of each 
slope. 

Note that the number of entrances per slope value is approxamately 2 times the slope 
abundance. 
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Figure 4.17 Shows the distribution of pit entrances differing from that of the combined 
surface erosion entrance types (side and collapse). 

Chamber size (maximum chamber width) was analyzed to see what effect it may 

play in collapse risk. The slope for each cave, along with the chamber size was plotted on 

a histogram for each of the caves in the study (Fig 4.18). This plot allows the variance in 

chamber size to be observed, and helps the user realize how unpredictable chamber size 

is. Since chamber size and roof thickness are coupled as the causes for collapse, this 

unpredictability of chamber size further complicates using slope as a predictor of 

collapse.   
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Figure 4.18 These data exemplify that the size of the void at depth varies greatly 
independent of the slope (e.g., the same size void is plotted at 3, 6, 9, and 
12 degrees). Therefore, collapse cannot be predicted using slope by itslef, 
as the chamber size effects the roof support. 

Following the topographic map analysis, a smaller case study used six caves that 

have been field surveyed (1 m contours). The same methods used for the topographic 

map analyses were used on these six surveys. These data do not suggest that there is a 

strong relationship (Fig 4.19) between slope and entrance type. The real relationship 

would be slope to roof thickness, as roof thickness (a proxy for beam thickness) coupled 

with chamber width is what allows the collapse to occur. The six-cave case study 

provides data shown in Table 4.2. 
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Table 4.2 Shows the variation in the hillslope using the higher resolution field 
surveyed data to calculate slope. 

Cave Name Transect Hillslope 

1702 Cave a 8.3 

b 21.8 

c 4.9 

d 3.4 

Hatchet Bay Cave a 7.8 

b 5.5 

c 5.7 

d 4.8 

Ten Bay Cave a 2.7 

b 2.5 

c 5.7 

d 6.0 

Maroon Hill Cave a 9.0 

b 3.4 

c 11.3 

Salt Pond Hill Cave a 6.1 

b 2.0 

c 2.9 

Lighthouse Cave a 18.4 

Transects for each cave can be located in Fig 4.26, 4.27, 4.28, 4.29, 4.30, 4.31. 
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Figure 4.19 Histogram of entrance type vs slope for the six caves used in the 1 m field 
surveyed map analysis. 

The slope was calculated over each section of collapse. 

These data were extracted from cave maps with the field surveyed (1 meter) 

contours overlaid (Fig.  4.20, 4.21, 4.22, 4.23, 4.24, 4.25). The higher resolution of 

spatial data leads to a more detailed analysis; these data allowed the slope to be 

calculated over the entire cave as well as the slope over the sections that showed collapse 

(Fig. 4.26, 4.27, 4.28, 4.29, 4.30, 4.31). A visual comparison of the two data types helps 

to clarify the limitations of this study (Fig. 4.20, 4.21, 4.22, 4.23, 4.24, 4.25).  Figure 4.19 

does show some trends.  Side entrances fall towards the high slope angle end of the plot, 

collapse entrances towards the low slope angle end of the plot.  Pit caves are strongly 

biased to the lower slope angles. 
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Figure 4.20 Shows the resolution difference between the topographic map (20 ft 
contours; bottom) and the field surveyed map (1 m (3 ft) contours; top) to 
provide a understanding of the limitations of the study. 

Notice the collapse is in areas where the contours are more spread out, indicating a more 
gentle slope. 
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Figure 4.21 Shows the resolution difference between the topographic map (20 ft 
contours; bottom) and the field surveyed map (1 m (3 ft) contours; top) to 
provide a understanding of the limitations of the study. 

Notice the collapse is in areas where the contours are more spread out, indicating a more 
gentle slope.   
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Figure 4.22 Shows the resolution difference between the field surveyed map (1 m (3 ft) 
contours; left) and the topographic map (20 ft contours; right) and to 
provide an understanding of the limitations of the study. 

Figure 4.23 Shows the resolution difference between the field surveyed map (1 m (3 ft) 
contours; left) and the topographic map (20 ft contours; right) and to 
provide an understanding of the limitations of the study. 
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Figure 4.24 Shows the resolution difference between the field surveyed map (1 m (3 ft) 
contours; left) and the topographic map (20 ft contours; right) and to 
provide an understanding of the limitations of the study. 

Figure 4.25 Shows the resolution difference between the topographic map (20 ft 
contours; bottom) and the field surveyed map (1 m (3 ft) contours; top) to 
provide a understanding of the limitations of the study. 
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Figure 4.26 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3.  Note the slope over areas 
with collapse (c and d). 

Figure 4.27 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3.  

61 



 

 

 

 
 

 

 
 

Figure 4.28 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3.  

Figure 4.29 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3. 

62 



 

 

 

 
 

 

 
 

Figure 4.30 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3.    

Figure 4.31 Shows the transects drawn in to illustrate where the slope was calculated. 
The transect letters correspond with Table 4.3.  
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At this point, a realization was made that the accuracy of the calculated slope was 

not good enough to estimate roof thickness from the cave map data. The original 

methodology included a few steps that incorporated the estimation of roof thickness for 

areas of collapse using the calculated slope from the topographic maps, but due to the 

limitations of the data accuracy, these methods were not performed. 

64 



 

 

 

 

 

  

  

 

  

  

 

  

 

  

CHAPTER V 

DISCUSSION 

Topographic Map Analysis 

This project focused on whether or not 7.5-minute topographic map sheets could 

be used to predict cave roof collapse; the resolution of the topographic maps does not 

allow such predictions to be produced. Using the calculated slope of 107 caves from data 

extracted from the topographic map sheets is based on the idea that slope can be used as a 

proxy for roof thickness (roof thickness being one of the critical components that initiates 

collapse). The resolution of the currently available topographic data allows the roof 

overhead to be crudely estimated using the slope derived from the topographic maps, but 

this slope is not accurate enough to determine roof thickness as the spatial data 

limitations are simply transferred. The variations in the hillslope, which are not 

noticeable from the topographic maps, can lead to an inaccurate roof thickness reading. 

With many areas having terraced slopes (Fig 5.1, 5.2), the roof thickness can vary much 

over what appears to be a steady slope on the topographic  maps but is not so in the real 

world. The map of 1702 Cave (Fig 4.26) is an excellent example of how the flat areas 

(wider contour spacing) allows for collapse. If the elevation for both examples from Fig 

5.1 (A) and (B) were extracted from topographic maps with 20 ft (6 m) contour lines and 

was used to calculate the slope, approximately the same slope would be derived for these 

two obviously different dune profiles. When the elevation data for both examples from 
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Fig 5.2 (A) and (B) were extracted from the field surveyed 1 m contour maps and was 

used to calculate the slope, the slopes for (A) and (B) would be much different. The 

problem with this approach is that with the resolution of topographic map sheets, if a 

prediction model was made, it would be misleading (much like the example using Figure 

5.1). In turn, the model could overlook a collapse risk (e.g. say that it is safe to build) by 

assuming a steady slope when in reality the landscape may have a varying slope 

(introducing flat areas with potentially thin roofs). If this model was constructed using 

inadequate spatial resolution, it could result in someone building in a location that is 

actually prone to collapse (on accident). The worst-case scenario of this development 

would be a collapse event resulting in loss of life, time, and/or investment capital. 

Figure 5.1 Topographic profiles of two dunes overlying an identical void at depth. 

Using 6 m contour lines to calculate slope for these two profiles, the two slopes would 
appear to have approximately the same slope.  A. Example of a dune with steady slope. 
B. Example of a dune with a variation in hillsope. Note that collapse would be expected 
in B, but collapse would not predicted if using the slope calculated from the data 
collection points shown above (arrows). 
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Figure 5.2 Topographic profiles of two dunes overlying an identical void at depth. 

Using 1 m contour lines to calculate slope for these two profiles, the two slopes would 
differ greatly and allow for much more accurate prediction. A. Example of a dune with a 
steady slope. B. Example of a dune with a variation in hillslope. Note that collapse would 
be expected in B, and that the collapse could be predicted when using the higher 
resolution (1 m) elevation data. 

Flank margin cave entrances are interesting due to the fact that flank margin caves 

form as entranceless voids beneath the surface (Fig 1.1). The caves remain entranceless 

until the cave is breached by cliff retreat (side entrance), roof collapse (overhead entrance 

due to roof thickness and unsupported span), or pit intersection (overhead entrance occurs 

by localized active dissolution). The 408 cave entrances consisted mostly of pit entrances 

(185); pits are typically the smallest type of entrance. Side breach entrances were the next 

most common entrance type (123) and are the largest entrance type, typically allowing 

one to walk/crawl into the cave from the side. Collapse breaches (100) are the most 

dangerous entrance type and often have a large area of collapse over gentle slopes. Side 

breach entrances are common near the coastline or where cliff retreat has occurred, 

commonly a steeper slope (e.g. Figure 4.19; transect (c) in Fig 4.29). Pit entrances are 

non-selective to their location of formation; pit entrances occur by the downward 

dissolution of rock as explained by epigenic karst processes (meteoric water). Side breach 
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and collapse entrances are the result of processes that occurred after the hypogenic 

speleogenesis of the cave was complete; pit entrances form by active epigenic 

speleogenesis. Many caves with the same overlying slope had a different entrance type, 

supporting the notion that is more than just roof thickness that effect collapse; chamber 

width coupled with roof thickness controls the initiation of collapse. Chamber size and 

the slope for each cave were plotted together in a histogram, and as expected, there is no 

relationship between these two variables.  Flank margin caves are de-coupled from 

surface processes, and their formation is controlled by the geochemistry and flow 

dynamics of the fresh-water lens margin.  Therefore, as Figure 4.18 demonstrates, 

chamber size has no relationship to slope. 

On the data plots for the 7.5 minute topographic maps, pit entrances show a 

relationship with low angle or gentle slopes (Figure 4.13).  That relationship persists 

when the slope is calculated from a 1 m contour survey (Figure 4.19).  Side and collapse 

entrances seem to show a relationship to gentle to moderate slopes (Figures 4.11 and 

4.12), but that apparent relationship is an artifact of slope abundance, as Figure 4.16 

demonstrates when side and collapse entrances are combined as a single mass wasting 

entrance type, the ratio of those entrances to slope abundance stays around 2 (Table 4.1).  

When the more detailed slope analysis using 1 m contours is displayed (Figure 4.19), 

collapse and pit entrances clustered near the low slope end of the plot and side entrances 

at the middle or high end of the plot. 

The distribution of entrances as to slope angle is based on entrance origin.  Pit 

entrances result from localized vadose flow dissolving its way downward.  These pits are 

commonly only a few meters deep, but they can be as much as 10 m deep on rare 

68 



 

 

  

 

 

 

  

 

  
 

  
 

  
 

 

 

 

occasions.  When the slope is low, the amount of rock over the cave is less than when the 

slope is steep (Figures 5.1 and 5.2).  As a result, a dissolution pit only a few meters deep 

is more likely to enter a cave when the slope is low and the roof is thin, regardless of the 

chamber size below and the amount of unsupported room span (Figure 5.3).  As Figure 

4.13 shows, pits can have a variety of depths, but small depths are more common, so 

while pit entrances are found on all slopes, they predominate at low slopes where the 

cave roof must be thin (under a steep slope, the cave roof can be thick or thin). 

Figure 5.3 This figure shows two dunes with differing slopes overlying the same size 
void at depth. 

The pit entrances drawn (red lines) depict how slope effects the occurrence of a pit 
entrance. Pit caves are shallow dissolution features, allowing them to intersect only the 
voids with thin roofs. A) The greater slope provides a thicker roof and prevents pit 
intersection from being common. B) The flatter, more gentle slope allows for pit 
intersection due to the thin roof conditions. 

Collapse entrances result from roof failure, and the thinner the roof (low beam 

thickness), or the wider the chamber (high unsupported span value), or both, the more 

likely is roof collapse.  However, chamber width has no relation to slope (Figure 4.18), so 

collapse can occur at any slope but does seem to occur mostly at lower slopes which 

would create a thinner bedrock roof (Figures 5.1 and 5.2).  This slope preference is hinted 
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at in Figure 4.12, but is better displayed in Figure 4.19 when higher slope resolution is 

available.  

Side entrances result from mass wasting and erosion of hillslopes.  Because flank 

margin caves form under the flank of the land, at the distal margin of the fresh-water lens, 

to become exposed by surface erosion (as opposed to collapse or pit development) 

requires that the hillslopes retreat laterally so that the cave is intersected.  The key is 

lateral retreat.  The margin of a fresh-water lens during the last interglacial was at about 6 

m elevation.  A gentle slope starts out at an elevation below 6 m, and to reach that 

elevation must retreat significantly.  A steep slope will reach the 6 m point after less 

slope retreat; a gentle slope must retreat farther to intersect a cave than a steep slope 

(Figure 5.4).  While the data in Figure 4.11 are ambiguous regarding slope, the data in 

Figure 4.19 are much more convincing, with side entrances preferentially found at higher 

slope angles.  Figure 4.19 again demonstrates the necessity of high resolution slope 

analysis. 
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Figure 5.4 A) The steeper slope requires less cliff retreat to breach the cave by a side 
entrance. B) The more gentle slope requires more cliff retreat to breach the 
void. 

   
 

 

  

 

 

 

  

 

Commonly, the steeper slopes result in side entrances, and the more gentle slopes result 
in roof collapse. 

Unsupported Span 

The beam thickness (a critical factor in predicting collapse) cannot be accurately 

assessed using the topographic maps produced by the Bahamas Lands and Surveys 

Department and therefore a prediction model cannot be constructed based on slope from 

that source. The combination of beam thickness (roof thickness) and unsupported span 

(maximum chamber width) explained by (White, 1988) controls roof collapse. Note that 

the unsupported span uses the maximum value for width – when a chamber size is 

measured, the longest measurement is typically the length and the lesser measurement is 

typically the width (i.e. the width is the shorter of the two measurements taken for 

chamber size). Several examples are presented next using cave (x): 
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Cave (x) - large span under a thin roof = may result in collapse 

Cave (x) - small span under a thin roof = may not result in collapse 

With a change in span or a change in roof thickness, at a certain threshold 

collapse would initiate. The proposed idea that slopes can be used as an indicator of roof 

thickness is based on the concept that: 

Cave (x) – large span under a thick roof (steep slope) = may not result in collapse 

Cave (x) – same span under a gentle slope (thinner roof) = may result in collapse. 

The chamber size (maximum width) and slope was plotted for each cave to 

illustrate that chamber size and slope operate independently. The same void size is 

observable at a 3, 6, 9, and 12-degree slope. In addition, this plot helps to explain why 

some very gentle slopes do not demonstrate collapse; this could be because the void at 

depth has a small chamber size and the roof thickness is sufficient to support the roof 

span against the forces of gravity. For use as a prediction model in the future, it is 

important to note that the chamber size of unknown subsurface voids is not predictable – 

therefore slope as a proxy for roof thickness is the only insight into ways of predicting 

collapse. While only one of the two triggers that initiate collapse is observable from the 

surface, the data to observe that trigger has limited accuracy at this time. 

The following scenario will help to demonstrate how the configuration of the cave 

chamber has a large influence on collapse potential: 

A 10 x 2.5 meter void and a 5 x 5 meter void both have an area of 25 square 

meters, but one of these voids is more prone to collapse than the other. With the same 

roof thickness (assuming same slope) and everything held constant, the 5 x 5 m void 

would initiate collapse first due to the greater unsupported span measured as a width 
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(roof span and roof thickness being the two controls that initiate collapse). As slope 

decreases over the two voids (the 5 x 5 m chamber having a greater unsupported span) 

and roof thickness decreases to a point where the roof thickness can no longer support a 

passage of 5 m, collapse would initiate. The 10 x 2.5 m void would survive a while 

longer until the roof thickness decreased to an even lesser value that could no longer 

support a span of 2.5 m. 

When evaluating the risk of cave collapse, it is important to over predict rather 

than under predict the risk. That is, it is better to say, “This area has a risk for collapse” 

rather than, “It would probably be safe to build there”, and then be wrong. The cliché 

saying – “Better safe than sorry”, illustrates this idea rather well.  

Geophysical Methods 

Gravity surveys have been a successful tool used to located flank margin caves 

and banana holes in the Bahamas (Kunze and Mylroie, 1991). GPR (ground penetrating 

radar) was used (William Wilson of Wilson (1995) was hired to do the GPR survey) to 

locate voids when the San Salvador airport runway was extended from 4000 to 8000 feet 

(Mylroie, personal comm). Over 25 voids were located and infilled during this project 

(most likely banana holes) (Mylroie, personal comm). Gravity, while successful, was 

labor intensive and not amenable to broad reconnaissance (Kunze and Mylroie 1991). 

The GPR was very successful, but the work was carried out on level, cleared land. In the 

vegetated, irregular areas, GPR would likely be less successful. It is stated in Kunze and 

Mylroie (1991) that the dense brush of the Bahamas make GPR impractical. Both GPR 

and gravity promise methods for determining the location and size of voids and depth, 

but the use of such tools must be site specific and preferably the site be cleared of the 
73 



 

 

 

  

 

 

 

 

 

 

  

 

 

 

  

native bush. When an area is predicted to be at risk for collapse due to the slope of the 

landscape and the assumption of a large span at depth, it is then that geophysical methods 

could be used to check for voids beneath the surface.   

Future Work 

Slope varies depending on where the transect is drawn. Using lidar or advanced 

satellite data (both capable of sub-meter accuracy) in this study would open up other 

opportunities to address this problem. The cost for lidar or satellite data far exceeded the 

budget of this research project; what satellite data was available had worse resolution 

than the topographic maps (90 m vs 6 m, respectively). Using GIS, the slope could be 

calculated for an entire study area using the slope tool in spatial analyst. Instead of the 

slope being calculated over chosen transects, each cell within the raster would have a 

slope value. The slope calculation in spatial analyst assigns each cell a slope value by 

taking the maximum change in elevation and dividing it by the distance between the cell 

and its eight neighbors.  The consistency of the GIS slope calculation process removes 

human error and human bias from the process of slope calculation. With a full sample 

size of caves, cave maps, and high accuracy elevation data (e.g. Lidar), along with the 

computing potential of GIS, it is thought that a correlation may be found. 
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CHAPTER VI 

CONCLUSIONS 

The purpose of this study was to test the hypothesis that topographic maps 

produced by the Bahamas Lands and Surveys Department are insufficient in 

resolution to be used as a predictor of flank margin cave collapse risk in The 

Bahamas. 

Analysis of 107 caves using over 70 topographic map sheets on eight 

islands shows no clear relationship between derived slopes and cave collapse. The 

topoographic maps were not sufficient to create a cave collapse prediction model. 

Even use of slopes derived from six caves with 1 m contour survey produced only 

a moderate predictive pattern. There is a visually recognizable pattern using the 

higher accuracy data, especially for pit entrances, but an accurate prediction of 

collapse cannot be guaranteed. Cave collapse is not only dependent on slope as a 

proxy for roof thickness but on the configuration of the underlying cave. Flank 

margin caves are a series of globular chambers with widely varying chamber sizes 

and roof heights. This cave configuration makes it difficult to determine when any 

given slope has created a thin roof condition, which would be prone to collapse. 

Geophysical techniques have promise but are labor intensive, especially in the 

remote island settings. Flank margin cave collapse is a very complicated problem. 

It was illustrated in previous literature that flank margin cave collapse was a fairly 
75 



 

 

 

 

  

  

  

   

 

   

straightforward issue, but the use of slope as an indicator for roof collapse is not 

effective. Slope does demonstrate a relationship with entrance types that are the 

result of large scale surface erosion (side breach and collapse breach). However, 

the prediction of those entrances is not possible due to the complexities of the 

initiation of an entrance.  Many things must go into account to predict collapse 

(roof thickness, chamber size, and chamber configuration). Flank margin caves 

and banana holes are easy to localize; flank margin caves are under the edges of 

dune ridges, and banana holes are in late Pleistocene strandplains. However, the 

specific location of these voids within those localities eludes easy analysis. This 

study should be used as a guide to evaluate the landscape and consider if 

geophysical methods are needed for a particular area before development. 
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APPENDIX A 

TOPOGRAPHIC MAP ANALYSIS DATA 
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Table A.1 Table showing the slope, entrance type/quantity, and maximum chamber 
width for each cave used in the topographic map analysis. 

OID Island Cave Maps # entrances Side breach Collapse breach Pit breach Collapse Chamber size Hillslope

1 Abaco 8 mile cave 3 0 3 0 y 10 6.8

2 Abaco Azimuth cave 1 1 0 0 n 18 3.8

3 Abaco Bellycrawl Cave 1 1 0 0 n 2 6.8

4 Abaco Bucket Cave 3 1 1 1 y 2 6.8

5 Abaco Cedar Harbour Cave 1 2 1 1 0 y 7 5.7

6 Abaco Cedar Harbour Cave 2 2 1 1 0 y 8 5.7

7 Abaco Cedar Harbour Cave 3 2 1 1 0 y 7 5.7

8 Abaco Cedar Harbour Cave 4 8 2 6 0 y 10 5.7

9 Abaco Cedar Harbour Cave 5 5 2 3 0 y `10 5.7

10 Abaco Dripping Stones Cave 1 1 0 0 n 5 3.1

11 Abaco Hole-in-the-Wall Cave 6 0 2 4 y 20 3.8

12 Abaco Hunter's Cave 1 1 0 0 n 4 11.3

13 Abaco Little Bay Cave 1 2 2 0 0 n 4 6.3

14 Abaco Little Bay Cave 2 1 1 0 0 n 12 6.3

15 Abaco Little Bay Cave 3 1 1 0 0 n 3.5 6.3

16 Abaco Long Beach Cave 2 0 2 0 y 6 1.3

17 Abaco Manchineal Cave 3 1 0 2 y 10 3.8

18 Abaco Sitting Duck Cave 3 1 2 0 y 10 3.8

19 Acklins Babylon Cave 41 3 0 38 y 24 1.8

20 Acklins Bloody Hand Cave 3 2 0 1 n 3 7.6

21 Acklins Dip-N-Break Cave 8 3 0 5 n 12 7.6

22 Acklins Harbor Cave 6 1 0 5 n 18 11.3

23 Acklins Jumbey Hole 20 4 0 16 n 36 7.6

24 Acklins Kinda Big Cave 14 2 2 10 y 15 7.6

25 Acklins Natural Bridge Cave 2 1 1 0 y 6 7.6

26 Acklins Nibbles Cave 19 1 1 17 y 12 1.8

27 Acklins South Bluff Cave 2 2 0 0 n 9 8.0

28 Cat Island Bluff Cave 2 1 1 0 y 10 5.7

29 Cat Island Brackish Well 2 0 1 1 y 10 5.7

30 Cat Island Crown Cave 3 0 1 2 y 12 5.3

31 Cat Island Industrious Hill 4 4 0 0 n 10 8.1

32 Crooked 1702 Cave 9 2 3 4 y 12 11.3

33 Crooked Acolyte's Attic 2 1 0 1 n 6 2.9

34 Crooked Annex A 1 1 0 0 n 10 11.3

35 Crooked Annex B 1 1 0 0 n 10 11.3

36 Crooked Black Wall Cave 1 1 0 0 n 6 2.9

37 Crooked Crossbed Cave 1 1 0 0 n 9 11.3

38 Crooked Cumulus Cave 1 1 0 0 n 15 11.3

39 Crooked Fenestral 22 1 0 21 n 9 13.5

40 Crooked Lowly Cave 1 1 0 0 n 21 11.3

41 Crooked Owl's Roost Cave 4 2 2 0 y 15 11.3

42 Crooked Rimout Cave 1 1 0 0 n 21 11.3

43 Crooked Temple of Athena 6 1 0 5 n 30 2.9

44 Crooked Winding Bay 1 1 0 0 n 5 13.5

45 Eluthera Big Blowing Hole 2 1 1 0 y 20 4.8

46 Eluthera Blow hole 1 1 0 0 n 3 7.1

47 Eluthera Boiling Hole 1 1 0 0 n 20 9.5

48 Eluthera Boston Bight 2 2 0 0 n 3 45.0

49 Eluthera Cow 1 1 0 0 n 2 45.0

50 Eluthera Crawl thru 3 1 1 1 y 1.5 14.0

51 Eluthera Dozer 1 1 0 0 n 3 4.8

52 Eluthera Five Bells 3 1 2 0 y 2 3.6

53 Eluthera Garden 4 1 0 3 y 13 4.5

54 Eluthera Hatchet Bay Cave 2 0 2 0 y 40 4.5

55 Eluthera Laminar Basin 1 1 0 0 n 21 9.5

56 Eluthera Owl 19 3 3 13 y 13 9.5

57 Eluthera Reflecting Pond 1 1 0 0 n 3 4.5

58 Eluthera Safe Harbor 2 1 1 0 y 3 9.5

59 Eluthera Smoke 1 1 0 0 n 3 5.2

60 Eluthera Stinging 1 1 0 0 n 2 45.0

61 Eluthera Ten Bay Cave 26 1 7 18 y 20 2.4

62 Eluthera The Bull 3 3 0 0 n 3 45.0

63 Eluthera Wasp Nest 2 1 0 1 n 3 5.2

64 Long Island BEC Cave #2 1 1 0 0 n 6 25.6

65 Long Island BEC Cave #3 1 1 0 0 n 14 25.6
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Table A.1 (Continued) 

OID Island Cave Maps # entrances Side breach Collapse breach Pit breach Collapse Chamber size Hillslope

66 Long Island Benzie Hill North 2 2 0 0 n 3 14.6

67 Long Island Benzie Hill South 2 1 1 0 y 3 14.6

68 Long Island Dutchmans Point 1 1 0 0 n 3 2.3

69 Long Island Hilldside Grocery 2 0 2 0 y 20 6.8

70 Long Island Indian Hole Point 3 1 0 2 n 10 9.1

71 Long Island Lobster 3 0 3 0 y 8 7.6

72 Long Island Red Roof Cave 3 1 1 1 y 5 5.7

73 Long Island Salt Pond 6 0 6 0 y 18 5.9

74 Long Island Salty Dog 1 1 0 0 n 6 7.6

75 Long Island Stella Maris 1 1 0 0 n 16 17.7

76 Long Island Termite Mound 1 1 0 0 n 4 4.6

77 Long Island Walk Through 8 2 6 0 y 10 2.3

78 Long Island Wasp Pole Cave 1 1 0 0 n 5 6.8

79 New Providence Bahamas West 2 1 0 1 n 14 4.8

80 New Providence Bat Cave 4 4 0 0 n 9 4.1

81 New Providence Caves Point East 3 1 0 2 n 15 5.7

82 New Providence Caves Point West 1 1 0 0 n 10 5.7

83 New Providence Clifton Banana Hole 1 0 1 0 y 15 1.1

84 New Providence Clifton East Cave 4 1 3 0 y 4 2.9

85 New Providence Harry Oakes 4 2 1 1 y 6 4.4

86 New Providence Harry Oakes Annex 3 3 0 0 n 4 4.4

87 San Salvador Altar 1 1 0 0 n 13 2.9

88 San Salvador Beach 2 1 1 0 y 16 8.5

89 San Salvador Blowhole 4 0 4 0 y 6 11.3

90 San Salvador Bug City 1 1 0 0 n 5 17.7

91 San Salvador Chinese Fire Drill 2 1 1 0 y 1.5 7.6

92 San Salvador Crescent Top Cave 1 1 0 0 n 4 8.4

93 San Salvador Dripping Rock 1 1 0 0 n 23 2.9

94 San Salvador Emerald 1 1 0 0 n 6 17.7

95 San Salvador Garden 10 0 9 1 y 8 9.1

96 San Salvador Garden Annex 4 0 2 2 y 11 9.1

97 San Salvador George Storrs 1 1 0 0 n 17 5.1

98 San Salvador Granny T 3 0 3 0 y 3 3.0

99 San Salvador Hurricane 1 1 0 0 n 4 4.6

100 San Salvador Lighthouse cave 3 0 0 3 n 10 9.5

101 San Salvador Majors 5 3 0 2 n 10 5.1

102 San Salvador Midget Horror Hole 1 1 0 0 n 2.5 17.7

103 San Salvador Old Bottle 4 0 3 1 y 4 9.1

104 San Salvador Pipe 2 1 1 0 y NS 8.4

105 San Salvador Prediction 2 0 2 0 y 2 4.6

106 San Salvador Reckly Hill Pond Maze 1 1 0 0 n 2 17.7

107 San Salvador Reckly Hill Pong Water 1 1 0 0 n 10 17.7
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