
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

5-1-2010 

Designing An Ajax-Based Web Application Restfully Designing An Ajax-Based Web Application Restfully 

Benjamin Daggolu 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Daggolu, Benjamin, "Designing An Ajax-Based Web Application Restfully" (2010). Theses and 
Dissertations. 1324. 
https://scholarsjunction.msstate.edu/td/1324 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1324?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


  

DESIGNING AN AJAX-BASED WEB APPLICATION RESTFULLY 

 

 

 

 

 

By 

 

Benjamin Daggolu 

 

 

 

 

 

 

 

 

 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in Computer Science 

in the Department of Computer Science and Engineering 

 

 

Mississippi State, Mississippi 

 

May 2010 



  

Copyright by 

 

Benjamin Daggolu 

 

2010



  

DESIGNING AN AJAX-BASED WEB APPLICATION RESTFULLY 

 

 

 

 

By 

 

Benjamin Daggolu 

 

 

 

Approved: 

 

 

 

_________________________________ _________________________________ 

Tomasz Haupt     Edward B. Allen 

Associate Research Professor of   Associate Professor of Computer Science  

Computer Science and Engineering               and Engineering and Graduate Coordinator                                                  

(Director of Thesis)                 (Major Professor) 

 

 

 

 

_________________________________ ____________________________________ 

Thomas Phillip    Sarah Rajala 

Professor of Computer Science The Dean of Bagley College of Engineering  

and Engineering     

(Committee Member)        

    

 

  

 

 

 

 

 

 

 

 

 

  



  

Name:  Benjamin Daggolu 

 

Date of Degree:  May 1, 2010 

 

Institution:  Mississippi State University 

 

Major Field:  Computer Science 

 

Major Professor:  Dr. Edward B. Allen  

 

Title of Study:  DESIGNING AN AJAX-BASED APPLICATION RESTFULLY 

 

Pages in Study:  94 

 

Candidate for Degree of Master of Science 

 

 

 

The development of an AJAX-based web application involves several challenges 

as the webpage is updated by using the AJAX calls without reloading the entire page as 

in any traditional webpage. This prevents one from going back to the previous view of 

the page as the browser does not reload the entire page; instead it only updates the page. 

My hypothesis is that if an AJAX-based application is designed by using the software 

architecture style called the Representational State Transfer (REST), then it is possible to 

overcome these challenges, which cannot be handled by using web-services. In order to 

investigate this, the Material Properties Repository, an AJAX-based application was 

redesigned by using REST. The results support my initial hypothesis. In this process of 

designing MPR using REST, a generalized software engineering process was created for 

designing an AJAX-based application RESTfully.  

 



ii 

ACKNOWLEDGMENTS 

 

 

I would like to thank Dr. Tomasz Haupt for directing my thesis and teaching me 

several software engineering concepts. I would like to thank Dr. Edward B. Allen for 

being my major advisor and for his suggestions throughout my graduate program. I 

would like to thank Dr. Thomas Phillip for being on my graduate program committee and 

evaluating my thesis work. I would to thank the Department of Energy (Grant ID: DOE 

06100904) for funding me to work on the Material Properties Repository. I would like to 

specially thank Dr. Mark F. Horstemeyer for giving me this opportunity to work at the 

Center for Advanced Vehicular Systems (CAVS) and for his encouragement and support. 

I would also like to thank the Empirical Software Engineering group for their valuable 

feedback on my research. I would like to thank God for everything and my family and 

friends for their love and support. 

 

 

 

 



iii 

TABLE OF CONTENTS 

 

Page 

 

ACKNOWLEDGMENTS .................................................................................................. ii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

CHAPTER 

 I. INTRODUCTION ...................................................................................................1 

1.1 What is the Material Properties Repository (MPR)? ...................................1 

1.1.1 Functionality ..........................................................................................1 

1.1.2 Integration ..............................................................................................3 

1.2 Hypothesis....................................................................................................3 

1.3 Research plan ...............................................................................................4 

1.3.1 The Problem ...........................................................................................4 

1.3.2 Identify the metrics of success ...............................................................7 

 

 II. RELATED WORK ..................................................................................................9 

2.1 Web 2.0 ........................................................................................................9 

2.2 Mashups .....................................................................................................10 

2.3 AJAX .........................................................................................................11 

2.4 Web-services ..............................................................................................13 

2.5 What is Respresentational State Transfer (REST)? ...................................13 

2.5.1 REST vs. Web Services .......................................................................15 

2.6 Major concepts of REST ............................................................................16 

2.6.1 Resource ...............................................................................................16 

2.6.2 Representation......................................................................................18 

2.6.3 State transfer ........................................................................................18 

2.6.4 Design web application RESTfully .....................................................19 

2.7 Literature review on REST ........................................................................20 

 

 III. DESIGN USING REST .........................................................................................23 



iv 

CHAPTER                                                                                                                      Page 

3.1 Software engineering process of designing an AJAX-based    

application RESTfully ...................................................................23 

3.2 Generalizing the design..............................................................................24 

 

 IV. CASE STUDY .......................................................................................................26 

4.1 Architecture of the MPR ............................................................................26 

4.2 Functionalities of MPR ..............................................................................29 

4.3 Implementation of the web client ..............................................................29 

4.4 Current state of the MPR and barriers for future development .................32 

4.4.1 Inefficiency in the Graphical User Interface (GUI) .............................32 

4.4.2 Poor maintainability .............................................................................34 

4.5 Future improvements .................................................................................35 

4.5.1 Applying the formal software engineering methods ............................35 

4.5.2 Applying the REST approach ..............................................................36 

4.6 Overview of the design ..............................................................................36 

4.7 Methodology for redesigning the MPR .....................................................39 

 

 V. RESULTS ..............................................................................................................41 

5.1 Efficient design ..........................................................................................41 

5.2 Easy to maintain .........................................................................................42 

5.3 Extensible ...................................................................................................42 

5.4 Efficient GUI design ..................................................................................42 

 

 VI. CONCLUSIONS....................................................................................................44 

6.1 Contributions..............................................................................................44 

6.2 Future work ................................................................................................44 

6.3 Summary ....................................................................................................46 

 

REFERENCES ..................................................................................................................47 

APPENDIX  

 A. DESIGNING THE MPR RESTFULLY ................................................................50 

A.1 Identify all the containers present in the MPR webpage ...........................50 

A.2 Establish the relationship between the containers .....................................51 

A.3 Define each of the states in the application ...............................................52 

A.4 Define the finite state machine for the application ....................................54 

A.5 Define a URI schema for naming the states ...............................................62 

A.6 Name each of the states with the defined URI schema ..............................64 

A.7 Identify all the onclick events ....................................................................70 



v 

CHAPTER                                                                                                                      Page 

A.8 Save all the information related to the containers ......................................71 

A.9 Create the URI using the information from the hash table ........................72 

A.10 Implement the design by using the URIs to get the states .........................73 

A.10.1 Create URIs ..........................................................................................73 

A.10.2 Onclick event handling ........................................................................75 

A.10.3 Implementation of SaveContainerValues function ..............................77 

A.10.4 Implementation of CreateURI function ...............................................78 

A.10.5 Implementation of ChangeState function ............................................78 

A.10.6 LoadState function ...............................................................................82 

A.11 Remember all the states of the FSM by remembering the URIs of 

the states .........................................................................................89 

A.12 Remember the URI of the state in order to bookmark a state ....................92 

  



   

vi 

 

 

 

 

 

LIST OF TABLES 

 

 

TABLE                                                                                                                           Page 

 2.1 Types of Data Elements ...................................................................................14 

 5.1 Complexity of RMI design vs. REST design ..................................................43 

 A.1 List of containers and their possible states ......................................................53 

 A.2 List of paths and the corresponding states .......................................................57 

 A.3 List of containers and their details ...................................................................60 

 A.4 List of containers and their values in home state .............................................65 

 A.5 List of containers and their values in summary page state ..............................66 

 A.6 List of containers and their values in metadata state .......................................67 

 A.7 List of containers and their values in plot state ................................................68 

 A.8 List of containers and their values in tools state ..............................................69 

 A.9 List of containers and their values in about state .............................................70 

 A.10 Hash table values and the corresponding variable ...........................................72 

 A.11 CreateURI hash table for creating the URI of the state ...................................73 

 A.12 List of onclick events and their actions............................................................76 

 A.13 ClassversionHashTable ....................................................................................82 

 A.14 LoadState hashtable .........................................................................................83 

 A.15 LoadApplet hashtable ......................................................................................84 

 A.16 MetadataHashtable ...........................................................................................85 

 A.17 PlotHashtable ...................................................................................................86  



   

vii 

 

 

 

 

LIST OF FIGURES 

 

 

FIGURE                                                                                                                         Page 

 2.1 Web application as a finite state machine ........................................................18 

 3.1 General design of an AJAX-based RESTful application .................................25 

 4.1 Architecture design of MPR ............................................................................26 

 4.2   Layout of the MPR page ..................................................................................30 

 4.3 MPR home page screenshot .............................................................................31 

 4.4 Container updated using AJAX .......................................................................31 

 4.5 Iteration model .................................................................................................35 

 4.6 Overall view of the design ...............................................................................38 

 A.1 Layout of the new design of the MPR .............................................................50 

 A.2 MPR as a finite state machine ..........................................................................61 

 A.3 URI schema ......................................................................................................63 

 A.4 Screenshot of home state .................................................................................64 

 A.5 Screenshot of summary page state ...................................................................65 

 A.6 Screenshot of metadata state ............................................................................66 

 A.7 Screenshot of plot state ....................................................................................67 

 A.8 Screenshot of tools state...................................................................................68 

 A.9 Screenshot of about state .................................................................................69 

 A.10 Hash table to store values from SaveContainerValues() .................................71 

 A.11 Creating a URI schema ....................................................................................74 



   

viii 

 

 FIGURE                                                                                                                         Page 

 A.12 Algorithm for determining the Dataset_Identifier and DataType....................75 

 A.13 Control flow diagram of the ChangeState function .........................................80 

 A.14 Control flow diagram of the function to establish classversion .......................80 

 A.15 Control flow diagram of the function to establish URI of 

dataset/material ....................................................................................82 

 A.16 layout of the bookmark and back_forward button bar .....................................90 

 A.17 Transition to new state .....................................................................................90 

 A.18 Control flow diagram of the Back_ForwardButton function ...........................92 

 A.19 Control flow diagram of the bookmark function .............................................92 

 

 



 

1 

CHAPTER I  

INTRODUCTION 

 

  This thesis presents the software engineering process for designing an 

AJAX (Asynchronous JavaScript and XML) based web application using the software 

architecture style, Representational State Transfer (REST). The motivation for this 

research is the challenges faced while developing the AJAX-based application called the 

Material Properties Repository (MPR) at the Center for Advanced Vehicular Systems 

(CAVS), MSU [1]. 

 

1.1 What is the Material Properties Repository (MPR)? 

 

 

1.1.1 Functionality 

 The Material Properties Repository integrates three different web applications. 

They are [1]: 

A. Repository of experimental data 

B. Repository of material constants 

C. Online model calibration tools 

Repository of experiment data: The MPR allows users to upload Experimental 

Data to the repository through the upload tab. The experimental data come from physical 



 

2 

measurements of materials‟ properties. Currently, the repository supports stress-strain 

data, images of the microstructure, and strain-life (fatigue) data. The repository of 

experimental data is the database of the results of measurements (often requiring 

transformation of a raw data, such as deriving true stress-strain from force-displacement), 

or data taken from the literature. The user can upload the data to the repository, search for 

a particular data set, and retrieve the data for further analysis – typically to derive 

material constants. The Experimental Data can also be uploaded from the tools directly. 

The data sets from the repository can be viewed from either the „Experimental Data‟ tab 

or the „Materials‟ tab of the MPR webpage. The Experimental Data can be viewed as 

metadata, a plot, or it can be opened in a tool.   

Repository of material constants: The MPR provides a repository to store the 

material constants calibrated from the experimental data. For the purpose of numerical 

simulations, a material is represented by mathematical models, such as the Damage 

Model, that provide a prediction of the material behavior subjected to certain conditions. 

The models are parameterized by a model-specific number of constants, referred to as 

material constants. The repository of material constants is a database of these constants. 

The constants are derived from the experimental data. The user can upload the constants 

to the repository, search for the constants of a particular model of a particular material, 

and retrieve the constants for further analysis – typically to use them in numerical 

simulations, such as finite element analysis using Abacus, LS-Dyna, or other software. 

These constants can be viewed from either the „Material Models‟ tab or the „Materials‟ 

tab of the MPR webpage. The material constants can be viewed as either metadata or in a 



 

3 

tool. The „Materials‟ tab of the MPR page displays both the material constants and the 

experimental data simultaneously.  

Online Model calibration tools: The model calibration is the process of deriving 

the material constants from the experimental data, usually by performing a fit of a model-

specific function(s) to the experimental data. MPR provides online tools to perform the 

models‟ calibrations. Currently there are three tools available in MPR; they are Damage 

Fit, Image Analyzer, and Multistage Fatigue Fit. They can be accessed from the „Tools‟ 

tab of the MPR page. These tools allow the user to extract model-specific material 

constants from the experimental data. These tools also allow the upload and download of 

experimental data and saving of the calibrated material constants. 

 

1.1.2 Integration 

Although each of the aforementioned web applications can be used independently, 

the advantage of MPR is that MPR integrates all three applications into one, thus 

allowing the complete cycle of analysis: uploading experimental data, applying the 

calibration tools to extract the material constants, saving the constant to the database, and 

retrieving them in a form suitable to perform numerical simulations. 

 

1.2 Hypothesis 

The hypothesis of our research is as follows: 

Incorporating REST methodology into the design of an AJAX-based web 

application that aggregates (mashes up) disparate services will lead to an 

efficient, easy to maintain, and extensible implementation and efficient 

GUI design. 

 



 

4 

The Material Properties Repository is a web application, which provides access to 

a number of remote services. However, by applying AJAX technology that enables Rich 

User Interface and services mash-ups, this distributed system has the look and feel of a 

stateful desktop application.  

Developing such a web application using web services with SOAP has become 

very complicated and lead to a proliferation of objects implementing the rich 

functionality of the application and therefore it unavoidably results in an unmanageably 

complex interface (in terms of number of methods) and a confusing GUI.  As a 

consequence, the number of lines of code unnecessarily increases, and the risk of code 

duplication increases. The code maintainability becomes poor, and it is difficult to track 

the state of the application and perform corrective actions, if an exception should occur. 

The goal of our research is to prove that building a web application RESTfully, that is, 

with design focus on resources and transitions between the representations of these 

resources as opposed to focus on methods operating on the remote objects, will make the 

system efficient, easy to maintain, and extendable. The uncertainty of our approach is that 

this approach has been never tried on AJAX-based applications.   

 

1.3 Research plan 

 

 

1.3.1 The Problem 

 

The front-end of the repository of experimental data and the repository of material 

constants is integrated into one application as MPR, and each of the tools are 

implemented separately which can be navigated through the MPR. Each of those pages 



 

5 

serves as a Graphical User Interface (GUI). The GUIs allows the user to interactively 

perform all actions supported by MPR by utilizing web widgets on the pages. GUIs are 

implemented using Asynchronous JavaScript and XML (AJAX). The processing of the 

actions associated with GUI widgets is processed either locally using JavaScript, or it 

delegated to the server side through AJAX calls. Regardless of whether the processing is 

local or remote, only a relevant fragment of the web page hosting GUI is updated; indeed, 

there is never a need to reload the whole page, unless a model calibration tool is invoked.  

By employing AJAX, the GUI has the look and feel of a stand-alone application with a 

very rich interface.  

There are, however, three major disadvantages of using AJAX. AJAX invites an 

RMI-style implementation: each AJAX call invokes a particular method (“action”) to be 

performed.  This “action” is typically implemented as a dedicated Java Server Page (JSP) 

servicing the call which returns a static or dynamically generated html fragment to be 

“pasted” to the GUI page at predefined location. The dynamical generation of the JSP 

response is performed either by the JSP page itself (or JavaBean), or by invoking an 

operation of the Web Services (Data Service or Compute Service). The rich functionality 

of the GUI typically results in a proliferation of the number of distinct methods (actions 

and/or JSP pages) to be implemented that complicates the service interfaces, making 

them difficult to maintain and extend.  

The GUI behaves like a stand-alone application, contrary to the user experience 

with web-based applications that take the advantage of the web browser functionality, 

such as back-button, or creating a bookmark, so the user can return to a previous “state” 

of the browser. The problem is that because the GUI is implemented as a single page, 



 

6 

from the browser point of view the “state” of the application does not change (it is still 

the same page defined by the GUI URL). 

Finally, the GUI is stateless, it is complex, and it requires applying non-web GUI 

design. This is counterintuitive for both the developers and the users. Indeed, the first 

implementation of the Remote Method Invocation (RMI) GUI proved to be confusing for 

the users. 

The current implementation of the Material Properties Repository does not follow 

the REST style; hence it has the above cited problem. Our assumption is that we can 

overcome the above problems by redesigning the MPR using REST principles. 

The typical software engineering process for the developing a RESTful 

application is given in section-2.6.4. But this process is used only to develop a RESTful 

application that does not involve AJAX and mashup. So our research plan is to propose a 

Software engineering process for developing a RESTful application that involves AJAX 

along with mashing-up of web-services. 

Goal-1: Software engineering process to design a RESTful application that 

involves AJAX and mashup. 

AJAX challenges: 

 The resource URI is not the same as the page URL. We have a single page 

URL that “aggregates” multiple resources. The state of the client application 

(Web Browsers) must be captured differently, so that each state can be 

reproduced at will. 

 The richness of an AJAX GUI “supersedes” the hyperlinks embedded in the 

resource representation. The state transition is thus not achieved by requesting 



 

7 

a new resource associated with the URI of the hyperlink; instead the state 

transition is triggered by a JavaScript action associated with a widget. 

Goal-2: It should be easy to add new resources (e.g., new data types) while 

performing “standard” operations such as show metadata, show plot, download, 

upload, etc. 

 In the current design, in order to add a new data type the code needs to be 

changed in several location, our goal is to make it centralized so that new data 

types should be added at once location and it should be populated to all the 

locations where it is used and the new design should perform all the necessary 

featured of the current design.  

Goal-3: It should be possible to reproduce any state of the application at will. 

In the current implementation it is not possible to go back to the previous view of the 

webpage i.e. bookmarking and back button features are not available. Our goal is to 

implement them in the new design. 

 

1.3.2 Identify the metrics of success  

 Finite state machine (FSM): FSM can be used to verify the completeness and 

efficiency of the Material Properties Repository. The FSM can be considered a graph that 

consists of nodes (states) and the transition arrows which represent the change of the 

states. Each module of the MPR can be considered as a state of the FSM and the 

transitions are the events of the user or the internal events. The completeness and the 

efficiency of the system can be determined by establishing a finite state machine that can 

be verified with the requirements of the system. The ease of adding new features to the 



 

8 

system can be determined by the amount of changes that have to be made to the FSM in 

order to accommodate the new feature. We can say that the system is built successfully if 

the FSM has all the features of the system which are specified in the requirements and the 

correct transitions among them. 

 

 

 

 

 



 

9 

CHAPTER II 

RELATED WORK 

 

 

2.1 Web 2.0 

The introduction of Web 2.0 has promoted the web-services to the next level, by 

providing an interactive and collective collaboration that provided new features for both 

the developers and the users. The introduction of the Web 2.0 gave rise to some of the 

highly successful social applications like YouTube, Facebook, Orkut, Flickr etc. Web 2.0 

is a collection of technologies along with business strategies and social trends. Unlike 

Web 1.0, web 2.0 not only allows accessing and contributing to the contents of the web, 

but also allows the user to keep track of the latest contents of the webpage without even 

accessing the page with the help of Really Simple Syndication (RSS) and ATOM. It also 

provides a easy way of developing web applications that aggregate, different information 

or services from the internet [2]. 

Web 2.0 provides several key technologies like Blogs, Really Simple Syndication, Wikis, 

and Mashups [2].  

Blogs: A blog is a two way communication tool where users can post their views 

and comments, where these entries are displayed in reverse chronologically. Blog stands 

for Web log [2].  



 

10 

Really Simple Syndication (RSS): RSS is a web format used for the syndication 

of a webpage or a blog. It uses an XML file that links the information source and the 

information item in order to inform the subscriber about the updates [2]. 

Wikis: Wiki is a web-based content managed system that is maintained by 

collaborative authors. Any user can add, revise or delete the contents of a wiki page [2]. 

 

 

2.2 Mashups 

Mashups are the important feature of the Web 2.0. A mashup combines data, 

information or services from several web services on the internet to form a single service. 

It is very easy to create a web mashup rather than to code the application from scratch. 

Example: We can create a mashup web application for searching for houses in a locality 

by combining the services of a classifieds web-service and Google maps. The resultant 

mashup application will give us a map along with the houses for sale in a locality. 

Mashups are created by using the Application Programming Interfaces (API) which 

provides users a way of interacting with other services or webpages. Example: The 

Google maps API lets a user mashup its services with any other application [2]. 

There are three main advantages of using mashups, they are: 

1. Improvised user interface. 

2. Value added information as a result of aggregation. 

3. Value added information augmented with an enhanced user interface [2]. 

In spite of the several advantages of mashup, it has a few limitations like 

reliability, continued support of the individual services, scalability and security [2]. 



 

11 

There are three principle approaches to develop a mashup. They are, Google Web 

Toolkit, Adobe Flex and AJAX (Asynchronous JavaScript and XML) [2]. 

Limitations of Service mashups: 

 The individual services should always be available for the mashup to work 

correctly. The functionality and the data structure of the source cannot change; 

if it does then the mashup has to be modified [3]. 

 The output and the input formats of each of the service should be negotiable 

and consistent [2]. 

 

2.3 AJAX 

Asynchronous JavaScript and XML (AJAX) provide a highly interactive and very 

responsive web application. It aggregates several technologies like JavaScript, XML 

(Extensible Markup Language), XHTML or HTML and cascading stylesheets (CSS) [2]. 

In general a web application exhibits limited interactivity and slower performance 

than that of a desktop application. But the main advantage of a web application 

developed using AJAX is that it works and acts like a desktop application. An application 

built on AJAX can modify or add new information to a page without reloading the entire 

page, whereas with the traditional webpages the user should wait for the entire page to be 

reloaded even for a small change on the page [4].  

AJAX uses the Extensible Markup Language (XML) to communicate data 

between the server and the client (browser). XML defines a set of languages with 

structured data in online documentation which can be developed by anyone with a set of 

markup tags [4]. 



 

12 

AJAX uses Asynchronous JavaScript which is responsible for making 

asynchronous calls to the server and fetches XML documents, which lets the application 

retrieve, and simultaneously update, the webpage without reloading the entire page. 

AJAX uses the XMLHttpRequest object to make HTTP requests and retrieve data 

quickly in the background without any visible interruptions to the user [4]. 

Some of the advantages of using AJAX are that it makes the application very 

responsive. It makes the application work fast as it minimizes the traffic by requesting 

only the needed information from the server. AJAX is platform independent and its 

component technologies are familiar to the developers. By using AJAX we can create a 

web-based version of any desktop application, which can be accessed over the web 

without any installation which saves time and resources [4]. 

The limitations of AJAX are as follows: 

 The individual technologies of AJAX (JavaScript and XML) have been in use 

from a long time, but now they are used in new ways under AJAX. This could 

give rise to security Vulnerabilities [4]. 

 There is a difference in the implementation of JavaScript in different versions 

of browsers which should be addressed [4]. 

  AJAX applications are based on client/server technology. The clients of the 

distributed system need a centralized server to communicate, as the clients 

cannot respond to the HTTP requests themselves [5]. 

 Unlike in traditional web applications, the users are unsure about which type 

of event would cause the user to wait for the response [5]. On a webpage it is 



 

13 

difficult for a user to know, which event would make an AJAX call and how 

long he should wait for the response.  

 AJAX payloads can only be small. The server cannot send a large XML 

response to the browser as it will cause a delay [5]. 

 

2.4 Web-services 

A Web services are the software systems designed for machine-to-machine 

communication over a network. The interface of these communications is described by a 

machine-processable format such as Web Services Definition Language (WSDL). Any 

system can interact with the Web service in a manner as specified by its associated 

description using the Simple Object Access Protocol (SOAP) messages, which are 

typically conveyed by using the Hyper Text Transfer Protocol (HTTP) with an Extensible 

Markup Language (XML) serialization [6]. 

 

2.5 What is Representational State Transfer (REST)? 

Representational State Transfer (REST) is a style of the software architecture for 

distributed hypermedia systems such as the World Wide Web. The REST principles were 

introduces by Roy Fielding, who is one of the principle authors of Hypertext Transfer 

Protocol (HTTP). REST is often used to describe any simple interface which transmits 

domain-specific data over HTTP without any additional messaging layer such as SOAP 

or Session tracking via HTTP cookies [7].  



 

14 

An important concept in REST is that everything is defined in terms of resources, 

each of which is referenced with a global identifier (e.g.: - Uniform Resource Identifier). 

In order to access these resources, components of the application is communicate by 

exchanging the representations of these resources. Any application can interact with a 

resource by knowing two things: the identifier of the resource and the action to be 

performed (like GET, POST). The application should also know the format of the 

information that is returned, which is typically a HTML, XML or JSON (Java Script 

Object Notation) document [7]. 

The key aspect of REST is the state and the representation of each architecture 

data element. Different types of data elements of REST are listed in Table 2.1. In REST, 

components transfer only the representation of a resource but not the actual resource 

itself. The representation can be any standard data type which is decided based on the 

recipient‟s specification and also the nature of the resource [8]. 

 

Table 2.1 Types of Data Elements 

Data element Example 

Resource Target of a hypertext reference 

Resource identifier URIs  

Representation HTML documents 



 

15 

 

2.5.1 REST vs. Web Services 

REST is a relatively new technology when compared to SOAP based web 

services. Web Services give new specifications for developing internet applications, 

whereas REST uses the already existing protocols of HTTP to design the services. 

Anyone who understands HTTP and XML can create a RESTful application without the 

use of any toolkit. REST provides interface flexibility when compared to Web Services 

as the resources are accessed using URIs which are familiar. A client who wants to access 

the resource can use the HTTP GET method along with the URI to use the resource. By 

changing the URIs, a client can access different services. In SOAP based Web Services, 

the service requests are passed using SOAP, which the developers should be familiar 

with, in order to form the request and parse the results. The developers need a toolkit to 

write and parse SOAP messages. Therefore REST has an edge over SOAP-Web Services 

regarding the interface flexibility [9]. 

REST supports light bandwidth when compared to SOAP-Web Services; SOAP 

messages are relatively long when compared to REST requests, as SOAP requires an 

additional XML wrapper along with each request and result [9]. 

SOAP-Web Services have more security concerns when compared to REST. 

SOAP based Web Services use the HTTP POST method for all the requests whether it is 

to modify a service or to only access them. Whereas, REST uses GET to access the 

resources and PUT and DELETE to modify them. Therefore the administrator or firewall 

can differentiate which request will modify the resource and which request only accesses 

them, based on the HTTP method used. In SOAP based Web Services the administrator 



 

16 

should go through the SOAP envelope to discern whether the request queries for data or 

modifies it, which is not built into most of the firewalls. The administrators should take 

special measures to tackle this problem to ensure network security which is a resource 

and time consuming job [9]. 

The REST architecture style is gaining a lot of popularity in recent years. Most of 

the Yahoo web services are RESTful while eBay and Amazon have web services in both 

REST and SOAP [10]. Simple REST interfaces along with a text response are sufficient 

to develop web services, which save a lot of effort and time. On the contrary, SOAP 

based Web Services would be helpful when a client needs to send a large amount of data 

along with a request as it can be included in the SOAP envelope, which is not favorable 

in REST as it is not a good practice to include a large amount of data within a URI. Both 

REST and web-services are stateless [9].   

 

2.6 Major concepts of REST 

 

 

2.6.1 Resource 

The abstraction of any information which can be named is considered as a resource. 

Some of the examples of a resource are as follows [8]: 

 A document 

 Image 

 Temporal services like time or weather that change frequently 

 Collection of resources 

 Non-virtual object like system admin. 



 

17 

The Web is comprised of resources. A resource is any item of interest; for example, a 

metadata record describing an experimental data set is a resource. The resource is 

identified by its Uniform Resource Identifier (URI). The user can retrieve a 

representation of the resource by connecting to the URI of the resource. The 

representation places the client application (e.g., Web Browser) in a state. A new 

representation (possibly of another resource) places the client application into a new 

state. The client application changes (transfers) state with each resource representation, 

hence the name Representational State Transfer. REST is not a standard but it uses 

standards like, HTTP, URI, XML/HTML/GIF/JPEG/etc (Resource Representations) and 

Text/xml, text/html, image/gif, image/jpeg, etc (MIME Types) [11]. 

Each resource is mapped to a set of entities, whose values may be the resource 

representations and resource identifiers. A resource can be either static or dynamic. We 

say that a resource is static if the values of the set of entities never change after its 

creation. Whereas, for a dynamic resource, the value set keeps changing with time. The 

distinction, whether a resource is static or dynamic is made based on the semantics of the 

mapping [8]. 

This definition of resource brings generality by encompassing many sources of 

information irrespective of its type or implementation. It allows dynamic binding of the 

reference to a representation and also allows the author to directly reference the concept 

rather than the representation of it [8]. 

Each resource is identified by an identifier which is assigned by the naming authority; 

they also perform the validation of semantics of mapping with the entity set [8]. 

 



 

18 

 

2.6.2 Representation 

The representation of each resource is a sequence of bytes along with its metadata 

that describes the sequence of bytes. The representation gives the present state of the 

resource[12]. The representation of a resource can be a document, image, file, instance, 

etc[8]. 

 

2.6.3 State Transfer 

A web application which is designed RESTfully can be considered as a virtual 

state machine [11] as shown the Figure 2.1. The network of webpages of the application 

is seen as a state machine where each resource (Webpage) is shown as a node which is 

uniquely named by an URI. The user navigates through the application by selecting the 

links (state transition) which takes the application to the next state [11].  

{Haupt, 2010 #27} 

 

 

Figure 2.1 Web application as a finite state machine 

 



 

19 

As the name Representational State Transfer suggests, the clients and the 

resources transfer representations of states of the resource among themselves. In order to 

have meaningful communication between the client and the server, both of them should 

be in an agreement regarding the formation of the representations which are transferred. 

Most commonly used formats of communication are XML and JavaScript Object 

Notation (JSON). HTTP provides content negotiation among clients and servers which 

allows the clients to set the “Accept” header to specify the format which the client is 

willing to accept [13].  

 

2.6.4 Design web application RESTfully. 

The following are the steps performed while designing a web application using REST 

[11, 12]. 

1. Identify all conceptual entities to be exposed as resources. 

2. Create URI for each resource. The resources should be nouns, not verbs. 

3. Categorize your resources according to whether can just receive a representation of the 

resource (“GET”), or whether the client can modify (add to) the resource (“POST”, 

“PUT”, “DELETE”). 

4. All “GET” resource requests should be side-effect free.  

5. Put hyperlinks within the resource representations to enable clients to drill down for more 

information, and/or to obtain related information. 

6. Design to reveal data gradually. 

7. Specify the format of response data. 

8. Cache implementation to make the service efficient. 

9. Implement stateless communication. 



 

20 

In REST, the client and the server are connected by a stateless HTTP connection. 

The advantage with a stateless connection is that the server treats each of the client‟s 

requests independently irrespective of the previous requests. So the server does not keep 

track of the clients‟ requests. If a client request fails to complete, then it cannot affect the 

subsequent requests as they are not dependent on the previous request. But the 

disadvantage of using a stateless connection is that it increases the repetitive data in a 

client request. As the server does not save any information regarding a previous request, 

the client should resend all the information needed for the server to process the request 

each time the client talks to the server [8, 14].    

 

2.7 Literature review on REST 

As discussed in section 2.5, Representational State Transfer (REST) is an 

architectural style which is relatively simplistic and less complex to use, as it provides a 

clear definition of its trade-offs and constraints [13]. Initially the concept of REST was 

designed only to support hypermedia document browsing, but these same principles are 

found to be very useful in developing complex distributed systems over the web [15]. 

The rich HTTP features enable the REST architecture style to be used in the 

development of high-level distributed systems. The RESTful architecture along with the 

XML-based information transfer paradigm has made it easy to aggregate various services 

which are called mashups. Typically it is not an easy task to create a mashup; it takes a 

lot of programming along with proper understanding about the APIs of all the services 

involved. In order to solve this problem, leading companies have developed tools that can 



 

21 

mashup services which can be used even by a novice user. Some of such available tools 

are: Yahoo! Pipes, IBMs QEDWiki, and Google mashup Editor. These tools allow the 

user to specify a limited number of RESTful services and then connect these services one 

with another to form a mashup. But the main limitations of these tools are that they can 

aggregate a small number of services, and mostly these services are internal services of a 

company who developed the tool (e.g.: Google mashup tool can use Gmail, Google 

maps). These services should have only the standard output formats like RSS or ATOM. 

The services whose output is not a standard format cannot be mashed up using these tools 

which leaves out a large number of services. In order to address these limitations of 

scalability and complexity, Lathem J. et al. has proposed a framework called the SA-

REST (Semantic Annotation-REST) which added semantics to the RESTful services. The 

SA-REST defines semantics for inputs, outputs, operations and faults of the RESTful 

services, which helps in easily aggregating the services to form Semantics Mashups 

(Smashups). As the RESTful services are annotated, the Smashups know everything 

about the inputs and the  outputs, so that the data mediation can be automated [16]. 

Andreozzi S. et al., has proposes a RESTful way of developing a standard job 

submission and management interface for a Grid system. Their current specification for 

the services is based on the Web Service Description Language (WSDL) for creating, 

monitoring, maintaining and querying the services. They could successfully map the 

current Basic Execution Services (BES) specification to that of the HTTP actions to be 

performed on the resources. The authors also claim that the RESTful implementation is 

very easy and simple to implement when compared to the current specification [17], 



 

22 

which suggests that the RESTful way of implementing MPR would be not only easy but 

also efficient when compared to developing it using web-services. 

Yan L. et al. gave a process for reengineering an existing web application into a 

Restful web application. Most of the web applications which they considered are 

SOAP/RPC based [18]. They claim that it is beneficial to move from the traditional 

methods to the RESTful way of implementing a web application. 

All the current research indicates that there is a wide range of benefits to 

developing a web application RESTfully like: ease of implementation, scalability, 

statelessness, caching, content-negotion, and most of all, all the operations on the 

resources can be carried out using the four HTTP methods (GET, PUT, POST and 

DELETE). But none of the current research addresses the implementation of a RESTful 

application that involves AJAX in it. AJAX makes an application look like a stand alone 

desktop application; the web pages are updated without refreshing the entire page, which 

means that the URI of the page remains the same but some part of the page is updated by 

using an AJAX call. In such a case, as we are using REST, there should be a way of 

identifying the webpage which has been updated by making AJAX calls because each 

webpage is a resource of the application. Our research concentrated on overcoming the 

complexities caused by the use of AJAX in a RESTfully designed application. If all the 

web pages, including the pages which were updated by making AJAX calls are named 

successfully then we believe that it is possible to bookmark any page and also implement 

the back button feature for such applications. As REST has been picking up its pace only 

very recently, we identified that these issues were not addressed in the literature so far, 

which gives us motivation and opportunity to solve these issues. 



 

23 

CHAPTER III 

DESIGN USING REST 

 

The software engineering process of designing a RESTful application is discussed 

in chapter 2, but the introduction of AJAX in a web application adds challenges in order 

to design it RESTfully using the same software engineering process. In an AJAX-based 

application, the webpage consists of containers, which display a representation of 

resources where as in a traditional webpage the entire webpage displays a representation 

of a resource, therefore it is challenging to handle several representations of resource in 

an AJAX page when compared to only one representation of one resource in a traditional 

webpage. Therefore, a new software engineering process of designing an AJAX-based 

web application using the Representational State Transfer architecture style is specified 

in section 3.1. 

The proposed software engineering process is then implemented on the Material 

Properties Repository (MPR).  

 

 

3.1 Software engineering process of designing an AJAX-based application 

RESTfully 

Following is the software engineering process of designing an AJAX-based web 

application RESTfully 



 

24 

1. Any AJAX-based web application would have several containers in the page, 

which are updated without reloading the page. Identify all such containers. 

2. Establish the relationship between the containers, i.e. how one container 

affects the other. 

3. Define each of the states in the application. 

4. Define the finite state machine for the application. 

5. Define a URI schema for naming these states. 

6. Name each of the states with the defined URI schema. 

7. Identify all the onclick events that can cause the state transition of the 

application. 

8. Save all the information related to the containers when an onclick is 

performed. 

9. Create a URI by using above information. 

10. Use the URI to identify and get the state. 

11. Remember all the states of the FSM by remembering the URIs of the states. 

12. Bookmarking a state now only means remembering the URI of the state. 

13. Use the above remembered URIs to navigate to the back and forward states of 

the FSM 

 

 

3.2 Generalizing the design 

The generalized view of the RESTful design of the AJAX-based application can 

be seen in figure 3.1.  This design can be used for any AJAX-based application to design 

it RESTfully. 



 

25 

ChangeState(URI,Flag,HashIndex)

Process the URI

Using split function

Condition-1

Condition-3

Condition-2

Flag=0 Flag=1

LoadState(“Statename”)

LoadState(“Statename”)

LoadState(“Statename”)

Bookmarking(URI)

Back_ForwardButton(URI)

Flag=0 || 2

Condition-n

LoadState(“Statename”)

Onclick OnclickOnclick Onclick

SaveConatinerValues()

CreateURI()

URI, Flag, 

HashIndex

RetrieveOtherContainersStates(HashIndex)

Flag=2

. . . . . .

Application specific 

decision making

 

Figure 3.1 General design of an AJAX-based RESTful design  



 

26 

 

 

 

 

CHAPTER IV 

CASE STUDY 

 

 

4.1 Architecture of the MPR 

The architecture of the Material Properties Repository can be viewed as shown in 

Figure 4.1. The user interface of MPR is designed using HTML along with JavaScript 

and AJAX. The requests and responses from the browser to the database pass through 

several layers, such as Tomcat, Service Bus, AXIS (WSDL and J2EE) and MATLAB. 

The backend database of MPR is mysql. 

 

 

Figure 4.1 Architecture design of MPR 



 

27 

 

MPR is implemented on top of two web services: A) Data Service and B) Compute 

Service 

A) Data Service: 

Data Service aggregates three independent sub-services: metadata service, 

storage service, and replica locator.  

Each experimental data set in the repository is stored in a file system. The 

storage service manages the part of the file system designated to store the data 

sets. When a file is submitted to the storage service, the service determines the 

location at which the file is to be stored, and returns its URI (Uniform Resource 

Identifier) to the caller. GridFTP is used as the transport mechanism for moving 

the files to and from the storage. 

Metadata service collects the information about data sets maintained by 

the storage service. The information is comprised of the file identification (a name 

assigned by the user, project, material, etc.), the data provenance (owner, date 

submitted, etc.), tags enabling querying the metadata repository to find particular 

data sets matching search criteria, and some additional information necessary to 

process the data (such as transformation from raw force-displacement 

measurement to stress-strain relationship). When a new metadata record is 

created, the service returns its URI, so that it can be referred to at a later time. The 

metadata repository is implemented as a DBMS application. 

The replica locator provides mappings between the metadata records and 

data files. Typically, entering a new data set to the MPR is performed in three 

steps. The metadata record is created (URImetadata), the file is uploaded through 



 

28 

storage services (URIdata), and finally, both URI are sent to the replica locator, 

where the mapping between them is established. Similarly, retrieving a data set 

from the MPR is done in three steps. Firstly, the user queries the metadata 

repository to retrieve URImetadata of the desired entry. Secondly, URIdata is retrived 

from the replica locator. Finally, the file is retrieved by submitting URIdata to the 

storage service. (Caching of URIdata does not work, as during each step 

authorization is made). 

Because of this complexity, the Data Services is implemented as a façade. 

A facade is service that provides a simplified interface to a larger body of code, 

such as a class library, or a collection of independent services. The use of the 

facade pattern has several advantages: 

 It makes easier to use and understand underlying services, since the facade 

has convenient methods for common tasks; 

 It makes the code that uses the services more readable, for the same 

reason; 

 It reduces the dependencies of outside code on the inner workings of the 

collection of services, since most code uses the facade, thus allowing more 

flexibility in developing the system; 

 It wraps a complicated collection of APIs with a single well-designed API 

[1, 19]. 

 



 

29 

B) Compute Service: 

The model calibration tools are implemented as Matlab applications. In 

order to utilize them in the Web environment, a web service referred to as 

Compute Service has been developed. A pool of Matlab instances is running in 

the back-end. Similarly to Data Service, the complexity of the Compute Service is 

hidden by a façade [1]. 

 

4.2 Functionalities of MPR 

The MPR provides the list of material properties which are displayed in the form 

or material tree or projects tree. The MPR currently supports five types of data types 

which are stress-strain, microstructure image, stress-life, damage model and 

microstructure model. The datasets can be viewed in terms of metadata or as a plot. The 

datasets can also be opened in the respective tool for future analysis. The MPR also 

provides features for the users to uploaded new datasets and also to download the existing 

ones.  

 

4.3 Implementation of the web client 

The web client of the MPR is developed using AJAX. 

Features of the web client are: 

1. Access data from the server 

2. Selective updating of the required parts of the webpage (containers) as 

opposed to refreshing the entire page. 

3. Mashing up disparate web services (compute service and data service) 



 

30 

The overall design of the Material Properties Repository web client can be viewed 

as a set of containers (placeholders) as shown in Figure 4.2. Here some of the containers 

are static, and others are dynamic. The content of the static placeholders remain the same 

always and do not change any state and they are represented in red color. The content of 

the dynamic placeholders change their state depending on the actions performed by the 

user, and these placeholders are represented in blue color. 

 

 

  

Figure 4.2 Layout of the MPR page 

 

In order to update a container, the web client makes an AJAX call to change the 

content of the container without refreshing the complete page. Figure 4.3 shows the home 

page of the MPR page. When the user clicks on the „Materials‟ tab of the „Applets 

window options‟, then only the „Applet window‟ is updated by making an AJAX call. 



 

31 

Figure 4.4 shows that the container (Applet Window), enclosured in red has been updated 

without reloading the entire page. All other containers remain the same. 

 

 

 

Figure 4.3 MPR home page screenshot 

 

 

 

Figure 4.4 Container updated using AJAX 



 

32 

 

4.4 Current state of the MPR and barriers for further development  

The MPR is currently deployed as a “technical preview” at CAVS web site 

(ccg.hpc.msstate.edu/cmd) and made available to CAVS researchers and students as well 

as to a limited number of external users – the participants of the Integrated Computational 

Material Engineering (ICME) project performed by the U.S. Automotive Materials 

Partnership (USAMP). The feedback from our users is a very valuable source for making 

the assessment of the quality of the MPR design and its implementation. Not surprisingly, 

the users‟ comments and requests for improvements, together with our experience with 

satisfying those requests revealed some flaws in the original design and implementation 

strategy. The flaws fall into two general categories: inefficiencies in the Graphical User 

Interface (GUI) and a poor maintainability of the system, in particular to the Web layer 

(shown as “Apache/Tomcat/GridSphere” box in the architectural diagram in Figure 4.1).  

Some of the problems identified are listed below. 

 

 

4.4.1 Inefficiency in the Graphical User Interface (GUI) 

There are four inefficiencies, which are as follows: 

i. The implementation is inconsistent, similar functionalities are implemented 

multiple times, each time in a different way. As mentioned before, MPR uses 

AJAX to update the web page rather than reloading the entire page but the 

implementation of the tools are different from the implementation of the other 

features. The materials tree that is reloaded when a tool is opened is 



 

33 

implemented differently using a different code. Each tool has its own upload 

feature integrated into it that is also provided in the MPR main page. The upload 

feature is available in two different places and both of the features are 

implemented differently, which are inconsistent with each other. Our aim is to 

make all the features and implementations work consistently. 

ii. The GUI is inconsistent, difficult to maintain and extend (to add new 

functionality)  

The GUI of the MPR has an inconsistent layout, the „Material Models‟, 

„Experimental Data‟, „Tools‟ and the „Upload‟ tabs have a description container 

inside the Applet window container which is not present in the layout of the 

other tabs.  

iii. Navigation is difficult and confusing for the user 

In order to get the metadata of a „Material model‟, the user should go to the 

„Material Models‟ tab, then click the „Browse by material‟ button, then the data 

type drop down menu is displayed for the user to select the datatype. After 

selecting the data type the user should click on the material from the material 

tree, if the selected material has the material models of the selected data type 

then a second tree will be displayed that lists the material models. If the material 

models are available then the user should select a model and then click the 

„view metadata‟ button that is available in the applet window in order to view 

the metadata of the material model. The sequence of steps to be followed in 

order to get what the user wants is very confusing in the current 

implementation. Similarly viewing the metadata or the plot of the experimental 



 

34 

data is confusing. The navigation complexity should be reduced by following a 

consistent implementation.  

iv. It is difficult for the user to repeat a previously performed analysis.  

 If a user is in the „Materials‟ tab of the MPR page and then selects the 

„Materials Models‟ tab, then the material models page is displayed. At this 

point, if the user clicks the back button, in the current implementation the user 

cannot go back to the „Materials‟ tab, as the entire page is not refreshed, the 

browser assumes that we are on the same page. So the implementation should 

be improved such that the user can go to a previous page by clicking the back 

button. 

 One other problem with the current implementation is that it is not 

possible to save the webpage, i.e. bookmarking a result is not possible. When a 

user opens the metadata of a material, and then selects the bookmark option to 

save the page, the user cannot retrieve the metadata of the material which the 

user intended to save. Bookmarking is a feature which the users want in this 

application which is not possible in the current implementation. These problems 

can be solved by properly naming the web pages (resources).  

 

4.4.2 Poor maintainability 

 The MPR was designed by several developers because of which different 

features are designed differently and there is redundancy of code. In order to 

modify a feature or add a new feature, it needs several changed to be made in 

several locations of the code. 



 

35 

 

4.5 Future improvements 

 

 

4.5.1 Applying the formal software engineering methods  

 We plan to use the Iterative Development Model (IDM) to improve the 

design and implementation of the MPR. In the IDM, the development of the software is 

done in increments. In each increment there are three phases, which are Design, 

Implementation and Analysis as shown in Figure 4.5. New features are added to the 

software in iterations. The main advantages of this model are that the software is 

developed in increments in a systematic process rather than ad-hoc and it also reduces the 

amount of testing, as the testing is confined only to the newly added feature in each 

iteration.  

 

Design0 Design1
Design2

Implement0 Implement1 Implement2

Analysis0 Analysis1 Analysis2
 

Figure 4.5 Iteration model 

 

 Each iteration consists of three phases-design phase, implementation phase 

and analysis phase. The iterations are done until all the items of the project control list are 



 

36 

finished. The project control list has all the tasks to be performed to develop the final 

product.  

 This model can be used in this project as new requirements are 

continuously evolving. Whenever a new requirement is provided by the clients then these 

new requirements are implemented in the next iteration and only the part of the system 

that has been changed or updated is tested rather than the whole system.[20] 

 

4.5.2 Applying the REST approach  

 That is, identify the resources and their representations to be displayed in 

the GUI, and define the user actions as the state transfers. This new design approach will 

replace the current design centered on the invoking methods on the remote (back-end) 

objects. The benefits of REST architectural style that will lead to both improvement of 

the GUI design and the maintainability of the code are discussed in Chapter II. The 

originality of our approach is that we are making an attempt to extend the REST 

approach to include AJAX-based web applications providing a Rich User Interface 

(RUI). 

 

4.6 Overview of the design 

The complete design of the MPR using the software engineering process from 

section 3.1 is followed as shown in the Appendix A. The overview of the RESTful design 

of the MPR can be put together as shown in figure 4.6, which include saving the 

information of each state, creating URIs, state transition, bookmarking and back-forward 

button implementation. A parameter called Flag is introduced in to this design to make 



 

37 

decision regarding when to call the Bookmarking(), Back_ForwardButton() and 

RetrieveOtherContainersStates(). 



 

38 

ChangeState(URI,Flag,HashIndex)

Tab name

Dataset_Identifier

Button

DataType

Using split function

DataType

URI of classversion

Dataset_Identifier

URI of material/dataset

Tab name Button

Tab name=”Home”||”Tools”||”About”

&&

URI of classverion=NULL

&&

URI of Material/dataset=NULL

Tab name=”Home”||”Tools”||”About”

&&

URI of classverion=! NULL

&&

URI of Material/dataset=! NULL

&&

Button=”metadata”

Tab name=”Home”||”Tools”||”About”

&&

URI of Material/dataset=! NULL

&&

Button= “All”

Flag=0 Flag=1

LoadState(SummaryPage)

LoadState(“TabName”)

LoadState(MetadataState) 

Function to establish the 

classversion

Function to create the uri of the 

material/dataset

Bookmarking(URI)

Function to load 

HELP doc

ELSE

Back_ForwardButton(URI)

Flag=0 || 2

Tab name=”Home”||”Tools”||”About”

&&

URI of classverion=! NULL

&&

URI of Material/dataset=! NULL

&&

Button=”Plot”

LoadState(PlotState) 

Onclick OnclickOnclickOnclickOnclick Onclick Onclick

SaveConatinerValues()

CreateURI()

URI, Flag, 

HashIndex

MetadataHashtable(DataType)

PlotHashTable(DataType)

RetrieveOtherContainersStates(HashIndex)

Flag=2

 

Figure 4.6 Overall view of the design 



 

39 

The concept of the design is as follows: 

1. Onlick events lead to saving all the containers information in a hashtable 

2. Create the URI of the state of the MPR from the hashtable 

3. After the URI is created call the ChangeState function by passing the URI, 

hashtable index and the Flag (If flag =0, then MPR is moving to a new state, if 

flag=1, Bookmark the page, if flag=2, retrieving a previous state or retrieving a 

bookmarked state) 

4. URI is split to determine the Tab name, Classverion, URI of dataset and datatype. 

5. Call the loadState which is a hashtable which intern uses LoadApplet for metadata 

and plot, MetadataHashTtable and PlotHashTable are used 

6. When the flag=2, i.e. when a state is being retrieved, after loading the applet 

window with the correct information, all other containers are transferred to the 

correct state by calling the RetrieveotherContainersStates(HashIndex). This 

function reads the hashtable which stored all the information of all the other 

containers other than applet window and resets them. 

 

4.7 Methodology for redesigning the MPR 

As mentioned in section 4.4, the methodology used to redesign the MPR is Iterative 

Development Model (IDM).   

The following are the improvements made in each iteration. 

1. Remove redundant features and code. 

2. Reduce the complexity – make metadata as the default action of leaf selection. 

3. Reduce the number of inner containers in a container. 



 

40 

4. Add new features to the button bar like, download, upload, create folder and 

file. 

5. New features for the project tree – upload, view and download files. 

6. Improve the interface – banner image, color, less number of clicks to reach a 

state, more interactive, etc. 

7. Add more information to Home, Tools and About tabs. 

8. New help document. 

9. Bookmark feature. 

10. Back-Forward button feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

41 

 

 

 

 

 

CHAPTER V 

RESULTS 

 

5.1 Efficient design 

The RESTful design can be considered to be an efficient design as it helped in 

identifying and removing the redundant features and redundant code. 

 Redundant features: The RMI design has several featured, which performed 

similar operations. While defining states of the application these features were 

very easy identified and merged into one. Example: removal of experimental data 

and material model tabs 

 Redundant code: The RMI design had several definitions of classversions and 

datatypes. But in the RESTful design each of these is a resource; therefore all 

these classversion and datatypes resources are defines at one location and are 

referenced by using the URIs. For example, there were several locations where 

classversions were defined in the previous design but in the RESTful design the 

classversion are defined only in one location in the ClassverionHashTable. 

 

 

 

 

 



 

42 

5.2 Easy to maintain 

The RMI design everything is defined in terms of methods, where as in RESTful 

design everything is defined in terms of resources and these resources are addressed 

using URIs. In RMI design there are different methods for each event on the webpage, 

where as in RESTful design all the actions for any event in the webpage would results in 

getting the desired resource by passing the URI. This same action is performed to show 

any resource which make its very easy to maintain. If there is a new feature that needs to 

be added to the application then only the list of the resources is updated and the new 

resource is addressed by a URI. 

 

5.3 Extensible 

The RESTful design supports extensibility. As everything is defined in terms of a 

list of resources, if the application has to be extended then a new resource should be 

added to the list of resources. For example if the MPR should be extended with a new 

state, then that new state should be defined in the LoadState hash table. So the changed 

that should be made to extend the application is confined only toe defining the new 

resource. 

 

5.4 Efficient GUI design 

Reduced complexity of application: The RMI design had more states when 

compared to the REST design despite both performing the same features. The complexity 

can also be measured in terms of the number of clicks needed to reach a state. The 

RESTful design requires less number of clicks to reach a state when compared to RMI 



 

43 

design as shown in table 5.1, and it also removed several internal containers present in a 

container. 

 

Table 5.1 Complexity of RMI design vs. REST design 

State RMI design 

(No. of clicks) 

REST design 

(No. of clicks) 

Metadata 7 3 

Summary page 3 2 

Plot 8 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 

 

 

 

CHAPTER VI 

CONCLUSIONS 

 

6.1 Contributions 

The following are the contributions of my thesis: 

1. The software engineering process of designing an AJAX-based web 

application RESTfully. 

2. Designing an AJAX-based application RESTfully resolve redundancy in code 

and features, increases the maintainability of the code and supports 

extendibility.  

3. A method of implementing the bookmark and back-forward button features 

for an AJAX-based application, which is otherwise not possible with web 

services. 

4. A better implementation of the Material Properties Repository (MPR), which 

is developed at CAVS. 

 

6.2 Future work 

So far this document has explained the design of an AJAX-based web application 

using the software architecture style called the Representational State Transfer (REST). 

But there is a lot of scope for improving this design and perform several analyses on the 



 

45 

results of the design. Some of the improvements that can be accomplished in the future 

are as follows: 

1. This design has evolved in several iterations. In each iteration different range 

of problems were addressed. In spite of, increasing the maintainability of 

code, there is a lot of scope of reducing the complexity. One of such things is 

to find a better way of making decisions to call the correct loadState function 

rather than having several if-else statements. 

2. In this design, I addressed only the states where the applet window is 

modified, so this design can be extended to all the intermediate states of the 

finite state machine so that it is possible to retrieve the intermediate states as 

well. 

3. In this design, I have used hash tables to load states and applets, but it can be 

investigated to see if there is a better way of implementing this. 

4. The RESTful design has clear advantages over the RMI design which can be 

seen by the reduced number of lines of code, identify and remove redundant 

code and redundant features, increase maintainability and extendibility by 

well organized code based on the states and their URIs and reduce complexity 

based on the reduced number of clicks to reach a state. But these results can 

be analyzed by performing empirical studies to compare the RESTful design 

with the RMI design. The empirical experiments can be performed on the 

REST design understandability, changeability, maintainability and 

extendibility when compared with the RMI design. 



 

46 

5. The RESTful design is believed to be complete, i.e. all the features present in 

the RMI design are also present in the REST design, but this was concluded 

by performing ad-hoc testing and by comparing the states with the RMI 

features. But it would be better to create a complete test suite for the RESTful 

design to identify any missing or incorrect features of the design by following 

a standard testing procedure. 

6.  The tools available in MPR should be made extendible; the RESTful design 

is confined only to the MPR extendibility but not to the tools. Therefore this 

software engineering process can be used to make the design of the tools 

RESTful, which is similar to the MPR design and make it extendable. 

 

6.3 Summary 

This document discusses the software engineering process of designing an AJAX-

based application using the software architecture style called the Representational State 

Transfer (REST). The discussion from the previous sections can be summarized say that 

the by incorporating the REST methodologies into the design of an AJAX-based web 

application that aggregates (mashes up) disparate services will lead to an efficient, easy to 

maintain, and extensible implementation and efficient GUI design which is in support of 

our initial hypothesis. 

 



 

 47     

 

 

 

 

  

REFERENCES 

 

 

 

[1] T. Haupt, “Cyberinfrastructure for the Integrated Computational 

Material Engineering”, 2010 TMS Annual Meeting, Seattle, WA, February 

15-19, 2010. 

 

[2] S. Murugesan, “Understanding Web 2.0,” IT Professional, vol. 9, no. 4, 2007, pp. 

34-41. 

 

[3] T. Fischer, et al., “An Overview of Current Approaches to Mashup Generation,” 

Proceedings: International Workshop on Knowledge Services and Mashups 

(KSM09), 2009   

 

[4] L. Paulson, “Building rich web applications with Ajax,” Computer, vol. 38, no. 

10, 2005, pp. 14-17. 

 

[5] E. Galyon, “The advantages and limitations of using ajax for distributed 

application development,” Academic Computing and Networking Services, 2006. 

 

[6] W.W.W. Consortium, “Reconciling Web Services and REST Services,” 2005; 

http://www.w3.org/2005/Talks/1115-hh-k-ecows/#(10). 

 

[7] Wikipedia, “Representational state transfer,” April, 17th, 2009 

 2009; http://en.wikipedia.org/wiki/Representational_State_Transfer. 

 

[8] R.T. Fielding, “Architectural Styles and the Design of Network-based Software 

Architectures,” Doctoral Dissertation, University of California, Irvine, CA, 2000. 

 

[9] A. Asaravala, “Giving SOAP a REST,” 2002; 

http://www.devx.com/DevX/Article/8155. 

 

[10] P. Freitag, “REST vs SOAP Web Services,” 2005; 

http://www.petefreitag.com/item/431.cfm. 

 

[11] R.L. Costello, “Building Web Services the REST Way,” 2009; 

http://www.xfront.com/REST-Web-Services.html. 

 



 

 48     

[12] Z. Jin, et al., “On Web Service Construction Based on REpresentation State 

Transfer,” Proceedings: IEEE International Conference on e-Business 

Engineering,(ICEBE '08), 2008, pp. 665-668. 

 

[13] S. Vinoski, “RESTful Web Services Development Checklist,” IEEE Internet 

Computing, vol. 12, no. 6, 2008, pp. 96-95. 

 

[14] Wikipedia, “Stateless server,” 2009; http://en.wikipedia.org/wiki/Stateless_server. 

 

[15] D. Roure, “Towards Computational Abstractions over a RESTful Architecture,” 

2008, pp. 719-722. 

 

[16] J. Lathem, et al., “SA-REST and (S) mashups: Adding Semantics to RESTful 

Services,” 2007, pp. 469-476. 

 

[17] S. Andreozzi and M. Marzolla, “A RESTful Approach to the OGSA Basic 

Execution Service Specification,” Proceedings: Fourth International Conference 

on Internet and Web Applications and Services, (ICIW '09), 2009, pp. 131 - 136  

 

[18] L. Yan, et al., “Reengineering Legacy Systems with RESTful Web Service,” 

Proceedings: 32nd Annual IEEE International conference of the Computer 

Software and Applications, 2008 (COMPSAC '08), 2008, pp. 785-790. 

 

[19] V.K. Patil, “Facade Design Pattern”, http://aspalliance.com/970. 

 

[20] P. Jalote, An Integrated Approach to Software Engineering, Narosa Publications, 

2005. 



 

 49     

APPENDIX A 

 

DESIGNING THE MPR RESTFULLY



 

 50     

This appendix presents the RESTful design of the Material Properties Repository 

by following the software engineering process of designing an AJAX-based application 

given in section 3.1. 

 

A.1  Identify all the containers present in the MPR webpage 

Figure 4.2 shows the layout of the MPR with all the containers present.  The 

current implementation of the MPR had inconsistent sub-containers in the applet window. 

Some of applets have sub-containers and some did not. This inconsistency has to be fixed 

so that they can support the RESTful design. Keeping these problems in mind the layout 

of the MPR has now been modified as shown in figure A.1 from the initial layout shown 

in figure 4.2. 

 

 

 
Figure A.1 Layout of the new design of the MPR 

  



 

 51     

The layout of the MPR has been updated with two new containers, the data type 

container and the action button bar. These changes reduce the number of selections that 

should be made inside the applet window. 

The following is the list of all the containers present in the MPR: 

1. Banner 

2. Button bar 

3. Menu bar 

4. Data Types 

5. Action button bar 

6. Tree 

7. Tree-2 

8. Applet window 

 

A.2  Establish the relationship between the containers  

The MPR webpage is comprised of containers as shown in figure A.1, which are the 

target for the AJAX responses. The “Banner” is the static part of the page, which contains 

the logo and the title of the application. The “menu bar” contains the home, tools, help 

and about tabs. The “button bar” contains new material class, new material, edit dataset 

or folder, refresh, download, upload and delete buttons. The “data type” container has a 

dropdown menu with the options all data types, stress-strain, microstructure image, 

strain-life, damage model and microstructure model. The “Tree” container has the 

materials tree as a default and a swap button, which can be used to display the projects 



 

 52     

tree. The “tree” container has a sub container called the “Tree-2”, when a data type value 

other than “all datatypes” is selected from the data types drop down menu and a material 

is selected from the materials tree then the “Tree-2” is displayed with the list of the 

datasets present in the material which are of the selected data type. The “Action button 

bar” has the action buttons, which are the metadata, plot, tool and summary page. The 

“Applet window” container has the home tab information as default, and it can display 

the content,  which is determined by one or a combination of selections made in the menu 

bar, data types, tree and action button bar. The possible information that can be shown in 

the “Applet window” are home tab, tools tab, about tab, summary page, metadata or plot. 

 

A.3  Define each of the states in the application 

Definitions: 

Resource: The intended conceptual target of a hypertext reference. 

Representation: specific representation of a specific resource (like HTML 

document, JPEG image). 

State: Representations of all the containers in a webpage at a given point of time. 

 

Table A.1 shows the list of all the containers and their possible state. The state of 

individual containers is the representation of the resource, whereas the state of the 

webpage is the collective states of the individual containers. From the table, it can be 

observed that some containers are static, as they never change state (like banner and 

button bar), while other change states. This table helps us in defining the state of the 

webpage, which is an aggregate of the individual containers. 



 

 53     

 

 

 

 

 

Table A.1 List of containers and their possible states 

 
 

Each of these containers displays a representation of a resource, and the union of the 

container states is the page state. Any change to one of these containers would result in a 

change of state of the webpage. The number of states that can be achieved by different 

combination of these containers is very large, and some of them are not meaningful from 

the application point of view. Hence, we define states with respect to the applet window, 

each of the states have a different representation of the resource. 



 

 54     

 

The following are the states that are selected for naming with a URI: 

1) Home tab 

2) Tools tab 

3) About tab 

4) Summary page 

5) Metadata 

6) Plot 

 

A.4  Define the finite state machine for the application 

In the MPR, each state can be achieved by different combinations of the 

selections made by the user in the “menu bar”, “Action button bar”, “Data types” and the 

“Tree”.  

The following are the states of the MPR which include the states mentioned in section 

A.3 and the intermediate state while reaching the above 6 states: 

1. Default home page: This is the initial state of the MPR with all the containers 

in their default states. 

2. Home tab: Home tab information is displayed in the applet window with the 

home tab highlighted in the menu bar, while all other containers are in default 

states. 

3. Tools tab: Tools information is displayed in the Applet window with the tools 

tab highlighted in the menu bar, while all other containers are in default states. 



 

 55     

4. About tab: About information is displayed in the Applet window with the 

about tab highlighted in the menu bar, while all other containers are in default 

states. 

5. Data type selected state: The drop down menu in the data types‟ container is 

set to any option other than all datatypes value. All other containers are in the 

default state. 

6. Material Folder: A selected material folder is highlighted in the materials tree 

and all other containers are in default states. 

7. Material folder with material classes: Material folder expands to display the 

material classes which are present in it while all other containers are in default 

states. 

8. Tree-2 state: The tree-2 state has the data type menu set to a data type value 

different from all data types, the tree container has the materials tree with one 

of the material folders expanded and a material selected. The tree-2 container 

displays the list of the datasets in the selected material with the datatype 

specified in the data type drop down menu. All other containers are in default 

states 

9. Projects tree: The projects tree is displayed in the tree container while all other 

containers are in default states. 

10. Projects folder with projects and datasets: The tree container has the projects 

folder expanded to display the sub projects and the dataset present in it, and 

all other containers are in default states. 



 

 56     

11. Summary page: Applet window displaying the summary of the material and 

the material name is highlighted in the materials tree with the material folder 

expanded. All other containers are in default states.  

12. Metadata state: Applet window displays the metadata of a dataset and the 

dataset name is highlighted in the materials tree or in tree-2 or in the project 

tree. The tree container can be in either of the following three states:  

 The material folder expanded and a material is selected when the 

data type menu is set to all data types. 

 The material folder expanded and a material is selected and a 

dataset is selected from the tree-2 while the data type menu is set 

to any other option other than all data types.  

 The dataset is selected from the projects tree with a project folder 

opened while the data types menu can be set to any option. 

All other containers are in default states. 

13. Plot state: Applet window displaying the plot of the selected dataset and the 

dataset name is highlighted in the materials tree or in tree-2 or in the project 

tree. The tree container can be in either of the following three states:  

 The material folder expanded and a material is selected when the 

data type menu is set to all data types. 

 The material folder expanded and a material is selected and a 

dataset is selected from the tree-2 while the data type menu is set 

to any other option other than all data types.  



 

 57     

 The dataset is selected from the projects tree with a project folder 

opened while the data types menu can be set to any option. 

All other containers are in default states. 

14. DMG tool state: The home page of the DMG tool is displayed, or the DMG 

tool with a dataset is displayed. This state requires the entire webpage to be 

reloaded. 

15. ImageAnalyzer tool state: The home page of the ImageAnalyzer tool is 

displayed, or the ImageAnalyzer tool with a dataset is displayed. This state 

requires the entire webpage to be reloaded. 

16. MSF tools: The home page of the MSF tool is displayed, or the MSF tool with 

a dataset is displayed. This state requires the entire webpage to be reloaded. 

Table A.2 shows various combinations of these selections made from the default 

home page and the corresponding state that was achieved. From the table, we observe 

that a state is achieved in multiple ways. 

 

Table A.2 List of paths and the corresponding states 

 



 

 58     

 

Table A.2 List of paths and the corresponding states (continued) 

 

 

 

 



 

 59     

Table A.2 List of paths and the corresponding states (continued) 

 

 

Figure A.2 shows the MPR as a finite state machine. The states that are shaded in 

grey are the ones which we have considered as resources and are named with URI 

schema, which is defined in section A.5. The states DMG tool, ImageAnalyzer tool and 



 

 60     

MSF tool do not involve AJAX calls and require reloading of the entire page, and the 

remaining states are intermediate states. The numbers on the arrows indicate the path as 

defined in table A.2. Table A.3 shows the state transitions of each container and their side 

effects, which in turn are responsible for the state transition of the entire MPR webpage, 

as shown in Figure A.2. 

 

Table A.3 List of containers and their details 

 

  

 

 

 



 

 61     

 

Default home page

Home tab Tools tab About tab

material tree

(List of Materials in a class)

Summary page

metadata Plot

Project tree

(Display Folders and datasets)

DMG tool Image

Analyzer tool
MSF tool

1

2,10,37

3,11,38

7,15,42

4,12,39
5,13,40 6,17,41

8

16

26

17

21,29

18,27,34

20,28,35

33

9

32

Tree-2

material folder with 

material classes
Datatype selected

Project folder with sub 

projects and datasets

9
23

24

25

31

32

22,30,36

 

Figure A.2 MPR as a finite state machine 

 

Diagram key: 

  Intermediate State or a state that requires reloading the page 



 

 62     

      States selected for naming with the URI 

         State transition 

Numbers: The numbers on the arrow correspond to the path specified in table A.2. 

Therefore, it is seen that the MPR can now be viewed as a finite state machine. 

 

A.5  Defining a URI schema for naming the states 

As discussed in previous sections, the state of the MPR is the aggregate of the 

states of the individual containers. Therefore, in principle, the URI of the webpage should 

contain a field for each of the containers. From table A.1 we can see that the values for 

the banner and button bar are none as they cannot go to any other state other than the 

default state. The content displayed in the applet window is determined by one selection 

or a combination of selections made in the menu bar, data types, tree (&tree-2), and 

action button bar, while the other containers, like banner and the button bar, do not affect 

the contents of the applet window. Therefore, the URI of the resource should contain 

information related to each of the four containers that affect the content of the applet 

window. The containers that affect the applet window are the menu bar, tree, action 

button bar, and the data types; therefore, there should be a reference related to these 

containers in the URI. Hence we choose the URI schema shown in figure A.3. 

 

 

 



 

 63     

 

 

Menu Bar Action Button BarTree

Button

DatatypeTabname

Dataset_Identifier

PREFIX+”Tabname”+/+”dataset_Identifier”+/+”Button”+ /+”datatype”

PREFIX = uri://ccg.cavs.msstate.edu/

Data Types

 

Figure A.3 URI schema 

 

URI schema:  

uri://ccg.cavs.msstate.edu/Tabname/dataset_Identifier/Button /datatype 

The following are the possible values of each of the individual fields of the URI, 

provided “uri://ccg.cavs.msstate.edu” is the prefix which is present in all the URIs. 

Tabname: Home (default), Tools, Help, About 

Dataset_Identifier: If the URI of the Dataset T1R4N4_A1_DMG.data is 

uri://ccg.cavs.msstate.edu/MaterialDB/MaterialDB/StressStrain.P.1/4798, 

then the value of the dataset_Identifier will be “4798.” 



 

 64     

Null is the default value. 

Button: Metadata, plot, tool, Null is the default value. 

Datatype: All, StressStrain.P.1, MaterialImage, Fatigue.1, Microstructure, Damage, 

MultiStageFatigue and Null is the default value.  

 

A.6  Name each of the states with the defined URI schema 

We have defined 6 states in section A.3, and we name these states by using the 

URI schema as defined in section A.5. 

The following is the list of each state and the URI with which it is addressed. 

Home state: 

 

  

Figure A.4 Screenshot of home tab state 

 

 



 

 65     

URI for home state:  

uri://ccg.cavs.msstate.edu/Home 

 

 

Table A.4 List of containers and their values in home state 

 

 

Container 

name 

Banner Button 

bar 

Menu 

bar 

Data 

Types 

Action  

Button 

bar 

Tree 

 

Tree-

2 

 

Applet  

window 

Value Default Default Home Any Default Any  Any Show 

 Home 

 

Summary page state: 

 

   

Figure A.5 Screenshot of summary page state 

 

 



 

 66     

URI of summary page state: 

uri://ccg.cavs.msstate.edu/Home/1489/all 

 

 

Table A.5 List of containers and their values in summary page state 

 

Containe

r name 

Banner 

 

Button 

bar 

Menu 

bar 

Data  

Types 

Action  

Button bar 

Tree 

 

Tree-2 

 

 

Apple

t 

windo

w 

Value Default Default Home All data 

 Types 

Summary 

page 

Material 

 selected 

 

Default 

 

Show 

summ

ary 

 

Metadata state: 

 

  

Figure A.6 Screenshot of metadata state 

 

 

 



 

 67     

URI of metadata state: 

uri://ccg.cavs.msstate.edu/Home/4888/metadata/Fatigue.1 

 

 

Table A.6 List of containers and their values in metadata state 

 

Container 

name 

Banner Button 

bar 

Menu 

bar 

Data 

Types 

Action  

Button 

bar 

Tree 

 

Tree-2 

 

Applet 

window 

Value Default Default Home All data 

types/ a 

particular 

data type 

from the 

list 

metadata material 

selected 

(material 

tree)/ 

dataset 

selected 

(project 

tree) 

 

Dataset 

selected 

from 

the list/ 

default 

Show 

metadata 

 

Plot state: 

 

    

Figure A.7 Screenshot of plot state 



 

 68     

 

URI of plot state: 

uri://ccg.cavs.msstate.edu/Home/4798/Plot/StressStrain.P.1 

 

Table A.7 List of containers and their values in plot state 

Container 

name 

Banner Button 

bar 

Menu 

bar 

Data 

Types 

Action  

Button 

bar 

Tree 

 

Tree-2 

 

Applet 

window 

Value Default Default Home All data 

types/ a 

particular 

data type 

from the 

list 

plot material 

selected 

(material 

tree)/ 

dataset 

selected 

(project 

tree) 

 

Dataset 

selected 

from 

the list/ 

default 

Show 

plot 

 

Tools state: 

 

  

Figure A.8 Screenshot of tools state 



 

 69     

URI of tools state: 

uri://ccg.cavs.msstate.edu/tools 

 

Table A.8 List of containers and their values in tools state 

Container 

name 

Banner Button 

bar 

Menu 

bar 

Data 

Types 

Action  

Button bar 

Tree 

 

Tree-2 

 

Applet 

window 

Value Default Default Tools Any Default Any  Any Show 

tools 

 

About state: 

 

  

Figure A.9 Screenshot of about state 

 

 

URI of About state: 

uri://ccg.cavs.msstate.edu/About 

 



 

 70     

 

 

 

Table A.9 List of containers and their values in about state 

Container 

name 

Banner Button 

bar 

Menu 

bar 

Data 

Types 

Action  

Button bar 

Tree 

 

Tree-2 

 

Applet 

window 

Value Default Default About Any Default Any  Any Show 

about 

 

A.7 Identify all the onlick events 

The following table gives the list of all the onlick events that are present in the 

MPR that can cause a state transition: 

1. Home tab selected 

2. Tools tab selected 

3. About tab selected 

4. Material selected 

5. Dataset in tree-2 selected 

6. Dataset in summary page selected 

7. Dataset in projects tree selected 

8. Metadata button selected 

9. Plot button selected  

10. Summary page button selected 

 

 

 



 

 71     

A.8 Save all the information related to the containers  

The hash table can be used to save the information related to the containers when 

an onclick event occurs, and each entry in the hash table has information related to each 

state.  Each time an entry is entered into the hash table the hash index is incremented by 

one. The hash table is shown in figure A.10. 

 

 

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

Hash Index Hash table values

 

Figure A.10 Hash table to store values from SaveContainerValues() 

 

Each entry in the hash table has 10 values in it, and each of these values refers to 

different aspects of the containers in the webpage. Table A.10 shows each entry and its 

corresponding information. 

 



 

 72     

Table A.10 Hash table values and the corresponding variable 

 

No. Variable 

Hashtable[Index,0] Tab name 

Hashtable[Index,1] Data type 

Hashtable[Index,2] Action 

Hashtable[Index,3] Tree selected 

Hashtable[Index,4] Material Classes opened/Projects opened 

Hashtable[Index,5] MaterialURI/datasetURI 

Hashtable[Index,6] Tree-2 

Hashtable[Index,7] datasetURI selected in tree-2 

Hashtable[Index,8] Button 

Hashtable[Index,9] Dataset_Identifier 

 

 

A.9 Create the URI by using the information from the hash table 

Once the values related to the containers are saved, the URI of the state is can be 

created from the hash table by taking values from the entries in the hash table specified 

by the hash name, as shown in table A.11. This hash table returns the URI of the state. 

 

 

 

 

 



 

 73     

Table A.11 CreateURI hash table for creating the URI of the state 

 

Hash name Value 

Home uri://ccg.cavs.msstate.edu/+Tabname 

 

Tools uri://ccg.cavs.msstate.edu/+Tabname 

 

About uri://ccg.cavs.msstate.edu/+Tabname 

 

SummaryPage uri://ccg.cavs.msstate.edu/Home/+Dataset_Identifier+/all 

 

Metadata uri://ccg.cavs.msstate.edu/Home/+ Dataset_Identifier 

+/metadata/+DataType 

Plot uri://ccg.cavs.msstate.edu/Home/+ Dataset_Identifier 

+/metadata/+DataType 

 

A.10 Implement the design by using the URIs to get the states 

 

 

A.10.1 Create URIs 

The URI of the resource contains information related to each of the four 

containers that affects the content of the applet window. However, in some cases we can 

get the value of one container if we know the value of another container. For instance, if 

we know the URI of the dataset from the tree, then we can know the class version of the 

dataset from this URI without reading the datatypes container. Hence, we change the 

design to the one seen in figure A.11 from figure A.3, and we see that the values of the 

variables Dataset_Identifier and Datatype can be obtained from the function to determine 



 

 74     

dataset_Identifier and datatype values. Hence, the following URI format is selected. The 

algorithm for the function to determine dataset_Identifier and datatype values is shown in 

figure A.12. 

 

 

Menu Bar Action Button BarTree

Button

DatatypeTabname

Dataset_Identifier

URI of 

Leafselected

PREFIX+”Tabname”+/+”dataset_Identifier”+/+”Button”+ /+”datatype”

PREFIX = uri://ccg.cavs.msstate.edu/

Function to determine  

dataset_Identifier and datatype values

 

Figure A.11 Creating a URI schema 

 

 

 

 

 

 



 

 75     

 

 

Function to determine  dataset_Identifier and datatype 

values

i<0

URI of leafselected

var j = URI.lastIndexOf("/");

Dataset_Identifier= URI.substring(j);

Return Dataset_Identifier;

Return DataType=NULL;

var j = URI.lastIndexOf("/");

Dataset_Identifier= URI.substring(j);

 

var temp=URI.substring(0,j);

var k = temp.lastIndexOf("/");

DataType=URI.substring(k,j);

Return Dataset_Identifier;

Return DataType;

i>0

Var i=URI.indexOf("/material/");

 

Figure A.12 Algorithm for determining the Dataset_Identifier and DataType 

 

A.10.2 Onclick event handling 

The RESTful implementation of an AJAX-based webpage can be considered as a 

finite state machine moving from the initial state to the next state which is triggered by 

the state transition of one of the containers in the webpage. The events that cause the state 

transition are listed in the table A.12. When each of these events happen, we perform 

three actions, SaveContainerValues(), CreateURI() and ChangeState().  



 

 76     

 

Table A.12 List of onclick events and their actions 

 

Event Onclick action 

Home Tab selected hashIndex=Call SaveContainerValues(),  

URI= CreateURI(Home,hashIndex) 

Call ChangeState(URI,flag=0, hashIndex) 

Tools Tab selected hashIndex=SaveContainerValues(),  

URI= CreateURI(Tools,hashIndex) 

Call ChangeState(URI,0,) 

About tab selected hashIndex=SaveContainerValues(),  

URI= CreateURI(About,hashIndex) 

Call ChangeState(URI,0) 

Material selected hashIndex= SaveContainerValues(),  

If(datatype=all){  

URI= 

CreateURI(SummaryPage,hashIndex); 

Call ChangeState(URI,0)} 

Else 

{load TREE-2} 

Dataset in Tree-2 selected  hashIndex= SaveContainerValues(),  

URI= CreateURI(Metadata,hashIndex) 

Call ChangeState(URI,0) 

 

Dataset in summary page selected hashIndex=SaveContainerValues(),  

URI= CreateURI(Metadata,hashIndex) 

Call ChangeState(URI,0) 

 

Dataset in projects tree selected hashIndex=SaveContainerValues(),  

URI= CreateURI(Metadata,hashIndex) 

Call ChangeState(URI,0) 

 

Metadata button selected hashIndex=SaveContainerValues(),  

URI= CreateURI(Metadata,hashIndex) 

Call ChangeState(URI,0) 

 

Plot button selected hashIndex=SaveContainerValues(),  

URI= CreateURI(Plot,hashIndex) 

Call ChangeState(URI,0) 

Summary Page button selected hashIndex=SaveContainerValues(),  

URI= 

CreateURI(SummaryPage,hashIndex); 

Call ChangeState(URI,0)} 

 



 

 77     

From the list of all the onlick events, we notice that the material selected event is 

inconsistent with the other implementations and stands out in the table A.12. The material 

selected event can have two possible actions based on the datatype selected. This shows 

that there is a need for better implementation of the summary page, which could be 

identified by designing the application RESTfully. The summary page is another 

implementation of the tree information; therefore, instead of having this information in 

the applet window, the tree container can be modified to accommodate this information. 

The SaveContainerValues() function is responsible for collecting and saving the 

information related to all the containers of the webpage so that they can be used for 

bookmarking. The SaveContainerValues() uses the hash table to save the information; 

each entry in the hash table has information related to each state.  Each time an entry is 

entered into the hash table, the hash index is incremented by one. The hash table is shown 

in the figure A.10. 

 

A.10.3 Implementation of SaveContainerValues function 

The SaveContainersValues() uses the hash table which is discussed in section A.8.  

The following shows the pseudo code for implementing the SaveContainerValues. 

SaveContainerValues() 

{ 

Hashtable[Index,0]= Write code to get the tab selected 

Hashtable[Index,1]= Write code to get the datatype selected from the drop down 

Hashtable[Index,2]= Write code to get the action button selected  

Hashtable[Index,3]= Write code to get the Tree cookie 



 

 78     

Hashtable[Index,4]= Write code to get the Material Classes opened/Projects 

opened 

Hashtable[Index,5]= Write code to get the MaterialURI/datasetURI selected 

Hashtable[Index,6]= Write code to get the Tree-2 cookie 

Hashtable[Index,7]= Write code to get the datasetURI selected in tree-2 

Hashtable[Index,8]= Write code to get the button selected from the button bar 

Hashtable[Index,9]= Write code to determine the Dataset_Identifier. 

} 

 

A.10.4 Implementation of CreateURI function 

Once the values related to the containers are saved, the URI of the state is 

generated by using CreateURI(Hashname,hashIndex). The URIs are created by taking 

values from the entry of the hashtable specified by the hash index, and the URI is 

formation as defined by the hash name as shown in table A.12. The CreateURI returns 

the URI of the state which should be loaded. So, the URI is passed to the ChangeState 

function which is responsible for changing the state of the applet.    

 

A.10.5 Implementation of ChangeState function 

The current implementation of the MPR is designed using Method Invocation 

(RMI), where each action performed on the MPR (like clicking a button) would invoke a 

method. This leads to too many method definitions that become too complex to maintain 

and redundant, but the RESTful design of the MPR has URIs of the resources when 

compared to the methods in the previous implementation. When a user clicks on a button 



 

 79     

in the MPR webpage rather than invoking a method, a URI is created, as described in 

table A.12, and passed on to the ChangeState function (figure A.13), which is responsible 

for getting the resource defined by the URI. Therefore, instead of calling different 

methods for different actions, in the new design for every action a URI is created and 

passed on to the ChangeState function. 

The parameters that are passed to the ChangeState function are the URI and the 

Flag. The URI defines the state of the MPR, while the Flag defines whether the URI 

should be saved or used for loading it on the web client. When the Flag value is 1, then 

the bookmarking feature is implemented, and when the Flag value is 0, the applet 

window is loaded with the resource, which the URI defines. 

The URI has the information related to the menu bar, datatype, action button bar, 

and the tree. Once the changeState function is called, the URI is split into tab name, 

dataset_identifier, button, and the datatype by using the URI.split("/") function. From the 

datatype value, the class version is established, and from the dataset_identifier, the URI 

of the material/dataset is recreated based on the datatype it belongs to. The content of the 

applet window is defined in terms of the combination of the values of tab name, button, 

URI of class version, and URI of the material/dataset. Depending upon these 

combinations, the applet is loaded with the correct resource by calling the appropriate 

function, as shown in figure A.13. 

The function to establish classversion does so, based on the datatype, as shown in 

figure A.14. The function to create the URI of the material/dataset is responsible for 

adding the dataset_Identifier to the classversion, which gives us the URI of the 

material/dataset is shown in figure A.15.   



 

 80     

 

 

 
 

Figure A.13 Control flow diagram of the ChangeState function 

 

 

 
 

Figure A.14 Control flow diagram of the function to establish classversion 



 

 81     

The function to establish classversion can be simplified by changing the way the 

datatype containers are handled in experimentalTypes.jsp. The current implementation of 

the datatypes container has a menu option value and menu option name. The menu option 

values are used to determine to the classversion, and the classversions are determined at 

several locations redundantly, which make the code very complex and difficult to 

maintain. This can be fixed by using the hash table called the ClassverionHashTable, 

which contains the menu option names and the classversions as the menu option values. 

This reduces the number of comparisons made in order to determine the classversion, and 

it also helps in extending to new classversions. If a new classversion is added to the 

MPR, then the change should be made only in the ClassverionHashTable (shown in table 

A.13), when compared to several locations in the current implementation. Problems like 

this can be easily identified and solved when designing RESTfully. 

 

Current implementation of experimentalTypes.jsp 

Data type <select id="dataTypeChooser"> 

<option value="AllDataTypes"> All Data Types </option> 

<option value="StressStrain"> Stress-Strain </option> 

<option value="Image"> Microstructure Image </option> 

<option value="Fatigue_SL"> Strain-Life </option> 

<option value="Damage"> Damage Model </option> 

<option value="Microstructure"> Microstructure Model</option> 

</select> 

 

Redesign the experimentalTypes.jsp to the following: 

Data type <select id="dataTypeChooser"> 

for(var i;i< ClassverionHashTable.length();i++) 

){ 

<option value=" ClassverionHashTable .value[i]"> ClassverionHashTable 

.name[i]</option> 

} 

</select> 

 

 



 

 82     

Table A.13 ClassverionHashTable 

 

Option name Option value 

All Data 

Types 

All 

Stress-Strain uri://ccg.cavs.msstate.edu/MaterialDB/MaterialDB/StressStrain.P.1/ 

Microstructur

e Image 

uri://ccg.cavs.msstate.edu/MaterialDB/MaterialImage/1/ 

Strain-Life uri://ccg.cavs.msstate.edu/MaterialDB/MaterialFatigue/Fatigue.1/ 

Damage 

Model 

uri://ccg.cavs.msstate.edu/MaterialDB/MaterialModels/Damage/ 

Microstructur

e Model 

uri://ccg.cavs.msstate.edu/MaterialDB/MaterialModels/Microstructur

e/ 

 

 

 

Function to create the uri of the 

material/dataset

Uri of dataset= Uri of classverion+Dataset_Identifier

Dataset_Identifier

 

 

Figure A.15 Control flow diagram of the function to establish Uri of dataset/material 

 

A.10.6 LoadState function 

From table A.14, we see that the LoadState hash table is responsible for loading the 

appropriate state based on the hash index values, which are home, tools, about, summary 

page, metadata, and plot. The LoadState hash table is shown in the table A.14. 

 

 



 

 83     

Table A.14 loadState hashtable 

 

Name Load applet Function call 

(Javascripts) 

Post 

processing 

(Function) 

Additional calls 

HomeSt

ate 

LoadApplet(Home) setHome(Home)  setColor(Home) 

ToolsSta

te 

LoadApplet(toolsHo

me) 

setHome(tools)  setColor(tools) 

AboutSt

ate 

LoadApplet(About) setHome(About)  setColor(about) 

Summar

yState 

LoadApplet(material

Summary) 

DisplayData(cv,id,d

ataType) 

 

PostProcessing 

(Summary) 

 

Metadat

aState 

MetadataHashtable(D

ataType) 

   

PlotState PlotHashTable(DataT

ype) 

   

 

The LoadState uses the LoadApplet hashtable for homeState, ToolsState, 

AboutState, and SummaryState. It uses the MetadataHashtable to load the MetadataState 

and PlothashTable to load the Plot state. 

When the loadState index is homeState, ToolsState, AboutState, or 

SummaryState, the loadApplet (shown in table A.15) is used to directly load the state. 

When it is Metadatastate, the MetadataHashtable (shown in table A.16) is used to call the 

loadApplet hashtable, which makes decisions based on the datatype value. When the 

loadState index is PlotState, then the PlotHashTable (shown in table A.17) is used to call 

the loadApplet hashtable, which makes decisions based on the datatype value. 

 

 

 

 



 

 84     

Table A.15 LoadApplet hashtable 

 

Applet name Values 

Home URL: home.jsp  

XSL: none 

Target: applet  

Tools  

 

URL tools/home.jsp  

XSL:none  

Target:applet  

About  

 

URL:about.jsp 

XSL: none 

target: applet  

showImageModelMetadata  

 

URL: getInstanceXmlByUri  

p_uri= + “uri of dataset”  

XSL: 

materalModels/modelMetadataImage.xsl  

target: dataActions  

 

showDamageModelMetadata  

 

URL: getInstanceXmlByUri  

p_uri=+ “uri of dataset”  

XSL: 

materialModels/modelMetadataDamage.

xsl  

Target: dataActions  

 

showMetadata  

 

getInstanceXmlByUri  

p_uri  

XSL: 

experimentalData/showMetadata.xsl  

target: dataActions  

 

showPlot  

 

URL:PlotApplet.jsp 

XSL: 

Target: dataActions  

 

 

 

 

 

 



 

 85     

Table A.16 MetadataHashtable 

 

Name Load applet Function call 

(Javascripts) 

Post processing 

Microstr

ucture 

Loadapplet(showIm

ageModelMetadata) 

ProcessXMLInEleme

ntTags(xmlDoc) 

 

PostProcessing(Micr

ostructure) 

Damage Loadapplet(showDa

mageModelMetadat

a) 

ProcessXMLInEleme

ntTagsDamage() 

PostProcessing(Dam

age) 

StressSt

rain 

Loadapplet(StressSt

rain) 

 PostProcessing(Stre

ssStrain) 

Image Loadapplet(Image)  PostProcessing(Ima

ge) 

Fatigue Loadapplet(Fatigue)  PostProcessing(Fati

gue) 

MultiSt

ageFatig

ue 

Loadapplet(MultiSta

geFatigue) 

 PostProcessing(Mult

iStageFatigue) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 86     

Table A.17 PlotHashTable 

 

Name Load applet Function call 

(Javascripts) 

Post 

processing 

(Function) 

StressStrain Loadapplet(showPlot

) 

pasteAjaxResponse("/c

cgportlets/apps/xfit/loa

dData.jsp",query,null,"

dataActions") 

 

Image Loadapplet(Image) pasteAjaxResponse("/c

cgportlets/apps/imagea

nalyzer/loadData.jsp",q

uery,null,); 

 

 

Fatigue Loadapplet(Fatigue) getResponse("/ccgportl

ets/apps/msf/initModel.

jsp") 

 

MSFModel.loadData(U

RI of dataset, 'true', 

function(resp)) 

 

 

 

 

The loadState, MetadataHashtable, and PlotHashTable not only load the applets, 

but also have a function call and a post processing calls if needed, and the additional calls 

are the function calls which cause the side effect of the loaded applet. In the case of 

loading the tab states, setHome() function is responsible for clearing the global variables 

and then remembering the tab selected. The setColor() function is responsible for 

coloring the border of the tab which is under selected which is a side effect of loading the 

applet. 



 

 87     

In the case of loading the summary states, DisplayData(cv,id,dataType) function 

is called, which is responsible for filling the columns in the summary page with the 

appropriate dataset names which are present in the material selected. The summary page 

requires post processing; hence, the PostProcessing() is called. The purpose of 

PostProcessing() is discussed later in this section. 

In the case of loading the MetadataState, the decisions are made based on the 

datatype to determine which entry of the MetadataHashtable to load. If the datatype is 

Microstructure, then ProcessXMLInElementTags(xmlDoc) is called where 

xmlDoc=getResponseXML("/ccgportlets/rest/metadata?methodName=getInstanceXmlBy

Uri&p_uri="+selectedDataItem), which is responsible for performing the XSLT 

transformation of the encrypted metadata into a tabular form. This state also needs post 

processing, so the function PostProcessing(dataType) is called. 

If the datatype is Damage, then ProcessXMLInElementTagsDamage() is called, 

which is responsible for performing the XSLT transformation of the encrypted metadata 

into a tabular form. This state also needs post processing so the function 

PostProcessing(dataType) is called. 

If the datatype is StressStrain, Image, Fatigue, or MultiStageFatigue then there is 

no functional calls made, because these states can be directly handled by the applet, but 

these states need post processing so the function PostProcessing(dataType) is called. 

In the case of the plotState, the decisions are made based on the datatype to 

determine which entry of the PlotHashTable to be loaded. The plot state can be reached 

only through the metadata state, in order to go to the plot state. In the current design the 

loadApplet function is not called again, but it uses the applet that is already loaded. The 



 

 88     

plot image is pasted in the dataActions target of the “showMetadata” applet that is loaded 

in the metadata state. Therefore, no new applet is loaded in the function to handle plot. 

But, this is inconsistent to the design of each of the states and could cause problems while 

implementing bookmark and back button features. Therefore in the new design, a new 

applet is defined for the plot state called the “showPlot” which has the dataActions target 

in it where the plot image is pasted. 

If the datatype is StressStrain, then the pasteAjaxResponse("/ccgportlets/ 

apps/xfit/loadData.jsp",query,null,"dataActions"); is called as shown in table A.17. The 

query is "?dataRef="+selectedDataItem, where the value of the selectedDataItem variable 

is equal to the URI of the dataset. The pasteAjaxResponse is responsible for pasting the 

plot image in the applet window placeholder (dataActions). There is no post processing 

for the plot state. 

If the datatype is Image, then the pasteAjaxResponse("/ccgportlets/ 

apps/imageanalyzer/loadData.jsp",query,null,"dataActions"); is called as shown in table 

A.17. The query is "?dataRef="+selectedDataItem, where the value of the 

selectedDataItem variable is equal to the URI of the dataset. The pasteAjaxResponse is 

responsible for pasting the plot image in the applet window placeholder (dataActions). 

There is no post processing for the plot state. 

If the datatype is Fatigue, then the getResponse("/ccgportlets/apps/msf 

/initModel.jsp") is called as shown in table A.17. The MSF tool was developed using 

DWR, so the mechanism of the handling the plot is different from Image and 

StressStrain. The DWR function MSFModel.loadData(dataRef, 'true', function(resp) is 

responsible for loading the plot image in the applet window place holder (dataActions); 



 

 89     

here the value of the dataRef is the URI of the dataset. There is no post processing for the 

plot state. 

Postprocessing function: 

PostProcessing(name){ 

If(Summary){ set values of <young, poisson, materialName>} 

If(Microstructure){set values of <model Type, Author URI, createURI, 

DateRegisteredLabel, DateCreatedLabel, description>} 

If(Damage){set the values of < model Type, Author URI, createURI, 

DateRegisteredLabel, DateCreatedLabel, UriVal, description >} 

If(StressStrain||Image||Fatigue||MultiStageFatigue){ set values of <data Type, 

Author URI, createURI, DateRegisteredLabel, DateCreatedLabel, UriVal, 

material, description >} 

} 

 

The PostProcessing function is responsible for updating some of the information 

in the loaded state of the applet.  

 

A.11 Remember all the states of the FSM by remembering the URIs of the states 

Once the MPR is designed RESTfully, the web-client can be considered as 

moving from one state to another as shown in figure A.2, where each state is identified by 

a unique URI. Therefore, in order to retrieve the previous state of the application, we 

should save the URI of the resource. When a user wants to get back to a previous state, 

then the saved URI is reloaded to reproduce the state. The client renders the information 

from the URI and then gets the resources that are represented by the URI to load the 

individual containers of the webpage. This concept of retrieving a state of an AJAX-

based web-client can be demonstrated by designing the bookmark feature and back-

forward button feature for the MPR, which is discussed in the following sections. 



 

 90     

The current design of the MPR does not have the bookmark or the back-forward 

button features, but now that the MPR is redesigned RESTfully, the bookmark and back-

forward button features can be implemented. So, the layout of the MPR should be added 

with a new menu bar, which looks like as shown in figure A.16. This menu bar has a 

bookmark button, a drop down menu to add the bookmarked URIs, a go button to load 

the bookmarked page, a back button, and a forward button. 

 

 

 
Figure A.16 layout of the bookmark and back_forward button bar 

 

 

Capture the whole state

Transition to a new state

Reload the new state

 
Figure A.17 Transition to new state 

 

The figure A.17 shows different ways of achieving a new state. When the FSM is 

moving to new states by onclick events, then all containers need not be reloaded. 

Whereas when a new state is achieved by going to a bookmarked page or by a back 

button, then all the containers should be loaded to their previous states. The changeState() 

can perform the “transition to a new state”. 



 

 91     

The “bookmark” button is responsible for saving the URI of the state of the MPR 

by calling the function Bookmarking(URI). 

The “Go” button is responsible for reloading the state of the MPR defined by the 

URI, which is selected from the dropdown menu by calling the function 

ChangeState(URI,HashIndex) and RetrieveOtherContainersStates(HashIndex) is called to 

restore all the containers to the state indicated by the URI. 

The “Back” button is responsible for loading the immediate previous state of the 

MPR by calling the function ChangeState(URI,HashIndex), where the URI is 

BackForwardButtonArray[INDEX--] and HashIndex is the index of the hash entry that 

contains all the information related to the state, provided we are not in the first state. 

The “forward” button is responsible for loading the immediate next state of the 

MPR by calling the function ChangeState(URI,HashIndex), where the URI is 

BackForwardButtonArray[INDEX++] and HashIndex is the index of the hash entry that 

contains all the information related to the state, provided we are not in the final state. 

This can be achieved by using the back-forwardButton(URI) function that keeps track of 

all the URIs in which the FSM is moving by saving the URI in an array, as shown in 

figure A.18 

                            

 



 

 92     

Add the URI to an array

BackForwardButtonArray[INDEX++]=URI

Back_ForwardButton(URI)

 
 

Figure A.18 Control flow diagram of the Back_ForwardButton function 

 

A.12 Remember the URI of the state in order to bookmark a state 

The Bookmark(URI) function that remembers the URI of the current state of the 

FSM by adding it to the bookmark drop down menu in an array is shown in figure A.19. 

 

 

Remember the URI for bookmarking

(addOption(selectbox,text,value ))

Text=URI 

Value= URI

Bookmark(URI)

 
 

Figure A.19 Control flow diagram of the bookmark function 

 



 

 93     

In order to retrieve the previous state of the FSM, all the containers of the webpage 

should be set back to their respective previous states which are saved in the hashtable at 

the hashIndex. The RetrieveOtherContainersStates() function is responsible for doing 

this, as shown below. 

 

RetrieveOtherContainersStates: 

RetrieveOtherContainersStates(HashIndex){ 

If(Hashtable[Index,0]){Write code to highlight tab name which is in 

Hashtable[Index,0]} 

If(Hashtable[Index,1]){write code to display the datatype in the datatype 

dropdown which is in Hashtable[Index,1]} 

If(Hashtable[Index,2]){ write code to highlight action button which is in 

Hashtable[Index,2]} 

If(Hashtable[Index,3]){ write code to display the tree which is in 

Hashtable[Index,3]} 

If(Hashtable[Index,4]){ write code to open Material Classes opened/Projects 

opened which are in hashtable[Index,4]} 

If(Hashtable[Index,6]){write code to display the tree-2 which is in 

Hashtable[Index,6]} 

If(Hashtable[Index,8]){ write code to highlight the button selected which is in 

Hashtable[Index,8]} 

} 

 



 

 94     

When the RetrieveOtherContainersStates(HashIndex) is called, the state of the 

webpage is retrieved by using the back button or by reloading a bookmarked state. So, 

when we try to retrieve the state of the entire webpage, the 

RetrieveOtherContainersStates(HashIndex) function is responsible for reading the 

hashtable entries and setting all the containers back to the previous state, as shown above 

pseudo code. 

 

 

 

 

 

 

 

 


	Designing An Ajax-Based Web Application Restfully
	Recommended Citation

	THESIS OR DISSERTATION TITLE GOES HERE, INVERTED PYRAMID

