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In this work, we present rigorous and efficient methods for analyzing scattering 

from the following structures 

� Tandem Slit loaded with homogeneous material 

� Eccentrically loaded cylinder with multiple slits 

� Semicircular cylinder and slit 

� Dielectric loaded Wedge shaped cylinder 

� Circular cylinder with resonant cavities and resonant cavities on circular arc. 

For analyzing the material loaded tandem slit configuration, the boundary value problem 

is formulated into a pair of simultaneous Wiener-Hopf equations via Fourier 

transformation. After decoupling these equations by elementary transformation, each 

modified Wiener-Hopf equation is reduced to a Fredholm integral equation of the second 

kind. The integral equations are then solved approximately to yield the Fourier transform 

of the diffracted fields. The inverse transform is evaluated asymptotically to obtain the far 



 

field expressions. Measurements and numerical simulations are also performed for 

several different geometric and material configurations. The analytic solutions compare 

well with measured and simulated results. The possibility of reducing beamwidth and 

increasing power coupled through the loaded tandem slit is explored. 

The analysis of the eccentrically loaded cylindrical cavity with multiple slits 

under plane wave illumination is formulated using two distinct approaches: (1) an 

integral equation/combined boundary condition (IE/CBC) formulation and (2) an integral 

equation/Neumann series expansion (IE/NS) formulation.  The IE/NS formulation is 

shown to converge faster than the IE/CBC formulation based on the proper edge behavior 

exhibited by the Neumann series current expansion functions.  Results for the 

backscattered radar cross section (RCS) of several geometries are presented, and the 

relationships between the RCS and the scatterer characteristics are explored. The 

applicability of the Neumann series method to find a fast method for evaluating scattering 

from a metallic strip and semicircular cylinder is presented. The Neumann series of 

different periodicity is used for studying scattering from wedge shaped cylinder. The 

Neumann series is also applied to study scattering from a circular cylinder with resonant 

cavities and resonant cavities on a circular arc. These resonant cavities on a circular arc 

have superdirective properties, which are useful for high gain antenna design.  
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CHAPTER I 
 

INTRODUCTION 
 

 

Investigation of diffraction characteristics of canonical structures is useful since it 

gives insight into new properties that can be exploited for engineering purposes. Also, 

theoretical investigation can be useful for validating approximate models and design 

“rules of thumb” that can be applied to more general problems and help in development 

of improved numerical techniques. Moreover, they provide a standard solution against 

which general numerical algorithms can be verified.  

The diffraction of a plane wave by various slit configurations is an important 

problem in both theory and application. The tandem slit configuration has been employed 

in the design of microwave waveguide bandpass filters. Hamid [1] has employed the 

solution for the diffraction from the thick PEC edge along with the ray-optical approach 

to determine the reflection coefficient of the multi-cavity thick bifurcation bandpass 

filter. The multi-cavity thick bifurcation bandpass filter configuration is a series of 

tandem slits with varying slit widths and spacing.  Hamid observed a reduction in 

bandwidth for thick slit bifurcations when compared to thin slits. This reduction in 

bandwidth was obtained with a small reduction in the transmission coefficient at the 

center frequency. The reduction in the transmission coefficient can be explained using the 

ray-optic approach. The multi-cavity thick bifurcation band pass filter can be considered 
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as a sequence of thick slits: each slit focusing electromagnetic energy on the next. One 

way to increase the transmission coefficient is to focus more energy on the next slit’s 

center by reducing the beamwidth of the bifurcations. The beamwidth of the thick slit 

arrangement is larger than that of the equivalent thin slit for thickness to width ratios 

below approximately 0.5, while the thick slit beamwidth is smaller than that of the thin 

slit for thickness to slit ratios greater than this value [2]. The maximum thickness to width 

ratio used by Hamid in [1] is 0.504, yielding relatively large beamwidths for each thick 

slit arrangement and degrading the transmission coefficient of the filter. Kashyap [3] has 

also observed experimentally that the beamwidth of the thick slit is reduced by loading 

the slit with a dielectric material. The analysis presented here is concerned with the effect 

on beamwidth when the tandem slit is loaded with a dielectric material. If it is possible to 

reduce the tandem slit beamwidth through loading, then the thick slit bifurcations could 

be replaced with the loaded tandem slits to improve the filter transmission coefficient. 

Simultaneous analysis of the beamwidth and coupled power is required to ensure that an 

increase in the transmission coefficient is achieved.   

The theoretical solution for diffraction from a material loaded tandem slit has not 

yet been explored in the available literature. Previous analysis of the tandem slit 

configuration includes diffraction with normal incidence by Allredge [4] using a 

variational procedure, diffraction with oblique incidence by Kashyap [2] using the 

Wiener-Hopf technique, and diffraction by a tandem impedance slit in air by Polat [5] 

using a combination of Wiener-Hopf and mode matching techniques. The analysis of 

thick tandem slits with offset has been considered by Kiang [6] for penetration studies. 

Earlier analysis of diffraction by a dielectric loaded single slit has been carried out using 
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the method of moments [7], dual integral equations [8] and the finite element and 

boundary integral methods [9].  Diffraction by an open-ended waveguide with extended 

loading is solved using the Wiener-Hopf technique by Fong [10] and diffraction by a 

dielectric-loaded slit in a conducting plane is solved by Hurd and Sachdeva using the 

integral equation method [11]. The problem considered here is diffraction by a tandem 

slit loaded with a homogeneous dielectric material which is solved using the Wiener-

Hopf technique [12]. The formulation for the material loaded tandem slit and numerical 

results for the transmission coefficient and beamwidth are presented in CHAPTER II. 

Electromagnetic field penetration through longitudinal slots in cylindrical 

geometries has received considerable attention in the literature given the importance of 

this geometry with regard to electromagnetic compatibility and RCS reduction.  The 

problem of a single slit on a coaxial cable was solved for both TE and TM illumination 

by Ziolkowski [19] using the dual series approach.  Felsen solved the same problem for 

the TE case using ray-mode parameterization [20], while Arvas solved the problem for 

TM illumination using the method of moments (MoM) [21].  Yu [22] considered TM 

illumination of the coaxial geometry with a thick outer boundary by matching the field at 

the boundary and using the orthogonality of the Fourier series.  The scattered fields of a 

cylinder with a slit were determined in [23] and [24] by incorporating a modal expansion 

of the aperture fields in the MoM solution.  Also, Shumpert and Bulter proposed three 

methods to study penetration of a slotted conducting cylinder in [25] and [26]. The 

slotted cylinder with inner and outer lossy coating has been analyzed by Colak in [27] 

and [28]. 
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In this work, we consider scattering by a loaded cylindrical cavity with multiple 

longitudinal slits in the outer conductor and an eccentrically located inner conductor. The 

analysis of the structure using two distinct techniques (Combined boundary condition and 

Neumann series) is presented in CHAPTER III. The advantage of using Neumann series 

is that it satisfies the required edge condition along with the boundary condition on the 

metallic surface. The extension of the Neumann series for the analysis of a thin metallic 

strip and a semicircular cylinder is presented in CHAPTER IV. The Neumann series 

method in conjunction with field expansions on the Riemann surface is used to find 

scattering from a strip. The geometry of a metallic wedge shaped cylinder is also 

addressed using Neumann series expansion for the field expansions under different 

periodicity. The analysis of the thin strip and wedge shaped geometry are presented in 

CHAPTER V. The analysis of resonant cavities on a circular strip is presented in 

CHAPTER VI. 
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CHAPTER II 
 

SCATTERING FROM DIELECTRIC LOADED TANDEM SLIT 
 
 
 
2.1 Introduction 

In this chapter, we analyze the problem of scattering from the material loaded 

tandem slit using Wiener-Hopf. The Wiener-Hopf formulation of the material loaded 

tandem slit is described in Section 2.2. The method to solve the Wiener-Hopf equation 

for the scattered far field is described in Section 2.3. Numerical results for beamwidth 

and normalized power coupled are presented in Section 2.4.  

 

2.2 Formulation of the Problem 

Consider the two-dimensional problem of a material loaded tandem slit as shown 

in Figure 2.1. The tandem slit is formed by two infinitesimally thin PEC layers covering 

the planes at y = +d and y = -d with open slits of length l in each plane.  The region 

between the two PEC planes, designated as region 2 (-d < y < d), is filled with a 

homogeneous material of thickness 2d while the surrounding medium is free space. The 

incident plane wave, polarized parallel to the slit edges, is incident from above in region 

1 (y > d) at an angle �o. The region on the opposite side of the tandem slit is designated as 

region 3 (y < -d). 
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Figure 2.1. Material loaded tandem slit 

 

The Wiener-Hopf solution of the loaded tandem slit is formulated as a boundary value 

problem. Using appropriate spectral representations for the fields, the boundary value 

problem is reduced to a pair of simultaneous modified Wiener-Hopf equations. The 

general form of the modified Wiener-Hopf equation of the second kind is 

)(
)(

)()()( 1
�
�

��� �
M
Y

eX lj �
��		� 	�  (2.1)

 
The �-(�), �+(�) and Y1(�) functions are unknown, while X(�) and M(�) are 

known functions. In the above equation, as well as throughout the paper, a subscript of 

“+” denotes a function which is regular in the upper half-plane [Im(�) > Im(-ko)] while a 

subscript “-“ denotes a function which is regular in the lower half-plane [Im(�) < Im(ko)], 

where ‘ko’ is the free space wave number. “Re” and “Im” are used to denote the real and 

imaginary parts of complex quantities. Functions that are regular over the entire complex 

plane except the point at infinity are denoted by the subscript “0”. The next step is to 
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decompose the terms in Eq. (2.1)  such that each function is analytic either on the upper 

half plane or the lower-half plane. The decomposition is performed using the Cauchy 

integral formula for analytic functions. The functions which are analytic on the upper or 

lower half-plane are bounded in the respective region, since they tend to zero as � tends 

to infinity. In some cases, the functions must be manipulated to meet the requirement of 

tending to zero at infinity. This yields a function which is analytic in the upper half-plane 

equal to a function analytic in the lower half-plane with a region of overlap [-Im(ko) < � < 

Im(ko)]. By the uniqueness theorem for analytic functions, this represents a function 

which is analytic in the entire complex domain (entire function). Also, this entire function 

is bounded, and by Liouville’s theorem, the entire function is a constant (equal to zero 

since the analytic function tends to zero at infinity), which yields a pair of coupled 

integral equations that can be decoupled by elementary transformation to the Fredholm 

integral equation. The solution of the Fredholm integral equation is obtained 

approximately by a method used by Jones [13]. The Fourier transform pair used here is 

defined by 



�

��
�

�
dxexuu xj�


� )(

2
1)(  (2.2)

 

 
.)(

2
1)( 
�

�

��

�
�

dxeuxu xj��


 (2.3)

 
where the “^” denotes the Fourier transform of the function. The time dependence 

employed here is e-j�t. 

The TM polarized incident plane is defined by 

)sincos(),( ooo yxjkii
z eyxuE �� 	���  (2.4)
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Given the structure of the tandem slit and the characteristics of the incident wave, the 

total electric field has only a z-component, allowing a scalar boundary value problem 

solution. The total electric field in the three distinct regions can be written as 

�
�
�
�

�

� �	
�

��

),(
),(

)(),(
),(

3

2

sin)2(sincos
1

yxu
yxu

eeeyxu
yxu

oooooo dyjkyjkxjk ���

�
�
�

�

�

3region 
2region 
1region 

 (2.5)

 
The functions u1(x,y), u2(x,y) and u3(x,y) must satisfy Helmholtz’s equation for the 

respective media subject to the following boundary, continuity, edge and radiation 

conditions:  

0),(),(),( 321 ����� dxudxudxu )},()0,{( ���� lx �  (2.6)
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and 0 < 	 < 1/2, depending on the medium. Taking the Fourier transform of the 

Helmholtz equation with respect to x yields the following solution in the transformed 

domain 

 
yjKeAyu )(

1 0)(),( ��� �
�

 (2.14)
  

yjKyjK eCeByu )()(
2 )()(),( �� ��� �

�
	�  (2.15)

  

 
yjKeDyu )(

3 0)(),( ��� ��
�  (2.16)

 

where 22
0)( �� �� kKo , 22)( �� �� kK  and ‘k’ is the wave  number of the material 

between the slits. The branch cut for )(�oK is shown in Figure 2.2. The functions A(�), 

B(�) and C(�) are the unknown spectral coefficients to be determined. The branch cut for 

K(�) is shown in Figure 2.2. The transform solutions in Eqs (2.14), (2.15), and (2.16) can 

each be written as a sum of terms analytic in the upper half-plane, the lower half-plane 

and the entire plane such that 
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Combining the boundary conditions of Eq. (2.6) and (2.7) with the expressions in (2.14) 

and (2.15) gives 

djKdjKdjK eAdFeCeBdG )(
0
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0 0)(),()()(),( ��� ����� ��	� � , (2.23)
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Solving Eq. (2.23) and (2.24) for B(�) and C(�) yields 
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Differentiating Eq. (2.17) and (2.18) with respect to y, inserting the results into the 

boundary condition of Eq. (2.8) and (2.9), and adding the resulting equations yields 
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Figure 2.2. Complex �-plane and integration contour. 

 

The dot above the functions in (2.30) and (2.31) denotes a differentiation with 

respect to y. Similarly, differentiating Eq. (2.17) and (2.19) with respect to y, inserting the 

results into boundary conditions Eq. (2.8) and (2.9) and subtracting the resulting equation 

yields 
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Eqs (2.27) and (2.32) are modified Wiener-Hopf equations of the second kind. 

Given a solution to the first equation, the similar form of the two equations allows for a 

simple substitution of functions to obtain the solution to the second equation. 

 

2.3 Approximate Solution of the Wiener-Hopf Equation 

The first step in the solution process of the Wiener-Hopf equation in (2.27) is to 

factorize the kernel. The factorization of the kernel is given in APPENDIX A. 

Multiplying equation (2.27) by L+(�)e-j�l and applying the well known decomposition 

theorem [12] yields 
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The functions on the left hand side of (2.37) are regular in the upper half-plane [Im(�) > 

Im(-ko)], while those on the right-hand side are regular in the lower half-plane [Im(�) < 

Im(kocos
o)]. By analytic continuation, the two sides of (2.37) define an entire function. 

Also, the function is bounded and tends to zero at infinity. Hence, by Liouville’s theorem, 

the entire function is identically equal to zero, and we can write 
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Multiplying (2.27) by L-(�) and implementing the same procedure as above yields 
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Following the procedure outlined in [12], we substitute 	=-	 in (2.38) and � = -� in (2.39) 

and add and subtract the resulting equations, yielding 
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The approximate evaluation of the integral in equation (2.40) for large l is given 

in APPENDIX B. The approximate evaluation of the integral equation introduces 

approximation in the solution for spectral components. Substituting the integral result 

into (2.40) gives  
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(2.44)

 
The unknown functions �1+(�) and �1-(�) are obtained by substituting �= +1 and � = -1 

into (2.44) and adding and subtracting the resulting equations. Equation (2.32) is 

manipulated in the same way as (2.27) by replacing L(�) with M(�) and A(�) with A1(�), 

where 



 

 15   

))((tan])([)2()( 222222
1 jukkbjukkjukujuA ooor 	�	�		�� �  (2.45)

 
The unknown functions �2+(�) and �2-(�) are obtained by substituting � = +1 and � = -1 

into the equation corresponding to (2.44) and adding and subtracting the results. From 

these results, the diffracted field in region 3 (y < -d) may be written as  
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where & is the straight line lying in the strip -Im(kocos
o) < Im(�) < Im(kocos
o).  The 

evaluation of the integrals in Equation (2.46) via the saddle point method yields  
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and 
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where 
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�cosrx �  

(2.51)

and 

�sinrdy ��	 . (2.52)

The first two terms of u31 and u32 correspond to the primary diffracted field mentioned by 

Kashyap [3], while the remaining expressions represent the interaction terms. The 3rd, 4th, 

7th
, and 8th terms in the u31 and u32 expressions of (2.47) and (2.48) are dependent on the 

residues of the kernel function [L (�) and M (�)] and correspond to modes excited within 

the dielectric media of the loaded tandem slit.  Thus, these terms go to zero for the 

unloaded tandem slit.  

 

2.4 Numerical Results 

The Wiener-Hopf solution for the loaded tandem slit is compared to a 2D 

numerical simulation using FastFDTD [14] and experimental measurements for 

validation purposes. The test article consists of a tandem slit in two parallel, thin PEC 

layers covering both sides of a dielectric plate of finite area as shown in Figure 2.3. A 

double-side copper coated sheet of FR4 was utilized for the experimental measurements 

(width = 457mm, height = 305mm, dielectric thickness =1.3mm) with a centered tandem 

slit (width = 60mm, height = 240mm). Measurements are made at 10 GHz, using the 

system arrangement shown in Figure 2. 4. Note that the width of the slit is 2�o at 10 GHz.  
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�

�r,�r
PEC�

 

Figure 2.3. Geometry of the FR4 sheet used for loaded tandem slit measurements. 

 

The transmitting and receiving antennas are identical X-band horns (aperture = 7cm x 

4.9cm, half-power beamwidth = 31°) connected to an Agilent E8362B network analyzer. 

The receiving antenna was placed on a rotating arm of calibrated scale at a distance of 

15�o from the loaded tandem slit.  The distance from the slit to the transmitting antenna 

was selected such that the transmitting antenna produces almost uniform field on the 

surface of the slit. This distance was selected to be 15�o, where the ratio of the incident 

field at the edge of the slit to the field at the slit center was measured to be 0.9. Absorbers 

were placed around the transmitting and receiving antennas to avoid reflections. First, a 

solid sheet of FR4 (no slit) was placed between the antennas, and the transmission 

coefficient (S12) is measured over an angle range of -50° to 50° relative to the axis of the 

transmit antenna, yielding received signals in the noise floor of the measurement system. 

Then, the solid sheet was replaced with the FR4 sheet with a 2�o slit, and the 

measurements were repeated.  
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Additional validation of the Wiener-Hopf solution was provided using FastFDTD 

to provide numerical simulations of several loaded tandem slit geometries. Each 2D 

FDTD model consists of a tandem slit on dielectric layer of finite width (20�o). The 

following three loaded tandem slit geometries were simulated (loaded with �r = 4.2, loss 

tangent = 0.012 in each case): (i) l = 60mm, 2d = 1.3 mm (ii) l = 90mm, 2d = 1.3 mm and 

(iii) l = 90mm, 2d = 5 mm.  The structure was excited with a normally incident plane 

wave and the near fields on the loaded tandem slit were obtained. The radiated far field 

was obtained from the total near fields via the transformation defined in [15].  

 

�

Agilent E8362B 
Network Analyzer�

Tandem Slit FR4  

Figure 2.4. System used for loaded tandem slit measurements. 

 

A comparison of the Wiener-Hopf solution, 2D FDTD simulation, and 

experimental measurements is shown in Figure 2.5 for the loaded tandem slit with l = 

60mm and 2d = 1.3 mm. The three curves in Figure 2.5 are normalized to the respective 
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peak values in order to compare the Wiener-Hopf and FDTD solutions with the measured 

results.  The Wiener-Hopf solution is also compared to FDTD simulations for normal 

incidence on loaded tandem slits with l = 90mm and 2d = 1.3 mm in Figure 2.6 and l = 

90mm and 2d = 5 mm in Figure 2.7. The diffracted fields in Figure 2.6 and Figure 2.7 are 

determined at a radial distance of 20 �o from the tandem slit. Excellent agreement among 

the numerical, experimental, and theoretical solutions is shown in Figure 2.5, Figure 2.6 

and Figure 2.7. The loaded tandem slit solution is also verified against the transmission 

cross section and normalized far-field pattern for an unloaded tandem slit obtained by 

Kashyap [2].  In Figure 2.8(a), Kashyap’s single slit solution (along with exact solution 

[2]) is compared to the tandem slit solution with very closely spaced conducting plates (�r 

= 1, d = 1 μm), while Figure 2.8(b) gives the same comparison for an unloaded tandem 

slit (�r = 1, 2kod = 0.984). Figure 2.9 shows a comparison of the normalized far-field 

pattern for an unloaded tandem slit (l=80mm, d=1�m, frequency =10GHz) obtained by 

Kashyap with that using the current technique. Again, good agreement is found. In order 

to quantify the power coupled through the tandem slit, we define 
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where ‘r’ is taken in the far field and ‘l/�’ is the incident power falling on the aperture. 

The field pattern in region 3 of the tandem slit geometry can give rise to multiple lobes, 

especially in the vicinity of the resonant frequencies.  The 6-dB beamwidth is defined 

here as the angular interval over which the electric field is greater than half the maximum 

value, irrespective of multiple lobes with minima that may dip below this level. For an 
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example tandem slit (l = 30mm, 2d = 5mm) at 10 GHz, Figure 2.10 shows how the 

loading material permittivity affects the beamwidth and normalized coupled power. Note 

that a significant decrease in beamwidth and increase in coupled power occurs for �r = 

3.5. The effect of the loading material thickness on the beamwidth and normalized 

coupled power for the corresponding loaded tandem slit (l = 30mm, �r = 3.5) is shown in 

Figure 2.11.  Again, it is observed that loading thicknesses of approximately 5mm and 

15mm exhibit reduced beamwidth and increased coupled power. As discussed previously 

in the introduction, microwave filters with material loaded tandem bifurcation designed at 

these parameter values (l = 30mm, �r = 3.5 and 2d = 5mm) can be used to increase the 

filter transmission coefficient. The variation of beamwidth and coupled power as the 

loaded tandem slit width is varied is shown in Figure 2.13 for �r = 3.5 and 2d = 5mm. The 

beamwidth decreases in a step-like pattern with sharp local minima and maxima at the 

structure resonances, while the coupled power per unit width increases in a nearly linear 

fashion between resonant peaks. The step changes in the beamwidth are more significant 

for lower slit widths.  Note that the results of Figure 2.10, Figure 2.11, and Figure 2.12 

show a decrease in beamwidth for the loaded tandem slit which is generally associated 

with an increase in coupled power, except for the first resonance in Figure 2.12 where the 

reduction in beamwidth is not prominent. The parameter ‘l’ should be varied judiciously 

since a large value would make the transmission coefficient better, but would also 

deteriorate the reflection coefficient in the stop band and is also limited by physical 

constraints like waveguide dimensions.   

The time required for the loaded tandem slit Wiener-Hopf solution is compared to 

that of the FastFDTD solution in Table 2.1 for the examples shown in Figure 2.5, Figure 
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2.6, and Figure 2.7.  FastFDTD is an accelerated FDTD solver that utilizes the processing 

capabilities of modern graphics cards to obtain 30 to 50 times faster solutions than 

standard processors. All computations were performed on a 3.4 GHz machine with 

3.5GB of RAM. The FastFDTD simulations were implemented on a grid of 2 Mcells 

over 10 cycles (104 timesteps). The computation times for the FDTD simulations in Table 

2.1 do not include the post-processing time required to generate the far-field pattern from 

the aperture fields. No post-processing is required for the Wiener-Hopf solutions. The 

largest portion of the computation time in the Wiener-Hopf procedure is devoted to the 

evaluation of the L(�) and M(�) factors. The factorization calculations are faster for 

thicker tandem slit configurations than for thinner ones due to the faster convergence of 

integrals which can also be seen in Table 2.1.  The Wiener-Hopf solution is roughly four 

times faster than the corresponding FastFDTD solution for the loaded tandem slit 

geometries considered here. Finally, to obtain the validity limit of the approximate 

Wiener-Hopf solution, the normalized power coupled obtained from Wiener-hopf 

procedure is compare to that obtained from FastFDTD for slit widths from 0.1�o to 3�o. 

The comparison is shown in Figure 2.13(a) and (b). A very close agreement between 

these is found confirming the validity of the Wiener-Hopf procedure for ‘l’ greater than 

and equal to 0.1�o. 

 

Table 2.1. Computation times using Wiener-Hopf and FastFDTD 

Figure Time (seconds) 
Wiener-Hopf 

Time (seconds) 
2D FastFDTD 

5 63 247 

6 63 246 

7 58 276 
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Figure 2.5. Comparison of the normalized diffracted field for a loaded tandem slit (l = 
60 mm, �r = 4.2, loss tangent = 0.012, 2d = 1.3 mm, frequency = 10 GHz) 
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Figure 2.6. Loaded tandem slit diffracted field at 20�o (l = 90 mm, �r = 4.2, loss tangent 
= 0.012, 2d = 1.3 mm, frequency = 10 GHz) 
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Figure 2.7. Loaded tandem slit diffracted field at 20�o (l = 90 mm, �r = 4.2, loss tangent 
= 0.012, 2d = 5 mm, frequency=10 GHz) 
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 (a) (b) 
 
Figure 2.8.  Transmission Coefficient verses l/� for (a) a single slit and (b) an unloaded 

tandem slit. 
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Figure 2.9.  Normalized diffracted field for a tandem slit (l = 80mm, �r = 1, d = 1 μm, 
frequency = 10 GHz) 
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Figure 2.10. Beamwidth (degrees) and normalized power coupled from a loaded tandem 
slit for different dielectric materials (l = 30 mm, 2d = 5 mm, frequency = 10 
GHz) 
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Figure 2.11. Beamwidth (degrees) and normalized power coupled from a loaded tandem 
slit for different slit thicknesses (l = 30 mm, �r = 3.5, frequency = 10 GHz) 
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Figure 2.12. Beamwidth (degrees) and normalized power coupled from a loaded tandem 
slit for different slit widths (2d = 5 mm, �r = 3.5, frequency = 10 GHz) 



 

 28   

0 1 2 3
0

0.5

1

1.5

2

2.5

l/!

N
or

m
al

iz
ed

 P
ow

er
 C

ou
pl

ed

Wiener-Hopf
FDTD

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

l/!

N
or

m
al

is
ed

 P
ow

er
 C

ou
pl

ed

Wiener-Hopf
FDTD

 

Figure 2.13. Normalized power coupled from a (a) single slit (b) loaded tandem slit (2d = 
5mm, �r = 3.5). 
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CHAPTER III 

SCATTERING BY A ECCENTRICALLY LOADED CYLINDRICAL CAVITY WITH 

MULTIPLE SLITS

 
 
3.1 Introduction 

In this chapter, we consider scattering by a loaded cylindrical cavity with multiple 

longitudinal slits in the outer conductor and an eccentrically located inner conductor.  The 

details of the scatterer geometry are defined in Section 3.2.  The motivation behind the 

analysis is to characterize the backscattered radar cross section (RCS) relative to the 

number and position of the slits in the outer conductor and the position of the inner 

conductor.  The first formulation considered is the solution of the integral equation using 

the combined boundary condition (CBC), which was introduced by Montiel and Neviere 

in [29].  This formulation is designated as the IE/CBC solution and appears in Section 

3.3.  Based on slow convergence results for the IE/CBC approach, an integral equation 

solution utilizing a Neumann series current expansion (IE/NS) is formulated in Section 

3.4.  TE and TM excitations are considered for both formulations.  The backscattered 

RCS of several geometries are presented in Section 3.5 giving a comparison of the 

solution approaches.
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3.2 Geometry of the problem 

The geometry of the eccentrically loaded cylindrical cavity with multiple slits 

illuminated by a plane wave is shown in Figure 3.1. The radii of the inner and outer 

perfectly conducting cylinders are defined by a and b, respectively.  The outer cylinder, 

with multiple slits, is assumed to be infinitesimally thin, with its axis lying along the z 

axis of the cylindrical coordinate system (r, �, z).  The exterior and interior regions(w.r.t 

outer cylinder) are assumed to be ideal dielectrics of permittivities /1 and /2, respectively.  

The axis of the inner conductor is located at (ro, �o).  A shifted cylindrical coordinate 

system (r1, �1, z1) is used to define the fields internal to the outer cylinder where the axis 

of the inner conductor lies along the z’ axis of the shifted coordinate system.  The 

structure is illuminated by a TM to z (electric field parallel to z-axis) or TE to z (magnetic 

field parallel to z-axis) plane wave incident at an angle of �i.  The time dependence 

assumed here is exp(-j�t).  The union of all cylindrical coordinate angles �  swept over 

the range of [0,2] by the metal portions of the outer cylinder is defined by 21 while 22 

denotes the complement of 21.  The wavenumber of the external region is denoted by k 

and the wavenumber of the internal region is denoted by k1. 
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Figure 3.1. TE/TM plane wave incident on an eccentrically loaded cylindrical cavity 

with multiple slits. 
 
 
 
3.3 Integral Equation/Combined Boundary Condition Formulation 

The problem is formulated using an integral equation solution for the unknown 

current density [32] on the eccentrically loaded cylinder with multiple slits. The 

segmented contour of the outer cylindrical shell with slits is denoted by L1 and the 

continuous contour on the surface of the solid inner cylinder is denoted by L2.  We 

assume that the internal and external media are identical (k1 = k), in order to simplify the 

expressions.  An extension of the formulation to the case of k1 3 k can be obtained by 

replacing the free space Green’s function with the dielectric cylinder Green’s function. 

The tangential components of the total electric field (incident plus scattered fields) must 

be zero on the perfectly conducting surfaces, so that the scattered fields on these surfaces 

must equal the negative of the incident fields.  The integral equations for the resulting 

currents under TE or TM illumination are formulated by applying Green’s theorem to the 

respective scattered fields.  
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3.3.1 Integral Equation - TM case 

The integral equation for the z-directed surface current density Jz
surf on the 

eccentrically loaded cylinder with multiple slits under TM illumination can be written as 
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where i = 1, 2 and (ri, rj) are the radial distances in cylindrical coordinates locating points 

on the field conductor (conductor i) where the boundary condition is enforced and points 

on the source conductor (conductor j) where the current is located.  Thus, r1 and r2 locate 

points on the contours L1 and L2.  Expanding the current densities and the incident 

electric field in terms of Fourier series and utilizing the addition theorem for Hankel 

functions in (3.1) gives 
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where 
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Am1 and Am2 are Fourier coefficients of the current density on the surface L1 and L2 

respectively and an defines the amplitude of the incident plane wave.  For simplicity, 

(3.2) and (3.3) can be written as 

0)( �xf  22��  (3.7)

0)( �xg  12��  (3.8)

Following the technique used by Guizal [30], (3.7) and (3.8) can be combined into a 

single equation that holds for all � in [0,2�] such that  

0)()](1[)()( ��	 xgxfg �4�4  (3.9)

where �(�) is the characteristic function of the set �2, defined by 

"
#
$ 2�

�
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1
)( 2�

�4  (3.10)

and g is a parameter introduced for numerical purposes.  The function �(�) is periodic 

with respect to � and can be expanded in terms of a Fourier series as  

%�
�

���p
p jp )exp()( �4�4  (3.11)

By substituting (3.4) and (3.2) and applying the combined boundary condition along with 

orthogonality of the Fourier coefficients yields 
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The solution of the linear system of equations in (3.12) gives the Am1 coefficients.  

The Am2 coefficients can then be determined using (3.4), yielding the overall field. The 

normalized RCS for the TM case can be calculated as  
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3.3.2 Integral Equation - TE case 

The integral for the surface current density on the eccentrically loaded cylinder 

with multiple slits under TE illumination is given by 
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where ni defines the normal to the curve Li.  Following the same procedure defined for 

the TM case, we find 
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The solution throughout the internal and external regions is obtained by solving 

the linear system in (3.17).  The resulting normalized RCS for the TE case is 
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3.4 Integral Equation/Neumann Series Formulation 

The efficiency of the integral equation solution can be enhanced significantly by 

utilizing a Neumann series expansion for the current on each of the individual conductors 

that make up the cylinder with multiple slits (cylinder segments).  The basic functions of 

the Neumann series can be defined so that the proper edge behavior for the currents on 

the cylinder segments is exhibited for either the TE or TM case. A general function of � 

defined on the unit circle can be expressed in terms of a Fourier series as 

%�
�

���n

jn
n eDf ��)(  (3.23)

where Dn are the Fourier coefficients.  Consider first a cylinder with a single slit, where 

the angle range of the conductor is � � [��w, �w].  As shown in [35], each Fourier 

coefficient of the expansion in (3.23) can be expressed in terms of the following 

Neumann series expansion: 
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where 6 is a parameter chosen based on the required edge behavior, and the inverse 

Fourier transform for each term in (3.24) [36] is given by 
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where G(p,v) is function of p and v only, and Cp
v(� /�w) is the Gegenbauer polynomial.  

The proper behavior of the field at the edges of the cylinder is given by v = 0 for the TM 

case and v = 1 for the TE case.  For the eccentrically loaded cylinder with Ns multiple 

slits, we assume that the center of sth cylinder segment is located by the angle �so and 

spans a total angle range of 2�sw.  Expressing the Fourier coefficient Am1 of the original 

integral equation formulation in terms of the Neumann series yields 
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The current density for the TM case becomes 
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Substituting (3.26) into (3.2) and (3.4), combining the results, and testing with  
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yields the required TM linear system.   
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Similarly, expanding the Fourier coefficients of the TE case as 
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and following the same procedure as outlined for the TM case  yields the required TE 

linear system. 
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(3.30)

The TM linear system in (3.28) and the TE linear system in (3.30) are solved to 

obtain the respective solutions. 

 

3.5 Numerical Procedure and Results 

Determination of the scattered fields for the eccentrically loaded cylinder with 

multiple slits requires a linear system solution of the following form when using a CBC-

based formulation: 

' (' ( ' (' ( ' (' (nngn abgb �88 �	  (3.31)

where [an] and [bn] are vectors containing the coefficients defined in (3.12) for TM case 

and (3.17) for TE case, g is a constant that provides a relative weighting of boundary 

conditions, and [8 ], [8g] and [�] are coefficient matrices.  In previous solutions 

employing the CBC, such as [34], a typical choice for the parameter g is -0.001.  
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However, as the slit width grows smaller, the magnitudes of the [8g] elements grow 

smaller relative to those of [8 ], resulting in inaccuracies for the fields within the slit.  

Thus, in order to assign comparable weights to the boundary conditions and allow for any 

slit size, the parameter g is defined according to  

)(

)(

gdiag

diag
g

8

8
�  (3.32)

where each term in (3.32) is the Euclidean norm of the diagonal elements of each matrix. 

A detailed analysis regarding the selection of the CBC parameter g is the subject of a 

future research. 

In order to determine the number of terms N required to obtain an accurate 

solution for the backscattered RCS (5bs) of the eccentrically loaded cylinder with slits 

using the two integral equation formulations considered here, we define the truncation 

error as  

)(
)1()(

error Truncation
bs

bsbs
N

NN
5

55 	�
�  (3.33)

where the IE/CBC coefficients are truncated from –N to N while the IE/NS coefficients 

are truncated from 0 to N. A comparison of the solution convergence for the IE/CBC and 

IE/NS formulations is shown in Figure 3.2 for a coaxial cylinder (a = 0.8m, b = 1m) with 

a 10° slit located at 22 � (-5°,5°) and �inc = 90°.  The results in Figure 3.2 show that the 

IE/NS method requires significantly fewer terms than the IE/CBC method to achieve a 

given solution accuracy. 
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Figure 3.2. Truncation error vs. truncation number N  [a = 0.8m, b = 1m, ro= 0, �o = 0°, 
�inc = 90°, �2 � (-5°,5°)]. 

 

The computational burden associated with the evaluation of the Fourier-Neumann 

coefficients in the IE/NS formulation depends on a truncated series of the general form 

seen in the first terms in (3.28) and (3.30)  
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where v = 0 for the TM case and v = 1 for the TE case, and 
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The infinite series in (3.34) is slowly converging: thus, a large number of terms is 

required for accurate computation of the series. In all computations we have evaluated, 
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the summation from n=-40000 to 40000 and it provides convergence of the first three 

decimal places. The large order approximations for the Bessel products in (3.35) are used 

to reduce computation time. The approximation is used for n>100.  Fast methods for 

evaluating (3.34) are proposed in [37] and [38] for �sw < 2 and bn=1/n, but these methods 

do not perform well for all values of �sw.  The remaining infinite series in (3.28) and 

(3.30) are fast converging and can be truncated at approximately 200 terms (summation 

index ranging from -100 to +100).  A plot of N required to achieve a truncation error less 

than 10-3 verses 2kb�sw (2 times the segment arc length in wavelengths) is shown in 

Figure 3.3 for the TE IE/NS solution of various configurations of the eccentrically loaded 

cylinder with multiple slits.  The results in Figure 3.3 show that the truncation number 

depends primarily on the segment length and is practically independent of eccentricity 

and the dimensions of the inner cylinder.  Simple equations for calculating the value of N 

required for a truncation error less than 10-3 for the TE and TM IE/NS solutions are given 

in Table 3.1.  The number of terms required for the IE/CBC solution varies dramatically 

with frequency as shown in Figure 3.4 for a TE IE/CBC solution of a loaded cylinder 

with a single slit [b = 1m, a = 0.8m, ro = 0m, �o = 0, �inc = �, �2 = (-5°,5°)] for a 

truncation error of 10-1.5.  The IE/CBC truncation number for a given accuracy increases 

rapidly at frequencies just above the resonances of the structure.  

 

Table 3.1. IE/NS truncation number N to achieve a truncation error less than 10-3 

Excitation N
TM |k1|b�sw+10 
TE 1.1|k1|b�sw+9 
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Figure 3.3. TE IE/NS truncation number N vs. 2kb�sw 

* a = 0.8m, b =1m, ro = 0m, �o = 0, �inc = �, �2 = (-5°, 5°) 

+  a = 0.8m, b =1m, ro = 0m, �o = 0, �inc = �, �2 = (-90°, 90°) 

-  a = 0.4m, b =1m, ro = 0m, �o = 0, �inc = �, �2 = (-5°, 5°) 

o  a = 0.1m, b =1m, ro = 0m, �o = 0, �inc = �, �2 = (-5°, 5°) 

�  a = 0.1m, b =1m, ro = 0.5m, �o = 0, �inc = �, �2 = (-5°, 5°) 

:  a = 0.1m, b =1m, ro = 0.5m, �o = �, �inc = �, �2 = (-5°, 5°) 

�  a = 0.5m, b =1m, ro = 0.2m, �o = 0, �inc = �, �2 = (85°, 95°) ; (-95°, -85°) 

�   a = 0.5m, b =1m, ro = 0.2m, �o = 0, �inc = �, �2 = (55°, 65°) ; (175°, 185°) 
; (-55°, -65°) 
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Figure 3.4.  TE IE/CBC truncation number N (truncation error<10-1.5) and normalized 
back scatter RCS vs. kb [a = 0.8m, b =1m, ro = 0m, �o = 0, �inc = �, �2 = (-
5°, 5°)]. 

 

The IE/CBC and IE/NS formulations have been validated by comparing computed 

solutions using geometries considered in previously published results.  Given a 

concentrically loaded cylinder with a single slit, the normalized backscattered RCS and 

total current induced on the inner conductor for TM incidence have been calculated using 

the IE/CBC and IE/NS techniques and compared to the results found in [21].  The 

normalized backscattered RCS for TE incidence has been compared to [20].  Excellent 

agreement is found with available data. 
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As previously shown, the IE/NS formulation provides faster convergence than the 

IE/CBC formulation, thus producing a more accurate solution for the same number of 

terms.  In addition, the accuracy of the IE/CBC solution is found to be somewhat 

sensitive to the g parameter for certain geometries.  Due to these advantages, the results 

shown here are all computed using the IE/NS formulation. 

For the multiple slit geometries considered here, we assume that the slits are 

equally spaced around the cylinder.  The azimuthal angles swept by the set of metal 

segments making up the slitted cylinder are defined by 

�
sN

i ssss NN
i

NN
i

1

11
1 2

2)1(,
2

2)1(
�

�
�

�
�
�

�
	����2

��  (3.36)

where �1 defines the total azimuthal angle swept by all of the metal segments.  The angle 

of incidence in each of the following examples is assumed to be �inc = �/Ns so that a slit 

always faces the incoming wave, since larger RCS values are observed when the slit 

faces the incident wave [27] and [28].  For RCS comparison purposes, the total amount of 

metal formed by the segments and the total gap formed by the slits are both kept constant 

as the number of slits is varied.  For each of the following examples, we have assumed 

the total angle swept by the metal segments is 300° leaving a total angle of 60° swept by 

the slits.   

The variation of the backscattered RCS as the number of slits varies is shown in 

Figure 3.5 for TM illumination and Figure 3.6 for TE illumination.  The TM low 

frequency RCS approaches that of a closed cylinder of radius b as the number of slits 

grows larger, since the outer cylinder becomes opaque to TM waves at these frequencies.  

The TE low frequency RCS approaches that of the inner cylinder as the number of slits 
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grows larger, since the outer cylinder becomes transparent to the TE waves at low 

frequencies.  At higher frequencies, the internal coaxial resonances appear for both TM 

and TE excitations.   

The variation of the backscattered RCS when the radius of the inner conductor 

relative to that of the outer conductor changes is shown in Figure 3.7 for TM illumination 

and Figure 3.8 for TE illumination.  The smaller inner conductor radius yields a larger 

internal cavity which gives rise to resonances at lower frequencies.  For the TM case, the 

larger internal cavity produces larger RCS values at certain resonances.  In the TE case, 

two large resonances are observed for the smaller internal cavity over the given 

frequency range.  Except for these TE resonances, the RCS of the smaller internal cavity 

is generally lower than that of the larger cavity.  

 

 

Figure 3.5.  Normalized backscattered RCS (TM incidence) for different numbers of 
slits [a = 0.8m, b =1m, ro = 0m, �o = 0, �inc = �/Ns]. 



 

 47   

 

Figure 3.6.  Normalized backscattered RCS (TE incidence) for different numbers of slits 
[a = 0.8m, b =1m, ro = 0m, �o = 0, �inc = �/Ns]. 

 

The effect of the inner conductor eccentricity on the backscattered RCS is shown 

in Figure 3.9 for the TM case and and Figure 3.10 for the TE case.  Note that the inner 

conductor has been shifted from the center point in a direction opposite to that of the 

incoming wave.  For TM illumination, the RCS is generally reduced as the eccentricity of 

the inner conductor is increased: while for TE illumination, significantly higher 

backscatter is seen at a large number of resonances. 

The backscattered RCS variation when the eccentricity angle of the inner 

conductor is changed is shown in Figure 3.11 for the TM case and Figure 3.12 for the TE 

case.  Note that the three eccentricity angles considered in these plots represent inner 

conductor shifts (1) toward the incoming incident wave, (2) perpendicular to the 

incoming incident wave and (3) away from the incoming incident wave.  The eccentricity 
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angle produces a rather dramatic effect on the amplitude of the scatterer resonances in 

both the TM and TE cases. 

The effect of the loading of the inner region with a lossy material is shown in 

Figure 3.13 for TM illumination and Figure 3.14 for TE illumination. The lossy dielectric 

and lossy magnetic materials considered here are those used in [27] and [28].  Both 

materials are found to significantly reduce the high frequency resonances in the TM case 

and resonances over the entire band in the TE case. 

The IE/NS formulation is found to be computationally efficient.  As an example, 

the overall computation time required for the problem defined by [Ns = 16, a = 0.5m, b = 

1m, ro= 0, �o= 0, �inc = �] using MATLAB on a personal computer with a 2.53 GHz 

processor and 3GB of RAM is less than 22 seconds. 

 

 

Figure 3.7.  Normalized backscattered RCS (TM incidence) for different inner conductor 
radii [Ns = 8, ro = 0m, �o = 0, �inc = �/8]. 
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Figure 3.8.  Normalized backscattered RCS (TE incidence) for different inner conductor 
radii [Ns = 8, ro = 0m, �o = 0, �inc = �/8]. 

 

 

Figure 3.9.  Normalized backscattered RCS (TM incidence) for different eccentricity 
radii [a = 0.3m, b =1m, Ns = 8, ro = 0m, �inc = �/8, �o = 9�/8]. 
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Figure 3.10. Normalized backscattered RCS (TE incidence) for different eccentricity 
radii [a = 0.3m, b =1m, Ns = 8, ro = 0m, �inc = �/8, �o = 9�/8]. 

 

 

Figure 3.11. Normalized backscattered RCS (TM incidence) for different eccentricity 
angles [a = 0.3m, b =1m, Ns = 8, ro = 0.7m, �inc = �/8]. 
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Figure 3.12.  Normalized backscattered RCS (TE incidence) for different eccentricity 
angles [a = 0.3m, b =1m, Ns = 8, ro = 0.7m, �inc = �/8]. 

 

 

Figure 3.13.  Normalized backscattered RCS (TM incidence) for different loading 
materials [a = 0.8m, b =1m, Ns = 16, ro = 0m, �o = 0, �inc = �/16]. 
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Figure 3.14. Normalized backscattered RCS (TE incidence) for different loading 
materials [a = 0.8m, b =1m, Ns = 16, ro = 0m, �o = 0, �inc = �/16]. 
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CHAPTER IV 

A FAST METHOD FOR CALCULATING SCATTERING FROM DIELECTRIC 

LOADED PEC SEMICIRCULAR CYLINDER AND STRIP 

 

4.1 Introduction 

Scattering from a thin strip and a semicircular cylinder has drawn substantial 

attention in the literature, with a comprehensive list of references found in [39]. Previous 

related work includes, scattering from a dielectric loaded strip via eigenfunction 

expansion and mode matching by Elsherbeni [40], scattering from an unloaded 

semicircular cylinder using a hybrid MOM approach by Srikanth [41], low frequency 

scattering from a dielectric loaded semicircular cylinder by Hurd using an integral 

equation approximation [42], and a fast method for evaluating the matrix coefficients for 

the strip and complementary slit as presented by Tsalamengas [43]. 

In this chapter, we present an efficient method to analyze a dielectric loaded strip 

and semicircular cylinder using a Neumann series. The method presented here is an 

extension to our earlier work where the current density was expanded on an unclosed 

metallic circular cylinder in terms of a Neumann series to study scattering from an 

eccentrically loaded cylinder with multiple slits [44]. In this work, a Neumann series is 

used to expand the tangential electric field on the circle bounding the scatterer to obtain 

the solution. The advantages offered by the Neumann series include faster convergence 
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and easy computation of matrix coefficients. In the present method, the matrix 

coefficients consisting of infinite series are computed more efficiently when compared to 

the integral evaluations necessary for the MOM solution. The proposed method works 

efficiently from very low to high frequency. 

 

4.2 Geometry of the Problem  

The geometries of the PEC strip and the PEC semicircular cylinder loaded with 

semicircular dielectric cylinders are shown in Figure 4.1 illuminated by either an axially 

polarized source (TM to z plane wave or z-directed electric line source) or a transversely 

polarized source (TE to z plane wave or z-directed magnetic line source) at an incident 

angle of �inc [line source is located at (rinc, �inc)].  For either geometry, the scatterer and 

the surrounding space is divided into three regions (a) Region 1 (r > a), (b) Region 2 (r < 

a and x > 0), and (c) Region 3 (r < a and x < 0). Region 1 is assumed to be free space, 

while regions 2 and 3 are characterized by relative permittivities �r2 and �r3 for the strip 

geometry.  Region 3 is a PEC for the semicircular cylinder geometry. The 

electric/magnetic fields in the three regions are denoted by u1(r,�), u2(r,�) and u3(r,�) 

for the axial/transverse source polarizations, respectively. The scattering solution for the 

semicircular cylinder problem is obtained by setting u3 = 0. The time dependence 

assumed here is exp(�j�t). The fields u1, u2 and u3 can be expressed in cylindrical 

harmonics as follows: 

,)]()([),( )1(
1 % 	�

�

���n

jn
nnnn ekrHbkrJaru ��  (4.1)
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where Jn(kr) and Hn
(1)(kr) are Bessel and Hankel functions of the first kind, k, k2, and k3 

are the wave numbers in the three regions, and bn, cn and dn are unknown amplitude 

coefficients. The plus and minus signs in Eqs. (4.2) and (4.3) are associated with the 

transverse and axial source polarizations, respectively. The an coefficient for the given 

excitation can be expressed as 
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(4.4)

Note that the selection of u2 and u3 satisfies the requirement of zero tangential 

electric field on the flat side of the structure. 
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(a) 

 
(b) 

Figure 4.1.  TE/TM plane wave incident on (a) a dielectric loaded strip and (b) a 
dielectric loaded semicircular cylinder. 

 

4.3 Neumann series solution of the problem 

The electric field Fourier coefficient on the circle surrounding the scatterer is 

expressed in terms of a Neumann series as 
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where Xn, Yn, Un and Vn are functions defined in Table 4.1. The fields in regions 1, 2, and 

3 is written as 
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Continuity of the tangential magnetic field at r = a must also be enforced. For 

axial source polarizations, Eqs. (4.8), (4.9), and (4.10) must be differentiated with respect 

to r to obtain the tangential magnetic fields at the interface between regions 1 and 2, and 

regions 1 and 3. The expansion coefficients are calculated using the orthogonality of the 

Gegenbauer polynomials by multiplying the magnetic fields in regions 1 and 2 with 

[1�(2�/�)2]v-1/2Cm
v(2�/�), integrating with respect to � from –�/2 to �/2 and equating the 

resulting equations. This manipulation yields Eq. (4.11) while applying the same 

procedure to the regions 1 and 3 interface yields Eq. (4.12). 
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where the coefficients fn , Wn , Kn and Ln are given in Table 4.1. Solutions of the linear 

systems in Eq. (4.11) and (4.12) yield the coefficients �p
1 and �p

2. For the semicircular 

cylinder scatterer, the coefficient �p
2

 is set to zero and the linear system in Eq. (4.11) is 

solved for �p
1. The values of v determined from the edge conditions in [45] for the PEC 

strip and the PEC semicircular cylinder are given in Table 4.2. Thus, the tangential 

electric field on the circular boundary at r = a for either scatterer automatically satisfies 

the required edge condition for either source polarization. For example, given the PEC 

strip, the tangential electric field components on the circular boundary (Ez for the axially 

polarized source or E� for the transversely polarized source) tend to zero as [���/2]x/2 

near the upper edge at (a, �/2) and [�+�/2]x/2 near the lower edge at (a, ��/2), where x = 1 

for the transversely polarized source and x = �1 for the axially polarized source. This 

edge condition also satisfies the appropriate edge condition for the tangential magnetic 

field (see Appendix C for a proof given an axially polarized source). The corresponding 



 

 59   

proof assuming a transversely polarized source can be derived by following a similar 

procedure. 

 

4.4 Numerical Result 

The infinite series computations in Eqs. (4.11) and (4.12) are performed using the 

procedure described in [44]. To determine the convergence properties of the Neumann 

series solution, we define the truncation error as 

    )()1()( NbNbNe nn �	�  (4.13)

where bn(N) is the scattered field coefficient for region 1 calculated using N coefficients 

of �p
1 and �p

2. The truncation errors for the loaded and unloaded strip under TM and TE 

illumination are shown in Figure 4.2 and exhibit significant coefficient decay. The 

unloaded and loaded strips require only 16 and 25 terms, respectively, to achieve a 

truncation error less than 10�4 for ka = 5 given either TM or TE excitation. For all of the 

following comparisons of the Neumann series solution to published results, the value of 

N is selected to yield a truncation error < 10�4. The back scattered field for a dielectric 

loaded semicircular cylinder is compared with [42] in Figure 4.3. The current density on 

an unloaded strip of length 6! given a normally incident TE plane wave is compared with 

[46] in Figure 4.4. The current density magnitude on an unloaded strip of length 0.1! 

given a normally incident TM plane wave is compared with [47] in Figure 4.5. All results 

match well and validate the proper edge behavior for current density.  In Figure 4.6, the 

current density on the top-half of the strip of width 6� for normal incidence is presented. 

The non-physical oscillatory behavior demonstrated in [49] and reported in [46] is not 

present in Neumann series solution and can be seen from Figure 4.5 and Figure 4.6. 
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Computation times for different unloaded strip widths under normal TE/TM incidence 

are compared in Table 4.3, where the solutions were coded in MATLAB on a 3.4 GHz 

Pentium IV with 4GB RAM. The results given in Table 4.3 show the efficiency of the 

solution scheme. 

 

Table 4.1. Coefficients for the Neumann Series Solution. 

Coefficient Axial
Source

Transverse
Source

nX  )( 2akJn  222 /)(' rn akJk /  

nY  )( 3akJn  333 /)(' rn akJk /  

nU  )(kaJ n  )(' kakJn  

nV  )()1( kaHn  )(')1( kakHn  

nf  kajk /2�  kajk /2  

nW  )('1 kakHn  )(1 kaHn  

nK  )(' 22 akJk n )( 2akJn  

nL  )(' 33 akJk n  )( 3akJn  
 

Table 4.2. Values of v to satisfy the scatterer edge conditions. 

Scatterer Axial 
Source 

Transverse 
Source 

Strip 1 0 
Semicircular 
Cylinder 

7/6 1/6 
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Figure 4.2. Truncation error versus N (TE case) for a dielectric loaded strip with, ka=5 
and �inc=�/4. 
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Figure 4.3.  Back scattered field versus �r2 for a dielectric loaded semicircular cylinder 

for TM incidence. (1) Solid line-the proposed method. (2) Asterick-Ref 
[42]. 
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Figure 4.4.  Axial Current density on the surface of the unloaded strip with of with 6� 
and �inc=0 with TE incidence (1) solid/dotted line the proposed method (2) 
Astericks – Ref [46]. 
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Figure 4.5.  Current density on the surface of an unloaded strip of length 0.1� under TM 
plane wave illumination with �inc = 0°. 
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Figure 4.6.  Current density on the surface of an unloaded strip of length 6� under TM 
plane wave illumination with �inc = 0°. 

 

Table 4.3.  Computation times for unloaded strips of various widths under normal TE 
or TM plane wave incidence 

Strip 
Width 

(�) 

Computation 
Time (sec) 

Number of 
Terms used

TM TE 
1� 3 3 15 
5� 6 5 40 
10� 7 6 60 
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CHAPTER V 

SCATTERING FROM A SLOTTED CYLINDER WITH AN INTERIOR WEDGE 

 
 
5.1 Introduction 

In this chapter we present the application of Neumann series for calculating 

scattering from a slotted cylinder with an interior wedge. Intially, we solve the problem 

of a knife edge inside an unclosed cylinder which is a limiting case of wedge. In order to 

solve the problem, we expand the field in the outer region on the Riemann surface and 

apply the procedure followed in CHAPTER IV, as illustrated in sections 5.2 and 5.3. The 

field expansion on the Riemann surface method can only be applied to a knife edge. The 

general problem of a wedge is solved by using the Fourier expansion of the Gegenbauer 

polynomial with different periodicity; as shown in 5.4 and 5.5. 

 

5.2 Geometry of the problem 

The geometry of the slotted cylinder loaded with knife edge is shown in Figure 

5.1. The radius of the cylinder is denoted by a. A metallic strip extends from the center of 

the coordinate axis and touches the cylinder at (-a,0). Both the cylinder and inner strip are 

PECs and infinitesimally thin. The slit on the cylinder occupies the angular position (-

�s+�sc,�s+�sc).  
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Figure 5.1.  Geometry of the slotted cylinder loaded with knife edge. 

 

We assume there is only one slit on the cylinder even though the method presented here 

is applicable to multiple slit configurations. For the purpose of analysis, the entire space 

is divided into two regions, region 1 (r>a) and region 2 (r<a).  The relative dielectric 

constants of region 1 and region 2 are given by �r1 and �r2. The structure is illuminated by 

a TM to z (electric field parallel to z-axis) or TE to z (magnetic field parallel to z-axis) 

plane wave incident at an angle of �inc. The time dependence assumed here is exp(-j�t). 

The fields in regions 1 and 2 are given by u1(r,�) and u2(r,�) and can be expressed in 

cylindrical harmonics as: 
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where Jn(kr) and Hn
1(kr) are Bessel and Hankel function of the first kind. ‘k’ and ‘k1’ are 

the wave numbers of regions 1 and 2. In Eq. (5.2) the plus and minus signs correspond to 
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the TE and TM cases, respectively. The solution is obtained by determining the unknown 

coefficients bn and cn. The coefficient an depends on the excitation and is given by 

)"
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 WavePlane
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incjnn
n

jn
n

ej
krHea �

�
 (5.3)

where (r’,�’) is the position of the line source in cylindrical coordinates. The above 

selection of u2(r,�) automatically satisfies the requirement of the zero tangential electric 

field on the inner strip. The coefficients bn and cn must satisfy continuity of the electric 

and magnetic fields in the slit at r=a while also satisfying the requirement of zero 

tangential electric field on the PEC cylinder. In order to apply the Neumann series 

method applied earlier to an eccentrically loaded cylinder, strip, and semicircular 

cylinder, the field in regions 1 and 2 need to be of the same periodicity. The field u1 in 

Eq. (5.1) has a period of 2�, while the field u2 in Eq. (5.2) has period of 4�. To solve the 

problem of scattering from a slotted cylinder with an interior knife edge, we consider the 

equivalent problem of scattering from a slotted cylinder with an interior knife edge 

placed on a Riemann double space, as shown in Figure 5.2. The entire space is divided 

into three regions: 

� Region 1 (Riemann Surface I, Riemann Surface II and r>a) 

� Region 2 (Riemann Surface I, r<a). 

� Region 3 (Riemann Surface II, r<a). 

The branch cut joining the two Riemann surfaces is along the negative real axis (the 

branch cut can be along any radial line from origin to infinity). The fields in the three 

regions are denoted by u1(r,�), u2(r,�), and u3(r,�), respectively. 
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where an’ is related to an by 

"
#
$

�
@

�
otherwisea

na
a

n
n
n

n )1(
0

'  (5.7)

and bn, cn, and dn are the unknown coefficients to be determined such that the continuity 

of the tangential electric and magnetic field across all interfaces are satisfied, and . Also, 

the requirement of the zero tangential electric field on the outer cylinder should be 

enforced. The fields u1, u2, and u3 represent the Ez/Hz component for TM/TE incidence. 

The minus and plus sign in Eq. (5.5) and (5.6) are for TM and TE case, respectively. The 

summation of the fields on Riemann surfaces I and II gives the solution to the problem. 

This is explained as follows: 
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Figure 5.2.  Equivalent problem on the Reimann 2 space. 

� The summation of the incident field on the two Riemann surfaces becomes the 

incident field for the original problem. 
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� The total field in regions 1, 2, and 3 satisfies the continuity of the tangential 

electric/magnetic field on the interface in addition to zero tangential electric field on 
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the cylinder. Therefore, the sum also satisfies all the required boundary conditions, 

and hence the two problems are equivalent. 

 

5.3 Neumann series solution 

 

5.3.1 TM Case 

 The Fourier coefficients of the electric field on the circle r=a on either Riemann 

surface can be expanded in terms of Neumann series by  
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The above choice of Fourier coefficient satisfies the continuity of the tangential electric 

field across the boundary between regions 1 and 2, and regions 1 and 3. In the above 

equation, v=1 for the required edge condition. Expressing the fields u1, u2, and u3 in terms 

of �p
1 and �p

2, we get: 
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The magnetic field in each region is proportional to: 
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Multiplying Eqs. (5.15) and (5.16) with [1-{(�-�sc)/�s}2]v-1/2Cm
v({(�-�sc)/�s})  and 

integrating w.r.t � from (�sc-�s) to (�s+�sc) and equating results: 
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Similarly, multiplying Eqs. (5.15) and (5.17) with [1-{[�-2�- �sc]/�s}2]v-1/2Cm
v({[�-2�-

�sc]/�s}), integrating w.r.t � from 2�-�sc-�s to 2�-�sc+�s, and equating gives: 
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The linear system Eq.(5.18) and (5.19) can be solved for unknowns �p
1 and �p

2, 

respectively, and therefore, the field solution everywhere is obtained. 
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5.3.2 TE case 

 The Fourier coefficients of the electric field on the circle r=a on either Riemann 

surface can be expanded in terms of Neumann series as: 
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The above choice of Fourier coefficients satisfies the continuity of tangential electric 

field on the boundary r=a. Expressing the fields u1, u2, and u3 in terms of �p
1 and �p

2, we 

get: 
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Multiplying Eqs. (5.23) and (5.24) with [1-{(�-�sc)/�s}2]v-1/2Cm
v({(�-�sc)/�s}), integrating 

w.r.t � from (�sc-�s) to (�s+�sc), and equating gives 
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Multiplying Eqs. (5.23) and (5.25) with [1-{[�-2�-�sc]/�s}2]v-1/2Cm
v({[�-2�-�sc]/�s}), 

integrating w.r.t � from 2�-�sc-�s to 2�-�sc+�s, and equating gives 
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The linear system Eqs.(5.26) and (5.27) can be solved for unknowns �p
1 and �p

2, 

respectively, and therefore, the field solution everywhere is obtained. 

 

5.3.3 Validation 

The efficacy of the proposed method is demonstrated by comparing these results 

with the method defined in CHAPTER IV. For this purpose we compare the tangential 

electric field and magnetic field on the circle r=a for ka=5 and �inc=0 obtained using the 

two methods. From Figure 5.3 and Figure 5.4, it is observed that the results compare 

well. 
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Figure 5.3.  Tangential electric and magnetic field on the circle r=a for ka=5, �inc=0 and 
TM excitation using (1) the Riemann surface method (2)  The original 
method of chapter IV 
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Figure 5.4.  Tangential electric and magnetic field on the circle r=a for ka=5, �inc=0 and 

TE excitation using. (1) The Riemann surface method (2) The original 
method of chapter IV. 
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5.4 Geometry of the wedge shaped cylinder 

The geometry of the wedge-shaped metallic cylinder is shown in Figure 5.5. The 

wedge-shaped cylinder occupies the region r<a and ��[0,2�]\(-�s,�s). For analysis 

purposes, the space surrounding the metallic cylinder is divided into two regions, region 

1 (r>a) and region 2 (r<a and � � [-�s,�s]). In this case, we are interested in when �s is 

given by q�/(2h) where q and h are integers. The dielectric constant of region 2 is given 

by �r2, while free space is assumed for region 1. The structure is illuminated by a TM to z 

(electric field parallel to z-axis) or TE to z (magnetic field parallel to z-axis) plane wave 

incident at an angle of �inc. The time dependence assumed here is exp(-j�t). The fields in 

regions 1 and 2 are given by u1(r,�) and u2(r,�), where u1 and u2 represent the Ez /Hz 

component for TM and TE cases, respectively. The fields u1(r,�) and u2(r,�) are 

expressed in cylindrical harmonics as                              
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Figure 5.5.  Geometry of the wedge-shaped cylinder 

 
 
where Jn(kr) and Hn

1(kr) are Bessel and Hankel functions of the first kind. k and k1 are the 

wave numbers of regions 1 and 2. In Eq. (5.29), the plus and minus sign are for the TE 

and TM cases, respectively. The coefficient an depends on the excitation and is given by 
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 The field u2(r,�) given by Eq. (5.29) satisfies the requirement of zero tangential electric 

field on the planar side of the metallic wedge-shaped cylinder. 
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5.5 Neumann series solution for the wedge shaped cylinder 

 

5.5.1 TM case 

The Fourier coefficients of the electric field on the circle r=a is expanded in terms 

of Neumann series as: 
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(5.32)

The above choice of Fourier coefficient satisfies the continuity of the tangential electric 

field across the boundary between regions 1 and 2 along with the tangential electric field 

on the outer part of the PEC cylinder. In the above equation, v=7/6 and v=1 for the 

required edge condition for wedge angles of 90 and 0 degrees, respectively. Expressing 

the fields u1 and u2 in terms of �p
1, we get 

%%	

% �
�

�

�

�
�

�

�
��

�

�

	�

���

�

���

0

1
1

1

1
11

)
2

(

)
2

(

)(

)(

)(
)(

)(
)(),(

p

jn
v

pv
p

n n

n

n

jn
n

n

n
nn

e

h
qn

h
qnJ

kaH

krH

ekrH
kaH

kaJ
krJaru

�

�





4

�

 (5.33)



 

 80   

�
�
�

�

�

�
�
�

�

�
�-

%%�

��

�

�

	�

���

)(

0

1

1

1

2
)

2
(

)
2

(

)(

)(

),(

h
q

q
nhj

q
jnh

p v

pv
p

n
q
hn

q
hn

ee

n

nJ
e

akJ

rkJ

q
hru

�
�





4�

 
(5.34)

The tangential magnetic on the circle r=a can be written as  
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(5.36)

Multiplying Eqs. (5.35) and (5.36) by [1-{2h�/�q}2]v-1/2Cm
v({2h�/�q}), integrating w.r.t � 

from –�q/2h to –�q/2h, and then equating gives 



 

 81   

< =

%%	

% �
�
�

�
�
�
�

�
�

�% ��%

�

�

		�

���

�

���

	

�

�

�		�

���

0

1
1

1

1
1

0 2
1

1

11

)
2

(

)
2

(

)
2

(

)
2

(

)(
)('

)
2

(

)
2

(
)('

)(
)()('

)1(1
)

2
(

)
2

()
2

(

)(

)('

p v

mv

v

pv
p

n n

n

n v

mv
n

n

n
nn

p

jnm
v

pmpv
p

n
q
hn

q
hn

h
qn

h
qnJ

h
qn

h
qnJ

kaH
kakH

h
qn

h
qnJ

kakH
kaH
kaJkakJa

en

nJnJ
e

akJ

akJk

q
h









4









4 

 (5.37)

Solving the linear system in Eq.(5.37) for the unknown coefficients yields the scattered 

fields. 

 

5.5.2 TE case 

 The Fourier coefficients of the electric field on the circle r=a can be expanded in 

terms of Neumann series as: 
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The above choice of Fourier coefficient satisfies the continuity of the tangential electric 

field across the boundary between regions 1 and 2 along with the tangential electric field 

on the outer part of the PEC cylinder. In the above equation, v=1/6 and v=0 for the 
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required edge condition for wedge angles of 90 and 0 degrees, respectively. Expressing 

the fields u1 and u2 in terms of �p, we get 
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Multiplying Eqs. (5.40) and (5.41) by [1-{2h�/�q}2]v-1/2Cm
v({2h�/�q}), integrating w.r.t � 

from –�q/2h to –�q/2h, and then equating gives 
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Solving the linear system in Eq.(5.42) for the unknown coefficients yields the scattered 

fields. 
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5.5.3 Numerical results 

The proposed method can be validated by comparing the results with the solution 

available in literature. In Figure 5.6, the Normalized electric far field for a semicircular 

cylinder excited with line source is compared with [41]. The scattered electric far field 

for a thin strip illuminated with TM wave is compared with [40]. It is observed the results 

compare well. The backscattered RCS for TM and TE case for different wedge width is 

presented in Figure 5.7 and Figure 5.8. It is observed that, the RCS increase with increase 

in the wedge angle. 
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Figure 5.6.  Normalized electric far field scattered by a semicircular cylinder (a=0.8�) 
illuminated by an electric line source at rs=2a and �inc=�/4.(1) Solid Line – 
Neumann series (2) Asterisks-Ref[41] 
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Figure 5.7.  Comparison of electric far field scattered by a unloaded metallic strip 
(ka=10) illuminated by an TM incident at �inc=�/2. (1) Solid line – 
Neumann series (2) Asterisks - Ref[40] 
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Figure 5.8  Comparison of normalized back scattered RCS for TM case for a thin strip, 
a 45° wedge cylinder, and a semicircular cylinder. 
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Figure 5.9.  Comparison of normalized back scattered RCS for TM case for a thin strip, 
a 45° wedge cylinder, and a semicircular cylinder. 
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CHAPTER VI 

SCATTERING FROM RESONANT CAVITIES ALONG A CIRCULAR ARC 

 

6.1 Introduction 

The study of superdirectivity has drawn significant attention in literature due to its 

application in high-gain antenna design. The use of passive elements like a finite array of 

slotted cylinders and rectangular grooves have been analyzed by Veremey [50][51] and 

Skigin [52]. In this work, we analyze the geometry of resonant cavities on a circular 

cylinder and circular arc for superdirective behavior. The analysis of scattering from a 

PEC circular cylinder with cavities using Neumann series is defined in section 6.2. 

Section 6.3 presents the analysis of scattering from cavities on a circular arc.  

 

6.2 Diffraction from metallic circular cylinder with cavities 

 

6.2.1. Geometry of the problem 

The geometry of a circular metallic cylinder with N cavities illuminated by a 

plane wave is shown in Figure 6.1. The region occupied by each cavity is denoted as k 

(b<r<a and (1-2k)�w<�<(3-2k)�w, k=1..N and �w=�/N). The cavities are coupled to the 

outer free space through a slit with angular width 2�s which are centered symmetrically 

w.r.t to the axis of the cavity. The region r>a is denoted as region ‘0’. The magnetic field 
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in each region is denoted by u0(r,�), u1(r,�), u2(r,�,, ).., uN(r,�). The structure is 

illuminated by a TE to z (magnetic field parallel to z-axis) plane wave incident at an angle 

of �i.  The time dependence assumed here is exp(-j�t). The fields u0, u1, u2,..., uN are 

expressed in cylindrical harmonics as follows: 
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where Jn(kr) and Hn
1(kr) are Bessel and Hankel functions of the first kind. �k’=2�k/N, 

k=0,1..N-1, and �w=�/N[q�/(2h)] where q and h are integers. bn, cn and dn are the 

unknown coefficients to be determined, while an depends on the incident field given by 

 

 

Figure 6.1. TE plane wave incident on a metallic circular cylinder with cavities. 
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The above selection of uk satisfies the requirement of zero tangential electric field 

on the flat walls  of the cavities. Applying the condition of zero tangential electric field 

on the circle r=’b’ in each cavity gives 
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6.2.2 Neumann series solution of the problem 

In order to solve the problem, the Fourier coefficient of the electric field on the 

circle r=a is expressed in terms of Neumann series as: 
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The details regarding the Neumann series selection follows that discussed in 

CHAPTER III and CHAPTER IV. The field in each region is written as 
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The above selection of the Fourier coefficient in terms of Neumann series satisfies 

the continuity of the tangential electric field on the circle r=a. The only other boundary 

condition requirement is the continuity of the tangential magnetic field. Multiplying Eq. 

(6.9) and (6.10) with  [1-{(�+�l’)/�w}2]v-1/2Cm
v({(�+�l’)/�w}) and integrating w.r.t to 

‘�’ from (2l-5)�w to (2l-3)�w gives: 
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(6.11)

Solving the linear system Eq. (6.11) for the unknown coefficients yields the 

scattered fields. 
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6.2.3 Numerical Results 

The accuracy of the Neumann series solution is examined by checking the 

continuity of the tangential magnetic field across the interface between region 0 and 

region k(k=1,2,..N). Figure 6.2 presents the tangential magnetic field for ka=5, N=4, 

b=0.5a, �s=�w and �inc=0 using field expressions for region 0 and region k(k=1,2,..N). It is 

seen that the condition of continuity of the tangential magnetic field is satisfied, and the 

feasibility of the proposed method and numerical code is verified. 
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Figure 6.2.  Tangential Magnetic field on the circle r=a for N=4, b=0.5a, �s=�w and 
�inc=0. (1) Using Eq. (6.1), (2) Using Eq.(6.2). 

 

The directivity of a circular cylinder with 8 cavities (b=0.9a, �s =�/36) 

illuminated by a line source at rs=1.2a, �inc=0 is shown in Figure 6.3. The maximum 

value of directivity is obtained at ko=3.3. The size of the resonant cylinder needed to 

achieve high directivity is relatively large compared to earlier published results 
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[50][51][52]. The size of the structure needed to achieve the same directivity can be 

reduced since the resonant cavities not facing the source do not contribute to the 

directivity. Also, the cylinder portion of the structure does not contribute to the 

directivity. The analysis of the modified geometry is presented in the next section. 
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Figure 6.3.  Directivity versus ka for a circular cylinder with 8 cavities(b=0.9a and 
�s=�/36) illuminated by a  line source excitation at rs=1.2a, �inc=0. 

  

6.3 Scattering from cavities on a circular arc 

 

6.3.1 Geometry of the problem 

The geometry of a circular arc with N cavities illuminated by a line source is 

shown in Figure 6.4. The circular arc occupies the angular position [0,2�]\[-�w1,�w1] 

where �w1=q�/(2h) and q, h are integers. The circular arc has N cavities, each of angular 

width �w2=(�/N)(2h-q)/2h. The cavities are coupled to the outer region through a slit with 



 

 92   

angular width 2�s which are placed symmetrically w.r.t to the axis of the cavity. For 

analysis purposes, the entire space is divided into the following regions (1) Region 

k(k=1..N) (b<r<a and -�w2-�k<�<�w2-�k), where -�k is the axis of the cavity given by { 

q�/(2h) + (�/N)(2h-q)(2k-1)/(2h)}(2) Region N+1 (r<b) (3) Region N+2 (b<r<a and -

�w1<�<�w1) (4) Region N+3(r>a).The line source excitation with position (rs,�inc) is 

assumed to be in Region N+1. The time dependence assumed here is exp(-j�t). The field 

uk(k=1..N) is expressed in cylindrical harmonics as  
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(6.12)

 

 

Figure 6.4.  Circular arc with N cavities illuminated with line source 
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Each of the fields uk has to satisfy the condition of zero tangential electric field on the 

circle r=a. This is achieved by the following relation between coefficients cn
k and dn

k : 
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Therefore, the field uk is written as: 
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The fields in regions N+1 to N+3 are given by 
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Solving for the unknown coefficients bn, cn, dn, en and cn
k

 yields the scattered fields. 



 

 94   

6.3.2 Neumann series solution of the problem 

The Fourier coefficients of the electric field on the circle r=’a’ and r=’b’ are 

expanded in terms of Neumann series as  
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Expressing the magnetic field in each region in terms of unknown coefficients, yields 
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Once again, the selection of Neumann series as defined by Eq. (6.19), (6.20), (6.21), 

(6.22), and (6.23) satisfies the continuity of the tangential electric field across all 

interfaces. To achieve the continuity of tangential magnetic field, the following procedure 

is used. Multiplying Eq.(6.24) and (6.25) with [1-{(�+�l)/�s}2]v-1/2 Cm
0{(�+�l)/�s}, 

integrating w.r.t to � from –�s+�l to –�s+�l, and equating gives 
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Similarly, multiplying Eq. (6.25) and (6.26) by [1-(�/�w1)2]v-1/2Cm
0(�/�w1), integrating 

w.r.t to � from -�w1 to �w1,  and equating yields: 
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Finally, multiplying Eq. (6.26) and (6.27) by [1-(�/�w1)2]v-1/2Cm
0(�/�w1), integrating 

w.r.t to � from -�w1 to �w1,  and equating yields 
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The linear system Eq. (6.30), (6.31), and (6.32) can be solved to obtain the solution. 
 

6.3.3 Numerical results 

The Neumann series solution is validated by comparing the magnetic field 

amplitude at (0,0) to the one obtained by EMP2LAB software. This comparison is shown 

in Figure 6.5 and the efficacy of the Neumann series is verified. The directivity for a 

semicircular arc with 7 cavities illuminated with line source is shown in Figure 6.6. It is 

observed that for similar values of directivity, the size of the semicircular arc with 

cavities is half the size of the circular cylinder with cavities. 
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Figure 6.5.  Comparison of magnitude of magnetic field (Hz) at (0,0) for a circular arc 
with plane wave incidence. (b=0.5a, h=2, q=3, �s=�/8, and N=1) (1) Solid 
line – Neumann series (2) Asterisks - EMP2LAB. 
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Figure 6.6.  Directivity versus ka for a semicircular arc with 7 cavities. (b=0.9a, h=1, 
q=1, N=7, rs=0.5b,�inc=� and  �s= �/14) 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

The problem of plane wave scattering by a tandem slit loaded with a homogenous 

material has been solved via the Wiener-Hopf technique, where the waves are polarized 

parallel to the edges of the slit. The boundary value problem is formulated into a pair of 

simultaneous Wiener-Hopf equations, which are each reduced to a Fredholm integral 

equation of the second kind. The integral equations are then solved approximately to 

yield the Fourier transform of the diffracted fields. The inverse transform is evaluated 

asymptotically to yield the diffracted far field, which is dependent on the slit dimensions 

and material properties of the loading material. The results show that it is possible to 

reduce the beamwidth and increase power coupled through the tandem slit by changing 

the loaded tandem slit parameters such as dielectric constant, thickness, and width. The 

analytic solution concurs well with measured and simulated results. The above procedure 

is valid for ‘l’ greater than or equal to 0.1�o. Also, the method can be easily extended for 

the TE case. 

Two methods for computing scattered fields from an eccentrically loaded cylinder with 

multiple slits are presented.  The IE/NS technique is found to be accurate and efficient and is 

shown to exhibit much better convergence properties than the corresponding IE/CBC technique.  

Backscattered RCS results are examined for several different geometries.  RCS variations with 
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respect to relative conductor size, conductor eccentricity, the number of slits, and cylinder loading 

are presented. The extension of Neumann series to scattering by a metallic strip and semicircular 

cylinder is presented. The method presented is numerically very efficient. The Neumann series 

method is applied for evaluating scattering from a circular cylinder with resonant cavities for 

analyzing the superdirective properties of the structure. 

 

7.2 Future work 

The applicability of Neumann series method for studying scattering from 

polygonal structures needs to be explored. 
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The factorized kernel is written as 
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The factorization for L1(�) and L2(�) is written as 
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The integration contour for A+(�) and s are modified as follows: 
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The contour ‘c2’ is shown in Figure A.1. The integral for s and the second integral of 

A+(�) are finite integrals which can be evaluated accurately.  The integrand of the first 

term of A+(�) in (A8) decays as (1/�)P as �->� and p>1, so that the infinite integral can 

be accurately evaluated to the required precision. In order to factorize M(�), we follow 

the same procedure as L(�) with 
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The poles of the kernels are obtained by applying the Cauchy integral formula [16] for 

counting the number of zeros in a domain and iteratively splitting the domain untill the 

number of zeros in the domain is one. Then, the Cauchy integral formula is applied to 

obtain the location of the zero. The kernel could be reduced to the form given by Bates 

[17] as done by Tayyar [18], but there is no advantage in doing so since the Bates 

expression is useful only when the absolute value of the factors are necessary, in which 

case the integrals reduce to finite integrals. 
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Figure A.1.  Contour C2 

 

The time taken to compute the factors is significantly reduced if we can approximate the 

infinite integral in (A8) with a finite one. For large �, the kernel Log (L2 (�)) is 

approximated by 
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For large �, the first term becomes very small, and the infinite integral can be reduced to 

a finite integral and the second term of (A12) when substituted in the infinite integral of 

(A8) has a closed form solution. The finite integral upper limit that we have used for 

computation is ‘100ko’. The exponential term in (A12) decays faster for a higher value of 
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‘d’, and therefore, the computation time for the finite integral is inversely proportional to 

the thickness. A similar procedure can be applied to the other kernel M(�). 
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Consider the integration term in (16a) 
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The integration contour of the last term in (A13) is deformed along path P1+P2 as shown 

in Figure 2.2. 
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The integral is then written as 
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By substituting 	-ko=ju, (	-ko)1/2=-u1/2ej�/4 on P1 and (	-ko)1/2=u1/2ej�/4 on P2, the integral in 

(A16) becomes 
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where 

 222222 ]})([cot]{)([)2()( jukkdjukkjukjuuA ooor 	�	�		�� �  (A18)

 

Equation (A15) is then written as 
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In a similar fashion, we find 
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and    
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Using Eqs. (4.2) and (4.8), the tangential magnetic field on the circle r= a for TM 

excitation can be written as 
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The Hankel function large order form yields the following approximation for the ratio 

found in (A22) for large n: 
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Rearranging Eq. (A22), H� can be given as, 
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where L is a positive integer such that the asymptotic value in (A23) is satisfied for any n 

> L. The second and third terms of Eq. (A24) are finite for all values of �. Using 

Eq.(3.27), the first term in Eq. (A24) may be written as   
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where Tp
1 and Tp

2 are constants independent of �. Eq. (A25) shows that the magnetic 

field satisfies the required edge conditions. 
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