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Commercial broilers are fed exclusively pelleted diets; this is due to research that 

has demonstrated numerous benefits to feeding pellets.  The first objective was to 

investigate the effects of modest improvements in pellet quality on two modern broiler 

strains.  Regardless of strain, feeding 80% pellets improved broiler performance from d 

28 to 42.  The second objective was to investigate the effects of feed form and liquid 

application method on feed augering segregation and subsequent broiler performance.  In 

general, percent pellets steadily decreased across location throughout feed augering.  

Also, phytase segregation occurred throughout augering and was exacerbated in post-

pellet liquid application diets.  When the augered diets were fed to broilers, 75% pellets 

and post-pellet liquid application diets improved performance.  The final objective was to 

investigate the change in percent pellets as feed was augered throughout an entire 

commercial poultry house.  Ultimately, creating high-quality pellets decreases pellet 

attrition and improves broiler performance. 

Keywords:  pellet quality, nutrient segregation, feed augering, broiler performance, 

commercial broiler strain 
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LITERATURE REVIEW 

The Modern Commercial Broiler 

The broiler chicken in today’s industry is much different from past genotypes.  

Over 8000 years ago, the red junglefowl (Gallus gallus) was first domesticated in Asia 

[1].  This domesticated subspecies, Gallus gallus domesticus, is representative of all 

chickens, including broilers (meat producing birds) and layers (egg producing birds) [2].  

Due to their ability and efficiency to produce meat and eggs, chicken is one of the most 

consumed sources of animal protein in the world.  This is especially important due to our 

world’s growing population.  Through significant advancements in genetic selection, 

nutrition, and research, the poultry industry is much different from its rather modest 

beginnings.   

In the early 1940s, genetic selection in broilers was a relatively new idea.  

Initially, poultry breeders selected for rapid, large growth.  However, this selection was 

based solely upon the individual weight of a particular bird and was referred to as “mass 

selection” [3].  The process of mass selection gradually transformed over time into more 

descriptive selection criterion, such as reproductive traits, egg production, and 

hatchability [3].  As the genetic selection continued to develop, broiler breeds were 

crossed and desirable traits were carried on, which eventually led to the commercially 

available broiler strains of today. 
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The modern broiler genotype has made tremendous strides when compared to 

early broiler crosses [4-7].  Research has demonstrated that genetic selection at the 

primary breeding level has attributed to 85-90% of growth rate improvements, while 

nutrition has accounted for 10-15% [4, 8-9].  Through genetic selection and nutrition, 

modern genotypes are able to convert feed into weight gain in a highly efficient manner 

[7].  Furthermore, genetic improvements in the past 20 years alone have demonstrated 

increased performance amongst modern genotypes.  In 2006, Fancher [8] reported that d 

42 body weight had improved by 0.55 kg per year for 10 years (1996 to 2006).  In 

addition to improved weight gain and feed conversion, modern broiler genotypes amass 

large amounts of muscle, which equates to high yield of consumable chicken meat [6, 7].  

Although there have been substantial differences noted between early and modern 

genotypes, not all modern strains possess the same traits (i.e. weight gain, feed 

conversion, meat yield) to the same extent.  Research has demonstrated significant 

differences in body weight, feed conversion, and carcass yield between modern strains; 

however, there is yet to be one strain that performs better in all three categories [10].  

This can be supported by past literature, which has demonstrated that phenotypic 

variation may be a result of intense directional selection because genotypes with high 

selection probability are passing down high variability [11, 12]. 

Advances in modern genetics, nutrition, and research have allowed modern 

broilers to become more capable of meeting or exceeding their target weights in 

substantially less time than previous years [5]. The improved feed conversion achieved 

by the modern broiler makes it one of the most efficient sources of animal protein 

production [13].  In addition, some markets grow broilers for long periods of time 
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(sometimes up to 9+ weeks of age); thus, broilers are becoming heavier and heavier.  

From a nutritional standpoint, research has demonstrated that the nutrient requirements of 

modern broilers, as well as heavy broilers, have changed from past genotypes. 

Research has also demonstrated that adjustments in nutritional requirements such 

as dietary energy, digestible amino acids, vitamins, and minerals can help maximize 

heavy broiler growth potential and meat yield [14-17].  Furthermore, the quality of feed 

produced may have an impact on modern broilers.  Early feed quality research has 

established that feeding pelleted vs. mash diets improves broiler performance [18-20].  In 

addition, it has been determined that incrementally increasing percent pellets within a diet 

can positively affect broiler performance [20-23].  These researchers determined that 

feeding pellets was beneficial to broiler growth and development; however, no research 

has investigated the effects of slight improvements in percent pellets across multiple 

strains of modern heavy broilers.   

In summary, modern broilers are much different than early genotypes.  The ability 

of the modern broiler to efficiently convert feed to weight and muscle gain is remarkable 

when compared to earlier broiler models.  It can be concluded that improvements in 

genetic selection, nutrition, and research have made the poultry industry a highly efficient 

and profitable enterprise. 

Poultry Production 

Poultry production in the United States is one of the most successful enterprises in 

agriculture.  In 2014, the poultry market produced over $48.2 billion of sales in the 

United States, and over 68% ($32.7 billion) of sales were attributable to broiler 

production [24].  In general, the value of poultry production increased by 9% from 2013 
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to 2014 [24].  This increase demonstrates the ever-increasing growth and efficiency of 

poultry production in the United States. 

This efficiency is achieved through vertical integration used by most commercial 

poultry producers.  Through vertical integration, biosecurity and quality assurance are 

enhanced as commercial producers can provide their own chicks and feed to contracted 

growers.  Additionally, vertical integration can provide a measure of quality assurance for 

final processed products as the chance for cross-contamination is reduced. 

As a part of vertical integration, contracted growers are used.  Growers are 

company specific, and companies provide growers with detailed protocols for the 

management and bird husbandry.  Contract growers are responsible for carrying out 

husbandry and welfare of broilers during a grow-out period.  In addition, growers are 

responsible for all upkeep and cost associated with house management, energy, and 

facilities. Contract growers are compensated by the integrator for pounds of live weight 

produced, and generally, companies offer bonuses for the low feed conversion (amount of 

feed consumed to weight gain). 

Mississippi Poultry Production 

Poultry is the largest agricultural commodity in Mississippi [25].  In 2014, the 

value of Mississippi agricultural production was $7.9 billion [25], and broiler production 

accounted for $2.8 billion in sales (35% of all agricultural production) [24].  The top 

broiler producing states were Georgia, Alabama, Arkansas, North Carolina, and 

Mississippi at 1324.2, 1061.5, 969.8, 795.2, and 727.2 million head, respectively [24]. 

While broiler production is prevalent throughout the whole state, central counties 

of Smith, Neshoba, Scott, and Leake produce the most value in broiler production.  In 
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addition, Mississippi is home to the largest table egg producer (Cal-Maine, Inc.) and 3rd 

largest broiler producer (Sanderson Farms, Inc.) in the United States [26]. 

Poultry Feed Manufacture 

Feed and feed manufacture represent a significant cost (60-70%) to broiler 

production.  These costs are driven by ingredient price and subsequent formulation, 

manufacturing specifications, and feed volume requirements necessary to satisfy broiler 

production goals [27].  Therefore, it is crucial that poultry diets are cost-effective while 

still meeting the nutritional requirements of the broiler.  In addition, the quality of feed 

produced should be of importance due to the benefits extended to broiler performance. 

Diet Formulation 

In order to maximize growth potential, broilers need an adequate source of 

energy, protein, vitamin, and mineral added in the diet.  These nutrients are sourced from 

a variety of ingredients, such as cereal grains, oilseed meals, animal by-product blends, 

and dietary fat [28].  Typical U. S. diets are comprised of approximately 60-70% corn 

and soybean meal.  In order to meet energy requirements, most diets are formulated with 

corn and dietary fat (i.e. animal fat, vegetable fat) [28].  Soybean meal is a common 

oilseed meal that provides around 48% crude protein in the diet [28].  Animal by-

products blends, such as meat and bone meal, are often used to provide an extra source of 

amino acids, as well as calcium and phosphorus [28].  In addition, broilers need macro 

minerals such as calcium and inorganic phosphate to support and maintain growth [28].  

The effects of phosphorus, as well as phytase will be discussed later in this literature 
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review.  Trace minerals, vitamins, and amino acid supplements are also supplemented in 

the diet to help promote overall growth and development [28].   

Furthermore, the dietary inclusion of these ingredients depend on their nutritional 

composition, price, and availability.  In the past, commercial diets were formulated to 

meet total amino acid requirements of the bird; however, due to advancements in 

nutrition and research, commercial nutritionists are now able to formulate on a digestible 

amino acid basis (i.e. amino acids that can actually be used by the bird).  This can help 

provide a more accurate estimation of the bird’s needs, but does require an accurate 

nutrient profile of each ingredient in order to correctly formulate. 

In addition, most commercial diets are formulated on a least-cost basis, which 

allows for the broiler’s nutritional requirements to be met in a cost-effective manner.  

However, formulating based on least-cost can result in the inclusion of ingredients that 

may be highly variable in nutritional content.  Although these diets are formulated to 

meet the broiler’s nutritional requirements, the variability in least-cost ingredients may 

cause for over- or under-formulation.  Least-cost formulation may also have negative 

implications on feed quality, which will be discussed later in this literature review. 

Mixing 

Mixing is an integral part of feed manufacture.  In order to provide maximum 

benefit to the bird, ingredients need to be mixed uniformly throughout the diet [29].  In 

other words, mixing should equally distribute nutrients throughout the diet in a similar 

fashion.  Mixer uniformity is established as a coefficient of variation (CV).  In the 

commercial feed industry, a mixer CV below 10% is acceptable [29, 30].  To establish 

mixer CV, easily identifiable traceable markers are added to the diet [30].  Mash feed 
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samples are taken after diets have been mixed, and these samples are analyzed for the 

traceable marker added to the diet [30]. 

Mixing feed properly can result in improved bird performance, especially in 

young chicks [31].  McCoy and coauthors [31] determined that lowering mixer CV 

(<10% CV) reduced feed conversion and improved performance in broiler chicks; 

ultimately, McCoy [31] concluded that mixer uniformity is essential especially in young 

animals due to their lower feed intake.  Conversely, poor mixer uniformity can cause the 

segregation of nutrients.  This could cause poor performance and broiler uniformity, as 

well as toxicity or deficiency of nutrients. 

Pelleting 

The most capital enterprise of feed manufacture is the pelleting process, as the 

cost to produce pellets in an integrated feed mill has been estimated at $3 to $4 per ton 

[32].  In recent times, broilers have been fed exclusively pelleted rations.  The benefits of 

feeding pellets are well documented in literature [18-20, 22, 33-35]; research has 

demonstrated that feeding pellets improves handling characteristics and productive 

energy [18, 20, 33, 35], decreases feed spillage and wastage [18, 33, 35], improves 

hygienic quality [35], reduces nutrient segregation [33, 35], increases feed intake [21], 

and ultimately, improves live weight gain and broiler performance [21, 22, 33, 34].  

These benefits improve as pellet quality improves. 

Pellet Quality and Broiler Performance 

Pellet quality can be defined as how durable a pellet is to intense handling and 

transportation from the feed mill to point of consumption.  Pellet quality can be measured 
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by pellet durability index (PDI) [36], modified pellet durability index (MPDI) [36], and 

surviving pellets [37].  Each of these measures (PDI, MPDI, and surviving pellets) are 

adequately described within the corresponding references.  Percent pellets (pellet to fine 

ratio within a diet) can also be a way to measure pellet quality; however, it does not 

directly correlate to PDI or surviving pellets. 

Moreover, the live performance benefits associated with feeding pellets can be 

further improved by feeding pellets of high-quality [21, 23, 33, 38].  Schiedeler [33] 

found that feeding 75% pellets reduced feed conversion when compared to birds fed 25% 

pellets.  Cutlip and cohorts [38] determined that feeding broilers high-quality pellets (94 

PDI) reduced feed conversion ratio when compared to broilers fed a 4 percentage point 

lower PDI (90).  In addition, Lilly et al. [21] determined that every 10 percentage point 

increase in percent pellets would provide a 0.4 point reduction in FCR, 10 g increase in 

carcass weight, and 4 g increase in breast weight.  These data suggest that differences in 

pellet quality can significantly impact broiler performance. 

Ultimately, pellet quality can affect the percentage of pellets in a diet or in a feed 

pan.  However, to our knowledge, there is little replicated research that has documented 

the effects of feed augering on pellet quality and percent pellets.  Previous field research 

has demonstrated that pellet quality can be negatively affected by feed augering [33, 39].  

In a 1991 field study conducted by Schiedeler [33], it was determined that some feed 

pans were only receiving 30% pellets available for broiler consumption.  More recently, a 

collaborative field study conducted by Mississippi State and West Virginia University 

demonstrated that percent pellets decreased throughout augering and slightly increased at 

the end of the feed line [39].  Additionally, nutrients, especially phytase, segregated 
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based on manufacturing technique.  These data suggest that broilers may not be receiving 

an adequate amount of pellets nor nutrients in the feed pan.  Therefore, the detriment to 

pellet quality and subsequent nutrient segregation that occurs during feed augering may 

affect broiler performance and uniformity depending on the feed pan location. 

While the relationship between feed augering and pellet attrition is not clearly 

defined in literature, it is possible that shear force and shear velocity can play a key role 

in the process of pellet distribution and attrition as feed is augered throughout a 

commercial poultry house.  Shearing force occurs when the top of an object is pushed one 

direction, while the bottom is forced in the opposite direction [40].  It is likely that 

shearing force and translational shearing velocity can be increased or decreased by 

variations in an auger motor (i.e. horsepower, revolutions per minute, etc.) and the 

amount of feed (and pellets) within the feed line.  For example, if a feed line motor turns 

the auger at a rapid rate, velocity and force will increase; hence, there is more opportunity 

for the pellet to be destroyed.  This may affect both broiler performance and uniformity 

due to increased fines and nutrient segregation. 

In conclusion, it has been established through research that feeding high-quality 

pellets can be beneficial to broiler performance [21-23, 38]; however, there have been 

some limitations to this research.  For example, studies have investigated broad variations 

in feed form that may not adequately describe the optimal pellet quality necessary to 

maximize broiler performance.  In addition, the previously tested feed forms (i.e. 90% 

pellets) may not represent a feasible quality attainable by a commercial feed mill due to 

the cost associated with creating these high-quality pellets.  Furthermore, the effects of 

feed form have not been established on modern heavy broilers (42+ days of age) and only 
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one strain has been evaluated at a time.  Also, there is a need for replicated research on 

the effects of feed augering on nutrient segregation.  Due to the findings of Mississippi 

State and West Virginia University [39], future research is warranted to determine if 

pellet quality and nutrient segregation will effect heavy broiler performance. 

Factors Affecting Pellet Quality and Nutrient Availability 

The pelleting process has been defined as “the agglomeration of small particles 

into larger particles by means of a mechanical process in combination with moisture, 

heat, and pressure” [41].  The majority of heat and moisture associated with the pelleting 

process is due to steam conditioning.  When mash feed passes through a steam 

conditioner, saturated steam and heat are applied to prepare the feed for processing.  In 

general, higher steam conditioning temperatures (200-205°F; 93-96°C) improve pellet 

quality [38, 42] due to increased starch gelatinization, as well as protein denaturation and 

gelation [42].  Starch gelatinization occurs when water is diffused into a starch granule, is 

heated, and leaches amylose.  When the gelatinized amylose and amylopectin starch 

chains cool, an ordered structure forms and binds feed particles [43].  However, Briggs 

[44] determined that protein plays the biggest role in binding feed particles and creating 

durable pellets.  Proteins are denatured through thermal processing, causing protein 

gelation [45] and subsequent pellet formation.  While protein denaturation is helpful in 

creating pellets, it can potentially be harmful to nutrients such as amino acids and 

enzymes [42, 46, 47].  Amino acids and exogenous enzymes can be denatured because of 

increased cross-linking or Maillard reactions due to high temperature and moisture [46].   

Another factor that can affect pellet quality and nutrient availability is the manner 

in which supplemental fat is added to the diet.  Fat is included in broiler diets to provide a 
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dense source of dietary energy.  Research has demonstrated higher inclusions of mixer-

added fat (> 2.2% vs. 1.0%) can result in decreased pellet quality [42, 46, 47]; however, 

these increased fat inclusions can maintain exogenous enzyme efficacy [46] and amino 

acid digestibility [42, 47].  The adverse relationship demonstrated between pellet quality 

and nutrient availability when mixer-added fat was observed could be due to a number of 

factors.  In general, fat coats feed particles [48, 49] and deters the water and heat that 

cause starch gelatinization and protein denaturation/gelation; thus, decreasing the 

agglomerative properties of the feed without harming nutrients.  Furthermore, dietary fat 

acts as a lubricant between the mash and pellet die [50].  With fat coating the feed 

particles, the frictional and mechanical heat decrease, thus decreasing the chance for 

protein denaturation.  Additionally, increased mixer-added fat can decrease the energy 

required to run a pellet mill as well as increase throughput [42, 46]. 

Due to an increased demand for feed volumes, throughput is of concern to 

production managers and feed manufacturers alike.  Often times, the need for feed 

supersedes the throughput rate necessary to provide high-quality pellets.  Research 

conducted by Buchanan and cohorts [51] determined that pellet quality was improved 

using a thick pellet die (4.76 x 44.96 mm) run slowly (0.75 tonne/h) vs. thin pellet die 

(4.76 x 38.10 mm) run fast (1.14 tonne/h).  Pellet quality is impacted by production rate 

and die thickness due to mash retention time within the pellet die.  As the mash feed 

remains in the die longer, it allows for better agglomeration of feed particles [51].  

Although die retention time can improve pellet quality, commercial feed mills will often 

sacrifice pellet quality in order to save on feed costs due to the substantial increase in 

energy usage associated with longer milling periods. 
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In conclusion, the pelleting process is complex.  It is often times challenging to 

create a diet of high pellet quality without harming nutrient availability, and vice versa.  

Furthermore, as the main concern for commercial feed manufacturers is the amount of 

feed produced, many manufacturers are not aware that nutrient availability can be 

compromised during the pelleting process.  However, if diets of both high-pellet quality 

and nutrient availability were to be fed, the cost to manufacture the feed may be justified 

by the presumable improvements in performance and carcass traits [21, 23, 38]. 

Phytase as an Exogenous Feed Enzyme 

Phosphorus and Phytate 

Phosphorus is an essential mineral required by all animals [52].  This mineral 

helps regulate cellular mechanisms and aids in bone development, as almost 85% of 

phosphorus in the body is stored in the bone [52].  Typical United States broiler diets 

contain approximately 60-70% is comprised of corn and soybean meal.  These 

ingredients contain phosphorus; however, the vast majority of phosphorus stored in these 

ingredients are bound by the phytate molecule [53].  Phytate (myo-inositiol 

hexaphosphoric acid) is the storage form of phosphorus in plants [54], but phytate-bound 

phosphorous cannot be digested by poultry; thus, phosphorus must be presented in the 

form inorganic phosphate [55].  This problem can be handled in a couple of ways:  

supplementing inorganic phosphates or feeding exogenous phytase enzymes [55].  The 

first, supplementation of inorganic phosphates, is an effective yet expensive program to 

employ due to the lack of renewability.  The other solution is the supplementation of an 

exogenous phytase enzyme, which can release phosphorus from phytate [55].   
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Phytase Enzymes 

Exogenous phytases have been used commercially since the 1970s in an effort to 

release phosphorus from phytate and improve broiler performance [55]; this is due to the 

low levels of endogenous phytase are found in monogastrics [53, 55].  Phytase has the 

ability to release phosphorus from phytate by hydrolyzing one or more phosphate groups 

on the phytate ionstitol ring [54].  Phytase can hydrolyze the phosphate group in the 3- or 

6 position.  Therefore, exogenous phytase enzymes are included in the diet to improve 

nutrient availability [56].   

Endogenous phytase enzymes can be derived from a number of different sources, 

including yeast, plant seeds, and microorganisms, such as E. coli and A. niger [57].  The 

inclusion of phytase in poultry diets has been demonstrated to substantially increase 

available phosphorus and improve broiler performance [58-60].  The supplementation of 

phytase can also reduce the overfeeding of dietary phosphorus [52].  When phytase is 

included in a poultry diet, it can spare calcium and phosphorus inclusions.  Also, 

supplementing exogenous phytase can help decrease the phosphorus content in poultry 

litter, which has been associated with eutrophication and consequential environmental 

impact [61]. Moreover, feeding unconventionally high inclusions of phytase (super-

dosed; 3-4x recommended dosage) can add further value to meat yield, weight gain, and 

FCR by quickly destroying all of the phytate present in the diet, releasing phosphorus, 

and improving gut health [62, 63]. 

Phytase Testing and Application 

When determining the retention of an exogenous phytase, the AOAC 2000.12 

[64] method is generally used in a commercial lab to obtain in vitro activity.  However, 
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this method may not adequately describe the efficacy of phytase in vivo [65].  If phytase 

is added in the mixer, the heat, moisture, and pressure associated with the pelleting 

process may cause the phytase to be denatured.  Loop et al. [65] determined that the 

efficacy of genetic variants of E. coli-derived phytase added in the mixer were better 

described in vivo, as in vitro efficacy did not necessarily translate to improved bird 

performance.   

Phytase can be supplemented in granular or liquid form.  Granular phytase is 

added in the mixer; however, as previously mentioned, some phytase enzymes have the 

potential to be denatured.  In effort to protect mixer-added phytase from denaturation, 

granular phytase can be encapsulated by a coating, such as a carbohydrate-lipid [66].  

However, too much coating can decrease efficacy because phytase cannot be released 

into the gastrointestinal tract [66].  Another method to preserve enzyme efficacy is the 

use of a liquid phytase added post-pelleting to help ensure that the enzyme activity is not 

compromised during the manufacturing process.  However, additional equipment (i.e. 

post-pellet applicator) is required, and uniform application of the enzyme is of concern 

[65].  In addition, liquid phytase added post-pelleting is generally incorporated with post-

pellet fat application.  However, post-pellet fat application involves less mixer-added fat; 

once again, this creates concern for potential protein/enzyme denaturation [42, 46, 47]. 

In summary, the phytase enzyme is an extremely helpful tool to the poultry 

industry.  The supplementation of phytase in poultry diets can improve performance by 

making more nutrients available to the bird, such as inorganic phosphate and calcium.  

When choosing a phytase, the efficacy should be tested in vivo in order to ensure that 

broiler performance is maximized. 
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Conclusions 

Through improvements in genetic selection, nutrition, and research, the poultry 

industry has made tremendous strides.  Over the years, broilers have become highly 

efficient creatures capable of producing large amounts of lean meat protein quickly.  This 

efficiency is especially important in today’s industry, as many broilers are grown for 

much longer periods of time.  From a nutritional standpoint, researchers are constantly 

investigating the optimal nutrient needs of the modern broiler; however, feed quality is 

far less researched.  Feeding pelleted diets of high-quality could potentially be very 

beneficial to the modern broiler, especially heavy broilers, as these birds have been 

selected to maximize growth through feed intake. 

Furthermore, it has been demonstrated through field research that nutrients 

segregate throughout feed augering based upon pellet quality and manufacturing 

technique [33, 39].  Although there are many ways to improve pellet quality, it may be 

challenging for feed manufacturers to determine a target pellet quality without 

understanding the effects of transportation and feed augering on pellet attrition, nutrient 

segregation and subsequent heavy broiler performance.  As commercial nutritionists are 

formulating diets to optimize broiler growth, it is of no use if broilers are not receiving 

the intended nutrients.   

In closing, research is warranted to determine how pellet quality and the changes 

therein can affect modern heavy broiler performance and carcass characteristics.  As 

pellet quality has been demonstrated to impact the segregation of nutrients, it is likely 

that modern heavy broilers will perform better when fed high-quality pellets.  All in all, 

previous feed form research may not adequately describe the effects of pellet quality on 
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modern day broiler performance due to the vast genetic improvements in modern broiler 

genotypes and the recent addition of the heavy broiler market. 
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THE EFFECTS OF STRAIN AND INCREMENTAL IMPROVEMENTS IN FEED 

FORM ON D 28-49 MALE BROILER PERFORMANCE 

Summary 

Feeding high-quality pellets to modern commercial broilers may maximize 

genetic potential; however, this typically requires an increased cost to produce feed.  

Therefore, it is important to determine if incremental improvements in feed form (FF) can 

increase performance of modern broiler strains.  The current study was conducted to 

investigate the effects of feeding modest improvements in feed form (50, 60, 70, or 80% 

intact pellets; IP) to two commercial broiler strains (Strain A or B) on d 28 to 42 and d 28 

to 49 growth performance and processing variables.  A common diet was manufactured 

to contain 80% IP, of which a portion was ground to create a total of four FF treatments 

varying in IP to ground pellet ratios:  50:50; 60:40; 70:30; and 80:20.  Strain A 

demonstrated improvements in BW, BWG, and FCR when compared to Strain B.  For the 

main effect of FF, feeding 80 vs. 50% IP reduced d 28 to 42 FCR.  Also, feeding birds 

80% IP vs. all other FF treatments improved d 28 to 42 BWG and d 42 BW.  A Strain x 

FF interaction established that Strain A broilers fed 50, 60, and 70% IP diets had higher d 

43 total breast yield than Strain B birds fed the same FF treatments; however, both strains 

demonstrated similar total breast yield when 80% IP were fed.  On d 49, Strain B BW 

was not affected by FF.  Performance (d 28 to 49) was potentially altered due to 
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removing 4 birds/pen for processing on d 43, which decreased feeder competition.  

Nonetheless, data suggests a distinct benefit for feeding improved FF from d 28 to 42 to 

modern broilers.  More research is warranted using heavy broilers (d 28 to 49). 

Keywords:  feed form, pellet quality, bird strain, commercial, bird performance, 

processing 

Description of Problem 

Feed and feed manufacture represent a significant cost (60-70%) to the 

commercial broiler industry.  These birds are fed exclusively pelleted diets due to 

research that has confirmed the positive impact of pellets on broiler performance [1-8].  

These improvements include decreased ingredient/nutrient segregation, improved 

handling characteristics, reduced feed spillage, as well as decreased time and energy 

spent eating associated with prehension of feed [1-2, 5, 8].   

When broilers are fed diets containing high-quality pellets, live performance 

benefits can become even greater [9-12]. Consequently, the economic return associated 

with the aforementioned benefits are likely to increase as pellet quality increases [10].  

Research has documented the positive impact of broad ranges of pellet quality on modern 

day broiler performance [10, 11].  In addition, the feed form (FF) tested in previous 

research may not represent a quality that may be produced in a commercial mill due to 

throughput demands and increased costs associated with creating high-quality pellets (i.e. 

90% intact pellets:10% fines).  Therefore, there is a need to determine if a modest 

improvement range of pellet quality can elicit an incremental improvement in broiler 

performance.  This would provide feed manufacturers with the information to make an 
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educated decision on whether or not the investment in feed quality is cost-effective, 

depending upon their operation. 

Another factor that has not been investigated in recent literature is the sensitivity 

of current broiler strains to varying FF.  Previous research has only utilized one strain of 

broiler at a time when investigating bird response to feed form [6-11].  However, research 

has demonstrated significant differences in overall BW, feed intake (FI), and carcass 

yield between fast-growing and high-yield strain crosses [13].  Due to genetic selection of 

the modern broiler strain, it is possible that diets varying in FF could further elicit 

performance differences between multiple broiler strains, especially in the heavy broiler 

market (>3.5 kg).  Therefore, the objective of the current study was to investigate the 

sensitivity of two different modern broiler strains (Strain A or B) to incremental and 

commercially attainable improvements in FF (50, 60, 70, or 80% intact pellets; IP) over 

two (d 28 to 42 and 28 to 49) grow-out periods. 

Materials and Methods 

Pretest Period Broiler Management (d 0 to 28) 

A total of 1728 day old male chicks (864/strain) were obtained from commercial 

hatcheries [14, 15] and were equally allotted by strain in 96 floor pens (0.91 x 1.22 m; 18 

birds/pen; 0.06 m2/bird) at the Mississippi State University Poultry Research Unit.  Strain 

A chicks were vent-sexed at the hatchery, while Strain B chicks were feather-sexed upon 

arrival to Mississippi State.  The solid-walled grow-out house had forced-air heating and 

evaporative cooling cells.  Cross-ventilation was achieved by negative air pressure.  In 

each pen, built-up litter was used; a hanging feeder (16.0 kg capacity) and 3 nipple 

drinkers were available for ad libitum feed and water consumption.  
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All birds were fed a common starter and grower broiler diet formulated to meet or 

exceed breeder recommendations for each strain [16, 17] from d 0 to 28.  These pre-test 

diets were manufactured at the Mississippi State University Poultry Research Unit and 

contained corn, soybean meal, distiller’s dried grains with solubles, and meat and bone 

meal.  The starter diet was fed from d 0 to 14 as crumbles and the grower diet was fed 

from d 15 to 28 as pellets.  

The lighting and temperature schedule were designed to encompass both strain 

recommendations [18, 19].  Birds received 24 h of light from d 0 to 7 and 18.5 h of light 

from d 7 to 49.  Lighting was set to 26.9 lux from d 0 to 10.  On d 10, lighting intensity 

was incrementally decreased until 2.7 lux was reached on d 21.  The lighting intensity 

was 2.7 lux for the remainder of the grow-out period (d 21 to 49).  On d 0, ambient house 

temperature was 32.7°C; temperature was incrementally decreased until 16.1°C was 

achieved on d 49. 

Experimental Diet Preparations 

Batching 

Experimental finisher 1 (d 28 to 42) and finisher 2 (d 42 to 49) diets were 

manufactured at the West Virginia University pilot feed mill [20].  These practical diets 

were nutritionally common; ingredients utilized included corn, soybean meal, distiller’s 

dried grains with solubles, and meat and bone meal.  Similar to the starter and grower 

period, diets were formulated to meet or exceed breeder recommendations for each 

broiler strain (Table 1) [16, 17].  Diets were each batched and mixed in a 0.907-tonne 

vertical screw mixer [21] for 10 minutes dry and 10 post fat addition, prior to pelleting. 
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Feed manufacture 

To help ensure that nutrient availability and enzyme retention was not 

compromised [22-24], all fat was added at the mixer; diets were steam conditioned for 10 

seconds at 81°C with an incoming steam pressure of 262 kPa.  All diets were 

subsequently pelleted through a 38.10 x 4.76 mm pellet die at a production rate of 0.986 

tonne/h (Finisher 1) and 0.977 tonne/h (Finisher 2).  After pelleting, a representative 22.7 

kg sample from the finisher 1 and 2 diet was sifted using a No. 6 American Society for 

Testing and Materials screen [25] to determine the pellet to fine ratio of the diet created 

(Table 2.1). 

The finisher 1 diet (3628.7 kg total) was evenly divided into four 907.2 kg 

allotments; every fifth feed bag containing 22.7 kg was ground via hammer mill to 

produce ground pellets (GP) for the creation of different pellet qualities that maintained 

similar nutrient availability. Additionally, the finisher 2 diet (1270.1 kg total) was evenly 

divided into two 317.5 kg allotments; every third feed bag containing 22.7 kg was ground 

to produce GP.  This process was repeated until 544.3 and 190.5 kg of GP were created 

for the finisher 1 and 2 diet, respectively. 

To create the 50, 60 and 70% IP treatments, the calculated amount of 80% IP and 

GP necessary to achieve the proper FF ratios for each treatment (IP:GP ratios of 50:50, 

60:40, and 70:30) were layered in a 26.49 L container and added to the corresponding 

feeder.  The 80% IP treatment was composed entirely of the original diet and was fed 

without any additional GP. 
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Experimental Period Broiler Management (d 28 to 49) 

Live Performance 

Broilers were weighed individually on d 28 by strain and assigned to one of 

twelve weight classes for each strain (A or B).  Twelve birds (1 bird from each weight 

class for each strain) were weighed and assigned to each floor pen (0.09 m2/bird); pens 

contained only Strain A or only Strain B birds (n=12).  Each pen was randomly allocated 

to one of four FF treatments.  Feed and water were offered ad libitum.   

On d 42 and 49, measured variables included average BW, BWG, FI (reported on 

a per pen basis), and FCR (adjusted for mortality) from d 28 to 42, 42 to 49, and 28 to 49.  

All animals were reared in compliance with the guidelines set by the Mississippi State 

University Institutional Animal Care and Use Committee. 

Processing Measurements 

On both d 42 and 49, four birds per pen (± 100 g avg. BW/pen; 384 birds total) 

were selected, weighed, tagged, and then cooped.  On d 43 and 50, these selected birds 

were processed at the Mississippi State University Poultry Processing Facility.  Hot 

carcass and abdominal fat pad weights were recorded; carcasses were subsequently 

chilled in an ice bath for 3 h.  Next, debone variables of boneless skinless breast 

(pectoralis major), tender (pectoralis minor), total breast (pectoralis major and minor), 

thigh, drumstick, and wing weights were measured.  All processing yield data are 

reported relative to live BW. 
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Statistical Analysis 

A 2 Strain x 4 FF factorial arrangement within a randomized complete block 

design was utilized.  Each treatment was replicated 12 times (12 blocks; designated by 

location) within the grow-out house.  The experimental unit consisted of one floor pen of 

birds, and the experimental period was from d 28-42 and 28-49.  All of the measured 

variables were analyzed using the GLM procedure in SAS [26].  Treatment mean 

comparisons were made using Fisher’s least significant difference.  Significance was set 

at P ≤ 0.05. 

Results and Discussion 

At the beginning of the experimental period, d 28 BW was affected by Strain 

(P<0.0001), as expected based on breed standards [16-17, 27]; however, FF did not 

influence BW (P=0.3518; Table 2.2).  Consequently, differences observed in the current 

study after d 28 may be attributed to changes in FF effects. 

Strain Effects 

Broiler Performance (d 28 to 42) 

Throughout the d 28 to 42 growth period, Strain A exhibited a 12.7% increase in 

BWG (P<0.0001) and an 8.4% increase in BW (P<0.0001) when compared to Strain B 

(Table 2.2).  Alternatively, FCR was reduced by 0.18 (P<0.0001; Table 2.2).  These 

results were consistent with the specific breed standards [16-17, 27].  Also, both finisher 

1 and 2 diets were formulated to meet or exceed the breeder recommendations for both 

strains (Table 2.1); hence, differences in the main effect Strain are likely due to differing 

growth rates.  No significance was established for Strain on d 28 to 42 FI (P>0.05). 
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Broiler Performance (d 28 to 49) 

Results for d 28 to 49 FCR demonstrated that Strain A had an 11 point reduction 

in FCR (P<0.0001) and an 11.4% increase in BWG (P<0.0001) when compared to Strain 

B (Table 2.3).  These data are in disagreement with previous research that observed no 

significant difference in FCR or BWG from d 42 to 53 for 8 different strain-crosses [28].  

Differences observed between Strain in the current study are likely due to variations in 

modern genetics of high-yield and fast-growing birds, whereas previous research used 

older genotypes [28].  Again, these data are likely attributable to the genetic traits 

selected for by each primary breeding company [16-17, 27]. 

Processing (d 43) 

Strain A exhibited improved processing weights as compared to Strain B in every 

category (P<0.0001; Table 2.4).  Also, d 43 processing yields were different depending 

on Strain.  For instance, Strain A demonstrated a 1.2% increase in d 43 carcass yield 

when compared to Strain B (P=0.0003; Table 2.4).  Additionally, Strain A demonstrated 

a 4-5% increase in breast, tender, and total breast yield when compared to Strain B 

(P<0.0001; Table 2.4).  Conversely, drumstick and wing yields were higher in Strain B, 

exhibiting a percent difference of 4.4 and 4.2%, respectively, as compared to Strain A 

(P<0.0001; Table 2.4). 

Processing (d 50) 

As for d 43, all d 50 processing weight categories were improved for Strain A 

birds (P<0.05; Table 2.5).  Carcass yield was higher in Strain A vs. Strain B (~2.0% 

difference; P<0.0001).  Additionally, Strain A demonstrated a 6.0 to 8.0% improvement 
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in breast, tender, and total breast yield (P<0.05).  Similarly, drumstick (P<0.0001) and 

wing (P=0.0003) yield were higher in Strain B (4.7 and 2.7% difference, respectively) as 

compared to Strain A birds.  Acar and coauthors [29] demonstrated a similar finding, as 

broilers with significantly higher wing yields also had higher drumstick yields.  Overall, 

broiler strains exhibited improvements in the same processing variables for both d 43 and 

50.  These data agree with previous literature that suggested acute selection for a trait 

may cause phenotypic variations within a genotype [30, 31]. 

Feed Form Effects 

Broiler Performance (d 28 to 42) 

Data from d 28 to 42 demonstrated that broilers fed 80% IP diets had an 8 point 

lower FCR (1.68 vs. 1.76) than broilers fed 50% IP diets (P=0.024; Table 2.2).  Also, 

broilers that received 80% IP diets exhibited a higher d 28 to 42 BWG and d 42 BW than 

broilers fed any other FF treatment (P=0.004 and 0.002, respectively; Table 2.2).  The 

greatest d 28 to 42 BWG and d 42 BW benefit was established when broilers received 

80% versus 50% IP treatments, as birds demonstrated a 2.5 (P=0.004) and a 4.7% 

(P=0.002) increase in BWG and BW, respectively (Table 2.2).  These data agree with 

previous research, as Sellers and cohorts [12] reported similar results in d 28 to 42 BWG 

and d 42 BW when feeding 75 vs. 55% pellets.  In addition, Lemons and others [11] 

observed a similar increase in d 23 to 38 BWG when birds were fed 70 vs. 40% IP.  

Although these researchers demonstrated improved BWG when feeding 70 [11] and 75% 

IP [12], the current data suggests d 28 to 42 BWG can be further improved by 2.3% when 

feeding 80 vs. 70% IP (P=0.004; Table 2.2).  No significance was established for FF on d 

28 to 42 FI (P>0.05). 
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Broiler Performance (d 28 to 49) 

Although 80% IP elicited improvements on d 28 to 42 bird performance, it did not 

translate to improved d 28 to 49 live performance and d 50 processing.  It is important to 

note that data obtained from d 28 to 49 and 42 to 49 may be confounded by changes in 

stocking density.  Stocking density was altered on d 43, four birds per pen were selected 

for processing, which reduced the bird stocking density of each pen from 0.09 m2 per bird 

(d 28 to 42) to 0.14 m2 per bird (d 42 to 49).  Commercial poultry integrator 

recommended stocking densities for broilers grown in modern solid-walled commercial 

houses is 0.08 to 0.09 m2/bird [18, 19].  Previous research concluded that decreasing 

stocking density from 0.08 to 0.1 m2/bird will cause 7 week old broilers to consume more 

feed and have less yield per unit of floor space [32].  

Therefore, it is likely that stocking density is correlated to feeder space access.  

Research has demonstrated that when resources were restricted and stocking density was 

increased (3.26 and 1.63 vs. 0.82 m2/bird), broiler aggression and competition for feeder 

space increased [33].  Furthermore, Lemons and cohorts investigated the effects of FF 

(40 vs. 70% IP) on increased and industry recommended feeder space access (0.06 m vs. 

0.01 m of feeder space per/bird, respectively; stocking density at 0.06 m2/bird) [11].  This 

research reported data from the finisher phase that demonstrated that broilers fed a low 

composition of pellets (40%) with increased feeder space access had similar FI and BWG 

to broilers fed a high composition of pellets (70%) with increased feeder space access 

[11].  Perhaps the unexpected lack of differences from d 42 to 49 in the current study 

were observed due to the change in stocking density on d 43.  This in turn increased 

feeder space (0.07 m/bird from d 28 to 42; 0.11 m/bird from d 42 to 49), creating less 
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competition at the feeder [33], and more opportunity to preferentially select larger feed 

particles [34].  Since feed was offered ad libitum, it is plausible that broilers had 

unrestricted access to intact pellets. 

Processing (d 43) 

Broilers fed 80% IP diets exhibited an advantage in d 43 carcass weight when 

compared to all 50 and 60% IP diets (P=0.027; Table 2.4).  Based upon the linear model 

constructed by Lilly and coauthors [10], every 10 percentage point increase in FF will 

result in a 10 g improvement in broiler carcass weight.  The current research verifies and 

suggests further improvement as a 9 (50 vs. 60% IP) and 13 (60 vs. 70% IP) g increase 

was observed in carcass weight as FF was incrementally increased (P=0.027).  Although 

carcass weights were statistically similar when birds fed 70 vs. 80% IP were compared, 

data suggests a numerical improvement of 18 g for birds fed 80% IP.  Broilers fed 80% 

IP also exhibited a 2.1-2.7% increase in thigh weight when compared to those fed 50 and 

60% IP (P=0.032; Table 2.4).  On d 43, fat pad weight was 6% higher in birds fed 80% IP 

diets compared to broilers that received 50% IP (P=0.026; Table 2.4).  Research 

conducted by Reddy et al. [35] demonstrated that broilers fed pelleted diets had an 

increased BW and decreased FCR when compared to broilers fed mash or ground pellet 

diets; these improvements translated into an increased carcass fat percent, which can be 

directly related to metabolizable energy [36].  Data in the current study support these 

findings, as broilers fed 80% IP had an increased d 42 BW, reduced FCR, and subsequent 

increased d 43 fat pad weight when compared to 50% IP diets.   

Despite the fact that it was the lowest FF, feeding broilers 50% IP diet resulted in 

a higher d 43 drumstick yield than any other FF treatment (P=0.023; Table 2.4).  Due to 
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the time and energy associated with the prehension of feed [1-2, 8], perhaps broilers fed a 

lesser FF (50%) spent more time eating.  Consequently, research conducted in a 

companion study suggests that increased leg weight can be directly associated with 

longer drinking and shorter resting time [37].  

Processing (d 50) 

For the main effect of FF, there were no significant differences observed for d 50 

processing variables (P>0.05; Table 2.5). 

Interactive Effects of Strain and Feed Form 

Broiler Performance (d 28 to 42) 

Early live performance data (d 28 to 42) demonstrated no live performance 

interactions (P>0.05). 

Broiler Performance (d 28 to 49) 

There were no interactions observed between Strain and FF on d 42 to 49 or  28 to 

49 FCR,  as well as d 42 to 49 or 28 to 49 BWG (P>0.05; Table 2.3).  A significant 

interaction between Strain and FF was demonstrated for d 49 BW (P=0.016; Table 2.3).  

Strain A birds that were fed diets containing only 60% IP diets exhibited a higher d 49 

BW across all other treatments receiving the different FF diets (P=0.016).  In addition, 

Strain A birds, regardless of FF, were heavier on d 49 than Strain B birds; whereas Strain 

B birds exhibited comparable BW across FF (P=0.016). Also, a trend was noted for an 

interaction between Strain and FF on d 28 to 49 FCR (P=0.055; Table 2.3). In general, 

Strain A birds fed 60, 70, and 80% IP exhibited a reduced FCR when compared to Strain 

A birds fed 50% IP and Strain B birds fed any FF treatment (P=0.055).  These data 
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suggest that Strain A birds were more sensitive in changes to FF on d 49 BW and d 28 to 

49 FCR. 

Strain and FF interacted for d 28 to 49 FI, whereas Strain A birds consumed on 

average 1.68 kg per pen more feed from d 28 to 49 than Strain B birds (P=0.012).  

Additionally, Strain A broilers fed 60% IP diets consumed more feed as compared to 

other strain and FF treatment combinations, with the exception of Strain A birds fed 50% 

IP diets.  However, the interactions between Strain and FF on d 49 BW and d 28 to 49 

FCR demonstrated that regardless of FF, Strain A weighed more and converted feed 

better than Strain B, justifying the increased d 28 to 49 FI. 

Processing (d 43) 

No interactions were established for any d 43 processing weights (P>0.05).  Strain 

and FF interactively affected both d 43 breast yield (P=0.043) and total breast yield 

(P=0.025; Table 2.4).  Strain A birds fed 50, 60, and 70% IP diets exhibited higher breast 

and total breast yield than Strain B birds fed the same FF treatments.  Strains A and B fed 

80% IP demonstrated similar breast and total breast yields.  Literature has documented 

differences on carcass traits for differing strains [28, 29]; however, to our knowledge, 

there is little to no peer-reviewed data that investigates the interactive effects of Strain 

and FF.  Hence, it is possible that Strain A is less sensitive to 80% IP and more sensitive 

to 50, 60, or 70% IP when breast and total breast yields are observed, whereas Strain B is 

more sensitive to 80% IP.  However, observed differences may also be due to the 

differences in the traits genetically selected for each strain (i.e. fast-growing or high-

yield). 
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Processing (d 50) 

A significant Strain x FF interaction was established for d 50 tender weight 

(P=0.007; Table 2.5).  Regardless of FF, Strain A broilers demonstrated on average a 

15.5% increase in d 50 tender weight compared to Strain B broilers (P=0.007; Table 2.5).  

Strain A birds fed 60% IP diets had a 4.5, 6, and 9% increase in d 50 tender weight as 

when compared to Strain A birds fed 50, 70, and 80% IP treatments (P=0.007; Table 2.5); 

whereas Strain B birds had similar d 50 tender weights across all FF treatments (P=0.007; 

Table 2.5), indicating that Strain B birds were less sensitive to FF on tender weight.  

There were no further significant interactions between Strain and FF on d 50 processing 

weight variables (P>0.05; Table 2.5).  Additionally, no other interactions were 

established for Strain and FF on d 50 processing yield variables (P>0.05; Table 2.5).  

These data disagree with previous research that found differences between 8 different 

broiler strains on d 53 processing weights and yield [29].  Data in the current study 

suggest that d 50 processing may not be affected by FF beyond tender weight. 

Overall Summary 

Data in the current study demonstrates that feeding more pellets (80%) can be 

beneficial to the d 28 to 42 live performance variables of BW, BWG, and FCR (P=0.002, 

0.004, and 0.024, respectively; Table 2.2).  Although 80% IP demonstrated the greatest d 

28 to 42 performance benefits, this FF may not always be attainable by a commercial 

mill.  Also, depending on the integrator’s metric, it may not be of importance to strive for 

70 over 60% IP as d 28 to 42 data demonstrated similarities between the two FF for BW, 

BWG, and FCR (Table 2.2).  However, previous FF research utilizing one broiler strain 

has suggested otherwise, as feeding more pellets has been demonstrated to improve 
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broiler performance [10-12].  Processing results suggest that if 80% IP can be achieved, 

each strain of broiler will exhibit similar d 43 breast and total breast yield.  However, if a 

commercial mill is manufacturing 70% IP or less, these data show that the strain of 

broiler should be taken into consideration due to the interaction each has with FF on d 43 

breast and total breast yield (P=0.043 and P=0.025, respectively; Table 2.4). 

The benefits associated with feeding pelleted rations demonstrated in d 28 to 42 

data of the current study are supported by previous literature [1-8].  The current research 

investigated the benefits associated with incremental improvements in FF, although the 

effects of nutrient segregation were not considered.   

Pelleting is a complex process, and many feed manufacturing variables such as 

steam-conditioning time and temperature, pressure, production rate, moisture addition, 

and diet formulation can affect pellet quality [3-7, 38-40].  As a result, changes in pellet 

quality may affect the rate of nutrient segregation [2, 41].  Should the effects of nutrient 

segregation be explored, the benefits of feeding diets with high pellet compositions 

would presumably intensify [10].  Previous research determined that nutrient segregation 

occurred throughout transportation and augering for both 55 and 75% pellet diets [41]; 

however, a clear benefit in BWG and FCR was observed when a higher FF (75% pellets) 

was fed to heavy broilers (d 28 to 56) [41]. 

Although previous research and the current study have established that feeding 

diets with increasing FF can improve d 21 to 42 performance [10, 11], more research is 

warranted on d 42+ old birds.  Therefore, future research should also investigate the 

effects and variations of FF on modern broiler strains over a longer grow-out period.  The 

experimental design should take into consideration stocking density and feeder space 
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access in order to obtain accurate results for later growth phases of different modern 

commercial broilers fed diets varying in FF. 

Conclusions and Applications 

1. Data suggests that strain may be an important consideration from d 28 to 
42 when deciding on pellet quality; however, d 28 to 49 data is less clear. 

2. More research is necessary on broilers raised to 42+ d.  Data from the 
current study may be confounded due to a decrease stocking density from 
d 28 to 49 (0.09 to 0.14 m2/bird), which allowed more feeder space per 
bird, less competition at the feeder, and more opportunity to favorably 
select feed due to ad libitum consumption. 

3. Regardless of strain, broilers fed diets with 80% IP demonstrated 
improvements in d 42 BW and 28 to 42 BWG when compared to any 
other FF treatment.  Feeding broilers 80% IP vs. 50% IP increased d 42 
BW and d 28 to 42 BWG by 2.47% and 4.17%, respectively, whereas d 28 
to 42 FCR was reduced by 8 points. 
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Table 2.1 Ingredient inclusion and calculated nutrient composition of finisher 1 and 
finisher 2 experimental diets1 

 Finisher 1 diet (28 to 42 
d) 

Finisher 2 diet (42 to 49 
d) 

Ingredient, %   
Corn 58.46 58.23 
Soybean meal (48% CP) 25.00 23.19 
Corn DDGS2 7.000 9.000 
Meat and bone meal3 3.500 3.250 
Animal/vegetable blend fat4 3.068 3.653 
Calcium carbonate 1.245 1.203 
Dicalcium phosphate 0.420 0.276 
Sodium bicarbonate 0.300 0.300 
Vitamin/mineral premix5 0.275 0.250 
DL-Methionine 0.222 0.203 
Salt 0.175 0.170 
L-Lysine HCL 0.147 0.138 
BMD 506 0.050 0.050 
L-Threonine 0.046 0.024 
Choline chloride 0.042 0.023 
Phytase enzyme7 0.020 0.020 
Selenium 0.02% 0.017 0.017 
Xylanase enzyme8 0.010 0.010 

Calculated nutrients 
ME, kcal/kg 3179.73 3223.17 
CP, % 20.55 19.96 
Available Phosphorus, % 0.410 0.370 
Total TSAA, % 0.884 0.854 
Total Methionine, % 0.537 0.514 
Total Lysine, % 1.150 1.098 
Total Threonine, % 0.812 0.768 
Calcium, % 0.943 0.870 
Sodium, % 0.200 0.190 

1Diets formulated to meet or exceed breeder growth recommendations for each strain; finisher 1 averaged 
83% pellets and finisher 2 average 84.5% pellets 
2Distillers dried grains with solubles. 
3H. J. Baker and Bro., Little Rock, AR 
4Animal-vegetable oil blend 
5Provided per kilogram of diet:  0.02% manganese; 0.02% zinc; 0.01% iron; 0.0025% copper; 0.0003% 
iodine; 0.00003% selenium; 0.69 mg of folic acid; 386 mg of choline; 6.61 mg of riboflavin; 0.03 mg of 
biotin; 1.38 mg of vitamin B6; 27.56 mg of niacin; 6.61 mg of pantothenic acid; 2.20 mg of thiamine; 0.83 
mg of menadione; 0.01 mg of vitamin B12; 16.53 IU of vitamin E; 2,133 ICU of vitamin D3; and 7,716 IU 
of vitamin A 
6Active drug ingredient bacitracin methylene disalicylate, 50 g/lb inclusion; Zoetis, Florham Park, NJ 
7Heat stable liquid phytase; DSM Nutritional Products Inc., Parsippany, NJ 
8AB Vista Feed Ingredients, Marlborough, UK 
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Table 2.2 Live growth performance from d 28 to 42 of each male broiler strain fed 
diets varying in feed form 

Strain1 FF2 D28 BW 
(kg) 

D28-42 
FCR 

D42 Avg 
BW (kg) 

D28-42 Avg 
BWG3 (kg) 

D28-42 Avg 
FI/pen4 (kg) 

Strain 
A 

50:50 1.51 1.68 3.082 1.597 31.55 
60:40 1.51 1.66 3.143 1.635 31.77 
70:30 1.50 1.61 3.128 1.626 30.80 
80:20 1.50 1.57 3.161 1.658 31.23 

Strain 
B 

50:50 1.44 1.83 2.854 1.414 31.08 
60:40 1.44 1.80 2.865 1.423 30.61 
70:30 1.44 1.82 2.872 1.435 31.25 
80:20 1.44 1.79 2.916 1.476 31.39 

SEM 0.0044 0.0249 0.0172 0.0162 0.3539 
Marginal means 

Strain 
A - 

1.51a 1.63b 3.130a 1.631a 31.33 

Strain 
B 1.44b 1.81a 2.877b 1.437b 31.09 

SEM 0.0022 0.0125 0.0086 0.0081 0.1770 
 

- 

50:50 1.47 1.76a 2.964c 1.503b 31.34 
60:40 1.48 1.73ab 3.004b 1.529b 31.14 
70:30 1.47 1.71ab 2.999b 1.531b 31.03 
80:20 1.47 1.68b 3.038a 1.567a 31.34 

SEM 0.0031 0.0176 0.0126 0.0115 0.2503 
Main effect and interaction probabilities 

Strain <0.0001 <0.0001 <0.0001 <0.0001 0.3135 
FF 0.3518 0.0237 0.0018 0.0042 0.8347 

Strain x FF 0.8543 0.3195 0.5362 0.7566 0.1205 
a-eMeans within a column not sharing a common superscript differ (P ≤ 0.05) 
1Two modern strains of commercial broilers 
2FF = Feed form; common diets were manufactured to contain 80% intact pellets (IP). A portion of the 80% 
IP diet was ground via roller mill to create ground pellets (GP). GP were added to the 80% IP diets to 
create IP:GP ratios of 50:50, 60:40, and 70:30. The 80:20 IP:GP treatment was composed entirely of the 
original diet and contained no additional GP 
3BWG = body weight gain 
4FI = feed intake; FI is presented on a per pen basis 
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Table 2.3 Live growth performance from d 28 to 49 of each male broiler strain fed 
diets varying in feed form 

Strain1 FF2 D42-49 
FCR 

D49 Avg 
BW (kg) 

D42-49 
Avg 

BWG 
(kg) 

D28-49 
FCR 

D28-49 
Avg 

BWG 
(kg) 

D28-49 
Avg 

FI/pen4 
(kg) 

Strain 
A 

50:50 2.82 3.646b 0.559 1.88 2.981 43.57ab 

60:40 2.58 3.839a 0.652 1.84 3.190 44.77a 

70:30 2.62 3.718b 0.584 1.80 3.033 43.12bc 

80:20 2.91 3.712b 0.534 1.80 3.048 43.35bc 

Strain 
B 

50:50 2.38 3.430c 0.588 1.95 2.710 42.17cde 

60:40 2.30 3.442c 0.590 1.90 2.750 41.33e 

70:30 2.43 3.411c 0.548 1.94 2.701 41.79de 

80:20 2.66 3.448c 0.534 1.95 2.773 42.79bcd 

SEM 0.0814 0.0283 0.0203 0.0206 0.0439 0.4412 
Marginal means 

Strain 
A - 

2.73a 3.731 0.583 1.83b 3.065a 43.72 

Strain 
B 2.44b 3.433 0.565 1.94a 2.733b 42.02 

SEM 0.0407 0.0142 0.0101 0.0103 0.0220 0.2206 
 

- 

50:50 2.60b 3.533 0.574b 1.92 2.839b 42.87 
60:40 2.44b 3.641 0.621a 1.87 2.969a 43.05 
70:30 2.52b 3.564 0.566b 1.87 2.867b 42.45 
80:20 2.78a 3.580 0.534b 1.87 2.910ab 43.07 

SEM 0.0576 0.0201 0.0143 0.0146 0.0310 0.3120 
Main effect and interaction probabilities 

Strain <0.0001 <0.0001 0.2319 <0.0001 <0.0001 <0.0001 
FF 0.0006 0.0044 0.0007 0.0842 0.0310 0.4715 

Strain x FF 0.4751 0.0159 0.1350 0.0554 0.1960 0.0117 
a-eMeans within a column not sharing a common superscript differ (P ≤ 0.05) 
1Two modern strains of commercial broilers 
2FF = Feed form; common diets were manufactured to contain 80% intact pellets (IP). A portion of the 80% 
IP diet was ground via roller mill to create ground pellets (GP). GP were added to the 80% IP diets to 
create IP:GP ratios of 50:50, 60:40, and 70:30. The 80:20 IP:GP treatment was composed entirely of the 
original diet and contained no additional GP 
3BWG = body weight gain 
4FI = feed intake; FI is presented on a per pen basis 
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FEED FORM AND LIQUID APPLICATION METHOD EFFECTS ON FEED 

AUGERING SEGREGATION AND SUBSEQUENT BROILER  

PERFORMANCE 

Summary 

General benefits of feeding pellets to poultry are documented; however, replicated 

research has not yet identified the impact of augering feed throughout a commercial feed 

line on pellet quality, feed segregation, and resulting bird performance.  Two experiments 

were conducted in the current study.  The objective of experiment 1 was to determine the 

effects of pellet to fine ratio (PF) and liquid application method during feed manufacture 

(LAM; mixer or post-pellet addition of fat and liquid phytase) on physical and nutrient 

segregation post augering throughout a commercial poultry feed line.  Samples for each 

of the augered diets were obtained at 0, 15, 30, 32, 44, and 58 m on the feed line.  Post 

augering, each diet was retained and separated by location from 0 to 30 and 32 to 58 m 

for experiment 2.  The objective experiment 2 was to determine the effects of physical 

segregation, nutrient segregation, and augering location (0-30 or 32-58 m) on d 28 to 56 

performance and d 57 processing characteristics.  In experiment 1, augering post-pellet 

LAM (PPLAM) diets increased percent pellets compared to mixer LAM (MLAM).  A 

Location x PF interaction established that percent pellets decreased when augered from 0 

to 15 and 44 to 58 m.  Augering from 15 to 44 m demonstrated no change in percent 



 

49 

pellets for 55:45 PF diets; however, 75:25 PF diets fluctuated.  In experiment 2, a LAM x 

PF x Location interaction demonstrated a decrease in d 28 to 42 BW gain (BWG) for 

birds fed MLAM and 75:25 PF diets as feed was augered across Location when 

compared to PPLAM and 75:25 PF diets.  Also, a LAM x PF x Location interaction 

demonstrated that PPLAM diets affected d 56 BW uniformity by the distance feed 

traveled within a broiler house.  The main effect of PF demonstrated that 75:25 diets 

improved overall BWG, carcass weight, and total breast weight. 

Keywords:  pellet quality, nutrient segregation, feed manufacture, broiler performance 

Description of Problem 

Modern commercial broilers are fed predominately pelleted diets, and the general 

benefits of feeding pellets are well documented in previous literature [1-5].  Moreover, 

these performance benefits can become considerably greater as improvements in pellet 

quality are made [6-10].  It is likely that nutrient segregation decreases with improved 

pellet quality; however, this is not widely documented in literature.  In addition, the effect 

of feed augering on pellet quality has not been extensively investigated, nor have the 

benefits of feed quality on heavy broilers (>42 d of age).  Pellet quality can be influenced 

by a number of factors [12-15], and improvements require an investment; should feed 

augering decrease pellet quality and increase nutrient segregation, feed manufacturers 

may better appreciate costs and potential benefits. 

Data observed in small field trials suggested that nutrient segregation occurred 

during feed augering [4, 11].  In a field study conducted by Mississippi State and West 

Virginia Universities, the most notable nutrient segregation was observed in analyzed 

phytase activity; especially for diets manufactured with post-pellet liquid application 
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method (PPLAM) [11].  Liquid application method (LAM) refers to the manner in which 

supplemental fat and other liquids, such as phytase, are added to the diet.  For mixer 

LAM (MLAM), all of liquids are added in the mixer, whereas PPLAM requires no or low 

mixer-added fat, with the majority of supplemental fat and liquids added after pelleting.  

Due to concerns over PPLAM amplifying the rate in which nutrients, such as phytase, 

segregate [11], as well as adversely affecting nutrient availability [16], there is a need to 

investigate if this nutrient segregation is significant enough to elicit an effect on broiler 

performance. 

While previous field data obtained from several farms in various parts of the 

Southeast United States determined that feed quality was affected by feed augering based 

on manufacturing technique, the results only represented a snapshot in time [11].  

Therefore, two experiments were conducted in the current study to further explore the 

effects of feed manufacture and augering on physical segregation, nutrient segregation, 

and subsequent broiler performance.  The objective of experiment 1 was to create 

practical diets that varied in pellet to fine ratio (PF; 75:25 or 55:45) and LAM (mixer or 

post-pellet), and auger these diets through a feed line in a commercial broiler house to 

determine the effects of feed augering on physical and nutrient segregation (using phytase 

as a marker) over time and location.  The objective of experiment 2 was to feed the 

augered diets from experiment 1 that varied in PF, LAM, and location (0-30 or 32-58 m 

on the feed line) to determine if changes in physical and nutrient segregation were 

enough to elicit d 28 to 56 broiler performance and processing differences. 
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Materials and Methods 

Experiment 1 

Diet Preparations 

All experimental diets were manufactured at West Virginia University [21].  One 

nutritionally common diet was formulated according to Ross x Ross 708 broiler 

recommendations [22] (Table 3.1), and contained corn, soybean meal, distiller’s dried 

grains with solubles, and meat and bone meal.  Master batches were mixed in a 0.907-

tonne vertical screw mixer [23] for 10 minutes dry and 10 minutes post liquid addition, 

and 1.00% of the supplemental fat inclusion (total inclusion of 2.44%) was added in the 

mixer to help with nutrient retention during pelleting [16-18].  Also, phytase was 

excluded from the master batches.  The remaining iquid additions of supplemental fat and 

all of the phytase were added to the diets either prior to (MLAM) or after (PPLAM) 

pelleting, depending on the manufacturing technique utilized.  Each batch was equally 

distributed and assigned to 1 of 4 treatments.   

The liquid phytase utilized was included in the diets at a target dose of 2000 

FTU/kg per the manufacturer’s recommendations; calcium and available phosphorus 

were adjusted to account for the phytase inclusion (Table 3.1).  Treatments manufactured 

using MLAM were remixed with the remaining 1.44% supplemental fat, as well as a 

heat-stable liquid phytase (0.005% inclusion), for 15 minutes prior to pelleting.  To 

ensure proper mixing between the master batches, treatments manufactured using 

PPLAM were also mixed for 15 minutes and subsequently pelleted.  For PPLAM diets, 

the remaining 1.44% supplemental fat and 0.005% phytase inclusions were added after 

pelleting by conveying the pelleted diet back into the mixer and adding the appropriate 
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volume of liquid fat and phytase through a micro ingredient chute on the mixer [16].  

Based on the field research previously demonstrating that phytase segregated the most 

out of all the analyzed ingredients [11], phytase was chosen again to identify the level of 

segregation occurring during feed augering.  Unconditioned mash samples were taken for 

the MLAM diets before they were conditioned.  Analyzed phytase activity in the 

unconditioned mash of the MLAM diets was 2050 FTU/kg [24]. 

Each diet was initially manufactured to contain 75:25 PF by conditioning mash 

for 10 s at 78 ± 2°C [16, 17] then extruding the conditioned mash through a 4.76 x 38.1 

mm pellet die at an average production rate of 0.816 tonne/h [8, 13].  A portion of each 

diet was subsequently ground via hammer mill in order to create fines.  The 

manufactured fines were then added back to a portion of the original 75:25 PF diets and 

mixed for 2 minutes and 30 seconds in order to create 55:45 PF diets; thereby creating 

four experimental diets varying in LAM and PF.  

Descriptive feed manufacture data for percent pellets [25], pellet durability index 

(PDI) [26], modified pellet durability index (MPDI) [26], and surviving pellets 

percentage [27] were obtained for each of the four experimental diets (Table 3.2). 

Feed Augering Sampling Procedure 

Using a randomized complete block design, one of the four treatments was 

augered into a feed bin (11,000 kg capacity) [28] at one of Mississippi State University’s 

commercial poultry houses (122 m x 16 m) using a 12.8 m auger (20.32 cm diameter) 

[29] to simulate feed truck augering.  It should be noted that no birds were in the house 

during the experimental period.  Next, the experimental unit (680.6 kg) was augered into 

the commercial feed line system that measured 58 m long [30].  Sampling locations were 
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designated at 0, 15, 30, 32, 44 and 58 m along the feed line. The middle point of the feed 

line was determined to be at 31 m, which is the point where the migration fence separated 

the feed line.  Once the feed line was completely filled, samples were taken from feed 

pan locations of 30 and 58 m.  The feed line auger was then emptied from 0 to 30 and 32 

to 58 m to clear the feed line and retain feed according to treatment and location for the 

subsequent feeding trial (experiment 2; Table 3.3).  The remaining samples were taken 

from the feed pan locations of 0, 15, 32, and 44 m.  In addition, every feed pan between 

these sampling locations was then emptied and collected according to treatment and 

location for the subsequent feeding trial (experiment 2; Table 3.3).  Sampling process 

was completed four times for each treatment (4 replicates/treatment; Figure 3.1). 

This resulted in a total of 384 samples which were analyzed for the measured 

variables of percent pellets [25] and pellet durability (in terms of surviving pellets [27]) at 

each sampling pan.  Percent pellets were determined by sifting samples using a No. 6 

American Society for Testing and Materials screen [25].  Sifted pellet samples were 

analyzed for surviving pellets using a New Holmen Pellet Tester [27].  A portion of the 

sifted pellets and fines were sent to a commercial feed lab [31] for phytase activity 

analysis using the standard AOAC 2000.12 procedure [24].  Analyzed phytase activity in 

each sample was reported relative to the phytase activity in the unconditioned mash 

samples (2050 ftu/kg). 

Statistical Analysis 

For experiment 1, a 2 PF (75:25 or 55:45) x 2 LAM (mixer or post-pellet LAM) 

factorial arrangement was used, with the experimental unit of 680.6 kg that was augered 

as a randomized complete block with a split-split plot design.  Treatments were blocked 
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by run order and each treatment was replicated four times (1 replication/day).  The split 

plot unit was augering time (each time the feed line was completely filled), and there 

were four augering times per run. The split-split plot unit was feed pan location (0, 15, 

30, 32, 44, and 58 m).  Data were analyzed using the GLM procedure in SAS [32].  

Multiple treatment mean comparisons were made using Fisher’s least significant 

difference and significance was established at P ≤ 0.05. 

Experiment 2 

Pretest Period Broiler Management (d 0 to 28) 

On day of age, Ross x Ross 708 broilers were obtained from a commercial 

hatchery [33] and feather-sexed upon arrival to the Mississippi State University Poultry 

Research Unit.  A total of 1536 male broilers were placed in floor pens (0.91 x 1.22 m; 

16 birds/pen; 0.07 m2/bird) of a solid-walled, cross-ventilated grow-out house.  The 

house was heated via forced air and cooled via evaporative cool cells.  Each pen 

contained a hanging feeder (16.0 kg capacity) and nipple drinkers (3 nipples/pen) for ad 

libitum feed and water consumption. 

Birds received a common starter diet in the form of crumbles from d 0 to 14 and a 

common grower diet in the form of pellets from d 15 to 28.  These diets were formulated 

to meet or exceed Ross x Ross 708 male broiler recommendations [22] and were 

comprised of corn, soybean meal, distiller’s dried grains with solubles, and meat and 

bone meal.  Both the starter and grower diets were manufactured at the Mississippi State 

University Poultry Research Unit, with starter fed as crumbles and grower as pellets. 

Ross x Ross 708 breeder recommendations for temperature and lighting programs 

were utilized during the grow-out period [34].  On day of age, the ambient house 
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temperature was 32.7°C; house temperature was incrementally reduced weekly until 

16.1°C was reached on d 49.  The lighting program provided birds with 24 h of light from 

d 0 to 7.  Beginning at d 7, birds received 20 h of light and 4 h of dark throughout the 

remainder of the grow-out period. On d 0, lighting intensity was 26.9 lux.  Starting at d 

10, lighting intensity was decreased until 2.7 lux was achieved on d 21; from d 21 to 56, 

lighting intensity remained at 2.7 lux. 

Experimental Period Broiler Management (d 28 to 56) 

For the live performance trial conducted in experiment 2, the previously augered 

diets from experiment 1 were used.  These diets were originally manufactured to vary in 

PF (75:25 or 55:25) and LAM (mixer or post-pellet).  As they were augered and collected 

separately from 0-30 and 32-58 m in experiment 1, the treatment outline expanded to a 2 

PF x 2 LAM x 2 Location factorial arrangement (Table 3.3).  The migration fence 

separated the feed line at 31 m, which would have confined birds to either side had they 

been in the house; ergo, Locations of 0-30 m and 32-58 m were chosen. 

The current study’s experiment 2 period began on d 28.  On this day, all of the 

birds were individually weighed and placed in one of twelve weight classes.  One bird 

from each weight class was assigned to each pen (12 birds/pen; 0.09 m2/bird; 96 pens), 

and each pen was randomly allotted one of the eight experimental finisher diets (Table 

3.3) manufactured in experiment 1 that varied in PF, LAM, and Location.  Broilers were 

able to consume feed and water ad libitum. 

Pen and feeder weights were recorded on d 42, 49, and 56 to measure 

performance variables of BW, BW gain (BWG), and FCR (adjusted for mortality).  On d 

56, birds were weighed individually to measure BW uniformity (CV).  Mortality was not 
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significant in the current study; therefore, those data will not be presented.  All broilers 

were cared for in accordance with the standards required by the Mississippi State 

University Institutional Animal Care and Use Committee. 

Processing Measurements (d 57) 

On d 56, a total of 384 broilers (4 birds/pen ± 100 g avg. BW/pen) were chosen, 

weighed, tagged, and then cooped for d 57 processing at the Mississippi State University 

Poultry Processing Facility.  Hot carcass and abdominal fat pad weights were measured, 

then carcasses were chilled in an ice bath for 3 h.  Next, debone variables of boneless 

skinless breast, tender, thigh, drumstick, and wing weights were recorded.  Processing 

yields are reported as debone traits relative to d 56 live BW. 

Statistical Analysis 

In experiment 2, a 2 PF (75:25 or 55:45) x 2 LAM (mixer or post pellet LAM) x 2 

Location (0-30 or 32-58 m) factorial arrangement was used as a randomized complete 

block design.  The experimental unit was one floor pen and each treatment was equally 

and randomly assigned to a pen within the same location (12 blocks/replication).  The 

experimental period was d 28 to 56.  Data were analyzed via the GLM procedure in SAS 

[32], and multiple treatment mean comparisons were made using Fisher’s least significant 

difference.  Data were considered significant at P ≤ 0.05. 
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Results and Discussion 

Experiment 1:  Feed Augering 

Liquid Application Method Effects 

In general, diets manufactured utilizing PPLAM had a 6 percentage point increase 

pellets across location when compared to MLAM (P<0.0001; Table 3.4).  Previous 

research has demonstrated that higher levels of mixer-added fat (2.18-4.00 vs. 1.00%) can 

be detrimental to pellet quality [16-18], and differences observed in the current study for 

percent pellets are likely attributable to the manner in which fat was added to the diet.  

Since fat coats feed particles [19] and lubricates the pellet die [20], PPLAM diets had 

1.00% of the fat inclusion added in the mixer and a lower conditioning temperature (78 ± 

2°C) to ensure that broiler performance in experiment 2 was not affected by nutritional 

value associated with amino acid denaturation or enzyme loss [16-18].  Diets 

manufactured with MLAM had all of the 2.44% fat inclusion added in the mixer, while 

PPLAM treatments only received 1.00% mixer-added fat, with the remaining fat added 

post-pellet (1.44%).  

Interactive Effects of Pellet to Fine Ratio and Liquid Application Method across 
Location and Time 

As diets were augered throughout the feed line, a significant PF x location 

interaction demonstrated a rapid decrease in percent pellets for both PF from 0 to 15 and 

44 to 58 m (P<0.0001; Figure 3.2).  Diets containing 55:45 PF demonstrated no change in 

percent pellets when augered from 15 to 44 m; however, 75:25 PF diets significantly 

fluctuated ± 3 percentage points as feed was augered from 15 to 44 m.  Although, to our 

knowledge, the mechanism between feed augering and pellet deterioration is not 
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specifically documented in previous literature, we speculate that the differences observed 

for 75:25 PF diets augered from 15 to 44 m due could be due to increased shear force 

[35] between the auger and pellets.  Shearing forces can cause deformation and 

subsequent breakage by pushing the top and bottom of a solid object in opposite 

directions [35].  As there were more pellets in the 75:25 PF diets, we speculate that there 

was more opportunity for pellets to be affected by the shear force of the auger. 

An interaction between Time and Location was established for percent pellets 

(P<0.0001; Figure 3.3).  At 0 m, percent pellets for augering Times 2, 3, and 4 were 

higher than augering Time 1.  However, percent pellets decreased for all Times when 

augered from 0 to 15 m and 44 to 58 m.  When augered from 15 to 44 m, no difference 

was established for Time.  Over Time and Location, percent pellets acted in a similar 

manner as the interaction between PF and Location (P<0.0001; Figure 3.2).  These data 

suggest that each Time feed is augered, similar pellets will be available at each feed pan 

Location. 

A significant interaction between LAM, PF, and Location was established for 

surviving pellets (P=0.044; Figure 3.4).  For mixer LAM, the main effect PF 

demonstrated a steady decrease in the number of surviving pellets across location, and 

55:45 PF diets were significantly less durable than 75:25 PF diets.  Furthermore, diets 

manufactured with PPLAM demonstrated a reduction in surviving pellets as feed was 

augered across location; however, surviving pellets for the 75:25 and 55:45 PF diets 

decreased similarly when PPLAM was utilized.  These data demonstrate that PPLAM 

diets are less susceptible to attrition when compared to MLAM diets, and 55:45 PF diets 

manufactured using MLAM have less structural integrity post augering that 75:25 PF 
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diets manufactured using MLAM.  These results can be supported by the findings of Loar 

and others [16], as it was determined that PPLAM create a more durable pellet than 

MLAM.  Previous field studies have demonstrated that surviving pellets decline in the 

same manner as percent pellets [4, 11].  The current data supports previous field work 

findings [4, 11], as there were less surviving pellets (P=0.044; Figure 3.4) across 

Location.  

The main effects of LAM, PF, and Location interacted significantly for the 

variable phytase activity (P=0.017; Table 3.5).  Specifically, when MLAM was utilized, 

analyzed phytase activity was consistently low (~190 ftu/kg on average; 9% retention) 

across PF and Location.  We speculate that this was due to protein denaturation, thus low 

retention (~9% retention).  However, PPLAM diets, regardless of PF, demonstrated 

significant fluctuations in phytase activity (1603 ftu/kg at lowest; 2956 ftu/kg at highest; 

unconditioned mash at 2050 ftu/kg) across locations.  As PPLAM diets were augered 

throughout the feed line, phytase activity increased as fines increased and pelleted 

decreased (P<0.0001; Figure 3.2). 

These data agree with previous field work [11], as PPLAM diets demonstrated the 

highest level of phytase segregation upon feed augering (P=0.017; Table 3.5).  Data in 

the current study shows consistently low phytase activity for MLAM diets (~9.3% 

retention).  The phytase used in the current study was intended to be heat-stable; 

however, analyses suggest that it was not.  Mixer LAM diets were manufactured with 

2.44% mixer-added fat and conditioned for ten seconds at 78 ± 2°C [16, 17] in attempt to 

preserve enzyme retention/efficacy [16-18].  Analyses suggest that the majority of 

phytase for MLAM was likely denatured due to the heat and steam conditioning 



 

60 

parameters associated with pelleting [17, 36-39].  However, it is plausible that there was 

a limitation in the phytase assay itself [37] due to low repeatability and reproducibility 

[40]. 

For PPLAM diets, significantly higher phytase levels were found in the same 

locations that exhibited high fine quantities and low percent pellets (P=0.017; Table 3.5).  

Due to all of the phytase being applied to the outside of the pellet for PPLAM, data 

suggests that the outside of the pellet deteriorated when feed was augered throughout the 

feed line.  Therefore, as PPLAM diets are augered and subsequently broken down, feed 

pans with higher concentrations of fines may contain the liquid ingredients applied to the 

outside of the pellet (i.e. phytase in this study).  

These data suggest that feed pan Location may dictate the amount of nutrients 

broilers are receiving when PPLAM diets are augered throughout a commercial feed line.  

Depending on the original pellet to fine ratio and manufacturing technique, the observed 

segregation of phytase may allow some broilers to receive a phytase dosage much higher 

than the manufacturer’s dosage threshold (super-dosed levels).  Super-dosing phytase is 

when birds are fed unconventionally high doses of phytase (>2500 ftu/kg from 

Aspergillus niger or Escherichia coli strains) [41].  These differences in phytase 

consumed by a bird could potentially affect broiler performance and BW uniformity 

throughout the house [41-43].  Therefore, experiment 2 was conducted to determine if the 

observed changes in physical and subsequent phytase segregation were enough to elicit 

differences in heavy (d 28 to 56) broiler performance, uniformity, and processing. 
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Experiment 2:  Broiler Performance (d 28 to 56) and Processing (d 57) 

As previously mentioned, the augered diets in experiment 1 were collected from 

the commercial house and transported to a floor pen experimental facility to allow for 

replication. 

Pellet to Fine Ratio Effects 

In the results for live performance, broilers fed 75:25 PF diets demonstrated a 3 

point reduction in d 28 to 42 FCR (P=0.0003), as well as a 2% increase in d 42 and 49 

BW (P<0.0001 and P<0.0001, respectively) and 3% increase in d 28 to 56 BWG 

(P=0.015) when compared to broilers fed 55:45 PF diets (Table 3.6).  Feeding broilers 

75:25 vs. 55:45 PF diets also demonstrated a 1.7 and 2.7% increase in d 57 carcass and 

total breast weight, respectively (P=0.028 and P=0.048, respectively; Table 3.7). 

However, feeding birds 75:25 PF diets did not result in significant differences for any d 

57 processing yields when compared to broilers fed 55:45 PF diets (P>0.05; Table 3.8). 

Data in the current study agrees with previous PF research, where feeding more 

pellets (>75%) resulted in improved performance and processing variables when 

compared to diets containing less pellets (<55%) [6-10].  In addition, results from 

experiment 1 demonstrated a ~2.5 percentage point increase in surviving pellets for 75:25 

PF diets when compared to 55:45 PF diets (P=0.044; Figure 3.4).  Thus, the benefits of 

feeding 75:25 PF diets observed in the current study may be because more pellets 

survived augering. 
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Liquid Application Method Effects 

Broilers fed PPLAM diets exhibited a 2 point decrease in d 28 to 42 FCR 

(P=0.007), as well as a 1.3 and 1.7% increase in d 42 and 49 BW (P=0.0008 and 

P<0.0001, respectively) when compared to broilers fed diets manufactured MLAM 

(Table 3.6). Furthermore, broilers that received PPLAM diets demonstrated a 3% 

increase in tender weight (P=0.015; Table 3.7) and a 3% increase in tender yield 

(P=0.017; Table 3.8) when compared to birds fed MLAM treatments. 

These data demonstrate advantages to feeding diets manufactured with PPLAM.  

In the results from experiment 1, PPLAM diets exhibited over a 5.5 percentage point 

increase in pellets post feed augering than MLAM treatments (P<0.0001; Table 3.4), and 

diets manufactured with PPLAM had more surviving pellets than MLAM diets (P=0.044; 

Figure 3.4).  Therefore, birds fed PPLAM diets potentially demonstrated advantages in 

BW, BWG, FCR, and tender weight and yield due to improved feed quality as compared 

to MLAM treatments.  However, it should be noted that post-pellet LAM can potentially 

be harmful to heat-sensitive nutrients due to decreased levels of mixer-added fat [16, 17].   

In the current study, we recognized the potential for protein denaturation when 

diets are manufactured with PPLAM; thus, feed was processed in a manner to avoid this 

(i.e. 1.00% mixer-added fat; 10 s steam conditioning at 78 ± 2°C).  The results were 

potentially confounded due to decreased phytase retention for diets manufactured using 

MLAM (~9% retention).  Consequently, broilers fed diets manufactured with PPLAM 

may have exhibited improvements in performance due to the increased phytase retention 

[38-40].  However, it must be noted that only phytase was tested; it is possible that other 
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nutrients were segregating and contributing to bird performance differences, as others 

were found to segregate in previous field work [4, 11]. 

Feed Pan Location Effects 

Broilers fed diets that were augered from 0-30 m demonstrated a 1% increase in d 42 BW 

when compared to birds fed diets augered from 32-58 m (P=0.017; Table 3.6).  

Conversely, broilers fed diets augered from 32-58 m exhibited a 2.4% increase in d 42 to 

49 BWG (P=0.012; Table 3.6).  In addition, broilers fed treatments augered from 32-58 m 

demonstrated a 3% increase in d 57 tender (P=0.032; Table 3.8) when compared to 

broilers receiving treatments augered from 0-30 m. 

In the results for experiment 1, percent pellets and surviving pellets steadily 

decreased across location (Figure 3.2 and 3.4, respectively).  Previous research has 

determined that feeding diets with an increased PF can improve BW [8, 10]; thus, d 42 

BW was likely affected by the amount of pellets available from 0-30 and 32-58 m.  Since 

diets augered from 0-30 m had more available pellets than diets augered from 32-58 m, 

the observed increases in d 42 to 49 BWG and d 57 tender yield were not expected when 

broilers were fed diets augered from 32-58 vs. 0-30 m.  Additionally, differences 

observed could be due to phytase segregation. 

Interactive Effects of Pellet to Fine Ratio, Liquid Application Method, and Feed Pan 
Location 

In the results for d 56 BW CV, a significant interaction between LAM, PF, and 

Location was established (P=0.034; Figure 3.5).  For broilers fed diets manufactured 

using MLAM, there was no significant difference in d 56 CV for birds fed either PF 

(75:25 or 55:45) regardless of Location (0-30 or 32-58 m).  For birds that received 75:25 
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PF diets manufactured using PPLAM and augered from 0 to 30 m, d 56 BW CV 

improved when compared to birds fed 55:45 PF diets manufactured using PPLAM and 

augered from 0 to 30 m, as well as birds fed 75:25 PF diets manufactured using PPLAM 

and augered from 32 to 58 m.  However, birds fed 75:25 PF diets from 0 to 30 m and 

birds fed 55:45 PF diets augered from 32 to 58 m were similar.  

The observed differences in d 56 BW CV may be attributable to the phytase 

segregation observed for PPLAM diets in experiment 1 (P=0.017; Table 3.5).  As 

phytase, and potentially other ingredients, segregated throughout feed augering, broilers 

may not have received the adequate amount of nutrients required to maximize growth 

potential [44] due to the selection of favorable feed particles (pellets vs. fines) [45-46].  

These data suggest that BW uniformity is affected by the distance in which feed travels 

throughout a feed line.  In addition, if PPLAM diets are fed, BW uniformity of broilers at 

time of slaughter may differ greatly throughout a commercial house due to feed augering 

effects on nutrient segregation. 

The main effects of PF, LAM, and Location interacted to establish significance 

for d 28 to 42 BWG.  Broilers fed 75:25 PF diets manufactured utilizing PPLAM and 

augered from either location demonstrated an ~2.5% improvement in d 28 to 42 BWG 

when compared to any treatment combination containing 55:45 PF (P=0.028; Table 3.6).  

In addition, broilers fed 75:25 PF diets manufactured using MLAM and augered from 0-

30 m exhibited a ~4.8% improvement in d 28 to 42 BWG when compared to any 

treatment combination containing 55:45 PF.  However, broilers that received 75:25 PF 

diets manufactured using MLAM and augered from 32-58 m had comparable BWG to 

treatment combinations containing 55:45 PF. 
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The observed decrease in d 28 to 42 BWG when birds were fed 75:25 PF diets 

manufactured with MLAM and augered from 32-58 m may be attributed to the dramatic 

decrease in feed quality.  In experiment 1, surviving pellet data indicated that 75:25 PF 

diets manufactured using MLAM were less durable across location than PPLAM diets 

(P=0.044; Figure 3.4).  As research has demonstrated that small improvements in percent 

pellets can improve BWG [8, 10], current data suggests d 28 to 42 BWG in broilers fed 

75:25 PF diets manufactured using MLAM was affected by the distance feed traveled 

within the feed line.  This was presumably due to the increased rate of pellet 

deterioration.  However, since we only observed phytase, it could be due to other 

nutrients segregating. 

A significant PF x LAM interaction was established for d 49 BW (P=0.037; Table 

3.6). Broilers fed 75:25 PF diets manufactured with PPLAM demonstrated a higher d 49 

BW than any other treatment combination (P=0.037; Table 3.6).  However, birds fed 

75:25 PF diets manufactured utilizing MLAM and 55:45 PF diets manufactured with 

PPLAM were similar.  Based upon the results from experiment 1, PPLAM and 75:25 PF 

diets had 10.5 percentage points more surviving pellets across location than MLAM and 

55:45 PF diets (P=0.044; Figure 3.4).  Thus, d 49 BW was likely ameliorated in broilers 

fed 75:25 PF diets manufactured with PPLAM when compared to broilers fed 55:45 PF 

diets manufactured with MLAM due to the improved feed quality observed at the feed 

pan post augering. 

Lastly, an interaction between PF and Location was established for d 57 wing 

weight and yield (P=0.037 and P=0.035, respectively; Tables 3.7 and 3.8, respectively).  

Broilers fed 75:25 PF diets augered from 32-58 m demonstrated a 2.8% increase in wing 
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weight when compared to broilers fed 55:45 PF diets augered from 32-58 m; however, 

wing weights were comparable between 75:25 PF diets augered from 32-58 m and 75 and 

55:45 PF diets augered from 0-30 m (Table 3.7).  In addition, a 2.4% increase in wing 

yield was demonstrated in broilers fed 75:25 PF diets augered from 32-58 vs. 0-30 m 

(P=0.035; Table 3.8). Broilers fed diets containing 55:45 PF, augered from either 

Location, resulted in similar d 57 wing yields as compared to all PF and Location 

treatment combinations (Table 3.8).  

Overall Summary 

The results of the current study verify the results of field work that also 

demonstrated nutrient segregation was occurring throughout commercial poultry houses 

[4, 11].  Furthermore, this research established that differences in PF and Location can 

affect broiler performance.  In addition, data suggests that manufacturing technique may 

percent pellets; PPLAM resulted in increased percent pellets (P<0.0001; Table 3.4) and 

surviving pellets (P=0.044; Figure 3.4) as diets were augered throughout a feed line when 

compared to MLAM diets.   

In general, PPLAM can improve pellet quality [16], but PPLAM may adversely 

affect nutrient availability due to more frictional heat generated at the pellet die.  

Additionally, PPLAM may exacerbate phytase segregation (P=0.017; Table 3.5).  

However, the results may be confounded due to low phytase retention of MLAM diets 

(~9.3% retention).  In general, percent pellets steadily declined across Location, 

regardless of PF (P<0.0001; Figure 3.2).  The decrease in percent pellets may be 

attributed to decreased surviving pellets throughout feed augering (P=0.044; Figure 3.4).  

For PPLAM, phytase segregated from the outside of the pellet.  These data demonstrate 
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that more segregation is likely to occur in PPLAM diets due to the attrition of pellets 

throughout augering.  

Moreover, performance and processing benefits demonstrated in experiment 2 for 

broilers fed 75:25 PF diets and diets manufactured with PPLAM were likely associated 

with more high-quality pellets available for broiler consumption [6-10].  Overall, broilers 

fed 75:25 PF diets and PPLAM diets demonstrated a 1.3 to 2% increase d 42 and 49 BW, 

2.5% increase in d 28 to 42 BWG, and 2 to 3 point reduction in d 28 to 42 FCR (P<0.05; 

Table 3.7).  Feeding 75:25 PF diets resulted in a 3% increase in d 28 to 56 BWG 

(P=0.015; Table 3.7), 1.7% increase in carcass weight (P=0.028; Table 3.9), and 2.7% 

increase in total breast weight (P=0.048; Table 3.9).  The benefits of feeding PPLAM 

diets observed in the current study may be confounded due to the previously mentioned 

low phytase retention (~9.3%) of the MLAM diets.  However, we speculate that d 56 BW 

CV for broilers fed PPLAM diets was affected due to the segregation effects associated 

with augering PPLAM diets.   

Ultimately, this was the first study to provide replicated data to determine PF and 

LAM effects on feed augering, physical and phytase segregation, and subsequent broiler 

performance.  The current study only observed feed augering effects on one feed line; it 

is likely that feed quality will differ when augered throughout a whole house based upon 

feed line, feed pan location, and time in which the feed is augered.  In addition, more 

nutrients may be segregating; thus, segregation effects should be investigated.  Future 

research should determine the distribution of pellets and level of segregation that occurs 

when augering feed throughout a whole poultry feeding system.   
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Conclusions and Applications 

1. Percent pellets and surviving pellets at point of consumption post augering 
were higher in 75:25 PF diets and PPLAM diets; this ultimately elicited a 
2 to 3 point reduction in d 28 to 42 FCR, 1.3 to 2% increase in d 42 BW, 
1.7 to 2% increase in d 49 BW, and ~2.5% increase in d 28 to 42 BWG, 
respectively.  Furthermore, a 1.7% and 2.7% increase in d 57 carcass and 
total breast weight, respectively, were demonstrated when broilers were 
fed 75:25 vs. 55:45 PF diets.  

2. Feed augering interactively affects nutrient segregation (phytase) and 
consequent BW uniformity due to manufacturing technique and distance 
traveled within the feed line. As PPLAM diets are augered, we speculate 
that attrition occurs to the outside of the pellet. Thus, poor CV in broilers 
may be a result of birds receiving different levels of nutrients at a given 
feed pan location within a commercial house. 

3. This study demonstrates that creating high-quality pellets should be of 
importance to a commercial mill due to the observed effects that feed 
augering has on pellet quality, nutrient segregation, and subsequent d 28 to 
56 bird performance. 
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Table 3.1 Nutritional composition of finisher broiler diets manufactured in 
experiment 1 and used for live growth performance in experiment 21 

 Finisher diet (28 to 56 d) 
Ingredient, %  

Corn 67.11 
Soybean meal (48% CP) 18.58 
Meat and bone meal2 5.00 
Corn DDGS3 5.00 
Animal/vegetable blend fat4 2.44 
Limestone 0.58 
Dicalcium phosphate 0.05 
Salt 0.28 
Sodium bicarbonate 0.04 
L-Lysine HCL 0.19 
DL-Methionine 0.21 
L-Threonine 0.05 
Phytase enzyme5 0.005 
Vitamin/mineral premix6 0.25 
Choline chloride 0.10 
Coban 907 0.05 
BMD 508 0.08 

Calculated nutrients 
ME, kcal/kg 3188 
CP, % 18.33 
Available Phosphorus, % 0.32 
Total TSAA, % 0.70 
Total Methionine, % 0.46 
Total Lysine, % 0.90 
Total Threonine, % 0.59 
Calcium, % 0.75 
Sodium, % 0.18 

1Formulated to meet Ross x Ross 708 broiler guidelines; finisher diets were manufactured in experiment 1 and fed from 
d 28 to 56 in experiment 2 to measure live performance and processing characteristics 
2H. J. Baker and Bro., Little Rock, AR 
3Distillers dried grains with solubles 
4Animal-vegetable oil blend; diets manufactured using mixer LAM had all fat (2.44%) added in the mixer, and diets 
manufactured using post-pellet LAM had 1.00% fat added in the mixer with the remaining 1.44% added post-pellet 
5Heat stable liquid phytase; DSM Nutritional Products Inc., Parsippany, NJ 
6Provided per kilogram of diet:  0.02% manganese; 0.02% zinc; 0.01% iron; 0.0025% copper; 0.0003% iodine; 
0.00003% selenium; 0.69 mg of folic acid; 386 mg of choline; 6.61 mg of riboflavin; 0.03 mg of biotin; 1.38 mg of 
vitamin B6; 27.56 mg of niacin; 6.61 mg of pantothenic acid; 2.20 mg of thiamine; 0.83 mg of menadione; 0.01 mg of 
vitamin B12; 16.53 IU of vitamin E; 2,133 ICU of vitamin D3; and 7,716 IU of vitamin A 
7Active drug ingredient monensin, USP, 90.7 g/lb inclusion of cocciodiostat; Elanco Animal Health, Greenfield, IN 
8Active drug ingredient bacitracin methylene disalicylate, 50 g/lb inclusion; Zoetis, Florham Park, NJ 
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Table 3.2 Manufacturing variables and beginning pellet quality for the finisher diets 
used in experiment 1 and 2 (descriptive data) 

Manufacturing 
technique1 

Pellets 

(%) 
PDI2 

(%) 
MPDI3 

(%) 
New Holmen4 

(%) 
75:25 pellet to fine, 
mixer LAM5 73.4 90.5 86.5 88.0 

55:45 pellet to fine, 
mixer LAM 53.3 88.7 84.2 82.7 

75:25 pellet to fine, 
post-pellet LAM 78.3 91.6 88.9 89.0 

55:45 pellet to fine, 
post-pellet LAM 55.5 91.4 89.2 89.1 

1Manufacturing technique:  all diets were pelleted identically, using a 4.76 x 38.1 mm die, a production rate 
of 0.816 tonne/h, a 10 sec steam conditioning pressure of 262 kPa, and a steam conditioning temperature of 
78°C ± 2°C.  Diets were first manufactured to contain 75:25 pellet to fine ratio.  A portion of the original 
diet was ground to create fines, and the fines were subsequently added back into the original diet to create a 
55:45 pellet to fine ratio.  Diets manufactured using mixer liquid application method (LAM) had all 
supplemental fat (2.44%) and phytase (0.005%) inclusion added in the mixer.  Diets manufactured utilizing 
post-pellet LAM had 1.00% supplemental fat added in the mixer, and the remaining 1.44% supplemental 
fat and 0.005% phytase were added post-pellet. 
2PDI= pellet durability index; percentage determined by placing 500 g of sifted pellets into a Pfost tumbler 
(Gamet Manufacturing Inc., Saint Paul, MN).  Samples were tumbled for 10 min at 50 rpm.  The sample 
was then sifted again and weighed.  Pellet durability index was calculated as the percent of sifted pellets 
retained after tumbling. 
3MPDI = modified pellet durability index; percentage determined similar to PDI, with the exception of the 
addition of 5 13-mm hexagonal nuts to the 500 g sample before tumbling. 
4Surviving pellets percentage determined by placing 100 g of sifted pellets into the New Holmen’s Pellet 
Tester (NHPT100; TekPro Ltd., North Walsham, Norfolk, UK).  The pellets were cascaded in an air stream 
for 30 sec, causing them to collide with each other and the perforated hard surfaces of the test chamber.  
The fines were removed as they were blown through the perforated screen.  The surviving pellets were then 
removed and weighed again.  Pellet durability was calculated as the percent of surviving pellets retained 
after sampling. 
5LAM = liquid application method 
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Table 3.3 Treatment outline for experiment 2 

LAM1 PF2 Augering Location3 

Mixer 
55:45 0-30 

32-58 

75:25 0-30 
32-58 

Post-pellet 
55:45 0-30 

32-58 

75:25 0-30 
32-58 

1LAM = liquid application method; supplemental fat and phytase addition; diets manufactured utilizing 
mixer LAM had all of the fat (2.44%) and phytase (0.005%) added in the mixer prior to pelleting; diets 
manufactured utilizing post pellet LAM had 1% fat added in the mixer prior to pelleting, with the 
remaining fat (1.44%) and phytase (0.005%) added via post-pellet application 
2PF = pellet to fine ratio; either 55% intact pellets and 45% ground pellets or 75% intact pellets and 25% 
ground pellets; diets were originally manufactured to contain 75:25 PF, and a portion of this diet was 
ground to create the 55:45 PF diets. 
3Location = location in which feed was collected post augering via commercial feed system; feed was 
augered from the line hopper to the end pan, and feed was collected from 0-30 m (hopper to migration 
fence) and 32-58 m (migration fence to end pan) on a commercial feed line. 
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Figure 3.1 Toy example of augering time1 across feed pan location2 for treatments 
1Augering time = AT; each time the feed line was entirely filled (n=4) and subsequently sampled for each treatment.  The feed line 
was completely charged with feed; samples were obtained from 30 and 58 m and the feed augering line was then cleared.  The 
remaining samples were then taken from 0, 15, 32, and 44 m, and every feed pan between sampling locations on the feed line was 
emptied.  This process was repeated four times for each run; there were four runs per block (4 blocks total) 
2Feed pan location = location in which feed was collected post augering via commercial feed system; feed was augered from the line 
hopper to the end pan, and feed was sampled from pans at 0, 15, 30, 32, 44, and 58 m on the feed line. 
3Block X = toy example block; 4 blocks total in experiment with run order randomized in each block 
4Treatment A-D = example treatments (labeled as A-D for this toy example only); treatments in the current study were manufactured 
to contain 75:25 or 55:45 pellet to fine ratio utilizing either mixer or post-pellet liquid application method and were augered as part of 
a randomized complete block design 
5Grower Select®, Hog Slat, Inc., Newton Grove, NC.

5
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Table 3.4 Percent pellets observed post feed augering for diets manufactured utilizing 
two liquid application methods and two pellet to fine ratios (experiment 1) 

LAM1 PF2 Location3 
(m) 

Percent Pellets4 
(%) 

- 

55:45 

0 55.24e 

15 41.31h 

30 42.54gh 

32 42.74g 

44 41.50gh 

58 27.70i 

75:25 

0 77.31a 

15 64.37d 

30 66.44c 

32 67.87b 

44 65.97c 

58 45.65f 

SEM 0.4746 
Marginal means 

Mixer - - 50.35b 

Post-pellet 56.09a 

 

- 55:45 - 41.84 

75:25 64.60 

SEM 0.5968 
 

- - 

0 66.28 

15 52.84 

30 54.49 

32 55.30 

44 53.74 

58 36.67 

SEM 0.3356 
Main effect and interaction probabilities 

LAM <0.0001 
PF <0.0001 

Location <0.0001 
PF x Location <0.0001 

LAM x PF x Location 0.5874 
a-iMeans within a column not sharing a common superscript differ (P ≤ 0.05). 
1LAM = liquid application method; supplemental fat and phytase addition; diets manufactured utilizing mixer LAM had all of the fat (2.44%) and phytase (0.005%) added in the mixer prior to 
pelleting; diets manufactured utilizing post pellet LAM had 1% fat added in the mixer prior to pelleting, with the remaining fat (1.44%) and phytase (0.005%) added via post-pellet application 
2PF = pellet to fine ratio; either 55% intact pellets and 45% ground pellets or 75% intact pellets and 25% ground pellets; diets were originally manufactured to contain 75:25 PF, and a portion of 
this diet was ground to create the 55:45 PF diets. 
3Location = location in which feed was collected post augering via commercial feed system; feed was augered from the line hopper to the end pan, and feed was sampled from pans at 0, 15, 30, 32, 
44, and 58 m on the feed line. 
 4Percent pellets = (intact pellet sample weight/total sample weight)*100%. The total sample was initially weighed and subsequently sifted using a No. 6 American Society for Testing and 
Materials screen (metric equivalent = 3.35 mm) to separate intact pellets from fines; the pellet sample was then weighed and percent pellets was calculated 
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Table 3.5 Analyzed phytase activity of each diet post-feed augering (experiment 1) 

LAM1 PF2  Location3 
(m) 

Relative Phytase4 

(%) 
Phytase Activity 

(FTU/kg) 

Mixer 

55:45 

0 10.65f 218.40f 

15 9.87f 202.43f 

44 9.58f 196.43f 

58 10.09f 206.75f 

75:25 

0 8.86f 181.55f 

15 8.58f 175.78f 

44 8.00f 164.03f 

58 8.99f 184.22f 

Post-pellet 

55:45 

0 86.16e 1766.27e 

15 102.71cd 2105.60cd 

44 100.47d 2059.69d 

58 113.08bc 2318.20bc 

75:25 

0 78.20e 1603.00e 

15 123.35b 2528.61b 

44 103.11cd 2113.82cd 

58 144.23a 2956.79a 

Marginal means  
Mixer - - 9.33 191.21 

Post-pellet 106.41 2181.51 
 

- 55:45 - 55.33 1134.22 
75:25 60.41 1238.50 

SEM 2.930 60.06 
 

- - 

0 45.97 942.31 

15 61.13 1253.10 

44 55.29 1133.49 

58 69.10 1416.49 
SEM 2.189 44.88 

Main effect and interaction probabilities 
LAM <0.0001 <0.0001 

PF 0.2508 0.2508 
Location <0.0001 <0.0001 

LAM x PF x Location 0.0166 0.0166 
a-fMeans within a column not sharing a common superscript differ (P ≤ 0.05). 
1LAM = liquid application method; supplemental fat and phytase addition; diets manufactured utilizing mixer LAM had all of the fat (2.44%) and phytase (0.005%) added in the mixer prior to 
pelleting; diets manufactured utilizing post pellet LAM had 1% fat added in the mixer prior to pelleting, with the remaining fat (1.44%) and phytase (0.005%) added via post-pellet application 
2PF = pellet to fine ratio; either 55% intact pellets and 45% ground pellets or 75% intact pellets and 25% ground pellets; diets were originally manufactured to contain 75:25 PF, and a portion of 
this diet was ground to create the 55:45 PF diets. 
3Location = location in which feed was collected post augering via commercial feed system; feed was augered from the line hopper to the end pan, and feed was sampled from pans at 0, 15, 30, 32, 
44, and 58 m on the feed line. Analyzed phytase data in this table only include the sampling locations of 0, 15, 44, and 58 m due to the greatest difference in percent pellets observed between these 
locations (Table 3.4; P<0.0001). 
4Relative phytase = (analyzed phytase activity/2050 FTU/kg phytase activity in unconditioned mash samples)*100%. Phytase activity was analyzed (Eurofins Analytical Lab, Des Moines, IA) 
utilizing the standard AOAC 2000.12 procedure, and analyzed sample phytase activity was related back to the phytase activity of unconditioned mash sample (2050 FTU/kg). 
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IMPACT OF FEED SYSTEM AUGERING ON PELLET DISTRIBUTION 

THROUGHOUT AN ENTIRE COMMERCIAL BROILER HOUSE 

Summary 

Previous research utilizing one feed line in a commercial poultry house 

demonstrated that percent pellets steadily decreased and phytase segregated as feed was 

augered throughout a commercial feed system based upon pellet quality, manufacturing 

technique, and feed pan location.  These factors were found to impact broiler 

performance and uniformity.  The current objective was to investigate variations in pellet 

distribution as an entire bin of feed is augered throughout a commercial feed system.  

Four common diets were manufactured at a commercial mill; each diet was delivered to 

an empty feed bin.  Samples were obtained from 3 locations (0, 25, and 50 m) on each of 

the 6 feed lines (Front, Middle, or Back; Left or Right).  Augering time (AT; 9 total) was 

represented by the 6.5 h period between samples that feed was able to be augered.  A feed 

line x feed pan location interaction demonstrated that percent pellets at 0 m was higher 

for feed lines on the Right; however, augering to 50 m resulted in a dramatic decrease in 

percent pellets for the Right Front and Back lines.  The main effect of AT decreased 

percent pellets for AT 7 (43 h); however, a stepwise increase in percent pellets occurred 

between AT 7 – 9 (43 to 56 h). The highest percent pellets occurred for AT 9 (56 h).  

These data suggests that variations in mechanical equipment may have affected pellet 
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attrition and pellet distribution.  Additionally, percent pellets available within the house at 

a particular time can be affected by AT due to pellet and fine segregation within the feed 

bin. 

Keywords:  feed quality, feed augering, broiler performance, commercial 

Description of Problem 

Pelleted diets are predominately fed in the commercial broiler industry due to 

their many documented benefits; these include decreased feed spillage, reduced nutrient 

segregation, and ultimately, improved handling characteristics and broiler performance 

[1-6].  These performance benefits can be improved further as percent pellets increase [5, 

7-12].  In general, it is recognized by the poultry industry that increasing pellet quality 

will improve bird performance; however, feed manufacturers struggle with producing 

optimum pellet quality due to feed volume requirements and the costs associated with 

manufacturing them.  All aspects of feed quality benefits must be identified so that a 

value can be associated with an optimal pellet quality to justify the cost of production. 

The effects of feed augering on pellet quality and subsequent nutrient segregation 

is not well documented in literature.  Schiedeler [5] was the first to report that nutrient 

segregation was occurring throughout transportation and feed augering.  Recently, a 

collaborative field study conducted by Mississippi State and West Virginia University 

determined that percent pellets deteriorated throughout augering feed to the beginning 

and middle feed pans [13].  At the end of the line, percent pellets increased, and nutrients, 

especially phytase, segregated based upon manufacturing technique [13].  This study 

served as an impetus to research conducted by Sellers and cohorts [14], who reported that 

percent pellets and pellet survival decreased over time and location.  Moreover, feed 



 

88 

augering caused phytase to segregate, especially for diets utilizing post-pellet liquid 

application.  The limitations of this research was that only one feed line was utilized and 

the amount of feed used for each replicate did not fill (only ~681 kg) an entire 

commercial feed bin (~11,000 kg capacity) [14]. 

In order to make recommendations to feed manufacturers on optimal pellet 

quality, it is important to understand how feed augering affects pellet quality as an entire 

bin of feed is augered throughout a commercial feeding system.  This research may help 

explain the rate at which pellets deteriorate in a whole house and eventually how feed 

augering affects nutrient segregation.  Although data may only depict the events 

occurring within one house, it may lead feed manufacturers to being one step closer to 

setting an optimal pellet quality achieved at the mill.  This goal may not be common 

across all mills; however, given an expected pellet quality at point of consumption, it may 

provide the knowledge necessary to determine a pellet quality that can be economically 

produced.  Hence, the current study’s objective was to investigate pellet distribution (by 

means of percent pellets) over time and location as an entire feed delivery (one full bin of 

feed) is augered throughout a whole commercial poultry house feed system.   

Materials and Methods 

Diet Preparations 

Four common finisher diets were manufactured at a commercial feed mill [15] 

and delivered as needed at the commercial broiler house over a ~1.5 week period.  Diets 

were proprietary, but consisted of corn, soybean meal, and meat and bone meal.  In 

addition, diets were formulated to meet or exceed the nutritional requirements of Ross x 

Ross 708 broilers [16]. 
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The average grind size for each diet was 784 microns.  Diets were pelleted using 

two lines [17, 18] which joined after the horizontal coolers; steam conditioning 

temperature was 85±1°C.  Percent pellets for feed deliveries (n = 4) were 89, 95, 58, and 

94%, respectively (average across feed deliveries was 84% pellets); these samples were 

taken at the mill for each diet as it was augered into the feed truck. 

Broiler House and Feed System Specifications 

A 16 x 122 m (50 x 400 ft) commercial broiler house located at Mississippi State 

University was used in the current study.  During the experimental period, the broiler 

house contained approximately 18,000 broilers.  The experimental period lasted for four 

feed deliveries, which began when the birds were six weeks of age and finished when 

birds were eight weeks of age.  The curtain-sided house was tunnel-ventilated; house 

temperature was regulated by infrared brooders and evaporative cooling.  There were 

eight cup-drinker lines and six total feed lines within the house, and broilers were able to 

consume feed and water ad libitum.  Migration fences evenly separated the house into 

four sections with the halfway point being the feed hoppers.  Light-emitting diodes were 

used in the broiler house, and birds received 20 h of light at 1.5 lux and 4 h of dark during 

the sampling period. 

The broiler house had two feed bins (11,000 kg capacity/bin) [19] that serviced 

the feeding system [20]; however, only one feed bin was used at a time to serve as the 

experimental unit.  One main screw auger line transported feed into the house, and three 

downspouts on the main screw auger line fed three feed hoppers.  There were six, 58 m 

long feed lines within the broiler house and each feed hopper supplied two feed lines with 

feed from the same bin [20].  Each feed line had a total of 76 flood pans (30.5 cm 
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diameter; 14 spoke grill) [20].  Additionally, one control pan was located on the end of 

each feed line, and each control pan governed feed augering.  The feed line screw auger 

fit a standard 44 mm diameter feed tube and delivered feed at a rate of 5.9 kg per minute 

[20].   

Feed Augering Sampling Procedure 

The feed system sampling diagram for the current experiment is depicted in 

Figure 1.  Each of the six feed lines within the broiler house were used.  The feed lines 

were labeled as the Front Left (FL), Middle Left (ML), and Back Left (BL), as well as the 

Front Right (FR), Middle Right (MR), and Back Right (BR).  Feed lines on the Left were 

located on the fan end of the broiler house, and feed lines on the Right were located on 

the evaporative cool pad end of the house.  Feed pan sampling locations of 0 (beginning), 

25 (middle), and 50 (end) m along each feed line (18 total pans) were used.  Each 

sampling location was blocked off to prevent birds from accessing the feed sample.  Feed 

lines were 58 m long; however, the total sampling distance of 50 m was chosen in order 

to ensure adequate feed sample volumes were delivered to the last sampling pan. 

Each feed delivery occurred when one feed bin was empty; this full bin of feed 

represented the experimental unit.  Sampling times were established based upon the total 

light hours (20 h) within the house since birds do not eat when the lights are off.  Thus, 

samples were taken every 6.5 light h within the house in effort to provide adequate 

representation of feed augering effects on an entire feed delivery.  For each feed delivery, 

there were a total of 9 Augering Times (AT; 56 h/feed delivery), which were represented 

by the 6.5 light h window that feed was collected within the sampling pans post light-feed 

augering.  Post light-feed augering (PLFA) can be defined as the augering that occurred 
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during light hours between each AT.  Augering times occurred at 4 (AT 1), 10.5 (AT 2), 

17 (AT 3), 23.5 (AT 4), 30 (AT 5), 36.5 (AT 6), 43 (AT 7), 49.5 (AT 8), and 56 light h 

(AT 9) PLFA.  The sampling timeline (Figure 4.2) for each replicate began by augering 

the newly filled feed bin into the house (0 h).  Two hours after the feed was augered into 

the feed system, all of the sampling pans were emptied to ensure that the appropriate feed 

was introduced to the feed lines at the same time.  At 4 h, AT 1 samples were obtained. 

Next, AT 2-9 samples were collected every 6.5 light hours within the house until the feed 

bin was emptied. 

In total, 648 feed samples were obtained across Feed Line, Feed Pan Location, 

and Augering Time (9 total).  Each feed sample was analyzed for percent pellets using a 

No. 6 American Society for Testing and Materials screen [21]. 

Statistical Analysis 

The experimental period was the total time taken to auger all four feed deliveries 

(224 h).  Each experimental unit of one feed delivery (one feed bin; ~10,500 kg) was 

augered as part of a randomized complete block with a split-split plot design.  Split plot 

was feed pan location of 0, 25, or 50 m on each of the six feed lines.  Split-split plot was 

augering time (AT 1-9).  Treatments were blocked by each of the four feed deliveries (4 

replications).  Data were analyzed via the GLM procedure in SAS [22].  Mean 

comparisons were made using Fisher’s LSD and significance was established at P ≤ 0.05. 
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Results and Discussion 

Augering Time Effects 

Significance was established for the main effect of AT on percent pellets 

(P<0.0001), but no interaction was found for AT, Feed Line, or Feed Pan Location 

(P>0.05; Table 4.1).  Percent pellets demonstrated an ~2.5 percentage point decrease for 

AT 2 when compared to AT 1; however, AT 3-6 resulted in similar percent pellets in the 

feed pan PLFA.  These data disagree with previous research that demonstrated decreases 

in percent pellets over time [5, 14].  From AT 6 to 7 a ~5 percentage point decline in 

percent pellets was observed.  Augering Time 7 resulted in the lowest percent pellets 

(~53% pellets), as compared to all other AT.  As feed was augered from AT 7 to 9, 

percent pellets gradually increased ~13.5 percentage points.  These small differences in 

percent pellets could affect broiler performance [10-12].  In addition, AT 9 demonstrated 

the highest percentage of pellets in the feed pan (~66% pellets) when compared to all 

other AT.  The stepwise increase from AT 7 to 9 demonstrated that pellets and fines 

separate as diets are augered out of the feed bin.  More specifically, data suggests that 

fines are released from the bin more readily, while pellets gradually release with greater 

proportion as the feed bin is emptied (i.e. last AT).  However, this is for the observed 

percent pellets of the tested diets.  Feed mill sample percent pellets for feed deliveries 

(n=4) were 89, 95, 58, and 94%, respectively (average across feed deliveries was 84% 

pellets).  These data may change if diets of other feed qualities were tested. 

Interactive Effects of Feed Line and Feed Pan Location 

Feed Line and Feed Pan Location significantly interacted for percent pellets 

(P<0.0001; Table 4.2 and Figure 4.3).  When diets were augered from the bin to 0 m 
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(beginning of feed line), the FR, MR, and BR feed lines (average ~63% pellets) 

demonstrated increased percent pellets (~9% difference) in the feed pan as compared to 

the FL, ML, and BL feed lines (average ~57.5% pellets).  Additionally, the BR feed line 

resulted in the highest percentage of pellets (64% pellets) at 0 m.  The greatest difference 

in percent pellets (~13%) at 0 m PLFA was demonstrated between the BR and FL feed 

lines (64 and 56% pellets, respectively).  When feed was augered throughout the BL feed 

line from 0 to 25 m, an ~6 percentage point increase was observed in percent pellets, and 

the highest percent pellets at 25 m (65% pellets) for any feed line was demonstrated for 

the BL feed line (P<0.0001; Table 4.2 and Figure 4.3).  Augering from 0 to 25 m resulted 

in an ~8 percentage point decrease in percent pellets for the BR feed line, and the lowest 

percent pellets at 25 m (56% pellets) for any feed line was observed in the BR feed line 

(P<0.0001; Table 4.2 and Figure 4.3). 

Percent pellets were similar as feed was augered from 25 to 50 m for the FL, ML, 

and BL feed lines (average of ~59% pellets).  In addition, percent pellets at 50 m for FL, 

ML, and BL feed lines were similar in percent pellets observed at 0 m for each of those 

feed lines.  However, percent pellets in the FR and BR feed line decreased by ~9.5 and 14 

percentage points, respectively, when augered from 25 to 50 m (62.5 to 53 and 56 to 42% 

pellets, respectively).  Moreover, the BR feed line demonstrated the lowest percent 

pellets (42%) at 50 m when compared to any other feed line or feed pan location; overall, 

pellets in the BR feed line declined by ~22 percentage points when augered from 0 to 50 

m (64 to 42% pellets; P<0.0001; Table 4.2 and Figure 4.3).  

Data in the current study corroborates with previous field research [5, 13] and 

partially agrees with replicated research [14].  Results reported by Mississippi State and 
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West Virginia University demonstrated a decrease in percent pellets when feed was 

augered from the beginning to middle pan and then percent pellets increased when feed 

was augered from the middle to end pan [13].  Data in the current experiment 

demonstrate a significant decrease in percent pellets for feed lines on the Right, 

especially the FR and BR lines when augered to 50 m.  However, the Left feed lines 

demonstrated less variation in percent pellets across location. 

The results for the BR feed line is in full agreement with the research conducted 

by Sellers and cohorts [14]; it should be noted that this was the same feed line used for 

both studies, as multiple diets were augered throughout only one feed line for the 

previous study.  In the current study, the BR feed line was the only feed line that 

demonstrated a similar decrease in percent pellets as noted in the previous study by 

Sellers and coauthors [14].  Therefore, we speculate that the observed differences in 

percent pellet could be attributable to the mechanical variability of each feed line.  

Although the mechanism between feed augering and pellet deterioration is not 

documented in previous literature, it is proposed that variations in auger motors can affect 

the shear force and translational shear velocity [23] of the screw auger when feed comes 

in contact with the feed line.  If velocity and force are greater, there is more potential for 

pellets to experience attrition due to increased shearing force with the auger. 

Overview 

Pelleting is a complex process that has many interactive variables, including diet 

formulation, production rate, conditioning, particle size, die specifications, and 

cooling/drying [24-30].  These factors affect feed form, nutrient availability, and 

ultimately, bird performance [26, 29-30].  As expected, data observed in the current study 
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confirms that feed quality in terms of percent pellets is further affected by feed augering 

(Table 4.2) similarly to what was reported previously [5, 13-14]. 

Percent pellets sampled at locations across the house available for broiler 

consumption differed across Feed Line and Feed Pan Location.  We speculate that feed 

augering may also vary between different feed systems and may not be consistent with 

the current results due to speculated variations in equipment.  However, results of the 

current study does provide much needed data describing pellet distribution as it occurred 

in the commercial house sampled.  These data should be taken into consideration by feed 

manufacturers when determining a target pellet quality in order to maximize growth and 

profit potential. 

Furthermore, the main effect AT demonstrates that pellets and fines separate 

within the feed bin over time (Table 4.1).  The separation of pellets and fines have also 

demonstrated nutrient segregation [5, 13-14].  Moreover, previous research suggests that 

broiler BWG and BW CV can be affected by percent pellets because of differences in 

pellet quality and nutrient segregation noted across Feed Line and Feed Pan Location 

[31].  As nutrients segregate, it is possible that broilers do not receive the adequate level 

of one of more nutrients required to maximize performance and ultimately profit for the 

company.  Data demonstrates that AT impacts percent pellets available for consumption 

at a given time and we speculate, based on previous research [14], the nutrients levels 

therein.  Future research should determine if the changes observed in percent pellets is 

based on beginning feed quality, equipment, and/or birds.  Multiple broiler houses may 

provide a better representation and broader understanding of the events occurring during 
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feed augering; thus, allow us to become closer to determining an optimal pellet quality 

for feed manufacturers to produce. 

Conclusions and Applications 

1. Percent pellets (~84% pellets upon delivery) were affected by AT of feed 
from the feed bin, with the lowest for AT 7 (53% pellets) and highest for 
AT 9 (66% pellets).  These data suggest that fines are released from the 
bin more readily, while pellets gradually release with greater proportion as 
the feed bin is emptied (i.e. last AT). 

2. Pellet distribution was affected by Feed Line and Feed Pan Location.  
Data in the current study demonstrated a 22 percentage point decrease in 
pellets when the BR feed line was augered from 0-50 m.  Percent pellets in 
the BL feed line increased by 6 percentage points when augered from 0-25 
m and decreased by 6 percentage points when augered from 25-50 m.  
These data suggest that feed augering should be considered when choosing 
an optimal pellet quality to be created at a commercial feed mill. 
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Table 4.1 The effect of augering time on percent pellets 

Augering Time1 Percent Pellets2 (%) 
1 59.88bc 

2 57.34d 

3 59.20bcd 

4 60.03b 

5 57.96bcd 

6 57.56cd 

7 52.64e 

8 57.74cd 

9 66.05a 

Main effect and interaction probabilities 
AT <0.0001 

Line3 x AT 0.7975 
Location4 x AT 0.1776 

Line x Location x AT 1.000 
SEM 0.8545 

a-dMeans within a column not sharing a common superscript differ (P ≤ 0.05) 
1Augering Time (AT) = represented by the 6.5 light hour window that feed was collected within 
sampling pans post light-feed augering until the bin was emptied. AT were as follows:  AT 1 = 4 
h; AT 2 = 10.5 h; AT 3 = 17 h; AT 4 = 23.5 h; AT 5 = 30 h; AT 6 = 36.5 h; AT 7 = 43 h; AT 8 = 
49.5 h; AT 9 = 56 h 
2Percent pellets = (intact pellet sample weight/total sample weight)*100%. The total sample was 
initially weighed and subsequently sifted using a No. 6 American Society for Testing and 
Materials screen (metric equivalent = 3.35 mm) to separate intact pellets from fines; the pellet 
sample was then weighed and percent pellets was calculated 
3Line = Feed Line used within the commercial broiler house. Right feed lines were on the cool 
cell side of the house, and Left feed lines were on the fan end of the house. A total of 3 hoppers 
serviced 6 feed lines. As feed was augered into the house, the first hopper fed the Front L and R 
feed lines, the middle hopper fed the Middle L and R feed lines, and the last hopper fed the Back 
L and R feed lines 
4Location = Feed Pan Location. Sampling locations of 0, 25, and 50 m were used to determine 
feed quality at the beginning, middle, and end of each feed line as diets were augered throughout 
the house 
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Table 4.2 Effects of feed line and feed pan location on percent pellets 

Line1 Location2 (m) Percent Pellets3 (%) 

Front (R) 
0 62.18bcd 

25 62.57abc 

50 53.00h 

Middle (R) 
0 62.71abc 

25 59.66ef 

50 59.22ef 

Back (R) 
0 64.10ab 

25 55.89g 

50 42.25i 

Front (L) 
0 56.34g 

25 59.90def 

50 57.65fg 

Middle (L) 
0 57.41fg 

25 60.90cde 

50 59.06ef 

Back (L) 
0 59.25ef 

25 64.98a 

50 59.72def 

SEM 0.8715 
Marginal means 

Front (R) 

- 

59.25 
Middle (R) 60.53 

Back (R) 54.08 

Front (L) 57.96 

Middle (L) 59.12 

Back (L) 61.32 

SEM 0.4794 
 

- 
0 60.33 

25 60.65 

50 55.15 

SEM 0.3558 
Main effect and interaction probabilities 

Line <0.0001 
Location <0.0001 

Line x Location <0.0001 
a-iMeans within a column not sharing a common superscript differ (P ≤ 0.05) 
1Line = Feed Line used within the commercial broiler house. Right feed lines were on the cool cell side of the house, and Left feed lines were on the fan 
end of the house. A total of 3 hoppers serviced 6 feed lines. As feed was augered into the house, the first hopper fed the Front L and R feed lines, the 
middle hopper fed the Middle L and R feed lines, and the last hopper fed the Back L and R feed lines 
2Location = Feed Pan Location. Sampling locations of 0, 25, and 50 m were used to determine feed quality at the beginning, middle, and end of each feed 
line as diets were augered throughout the house 
3Percent pellets = (intact pellet sample weight/total sample weight)*100%. The total sample was initially weighed and subsequently sifted using a No. 6 
American Society for Testing and Materials screen (metric equivalent = 3.35 mm) to separate intact pellets from fines; the pellet sample was then 
weighed and percent pellets was calculated 
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