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Phenomenological material models such as Johnson-Cook plasticity are often 

used in finite element simulations of large deformation processes at different strain rates 

and temperatures. Since the material constants that appear in such models depend on the 

material, experimental data, fitting method, as well as the mathematical representation of 

strain rate and temperature effects, the predicted material behavior is subject to 

uncertainty. In this dissertation, evidence theory is used for modeling uncertainty in the 

material constants, which is represented by separate belief structures that are combined 

into a joint belief structure and propagated using impact loading simulation of structures. 

Yager’s rule is used for combining evidence obtained from more than one source. 

Uncertainty is quantified using belief, plausibility, and plausibility-decision functions. An 

evidence-based design optimization (EBDO) approach is presented where the non-

deterministic response functions are expressed using evidential reasoning. The EBDO 

approach accommodates field material uncertainty in addition to the embedded 

uncertainty in the material constants.  This approach is applied to EBDO of an externally 

stiffened circular tube under axial impact load with and without consideration of material 
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field uncertainty caused by spatial variation of material uncertainties due to 

manufacturing effects. Surrogate models are developed for approximation of structural 

response functions and uncertainty propagation. The EBDO example problem is solved 

using genetic algorithms. The uncertainty modeling and EBDO results are presented and 

discussed.  
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CHAPTER I 

INTRODUCTION 

Research efforts in hierarchical modeling of process-structure-property relations 

have resulted in more sophisticated physics-based material models with the ability to 

characterize the evolution of material microstructure under a prescribed loading history. 

Such models are intended to enhance the response predictions of solids experiencing 

large inelastic deformations. With growing reliance on computational design of complex 

structures and limited physical testing, there is a greater need for inclusion of advanced 

material models with better predicative capabilities. However, reliance on these material 

models must be coupled with accurate modeling of the uncertainties in both the model 

predictions as well as in simulation results.  Some of the formidable research challenges 

associated with the application of phenomenological and multiscale material models in a 

computational design framework include 1) uncertainty quantification of material models 

with consideration of both aleatory and epistemic uncertainties; 2) proper integration of 

advanced material models to simulate large deformation of structures; and 3) 

development of non-deterministic approaches and solution strategies for design 

optimization of complex systems in presence of uncertainty (Oden et al., 2006).  

The objective of this dissertation is twofold: 1) to apply the principles of evidence 

theory to generate a more comprehensive representation, propagation, and measurement 

of uncertainty in constitutive models that emanate from lack of knowledge/insufficient 

data (epistemic uncertainty), inherent variability in material characteristics (aleatory 
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uncertainty), or formulations used for mathematical modeling of material behavior in the 

constitutive model (model-selection uncertainty), and 2) to advance the state-of-the-art in 

engineering design through development, application, and assessment of an evidence-

based computational framework for uncertainty quantification and design optimization of 

structures with advanced material models. The main contributions of this dissertation are 

as follows: 

• Development of a general uncertainty representation framework for construction of 

belief structures based on the available data on uncertain parameters. This includes 

the determination of agreement, conflict, and ignorance relationships among the 

intervals for basic belief assignment. 

• Development of a metamodel-based approach for efficient propagation of 

uncertainties using a limited number of computationally expensive finite element 

simulations.  

• Development of a new aggregation rule of evidence capable of dealing with conflict 

and ignorance between different information sources based on the available 

observations. The aggregation rule can be adopted to address model-selection 

uncertainty. It can be also adopted in uncertainty representation level where different 

information sources suggest different belief structures. 

• Application of evidence theory for representation and modeling of field uncertainty in 

consideration of spatial variability in material properties due to manufacturing and 

material microstructure.  

• Development and application of a computational tool for Evidence-Based Design 

Optimization (EBDO) of structures with consideration of all sources of material 

uncertainty. 
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• Development of a new physics-guided approach for fitting the material constants of 

advanced plasticity models with experimental stress-strain curves and determination 

of the uncertainties in the model constants. 

1.1 Dissertation structure  

This dissertation is organized into nine chapters. Figure 1.1 shows the flowchart 

of the evidential framework for uncertainty quantification of constitutive material models 

and application to optimization of structures under material model uncertainty. The 

flowchart offers a general layout of the process used for uncertainty modeling of 

constitutive models for polycrystalline ductile metals. Different aspects of this diagram 

are addressed in different chapters of this dissertation.  

In Chapter 2, an overview of evidence theory is presented first and then a 

methodology for representation, propagation and measurement of uncertainty is 

presented. For representation of uncertainty, a methodology to construct belief structures 

in interval forms with assigned degree of belief based on available information on 

uncertain parameters is provided. Then, an approach for propagation of uncertainty is 

presented. This includes construction of a joint belief structure required for uncertainty 

propagation of a system response with dependence on multiple uncertain variables which is 

obtained by the Cartesian product of the belief structures of all uncertain variables. Furthermore, 

construction of a field joint belief structure to accommodate possible spatial variation of 

material properties that may considerably impact product performance is discussed. Then, 

a methodology based on design and analysis of computer experiments is used to reduce the 

computational complexity associated with uncertainty propagation. As shown in Figure 1.1, 

uncertainty measures (belief and plausibility) can be assessed for the sake of uncertainty 
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quantification (measurement) through comparison of the calculated propagated belief 

structure and the belief structure of structural response determined using all the available 

evidence (experimental, analytical and numerical).  

In chapter 3, mathematical formulations of Johnson-Cook (JC) and Bammann-

Chiesa-Johnson (BCJ) plasticity models are presented. Also, a new physics-guided 

numerical fitting approach for determination of the material constants of BCJ plasticity 

model is suggested.  

In chapter 4, the methodology presented in chapter 2 is employed for uncertainty 

representation of two phenomenological plasticity models: (1) JC and (2) BCJ. 

In chapter 5, the methodology presented in chapter 2 is applied for uncertainty 

propagation of JC and BCJ plasticity models through nonlinear transient dynamic finite 

element simulations of a thin-walled circular aluminum alloy (AA6061-T6) tube under 

axial impact load. 

When faced with information or data from multiple sources of evidence, it is 

possible to encounter diverse belief structures. Since uncertainty can be represented and 

quantified only by a single belief structure, it is necessary to aggregate the body of 

evidence. This task becomes very challenging when information sources are in conflict. 

As shown in Figure 1.1, the aggregation of evidence appears in both uncertainty 

representation level, where there are multiple sources of experimental data, as well as 

uncertainty propagation level, where multiple formulations of constitutive models is 

suggested for simulation of large deformation processes.  Chapter 6 aims to address this 

issue by development of a new aggregation rule of evidence that makes use of 

experimental observations or decision-making methods for determination of credibility 

factor of evidence (CFE) for conflicting evidence from different information sources. The 
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proposed aggregation rule is adopted for uncertainty modeling of a large deformation 

process represented by the Taylor impact test for which JC and Zerilli-Armstrong (ZA) 

plasticity models provide different answers. 

The computational framework for optimization of structures under material form 

uncertainty using mathematical tools of evidence theory is discussed in chapter 7. A 

general optimization formulation for EBDO is suggested. This chapter discusses how the 

developed methodologies for uncertainty modeling of plasticity models can be adopted 

for assessment of evidence-based constraints. From the computational point of view, 

chapter 7 explains interactions between developed computational codes for uncertainty 

representation, propagation, quantification as well as optimization of structures under 

material form uncertainty. Computational framework for construction of a field joint 

belief structure to accommodate possible spatial variation of material properties that may 

considerably impact product performance is discussed in chapter 7 as well. 

EBDO of externally stiffened crush tubes using the developed computational 

framework is presented in chapter 8. Optimization results of stiffened tubes under 

material form uncertainty with and without consideration of material field uncertainty is 

also provided. 

 Chapter 9 summarizes the work performed in this research. Recommendations 

for future research are also presented. 
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Figure 1.1 General framework for representation, propagation, and quantification of 

uncertainty in material models 

1.2 Literature review 

There are several plasticity and coupled plasticity-damage models for the 

macroscale (continuum) simulations of ductile solids and structures experiencing large 

inelastic deformation at high strain rates and temperatures. Simple empirical 

phenomenological models such as the power law, Johnson-Cook (JC) (Johnson and 

Cook, 1983) and modified Johnson-Cook (Holmquist and Johnson, 1991) models, as well 

as physically-motivated models, such as Zerilli-Armstrong (ZA) (Zerilli and Armstrong, 

1987) and Usui (Shirakashi et al.1983) models, have been developed mainly for ease of 

computational implementation. These are equation-of-state models that represent the 

flow stress as a unique function of total strain, strain rate, and temperature, independent 

of the loading path. However, the addition of history dependent variables (internal state 

variables) is necessary to represent more accurately the material behavior, and, hence, 

improve the predictive capability of the simulations. These variables represent the current 
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state of the material, which includes strain rate and temperature history effects as well as 

coupling of rate- and temperature-dependence with material hardening. These models are 

considered physics-based (or microstructure-based) as they establish a direct relation 

between microstructure features (e.g., particle size variation and spatial distribution) and 

macroscopic behavior. Physics-based models include Mechanical Threshold Stress 

(MTS) (Follansbee and Kocks, 1988), Bammann-Chiesa-Johnson (BCJ) (Bammann, 

1984; Bammann et al., 1996), BCJ-damage (Horstemeyer, 2001), and Evolving 

Microstructural Model of Inelasticity (EMMI) (Marin et al., 2006).  

Although all cited categories of models are quite diverse in their formulations and 

modeling capabilities, they share a common thread in their use of fitting parameters 

(constants) that in some cases (e.g., BCJ-damage) could approach nearly forty.  These 

parameters, of course, take different values for different materials and associated alloys. 

The calculation of these parameters for any specific material requires a number of 

experiments on material specimens under different boundary conditions, strain rates and 

temperatures.  Often, there is scarcity of data.  Coupled with alternative methods for 

fitting the parameters and variations in the way certain terms (e.g., homologous 

temperature, dislocation hardening) are formulated in the material model, the resulting 

values for the parameters can change. In some instances, there could be a wide variation 

in one or more parameters, which leads to considerable uncertainty in the results of 

design analysis and optimization of structural systems based on these models.  

In a recent Los Alamos National Lab study, Gray et al. (1994) examined both JC 

and ZA constitutive models and among their conclusions they mention “One lesson that 

we learned here was that by fitting the JC model using a different range of data we could 

obtain quite different model constants.” Since simulation-based design and analysis of 
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structures rely on accurate constitutive models for prediction of material behavior, 

uncertainties in material models can lead to increased risk to the safety of the designed 

system.  

Recent investigations (Helton, 1994, 1997; Oberkampf et al., 2001) have noted 

the importance of distinguishing between variability (aleatory uncertainty) that originates 

from randomness inherent in the system (e.g., material mircrostructure) and incertitude 

(epistemic uncertainty) that arises from lack of data or insufficient knowledge (e.g., 

vagueness, ignorance) about the system. While epistemic uncertainty can be reduced by 

acquisition of additional data or knowledge, aleatory uncertainty cannot. Probability 

theory offers all the necessary tools for accurate representation and propagation of 

aleatory uncertainty. However, it is not equipped to accurately model epistemic 

uncertainty because it cannot properly account for ignorance. Attempts to lump aleatory 

and epistemic uncertainties together can lead to inaccurate estimation of true uncertainty 

in the system. (Oberkampf et al., 2001, 2004) 

Recent researches in computational design under uncertainty have employed 

different approaches to represent and propagate aleatory uncertainties in constitutive 

models (Rais-Rohani et al., 2010; Acar et al., 2010a; Solanki et al., 2009, 2010; Acar et 

al., 2009).  

Evidence theory offers a general framework for separate modeling of epistemic 

and aleatory uncertainties that can be used in phenomenological material models of 

varying complexity.  However, uncertainty representation and propagation under 

evidence theory are very different from and often more computationally intensive than 

the traditional probability theory. Its practical application to complex engineering 

systems is hampered by a number of challenges such as the lack of a systemic approach 
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for calculation of basic belief assignment for different propositions (pieces of evidence) 

in the frame of discernment, no unified approach for aggregation of evidence collected 

from different sources with varying degrees of conflict and ignorance, and the 

computational cost associated with uncertainty propagation in presence of high fidelity 

computer simulations involving non-monotonic responses.  

Agarwal et al. (2004) employed surrogate models to generate continuous functions of 

uncertainty measures in evidence theory. Bae et al. (2004a) adopted the multi-point 

approximation (MPA) approach to reduce the computational cost of uncertainty propagation and 

quantification by focusing the computational resources on the failure domain instead of the whole 

design area. The focus of these limited number of studies have been primarily on propagation of 

uncertainties in simple systems or benchmark problems based on the assumed belief structure. 

However, uncertainty propagation of a complex physical system with a complicated belief 

structure and mathematical formulations is very computationally expensive and needs a cost-

effective methodology capable of reducing the overall computational costs. 

In the domain of design optimization under uncertainty, several approaches have been 

developed for mathematical modeling of uncertainty in design based on theory of 

probability, classical set, fuzzy set, fuzzy measure (evidential reasoning), and rough set 

(Klir, 1994); in these approaches, uncertainty is described in terms of likelihood of an 

event occurrence in a universal set of events, non-specificity inherent in each set of 

mutually exclusive alternatives, vagueness from imprecision of the conditions for the 

membership of an element into a set, plausibility and belief measures due to insufficient 

information, and imprecise representation of a crisp set, respectively. 

With the rapidly growing interest in non-deterministic design approaches over the past 

two decades, we have seen the immergence of probabilistic design and reliability-based design 
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optimization (RBDO) as principal frameworks for decision-making and design optimization 

under uncertainty. In the case of aleatory uncertainty with individual random variables following 

any standard probability distribution function (sufficient data and knowledge), probability theory 

can be used to calculate fairly accurately failure probability for a single or multiple events.  

Based on probabilistic definition of random variables and associated responses, an RBDO 

problem seeks to minimize an objective function f (X,Y) subject to a set of probabilistic 

constraints in the form Pfi
= P Gi X,Y( )≤ 0[ ]≤ Pai

; i =1,N p , side constraints on design variables 

Yk
l ≤ Yk ≤ Yk

u ; k = 1,NDV  with X = X1, X2,..., Xn{ }
T

 as vector of random variables.  With failure 

probability analysis as a major challenge, multiple ways of formulating and solving an 

approximate RBDO problem have been developed (Enevoldsen and Sorensen, 1994; Frangopol, 

1995; Tu et al., 1999; Du and Chen, 2004; Qu and Haftka, 2004; Rahman et al., 2004; Rais-

Rohani and Xie, 2005;Rais-Rohani et al., 2010). Regardless of the approach, the solution of an 

RBDO problem is considerably more expensive than in deterministic (risk-ignoring) design 

optimization.  

Recently, the application of RBDO methodology was extended to product design 

optimization using BCJ-damage material model (Solanki et al. 2010). By modeling the stochastic 

uncertainties in the material model and the loading conditions, the RBDO problem for a cast 

aluminum component was solved using the nested reliability index approach. The comparison of 

results with those based on linear piecewise plasticity model showed the importance of damage as 

a failure criterion and the effect of uncertainty in microstructure-based material on optimum 

design.  

Recent advances in non-deterministic design approaches include the use of fuzzy 

measures in what is known as possibility-based design optimization (PBDO) (Nikolaidis 

et al. 2004; Choi et al. 2004). He and Qu (2008) compare PBDO and EBDO with RBDO 
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and conclude that generally the results found by EBDO tend to be more conservative than 

those based on PBDO and RBDO. As noted by Nikolaidis et al. (2004), possibility can be 

less conservative than probability in the context of risk assessment of systems with 

multiple failure modes (series system). The conservatism of possibility over probability is 

seen mainly in parallel systems (simultaneous occurrence of multiple failure modes). Due 

to its use of evidence theory, EBDO can address conflict in data or expert opinions 

whereas PBDO cannot.   Thus, EBDO represents a powerful framework for design 

optimization under uncertainty due to lack of knowledge, insufficient data, or conflict in 

available evidence. It is worth noting that RBDO, PBDO, and EBDO represent 

completely different design philosophies, and for a general constrained design 

optimization problem, they yield different answers. 

Recent applications of EBDO include the works of Agarwal et al. (2004), 

Mourelatos and Zhou (2006), and Alyanak et al. (2008). The optimization problem can be 

broadly described as an RBDO problem shown above but with design constraints cast in 

terms of belief, plausibility, plausibility-decision functions or uncertainty (i.e., 

plausibility – belief).  Since constraints are typically imposed on limit states or failure 

conditions, a plausibility or plausibility-decision formulation would require less 

calculation than belief function evaluation. This is because the failure domain for each 

active constraint is usually smaller than the safe domain over the frame of discernment 

(Mourelatos and Zhou, 2006). As an example, constraints on failure plausibility in EBDO 

can be cast as ( ){ }
iai PlGPl ≤≤ 0,YX , where ( ) 0, ≤YXiG  represents a failure criterion. 
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CHAPTER II 

UNCERTAINTY MODELING FRAMEWORK USING EVIDENCE THEORY 

Here, after a short review of the mathematical tools of evidence theory and 

aggregation rules of evidence, an evidential framework for modeling all aspects of 

uncertainty quantification (i.e., uncertainty representation, propagation and measurement) 

is provided. The uncertainty quantification framework will be adapted in the subsequent 

chapters to model uncertainty of plasticity models. 

2.1 Evidence theory: basic principles and concepts 

Evidence theory provides an alternative to the traditional probability theory by 

allowing less restrictive statements in representing uncertainty. Much of the fundamental 

work in this area was done by Dempster (1968) and Shafer (1976). A brief overview of 

evidence theory is provided in this section. However, for a more thorough description, the 

reader is referred to Yager (1967, 1967a). 

Let X represent a set of elements. The power set ���� is the set of all possible 

subsets of X including the empty set. For example, if � � �
, ��, then ���� �
��, �
�, ���, � �. Evidence theory assigns a basic belief to each element of ����. 
Formally, �:���� � �0, 1� is called a basic belief assignment (BBA) or basic probability 

assignment (BPA) function with two properties: 1) basic belief of the empty set is zero: 

���� � 0, and 2) basic beliefs of the remaining members of the power set add up to 1: 

∑ ��!� � 1"#$�%� . Any subset x of X with non-zero BBA is called a focal element and 

represents the available belief or evidence that supports it. More formally, the BBA 



 

13 

function ���� of a given member of ���� expresses the proportion of all relevant and 

available evidence that supports the claim that the actual state belongs to x but not to any 

particular subset of ����. The value of ���� pertains only to the subset x and makes no 

additional claims about any other subsets of P�X�, each of which, by definition, has its 

own basic belief (Dempster,1968; Shafer 1976). It is worth noting that the following is 

possible in evidence theory as opposed to probability theory (Yager, 1967, 1967a): 

1. ����)�� * ����+�� , ����), �+�.        
2. ����)�� - ����+�� ./.0 123452 �) 6 �+.  

3. ���� 7 1 

  From the BBA, the lower and upper bounds of an imprecise probability interval 

known in evidence theory as belief and plausibility, respectively, can be expressed as 

8.9�!� � ��!� � �9�!�       (2.1)  

The belief function of set A, 8.9�!� is defined as the sum of all BBA of its 

subsets given as 

∑
⊆

=
AC

CmABel )()(   `      (2.2) 

Conceptually, 8.9�!� represents the level of total confidence that supports 

trustworthiness of event A. The plausibility function of set A, �9�!�, is defined as the sum 

of all the BBA of the sets C that intersect it 

∑
∅≠∩

=
AC

CmAPl )()(         (2.3) 

Conceptually, �9�!� represents the extent to which it is possible to consider the 

trustworthiness of event A due to lack of knowledge or data (epistemic uncertainty). In 

fact, the gap between belief and plausibility of event A (Pl(A)-Bel(A)) is a measure of 

epistemic uncertainty in reliable evaluation of event A as shown in Figure 2.1. This gap is 

also interpreted as the imprecision on the “true probability” of event A (Baynon et al., 
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2000). In probability theory, the probability of an event and its complement add up to 1. 

However, as it can be seen in Figure 2.1, the sum of the belief of an event and its 

complement is less than 1 in evidence theory. The sum of belief of an event and its 

complement equals to 1 only when there is sufficient knowledge (no ignorance) about the 

event. Unlike probability theory, evidence theory suggests that the belief of an event and 

its complement plus the level of ignorance (epistemic uncertainty) should add up to one. 

 

 

Figure 2.1 Relation between belief, plausibility and epistemic uncertainty 

2.2 Aggregation rules of evidence 

When the information or data comes from multiple sources of evidence, it is 

possible to encounter diverse belief structures with different assessments for the same 

frame of discernment. However, uncertainty can be represented only by a single belief 

structure. To reconcile this challenge, several approaches have been proposed for 

aggregation of evidence from all sources of information. The key to selecting a proper 

aggregation rule is to recognize how conflict and ignorance should be treated in a 

particular application. A number of aggregation rules have been reported in the literature 

(Dempster, 1968; Yager, 1987,1987a, 1994; Sents et al., 2000; Inagaki, 1991) with the 

two most popular ones briefly described below. 

(a) Dempster’s rule (1968) makes use of BBA in each subset of the universal set 

for each source of evidence and combines them to form a unique belief structure. 

Although these BBAs are defined on the same frame of discernment, all sources of 
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evidence are assumed to be independent. Dempster’s rule combines two BBAs (i.e., 

�)and �+) derived from two sources of evidence as 

�)+�!� � ∑ �:�;��<���=>?@A
)BC         D2.0 ! , �     (2.4) 

�)+��� � 0          (2.5) 

with 

E � ∑ �);>�F� �8��+�G�       (2.6) 

where K represents the BBA of the conflict among the different sources of evidence, and 

its value is determined by adding the BBA products of all two disjointed subsets 

associated with the different sources of evidence. By placing the 1 - K (normalization 

factor) in the denominator of Eq. (2.4), Dempster’s rule ignores completely the conflict 

between information obtained from the different sources and attributes the BBA 

associated with conflict to the null set. Therefore, when high level of conflict exists, 

Dempster’s rule is not appropriate for combining evidence. Two pitfalls that are often 

cited for Dempster’s rule of combination are as follows: 

1. Dempster’s rule assigns 100% uncertainty to a minority opinion when 

conflicting evidence exists. (Yager, 1987)  

2. The combination of information from an evidence source that assigns a BBA to 

the base set (means complete ignorance is considered by this source of evidence) with 

that which does not consider ignorance results in BBA structure that does not assign BBA 

to the universal set. This action gives a false impression that precise probabilistic 

information dominates the belief. 

(b) Yager’s rule (1987,1987a) was developed to address some of the shortcomings 

of Dempster’s rule. Yager introduced ground probability assignment (GPA), which for 

two BBAs (m)and m+) takes the form  
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I�!� � ∑ �)�8��+�G�;>�F"        (2.7) 

where A is the intersection of subsets B and C, and q(A) denotes the GPA of subset A. 

There is no normalization factor in Eq. (2.7).  The combined structure q(A) can be also 

used to aggregate multiple pieces of evidence. If �), �+,…�K are the BBAs for n belief 

structures with AM  representing the focal element associated with the NOP BBA ��Q�, then 

the n belief structures are combined as  

I�!� � ∑ �)>R@:S "RF" �!)��+�!+�…�K�!K�       (2.8) 

Unlike Dempster’s rule, GPA of greater than zero can be assigned to the null set 

in Yager’s rule (I��� - 0). The procedure to calculate I��� is similar to that of K 

(conflict) in Eq. (2.6). The relationships between GPA and BBA of subset A, null set � 

and the universal set X in Yager’s rule of combination are given as 

�T�!� � I�!�                     (2.9) 

�T��� � 0          (2.10) 

�T��� � I��� * I���        (2.11) 

The two major differences between Dempster’s and Yager’s rules of aggregation 

can be summarized as follows: 

1. Yager’s rule does not change the evidence through normalization as opposed to 

Dempster’s rule. 

2. Yager’s rule allocates conflict to the universal set X as opposed to Dempster’s 

rule that attributes conflict to the null set (�� . It is worth noting that in Yager’s rule, the 

BBA associated with conflict is interpreted as the degree of ignorance. 

The relationship between GPA defined by Yager’s rule and BBA defined by 

Dempster’s rule for the universal set X and subset A can be expressed as 

���� � U�%�
)BU���         (2.12) 
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��!� � U�"�
)BU���         (2.13) 

Given the Yager’s rule’s ability to more accurately deal with conflicting evidence, 

we have henceforth adopted this rule of aggregation unless otherwise noted.  

2.3 Evidential framework for uncertainty representation 

Here, the principles of evidence theory are used to develop a methodology for 

representing uncertainty using available data on uncertain variables. For practical 

application of this theory, however, it is necessary to address a number of unresolved 

issues. For example, in evidence theory, initial uncertainty is represented in terms of 

belief and plausibility. Experts’ opinions or their combination with experimental data are 

necessary for the establishment of BBA, but an informative methodology to construct 

BBA using such information has not been established yet (Baynon, 2000).  In many 

studies reported in the literature (Bae et al., 2004, 2006; Helton et al., 2004; Agarwal et 

al., 2004), researchers have focused primarily on uncertainty representation and 

propagation based on assumed belief structures (BBA). 

This section describes the development of a general approach for developing 

BBA for each interval of uncertainty (subsets of a universal set) using available 

knowledge, data and opinions of experts based on the concepts of evidence theory. For 

this purpose, we first categorize different types of relationship between intervals of 

uncertainty and possible types of belief structures.  Then, we will discuss how to 

represent possible values of uncertain variables in intervals using different sets of data, 

and apply the methodology presented in this section to construct a BBA for each interval 

of uncertainty. 
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2.3.1 Relationship types between two adjacent intervals of uncertainty 

Two adjacent intervals of uncertainty can be categorized into one of the three 

different relationship states as described below: 

a) Ignorance: When the number of data points (evidence) within one interval is far 

greater than that in its adjacent interval, the relationship between these two intervals is in 

the form of ignorance. As shown in Figure 2.2(a), the available data is mostly in favor of 

interval 1 and not 2. The smaller dataset in interval 2 can be viewed as providing some 

evidence of imprecision in considering only the dataset in interval 1. In other words, the 

smaller dataset in interval 2 may be interpreted as the imprecision on the true probability 

of interval 1 due to lack of knowledge or data.  

Suppose the number of data points in intervals 1 and 2 are represented by A and B 

(B<A), respectively. While A data points represent evidence in support of interval 1, B 

data points support the ignorance interval that spans over both intervals 1 and 2. Here, the 

criterion to have an ignorance relationship between intervals 1 and 2 is selected to be 

;
" � 0.5, although it is possible to reduce the upper bound to a different value. The BBA 

then takes the form 

���W)�� � "
"X;           (2.14) 

���W), W+�� � ;
"X;        (2.15) 

where W) and W+ denote intervals 1 and 2, respectively. Based on the above BBA, belief 

and plausibility functions for I1, I2, and ignorance interval (i.e., I1 and I2) are given as 

8.9��W)�� � "
"X;                        �9��W)�� � 1     (2.16) 

8.9��W+�� � 0                       �9��W+�� � ;
"X;     (2.17) 

8.9��W), W+�� � 1                    �9��W), W+�� � 1     (2.18) 
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Equations (2.14) and (2.15) are mathematical interpretation of ignorance between 

two adjacent intervals of uncertainty. Equation (2.16) assigns the probability of 
"
"X; to I1 

due to the presence of A data points within this interval. There is a gap of 
;
"X; between 

belief and plausibility of I1 that comes from ignoring the dataset B in I2. In fact, this gap 

;
"X; is interpreted as the epistemic uncertainty or imprecise probability of I1 being 

"
"X;. 

Equation (2.17) considers no probability for I2 since the B data points within this interval 

are insufficient and can support only the ignorance interval. However, the gap 
;
"X; 

between belief and plausibility of I2 (interpreted as the amount of imprecision that the 

true probability of I2 is zero) indicates that the true probability can extend to 
;
"X; due to 

lack of knowledge or data. Equation (2.18) assigns probability of 1 to the ignorance 

interval with no gap between belief and plausibility since there is complete knowledge 

that this interval covers all data points. 

b) Agreement: When there are nearly equal data points in two adjacent intervals, the two 

intervals can be combined into a single wider interval of uncertainty. This type of 

relationship is shown in Figure 2.2(b). Note that the combined interval of uncertainty due 

to the agreement relationship is completely different from the ignorance interval. Suppose 

the number of data within I1 and I2 are A and B (B<A), respectively. Then, an agreement 

relationship exists if  
;
" - 0.8.  There is no BBA for agreement relationship because only 

one combined interval is considered. 
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Figure 2.2 Relationship types between intervals of uncertainty: (a) ignorance, (b) 

agreement and (c) conflict 

c) Conflict: When the ratio of data points in two adjacent intervals falls between 

the limits specified for the previous two relationships (i.e.,  0.5 7 ;
" 7 0.8), the two 

intervals are said to be in conflict (Figure 2.2 (c)). In this case, the number of data points 

within intervals 1 and 2 is enough to support each one separately and no ignorance exists. 

Hence, the BBA for conflicting relationship can be expressed as 

���W)�� � "
"X;        (2.19) 

���W+�� � ;
"X;        (2.20) 

Based on the above BBA, belief and plausibility functions for I1, I2, and ignorance 

interval (I1 and I2) are given as  

8.9��W)�� � "
"X;                        �9��W)�� � "

"X;     (2.21) 

8.9��W+�� � ;
"X;                        �9��W+�� � ;

"X;    (2.22) 

8.9��W), W+�� � 1                      �9��W), W+�� � 1    (2.23) 

Equations (2.19) and (2.20) are mathematical interpretation of conflict between 

two adjacent intervals of uncertainty. Equation (2.21) assigns the probability of 
"
"X; to I1 

due to the evidence of A data points within it. Similarly, Eq. (2.22) assigns the probability 

of 
;
"X; to I2 due to the supporting evidence of B data points within that interval. There is 
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no gap between belief and plausibility in each interval. Since there is no imprecision due 

to lack of knowledge or data, true probability of I1  is (
"
"X;) and that for I2 is (

;
"X;).  

2.3.2 Possible types of belief structure for all intervals of uncertainty 

When considering all intervals of uncertainty for a particular parameter, one of 

three types of belief structure (Baysian, consonant, and general), as shown in Figure 2.3, 

can be encountered. In the Bayesian belief structure, all intervals of uncertainty are 

disjointed and treated as having conflict. Similar to the case of ignorance, all intervals of 

uncertainty in consonant belief structure are in ignorance.  Intervals of uncertainty can be 

in both forms of ignorance and conflict in the case of general belief structure, which is 

more prevalent in uncertainty quantification of a physical system. 

 

 

Figure 2.3 Different types of belief structure: (a) Bayesian, (b) consonant (c) general 

2.3.3 A methodology to construct BBA for intervals of uncertainty 

The ignorance, agreement, and conflict relationships between adjacent intervals of 

uncertainty may result in different types of belief structure depending on distribution of 
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data in the ignorance interval of uncertainty (universal set). The steps for BBA 

construction of uncertain data can be generalized as follows: 

1. Collect all possible values of uncertain data (e.g., Yield stress value from 

testing different material samples) and determine the interval of uncertainty that 

represents the universal set.  

2. Plot a histogram (bar chart) of the collected data. Note that the number of bars 

represents the number of disjointed intervals whose relationships should be established 

for BBA construction. Naturally, increasing the number of intervals (reducing the bounds 

on each interval) results in a more accurate belief structure while increasing its 

complexity and prolonging its computational time.  

3. Identify adjacent intervals of uncertainty that are in agreement and combine 

them. 

4. Identify the interval with the highest number of data points (W�) and establish 

its relationship with each of the adjacent intervals to its immediate left and right (W�). If 

the ignorance relationship should be used between W� and Ia, the BBA follows Eqs. 

(2.14) and (2.15) and takes the form 

���W��� � Z[
Z          (2.24) 

���W�, W��� � Z\
Z         (2.25) 

where D represents the total number of data points, with ]�  and ]� representing the 

number of data points in W� and W�, respectively.  If the conflict relationship should be 

used, the BBA follows Eqs. (2.19) and (2.20) and takes the form 

���W��� � Z[
Z          (2.26) 

���W��� � Z\
Z          (2.27) 
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5. Consider the adjacent interval (Ŵ ) to interval W� with ]^ number of data points. 

The aim is to consider data points of Ŵ  for construction of BBA. Here, two different 

cases are possible: 

a) W� and W� are in ignorance relationship: Since ]� supports only the ignorance 

interval that spans over both W� and W� and does not support W� alone, W� should not be 

compared with Ŵ  whose data points (]^) are to be considered in construction of BBA. 

Instead, in this case, relationship type of Ŵ  should be determined with W�.  

If Ŵ  and W� are in ignorance relationship, the following BBA should be added to 

the former constructed in step 4  

���W�, W�, Ŵ �� � Z_
Z         (2.28) 

Also in this case, in order to reduce members of the belief structure and to save 

computational time for uncertainty propagation stage, it is possible to combine ignorance 

data of W� and Ŵ  and consider the following BBA instead of those determined by Eqs. 

(2.25) and (2.28). 

���W�, W�, Ŵ �� � Z\XZ_
Z        (2.29) 

If Ŵ  and W� are in conflict relationship, the following BBA should be added to the 

former constructed in step 4  

��� Ŵ �� � Z_
Z          (2.30) 

b) W� and W� are in conflict relationship: Since ]� is enough to support W�, its 

relationship type should be determined with Ŵ  whose data points (]^) are to be 

considered in construction of BBA. 

 If Ŵ  and W� are in ignorance relationship, the following BBA should be added to 

the former constructed in step 4  
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   ���Ŵ , W��� � Z_
Z              (2.31)           

 If Ŵ  and W� are in conflict relationship, the following BBA should be added to the 

former constructed in step 4 

��� Ŵ �� � Z_
Z          (2.32) 

This procedure can be repeated to consider data points in subsequent intervals for 

constructing the belief structure. It is important to note that in case of encountering an 

interval with conflicting data, that interval should be compared with next intervals in 

order to determine their relationship type instead of W�. Following this methodology, it 

can be seen that based on distribution of data, all belief structures (Bayesian, consonant, 

and general) are possible. The methodology offers consonant belief structure if all 

intervals are in ignorance with W�. On the other hand, it offers Bayesian belief structure 

as long as all disjointed intervals of histogram include sufficient data. In case of existing 

intervals with both sufficient and insufficient data, general belief structure will be 

suggested by the presented methodology. In the next section, we will provide an example 

for further clarification of the presented methodology. 

2.4 Evidential framework for uncertainty propagation and measurement 

Uncertainty propagation of a response with dependence on multiple uncertain 

variables requires the construction of a joint belief structure, which serves a similar role 

as the joint probability density function in probability theory. (Agarwal et al., 2004; Bae 

et al., 2004)  A joint belief structure is obtained by the Cartesian product of the belief 

structures of all uncertain variables for a structural system. (Agarwal et al., 2004; Bae et 

al., 2004) This involves multiplication of the final BBA found for each subinterval of one 

uncertain variable with those of the other variables involved in the Cartesian product. A 
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portion of a simple joint belief structure for a hypothetical 3-variable space is shown in 

Figure 2.4 with double arrows showing the intervals for each variable. Three joint 

proposition “cells” are shown in Figure 2.4  with BBA1 = m(x1)m(y3)m(z2), BBA2 = 

m(x2)m(y1)m(z3), and BBA3 = m(x3)m(y2)m(z1). It is worth noting that the joint 

proposition cells may not always be spaced as shown in Figure 2.4, with the possibility of 

one cell intersecting or possibly overlapping completely one or more other joint 

proposition cells.  

 

 

Figure 2.4 Example of a joint belief structure in 3-variable space 

The discrete form of the joint belief structure prevents its modeling by a 

mathematical function, and for uncertainty propagation, it is necessary to evaluate the 

system response for every combination of uncertain parameter values within each cell. 

For response evaluations involving monotonic functions, analyses are performed only at 

the vertices of each joint proposition cell according to the vertex method of Dong and 

Shah (1987). Otherwise, it is necessary to search the entire continuous space within each 

cell to find the response interval. When problems comprise simple analytical functions, 

the evaluation of the response may not be very expensive, but computational complexity 

and cost can drastically increase when: 1) there are many uncertain parameters with each 
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defined in multiple piece-wise continuous bands or intervals; 2) response evaluation 

requires expensive high fidelity simulation; and 3) the response functions of interest are 

non-monotonic requiring the solution of numerous nonlinear optimization problems in 

search of the minimum and maximum response values in each joint proposition cell. 

To alleviate the computational complexity, a methodology that relies on 

metamodes for propagation of represented uncertainties is introduced. First, using the 

design and analysis of computer experiments, separate surrogate models based on 

different formulation of a physical system are developed to relate their uncertain 

variables to their response. Then, several global optimizations using Genetic Algorithm 

(GA) is performed to find the upper and lower bounds of the response for each member 

of the constructed joint belief structure of uncertain variables. Note that due to the 

disjoint form of the constructed belief structure, an optimization problem with different 

sets of side constraints of uncertain variables must be setup in each cell. 

Different formulations of a physical system result in different propagated belief 

structures for simulation responses. As a result, the choice of appropriate formulation of a 

physical system is subject to model selection uncertainty. For modeling model selection 

uncertainty and reducing the associated epistemic uncertainty, Yager’s combination rule 

(1987, 1987a) is used to combine the propagated belief structures of different 

formulations of a physical system for simulation response into a single belief structure. 

Finally, for the sake of uncertainty quantification, belief and plausibility of the 

simulation response are found using two different approaches. In the first approach, 

precision intervals for observed value of simulation response are constructed and the 

associated belief and plausibility are estimated using the determined propagated belief 

structure. In the second approach, a belief structure for simulation response is constructed 
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by first collecting all available evidence from experimental, analytical and numerical 

sources following the approach in section 2.3. Then, the belief and plausibility of the 

constructed belief structure for simulation response are estimated using the determined 

propagated belief structure. 

2.5 Modeling field uncertainty 

Field uncertainty describes spatial variation of the uncertain variables. This type 

of uncertainty can be encountered in a structural component or system where material or 

other properties vary from one location to another to the extent that the use of a single 

random variable for each parameter will produce inaccurate results. Representation and 

propagation of field uncertainty in materials using evidence theory is one main aspect of 

this dissertation.   

Random field theory has been employed in a number of investigations (Xiaolei et 

al, 2009; Choi et al, 2007) to account for material field uncertainty. Instead, this 

dissertation introduces a field belief structure and joint field belief structure to 

accommodate field uncertainty using the framework of evidence theory.  

Each cell of a joint field belief structure includes a number of sub-cells that are 

one possible member of the constructed joint belief structure for all uncertain variables. 

The number of sub-cells in each cell of the joint field belief structure is equal to the 

number of regions of the product that are more prone to be affected by spatial variation of 

uncertain variables. Each sub-cell that is a member of the constructed joint belief 

structure for uncertain variables is responsible for representation of uncertainty for each 

region of the product recognized potentially to have different representation of material 

uncertainties as opposed to the other regions. In fact, to consider field uncertainty, all 
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combinations of intervals in the belief structure of one uncertain variable in one region 

with those of all other variables in every other region must be considered. More details 

associated with field uncertainty will be presented later in chapter 8. 

 



 

29 

CHAPTER III 

PLASTICITY MODELS 

In this chapter, the JC and BCJ plasticity models are presented. Also, a physics-

guided numerical fitting approach is presented for determination of material constants of 

BCJ plasticity model. These models describe the physical response of a metallic material 

under the influence of external loads. 

3.1 Johnson-Cook plasticity model 

The basic Johnson-Cook (JC) plasticity model gives a semi-empirical relationship 

for the von Mises flow stress that is formulated as: (Johnson and Cook, 1983; Holmquist 

and Johnson, 1991) 

� � �! * 8`K��1 * G90`ab��1 c db��      (3.1) 

where ` is the equivalent plastic strain and `ab � `a `ae⁄  is the dimensionless plastic strain 

rate with `ae � 1.0 gB). The constant A represents the yield stress of the material tested at 

room temperature and
-1s1* =ε& , B and n represent strain hardening effects, whereas C 

and m control the strain rate and temperature effects, respectively. Tb is non-dimensional 

temperature given as: (Tanner et al., 1999) 

db � iBijkk[
i[lmnBijkk[         (3.2) 

with an alternative form (Gottstein et al., 1983) 

db � i
i[lmn         (3.3) 

All temperature quantities in Eqs. (3.2) and (3.3) are measured in units of Kelvin. 

In Johnson et al., 1985, authors adopted the formulation in Eq. (3.3) for the non-
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dimensional temperature. However, in their previous studies (Johnson and Cook, 1983; 

Holmquist and Johnson, 1991) as well as others reported in the literature (Tanner et al., 

1999), Eq. (3.2) was considered for the non-dimensional temperature. The choice of 

appropriate form of non-dimensional temperature, representing expert opinion, is subject 

to epistemic uncertainty, and it is not obvious which formulation would describe more 

accurately the physics of complicated inelastic material behavior.  Here, we consider both 

formulations for non-dimensional temperature to address epistemic uncertainty associated 

with model selection.  

It is worth noting that different formulations for capturing the strain rate effects 

have also been proposed. They include log-quadratic Huh-Kang, exponential Allen-Rule-

Jones, and exponential Cowper-Symonds. (Hallquist, 1993) For more accurate 

representation of model selection uncertainty, all alternative formulations of JC should be 

considered. In an effort to limit the scope of this dissertation, alternative models of JC 

plasticity are confined only to the two forms of non-dimensional temperature and Eq. 

(3.1). Note that the focus is mainly on representation of uncertainty for different types of 

JC material models in intervals with assigned BBA.  

3.2 Constitutive equations of BCJ plasticity model 

The BCJ plasticity model (Bammann, 1984; Bammann et al. 1993, 1996) is a 

dislocation-based internal state variable (ISV) model that describes the rate- and 

temperature-dependent finite deformation behavior of ductile metals. The complete 

version of the model is envisioned to have a number of ISVs that should represent such 

material features as dislocation hardening, void-induced damage, plastic anisotropy, 

recrystallization and grain growth, as well as deformation-induced phase transformations. 
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The particular version of the model used in this work mainly accounts for the plasticity 

aspects of the material response, i.e., the kinetics of plastic flow and dislocation 

hardening. In essence, this particular version of the model a) introduces a dynamic yield 

surface whose evolution is governed by temperature, strain rate and stress state; and b) 

contains two plastic state variables representing isotropic and kinematic hardening which 

model, respectively, the size and location of the dynamic yield surface. The evolution 

equations of these variables assume that the material hardening processes such as storage 

of dislocations (isotropic hardening) and formation of cells and cell boundaries 

(kinematic hardening) are balanced by recovery processes such as dislocation cross slip 

and dislocation climb.  

The basic formulation of the plasticity and temperature aspects of the model relies 

on an extended description of the large deformation kinematics using the multiplicative 

decomposition of the deformation gradient into thermal, plastic and elastic components 

(Marin et al., 2006). This kinematics coupled with a thermodynamic approach with ISVs, 

as proposed by Coleman and Gurtin (Coleman et al., 1967), gives the formulation of BCJ 

a strong mathematical basis that relies upon very well known principles of continuum 

mechanics. The 3-D model equations defined by Eqs. (3.4) through (3.8) below describes 

the elastic law,  kinematics, and the plasticity (flow rule and hardening laws), and are 

valid for small elastic strains (typical in metals). 

=
oσ  �a c op� * � op � q1
r]psW * 2u]p      (3.4) 

]p � ] c ]QK c ]OP,   op � o co$     (3.5) 
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Where IN mσσσασξ
ξ

ξ
ξσ −=′−′=== ,
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,,

2

3
with kkm σσ 31= . 

In Eq. (3.4), 
oσ  is an objective stress rate, q and u are the Lame´s constants, � is the 

Cauchy stress, op  is the elastic spin, I is the identity tensor, and tr(●) is the trace 

operator. Decomposing the skew symmetric and symmetric parts of the velocity gradient 

into elastic and plastic parts, one derives Eq. (3.5) that is written for the elastic stretching 

]p and the elastic spin op. In this equation, ]QK is the deviatoric inelastic strain rate, ]OP 

is the stretching rate due to the thermal expansion, and o$ is the plastic spin assumed to 

be zero here.  Here, ] and o denote the total deformation and spin which are defined by 

the boundary conditions. As shown by Eq. (3.6), the deviatoric inelastic flow rule ]QK 

that encompasses the regimes of creep and plasticity is a function of the kinematic and 

isotropic ISVs  � and R, respectively, and the functions f(T), V(T) and Y(T) which have an 

Arrhenius-type temperature dependence.  The evolution equations of � and R are 

presented in a hardening-minus-recovery format by Eqs. (3.7) and (3.8) in which h(T) and 

H(T) are the hardening moduli, 
v�d� and wv�d� are the functions describing dynamic 

recovery, 
x�d� and wx�d� are the functions representing static recovery, and )(•  is the 

norm operator. The temperature dependence of these material functions are summarized 

in Table 1, where the Ci, i = 1,18 are material constants or parameters. Note that these 

parameters include sources of uncertainty reflecting indirectly the variability and 

incertitude in the material microstructure. The BCJ plasticity model is implemented in 

LSDYNA as MAT_051 with the material constants in Table 3.1 defined as input 

parameters. 
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Table 3.1 Relationship between parameter functions and material constants of the BCJ 

plasticity model 

y�d� � G).�z �cG+ d⁄ � 
x�d� � G)).�z �cG)+ d⁄ � {�d� � G|.�z �G} d⁄ � wv�d� � G)|.�z �cG)} d⁄ � ��d� � G~.�z �cG� d⁄ � ��d� � G)~.�z �G)� d⁄ � 
v�d� � G�.�z �cG� d⁄ � wx�d� � G)�.�z �cG)� d⁄ � 2�d� � G�.�z �G)� d⁄ �  

3.2.1 BCJ Equations for the Case of Uniaxial Stress 

The unknown material constants of the BCJ model shown in Table 3.1 are 

determined by comparing model predictions to experimental data from specimens under 

uniform stress states (e.g. uniaxial stress-strain curves) at constant temperatures and 

strain rates. For the case of uniaxial stress (tension or compression) under isothermal 

conditions, the BCJ model equations reduce to 

)( pE εεσ &&& −=                         (3.9) 
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[ ] 2)()()( RTRTRTHR s

p

d

p +−= εε &&&      (3.12) 

where σ  is the only non-vanishing component of the Cauchy stress tensor; α, εa , and εa� 

are the normal components along the principal axis of tensors α, D, and DM�, respectively.  

Here, we assume that shortly after the yield point, the plastic strain rate ε�a  can be 

reasonably approximated by the total strain rate εa , i.e., εa � εa� (viscoplasticity). Also, for 

each experimental stress-strain curve, the temperature T and strain rate εa  are constant; 

hence, the variables are mainly functions of strain ε. Considering this fact and employing 

the chain rule of differentiation, one can show that for each experimental strain-stress 

curve, the time derivatives of α and R can be expressed as αa � ��
�� � εa ���� , Ra � ��

�� �
εa ����   .  
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Considering these assumptions, Eqs. (3.10) to (3.12) can then be written as 
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The integration of Eqs. (3.14) and (3.15), with the initial values of α  and R set to 

zero, yields 

� � � P�a
����aX��� 1
02 ���P�a

����aX���
�a �       (3.16) 

w � � ��a
����aX��� 1
02 �����a

����aX���
�a �       (3.17) 

Note that when closed form solutions of the differential constitutive equations are 

not possible, one will have to rely on the numerical integration of the equations to 

perform the calibration of the material constants. As the initial guess used to start such 

calibration procedure will affect the quality of the fitting, the approach presented in 

Section 3.2.2 may be used to minimize this effect. 

By inverting the flow rule in Eq. (3.13) and substituting Eqs. (3.16) and (3.17), 

one obtains  

� � � P�a
����aX��� tanh ���P�a

����aX���
�a � * � ��a

����aX��� tanh �����a
����aX���
�a � *  

  y sinhB) ¡�a¢£ * {       (3.18) 

Equation (3.18) describes the stress as a function of the ISVs, strain rate and temperature. 

3.2.2 The New Physics-Guided Fitting Approach 

The ability of the BCJ plasticity model to predict the mechanical behavior of 

metals under different temperatures and strain rates is strongly dependent upon the 

correct determination of its eighteen material constants. Recently, Guo et al. (2005) 

determined the BCJ material constants for Ti-6Al-4V titanium, AISI 52100 steel, and 
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6061-T6 aluminum alloy through nonlinear least-squares fitting of the BCJ model to 

experimental stress-strain data of the respective materials.  One observation they made 

was that the arbitrary choice of starting values for the constants in the nonlinear fitting 

procedure does not guarantee the best fit. Considering that no physical bounds have been 

established for the eighteen material constants of BCJ plasticity model, the task of finding 

the best fit can be very tedious and present a source of uncertainty. To address this 

challenging task, Guo et al. (2005) began by fitting approximately three constants at a 

time while holding the others fixed, and monitored the fitting improvement by checking 

the maximum and average residual (fitting errors) as a reference to tune the constants in 

each attempt until a satisfactory fit was obtained. However, that fitting approach is 

tedious, nonphysical, and relies heavily on the numerical aspects of fitting. In fact, all 

constants can be fitted simultaneously with stress-strain data at different temperatures and 

strain rates with no physical interpretation of the fitting procedure. That approach also 

requires a large number of stress-strain curves, which may not be practical when faced 

with scarcity of data for a particular material. In this section, we introduce a physics-

guided numerical fitting approach to address the difficulties in determining the constants 

of BCJ plasticity model. 

For stress-strain curves at a constant temperature, the parameter functions of the 

BCJ model in Table 3.1 will have a fixed value for temperature. The proposed fitting 

approach suggests fitting of the parameter functions with two separate sets of stress-strain 

curves at low and high temperatures. While reducing the unknown constants from 

eighteen to nine, this procedure requires the duplication of the fitting process for sets of 

stress-strain curves at two different temperatures.  Suppose that for an arbitrary parameter 

function Y(T) of the same general form as those in Table 3.1, i.e., {�T� � C)exp�C+ T⁄ �, 
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two values (say Y) and Y+) are known through fitting the model with two different sets of 

stress-strain curves of various strain rates at low temperature T) and high temperature T+. 

Then, constants C) and C+ can be easily determined using the following equations: 

G+ � i:i<
i<Bi: 90 ¡T:T<£         (3.19) 

G) � {).�z © Bi<
�i<Bi:� 90 ¡T:T<£ª        (3.20) 

Hence, using the above formulations, material constants that represent the material 

behavior at different temperatures and strain rates can be determined. This decreases 

uncertainty in the traditional fitting approach by considering the material behavior at 

different temperatures and reducing the number of constants that need to be fitted 

simultaneously.  

In addition, the proposed fitting method suggests fitting the unknown constants of 

the evolution equations for the hardening variables (Eqs. (3.7) and (3.8)) and the equation 

for the flow stress (inverse of Eq. (3.6)) separately in different stages while keeping the 

physical link and flow of information among them. This reduces the fitting of nine 

parameters to three at a time in three stages, easing the process of fitting. Details of the 

physics-guided numerical fitting approach are provided below. 

3.2.2.1 Evaluation of hardening parameters 

Loading and unloading experiments on many ductile materials have shown that 

the flow stress in reverse direction softens sooner than that of forward direction, as shown 

in Figure 3.1, resulting in the reduction of reverse flow, a phenomenon known as 

Baushinger effect (Jordon et al., 2007). This behavior is mainly because the mechanical 

response of metals in plastic deformation is affected by deformation history in addition to 

the current stress state. The physics-guided fitting approach considers such effects in 
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computing the hardening constants through experimental evaluation of the ISVs � and R 

using forward-to-reverse yield data of materials at different temperatures and strain rates.  

 

 

Figure 3.1 Quantification of �¢ , �� , �« from experimental stress strain curve (Jordon et 

al., 2007) 

The experimental values of ISVs � and R can be found through definition of the 

von-Misses yield surface for both forward and reverse loading as given by  

¬�¢ c �¬ c w c �« � 0          (3.21)     

|�� c �| c w c �« � 0             (3.22) 

where �¢ , �� , �« are the forward yield, reverse yield, and initial yield stress, respectively 

(see Figure 3.1). As �¢ - α > 0 and �� - α < 0 (�� < 0), one can derive from the Eqs. 

(3.21) and (3.22) the expressions for  � and R as  

� � ®¯X®j
+           (3.23) 

w � ®¯B®j
+ c�«        (3.24) 

The constants of the hardening evolution equations are derived as follows:  

Step 1: Collect forward-to-reverse yield data of material at different strains and 

strain rates at a low temperature d). 
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Step 2: Quantify experimental values of hardening parameters � and R using Eqs. 

(3.23) and (3.24) and the collected data in Step 1.  

Step 3: Fit Eqs. (3.16) and (3.17) individually using the � and R values found in 

Step 2 and the nonlinear least-squares fitting approach to determine values of the 

hardening functions 2, 
x, 
v , �, wx and wv  for  d). When closed form expressions of 

ISVs a and R are not easy to obtain, initial guesses for hardening functions should be 

made. Then, differential equations of a and R should be solved numerically to obtain their 

plots as a function of strain. Finally, these estimated plots should be compared with the 

corresponding experimental plots. In case a good match is not found, another set of 

values for hardening functions should be selected and the process should be repeated 

until a good match is obtained. 

Step 4: Repeat Steps 1 to 3 for a high temperature d+; and  

Step 5: Use Eqs. (3.19) and (3.20) along with the derived parameters of the 

evolution equations at temperatures d) and d+ to solve for the corresponding material 

constants (C7 to C18).  

3.2.2.2 Evaluation of flow parameters 

After computing the twelve hardening constants, the additional six constants for 

the flow rule are determined using four stress-strain curves under monotonic loading: two 

(low and high strain rates) at a low temperature and the other two (also low and high 

strain rates) at a high temperature. Note that the parameters of the hardening evolution 

equations in Eq. (3.18) are known from the fitting procedure above.  Then, the unknown 

parameters to be fitted in Eq. (3.18) are Y, V and f. The step-by-step procedure to 

determine the constants of flow rule equation is as follows:  
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Step 1: Fit Eq. (3.18) with two stress-strain curves of high and low strain rates 

simultaneously using a genetic algorithm-based multi-functional nonlinear least-squares 

fitting at low temperature d) to determine unknown parameters of Y, V and f. 

Step 2: Repeat Step 1 for high temperature d+. 

Step 3: Use Eqs. (3.19) and (3.20) along with derived parameters of flow rule 

equation at temperatures d) and d+ to solve for the corresponding material constants (C1 

to C6). 

3.2.2.3 Determination of BCJ constants for AL 7075-T651 

As an illustrative example of the presented fitting approach, the material constants 

of 7075-T651 aluminum alloy are determined using the experimental data provided in 

(Lee et al., 2000; Renolds et al., 2000; Jordon et al., 2007; Guo et al., 2009). Forward-to-

reverse yield of this alloy at different strains, temperatures, and strain rates as shown by  

Table 3.2 are used to estimate the experimental values of α and R. Fitting the hardening 

evolution equations of the BCJ model using the data in Table 3.2 yields the 

corresponding material constants C7 to C18 as shown in Table 3.3.  The material constants 

C1 to C6 of the flow rule are computed using four stress-strain curves at different strain 

rates and temperatures (see Figure 3.2).  Figure 3.2 compares the generated stress-strain 

curves by the BCJ model using the derived constants in Table 3.3 with experimental data 

that are used in the fitting process. As expected, the generated curves and those from the 

experiments match very well. As an additional check, the computed constants in Table 

3.3 are used to predict the experimental stress-strain curves at other temperatures and 

strain rates. The predicted and experimental responses curves are shown in Figure 3.3.  

As observed, there is a fairly good agreement between experimental and predicted curves. 
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This verifies the accuracy of the BCJ material constants using the presented fitting 

approach. 

Table 3.2 Evaluation of state variables � and R at different strains, temperatures and 

strain rates. 

` �«(MPa) �¢(MPa) ��(MPa) �(MPa) w(MPa) 

T=297 K, `a = 0.1 

0.01 454 521 - 439 41 26 

0.03 454 549 - 390 79.5 15.5 

0.05 454 583 - 363 110 19 

T=673 K, `a = 0.01 

0.04 60.3 65.3 - 60.3 2.5 2.5 

0.31 60.3 63.3 - 61.4 0.95 2.05 

0.55 60.3 61.8 - 59.2 1.3 0.2 

Table 3.3 Calculated BCJ material constants for 7075-T651 aluminum alloy. 

C1 

(MPa) 

C2 

(K) 

C3 

(MPa) 

C4 

(K) 

C5 

(1/s) 

C6 

(K) 

C7 

(1/MPa) 

C8 

(K) 

C9 

(MPa) 

312.86 154.78 27.2 818.26 6914.10 233.39 9.00 1632.34 148.36 

C10 

(K) 

C11 

(s/MPa) 

C12 

(K) 

C13 

(1/MPa) 

C14 

(K) 

C15 

(MPa) 

C16 

(K) 

C17 

(s/MPa) 

C18 

(K) 

942.28 100.67 2517.12 98.53 171.56 8950.63 279.18 7363.75 3316.82 

 

 

 

Figure 3.2 Comparison of the fitted curves and the corresponding experimental data 
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Figure 3.3 Comparison of the predicted curves and the corresponding experimental 

data 

The proposed fitting approach will be used in Chapter 4 to derive all possible 

material constants of BCJ plasticity model for  AL 7075-T651 material for the sake of 

uncertainty representation. 
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CHAPTER IV 

UNCERTAINTY REPRESENTATION OF PLASTICITY MODELS 

In this chapter, the evidence-based framework presented in chapter 2 is used to 

represent epistemic uncertainty in constitutive models by focusing on JC and BCJ 

plasticity models. To this end, different formulations of JC material model along with 

multiple sources of experimental data and alternate approaches for fitting the model 

constants have been considered.  Also, the introduced physics-guided fitting approach in 

chapter 3 is used to derive all possible material constants of BCJ plasticity model for 

uncertainty representation. 

4.1 Sources of uncertainty in plasticity models 

Due to the complicated dynamic material behavior, plasticity models (including 

JC) involve epistemic uncertainty. Three major sources of uncertainty addressed 

specifically in this dissertation are as follows: 

a) Uncertainty in test data: Various tests have been suggested for finding the 

material constants of plasticity models for a particular material. These tests include 

torsion, tension, compression, biaxial, or tri-axial loading conditions. Besides the type of 

test, the testing equipment and the measurement instruments used can also influence the 

test data. Different sets of stress-strain curves that vary in range of strain rate and 

temperature often produce different model constants, which—in turn—affect the 

accuracy of the resulting JC model. Here, we consider three different sources of 

experimental data, and all available stress-strain curves generated by each experimental 
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source for different temperatures and strain rates are taken into account to obtain a 

complete range of values for all model constants.  

b) Uncertainty in fitting method: Model constants should be found in such a way 

that the plasticity model fits experimental stress-strain curves of the material in different 

strain rates and temperatures.  However, different fitting methods may yield different 

model constants. Here, we consider two different methods as suggested in the literature.  

c) Model selection uncertainty: This type of uncertainty arises from the fact that 

in large deformation simulation, a single constitutive material model should be chosen 

from a set of existing alternative models as the most appropriate choice for analysis.  

However, there is no evidence to support the idea that the selected material model for a 

specific large deformation simulation provides more reliable results. As mentioned 

earlier, JC plasticity model can be represented by Eq. (3.1) or one of its variants resulting 

in an epistemic uncertainty about the formulation that provides more reliable results. In 

order to address this issue, two different forms of JC material model are considered. 

4.1.1 Sources of experimental stress-strain curves 

Obtaining a valid test data that accurately represents dependency of mechanical 

properties of a material on strain rate and temperature requires a test system that is 

capable of a) producing the required dynamic loads; b) obtaining the stress state at a 

desired point of a specimen; and c) measuring the stress and stress rates at the selected 

point (Hoge, 1966). Various testing techniques have been suggested to address each of 

these requirements. However, the resulting test data is always subject to uncertainty.  

Here, we consider three different experimental sources for modeling uncertainty in test 

data for 6061-T6 Aluminum alloy.  
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For experimental source 1, compression data at high rates are obtained using a 

split Hopkinson pressure bar (SHPB) apparatus (Nicholas, 1982) The technique considers 

the transmission of a stress wave through the specimen that is sandwiched between two 

elastic bars to obtain high-rate stress-strain curves. Holt et al. (1967) describe the method 

of analysis with discussion of error in strain rate, as well as stress and strain 

measurements. As for quasi-static and intermediate rate compression data, an MTS servo-

controlled hydraulic testing machine was used to provide the stress-strain curves 

(Nicholas, 1982). Johnson and Holmquist (1989) provide torsion and tension test data for 

both quasi-static and dynamic loading cases at low and high temperatures.  

Data (Hoge, 1963) for dynamic tensile loads are used for experimental source 2. 

As reported by Hoge (1966), a Dynapak metalworking machine that is modified into a 

test fixture and is capable of producing the required dynamic loads for uniaxial and 

certain biaxial tensile loads is used to obtain dynamic stress-strain curves. Also, the static 

tests (Hoge, 1966) were done on a Baldwin universal testing machine.  

As for experimental source 3, dynamic data provided by Lee et al. (2000) is used. 

Dynamic compression tests with SHPB were carried out at room temperature under strain 

rates ranging from 1000 gB) to 4000 gB) (Lee et al., 2000). Tension experimental data 

(Gray et al., 1994) for both dynamic and static tests are also used as part of experimental 

source 3.  

Table 4.1 summarizes the testing conditions for all three experimental sources 

used for determination of constants in JC model. 
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Table 4.1 Testing conditions for three experimental sources of data 

Curve # 

Experimental  Source 1     

Curve # 

Experimental  Source 1(Continued)     

Type 
Strain Rate 

(s
-1

) 

Temperature 

(K) 
Type 

Strain Rate 

(s
-1

) 

Temperature 

(K) 

1 Tension 634 605 11 Torsion 11 293 

2 Tension 627 505 12 Torsion 1 293 

3 Tension 624 472 13 Torsion 0.001 293 

4 Tension 622 293 14 Torsion 0.1 293 

5 Torsion 99 293 15 Compression 800 293 

6 Torsion 48 293 16 Compression 0.008 293 

7 Torsion 39 293 17 Compression 40 293 

8 Torsion 239 293 18 Compression 2 293 

9 Torsion 130 293 19 Compression 0.1 293 

10 Torsion 126 293 - - - - 

Experimental  Source 2      Experimental  Source 3     

1 Tension 4.8e-5 297 1 Compression 1000 298 

2 Tension 28 297 2 Compression 2000 298 

3 Tension 65 297 3 Compression 3000 298 

4 Tension 1e-05 533 4 Compression 4000 298 

5 Tension 18 533 5 Tension 5.7E-04 373 

6 Tension 130 533 6 Tension 1500 373 

7 Tension 1e-05 644 7 Tension 5.7E-04 473 

8 Tension 23 644 8 Tension 1500 473 

9 Tension 54 644 - - - - 

4.1.2 Fitting methods of material constants 

The following two fitting methods have been broadly adopted in the literature 

(Johnson and Cook, 1983; Holmquist and Johnson, 1991) for deriving the constants of JC 

plasticity model: 

a) Method 1: In this method, the constants are fit simultaneously. Three stress-

strain curves are selected from the available set of curves corresponding to each 

experimental source listed in Table 4.1. Curve a corresponds to low strain rate/room 

temperature (isothermal stress-strain curve) to consider flow stress behavior at constant 

temperature and strain rate, curve b corresponds to high strain rate/room temperature, and 

curve c corresponds to high temperature/low-to-medium strain rate condition. (Holmquist 

and Johnson, 1991) From curve a, three points are chosen, one corresponding to the yield 

point, one corresponding to the initial stage of work hardening, and one corresponding to 
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high strain level. Additionally, one point is selected from curve b and another from curve 

c, both corresponding to the initial stage of work hardening. The result is five equations 

in five unknowns that are solved simultaneously to find the constants in Johnson-Cook 

model in Eq. (3.1). 

b) Method 2: In this method, the constants are fit in three separate stages. First, 

the yield and strain hardening constants (A, B, n) are obtained from isothermal tests at 

relatively low strain rates. Then, the strain rate constant, C is determined from curves at 

different strain rates. Finally, the thermal softening constant, m is determined from test 

data at various temperatures. In all stages, the nonlinear least squares method is used to 

find the respective constants. Johnson and Cook (1983) provide detailed information on 

the fitting approach to determine the five constants. 

4.1.3 Determination of uncertainty intervals for five model constants 

To recap, we have multiple stress-strain curves from three sources of 

experimental data, two models of JC based on the use of Eq. (3.2) or (3.3) for non-

dimensional temperature, and two methods for fitting the constants in Eq. (3.1). For 

accurate uncertainty quantification, all possible combinations of stress-strain curves 

stemming from different experimental sources (as listed in Table 4.1), models of non-

dimensional temperature, and fitting methods must be considered when deriving the 

constants in Eq. (3.1). Here, models 1 and 2 refer to Eqs. (3.2) and (3.3), respectively. 

Table 4.2 lists the number of feasible sets of constants (A, B, n, C, and m) that can be 

derived from the selected combination of factors (i.e., experimental source, model, and 

method). Each feasible set represents a piece of evidence that will be used in the 

representation of epistemic uncertainty as discussed later. 
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 Following the selection of the feasible sets of constants, it is necessary to 

construct histograms to help identify the number of data points in each disjoint interval 

for a specific constant. The choice of intervals is based on adequate separation of the 

large dataset to reveal the significance of the number of data points (evidence) within 

each interval. In Tables 4.3 and 4.4, the number of intervals along with the range and 

quantity of data points within each interval are specified in lieu of plotting individual 

histograms. Intervals with substantially small number of data points are excluded in 

Tables 4.3 and 4.4 for brevity, although all data points are included in the actual analysis.  

Table 4.2 Combination of factors and resulting number of feasible sets of constants  

Experimental Source 1 

Model 1 
 

Experimental Source 2 

Model 1 
 

Experimental Source 3 

Model 1 

Method 1 Method 2  Method 1 Method 2  Method 1 Method 2 

4220 2853  50 38  52 60 

Model 2  Model 2  Model 2 

3470 2852  40 38  36 60 

Table 4.3 Distribution of intervals and range of values for constants of Johnson-Cook 

model 1 

Interval   
Experimental 

 Source 1 
 

Experimental 

 Source 2 
 

Experimental 

Source 3 

  Range Data No.  Range Data No.  Range Data No. 

Constant A, Fitting Method 1 
1  [90.40, 127.18] 210  [144.53, 165.70] 4  [227.00, 253.15] 24 

2  [127.18, 163.96] 120  [208.05, 229.22] 30  [331.61, 357.76] 20 

3  [163.96, 200.74] 245  [229.22, 250.40] 10  [357.76, 383.91] 8 

4  [200.74, 237.51] 1395  [250.40, 271.57] 6  - - 

5  [237.51, 274.29] 1330  - -  - - 

6  [274.29, 311.07] 920  - -  - - 

Constant A, Fitting Method 2 
1  [254.00, 260.5] 688  [222.00, 241.33] 20  [227.00, 244.00] 24 

2  [260.50, 267.00] 555  [260.67, 280.00] 18  [312.00, 329.00] 36 

3  [273.50, 280.00] 909  - -  - - 

4  [280.00, 286.50] 411  - -  - - 

5  [286.50, 293.00] 290  - -  - - 

Constant B, Fitting Method 1 
 1  [11.51, 99.30] 3425  [6.37, 76.77] 34  [38.96, 121.35] 24 

2  [99.30, 187.09] 610  [76.77, 147.19] 12  [121.35, 203.74] 16 

3  [187.09, 274.89] 95  [147.19, 217.59] 2  [203.74, 286.13] 4 

4  [274.89, 362.68] 45  [499.23, 569.64] 2  [368.52, 450.91] 4 
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Table 4.3 (Continued) 

 
5  [11.51,1416.20] 45  - -  [615.69, 698.08] 4 

Constant B, Fitting Method 2 
1  [100.86, 113.55] 1847  [324.51, 341.00] 21  [127.62, 133.36] 30 

2  [113.55, 126.24] 467  [439.94, 456.43] 17  [167.81, 173.35] 30 

3  [138.93, 151.2] 362  - -  - - 

4  [164.31, 177.00] 177  - -  - - 

Constant n, Fitting Method 1 
1  [0, 0.618] 3620  [0, 0.0398] 34  [0, 0.2588] 6 

2  [0.618, 1.235] 435  [0.0398, 0.0797] 6  [0.2588, 0.5175] 12 

3  [1.235, 1.853] 100  [0.0797, 0.1195] 2  [0.5175, 0.7763] 20 

4  [1.853, 2.470] 15  [0.1195, 0.1594] 2  [1.2938, 1.5525] 4 

5  [2.470, 4.940] 50  [0.1992, 0.2390] 6  - - 

Constant n, Fitting Method 2 
1  [0.127, 0.179] 329  [0.4450, 0.4664] 17  [0.5467, 0.5735] 30 

2  [0.179, 0.230] 1369  [0.5520, 0.5730] 21  [0.6811, 0.7080] 30 

3  [0.281, 0.333] 1162  - -  - - 

Constant C, Fitting Method 1 
1  [0, 0.057] 3235  [0.005, 0.0297] 40  [0.0078, 0.0152] 36 

2  [0.057, 0.111] 410  [0.029, 0.054] 6  [0.0152, 0.023] 8 

3  [0.111, 0.170] 135  [0.226, 0.250] 4  [0.023, 0.0299] 4 

4  [0.170, 0.227] 165  - -  [0.074, 0.0813] 4 

5  [0.227, 0.284] 15  - -  - - 

6  [0.284, 0.341] 60  - -  - - 

7  [0.341, 0.397] 150  - -  - - 

8  [0.454, 0.511] 15  - -  - - 

9  [0.511, 0.568] 35  - -  - - 

Constant C, Fitting Method 2 
1  [0, 0.009] 1017  [0.0034, 0.011] 12  [0.0052, 0.0173] 30 

2  [0.009, 0.018] 944  [0.019, 0.026] 6  [0.0173, 0.029] 6 

3  [0.018, 0.026] 605  [0.019, 0.034] 6  [0.042, 0.054] 2 

4  [0.026, 0.035] 235  [0.049, 0.056] 5  [0.054, 0.066] 8 

5  [0.035, 0.044] 52  [0.056-, 0.064] 5  [0.066, 0.078] 14 

6  - -  [0.072, 0.0792] 4  - - 

Constant m, Fitting Method 1 
1  [0.623, 0.966] 975  [0.675, 1.074] 6  [0.488, 0.689] 32 

2  [0.966, 1.309] 1460  [1.074, 1.474] 28  [1.091, 1.263] 16 

3  [1.309, 1.652] 610  [1.474, 1.873] 6  [1.494, 1.693] 4 

4  [1.652, 1.995] 1175  [2.272, 2.671] 6  - - 

5     [2.671, 3.071] 4  - - 

Constant m, Fitting Method 2 
1  [0.897, 2.273] 1740  [0.285, 1.046] 8  [0.633, 0.699] 25 

2  [2.273, 3.649] 907  [1.046, 1.807] 9  [0.699, 0.765] 4 

3  [3.649, 5.026] 171  [1.807, 2.568] 21  [0.765, 0.831] 5 

4  [5.026, 6.402] 29  - -  [0.831, 0.897] 2 

5  [6.402, 7.779] 5  - -  [0.897, 0.963] 8 

6  [7.779, 9.155] 1  - -  [0.963, 1.030] 16 
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Table 4.4 Distribution of intervals and range of values for constants of Johnson-Cook 

model 2 

Interval  

# 
 

Experimental 

 Source 1 
 

Experimental  

Source 2 
 

Experimental  

Source 3 

  Interval Data No  Interval Data No  Interval Data No 

Constant A, Fitting Method 1 

1  [107.1, 191.3] 150  [145.9, 167.4] 4  [226.6, 233.8] 28 

2  [191.3, 149.2] 125  [210.5, 232.1] 32  [233.8, 241.0] 4 

3  [149.2, 233.3] 1340  [253.6, 275.1] 4  [262.7, 269.9] 4 

4  [233.3, 275.4] 940  - -  - - 

5  [275.4, 317.5] 835  - -  - - 

6  [317.5, 359.6] 80  - -  - - 

Constant A, Fitting Method 2 

1  [254.0, 260.5] 688  [222.0, 241.3] 20  [227.0, 244.0] 24 

2  [260.5, 267.0] 555  [260.7, 280.0] 18  [312.0, 329.0] 36 

3  [273.5, 280.0] 908  - -  - - 

4  [280.0, 286.5] 411  - -  - - 

5  [286.5, 293.0] 290  - -  - - 

Constant B, Fitting Method 1 

1  [14.96, 91.36] 2850  [42.26, 55.38] 28  [34.98, 49.57] 8 

2  [91.36, 167.8] 450  [55.38, 68.49] 2  [49.57, 64.16] 24 

3  [167.8, 244.2] 130  [68.49, 81.6] 4  [137.1, 151.7] 4 

4  [244.2, 320.6] 25  [81.6, 94.7] 2  - - 

5  [320.6, 1237.3] 15  [94.7, 107.8] 2  - - 

6     [134.0, 147.2] 2  - - 

Constant B, Fitting Method 2 

1  [100.9, 113.6] 1846  [324.5, 341.0] 21  [127.6, 133.4] 30 

2  [113.6, 126.2] 467  [439.9, 456.4] 17  [167.8, 173.4] 30 

3  [138.9, 151.6] 362  - -  - - 

4  [164.3, 177.0] 177  - -  - - 

Constant n, Fitting Method 1 

1  [0.0, 0.615] 3060  [0.0, 0.0398] 30  [0.0, 0.118] 28 

2  [0.615, 1.230] 255  [0.0398, 0.08] 2  [0.236, 0.354] 4 

3  [1.230, 1.845] 80  [0.08, 0.1195] 2  [0.590, 0.708] 4 

4  [1.845, 2.64] 10  [0.1991, 0.239] 6  - - 

5  [2.64, 3.255] 30  - -  - - 

6  [3.255, 4.921] 35  - -  - - 

Constant n, Fitting Method 2 

1  [0.127, 0.179] 322  [0.445, 0.466] 17  [0.547, 0.574] 30 

2  [0.179, 0.230] 1368  [0.552, 0.573] 21  [0.681, 0.708] 30 

3  [0.281, 0.333] 1162  - -  - - 

Constant C, Fitting Method 1 

1  [0.0, 0.065] 2340  [0.005, 0.033] 24  [0.002, 0.029] 8 

2  [0.065, 0.130] 750  [0.033, 0.061] 10  [0.029, 0.056] 12 

3  [0.130, 0.195] 110  [0.061, 0.089] 2  [0.056, 0.083] 12 

4  [0.195, 0.260] 20  [0.229, 0.257] 2  [0.136, 0.163] 4 

5  [0.260, 0.649] 250  [0.257, 0.285] 2  - - 

Constant C, Fitting Method 2 

1  [0.0, 0.01] 1265  [0.0034, 0.011] 12  [0.005, 0.017] 30 

2  [0.01, 0.022] 1056  [0.0186, 0.0262] 6  [0.0173, 0.029] 6 

3  [0.022, 0.033] 442  [0.0262, 0.0337] 6  [0.042, 0.054] 2 

4  [0.033, 0.044] 89  [0.0489, 0.0564] 5  [0.054, 0.066] 8 

5  - -  [0.0564, 0.064] 5  [0.066, 0.078] 14 

6  - -  [0.0716, 0.0792] 4  - - 

Constant m, Fitting Method 1 

1  [1.014, 1.486] 1535  [1.1166, 1.806] 30  [0.935, 1.191] 4 

2  [1.486, 1.959] 390  [1.806, 2.486] 4  [1.191, 1.448] 28 

3  [1.959, 2.431] 315  [3.166, 3.845] 2  [2.217, 2.474] 4 
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Table 4.4 (Continued) 

 
4  [2.431, 2.903] 690  [3.845, 4.525] 2  - - 

5  [2.903, 3.325] 540  [4.525, 5.205] 2  - - 

Constant m, Fitting Method 2 

1  [1.39, 3.06] 1423  [0.316, 1.147] 7  [1.031, 1.133] 3 

2  [3.06, 4.74] 987  [1.147, 1.979] 3  [1.133, 1.235] 4 

3  [4.74, 6.41] 302  [1.979, 2.809] 21  [1.235, 1.340] 11 

4  [6.41, 8.08] 106  [2.809, 3.641] 7  [1.340, 1.440] 13 

5  [8.08, 9.76] 29  - -  [1.440, 1.541] 13 

6  [9.76, 11.43] 5  - -  [1.541, 1.643] 13 

 

4.1.4 Construction of belief structure for five model constants 

The methodology introduced in chapter 2 is used to construct BBA for individual 

intervals of uncertainty for each constant. Tables 4.5 and 4.6 show the constructed BBA 

for uncertainty intervals of constants in JC models 1 and 2, respectively.  

The charts in Figure 4.1 depict the process of constructing BBA for constants A, n 

and m using the 4220 data points corresponding to experimental source 1 and method 1 in 

Table 4.3. Among all intervals for constant A, interval 4 has the largest number of data 

points and is in agreement with interval 5 (see Figure 4.1(a)). Hence, intervals 4 and 5 are 

combined into a single interval resulting in m ([200.74, 274.29]) = 0.646.  Comparing the 

data points in interval 6 with the average of those in intervals 4 and 5, we find conflict 

that requires a separate BBA with m ([274.29, 311.07]) = 0.218. Intervals 1, 2, and 3 are 

in ignorance with intervals 4 and 5. Here, it is possible to have either a single ignorance 

interval that extends from interval 1 to 5 or two separate intervals, one covering intervals 

1, 2, 3, 4, and 5 with another covering intervals 3, 4, and 5 as shown in Figure 4.1(a). 

Here, the second choice is selected resulting in the following BBA structure: m ([163.96, 

274.29]) = 0.218 and m ([90.4, 274.29]) = 0.078 (see Table 4.5).  

In Figure 4.1(b), interval 1 has the highest number of data points for constant n, 

and the other disjointed intervals are in ignorance relationship with it. Since ignorance 
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interval 2 includes significantly larger number of data as opposed to the other intervals 

with ignorance data, two ignorance BBAs are selected, one covering intervals 1, 2 with 

value of m = 0.103 and the other covering all intervals with value of m = 0.039 (see 

Table 4.5). Although it is possible to have one BBA covering all intervals with value of 

m = 0.142 (sum of 0.103 and 0.039), the divided BBA gives a more precise 

representation of epistemic uncertainty. To consider data points of interval 1, a BBA of 

0.858 is assigned to it (see Table 4.5). 

In Figure 4.1(c), the highest data points belong to interval 2 with m = 0.345. Of its 

two adjacent intervals, interval 2 is in conflict with 1 and ignorance with 3 (see Table 

4.5). Data points in interval 4 should be compared by interval 2 as its adjacent interval 

(interval 3) includes ignorance data. It is noticed that data points of interval 4 are in 

conflict relationship with interval 2 and the associated conflict BBA is found to be 0.278 

as noted in Table 4.5. 
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Figure 4.1 Histograms showing intervals of uncertainty for (a) A, (b) n and (c) m for 

the combination of source 1, method 1, and model 1 
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Table 4.5 Distribution of intervals and BBA values for constants of  Johnson-Cook 

model 1 

Interval 

# 

Experimental 

Source 1 
 

Experimental 

Source 2 
 

Experimental 

Source 3 

  Interval BBA  Interval BBA  Interval BBA 

Constant A, Fitting Method 1 

1  [200.74, 274.29] 0.646  [208.05, 229.22] 0.6  [227, 253.15] 0.462 

2  [274.29, 311.07] 0.218  [208.05, 250.4] 0.2  [331.61, 357.76] 0.385 

3  [163.96, 274.29] 0.058  [208.05, 271.57] 0.12  [331.61, 383.91] 0.153 

4  [90.4, 274.29] 0.078  [144.53, 229.22] 0.08    

Constant A, Fitting Method 2 

1  [254, 267] 0.436  [222, 241.33] 0.526  [227, 244] 0.4 

2  [273.5, 280] 0.319  [260.67, 280] 0.478  [312, 329] 0.6 

3  [273.5, 286.5] 0.144  - -  - - 

4  [273.5, 293] 0.102  - -  - - 

Constant B, Fitting Method 1 

1  [11.51, 99.3] 0.812  [6.37, 76.77] 0.68  [39.958, 121.35] 0.462 

2  [11.51, 187.09] 0.145  [6.37, 147.19] 0.24  [121.35, 203.74] 0.308 

3  [11.51, 1416.2] 0.043  [6.37, 569.64] 0.08  [121.35, 698.08] 0.23 

Constant B, Fitting Method 2 

1  [100.86, 113.55] 0.647  [324.51, 341] 0.553  [127.62, 133.36] 0.5 

2  [100.86, 126.24] 0.164  [439.94, 456.43] 0.447  [167.81, 173.35] 0.5 

3  [100.86, 177] 0.189  - -  - - 

Constant n, Fitting Method 1 

1  [0, 0.618] 0.858  [0, 0.0398] 0.68  [0, 0.2588] 0.308 

2  [0, 1.235] 0.103  [0, 0.239] 0.32  [0.2588, 0.5175] 0.231 

3  [0, 4.94] 0.039  - -  [0.5175, 0.7763] 0.385 

4  - -  - -  [0.5175, 1.5525] 0.076 

Constant n, Fitting Method 2 

1  [0.127, 0.230] 0.113  [0.445, 0.4664] 0.447  [0.5467, 0.5735] 0.5 

2  [0.179, 0.230] 0.48  [0.552, 0.573] 0.553  [0.6811, 0.708] 0.5 

3  [0.281, 0.333] 0.407  - -  - - 

Constant C, Fitting Method 1 

1  [0, 0.057] 0.767  [0.005, 0.0297] 0.8  [0.0078, 0.0152] 0.692 

2  [0, 0.111] 0.097  [0.005, 0.0542] 0.12  [0.0078, 0.0812] 0.308 

3  [0, 0.568] 0.136  [0.005, 0.2504] 0.08  - - 

Constant C, Fitting Method 2 

1  [0, 0.018] 0.687  [0.0034, 0.011] 0.316  [0.0052, 0.0173] 0.5 

2  [0.018, 0.026] 0.212  [0.0034, 0.0792] 0.684  [0.0052, 0.029] 0.1 

3  [0.018, 0.044] 0.101  - -  [0.042, 0.078] 0.167 

4  - -  - -  [0.066, 0.078] 0.233 

Constant m, Fitting Method 1 

1  [0.623, 0.966] 0.231  [1.074, 1.4737] 0.56  [0.488, 0.689] 0.615 

2  [0.966, 1.309] 0.346  [0.675, 1.8729] 0.24  [1.091, 1.2626] 0.308 

3  [0.966, 1.652] 0.144  [1.074, 3.0706] 0.2  [1.091, 1.6948] 0.077 

4  [1.652, 1.995] 0.278  - -  - - 

Constant m, Fitting Method 2 

1  [0.897, 2.273] 0.61  [0.285, 2.568] 0.447  [0.6326, 2.699] 0.417 

2  [2.273, 3.649] 0.318  [1.807, 2.568] 0.553  [0.6326, 0.897] 0.183 

3  [0.897, 9.155] 0.072  - -  [0.897, 1.03] 0.133 

4  - -  - -  [0.963, 1.03] 0.267 
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Table 4.6 Distribution of intervals and BBA values for constants of  Johnson-Cook 

model 2 

Interval  

# 
 

Experimental 

 Source 1 
 

Experimental  

Source 2 
 

Experimental  

Source 3 

  Interval Data No  Interval Data No  Interval Data No 

Constant A, Fitting Method 1 

1  [107.1, 191.3] 150  [145.9, 167.4] 4  [226.6, 233.8] 28 

2  [191.3, 149.2] 125  [210.5, 232.1] 32  [233.8, 241.0] 4 

3  [149.2, 233.3] 1340  [253.6, 275.1] 4  [262.7, 269.9] 4 

4  [233.3, 275.4] 940  - -  - - 

5  [275.4, 317.5] 835  - -  - - 

6  [317.5, 359.6] 80  - -  - - 

Constant A, Fitting Method 2 

1  [254.0, 260.5] 688  [222.0, 241.3] 20  [227.0, 244.0] 24 

2  [260.5, 267.0] 555  [260.7, 280.0] 18  [312.0, 329.0] 36 

3  [273.5, 280.0] 908  - -  - - 

4  [280.0, 286.5] 411  - -  - - 

5  [286.5, 293.0] 290  - -  - - 

Constant B, Fitting Method 1 

1  [14.96, 91.36] 2850  [42.26, 55.38] 28  [34.98, 49.57] 8 

2  [91.36, 167.8] 450  [55.38, 68.49] 2  [49.57, 64.16] 24 

3  [167.8, 244.2] 130  [68.49, 81.6] 4  [137.1, 151.7] 4 

4  [244.2, 320.6] 25  [81.6, 94.7] 2  - - 

5  [320.6, 1237.3] 15  [94.7, 107.8] 2  - - 

6     [134.0, 147.2] 2  - - 

Constant B, Fitting Method 2 

1  [100.9, 113.6] 1846  [324.5, 341.0] 21  [127.6, 133.4] 30 

2  [113.6, 126.2] 467  [439.9, 456.4] 17  [167.8, 173.4] 30 

3  [138.9, 151.6] 362  - -  - - 

4  [164.3, 177.0] 177  - -  - - 

Constant n, Fitting Method 1 

1  [0.0, 0.615] 3060  [0.0, 0.0398] 30  [0.0, 0.118] 28 

2  [0.615, 1.230] 255  [0.0398, 0.08] 2  [0.236, 0.354] 4 

3  [1.230, 1.845] 80  [0.08, 0.1195] 2  [0.590, 0.708] 4 

4  [1.845, 2.64] 10  [0.1991, 0.239] 6  - - 

5  [2.64, 3.255] 30  - -  - - 

6  [3.255, 4.921] 35  - -  - - 

Constant n, Fitting Method 2 

1  [0.127, 0.179] 322  [0.445, 0.466] 17  [0.547, 0.574] 30 

2  [0.179, 0.230] 1368  [0.552, 0.573] 21  [0.681, 0.708] 30 

3  [0.281, 0.333] 1162  - -  - - 

Constant C, Fitting Method 1 

1  [0.0, 0.065] 2340  [0.005, 0.033] 24  [0.002, 0.029] 8 

2  [0.065, 0.130] 750  [0.033, 0.061] 10  [0.029, 0.056] 12 

3  [0.130, 0.195] 110  [0.061, 0.089] 2  [0.056, 0.083] 12 

4  [0.195, 0.260] 20  [0.229, 0.257] 2  [0.136, 0.163] 4 

5  [0.260, 0.649] 250  [0.257, 0.285] 2  - - 

Constant C, Fitting Method 2 

1  [0.0, 0.01] 1265  [0.0034, 0.011] 12  [0.005, 0.017] 30 

2  [0.01, 0.022] 1056  [0.0186, 0.0262] 6  [0.0173, 0.029] 6 

3  [0.022, 0.033] 442  [0.0262, 0.0337] 6  [0.042, 0.054] 2 

4  [0.033, 0.044] 89  [0.0489, 0.0564] 5  [0.054, 0.066] 8 

5  - -  [0.0564, 0.064] 5  [0.066, 0.078] 14 

6  - -  [0.0716, 0.0792] 4  - - 

Constant m, Fitting Method 1 

1  [1.014, 1.486] 1535  [1.1166, 1.806] 30  [0.935, 1.191] 4 

2  [1.486, 1.959] 390  [1.806, 2.486] 4  [1.191, 1.448] 28 

3  [1.959, 2.431] 315  [3.166, 3.845] 2  [2.217, 2.474] 4 
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Table 4.6 (Continued) 

 
4  [2.431, 2.903] 690  [3.845, 4.525] 2  - - 

5  [2.903, 3.325] 540  [4.525, 5.205] 2  - - 

Constant m, Fitting Method 2 

1  [1.39, 3.06] 1423  [0.316, 1.147] 7  [1.031, 1.133] 3 

2  [3.06, 4.74] 987  [1.147, 1.979] 3  [1.133, 1.235] 4 

3  [4.74, 6.41] 302  [1.979, 2.809] 21  [1.235, 1.340] 11 

4  [6.41, 8.08] 106  [2.809, 3.641] 7  [1.340, 1.440] 13 

5  [8.08, 9.76] 29  - -  [1.440, 1.541] 13 

6  [9.76, 11.43] 5  - -  [1.541, 1.643] 13 

 

4.1.5 Final representation of uncertainty in Johnson-Cook constants 

As indicated in Tables 4.5 and 4.6, consideration of all the factors that influence 

uncertainty in the JC constants results in different belief structures.  However, the 

uncertainty in each constant must be represented by only a single belief structure that 

accounts for the aforementioned factors that contribute to it. Here, the Yager’s 

combination rule (1987, 1987a) of evidence as discussed in Section 2.2 is adopted. 

Conceptually, Yager’s rule assigns a BBA to the intersection of two intervals of 

uncertainty from different sources of evidence. Intervals of uncertainty that are in 

agreement between different sources are treated as valid evidence. In the case of no 

intersection (conflict between two intervals of uncertainty from different sources), 

Yager’s rule allocates the associated conflicting BBA to the universal set.  In fact, 

Yager’s rule considers conflict between two uncertainty intervals as ignorance or lack of 

knowledge, and—as a result—assigns a BBA to ignorance interval (universal set). Here, 

for single representation of uncertainty, the following steps are performed: 

1- For each model and experimental source, Yager’s rule is used to combine 

belief structures associated with different fitting methods for individual constants of JC 

model.  
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 2- Belief structures of all experimental sources are combined to find a single 

(final) belief structure for each constant in models 1 and 2, separately.  

The combined belief structure following step 1 together with the final BBA values 

obtained from step 2 are listed in Tables 4.7 and 4.8 for JC models 1 and 2, respectively. 

To reduce the size of each table, the final BBA values shown in bottom rows of Tables 

4.7 and 4.8 correspond to the intervals identified in column 1 and separated by commas.  

Table 4.7 Combined and final BBA for constants of Johnson-Cook model 1 

Element#  Interval BBA  Interval BBA  Interval BBA 

Constant A 

1, 5, 9  [260.67,  267.00] 0.0158  [227.00, 229.22] 0.0336  [227.00, 280.00] 0.0320 

2, 6, 10  [254.00,  267.00] 0.1159  [227.00, 241.33] 0.0158  [90.40, 383.91] 0.5832 

3, 7  [273.50,  274.29] 0.1502  [260.67, 271.57] 0.0044  - - 

4, 8  [274.29,  280.00] 0.0419  [227.00, 244.00] 0.0072  - - 

Constant B 

1, 4, 7  [100.85,  113.55] 0.0517  [167.81,  173.35] 0.2097  [439.93,  456.43] 0.0134 

2, 5, 8  [100.85,  126.24] 0.0131  [100.85,  177.00] 0.0151  [38.95,  569.64] 0.3451 

3, 6, 9  [127.62,  133.36] 0.2097  [324.50,  341.00] 0.0166  [6.37, 698.08] 0.1255 

Constant n 

1, 3  [0.1269, 0.2303] 0.0879  [0.2810, 0.3333] 0.3166  - - 

2, 4  [0.1787, 0.2303] 0.3734  [0, 1.5525] 0.2221  - - 

Constant C 

1, 5, 9  [0.0077, 0.0113] 0.1303  [0.0077, 0.0183] 0.0145  [0.0177, 0.0300] 0.0176 

2, 6, 10  [0.0051, 0.0113] 0.0601  [0.0051, 0.0183] 0.1301  [0.0420, 0.0443] 0.0003 

3, 7, 11  [0.0077, 0.0154] 0.1951  [0.0177, 0.0263] 0.0446  [0.0177, 0.0443] 0.0015 

4, 8, 12  [0.0077, 0.0175] 0.0724  [0.0177, 0.0292] 0.0021  [0, 0.08126] 0.3315 

Constant m 

1, 7, 13  [0.8967, 0.9663] 0.0309  [1.0740, 1.4740] 0.0491  [1.0908, 1.6950] 0.0043 

2, 8, 14  [1.0908, 1.2626] 0.0559  [1.0908, 1.6520] 0.0013  [0.6747, 1.6949] 0.0161 

3, 9, 15  [1.0908, 1.3090] 0.0051  [0.9657, 1.6520] 0.0192  [0.6324, 0.6890] 0.0364 

4, 10, 16  [1.0740, 1.3090] 0.0278  [1.6517, 1.6950] 0.0025  [0.6230, 1.6949] 0.0464 

5, 11, 17  [0.9657, 1.3090] 0.0463  [1.6517, 1.6949] 0.0372  [0.285, 9.155] 0.6054 

6, 12  [1.0908, 1.4740] 0.0034  [0.6747, 0.6890] 0.0126  - - 
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Table 4.8 Combined and final BBA for constants of Johnson-Cook model 1 

Element#  Interval BBA  Interval BBA  Interval BBA 

Constant A 

1, 4, 7  [254.00, 267.00] 0.0811  [226.56, 232.05] 0.1174  [227.00, 241.01] 0.0120 

2, 5, 8  [273.50, 280.00] 0.1048  [227.00, 233.79] 0.0838  [226.56, 280.00] 0.1616 

3, 6, 9  [227.00, 232.05] 0.0783  [227.00, 244.00] 0.0120  [107.13, 359.56] 0.3491 

Constant B 

1, 4, 7  [100.85, 113.55] 0.1094  [100.85, 167.76] 0.0232  [14.96, 1237.30] 0.0080 

2, 5  [100.85, 126.24] 0.0278  [100.85, 173.35] 0.0088  - - 

3, 6  [127.62, 133.36] 0.0474  [42.26, 173.35] 0.7754  - - 

Constant n 

1, 3  [0.1269, 0.2303] 0.0879  [0.2810, 0.3333] 0.3166  - - 

2, 4  [0.1787, 0.2303] 0.3734  [0.0000, 0.7081] 0.2221  - - 

Constant C 

1, 5, 9  [0.0051, 0.0113] 0.0421  [0.0047, 0.0223] 0.3094  [0.0047, 0.0443] 0.0047 

2, 6, 10  [0.0047, 0.0113] 0.1756  [0.0051, 0.0292] 0.0028  [0.0023, 0.163] 0.3101 

3, 7  [0.0051, 0.0175] 0.0759  [0.0047, 0.0331] 0.066  - - 

4, 8  [0.0051,   0.0223] 0.0124  [0.0420,   0.0443] 0.0011  - - 

Constant m 

1, 7, 13  [1.3897, 1.4479] 0.2532  [1.3897, 2.4311] 0.0129  [1.1912, 1.5406] 0.0035 

2, 8, 14  [1.3897, 1.4863] 0.0849  [2.4310, 2.4739] 0.0151  [1.1166, 1.8063] 0.0356 

3, 9, 15  [1.5404, 1.6427] 0.0116  [1.2350, 1.4479] 0.1475  [1.9782, 2.4739] 0.0055 

4, 10, 16  [1.3897, 1.5406] 0.0100  [1.1912, 1.4479] 0.0243  [1.1166, 2.4739] 0.0119 

5, 11, 17  [1.3897, 1.8063] 0.0162  [1.1166, 1.4479] 0.0026  [1.0140, 2.4739] 0.0164 

6, 12, 18  [1.9782, 2.4311] 0.0025  [1.2350, 1.5406] 0.0184  [0.3157, 11.43] 0.3282 

4.2 Uncertainty representation of BCJ Plasticity Model 

As shown in Table 4.9, depending on the selected sets of stress-strain curves at 

different strain rates and temperatures, the proposed fitting approach suggested in chapter 

3 produces different values for some of the BCJ material constants for 7075-T651 

aluminum alloy. Note that for all sets of material constants in Table 4.9, experimental 

data provided by Table 3.2 is used for determination of hardening constants (i.e., C7 

through C18) that take the same values as those in Table 3.3. However, different sets of 

stress-strain curve as shown in Table 4.10 are used to fit the constants of BCJ flow 

equation, resulting in different sets of constants (i.e., C1 through C6) in Table 4.9. This 

variability in the calculated material constants is mainly because of the uncertainty in the 

experimental procedure used to obtain the stress-strain curves, inherent variability in 

material properties, existing uncertainty in the numerical nonlinear least-squares fitting 
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process, and incertitude or lack of knowledge in accurate modeling of the dynamic 

behavior of the material using the mathematical formulation of the BCJ plasticity model.  

Considering the impact of BCJ material constants on simulation responses 

associated with a large deformation process (i.e., deep drawing, vehicle crash), it is 

necessary to quantify their uncertainty.  

Table 4.9 BCJ material constants for 7075-T651 aluminum alloy obtained using 

different sets of stress-strain curves. 

No 

 

 C1 

(MPa) 

 C2 

(K) 

 C3 

(MPa) 

 C4 

(K) 

 C5 

(1/s) 

 C6 

(K) 

1 312.86 154.78 27.21 818.26 6914.10 233.39 

2 406.37 182.63 22.67 890.84 7025.54 215.31 

3 276.89 67.17 148.32 322.39 5829.39 155.30 

4 304.34 167.24 31.88 670.20 7847.90 291.88 

5 282.30 169.66 201.96 118.12 6697.24 249.90 

6 368.68 247.98 178.41 250.38 8064.66 269.79 

7 262.77 87.46 69.57 520.44 6229.10 186.33 

8 339.31 205.59 137.33 317.34 6819.30 256.35 

9 340.20 180.33 90.16 427.97 7532.25 293.39 

10 333.46 167.69 35.31 736.58 7136.29 254.78 

11 280.73 216.85 32.62 748.36 7398.12 258.42 

Table 4.10 Testing conditions for the collected experimental data. 

Curve 

No. 

Ref. No. Temperature 

(K) 

Strain 

Rate (gB)� 
 Curve 

No. 

Ref. No. Temperature 

(K) 

Strain 

Rate (gB)� 
1 16 297 3100 9 15 673 10 

2 16 297 2400 10 15 673 1 

3 16 297 1300 11 15 673 0.1 

4 14 297 0.1 12 15 673 0.01 

5 15 573 10 13 15 723 10 

6 15 573 1 14 15 723 1 

7 15 573 0.1 15 15 723 0.1 

8 15 573 0.01 16 15 723 0.01 

 

Here, the available data for the BCJ material constants (see Table 4.9) is 

insufficient for assigning a particular probability density function (PDF) to each one, and 
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our knowledge of the constants and modeling the dynamic material behavior of metals is 

imprecise. Hence, based on the nature of uncertainty in the BCJ plasticity model and the 

capabilities of evidence theory, we adopted this theory for uncertainty modeling of the 

BCJ plasticity model. Following the methodology presented in chapter 2 for construction 

of belief structures of uncertain variables and using the available data on BCJ material 

constants given by Table 4.9, separate belief structures for material constants of BCJ 

plasticity model is constructed and provided by Table 4.11. 

Table 4.11 Belief structures of material constants of BCJ flow equation for 7075-T651 

aluminum alloy 

Interval 

No. 

 

C1 

 

C2 

 

C3 

Range BBA Range BBA Range BBA 

1 [262.03, 310.17] 5/11 [127.9, 187.83] 6/11 [22.30, 81.94] 6/11 

2 [310.17, 358.31] 4/11 [67.95, 187.83] 2/11 [22.30, 141.57] 2/11 

3 [310.17,406.45] 2/11 [187.83, 247.8] 3/11 [141.57, 201.2] 3/11 

 C4 C5 C6 

1 [633.9, 890.34] 5/11 [6574, 7319] 5/11 [241.2, 291.5] 7/11 

2 [375.85, 890.34] 2/11 [7319, 8064] 4/11 [155.8, 291.5] 4/11 

3  [118.6, 375.85] 4/11  [5829, 7319] 2/11    
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CHAPTER V 

UNCERTAINTY PROPAGATION AND QUANTIFICATION OF PLASTICITY 

MODELS 

For the purpose of uncertainty quantification, the represented uncertainties in 

material constants should be propagated through the plasticity models in simulation of a 

large deformation process. Uncertainty propagation implies determination of the 

uncertainty intervals of the structural responses caused by incertitude in the material 

constants. The results from propagation will be used for an eventual estimation of belief 

and plausibility of each response for measuring the corresponding epistemic uncertainty.  

Two illustrative examples are considered for uncertainty propagation. In the first 

example, the represented uncertainties in JC plasticity model are propagated through non-

linear crush simulation of a 6061-T6 aluminum alloy circular tube under axial impact 

load, whereas in the second example, the uncertainties in BCJ plasticity model are 

propagated through non-linear simulation of a 7075-T651 aluminum alloy solid circular 

cylinder commonly referred to as Taylor impact test (Rule, 1997).  

5.1 Uncertainty propagation of Johnson-Cook plasticity models 

Using design and analysis of computer experiments, separate surrogate models 

based on JC Models 1 and 2 are developed. Then, a joint belief structure for the five 

material constants is established and used to determine the belief structure for the crush 

length based on each JC model. Finally, a global optimization technique is used to find 

the upper and lower bounds of crush length as described next. 
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5.1.1 Design and Analysis of Computer Experiments 

Since repeated nonlinear transient dynamic finite element analysis (FEA) for the 

range of uncertain variables and associated belief structures would be computationally 

expensive, it is necessary to develop a surrogate model of each response to facilitate the 

uncertainty propagation process.  

Radial Basis Functions (RBF) has been used successfully for fitting a wide range 

of response functions with different forms of nonlinearly and dimensionality. (Fang et al. 

2005, 2008) Given the normalized values of design variable vector and the corresponding 

finite-element based responses (crush length) at n sampling (training) points, a 

multiquadric form of RBF approximation is used to approximate the true response 

function f(Y) as 

′ f (Y) = λiφ(ri )
i=1

n

∑         (5.1) 

where ri = Y − Yi = (Y − Yi )
T

(Y − Yi )  represents the normalized radial distance from an 

arbitrary design point to the ith training point with λi , i = 1,n  as the unknown 

interpolation coefficients given φ(ri ) = ri
2 + c

2 and 10 ≤< c . Vector Y is found by 

normalizing each element of uncertain design variable vector X
T = A,B,n,C,m[ ] (material 

constants) by the respective upper bound value.  

Here, Latin hypercube sampling (LHS) technique is adopted to generate 50 

training points as identified in Table 5.1. Intervals of uncertainty (universal set) for all 

uncertain material constants (determined in chapter 4) in JC models 1 and 2 are 

considered in selecting the bounds on uncertain variables. 

Four error metrics are used for assessment of metamodel accuracy. Since RBF is 

an interpolation model, five randomly selected test points within the global bounds of 
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each uncertain variable (see Table 5.2) are used for evaluation of R+ and RSME statistics 

defined as 

w+ � 1 c ±±² ±±d⁄          (5.2) 

mSSERMSE =          (5.3) 

with SSE (sum of square errors) and SST (total sum of squares) calculated as  

±±² � ∑ ��Q c �³́�+�QF)          (5.4) 

±±d � ∑ ��Q c �µ�+�QF)          (5.5) 

where m is the number of test points, �Q is the finite element-based response value at ith 

test point,  �³́ is the corresponding approximate value calculated by the RBF model, and �µ 
is the mean value of �Q. Generally speaking, the larger the value of w+ and the smaller the 

value of RMSE, the better the fit.  In addition to these statistics, RBF model accuracy is 

also measured by finding the prediction error sum of squares (PRESS) and w+ for 

prediction (w¶�pvQ^OQeK+ ) at the training points. These statistics are calculated as 

�w²±± � ∑ ��Q c ��³�´ �+KB)QF)        (5.6) 

w$�pvQ^OQeK+ � 1 c �w²±± ±±d⁄       (5.7) 

where, ��³�´  is the predicted value at the ith training point using the RBF model created by 

(n - 1) design points that exclude the ith point. 

Table 5.1 Training points used in generating the RBF metamodels for crush length 

 

Point 

No. 

Johnson-Cook Model 1  Johnson-Cook Model 2 

A 

(MPa) 

B 

(MPa) 

n C m Crush 
Length 

(mm) 

A 

(MPa) 

B 

(MPa) 

n C m Crush 

Length 

(mm) 

1 371.93 373.4 1.204 0.0116 3.91 8.26 277.13 1137.52 0.56351 0.0908 1.45 5.98 

2 347.97 204.0 1.1089 0.0199 1.19 8.79 112.28 937.951 0.23118 0.1597 0.769 4.98 

3 353.96 34.603 0.9188 0.0365 5.35 7.95 127.74 289.363 0.17339 0.1302 0.316 2.4 

4 240.15 486.33 0.5386 0.005 4.81 9.47 349.26 913.006 0.15894 0.1564 3.038 3.1 

5 306.04 472.22 0.0317 0.0083 0.83 5.03 132.89 139.689 0.40457 0.1368 5.079 10.852 

6 186.24 246.35 1.0456 0.0531 4.27 12.55 122.58 1037.73 0.28898 0.0646 7.121 6.197 

7 216.19 698.08 1.3941 0.063 3 10.66 210.16 538.82 0.08669 0.0974 5.533 4.14 

8 144.31 161.65 0.7604 0.0746 7.16 14.14 266.83 14.96 0.10114 0.1236 2.811 6.81 

9 114.36 62.836 1.1723 0.01 3.18 26.23 318.35 439.037 0.0289 0.0253 2.584 4.64 
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Table 5.1 (Continued) 
 

      

10 276.09 91.069 0.0951 0.0431 0.47 7.82 179.25 513.874 0.37567 0.0941 8.028 7.43 

11 90.4 627.5 1.5525 0.068 6.08 19.86 174.1 239.471 0.21673 0.0121 6.894 10.524 

12 162.28 20.48 0.2852 0.0779 5.72 12.61 220.47 888.06 0.39012 0.0876 0.996 6.11 

13 192.23 571.03 0.5703 0.0232 7.34 12.62 235.92 1062.68 0.36122 0.0384 3.265 6.12 

14 210.2 387.52 0.697 0.0481 7.71 10.35 184.4 763.331 0.708 0.0515 3.945 10.108 

15 132.33 105.19 1.4258 0.0249 8.43 21.22 241.07 39.9057 0.07224 0.1105 7.575 7.27 

16 335.99 302.82 1.0772 0.0597 9.16 7.25 271.98 164.634 0.6502 0.081 6.44 7.76 

17 96.39 585.15 0.3168 0.0315 7.53 9.35 328.65 663.549 0.13004 0.1171 2.357 3.51 

18 222.18 556.91 0.0634 0.0166 4.99 5.04 313.2 788.277 0.66465 0.0154 8.255 7.458 

19 228.17 528.68 0.4119 0.0813 1.37 7.03 143.19 264.417 0.20229 0.1433 7.348 7.032 

20 270.1 288.7 1.3307 0.0398 7.89 9.70 163.8 613.657 0.18784 0.1072 10.07 5.24 

21 150.3 429.87 0.8871 0.0149 6.62 15.03 308.04 414.091 0.11559 0.0613 5.987 4.78 

22 318.02 260.47 0.2535 0.0299 8.79 6.94 107.13 1162.46 0.43347 0.163 1.223 6.56 

23 174.26 48.72 0.7287 0.0464 2.46 14.00 261.68 1187.41 0.01445 0.0449 0.543 4.773 

24 180.25 359.28 0.602 0.0796 3.54 10.06 251.38 863.114 0.46237 0.0318 9.843 7.24 

25 108.37 514.57 0.1901 0.0265 2.64 7.98 168.95 688.494 0.44792 0.1466 2.13 6.74 

26 365.94 189.88 1.3624 0.0547 6.8 7.014 297.74 563.766 0.26008 0.0187 9.616 4.81 

27 294.06 345.17 0.9505 0.0017 5.9 10.29 215.31 389.146 0.24563 0.1335 1.904 5.59 

28 300.05 655.73 0.8238 0.0348 6.98 8.23 205.01 64.8514 0.69355 0.1204 11.2 8.89 

29 156.29 443.98 1.299 0.0514 0.65 15.59 359.56 89.7971 0.27453 0.0023 10.52 8.41 

30 324.01 274.58 0.6654 0.0663 2.82 6.96 158.65 838.169 0.59241 0.104 5.76 8.43 

31 204.21 415.75 0.2218 0.0415 1.55 7.32 302.89 638.603 0.52016 0.0581 1.677 6.66 

32 246.14 175.77 1.1406 0.0010 8.07 13.54 323.5 987.843 0.50571 0.022 4.399 6.48 

33 252.13 147.54 1.4891 0.0647 4.45 9.53 153.49 463.983 0.04335 0.1499 3.491 3.68 

34 377.92 119.3 1.2357 0.0498 1.91 6.98 138.04 588.711 0.57796 0.0482 9.389 11.08 

35 138.32 401.63 0.4753 0.0216 0.28 17.24 194.71 1087.63 0.0578 0.0843 5.306 2.96 

36 341.98 599.26 0.1267 0.0564 1.01 4.34 225.62 1212.35 0.63576 0.0548 4.172 7.7 

37 264.11 316.93 0.8555 0.0332 1.73 9.67 282.29 488.929 0.002 0.1138 7.802 3.11 

38 282.08 133.42 0.9822 0.058 2.1 8.58 230.77 189.58 0.34678 0.1269 8.482 6.8 

39 312.03 683.96 1.2673 0.0033 3.72 9.694 246.22 364.2 0.31788 0.0777 10.75 6.72 

40 383.91 76.953 0.0010 0.0133 3.36 7.263 292.59 1012.79 0.49127 0.1532 4.853 4.77 

41 198.22 613.38 1.4574 0.0381 8.97 12.61 287.44 738.386 0.33233 0.0712 3.718 5.48 

42 359.95 641.61 0.3802 0.0713 6.26 5.2 148.34 813.223 0.6791 0.14 9.163 8.62 

43 330 542.8 0.7921 0.0066 2.28 8.36 199.86 1237.3 0.60686 0.0417 8.936 8.22 

44 258.12 6.37 0.1584 0.0182 6.44 11.65 256.53 713.44 0.62131 0.0679 6.214 7.48 

45 288.07 458.1 0.5069 0.0282 5.17 7.89 344.11 214.526 0.41902 0.1007 4.626 5.56 

46 168.27 232.23 1.5208 0.073 8.61 13.36 333.8 1112.57 0.30343 0.0285 6.667 4.99 

47 234.16 218.12 1.0139 0.0763 4.63 9.31 117.43 339.254 0.54906 0.0089 8.709 15.99 

48 120.35 669.85 0.6337 0.0448 4.09 11.57 338.95 962.897 0.53461 0.0351 11.43 6.34 

49 126.34 500.45 0.4436 0.0614 8.25 10.57 354.41 314.309 0.47682 0.0056 10.98 7.7 

50 102.38 331.05 0.3485 0.0697 5.53 11.79 189.56 114.743 0.14449 0.0745 10.3 8.91 

Table 5.2 Test points used for accuracy evaluation of constructed RBF metamodels 

 

Point 

Johnson-Cook Model 1  Johnson-Cook Model 2 

A 

(MPa) 

B 

(MPa) 

n C m Crush 
Length 

(mm) 

A 

(MPa) 

B 

(MPa) 

n C m Crush 

Length 

(mm) 

1 237.15 6.37 0.3881 0.0609 6.94 9.89 107.13 626.13 0.531 0.0425 8.65 11.23 

2 310.53 352.23 0.0010 0.0203 4.72 5.2 233.35 14.96 0.354 0.1228 3.09 7.87 

3 237.16 352.23 0.7763 0.0406 4.72 9.99 233.35 626.13 0.354 0.0827 5.87 6.25 

4 90.40 179.30 1.1644 0.0406 2.50 26.25 170.24 931.72 0.177 0.0023 5.87 5.28 

5 163.78 525.15 0.7763 0.0001 0.29 18.78 296.45 320.55 0.001 0.0827 0.32 7.12 
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5.1.2 Description of the FE Models 

Axial crush simulations of all samples (Tables 5.1 and 5.2) are performed using 

explicit FEA code LS-DYNA, version 971. A rigid plate of 127-g mass is attached to 

6161-T6 cylindrical tube of 76.2-mm length, 2.41-mm thickness and 11.495-mm mean 

radius. The tube and the attached mass traveling at an initial speed of 101.3 m/s collide 

into a rigid barrier perpendicular to the tube axis. The constructed FE model is shown in 

Figure 5.2, where a “single-surface” interface with friction coefficient of 0.1 is adopted to 

prevent penetration of contacting elements into the tube elements due to excessive 

deformation.   Shell elements are used in all computer simulations. The sensitivity of the 

simulated results to mesh density was analyzed and element size of 1x1 mm was found to 

be suitable for valid simulation results.  The material properties of the tube are modeled 

by JC material model. For each sample in the training set, material constants are selected 

from Table 5.1. Figures 5.3a and 5.3b show the collapsed shapes of the test samples for 

JC material Models 1 and 2, respectively. The differences in the results are due to the 

selected values of the material constants in Table 5.2. The response of interest is the 

crush length representing the amount by which the tube length is reduced after impact.   

 

 

Figure 5.1 Finite element model of the impacted tube 
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Figure 5.2 Collapsed shapes of selected test samples for (a) Johnson-Cook model 1 

and (b) Johnson-Cook model 2 (Not to scale) 

5.1.3 Evaluation of RBF Model Accuracy 

The parameter c in φ(ri ) can be used to fine-tune the RBF model to increase 

accuracy of the approximate crush length. For JC Models 1 and 2, c = 1 and 0.45, 

respectively, gave the most accurate mathematical models for the crush length. The error 

estimates are given in Table 5.3. As it can be seen, large values for w+ and w$�pvQ^OQeK+  

and small values for RMSE and PRESS indicate acceptable level of accuracy for the 

constructed RBF-based surrogate models. The RBF models used for propagation do not 

need to have very high level of accuracy as they are principally used for a preliminary 

estimation of response bounds within each joint proposition cell.  

Table 5.3 Error estimation of RBF metamodels for crush length 

Crush Length 

 

Assessment at test points 

 

Assessment at training points 

R+ RMSE R·¸¹�Mº�M»�+  PRESS 

Model 1 0.926 2.04 0.802 174.67 

Model 2 0.910 0.745 0.790 61.62 
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5.1.4 Construction and propagation of joint belief structure 

In this case, the constructed joint belief structure contains 69,120 and 45,360 

Cartesian products for Models 1 and 2, respectively. It is important to note that in each 

Cartesian product, the material constants are defined in interval form, and the difference 

in the number of Cartesian products is due to the difference in the belief structures of the 

two models.  

Propagation of uncertainty requires the determination of the maximum and 

minimum values (bounds) of the response for each Cartesian product of the constructed 

joint belief structure, where each uncertain constant can take any value within the 

corresponding subinterval range. Thus, for Model 1, it would be necessary to solve 

69,120 problems once for the minimum and again for the maximum crush length.   

Since the GA based solution for each optimization problem takes about an hour 

on a desktop computer, we chose to develop four separate surrogate models representing 

the maximum and minimum crush lengths for Models 1 and 2. In each surrogate model, 

the crush length is related to 10 input variables representing the lower and upper bounds 

of the five material constants corresponding to a particular Cartesian product.   

Using LHS, we selected 50 random samples from the set of 69,120 Cartesian 

products for Model 1 and another 50 from the 45,360 Cartesian products for Model 2. In 

each random sample, the material constants appear in interval form that represent the 

lower and upper bounds of design variables in an optimization problem for finding the 

minimum and maximum values of crush length.  For clarity, we can define the design 

space for each Cartesian product as ��!1, !2�, �81, 82�, �01, 02�, �G1, G2�, ��1,�2��¼, 

where k = 1, 50. 
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With the GA toolbox in MATLAB as the optimizer, an initial population of 20 

random design points was selected consistently with the specified bounds for each 

material constant in the kth Cartesian product. This optimization problem was solved 

once for the minimum crush length and another time for the maximum crush length using 

a cross-over fraction of 0.8.  

With 100 maximum and minimum crush length responses found, the coefficients 

(qQ, N � 1, 50) for each RBF metamodel were calculated. Using the multiple error metrics 

discussed earlier, the accuracy of each metamodel was verified (see Table 5.4). These 

metamodels were then used for propagating the interval of uncertainty for each material 

constant to the interval of uncertainty in the crush length for all 69,120 Cartesian 

products for Model 1 and 45,360 Cartesian products for Model 2.  

For all Cartesian products in Model 1, the overall minimum and maximum crush 

lengths were found to be 3.4 mm and 39.5 mm, respectively, whereas for Model 2, the 

overall minimum and maximum values were 2.2 mm and 22.0 mm, respectively.  

It should be noted that the BBA of each interval of uncertainty for crush length 

equals to that of the corresponding Cartesian product of the joint belief structure. 

Comparing the predicted maximum crush lengths for all Cartesian products (and the 

minimum crush lengths) revealed very small difference in most of them. Hence, when the 

difference between the minimum crush lengths and that of the maximum crush lengths in 

two Cartesian products was less than 1.0 mm, the Cartesian products were treated as one 

with BBA equal to the sum of BBA of the underlying products. As a result of this size 

reduction, the belief structure for crush length was reduced significantly from 69,120 to 

91 for Model 1 and from 45,360 to 95 for Model 2. Of course, the amount of reduction in 

belief structure size depends on the tolerance value selected.  The reduced propagated 
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(crush length) belief structure for Models 1 and 2 are given in Table 5.5. Note that for the 

purpose of belief and plausibility estimation discussed later, unreduced propagated belief 

structures are used. Although the gap between the lower and upper crush-length bounds 

in Table 5.5 is rather large, it is important to consider the associated BBA values, which 

are fairly low for each JC model. Therefore, the available evidence that supports each 

interval is very weak in this analysis. When the two models are combined, we notice that 

some intervals take significantly larger BBA values than others, and those with larger 

BBA values correspond to smaller intervals. For example, if we were to narrow the 

interval of uncertainty to a single interval with the highest BBA value, then we find the 

range of crush length to be 9.51 mm to 10.93 mm with BBA of 0.261. 

Table 5.4 Error estimation of RBF models for maximization and minimization of the 

approximate crush length 

Metamodel 

Response 
 

Model 1 

 

Model 2 

R·¸¹�Mº�M»�+  PRESS R·¸¹�Mº�M»�+  PRESS 

Maximization 0.940 55.79 0.988 1.93 

Minimization 0.966 7.89 0.940 5.74 

Table 5.5 The propagated belief structure for Johnson-Cook Models 1 and 2 and their 

combination 

Model 1  Model 2  Combined Model 

Range BBA Range BBA Range BBA 
[13.99, 15.95] 0.009431 [ 9.47, 10.93] 0.045388 [13.99,14.74] 0.005583 

[13.17, 14.61] 0.007563 [ 9.03, 13.45] 0.055012 [13.99, 14.54] 0.000202 

[10.91, 18.24] 0.033319 [ 8.85,11.58] 0.054113 [13.99,14.38] 0.000157 

[12.59, 15.91] 0.003343 [ 8.33,13.36] 0.038754 [13.99, 14.01] 7.2E-05 

[11.57, 13.81] 0.004432 [ 8.40, 9.64] 7.93E-05 [13.17,13.45] 0.00784 

[9.51, 16.97] 0.028821 [ 8.12,12.40] 0.011502 [10.91, 10.93] 0.077246 

[10.12, 10.79] 0.000946 [ 8.18,11.01] 0.002686 [9.51, 10.93] 0.261086 

[9.00, 15.01] 0.009644 [ 6.97,11.38] 0.043206 [9.51, 9.64] 0.000947 

[9.50, 12.98] 0.000947 [ 6.30,13.98] 0.013549 [9.03, 13.45] 0.101881 

[8.67, 18.69] 0.015109 [10.22,11.42] 0.03591 [9.00,11.58] 0.004288 

[13.61, 17.32] 0.002217 [ 9.24,10.21] 1.46E-05 [9.00, 9.64] 0.001903 

[15.23, 17.46] 0.000977 [10.90,11.98] 0.014088 [8.85,11.58] 0.059156 

[11.80, 19.87] 0.007205 [10.17,14.74] 0.008382 [8.67, 13.36] 0.041995 

[11.55, 12.31] 0.000255 [10.21,12.08] 0.016900 [8.67, 9.64] 0.00775 

[11.26, 15.25] 0.000221 [ 9.24, 14.67] 0.045736 [8.33,13.36] 0.128838 

[9.58, 20.16] 0.009467 [ 8.82, 12.57] 0.004124 [8.40, 9.64] 0.00958 
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Table 5.5 (Continued) 

 
    

[12.74, 23.37] 0.004654 [7.67,15.24] 0.035874 [8.12, 12.40] 0.032792 

[9.69, 25.76] 0.037882 [8.49, 14.96] 0.019122 [8.18,11.01] 0.003325 

[11.32, 22.33] 0.010651 [ 8.30,17.27] 0.008438 [8.13, 10.29] 4.01E-05 

[11.38, 23.66] 0.001552 [7.64,17.23] 0.032285 [9.17, 9.36] 0.000203 

[8.87, 24.15] 0.025406 [7.47, 13.05] 0.001535 [7.97, 11.38] 0.020676 

[8.67, 21.55] 0.004062 [5.87, 15.44] 0.049601 [7.97,10.57] 5.67E-09 

[8.06, 26.15] 0.021253 [6.60, 15.88] 0.005598 [7.32,11.38] 0.101184 

[9.17, 9.36] 0.000255 [5.36, 17.62] 0.008526 [7.32,10.57] 4.17E-08 

[8.56, 11.56] 0.001004 [8.13, 10.29] 1.05E-05 [ 8.12, 9.71] 8.08E-06 

[7.97, 17.35] 0.011646 [ 7.83, 11.70] 0.00083 [ 7.85, 9.71] 7.28E-05 

[9.98, 22.12] 0.000137 [ 9.52, 12.47] 0.011275 [ 8.12, 8.26] 1.1E-06 

[7.32, 22.97] 0.033658 [7.02, 15.11] 0.002832 [7.76, 8.26] 1.22E-05 

[10.95, 16.71] 6.24E-05 [5.19, 15.77] 0.015653 [ 6.97, 6.97] 0.04568 

[8.11, 13.01] 0.007017 [7.60, 13.71] 0.011834 [ 6.71, 11.27] 0.004522 

[7.85, 9.71] 0.000158 [7.14,12.19] 0.011662 [ 6.71,10.57] 6.14E-09 

[7.76, 8.26] 2.06E-05 [6.45,12.19] 0.002872 [ 6.52,12.64] 0.001863 

[6.95, 6.97] 2.87E-07 [10.73,12.81] 0.03957 [ 6.52, 12.19] 0.00106 

[6.71, 11.27] 0.004083 [ 9.53,11.63] 0.0029 [6.52, 11.50] 3.34E-06 

[7.12, 14.38] 0.027256 [ 8.50,15.82] 0.057995 [6.52, 10.57] 3.16E-09 

[6.52, 12.64] 0.006478 [ 6.95,17.52] 0.005954 [ 6.30, 13.98] 0.004915 

[7.31, 20.28] 0.009225 [5.87,16.13] 0.001082 [ 5.91, 15.44] 0.031229 

[7.27, 21.61] 0.001259 [5.83,14.63] 0.00073 [ 5.91, 14.63] 0.003437 

[6.64, 18.31] 0.008533 [6.21, 11.50] 1.52E-05 [ 6.21, 11.50] 6.11E-06 

[5.91, 21.09] 0.055656 [5.15,14.54] 0.020327 [ 5.91, 10.57] 0.002192 

[7.27,15.82] 0.007726 [5.75,10.57] 4.87E-07 [6.45,  8.40] 7.91E-06 

[5.91, 22.59] 0.023555 [4.91, 13.72] 0.009404 [5.68, 17.62] 0.002467 

[6.45, 8.40] 2.83E-06 [5.48,11.97] 2.98E-06 [5.68, 15.77] 0.001695 

[6.46, 9.92] 3.78E-05 [4.07,11.89] 0.000466 [5.68,14.54] 0.000981 

[5.68,19.61] 0.003278 [3.23, 14.61] 0.000513 [5.75,10.57] 0.001029 

[5.65, 13.95] 0.003419 [6.78, 13.07] 2.73E-08 [5.51,16.49] 0.005855 

[5.51, 16.49] 0.005231 [5.45, 12.93] 9.94E-05 [5.51,15.77] 0.001057 

[5.95, 25.31] 0.073116  [4.41, 15.72] 0.000354  [5.51,14.54] 0.001357 

[5.15, 23.99] 0.032062 [5.53, 18.29] 0.01515 [5.51,13.72] 0.000822 

[4.48, 21.51] 0.004432 [4.58, 17.17] 0.01718 [5.51,11.97] 4.93E-05 

[5.05, 18.09] 0.000354 [4.57, 18.21] 0.003089 [5.36,17.62] 0.000809 

[5.20, 12.02] 4.47E-05 [3.50,15.86] 0.000217 [5.19,15.77] 0.003765 

[4.91, 10.40] 1.46E-07 [2.80, 18.18] 0.000208 [5.15,14.54] 0.00197 

[5.21, 27.09] 0.01893 [7.82, 14.38] 0.016196 [5.15,13.72] 0.000648 

[4.46, 25.75] 0.002268 [9.90, 14.01] 0.002206 [5.15,11.89] 3E-05 

[3.81, 23.29] 8.60E-06 [8.20, 16.53] 0.018845 [4.91,13.72] 0.000469 

[ 4.34, 19.63] 0.000209 [7.26, 16.47] 0.011844 [4.48,11.89] 0.001889 

[3.09, 24.71] 0.001615 [7.14, 14.40] 1.44E-06 [6.30,10.40] 1.98E-09 

[2.26, 17.50] 4.26E-05 [4.74, 12.10] 1.81E-05 [5.87,10.40] 7.53E-09 

[5.54, 28.60] 0.005072 [11.56 12.57] 0.001066 [5.36,10.40] 3.62E-09 

[4.82,  8.85] 3.81E-09 [10.73,15.64] 0.010895 [5.19,10.40] 5.25E-09 

[15.93, 18.79] 0.000221 [10.02,15.58] 0.014977 [4.91,10.40] 8.52E-09 

[14.02, 18.77] 0.000142 [8.53, 18.18] 0.012800 [4.07, 11.89] 0.00018 

[13.10, 21.28] 0.000123 [7.81, 18.13] 0.014695 [3.81, 14.61] 1.1E-08 

[14.18, 26.16] 0.000136 [10.04, 3.17] 0.001037 [3.85,12.56] 6.81E-11 

[10.61, 27.72] 0.01803 [8.53, 14.21] 0.002157 [6.30, 8.85] 5.17E-11 

[12.75, 26.02] 0.000601 [9.35, 15.56] 0.008113 [5.87, 8.85] 1.97E-10 

[ 8.63, 27.96] 0.056871 [11.45,13.44] 0.001444 [5.36, 8.85] 9.44E-11 

[11.36, 25.14] 0.000669 [7.09, 18.41] 0.011847 [5.19, 8.85] 1.37E-10 

[7.35, 24.59] 0.000241 [5.62, 13.66] 1.83E-06 [4.91, 8.85] 2.22E-10 

[6.93, 29.47] 0.034767 [6.45, 16.84] 0.000182 [2.22, 36.53] 0.013171 

[5.71, 31.08] 0.000776 [ 5.73, 18.98] 0.000448   

[7.23, 27.63] 0.001192 [5.74, 16.82] 0.000546   

[9.34, 29.33] 0.019535 [ 4.71, 18.88] 0.014123   
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Table 5.5 (Continued) 
 

    

[10.68, 29.12] 0.000297 [3.53, 16.65] 2.21E-05   

[9.88, 30.71] 0.001532 [10.76,13.46] 9.68E-05   

[8.50, 30.97] 0.008745 [ 3.85, 12.56] 7.92E-06   

[10.12, 38.56] 0.014672 [5.05, 16.44] 5.84E-06   

[8.32, 38.38] 0.085286 [4.63, 12.84] 3.43E-06   

[8.94, 36.97] 0.001817 [4.23, 14.00] 0.003213   

[7.54, 37.07] 0.032268 [7.92, 19.63] 0.029201   

[8.30, 32.83] 2.56E-05 [7.31, 21.56] 0.015858   

[7.12, 35.73] 0.000322 [7.26, 20.06] 0.006405   

[6.90, 32.48] 1.21E-05 [6.57, 19.86] 0.000107   

[5.69, 36.60] 0.043014 [6.50, 21.50] 0.001532   

[5.51, 35.11] 0.054824 [4.40, 21.11] 0.007828   

[4.17, 34.64] 0.030593 [7.97, 20.28] 5.72E-06   

[4.05, 32.96] 0.005287 [8.01, 18.84] 0.008258   

[3.98, 16.54] 2.50E-06 [4.91, 19.73] 0.001238   

[4.38, 36.53] 0.000665 [2.18, 17.35] 0.000131   

[4.15, 29.32] 3.12E-05 [5.80, 20.13] 0.000168   

 
 [5.00, 21.97] 0.000139   

 
 [4.12, 21.89] 9.57E-07   

 
 [3.02, 19.13] 0.000129   

 
 [2.22, 21.37] 6.31E-05   

5.2 Uncertainty quantification of Johnson-Cook material models 

5.2.1 Belief and plausibility estimation for experimental precision intervals 

To evaluate the belief and plausibility of the estimated crush length based on JC 

material model, the propagated intervals of uncertainty with assigned BBA for crush 

length should be compared to those obtained through experiments. Florance and Goodier 

(1968) reported an experimental crush length of 13.9 mm for cylindrical tubes with the 

same material and geometric properties as those used in our crush simulations. 

Since the propagated uncertainty is determined in interval form with 

corresponding BBA, the experimental results should also be defined in interval form for 

comparison purposes.  Here, we define precision intervals for experimental crush length 

data ranging from 90% to 50% as shown in column 1 of Table 5.6, where 90% implies a 

bound of ±10% from the 13.9 mm nominal value. 

 In order to measure epistemic uncertainty of JC material models, we add BBA of 

those propagated intervals covered by experimental precision interval to find the value of 
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belief measure and add BBA of those intervals intersecting the experimental precision 

interval to find the value of plausibility measure. 

The estimated belief and plausibility of JC Models 1 and 2 as well as the 

combined model for different experimental precision intervals are provided in Table 5.6. 

As indicated, Model 1 offers higher belief for high experimental precision intervals than 

Model 2. However, for low precision intervals, the reverse is true.  Results also indicate 

that while JC material models are suitable for simulating dynamic material behavior, they 

include considerable epistemic uncertainty as noted by the large gap between belief and 

plausibility for each model. Interestingly, the combined model offers higher belief and 

lower plausibility (i.e., less epistemic uncertainty) for all experimental precision intervals 

than each individual model. This verifies the fact that multi-model prediction reduces the 

contribution of model form uncertainty. Table 5.7 provides information on total numbers 

of propagated uncertainty intervals in belief and plausibility analysis. 

Table 5.6 Estimated belief, plausibility and plausibility decision for Johnson-Cook 

Models 1 and 2 and their combination 

Precision 

Interval 

Precision 

(%) 

 Model 1  Model 2  Combined Model 

Bel Pl Pl_dec Bel Pl Pl_dec Bel Pl Pl_dec 

[12.51,15.29] 90 0.004 0.993 0.177 0.000 0.769 0.205 0.011 0.752 0.244 

[11.12,16.68] 80 0.021 0.999 0.339 0.011 0.978 0.468 0.038 0.953 0.522 

[9.73,18.07] 70 0.046 1.000 0.482 0.145 1.000 0.746 0.226 1.000 0.814 

[8.34,19.46] 60 0.103 1.000 0.604 0.454 1.000 0.906 0.622 1.000 0.950 

[6.95,20.85] 50 0.162 1.000 0.703 0.767 1.000 0.969 0.890 1.000 0.988 

Table 5.7 Total numbers of propagated uncertainty intervals supporting belief and 

plausibility for different models 

Precision 

Interval 

Precision 

(%) 

 

Model 1 

 

Model 2 

 

Combined Model 

Belief Plausibility Belief Plausibility Belief Plausibility 

[12.51,15.29] 90 698 59299 0 21830 243 5568 

[11.12,16.68] 80 9883 64347 1036 41369 1106 6920 

[9.73,18.07] 70 20872 67496 9556 45175 2431 7479 

[8.34,19.46] 60 32374 68828 24912 45360 4336 7843 

[6.95,20.85] 50 41900 69110 38301 45360 6356 7892 
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5.2.2 Belief and plausibility estimation for observed belief structures 

As different forms of JC plasticity model resulted in different material constants, 

different sources of information (e.g., analytical, numerical and experimental approaches) 

may offer different values for crush length of the 6061-T6 tube model considered here. 

Recognizing that each source of information includes an element of uncertainty, it would 

be impossible to have full confidence in its accuracy.  Therefore, construction of an 

informative belief structure for crush length is necessary before it can be used for 

uncertainty quantification of JC models or estimation of uncertainty measures (belief and 

plausibility). Although construction of experimental precision intervals for crush length is 

useful for estimation of belief and plausibility, it is not sufficiently informative as it relies 

on only one set of experimental results.  

In this section, we consider three sources of information for the crush length, the 

experimentally measured value obtained by Florance and Goodier in (1968), the 

analytical value provided by Karagiozovaa and Jones in (2000), and the numerical value 

found here by using the experimentally validated material constants (see Table 5.8) 

reported by Johnson et al. (1996) for a model that matches the one labeled as Model 1. 

All three values are given in Table 5.9, and the simulation-based crush mode using the 

reported constants in Table 5.8 is shown in Figure 5.3. 

 

 

Figure 5.3 Collapsed shape of the 6061-T6 tube with experimentally validated 

published set of Johnson-Cook material constants 
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Table 5.8 Johnson-Cook model constants obtained from SHPB tests  

Material  T½(K) A (MPa) B (MPa) C n m 

AL6061-T6 855 324 114 0.002 0.42 1.34 

Table 5.9 Experimental, analytical and numerical values for crush length of 6061-T6 

tube 

Crush Length (mm) 
Experimental Analytical  Numerical 

13.9 13.1 12.03 

 

Here, the methodology developed in chapter 2 is used for construction of the 

crush length belief structure, where identification of the relationship types (conflict, 

agreement and ignorance) between intervals of uncertainty for crush length is the key for 

constructing a belief structure for it. However, the body of evidence (see Table 5.9) for 

crush length contains too small a dataset to reveal differences in distribution of data 

points within intervals of uncertainty. In fact, identification of relationship types between 

disjointed intervals of uncertainty for crush length involves epistemic uncertainty due to 

lack of data.  

Figure 5.4 shows three possible belief structures for the crush length, where 

symbols N, A and E denote numerical, analytical and experimental data points, 

respectively. Belief structure 1 considers conflict relationship among the three intervals 

of uncertainty corresponding to experimental, numerical and analytical data points. In 

belief structure 2, experimental and analytical intervals of uncertainty are in conflict 

relationship with each other and in ignorance relationship with the numerical interval of 

uncertainty. This is because intervals of analytical and experimental data points are close 

to each other but separated at a distance with the numerical interval. Instead of 

considering 4 disjointed uncertainty intervals, two intervals are considered for belief 

structure 3, where one interval includes the combined analytical and experimental data 
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points whereas the other spans the universal set. Hence, interval of numerical data is 

considered to be in ignorance relationship with its adjacent interval as it includes fewer 

data points than the rest.  

 

 

Figure 5.4 Alternate belief structure (a) 1, (b) 2 and (c) 3 for crush length based on 

numerical, analytical, and experimental results 

For estimation of belief and plausibility measures, a consolidated belief structure 

for crush length is needed that includes all the available evidence as captured in Figure 

5.4. To achieve this detailed belief structure, Yager’s combination rule is used. Table 

5.10 shows the three individual belief structures along with the combined belief structure 

for crush length. 

Table 5.10 Intervals and associated BBA values for crush length belief structures 1 

through 3 and their combination. 

Interval # 
 Belief structure 1  Belief structure 2  Belief structure 3 

 Range BBA  Range BBA  Range BBA 

1  [13.5, 14.0] 0.3400  [13.5, 14.0] 0.3400  [13.0, 14.0] 0.6700 

2  [13.0, 13.5] 0.3300   [13.0, 13.5] 0.3300  [12.0,14.0] 0.3300 

3  [12.0,12.5] 0.3300   [12.0,14.0] 0.3300    

Combined (final) belief Structure 

1, 3, 5  [13.5, 14.0] 0.2278  [12.0, 12.5] 0.0359   [12.0, 14.0] 0.22 

2, 4  [13.0, 13.5] 0.2178  [13.0, 14.0] 0.2985  - - 
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Assuming !Q represents the ith focal element of belief structure M with BBA of 

�Q, the belief and plausibility of M can be estimated as 

8.9�¾� � ∑ �Q ∑ ���¼�^¿6"RQFKQF)        (5.8) 

�9�¾� � ∑ �Q ∑ ���¼�^¿>"RÀÁQFKQF)        (5.9) 

where n is the number of focal elements of M, �¼ is the kth focal element of the 

propagated belief structure C with BBA of ���¼�. The range of k can be up to 69,120 for 

Model 1, 45,360 for Model 2, and 7,957 for the combined case. For the crush tube 

problem, n takes the value of 3, 3, and 2 for crush length belief structures 1, 2, and 3, 

respectively, whereas for the combined belief structure, n is 5 (see Table 5.10). The inner 

summations in Eqs. (5.8) and (5.9) represent the belief and plausibility of each element of 

the crush length belief structure, respectively. The estimated belief and plausibility of 

belief structures for crush length in Table 5.10 are given in Table 5.11. Note that the 

estimation of belief and plausibility of the combined belief structure for crush length is 

more suitable for quantification of epistemic uncertainty embedded in JC material 

models. Comparison between Tables 5.6 and 5.11 indicates that the uncertainty measures 

of the consolidated BBA are closer to the 90% experimental precision interval than the 

rest. 

Table 5.11 Estimated belief, plausibility and plausibility decision of all possible belief 

structures along with the combined belief structure for crush length of 6061-

T6 tube.  

Model 

Type 

Belief structure 1  Belief structure 2 

Bel Pl Pl_dec Bel Pl Pl_dec 

Model 1 0.000 0.980 0.033 0.000 0.982 0.065 

Model 2 0.000 0.715 0.049 0.000 0.715 0.094 

Combined 0.001 0.693 0.054 0.001 0.700 0.106 

Model 

Type 

Belief structure 3  Combined Belief 

Bel Pl Pl_dec Bel Pl Pl_dec 

Model 1 0.000 0.986 0.087 0.000 0.982 0.018 

Model 2 0.000 0.729 0.121 0.000 0.710 0.089 

Combined 0.009 0.736 0.138 0.001 0.703 0.102 
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5.2.3 Plausibility decision function (Pl_dec) estimation  

Tables 5.6 and 5.11 show that a large gap exists between the belief and 

plausibility of experimental precision intervals or belief structures for crush length. This 

gap, which is indicative of the amount of epistemic uncertainty embedded in JC material 

models, makes it difficult to evaluate simulation accuracy of JC material models with 

only belief and plausibility measures.  

Using the generalized insufficient reason principle, Savage (1972) Bae et al. 

(2006) introduced plausibility decision function (Pl_dec) as a supplemental measure to 

make decision for model evaluation under epistemic uncertainty when the resulting 

bound between belief and plausibility is too large. Pl_dec of the belief structure M can be 

determined by the following equation: 

 �9_Ã.��¾� � ∑ �Q ∑ ���¼� * ∑ �QQFKQF) ∑ ���¼� |"R>^¿||^¿|^¿>"RÀÁ^¿6"RQFKQF)  (5.10) 

Using Eq. (5.10), Pl_dec is calculated for precision intervals and belief structures of 

crush length with results shown in Tables 5.6 and 5.11. Note that the experimental 

precision intervals in Table 5.6 can be considered as a belief structure with only one focal 

element.  

As can be seen in Tables 5.6 and 5.11, estimated Pl_dec values are considerably 

closer to belief than plausibility. This implies that the propagated information favors 

complement of belief function. Hence, in this case, further precaution should be taken for 

assessing reliability of simulation responses due to the existing uncertainties.  

5.3 Uncertainty propagation and measurement of BCJ plasticity model 

A nonlinear FEA of Taylor impact test of a 7075-T651 aluminum alloy solid 

circular cylinder is used for propagation of the represented uncertainty in Table 4.11. The 
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final deformed length and radius of the cylinder are used as the two main measures of 

plastic deformation in this case (see Figure 5.5).  

As in the case of JC plasticity, we rely on design and analysis of computer 

experiments for uncertainty propagation by using the following steps:   

1. LHS technique is adopted to generate 60 separate samples (training points) for 

material constants C1 to C6 of BCJ plasticity model. The universal set that spans over the 

constructed belief structures for all six uncertain material constants of BCJ flow equation 

as shown in Table 4.11 are considered in selecting the bounds for generation of the 

random samples (uncertain material constants). 

2. For each training point, we performed FE simulation of Taylor impact test on 

the solid cylinder with a 30-mm length and 4.85-mm radius colliding with a velocity of 

267 m/s into a rigid plate using an explicit nonlinear FE code LS-DYNA, v 971. The 

deformed shape of one sample after Taylor impact simulation is shown in figure 5.5 by 

considering a quarter model of the solid cylinder.  The derived hardening constants of 

BCJ plasticity model (constants C7 to C18) in Table 5.10 are used in all FE simulations 

while flow constants (C1 to C6) are determined by the generated training points.   

3. With 60 training points and their responses identified in steps 1 and 2, accurate 

surrogate models based on RBF are developed to establish an explicit relationship 

between material constants of BCJ flow equation and the final deformed radius and 

length. Since RBF is an interpolation model, ten randomly selected design points 

(different from any of the training points) within the global bounds of the material 

constants of BCJ flow equation are used as test points for the evaluation of error statistics 

to ensure sufficient accuracy of the constructed RBF-based surrogate models.  
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4. Finally, with each joint proposition providing the bounds or side constraints for 

material constants of flow equation for BCJ plasticity model, a global optimization (i.e., 

Genetic Algorithm) technique is applied to the constructed RBF metamodels to find the 

minimum and maximum values of structural response (radius and length of the deformed 

cylinder). This procedure is repeated for all the joint propositions of material constants to 

find the corresponding belief structure for deformed radius and length of cylinder. Hence, 

the propagated belief structure for structural response is obtained. 

 

 

Figure 5.5 Taylor impact simulation model showing the original and the deformed 

geometries. 

Uncertainty quantification requires assessment of uncertainty measures (belief, 

plausibility) for a defined target proposition set using the obtained propagated belief 

structure. Konokman et al. (2011) reported an experimental deformed length of 26.40 

mm and radius of 5.76 mm for the cylinder with the same material and geometric 

properties as those used here for Taylor impact simulations. Here, we define 90% and 
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95% precision intervals for experimental deformed length and radius the cylinder and 

consider them as target proposition set for estimation of uncertainty measures.  

 To quantify the uncertainty of the BCJ plasticity model, we add BBA of those 

propagated intervals covered by experimental precision intervals to find belief and add 

BBA of those intervals intersecting the experimental precision interval to determine 

plausibility, respectively. The estimated belief and plausibility for 90% and 95% 

experimental precision intervals for both deformed radius and length are provided in 

Table 5.12. As indicated, the estimated values of belief and plausibility for experimental 

precision intervals of deformed length are slightly higher than those of the deformed 

radius. Also as expected, for both deformed length and radius, the estimated values of 

uncertainty measures of 90% precision intervals are higher than those of 95% precision 

intervals. The gap between belief and plausibility for experimental precision intervals is 

indicative of epistemic uncertainty embedded in the BCJ plasticity model. The high 

estimated values of plausibility for precision intervals (target proposition sets) indicate 

that the presented approach is valid for determination of the BCJ material constants.  It 

also verifies the accuracy of the model to simulate a large deformation process. 

Table 5.12 Estimated belief and plausibility for experimental precision intervals of 

deformed length and radius 

Precision 

(%) 

 Deformed Length (mm)  Deformed Radius (mm) 

Bel Pl Bel Pl 

90 0.004 0.928 0.001 0.897 

95 0.002 0.899 0.001 0.891 
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CHAPTER VI 

AGGREGATION RULE OF EVIDENCE FOR UNCERTAINTY MODELING AND 

DECISION MAKING  

When faced with information or data from multiple sources of evidence, it is 

possible to encounter diverse belief structures. Since uncertainty can be represented and 

quantified only by a single belief structure that should reflect the diversity of information 

and expert opinions, it is necessary to aggregate the body of evidence. However, there is 

no unified approach for evidence aggregation, but a number of aggregation rules have 

been reported in the literature (Sents et al., 2002; Yager, 1987, 1987a; Inagaki, 1991). 

Despite the diversity in their formulation, all cited aggregation rules offer a unique belief 

structure when there is no conflict or ignorance between different information sources. 

However, in presence of high degree of conflict or ignorance, the combined belief 

structure can be quite diverse. 

In the area of uncertainty modeling of large deformation process, the issue of 

combining evidence from different sources can appear in both uncertainty representation 

and quantification stages.   As for uncertainty representation, different sources of 

experimental data, the approach they follow to provide stress-strain data at high 

temperature and strain rates, and the method used for fitting the material constants 

provide wide variation in one or more material parameters (Gray et al., 1994). In the case 

of uncertainty propagation and quantification, the choice of available plasticity models 

(Johnson and Cook, 1985, 1983; Bammann et al., 1993, Brown et al. 2006; Hallquist, 
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1993; Shirakashi, 1983) is quite diverse in the way a particular physical effect such as 

temperature or strain rate is mathematically modeled, and this diversity results in 

different propagated belief structures.  

This topic falls under the area of model-selection uncertainty, and many 

researchers have relied on the Bayesian approach to address it in the recent years. For 

example, Edwards (1984) and Guedes Soares (1997) used this approach to combine 

several competing probability distribution types to describe a random variable, whereas 

Zhang and Mahadevan (2000) used the Bayesian approach to combine multiple 

competing limit-state formulations simultaneously for the same problem. Park and 

Grandhi (2010) developed a Bayesian framework to quantify model probability using 

measured deviations between experimental data and that of model predictions. However, 

Bayesian framework can model both parametric and model-selection uncertainties when 

uncertain variables are defined by probability distribution functions (Droguett and 

Mosleh, 2008). Commonly, a uniform distribution is assumed for prior probabilities of 

different models and posterior model probabilities are calculated based on experimental 

observations. For each new observation, the estimated posterior model probabilities are 

treated as prior and updated for estimation of the next posterior probabilities. 

In this chapter, a new aggregation rule of evidence is developed for more accurate 

uncertainty modeling of large deformation processes. In the previous chapters, Yager’s 

(1987, 1987a) aggregation rule of evidence along with a general uncertainty 

representation, propagation and quantification framework were employed to address this 

issue. However, it is recognized that the application of Yager’s rule that allocates belief 

function of conflict to the universal set (complete ignorance) results in a huge gap 

between the estimated belief and plausibility (epistemic uncertainty) that hampers 
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decision-making in product design. To reconcile this challenge, the proposed evidence 

aggregation rule makes use of GPA suggested by Yager (1987, 1987a) along with a 

newly defined Credibility Factor of Evidence (CFE).  Observed experimental evidence on 

simulation responses as well as uncertain parameters are considered for calculation of the 

CFE used for combination of different belief structures.  

6.1 The proposed aggregation rule of evidence  

Inagaki (1991)
 
introduced a more advanced combination rule of evidence that 

takes advantage of the GPA function (q) that Yager defined in (Yager, 1987a) to define a 

continuous parameterized class of combination operations which subsumes both 

Dempster’s rule and Yager’s rule. Like Inagaki rule, the proposed combination rule 

makes use of GPA and is expressed as 

 

I�!� � ∑ �)�8��+�G�,      �Ä;>�F" �!� � I�!�                   (6.1) 

Å�8� � ∑ Æ �)�8��+�G�,     �Ä;>�F� �8� � Å�8�          (6.2) 

�x��� � 0                                                 (6.3) 

Equation (6.1) determines the aggregated BBA when information sources are not in 

conflict while Equation (6.2) indicates the functionality of the presented aggregation rule 

in case the information sources are in conflict (disjoint subset B and C in Eq. (6.2)). The 

parameter N in Eq. (6.2) is the CFE and is determined based on the comparative 

closeness level of two disjoint subsets B and C from different information sources to a 

reference point (RF).   The CFE value can be obtained as 

GÇ² � |È���B�É|
|È�;�B�É|X|È���B�É|             (6.4)                         

where u�8� and u�G� are the mean values of disjoint subsets B and C, respectively. Note 

that the RF refers to the observed value of an uncertain parameter in uncertainty 
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representation level or availible experimental value of structural response in uncertainty 

propagation and measurement levels.  

Conceptually, the proposed aggregation rule of evidence divides the BBA of 

conflict between disjoint subsets of different information sources proportionate to their 

level of assessed credibility using the observed evidence. When there is no evidence, 

decision making on most expected values of uncertain variables or simulation response is 

necessary to determine RF. However, this condition has not been investigated in this 

research. Without using the CFE, the proposed aggregation rule reduces to the Yager 

formulation and increases the amount of epistemic uncertainty. 

6.2 Uncertainty modeling of large deformation process 

The evidential uncertainty quantification framework outlined by Figure 1.1 is 

adopted in this section. To examine the characteristics of the proposed aggregation rule, 

JC and ZA plasticity models are considered using two different fitting approaches as 

presented in (Johnson and Cook, 1983, 1985). The represented uncertainties in each 

model are propagated through Taylor impact simulation of AISI 4340 Steel resulting in 

two propagated belief structures. The proposed rule is adopted to generate a consolidated 

propagated belief structure for modeling model selection uncertainty. Finally, through 

comparison of this consolidated belief structure with an experiment-based precision 

interval, epistemic uncertainty is quantified. Results indicate that application of the 

proposed aggregation rule leads to significant reduction of epistemic uncertainty. Also, a 

methodology for decision-making on simulation response using the propagated belief 

structure is explained. 
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6.2.1 Uncertainty representation of material constants 

The experimental data in Table 6.1 offers multiple combinations of stress-strain 

curves corresponding to different strain rate and temperature ranges. Once again, two 

fitting methods (Johnson and Cook, 1983, 1985) are employed for determination of JC 

material constants. Note that fitting method 1 determines all constants simultaneously 

while fitting method 2 determine them in separate stages. Hence, these choices will result 

in a wide range of values for each model constant, and capture the sources of uncertainty 

that will affect both the model constants as well as the simulation results.  

Relying on dislocation mechanics, ZA provides a physics-based relationship to 

describe dynamic material behavior. It offers different formulations for face centered 

cubic (FCC) and body centered cubic (BCC) materials expressed as     

σ � G� * G+ËK�²���cG|d * G}d90`ab��      (FCC)    (6.5)       

� � G� * G)�²���cG|d * G}d90`ab�� * G~`K  (BCC)          (6.6) 

where G�, G), G|, G}, G~ and 0 are material constants, and εab � εa εa»⁄  is the dimensionless 

plastic strain rate with `ae � 1.0 gB). 

Table 6.1 Testing conditions for the experimental source of data 

Curve Type 
Strain 

Rate (s
-1

) 

Temperature 

(K) 

1 Tension 0.0004 293 

2 Tension 0.009 293 

3 Tension 32 293 

4 Tension 117 293 

5 Tension 604 494 

6 Tension 1500 473 

7 Tension 2500 298 

8 Tension 650 733 

9 Tension 2000 873 

10 Tension 1500 673 
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Table 6.2 lists the possible sets of material constants of ZA plasticity model for 

AISI 4340 Steel derived through the fitting of the model with different sets of stress-

strain curves selected from Table 6.1 over the specified ranges of temperatures and strain 

rates. Note that the fitting method 1 is employed for all listed ZA constants in Table 6.1. 

As for JC plasticity model, fitting methods 1 and 2 offer 19 and 18 sets of material 

constants, respectively, and are provided by Table 8.3.  

Table 6.2 ZA material constants for AISI 4340 steel obtained using fitting method 1 

G�(MPa) G)(MPa) G|(1/K) G}(1/K) G~�MPa� n 
166.56 1882.21 0.09831 0.00363 1288.53 0.209 

197.13 505.53 0.07472 0.00588 1327.27 0.212 

155.79 3447.38 0.68111 0.10274 839.40 0.052 

104.57 873.57 0.41847 0.08235 1402.26 0.180 

126.08 2531.80 0.72343 0.15704 930.25 0.074 

104.25 4974.52 0.72342 0.04600 1441.82 0.202 

97.24 2117.02 0.45640 0.05325 1961.48 0.244 

256.62 3581.58 0.79078 0.10171 668.64 0.104 

326.83 1789.24 0.324089 0.04125 1342.44 0.397 

110.93 803.03 0.39522 0.05033 1330.30 0.132 

440.71 1850.45 0.40983 0.02709 1920.87 0.463 

 

Here, the obtained data on material constants of JC plasticity model using the 

fitting methods 1 and 2 and ZA model using fitting method 1 is used to construct separate 

belief structures for each of their material constants. Then, the presented aggregation rule 

of evidence is used to combine different belief structures suggested by fitting method 1 

and 2 for final representation of uncertainty in material constants. Combination results 

are compared with Yager aggregation rule of evidence. 

Following the procedure discussed in Chapter 4, a separate belief structure for 

each uncertain material constant of ZA plasticity model for AISI 4340 Steel is 

constructed and is given by Table 6.3. As an example, the dataset used to construct a 

belief structure for constant C5 along with the corresponding belief structure are shown 
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in Figure 6.1. Fitting method 1 and 2 suggest two different belief structures for material 

constants of JC plasticity model and are given in Table 8.4. 

Table 6.3 Belief structures of material constants of ZA plasticity model for AISI 4340 

Steel 

Interval 

No. 

 

C0 

 

C1 

 

C3 

Range BBA Range BBA Range BBA 

1 [97.24, 211.73] 8/13 [505.5, 1995.2] 6/13 [0.0747, 0.3599] 3/13 

2 [97.24, 326.22] 4/13 [1995.2, 3484] 4/13 [0.3599, 0.6451] 4/13 

3 [326.22,440.71] 1/13 [3484, 4974.5] 3/13 [0.6451, 0.9303] 6/13 

 C4 C5 n 

1 [0.0036, 0.06305] 7/13 [617.1, 1065.2] 4/13 [0.0522, 0.1893] 6/13 

2 [0.0036, 0.18188] 6/13 [1065.2, 1513] 7/13 [0.1893, 0.3263] 4/13 

     [1065.2, 1961] 2/13  [0.3263,0.4634] 3/13 

 

 

 

Figure 6.1 Data distribution and the corresponding belief structure for constant C5 

The constructed belief structure of ZA plasticity model material constants as 

given by Table 6.3 shows final representation of uncertainty, and can be used for 

uncertainty propagation. However, as for JC plasticity model, the different belief 

structures of material constants suggested by fitting methods 1 and 2 (see Table 8.4) 

should be combined into a single belief structure using a proper aggregation rule of 

evidence.  
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The combined belief structure of JC material constants using Yager’s and the 

proposed aggregation rule of evidence is given by Table 6.4. As mentioned earlier, in 

case two intervals of uncertainty from different information sources are disjoint (in 

conflict), Yager’s rule allocates the associated conflicting BBA to the universal set as 

ignorance or lack of knowledge. Here, the amounts of conflicting BBA between belief 

structures of constants A, B and n offered by fitting methods 1 and 2 are found to be 

0.6316, 0.5789 and 0.5965, respectively, and are assigned to the universal set based on  

Yager’s aggregation rule (see interval No. 3 in Table 6.4). Such high amount of conflict 

between fitting methods 1 and 2 for constants A, B and n of JC plasticity model gives rise 

to epistemic uncertainty.  

To better deal with conflict and reduce epistemic uncertainty, the proposed 

aggregation rule of evidence is employed and the combination results are provided in 

Table 6.4.  Note that the material constants of JC plasticity given by Table 6.5 for AISI 

4340 Steel (Meyers 1994) are considered as RF for determination of the CFE in the 

proposed aggregation rule.  

As indicated, The BBA of conflict assigned to the universal set (interval No. 3) in 

Yager’s rule is distributed amongst intervals 1 to 4 for constant A, 2 to 5 for constant B 

and 3 to 6 for constant n in the proposed aggregation rule of evidence (see Table 6.4). In 

fact, the combined belief structure by the proposed aggregation rule is more informative 

than that by Yager’s rule and includes shorter intervals.  

In the context of evidence theory, long intervals (subset) that span over other 

intervals (other subsets) in a belief structure contribute to ignorance, and the combined 

belief structure of Yager’s rule includes more ignorance than that of the proposed 

aggregation rule.  
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It is worth noting that there is no degree of conflict between belief structures of 

fitting method 1 and 2 for constant C and m, and the proposed aggregation rule of 

evidence and the Yager’s rule yield the same combined belief structures, hence, the belief 

structures for C and m are shown only once in Table 6.4.  Here, the combined belief 

structure of JC material constants using the proposed aggregation rule (see Table 6.4) is 

considered for final representation of uncertainty. As for ZA plasticity model, belief 

structures of material constants given by Table 6.3 are considered. 

Table 6.4 Combined belief structures of material constants of JC plasticity model for 

AISI 4340 Steel 

Combination Using Yager Aggregation Rule 

A(MPa) 

 

B(MPa) 

 

n 

Range BBA Range BBA Range BBA 

[705.0, 724.8] 0.1228 [137.96, 212.95] 0.2807 [0.1218, 0.1547] 0.1404 

[764.4, 804.0] 0.2456 [309.35, 405.75] 0.1404 [0.2383, 0.2833] 0.2632 

[329.9, 1424.3] 0.6316 [116.54, 532.83] 0.5789 [0.0710, 0.3220] 0.5965 

C m  

[0.0569,  0.0638] 0.2222 [0.4299,  0.9231] 0.6111   

[0.0637,  0.0881] 0.6959 [0.4299,  1.0354] 0.2456   

[0.0637,  0.1634] 0.0702  [0.4299,  1.4160] 0.0819    

[0.0637,  0.2131] 0.0117  [0.4299,  2.8951] 0.0614    

Combination Using the Presented Aggregation Rule 

A(MPa) 

 

B(MPa) 

 

n 

Range BBA Range BBA Range BBA 

[705.0, 724.8] 0.2877 [137.96, 212.95] 0.2807 [0.1218, 0.1547] 0.1404 

[764.4, 804.0] 0.6550 [309.35, 405.75] 0.4277 [0.2383, 0.2833] 0.2632 

[877.1, 1150.7] 0.0457 [137.96, 295.91] 0.1441 [0.1218, 0.1756] 0.0108 

[1150.7, 1424.3] 0.0116 [453.85, 532.83] 0.1451 [0.2383, 0.3220] 0.0594 

  [116.54, 212.95] 0.0024 [0.1756, 0.2833] 0.4358 

    [0.0710, 0.1547] 0.0905 

Table 6.5 The most commonly used values of Johnson-Cook material constants for 

AISI 4340 

A (MPa) B (MPa) n C m 

792 510 0.26 0.014 1.03 
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6.2.2 Uncertainty propagation and measurement 

The represented uncertainty of ZA and JC plasticity models are propagated 

through Taylor impact simulation of an AISI 4340 Steel cylinder. Again, design and 

analysis of computer experiments is heavily employed to reduce the computational cost 

of uncertainty propagation. Multi-model analysis is also performed using Yager and the 

proposed aggregation rule of evidence and results of uncertainty measurement are 

compared and discussed. The steps for uncertainty propagation as outlined by Figure 1.1 

are as follows:   

1. LHS technique is adopted to generate 60 and 50 separate samples (training 

points) for material constants of ZA and JC plasticity models, respectively. The universal 

set that spans over the constructed belief structures for all six uncertain material constants 

of ZA (see Table 6.3)  and five material constants of JC plasticity models (see Table 6.4) 

are considered in selecting the bounds for generation of the random samples (uncertain 

material constants). 

2. For each training point, an FE simulation of Taylor impact test is performed on 

a solid circular cylinder with a 37.97 mm length and 7.595 mm diameter colliding with a 

velocity of 270 m/s into a rigid plate using an explicit nonlinear FE code LS-DYNA, v 

971.  

3. With training points and their responses identified in steps 1 and 2, accurate 

surrogate models based on RBF are developed to establish an explicit relationship 

between material constants of both JC and ZA plasticity models with the final deformed 

length and expanded diameter of the impacted cylinder. Since RBF is an interpolation 

model, ten randomly selected design points (different from any of the training points) 

within the global bounds of the material constants of both JC and ZA are used as test 
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points for the evaluation of error statistics to ensure sufficient accuracy of the constructed 

RBF-based surrogate models.  

4. Finally, with each joint proposition providing the bounds or side constraints for 

material constants of ZA and JC plasticity models, a global optimization (i.e., Genetic 

Algorithm) technique is applied to the constructed RBF metamodels to find the minimum 

and maximum values of structural response (expanded diameter and deformed length of 

the impacted cylinder). This procedure is repeated for all the joint propositions of 

material constants to find the corresponding belief structure for expanded diameter and 

deformed length of cylinder. Hence, different propagated belief structure of structural 

response for JC and ZA plasticity models is obtained. 

6.2.3 Uncertainty measurement results and Multi-model analysis  

In (Konokman et al. 2011), an experimental deformed length of 31.3 mm and 

expanded diameter of 12.1 mm is reported for the cylinder with the same material and 

geometric properties as those used here for Taylor impact simulations. Here, we define 

90% and 95% precision intervals for experimental deformed length and expanded 

diameter of the cylinder and consider them as target proposition set for estimation of 

uncertainty measures. For example, precision interval (PI) for the 90% range implies an 

interval or target proposition (TP) that extends ±10% away from the observed 

experimental value. 

 To quantify the uncertainty of the ZA or JC plasticity models, we add BBA of 

those propagated intervals covered by experimental precision intervals to find belief and 

add BBA of those intervals intersecting the experimental precision interval to determine 

plausibility according. The estimated uncertainty measures for 90% and 95% 
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experimental precision intervals for both expanded diameter and deformed length using 

the propagated belief structure of both ZA and JC plasticity models are provided in Table 

6.6. As indicated, the estimated values of belief and plausibility for experimental 

precision intervals of deformed length are slightly higher than those of the expanded 

diameter. Also as expected, for both deformed length and diameter, the estimated values 

of uncertainty measures of 90% precision intervals are higher than those of 95% 

precision intervals. The estimated plausibility for ZA plasticity model is slightly higher 

than that for JC plasticity model. The gap between belief and plausibility for 

experimental precision intervals is indicative of epistemic uncertainty embedded in the 

JC and ZA plasticity models. As it can be realized, the estimated values of plausibility 

decision are low for both plasticity models. 

For the purpose of multi-model analysis, the propagated belief structures of JC 

and ZA plasticity models are combined into a single belief structure using both Yager and 

the proposed aggregation rules of evidence. Note that the reported experimental values of 

deformed length and expanded diameter in (Konokman et al. 2011) are considered as RF 

for estimation of CFE using the proposed aggregation rule. Uncertainty measures of 

combined propagated belief structures are estimated and are given in Table 6.6. As it can 

be seen, combined belief structures include a shorter gap between belief and plausibility 

as opposed to single belief structures of ZA and JC plasticity models which indicates 

reduction of epistemic uncertainty in simulation of large deformation processes through 

multi-model analysis. Also, the gap between belief and plausibility for the combined 

belief structure by the proposed aggregation rule is shorter than that by the Yager’s rule. 

This is because the proposed aggregation rule used observed experimental evidence to 

deal with conflict between ZA and JC plasticity models and Yager’s rule simply assigns 
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the conflicting BBA to universal set without acquisition of knowledge and information. 

Also, estimated value of plausibility decision for the proposed aggregation rule is higher 

than that by Yager’s rule.  

Table 6.6 Estimated uncertainty measures for experimental precision intervals of 

deformed length and expanded diameter 

Zerilli-Armstrong (ZA) plasticity model 

Precision 

(%) 
 

Deformed Length (mm) 

 

Expanded diameter (mm) 

Bel Pl Pl_dec Bel Pl Pl_dec 

95 0.002 0.9656 0.019 0.001 0.9458 0.004 

90 0.003 0.9824 0.025 0.001 0.9723 0.007 

Johnson-Cook (JC) plasticity model 

95 
 

0.001 0.9652 0.014 
 

0.001 0.9369 0.003 

90 0.001 0.9789 0.023 0.001 0.9488 0.006 

Combined JC and ZA models using Yager’s Rule 

95 
 

0.007 0.7684 0.062 
 

0.003 0.7322 0.023 

90 0.009 0.8927 0.095 0.005 0.7969 0.048 

Combined JC and ZA models using the Proposed Aggregation Rule 

95  0.018 0.7312 0.290  0.008 0.710 0.194 

90  0.070 0.8150 0.383  0.011 0.757 0.228 
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CHAPTER VII 

COMPUTATIONAL FRAMEWORK FOR EVIDENCE-BASED OPTIMIZATION OF 

STRUCTURES  

A computational framework for EBDO of structures is developed and combined 

with advanced modeling of materials and associated uncertainties. The framework uses 

evidence theory to quantify epistemic uncertainties embedded in dynamic material 

behavior that can be reflected by constants of plasticity models. Due to the computational 

cost of nonlinear simulations combined with advanced plasticity modeling, the 

framework relies on metamodeling of key responses.  

The proposed computational framework for EBDO of structures under material 

model uncertainty includes a deterministic objective function as well as one or more non-

deterministic (evidence-based) constraints that are affected by various sources of material 

uncertainties. The framework for representation, propagation and quantification of 

uncertainties in plasticity models outlined in Figure 7.1 is employed for evaluation of the 

evidence-based optimization constraint(s). Therefore, several computational codes 

written for representation, propagation and quantification of uncertainties along with 

computational codes written for optimization of structures interact heavily in the 

proposed EBDO framework.   
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Figure 7.1 Representation, propagation, and quantification of uncertainty in material 

models 

 

 

Figure 7.2 Interaction between computational codes for uncertainty modeling and that 

of optimization in the proposed EBDO framework 

Figures 7.1 and 7.2 indicate that a considerable flow of information and data 

transfer exists among several computational codes in the proposed framework for 

optimization of structures under material form uncertainty.  

Intervals of Uncertainty

with Assigned BBA for

Each Parameter

Experimental

Stress-Strain

Curves

Experimental

Stress-Strain

Curves

Experimental

Stress-Strain

Curves

Intervals of Uncertainty

with Assigned BBA for Each

Parameter

� Multiple fitting methods

� Aggregation of methods

� Aggregation of sources

Uncertainty

Representation

 Aggregation

of models

Belief and 

Plausibility of

Structural

Response

Intervals of Uncertainty

and BBA for Structural

Response with Model 2

Intervals of Uncertainty

and BBA for Structural

Response with Model 2

FE Simulations of Structural Response Using

Material Models 1 & 2
FE Simulations of Structural Response Using

Material Models 1 & 2

Uncertainty

Propagation

 Design and Analysis of

Computer Experiments
 Cartesian products of

BBA of all parameters

 Radial Basis Functions + Genetic Algorithms

Intervals of Uncertainty

and BBA for Structural

Response with Model 1

Intervals of Uncertainty

and BBA for Structural

Response with Model 1

Perform Optimization

to Find Min and Max

Responses in Each

Joint Proposition

Surrogate

Models of

Structural

Response

Joint Belief

Structure Using

Material Model 1

FE Simulations to Find

Structural Response Using

Material Model 1

Combined Intervals of

Uncertainty and BBA for

Each Parameter in Model 1

 Different 

Material Models

(e.g., Models 1 & 2)

Experimental

Evidence for

Structural Response

Experimental

Evidence for

Structural Response

Uncertainty

Quantification
Fit Material

Parameters



 

95 

7.1 Computational framework for evidence-based design optimization of 

structures  

The proposed evidential framework for optimization of structures under material 

uncertainties seeks an optimal geometric design for the most favorite structural response 

of the product under material uncertainties. The framework makes a distinction between 

design variables in vector Í � ��), �+, … , �K� and uncertain variables in vector Î �
�Ã), Ã+, … , ÃK�, and includes two separate mathematical formulation of deterministic 

objective function and non-deterministic constraint, respectively. Hence, the general 

EBDO formulation takes the form 

 ¾
�N�NÏ.                             ����                                                 (7.1) 

       g. 1                                           ²¢ � ²�Ð��� � 0� � ²�         
                                           �Ñ � � � �Ò 

where  ²¢, E and ²^ are plausibility or plausibility decision of a desired space, one 

uncertainty measure of plausibility or plausibility decision, and evidence indicator, 

respectively.  The procedures used to construct the objective function and the evidence-

based constraints are presented in the following sections. 

7.1.1 Objective function 

To reduce the computational costs associated with non-linear FE simulations of 

large deformation process, the framework relies heavily on design and analysis of 

computer experiments. With generation of random samples within the design space X and 

performing FE simulations to obtain the corresponding responses, it is possible to 

construct metamodels that relate the objective function to design variables. Since in the 

proposed EBDO framework, material uncertainties are not incorporated in the calculation 

of objective function, an experimentally verified set of JC material constants (Johnson et 

al., 1996) is used in FE simulation of all generated random samples. Also, it is possible to 

consider the mean of the constructed belief structure for material constants in FE 
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simulation of all generated random samples. Hence, computational codes for design and 

analysis of computer experiments, non-linear FE simulations, and metamodeling are used 

for construction of the objective function. 

7.1.2 Evidence-based constraint function 

For evaluation of the evidence-based constraint ²¢ in Eq. (7.1), material 

uncertainty should be incorporated. In fact, evaluation of the constraint function for each 

of the randomly generated samples requires a large number of simulations for 

determination of the associated propagated belief structure following the uncertainty 

modeling procedure presented in chapter 4. To reduce the computational complexity, the 

evidence-based constraint is evaluated for those samples that show completely different 

structural behavior. Finally, with determination of the constraint for the selected random 

samples, it is possible to construct metamodels that relate the design variables X to the 

constraint ²¢. After construction of the evidence-based constraint function, Eq. (7.1) can 

be solved based on the desired system safety using an optimization method. As it can be 

realized, computational codes for optimization solution and uncertainty modeling interact 

with each other in the proposed EBDO framework. From the computational standpoint, a 

brief description of uncertainty modeling procedure and the associated written codes 

along with their interactions is explained in the following sections. 

7.1.2.1 Uncertainty representation 

As depicted by Figure 7.3, uncertainty representation of material constants 

requires 1) data transfer among different computational codes for fitting constants of 

plasticity models with various combinations of stress-strain curves at different strain rates 

and temperatures; 2) constructing histograms of collected evidence; 3) identifications of 
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relationship types between uncertainty intervals as explained in chapter 2; 4) construction 

of belief structures; and 5) combination of belief structures provided by different 

experimental sources and different expert opinion for fitting the constants using one of 

the Dempster, Yager or the suggested combination rule in chapter 6. 

As shown by Figure 7.3 briefly, first, all possible constants of plasticity model are 

obtained through feeding different combination of stress-strain curves at different 

temperature and strain rates for each experimental source into each fitting code.   

Secondly, the obtained values of material constants for each experimental source and 

fitting approach are fed into computational codes that are able to construct their 

histograms and reduce the number of disjoint intervals in a way that distinction between 

distributions of data within intervals is identified. Third, such reduced histograms are fed 

into codes that are able to identify relationship type between disjoint intervals and 

construct a belief structure following the methodology explained in chapter 2. Finally, 

constructed belief structures of each material constant are fed into evidence combination 

codes that follow one of the discussed aggregation rules of evidence for generation of a 

consolidated belief structure. 
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Figure 7.3 Interaction between computational codes for uncertainty representation of 

material constants 

7.1.2.2 Joint belief structure construction 

Constructed belief structures of all uncertain variables are fed into computational 

codes that are able to construct their joint belief structure. As mentioned previously, with 

propagation of this joint belief structure, effects of uncertainties in all uncertain variables 

on structural response is considered. However, propagation of this joint belief structure 

ignores field uncertainty of material caused by spatial variation of material constants. In 

fact, propagation of a joint belief structure for uncertain material constants in a structure 

assumes they are uniform across the whole structure. The presented EBDO framework is 

equipped by computational codes that are able to construct a field joint belief structure 

and propagate it through FE simulations to accommodate material field uncertainty.  

Each cell of such field joint belief structures includes a number of sub-cells that 

are members of the constructed joint belief structure for all uncertain variables. The 

number of sub-cells in each cell of the field joint belief structure equals to  number of 
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regions of structure that are more prone to have different material constants as a result of 

spatial variation in material properties. Each sub-cell that is a member of the constructed 

belief structure for uncertain material constants  represents material properties of the 

related region of the engineering structure recognized potentially to have different 

material properties (represented by material constants) as opposed to the other regions.  

From the computational side, construction of joint belief structures requires 

development of computational codes being able to store discrete spaces of represented 

uncertainty efficiently. This becomes very challenging when considering spatial variation 

of material behavior among different regions of a product in uncertainty modeling 

process as the field joint belief structure includes a huge number of disjoint members. To 

accommodate this, computational codes are developed in this study. 

7.1.2.3 Uncertainty propagation    

As depicted by Figure 7.4, uncertainty propagation of a joint belief structure with 

huge numbers of discrete cells requires heavy interaction between different 

computational codes written for design and analysis of computer experiments, non-linear 

FE simulations of large deformation process, metamodeling and global optimization 

methods to obtain bounds of simulation response for each member of the  joint belief 

structure, combination of propagated belief structures provided by different formulation 

of plasticity models,  as well as computational codes  for saving the obtained propagated 

belief structure. 

Note that propagation of a field joint belief structure is considerably more 

computationally challenging than that of a joint belief structure of uncertain material 

constants.  In fact, consideration of field material uncertainty adds to the computational 
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complexity of the presented EBDO framework considerably. Design and analysis of 

computer experiments is more computationally complex in propagation of a field joint 

structure. Detail procedures for EBDO of engineering structures with and without 

consideration of field material uncertainty using the presented computational framework 

is explained in the next chapter by two illustrative examples. 

 

 

Figure 7.4 Interaction between computational codes for propagation of a constructed 

joint belief structure 
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CHAPTER VIII 

EVIDENCE-BASED DESIGN OPTIMIZATION OF EXTERNALLY STIFFENED 

CRUSH TUBES 

Recently, Salehghaffari et al. (2011) developed a new design concept to control 

energy absorption characteristics of thin-walled circular tubes under axial compression. 

By machining wide circumferential grooves from the outer surface of a thick-walled tube 

at specific intervals, they arrived at a general design concept for an integrally stiffened 

(monolithic) tube as shown in Figure 8.1.  The thicker portions (rings) essentially act as 

external stiffeners for the enclosed thin-walled tube sections. When the stiffened tube is 

subjected to axial compression, the thin-walled sections between two adjacent ring 

stiffeners fold resulting in enhanced crush energy absorption.  

The number of ring stiffeners in Figure 8.1 is defined as N + 1, where N 

represents the number of thin-walled sections along the length of the tube. The stiffener 

section is defined by parameters d and w whereas the thin-walled portions are defined by 

parameters t and S.  In thick (stiffened) sections, the total wall thickness is defined as t + 

d. The inner diameter, ]Q � 500 mm and length, L = 250 mm of the tube are held fixed 

while the other geometric parameters are allowed to vary in the optimization process. It 

should be noted that S, w and N are related as 

NS + (N+1) w = L          (8.1)  

Specific energy absorption (SEA), which is the ratio of absorbed energy to 

component mass, gives an accurate measure of energy absorption capacity of the 
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component. (salehghaffari et al. 2010, 2011) On the other hand, as mentioned in the 

literature (Jones, 1989; Alghamdi, 2001) an ideal energy-absorbing design should provide 

a desirable constant mean crush force-crush while the tube is crushed under axial loading. 

The peak reaction force that typically occurs soon after the start of the crush process is 

due to the initial elastic resistance and is usually much greater than the subsequent peaks.  

A deterministic optimization of this tube model, focusing on the geometric 

properties of the tube with simple model of plasticity with no consideration of 

uncertainty, appears in Salehghaffari et al. (2010, 2011). Here, the same problem is used 

as an example to describe the presented EBDO methodology for optimization under 

uncertainty. 

 

 

Figure 8.1 Externally stiffened circular tube with associated geometric design 

parameters (salehghaffari et al. 2010) 

For EBDO of externally stiffened tubes, we seek the optimum size of the structure 

in light of epistemic uncertainty in material behavior over large deformation. With desire 

to maximize SEA while keeping the peak load less than its critical value ����� , and 

consideration of epistemic uncertainties embedded in dynamic material behavior that 
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make the simulation responses (SEA and ����) uncertain, the EBDO problem is 

formulated as  

 

 ¾
�N�NÏ.     � � ±²!���      (8.2)  

s.t               �9� ������� � ����� � - �9�ÓÓ                                  �Ñ � � � �Ò 

where Pl represents the plausibility of an event . The evidence-based design constraint in 

Eq. (8.2) imposes a limit on plausibility that the maximum peak load (���� ) does not 

exceed its critical value (����� ) due to the uncertainties. Note that depending on the 

desired level of reliability, �9�ÓÓ can change. As can be seen in Eq. (8.2), the objective 

function (SEA) is deterministic whereas the constraint function is non-deterministic, 

although in a more general EBDO framework, the objective function could also be non-

deterministic.  

For optimization solution of Eq. (8.2), construction of mathematical functions that 

relate the objective function �±²!� and evidence-based design constraint ��9� ������� �
����� �� to design variables (X) are necessary. As discussed earlier, metamodels are used 

for approximation of the constraint function. The procedure to establish a surrogate 

model for the objective function is considerably less challenging and less expensive than 

that of the evidence-based design constraint as can be seen in the next section. 

8.1 Representation of uncertainties in Johnson-Cook plasticity model 

Some of the reported constants of JC plasticity for AISI 4340 are shown in Table 

8.1. Using the experimental stress-strain curves provided in the literature (Gray et al., 

1994) for AISI 4340 Steel (Table 8.2) and the procedure discussed in chapter 4, a fairly 

diverse range of material constants is obtained as shown in Table 8.3.  
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Table 8.1 Johnson-Cook material constants suggested by different references  

Reference. 
Johnson-Cook material constants 

A B n C m 

Gray et al, 1994 1579 1316 0.65 0.0028 0.85 

Meyers, 1994 792 510 0.26 0.014 1.03 

Rule, 1997 396 820 0.397 0.014 1.001 

Table 8.2 Testing conditions for the experimental sources of data AISI 4340 Steel 

Curve Type 
Strain 

Rate (s
-1

) 

Temperature 

(K) 

1 Tension 0.0004 293 

2 Tension 0.009 293 

3 Tension 32 293 

4 Tension 117 293 

5 Tension 604 494 

6 Tension 1500 473 

7 Tension 2500 298 

8 Tension 650 733 

9 Tension 2000 873 

10 Tension 1500 673 

Table 8.3 Johnson-Cook material constants for AISI 4340 Steel using different fitting 

approaches 

Fitting Method 1 

 

Fitting Method 2 

A B n C m A B n C m 

638.37 266.95 0.1218 0.0763 0.81 804 365.25 0.151 0.014 1.252 

635.82 265.89 0.1218 0.0763 1.60 804 365.25 0.151 0.014 2.895 

833.52 373.66 0.2833 0.0157 1.00 804 365.25 0.151 0.122 0.43 

832.57 373.23 0.2833 0.0157 2.51 804 365.25 0.151 0.122 0.715 

1188.59 532.83 0.2833 0.0633 0.38 804 365.25 0.151 0.083 0.533 

1109.75 497.49 0.2833 0.0633 0.68 804 365.25 0.151 0.083 0.94 

1102.29 494.14 0.2833 0.0633 0.85 771 405.75 0.322 0.027 1.168 

906.46 178.69 0.2239 0.0282 0.89 771 405.75 0.322 0.027 2.433 

904.29 178.26 0.2239 0.0282 2.06 771 405.75 0.322 0.137 0.449 

1424.29 280.77 0.2239 0.0582 0.35 771 405.75 0.322 0.137 0.715 

1308.70 257.98 0.2239 0.0582 0.67 771 405.75 0.322 0.109 0.518 

1300.69 256.40 0.2239 0.0582 0.78 771 405.75 0.322 0.109 0.853 

738.02 145.48 0.2239 0.0057 3.77 705 116.54 0.071 0.095 0.79 

329.90 137.96 0.1218 0.417 0.84 705 116.54 0.071 0.095 1.65 

493.58 206.41 0.1218 0.1815 2.08 705 116.54 0.071 0.213 0.474 

1005.93 450.95 0.2833 0.0492 0.90 705 116.54 0.071 0.213 0.72 

936.69 419.91 0.2833 0.0376 2.71 705 116.54 0.071 0.152 1.016 

1139.50 224.63 0.2239 0.0485 0.90 705 116.54 0.071 0.152 0.62 

1043.04 205.61 0.2239 0.0414 2.01      
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Following the methodology for representation of uncertainty discussed in chapter 

2, separate belief structures for each uncertain material constant of JC plasticity model 

are constructed and shown in Table 8.4. For the purpose of uncertainty propagation, a 

consolidated belief structure that reflects all fuzzy expert opinions and diverse data from 

different sources of information should be constructed. Here, we employed Yager’s 

combination rule of evidence to combine belief structures provided by fitting method 1 

and 2 into a single belief structure as shown in Table 8.4. As indicated, a large degree of 

conflict exists between the data provided by the fitting methods 1 and 2 for constants A, B 

and n. The combined belief structure for each material constant shown in Table 8.4 will 

be used for uncertainty propagation. 

Table 8.4 Individual and combined belief structures for material constants of Johnson-

Cook 

Constant A 

Interval 

 Method 1  Method 2  Combined 

 Range BBA  Range BBA  Range BBA 

1  [329.9, 877.1] 2/19  [705.0, 724.8] 6/18  [705.0, 724.8] 0.1228 

2  [603.5, 877.1] 5/19  [764.4, 804.0] 12/18  [764.4, 804.0] 0.2456 

3  [877.1, 1150.7] 8/19  - -  [329.9, 1424.3] 0.6316 

4  [1150.7,1424.3] 4/19  - -  - - 

Constant B 

1  [137.96, 295.91] 12/19  [116.54, 212.95] 6/18  [137.96, 212.95] 0.2807 

2  [137.96, 453.85] 4/19  [309.35, 405.75] 12/18  [309.35, 405.75] 0.1404 

3  [453.85, 532.83] 3/19  - -  [116.54, 532.83] 0.5789 

Constant n 

1  [0.1218,0.1756] 4/19  [0.0710, 0.1547] 12/18  [0.1218, 0.1547] 0.1404 

2  [0.1756,0.2833] 15/19  [0.2383, 0.3220] 6/18  [0.2383, 0.2833] 0.2632 

3  - -  - -  [0.0710, 0.3220] 0.5965 

Constant C 

1  [0.057, 0.088] 17/19  [0.0140, 0.0638] 4/18  [0.0569,  0.0638] 0.2222 

2  [0.057, 0.417] 2/19  [0.0638, 0.1633] 12/18  [0.0637,  0.0881] 0.6959 

3  - -  [0.0638, 0.2130] 2/18  [0.0637,  0.1634] 0.0702 

4  - -  - -  [0.0637,  0.2131] 0.0117 
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Table 8.4 (Continued) 

Constant m 

1  [0.3523, 1.0353] 12/19  [0. 43, 0.923] 11/18  [0.4299,  0.9231] 0.6111 

2  [0.3523, 3.7671] 7/19  [0. 43, 1.416] 4/18  [0.4299,  1.0354] 0.2456 

3  - -  [0. 43, 2.895] 3/18  [0.4299,  1.4160] 0.0819 

4  - -  - -  [0.4299,  2.8951] 0.0614 

8.2 Mathematical formulation for objective function 

Metamodels are used to construct the mathematical model relating objective 

function to design variables. Since in the presented EBDO framework, material 

uncertainties are not incorporated in the calculation of objective function, an 

experimentally verified set of Johnson-Cook material constants (Gray et al., 1994) shown 

in Table 6.1 is used in FE simulation of all generated random samples.  

8.2.1 Design and Analysis of Computer Experiments 

RBF metamodels are used to establish surrogate models relating the objective 

function (SEA) to design variable vector [ ]tdSwT ,,,=X . Here, it is found that the 

multiquadric RBF with 
22 cr)r( +=φ and c = 0.01 is best suited for modeling the 

objective function. 

For the sake of simplifying the optimization problem, we decided to search the 

optimal design through design samples with six stiffeners. This assumption reduces the 

number of design variables from 4 to 3 since w is no longer an independent design 

variable and is related to design variable S by Eq. (8.1).  Hence, from Figure 8.1, it can be 

seen that the upper bound for S is given by 

±Ô¶¶p� � Ñ
Õ � +~�

~ � 50        (8.3) 

While stiffeners significantly help to stabilize the collapse process, they may not 

contribute to plastic deformation and energy absorption. We are seeking an optimal 
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design that produces stroke efficiency of more than 50%. That is at least 50% of the tube 

length is crushed. Considering this design criterion, the lower bound for S is found to be 

 ±ÓeÖp� � Ñ
+Õ � +~�

+×~ � 25       (8.4) 

Also, based on previous observation of the effect of t and d on plastic collapse 

mode and the corresponding mean crush force, the following bounds are imposed. 

1 � 1 � 2.6                         0 � Ã � 3       (8.5) 

Using Latin hypercube sampling (LHS) technique and the selected bounds on the 

design variables, we selected 25 design (training) points as shown in Table 8.5. Note that 

the total wall thickness in the stiffened regions is d + t. 

To assess the overall accuracy of the constructed surrogate model, PRESS, and  

w$�pvQ^OQeK+   error statistics were considered. To estimate these error statistics, the 

accuracy of the RBF predictions were based on fitting a model using responses at 24 

training points and measuring the prediction at the 25th  point excluded from the set.  The 

average of 24 different surrogate models was used to obtain the associated error statistics. 

This offers PRESS = 512.9 and  w$�pvQ^OQeK+ � 0.8512 for the metamodel constructed for 

the objective function. 
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Table 8.5 Design points used in RBF fitting of the objective function 

Design 

# 

d 

(mm) 

t 

(mm) 

S 

 (mm) 

w 

(mm) 

weight 

(Kg) 

Design 

# 

d 

(mm) 

t 

(mm) 

S 

 (mm) 

w 

(mm) 

weight 

(Kg) 

1 0.375 1.733 46.875 2.604 0.580 14 0.750 2.267 26.042 19.965 0.885 

2 1.875 1.200 45.833 3.472 0.447 15 2.375 1.400 43.750 5.208 0.564 

3 0.625 2.067 32.292 14.757 0.765 16 0.875 1.000 39.583 8.681 0.388 

4 1.625 2.467 38.542 9.549 0.962 17 2.625 2.000 33.333 13.889 0.935 

5 1.750 2.400 42.708 6.076 0.895 18 1.375 1.933 48.958 0.868 0.65 

6 2.750 1.333 37.500 10.417 0.680 19 2.875 1.667 44.792 4.340 0.66 

7 0.100 1.867 29.167 17.361 0.634 20 0.125 2.200 36.458 11.285 0.746 

8 1.500 1.600 25.000 20.833 0.789 21 1.125 1.133 31.250 15.625 0.513 

9 0.250 1.533 40.625 7.813 0.52 22 1.250 1.067 35.417 12.153 0.474 

10 2.000 2.533 34.375 13.021 1.076 23 2.250 1.467 41.667 6.944 0.616 

11 0.500 2.133 30.208 16.493 0.778 24 1.000 2.333 28.125 18.229 0.934 

12 2.125 1.267 47.917 1.736 0.447 25 2.500 1.800 27.083 19.097 1.000 

13 1.500 1.800 37.500 10.417 0.728       

8.2.2 Description of the FE Models 

Axial crush simulations are performed using explicit FEA code LS-DYNA, 

version 971. The basic geometry of the FE model (Figure 8.2) was created according to 

the user code. (Hallquist, 1993) Through parameterization, it was possible to readily 

update the FE mesh for different combinations of design variables. 

The impact loading is modeled by a rigid wall of 150 kg mass impacting the top 

edge of the tube with an initial velocity of 40 m s⁄ . Also, all nodes on the bottom edge of 

the tube are constrained in all degrees of freedom.  A “single-surface” interface is 

selected to prevent penetration of contacting elements in the tube elements. Friction 

coefficient for rigid wall contact is set to 0.25 and for single-surface contact is set to 0.15. 

Solid (hex8) elements are used in all computer simulations. The sensitivity of the 

simulated results to the mesh density for each computer experiment was analyzed in 

order to choose a suitable element size for the simulation. In some computer experiments, 

program termination due the appearance of negative volume of solid elements was 

observed. This is mainly caused by the element Jacobian calculation at geometric points 

of the outer boundary of highly deformed solid elements. (Salehghaffari et al., 2011) In 
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some computer experiments, rapid compression of elements in the stiffener sections as 

well as the nearby elements in the thin-walled sections results in occurrence of negative 

volume in solid elements. To avoid this, we follow suggestions provided in our previous 

study in nonlinear FE simulations of externally stiffened crush tubes. Generally, 

increasing element size, using hourglass and Interior contact setting option can resolve 

the problem of negative volume in solid elements. 

All numerical simulations of design samples were performed on a Pentium PC 3.2 

GHz with a typical simulation time of 7 to 9 hours.  

 

 

Figure 8.2 FE model of the externally stiffened tube under axial impact load 

8.2.3 FE Simulation Results 

The simulation results for different tube samples are given in Table 8.6. They 

include the values for SEA, maximum and average crush forces (���� , ��p�K), crushing 

time and stroke or crush length. As Table 8.6 shows, a wide range of simulation results 

can be obtained. Figure 8.3 also shows the diverse collapse modes of stiffened tubes of 

different geometric parameters. This implies the value of optimization analysis for 

stiffened tubes in order to design a structure with the desired energy absorption 

characteristics.  
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Here, the crush length refers to the maximum distance traveled by the rigid wall 

before crushing time exceeds 5 ms; the crush load at final stages of deformation exceeds 

the initial peak load due to the deformation of thick areas of tube; unstable crushing 

happens due to the local bending of the structure. Similar to the study performed by 

Salehghaffari et al., (2011), a lateral rotation or bending of 10 degree in the tube axis is 

used as a criterion for identifying the mixed crush modes that are buckling dominated.  

All simulation responses provided in Table 8.6 are based on the mentioned 

criterion for determination of crush length. For all samples, the simulation is set to stop at 

5 ms. However, in some cases, this simulation time is shortened to a time that the 

observed crush load exceeds the peak load (����� at the initial stages of crushing. A 

dramatic increase of crush load at final stages of progressive crushing relates to 

deformation of stiffened areas of the structure requiring larger crush loads than that of the 

un-stiffened areas. This can be verified by giving a closer attention to the different stages 

of deformation of stiffened tubes along with their corresponding load-displacement 

relationship as shown in Figures 8.4 and 8.5 for sample 8.  

Simulation results indicate that samples with considerable difference in thickness 

between thick and thin areas of the stiffened tube experience significant increase in crush 

load at their final stages of the crushing process. Despite the deformation of their 

stiffened areas during the crushing process, the crush load of some samples do not change 

significantly and exceed the peak load allowing the progressive crushing to continue until 

the crush time of 5 ms is reached. As mentioned, this is mainly because of the fairly close 

thickness of stiffened and un-stiffened areas of the structure. Also, note that in some 

special cases, deformation reaches a point that significant increase in crush load is needed 

for further deformation of the tube.  
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Table 8.6 FEA results for the randomly selected DOE design points 

Design  
SEA 

(kJ/kg) 
P½ÛÜ 
(kN) 

P½¹Û� 

(kN) 

L 

(mm) 

Time 

(ms) 
Design 

SEA 

(kJ/kg) 
P½ÛÜ 
(kN) 

P½¹Û� 

(kN) 

L 

(mm) 

Time 

(ms) 

1 37.28 299.41 127.71 169.3 4.50 14 58.82 436.12 295.31 176.27 5 

2 31.79 186.29 73.99 192.09 5 15 34.36 238.02 102.26 189.53 5 

3 46.95 379.25 197.51 181.84 5 16 29.69 168.71 59.4 193.82 5 

4 42.95 676.47 256.60 161.04 4.50 17 28.59 378.56 196.18 136.27 3.65 

5  45.13 408.56 227.25 177.73 5 18  43.91 327.62 154.41 184.83 5 

6 27.46 283.38 111.37 167.75 4.4 19 38.13 269.99 139.18 180.83 4.85 

7 51.81 335.19 178.83 183.68 5 20 51.08 392.92 212.10 179.65 5 

8 28.75 359.27 170.28 133.23 3.5 21 27.27 238.76 80.68 173.36 4.5 

9  42.42 253.54 116.71 188.99 5 22  33.03 205.27 81.25 192.67 5 

10 31.56 499.98 252.45 134.53 3.7 23 34.41 236.82 120.69 175.65 4.65 

11 58.58 376.3 251.68 181.1 5 24 60.27 476.5 319.58 176.14 5 

12 32.73 201.89 76.29 191.79 5 25 18.14 586.7 158.76 114.26 3 

13 36.15 321.19 148.356 180.06 4.85       

 

 

 

 

Figure 8.3 Collapsed shapes of design samples obtained from FE simulations (not to 

scale) 

Comparison of the dynamic loading simulation results of samples in Table 8.6 

with those obtained in our previous study (Salehghaffari et al., 2011) under a quasi-static 

loading condition reveals the effect of strain hardening of AISI 4340 Steel in increasing 
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the energy absorption of the structure. Dynamic impact loading gives an SEA that is 

twice as high as that in quasi-static compression. 

For a more thorough understanding of mechanics of deformation of externally 

stiffened tubes, the reader is referred to our previous work (Salehghaffari and Rais-

Rohani, 2011).  

 

 

Figure 8.4 Load history of sample 8 during its crushing process 

 

 

Figure 8.5 Collapse shapes of sample 8 at different time steps 

8.3 Mathematical modeling of evidence-based constraint function 

Evaluation of evidence-based constraint function �9� ������� � ����� � for each 

design point given in Table 8.5 requires construction of a propagated belief structure for 

���� that can be derived through propagation of the represented material uncertainties 

shown in Table 8.4. This is a very computationally expensive and tedious task. To reduce 

the computational cost of the presented EBDO framework, instead of propagating the 
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material uncertainty for all design variables (see Table 8.5), design points 1, 4, 11, 14, 18 

and 24 are selected. As can be seen in Figure 8.3 and Table 8.6, these design points have 

completely different collapse behavior, and their crushing simulation results are more 

likely to be affected by uncertainties in dynamic material behavior. Through propagation 

of material uncertainties for these selected design points, the associated value of 

�9� ������� � ����� � for each of them can be determined. Hence, with consideration of 

design points 1, 4, 11, 14, 18 and 24 and their associated plausibility function 

�9� ������� � ����� �, it is possible to construct the evidence-based constraint function 

with less computational effort.  

8.3.1 Propagation of material uncertainties 

The represented uncertainties of Johnson-Cook material model for AISI 4340 

Steel (see Table 8.4) are propagated through FE crush simulation of design points 1, 4, 

11, 14, 18 and 24 under axial impact load with the aim to determine the propagated belief 

structure of peak load for each of them.    

Surrogate models are developed to facilitate the uncertainty propagation process. 

LHS technique is adopted to generate 12 training points for uncertain material constants 

as identified in Table 8.7. Intervals of uncertainty (universal set) for all uncertain material 

constants that are provided by Table 8.4 are considered in selecting the bounds on 

uncertain variables. 

Table 8.7 Training points used in generating the RBF metamodels for peak load 

Uncertain 

point 

A 

(MPa) 

B 

(MPa) 

n 

 

C 

 

m 

 

1 429.39 494.99 0.231 0.0853 2.447 

2 628.37 267.92 0.094 0.1562 1.102 

3 1026.34 457.14 0.1176 0.0711 0.654 

4 1225.32 343.61 0.254 0.2130 1.326 
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Table 8.7 (Continued) 
 

5 1424.30 419.30 0.208 0.1279 0.430 

6 827.35 532.83 0.322 0.0995 1.774 

7 926.85 116.54 0.071 0.1704 1.550 

8 329.90 230.07 0.185 0.1420 2.895 

9 528.88 305.76 0.139 0.0569 1.999 

10 727.86 192.23 0.276 0.1988 2.671 

11 1125.83 381.45 0.299 0.1137 2.223 

12 1324.81 154.38 0.162 0.1846 0.878 

 

FE crush simulation of the selected design points 1, 4, 11, 14, 18 and 24 as 

described earlier are performed using all the provided sets of material constants in Table 

8.7. Table 8.8 summarizes the simulation responses of the selected design points using 

each set of material constants in Table 8.7.  A wide range of variation in simulation 

responses can be observed due to the variation in material constants of the JC plasticity 

model. This indicates the importance of considering material uncertainties in analysis and 

design of structures experiencing large deformation process. As an example, to show the 

significance of JC material constants on the simulation response, the predicted collapse 

shapes of design point 1 using each set of material constants given in Table 8.8 are shown 

in Figure 8.6.   

Considering the calculated peak load values shown Table 8.8, it is possible to 

construct metamodels that relate the uncertain variables to peak crush load. Again, 

w$�pvQ^OQeK+  error statistic described earlier is used to assess the overall accuracy of the 

constructed surrogate model, and its estimated values are provided in Table 8.9 for each 

of the selected design points. Note that the multiquadric formulation with c = 1 is used 

for all the constructed metamodels except that of the design point 18 with c = 0.85. 

Results indicate that the constructed metamodel can be employed acceptably in 

determination of the propagated belief structure for peak load.  
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Table 8.8 E simulation response of each selected design point using the provided 

randomly selected sets of Johnson-Cook material constants 

 

point 

 

Design#1 

point 

Design#4 

SEA 

(kJ/kg) 
P½ÛÜ 
(kN) 

P½¹Û� 

(kN) 

L 

(mm) 

Crushing 

Stability 

SEA 

(kJ/kg) 
P½ÛÜ 
(kN) 

P½¹Û� 

(kN) 

L 

(mm) 

Crushing 

Stability 

1 31.78 200.01 96.97 190.06 5 1 30.44 391.65 160.40 182.59 4.4 

2 33.77 251.36 103.32 189.60 5 2 36.19 430.76 212.00 164.22 4.5 

3 45.70 388.61 143.03 185.33 5 3 52.75 584.01 249.83 172.13 4.9 

4  53.59 404.77 169.06 183.86 5 4  53.06 587.40 305.79 166.91 4.8 

5 44.315 443.74 166.47 154.4 4.1 5 55.94 644.75 312.65 172.12 5 

6 44.17 301.33 137.39 186.45 5 6 44.27 552.43 265.24 160.57 4.5 

7 39.31 316.84 121.62 187.45 5 7 51.58 542.85 280.31 177.02 5 

8 23.00 147.97 69.21 192.78 5 8 22.08 292.17 129.19 164.45 4.4 

9 31.03 228.61 94.62 190.26 5 9 32.63 391.37 189.67 165.51 4.5 

10 32.35 245.91 100.37 189.49 5 10 36.36 468.70 193.5 164.18 4.5 

11 50.18 376.29 157.59 184.7 5 11 48.12 563.45 294.22 157.33 4.5 

12 42.52 423.41 157.47 156.6 4.2 12 53054 611.28 300.02 171.68 5 

 Design#11  Design#14 

1 38.390 276.43 160.8 185.74 5 1 41.36 331.92 201.69 181.48 4.9 

2 45.37 314.65 192.71 183.17 5 2 47.12 362.4 230.3 181.06 5 

3 57.11 504.16 248.85 178.55 5 3 64.87 571.15 328.16 174.94 5 

4  62.44 516.34 273.91 177.34 5 4  60.81 611.15 332.56 161.82 4.6 

5 61.29 556.7 269.11 177.18 5 5 58.09 650.38 295.29 174.11 5 

6 55.85 360.03 240.58 180.6 5 6 61.15 435.17 306.72 176.44 5 

7 53.44 386.12 230.86 180.08 5 7 57.57 434.65 286.94 177.54 5 

8 27.67 192.35 113.71 189.35 5 8 28.83 227.36 135.85 187.80 5 

9 37.87 288.93 159.28 185.00 5 9 38.26 342.17 187.30 180.76 5 

10 43.88 311.19 186.27 183.27 5 10 48.16 361.59 235.39 181.05 5 

11 63.86 472.95 280.30 177.24 5 11 71.51 555.84 367.72 172.11 5 

12 50.30 534.47 241.82 161.82 4.5 12 61.25 631.58 312.65 173.37 5 

 Design#18  Design#24 

1 35.23 218.32 121.91 187.89 5 1 43.93 327.38 231.10 177.18 4.9 

2 36.47 279.76 126.54 187.33 5 2 46.37 427.45 256.63 168.77 4.7 

3 50.12 432.41 178.56 182.46 5 3 65.50 589.4 350.80 174.40 5 

4  56.89 454.17 204.56 180.77 5 4  74.57 673.79 408.92 170.33 5 

5 49.38 503.60 216.86 148 4 5 64.34 698.72 347.81 172.79 5 

6 45.70 331.84 161.64 183.78 5 6 63.20 497.7 337.08 175.12 5 

7 42.48 346.32 149.01 185.20 5 7 60.22 502.71 327.94 171.51 4.8 

8 24.90 203.28 84.42 191.72 5 8 26.71 228.5 147.27 169.4 4.5 

9 33.20 259.53 114.60 188.29 5 9 46.00 353.58 236.44 181.72 5 

10 36.28 274.28 125.89 187.30 5 10 50.78 370.11 263.76 179.83 5 

11 52.92 418.91 188.87 182.12 5 11 74.20 568.8 405.99 170.71 5 

12 54.89 477.23 196.61 181.46 5 12 70.98 661.13 385.06 172.18 5 

Table 8.9 Error  estimation of RBF models to relate uncertain material constants to 

peak load 

Design Point w¶�pvQ^OQeK+  Design Point w¶�pvQ^OQeK+  

1 0.9231 14 0.8718 

4 0.9109 18 0.8370 

11 0.8651 24 0.9363 
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Figure 8.6 Collapsed shapes of design point 1 for each randomly selected set of 

uncertain material constants 

A joint BBA is obtained by the Cartesian product of the belief structures of all 

uncertain variables for a structural system. (Bae et al, 2004, 2004a) This involves the 

multiplication of final BBA found for each subinterval of one uncertain variable with 

those of the other variables involved in the Cartesian product. In this case, the constructed 

joint belief structure contains 432 Cartesian products. 

Propagation of uncertainty requires the determination of the maximum and 

minimum values (bounds) of the response for each Cartesian product of the constructed 

joint belief structure, where each uncertain constant can take any value within the 

corresponding subinterval range. Thus, the constructed metamodels for each selected 

design points 1, 4, 11, 14, 18 and 24 relating the peak load to five uncertain material 

constants of Johnson-Cook material model, is maximized and minimized 432 times with 

side constraints defined by the associated Cartesian products of the constructed joint 

belief structure using Genetic Algorithm (GA) . This provides bounds of peak load 
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associated with each Cartesian product of the constructed joint belief structure that can be 

interpreted as the propagated belief structure for each of the selected design points.    

It should be noted that the BBA of each interval of uncertainty for peak load 

equals to that of the corresponding Cartesian product of the joint belief structure. The 

original constructed propagated belief structure of peak load includes 432 intervals with 

BBA for each of the selected design points. The reduced propagated BBA is shown in 

Table 8.10. In the reduced propagated BBA, when the difference between the minimum 

and maximum peak loads in two Cartesian products was less than 20, 35, 30, 25, 20 and 

20 kN for each of design points 1, 4, 11, 14, 18 and 24 respectively, the Cartesian 

products were treated as one with BBA equal to the sum of BBA of the underlying 

products. As a result of this size reduction, the belief structure for peak load was reduced 

significantly from 432 to 16 for design points 1, 4, 14 and 24 and to 14 for design points 

11 and 18. Of course, the amount of reduction in belief structure size depends on the 

tolerance value selected.  Note that for the purpose of plausibility estimation discussed 

later, the original (unreduced) propagated belief structures are used. 
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Table 8.10 Reduced propagated belief structures of peak load for the selected design 

points  

 Design#1  Design#4  Design#11 

Range BBA Range BBA Range BBA 
[280.47, 309.97] 0.086872 [473.39,535.17] 0.196340 [328.66,374.90] 0.066382 

[253.42, 310.79] 0.010100 [411.42,534.43] 0.034354 [297.99,362.14] 0.002974 

[233.32, 291.82] 0.000128 [452.13,494.37] 0.004183 [363.13,420.36] 0.050294 

[233.33, 321.93] 0.003202 [401.87,494.43] 0.000301 [332.37,430.18] 0.092276 

[276.92, 340.83] 0.175230 [438.25,576.78] 0.121110 [298.28,414.16] 0.003809 

[253.45, 335.60] 0.006415 [385.64,576.96] 0.002953 [321.18,467.76] 0.146060 

[244.13, 356.14] 0.005969 [437.59,613.53] 0.001336 [289.55,461.70] 0.002353 

[301.82, 343.06] 0.000922 [385.28,612.12] 0.005423 [372.92,457.56] 0.004290 

[286.25, 371.15] 0.079033 [478.01,572.80] 0.007828 [221.95,588.28] 0.178820 

[265.56, 368.91] 0.000569 [401.60,688.53] 0.405600 [187.00,584.80] 0.033020 

[200.18, 466.39] 0.278770 [312.91,685.17] 0.043561 [253.36,619.46] 0.045334 

[168.93, 466.18] 0.123400 [360.64,671.45] 0.057289 [219.61,628.58] 0.312590 

[144.91 ,454.19] 0.001305 [362.07,707.21] 0.101510 [187.78,617.45] 0.048288 

[194.17, 486.55] 0.192530 [294.07,648.56] 0.003358 [183.34,655.74] 0.013613 

[148.51, 482.50] 0.027303 [300.75,727.88] 0.013391   
 [174.11, 495.30] 0.008356 [365.82,748.62] 0.001559   

Design#14  Design#18  Design#24 
[384.70,436.27] 0.058999 [316.12,355.89] 0.100110 [440.49,480.89] 0.047423 

[347.58,436.72] 0.005715 [290.58,352.49] 0.024467 [372.29,480.26] 0.003805 

[417.96,478.44] 0.050754 [287.35,372.80] 0.026792 [467.59,531.18] 0.133750 

[389.36,478.67] 0.034041 [266.41,336.71] 0.000065 [394.78,531.00] 0.019928 

[382.94,510.39] 0.101970 [266.38,368.35] 0.000228 [440.41,575.76] 0.152570 

[343.67,510.42] 0.009592 [316.21,382.90] 0.119070 [354.38,558.71] 0.010453 

[350.25,482.18] 0.004581 [287.16,397.82] 0.024860 [399.29,581.46] 0.000511 

[434.42,503.56] 0.018055 [266.17,395.82] 0.000183 [339.21,681.45] 0.073737 

[395.40,548.69] 0.079520 [320.24,414.70] 0.072656 [266.59,682.21] 0.009574 

[350.15,549.95] 0.005207 [238.42,523.48] 0.269120 [336.37,730.13] 0.298650 

[266.29,673.90] 0.248310 [214.38,523.50] 0.129640 [257.86,729.76] 0.030226 

[227.24,674.42] 0.035364 [187.84,520.02] 0.005838 [222.15,680.40] 0.000360 

[297.91,696.19] 0.034934 [227.45,545.07] 0.196770 [214.71,727.25] 0.001016 

[264.20,702.84] 0.257600 [202.46,544.90] 0.030285 [336.97,773.68] 0.190810 

[236.03,700.31] 0.036154   [257.71,773.37] 0.026187 

[208.35,706.95] 0.019300   [213.41,772.99] 0.001097 

 

As expected, predicted values of peak load for each of the selected design points 

using the experimentally verified JC material constants shown in Table 8.6 are included 

in almost all propagated uncertainty intervals (see Table 8.10). This verifies the 

correctness of the presented uncertainty representation and propagation approach. 
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8.3.2 Evaluation of EBDO constraints 

Using the propagated belief structure, the values of the evidence-based constraint 

in Eq. (8.2) for the selected design points are obtained through belief or plausibility 

estimation of the desired space of peak load, ������� � ����� , with  �����  = 250, 300 and 

350 kN as given in Table 8.11. The large gap between the belief and plausibility of the 

peak load is indicative of the amount of epistemic uncertainty embedded in the JC 

material models and makes it difficult to evaluate simulation accuracy of JC material 

models with only belief and plausibility measures. Hence, the plausibility decision 

function is also used as a possible evidence-based design constraint with the 

corresponding results also provided in Table 8.11.  

Table 8.11 Assessment of evidence based constraint for different values of �����  

Design 

No. 
���� � 250 ÝÆ Design 

No. 
���� � 250 ÝÆ 

Bel Pl Pl_dec Bel Pl Pl_dec 

1 0.000 0.640 0.146 14 0.000 0.355 0.008 

4 0.000 0.000 0.000 18 0.000 0.632 0.063 

11 0.000 0.630 0.069 24 0.000 0.026 0.001 

 ���� � 300 ÝÆ  ���� � 300 ÝÆ 

1 0.009 0.999 0.398 14 0.000 0.632 0.071 

4 0.000 0.027 0.001 18 0.000 0.712 0.169 

11 0.000 0. 650 0.146 24 0.000 0.074 0.005 

 ���� � 350 ÝÆ  ���� � 350 ÝÆ 

1 0.221 1 0.705 14 0.000 0.647 0.014 

4 0.000 0.080 0.006 18 0.014 1 0.469 

11 0.000 0.966 0.301 24 0.000 0.619 0.043 

8.4 EBDO results of externally stiffened crush tubes 

The EBDO formulation for the stiffened tubes under material uncertainty and 

specific bounds on Pmax and plausibility are formulated as 

  

¾
�N�NÏ.                                 � � ±²!�±, Ã, 1�                                                 (8.6) 

 g. 1                     �9������±, Ã, 1� � 250� - 0.03             
                         25 � ± � 50 

                         0 � Ã � 3, 1 � 1 � 2.6 
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                                                     ¾
�N�NÏ.                                 � � ±²!�±, Ã, 1�                                                 (8.7) 

 g. 1                     �9_ Ã.�������±, Ã, 1� � 250� - 0.03             
                         25 � ± � 50 

                         0 � Ã � 3 

                         1 � 1 � 2.6 

Where the evidence-based constraints in Eqs. (8.6) and (8.7) are expressed by plausibility 

and plausibility decision function, respectively. The desired space for design of optimum 

stiffened tube in these equations is �����±, Ã, 1� � 250 ÝÆ. With assessment of evidence-

based constraint for the selected designs points 1, 4, 11, 14, 18 and 24 given by Table 

8.11, it is possible to establish mathematical formulations relating design variables to 

these constraints using RBF metamodels. Inverse multiquadratic formulations with c = 

0.45 and 0.75 are found to provide best fits for the evidence-based constraints of Eqs. 

(8.6) and (8.7), respectively. Evaluation of error metrics for the constructed metamodels 

of Eqs. (8.6) and (8.7) results in PRESS of 0.1191 and 0.0009 and w¶�pvQ^OQeK+   of 0.7786 

and 0.9476, respectively. This indicates the acceptable accuracy of these metamodels. 

Due to the availability of analytical surrogate models for objective function and 

evidence-based design constraints and a relatively small set of design variables, we used 

GA (in Global Optimization toolbox of MATLAB) to setup and solve the optimization 

problems. A stochastic search approach such as GA offers a viable strategy to explore 

different regions of the design space in search of the global optimum design point. First, a 

random population of 20 design points is selected based on the specified bounds on the 

design variables. The scattered cross-over fraction is set at 0.8, and constraint dependent 

option is adopted for mutation function.  

For linearly constrained optimization problems, the GA solver in MATLAB 

identifies active linear constraints and bounds to generate search directions, or mutants 

for the GA. For non-linearly constrained optimization problems that are the case for the 
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EBDO Eqs. (8.6) and (8.7), it formulates a subproblem subject to linear constraints and 

bounds using penalty and Lagrange parameters. Once an approximate solution to the 

subproblem is found, the penalty and Lagrange parameters are updated for a new 

subproblem, and the solution process continues until convergence at a specified accuracy 

is reached.  

Here, the solution of EBDO problems requires 12 integrations with results given 

in Table 8.12. These solutions suggest the optimized geometric design of stiffened tubes 

for maximized SEA while providing the confidence that the peak loads do not exceed the 

critical value of 250 kN by the plausibility of 0.65 for Eq. (8.6) or plausibility decision of 

0.003 for Eq. (8.7). 

Table 8.12 EBDO solution for externally stiffened tubes 

Equation 

No. 
Plº �9_Ã.�^  SEA 

(kJ/kg) 

Optimal Design Variables 

t (mm) d (mm) S (mm) w (mm) 

6.6 0.65 - 52.72 2.47 0.15 29.80 16.83 

6.7 - 0.03 56.33 2.52 0.31 25.50 20.42 

8.5 Evidence-Based Field Uncertainty modeling of stiffened Tubes 

Besides the random nature of material properties, their tendency to vary spatially 

across the structure (material field uncertainty) due to the manufacturing process or 

history effects can significantly influence the structural behavior. Random field theory 

has been used in the previous investigations (Xiaolei et al, 2009; Choi et al, 2007) to
 
model 

material field uncertainty emanating from variability in the material microstructure in 

different locations of a structural component. In such investigations, the material model is 

kept the same from one location to another while the information related to the 

microstructural parameters are allowed to change according to a specified random field 
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description. The research results indicate the significant influence of microstructure 

variability on damage and structural failure. 

In addition, there are various sources of vagueness (epistemic uncertainty) in 

determination of material constants of plasticity models that are the key in simulation of 

dynamic material behavior of structures under extreme loading condition. Depending 

upon the testing machine, the data acquisition system, associated measurement errors, 

material samples that can be collected from different regions of a component, the 

resulting data may show different stress-strain responses that are used to derive the 

material constants. Other sources of epistemic uncertainty include vagueness in the 

procedure to determine material constants from experimental stress-strain curves. In fact, 

depending on the selected initial point in the numerical procedure, the selected random 

data points in different regions of experimental stress-strain curves, the selected stress-

strain curves covering a range of strain rates and temperatures, and the selected numerical 

method of fitting, the estimated material constants may be different. 

Based on the capability of evidence theory to model both epistemic and aleatory 

uncertainties, it is adopted here to capture the inherent randomness in the material as well 

as the incertitude in material behavior in describing material field uncertainty in 

components that undergo large plastic deformation.  

As a way of demonstrating the overall approach, an isotropic-elastic-plastic 

plasticity model is used to establish a relationship between material uncertainty and 

structural responses. Material uncertainty is viewed in terms of the uncertainty in the 

model parameters of the adopted plasticity model. To demonstrate the application of the 

presented evidence-based field uncertainty modeling approach, we focus on design 

optimization of externally stiffened tubes in Fig. 8.1 with consideration of material 
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uncertainties. Because of machining effects, the thin-walled sections may follow different 

material properties, and this indicates the significance of material field uncertainty 

consideration in design of stiffened crush tubes. 

Here, an isotropic-elastic-plastic material model (Material Model 012 in LS-

DYNA) is adopted in all nonlinear FE simulations to predict the collapse behavior and 

structural response of stiffened tubes under axial impact load. The material model 

includes two material parameters that can be determined from an experimental stress-

strain curve. The first unknown parameter is yield stress of the material and the second 

unknown parameter is the plastic hardening modulus of the material to account for stain 

hardening effects.   

However, determination of these unknown parameters is subject to epistemic 

uncertainty, and this could impact the tube crush simulation results.  Depending upon the 

testing machine, the data acquisition system, associated measurement errors, and material 

samples that can be collected from different regions of the crush tube, the resulting data 

may show different stress-strain responses that are used to derive the material parameters. 

Also, the stress-strain curve can be selected from a range of strain rates and temperatures, 

and it is not obvious which curve provides the most realistic behavior of material in 

stiffened tubes under axial impact load. The plastic hardening modulus can be measured 

by a tangent to the stress-strain curve at the point where strain hardening commences, and 

this involves uncertainties and errors.  

To consider such sources of material uncertainty in design of stiffened crush 

tubes, we consider a number of stress-stain curves for AISI Steel 4340. These curves 

cover a range of temperatures and strain rates and are obtained by using different 

experimental approaches. Based on the collected information, the yield stress and plastic 
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hardening modulus are found to be those shown in Table 8.13. Note that each derived set 

of material parameters in Table 8.13 represents a piece of evidence that will be used in 

representation of material uncertainty as discussed in the next section. 

Table 8.13 Possible values of material parameters of the adopted isotropic-elastic-

plastic material model from different stress-strain curves 

Curve 

No 

Strain 

Rate  gB) 
Temperature 

(K) 

Yield 

Stress 

(MPa) 

Plastic 

Hardening 

Modulus 

(MPa) 

1 0.1 293 830 615 

2 1.1 293 884 625 

3 117 293 1147 658 

4 32 293 905 627 

5 0.009 293 824 596 

6 0.0004 293 805 570 

7 4 293 897 631 

8 604 494 757 420 

9 650 733 754 460 

10 2000 873 841 410 

11 1500 673 1207 545 

12 1500 473 1422 563 

 

Once again, we performed nonlinear FE simulations of the stiffened tube 

impacted by a mass of 150 kg moving at an initial velocity of 40 m/s. Isotropic-Elastic-

Plastic material model (Material Model 012 in LS-DYNA) is adopted in all simulations 

while material parameters in each simulation take different values provided by different 

curves in Table 8.13.  

The final collapse shape of three samples using different material parameters is 

shown in Fig. 8.7 (a) through (c). While material parameters of samples (a) and (b) are 

assumed to be uniform taking the values provided by curves number 3 and 8 in Table 

8.13, respectively, they are assumed to be non-uniform in sample (c). In fact, sample (c) 

is considered to be affected by material field uncertainty as a result of machining of its 

three different areas. Top, middle and bottom machined thin-walled sections of this 
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sample are assumed to take the material parameters provided by curves number 8, 4 and 3 

in Table 8.13, respectively while the un-machined areas (rings) are considered to take 

material parameters of curve number 3.  The observed different collapse shapes of the 

same tube using different material parameters, as shown by Figure 8.7, reveals the 

significance of material uncertainty consideration in design of stiffened tubes. 

 

 

Figure 8.7 Collapse shapes of the same stiffened tube with different material 

parameters 

 Here, the aim is to solve the EBDO problem with consideration of material field 

uncertainties. This problem seeks to maximize SEA (specific energy absorption) while 

keeping the maximum crush force less than its critical value ����� , and is formulated as  

 

    max              ��Í, ß� � ±²! 

s.t.                �9������Í, ß� � ����^ � - �9�     (8.8) 

                         �¼Ó � �¼ � �¼Ô; Ý � 1, 3 

where Í is the vector of design variables defining the geometric attributes of the stiffened 

tube (i.e., S, d, t). The evidence-based design constraint in Eq. (8.8) imposes a limit on 

plausibility that ����  does not exceed its critical value (����� ) due to the material 

uncertainty present in the system and denoted by ß. Note that depending on the desired 

level of reliability, �9� can take a different value.  
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To limit the scope of analysis and optimization, the number of external stiffeners 

is held fixed at four. This reduces the number of geometric design parameters to three 

since w is related to S by Eq. (8.1). Based on the geometric relationships noted earlier, the 

following side constraints for geometric parameters are considered in Eq. (8.8). 

1 � 1 � 2.6;  0 � Ã � 3;  40 � ± � 80     (8.9) 

Surrogate models based on RBF are developed for use in approximation of 

response functions that are non-deterministic. The procedure is described in the following 

section.  

8.5.1 Evidence-based uncertainty modeling procedure 

Evaluation of �9� �����Í, ß� � ����� � as well as non-deterministic evidence-

based objective function in Eq.(8.8)  for stiffened tubes with different geometric 

parameters require propagation of a field joint belief structure of material parameters, 

accommodating both material field and model uncertainties, for each training point.   

8.5.1.1 Uncertainty representation  

Separate belief structures for each uncertain material parameter (yield stress and 

plastic hardening modulus) are constructed. Here, the derived data for material 

parameters of the Isotropic-Elastic-Plastic plasticity material model (see Table 8.13) 

reflecting uncertainty in behavior of the AISI 4340 Steel is used as available evidence in 

the construction of belief structures. Following the procedure explained in Section 8.1, 

belief structures for material parameters are constructed and given by Table 8.14. As an 

example, the dataset used to construct a belief structure for yield stress material 

parameter along with the corresponding belief structure is shown in Figure 8.8. 
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Table 8.14 Belief structures of material parameters of Isotropic-Elastic-Plastic material 

model 

Interval 

 

Yield Stress (MPa) 

 

Plastic Hardening Modulus (MPa) 

Range BBA Range BBA 

1 [754.0, 976.7] 9/12 [410.0, 575.3] 6/12 

2 [754.0, 1422.0] 3/12 [575.3, 658.0] 6/12 

 

 

 

Figure 8.8 Data distribution and the corresponding belief structure for yield stress 

material parameter 

8.5.1.2 Field joint belief structure of material parameters 

 

To consider the combined influence of uncertain material parameters on structural 

response, a joint belief structure is constructed. Each proposition cell of this joint belief 

structure is two-dimensional corresponding to yield stress and plastic hardening modulus. 

The assigned BBA to each joint proposition cell is obtained through multiplication of the 

BBA of each involved uncertainty interval.  

Let sets A and B denote the constructed belief structures of yield stress and plastic 

hardening modulus, respectively, and consider 
Q and �á as their uncertainty intervals, 

where N, â � 1, 2. A joint belief structure of material parameters denoted by C takes the 

following form 

G � ! × 8 � ãr
Q, �ás¬
Q # !, �á # 8 ä;  N, â � 1, 2     (8.10) 

The BBA of each proposition cell of joint belief structure C is determined as 

88!år
Q, �ásæ= 88!�
Q� × 88!å�áæ      (8.11) 
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Each proposition cell of C, r
Q, �ás, defines the material properties of the whole 

product, and assumes that they are uniform. Without consideration of material field 

uncertainty that is caused by spatial variation of material properties across the whole 

product due to the manufacturing effects, C can be employed in uncertainty propagation 

stage. Otherwise, definition of a field joint belief structure that distinguishes between 

material properties of different regions of the product is necessary.  

Here, due to the machining effects on top, middle and bottom regions of the 

stiffened tubes, it is necessary to consider material field uncertainty effects through 

construction of a joint field belief structure that make distinction between material 

properties of machined regions of the structure.  The constructed joint field belief 

structure denoted by D takes the following mathematical form 

] � G × G × G �
ç¡r
Q, �ás¼, r
Q, �ásÓ, r
Q, �ás�£ èr
Q, �ás¼, r
Q, �ásÓ , r
Q, �ás� # Gé ;  Ý, 9, � � 1, 4    (8.12) 

The BBA of each proposition cells of D is determined as 

88! ê¡r
Q, �ás¼, r
Q, �ásÓ , r
Q, �ás� £ë � 88! êr
Q, �ás¼ë × 88! êr
Q, �ásÓë ×
88! êr
Q, �ás�ë                               (8.13) 

Note that in each proposition cell of D, ¡r
Q, �ás¼, r
Q, �ásÓ , r
Q, �ás� £, sub-cells, 

r
Q, �ás¼, r
Q, �ásÓand r
Q, �ás�, define the material properties of the machined top, 

middle and bottom regions of the stiffened tubes, respectively.  

8.5.1.3 Uncertainty propagation 

In the context of evidence theory, uncertainty propagation means determination of 

bounds (intervals) of structural response in each proposition cell of the joint belief 

structure. Here, the aim is to propagate the constructed joint field belief structure of the 
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material parameters,  ], through nonlinear FE simulations of stiffened tubes impacted by 

a mass of 150 kg with initial velocity of 40 m/s at different training points sampled within 

geometric space of the structure.  

Unlike the joint probability density function, a joint field belief structure cannot 

be expressed by an explicit function as it includes a number of disjoint propositions, each 

of which gives one possible combination of intervals for uncertain variables (see Eq. 

(8.10)). Propagation of the joint field belief structure requires the evaluation of system 

response for every combination of uncertain parameter values within each joint 

proposition with the aim of finding the corresponding bounds of the structural response. 

Performing a nonlinear FEA for every point within each joint proposition is impractical. 

To reduce the computational cost, we rely on design and analysis of computer 

experiments and take the following steps for uncertainty propagation:   

1. With the aim to construct surrogate models that relate both geometric 

parameters as well as material parameters of top, middle and bottom regions of stiffened 

tubes to structural responses (SEA and ����), the determined geometric space of the 

structure along with uncertain material parameters space are sampled with an initial set of 

30 training points using LHS method.  

To make sure accurate surrogate models are obtained, the steps provided by the 

flowchart in Figure 8.9 are followed. The MATLAB routine lhsdesign and maximin 

criterion is adopted to select the locations of the training points such that the minimum 

distance between the design points is maximized, and this makes it possible to add new 

training points to a previously sampled space if necessary.  

We found that by adding 24 training points in two separate stages to the initially 

sampled space of 30 training points, we can obtain RBF-based surrogate models of 
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sufficient accuracy. As an example, from this DOE, eight training points that provide 

different structural responses are selected and are given by Table 8.15. Note that,  

�«), �«+ and �«| in Table 8.15 represent the yield stress of the material in the top, middle 

and bottom regions of the stiffened tubes, respectively, and ²xO) , ²xO+ and ²xO|  represent the 

plastic hardening modulus of the material in the top, middle and bottom regions, 

respectively.  

The corresponding collapse shapes and structural responses of these selected 

training points derived from nonlinear FEA of stiffened tubes impacted by a mass of 150 

kg with initial velocity of 40 m/s are shown by Figure 8.10 and Table 8.16, respectively. 

The recognized wide range of variations in structural responses of different training 

points along with their different final collapsed shapes reveals the significant effects of 

geometric parameters and material properties on energy absorption characteristics of the 

stiffened tubes. Note that in all FE simulations of different samples, the top, middle and 

bottom regions of the stiffened tubes follow different material parameters as provided by 

the training points.  
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Figure 8.9 Flowchart for constructing accurate RBF metamodels used in uncertainty 

propagation 

Table 8.15 Selected training points sampled within the space of geometric and material 

parameters  

Sample 

No. 

 

Geometric Parameters 

 

Material Properties 

t 

(mm) 

d 

(mm) 

S 

(mm) 
�«) 

(MPa) 

²xO)  
(MPa) 

�«+ 

(MPa) 
²xO+  

(MPa) 

�«| 

(MPa) 
²xO|  

(MPa) 

1 1.09 2.44 79.12 1119.02 426.47 1243.77 568.69 833.86 495.93 

2 2.58 0.52 67.73 860.59 532.31 1217.04 654.69 1074.46 479.39 

3 1.53 2.64 74.13 1270.51 608.38 1003.17 439.70 1252.68 562.08 

4 1.24 0.92 67.20 1003.17 502.54 994.26 658.00 1110.11 601.77 

5 1.68 2.72 77.33 753.66 575.31 1279.42 634.84 1243.78 552.16 

6 2.45 2.16 78.40 1083.37 581.92 1065.55 446.31 1092.29 413.24 

7 2.39 0.88 70.40 949.70 624.92 1038.82 472.77 816.03 618.30 

8 2.15 2.00 76.80 878.41 525.69 1127.93 466.16 1136.84 519.08 
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Figure 8.10 Collapsed shapes of the stiffened tube at the selected training points in 

Table 3 

Table 8.16 FE Simulation-based responses at the training points  

Sample  

No.  

SEA 

(kJ/kg) 
����  

(kN) 
��p�K 

(kN) 

Stroke 

Length 

(mm) 

Crush 

Time 

(ms) 

1 36.89 182.38 66.67 194.10 4.65 

2 59.56 777.81 290.72 175.71 5.00 

3 39.98 323.64 126.07 174.51 4.60 

4 32.76 238.04 86.08 166.37 4.34 

5  44.19 319.25 140.58 177.27 3.75 

6 57.84 479.27 261.35 177.53 5.00 

7 48.71 538.58 233.49 167.21 4.61 

8 48.16 480.02 188.10 183.00 5.00 

 

2. Assume functions f(X,Y) and g(X,Y) represent the constructed surrogate 

models found in the previous step for SEA and ����, respectively, where X and Y are the 

vectors of geometric parameters and uncertain material parameters of the stiffened crush 

tubes. With the aim to determine the bounds (intervals) of structural response 

corresponding to each proposition cell of the constructed joint field belief structure for 

each training point sampled only within the geometric space of the structure, the 

following optimization problems should be solved using a global search optimization 

method such as GA 
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max and min        f(X,Y) and g(X,Y)        (8.14) 

  s.t                         �Q c �Q � 0;   N � 1,3      

          {áÓ � {á � {áÔ;   â � 1, 6 

where in the above equations, �Q is the value of geometric parameters at each training 

point,  {áÓ  
0Ã {áÔ are lower and upper bounds of material parameters in the top, middle 

and bottom reigns of the stiffened tubes provided by each proposition cell of the 

constructed field joint belief structure.  

Note that the equality constraint in Eq. (8.14) means the problem must be solved 

for each geometric training point �Q, and the side constraints limit the search of structural 

response to each joint field proposition cell of the material parameters. Thus, Eq. (8.14) 

should be solved 64 times (the number of proposition cells of the constructed field joint 

belief structure) for each of 54 geometric training points generated in the previous step to 

obtain the propagated belief structures for all of them. Note that the BBA of the 

determined intervals of structural response is equal to that of joint field proposition cell 

from which they are obtained. Hence, the propagated belief structures at each geometric 

training point are constructed, and can be used in the next section to determine the non-

deterministic evidence-based values of SEA and constraint function.    

With propagation of the material uncertainties at each geometric training point, it 

is possible to plot the corresponding Cumulative Belief Function (CBF) and Cumulative 

Plausibility Function (CPF) of ���� � P½ÛÜº . As an example, these diagrams for samples 

3 and 6 in Table 8.15 are shown in Figure 8.11.  

Such diagrams provide useful information on the confidence level of uncertainty 

quantification results of an engineering system with imprecise information. In fact, the 

gap between CPF and CBF is the indicative of epistemic uncertainty in the system, and 

can be reduced through acquisition of more knowledge and information. The belief and 
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plausibility of ���� � ����^  in Figure 8.11 are determined through adding the BBA of 

intervals in the obtained propagated belief structure that is covered and intersected by the 

limited space of ����, respectively. Note that in this case, 0 � ���� � ����^  is the target 

set and its belief and plausibility should be determined. Here, based on design 

requirements of stiffened tubes, we consider the value of 300 kN for ����^  and evaluate 

�9����� � 300 kN� at each geometric sampling points using the derived the graphs in 

Figure 8.11. With determination of the evidence-based constraint values at each 

geometric sampling point, RBF-based surrogate models whose accuracies are checked at 

both the training and test point are developed to construct a mathematical formulation for 

the constraint function. 

 

 

Figure 8.11 CBF and CPF plots of ���� � ����^  for samples (a) 3 and (b) 6  

8.5.1.4 Construction of the EBDO formulations and optimization results 

The average of the obtained propagated belief structure for SEA at each geometric 

training point is considered as the non-deterministic evidence-based value of the 

objective function . Suppose the belief structure M includes n uncertainty intervals [aM, bM� 
with BBA of mM. The average of this belief structure µ�M�,  can be determined by the 

following equation 
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u�¾� � ∑ �QKQF) ¡�RXðR+ £                            (8.15) 

where  ¡ÛñXòñ+ £ corresponds to the average of interval [aM, bM�. 
Again, with determination of the evidence-based objective function value at each 

geometric sampling point, an RBF surrogate model is developed for mathematical 

representation of the objective function. 

Following the completion of surrogate models for the objective and constraint 

functions, the EBDO problem in Eq. (8.8) can be solved. Effectively, the non-

deterministic EBDO problem based on material model uncertainty is converted into a 

representative deterministic optimization problem with the effect of material uncertainty 

built into the surrogate models used for the calculation of the evidence-based constraint. 

This problem can be formulated as 

max          ��Í� � µ�M� 
s.t.           5�Í� � �9������Í, ß� � 300� - �9�    (8. 16) 

                 1 � 1 � 2.6;  0 � Ã � 3;  40 � ± � 80 

where M represents the propagated belief structure of SEA at geometric training points, 

and µ�M� denotes the average of this propagated belief structure.  

Due to the availability of analytical surrogate models for the objective function 

and the evidence-based design constraint as well as a small set of design variables, we 

used GA in Global Optimization toolbox of MATLAB to setup and solve the EBDO 

problem defined by Eq. (8.15) with consideration of different values of reliability factor 

�9� (0.6, 0.7 and 0.8).  

A stochastic search approach such as GA offers a viable strategy to explore 

different regions of the design space in search of the global optimum design point. First, a 

random population of 20 design points is selected based on the specified bounds on the 

design variables. The scattered cross-over fraction is set at 0.8, and constraint dependent 
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option is adopted for mutation function. For linearly constrained optimization problems, 

the GA solver in MATLAB identifies active linear constraints and bounds to generate 

search directions, or mutants for the GA. For non-linearly constrained optimization 

problems such as the EBDO problems in Eq. (8.16), it formulates a sub-problem subject 

to a linear set of constraints and bounds using penalty and Lagrange parameters. Once an 

approximate solution to the sub-problem is found, the penalty and Lagrange parameters 

are updated for a new sub-problem, and the solution process continues until convergence 

at a specified accuracy is reached.  

Here, the solution of the EBDO problems requires 72 iterations with results given 

in Table 8.17. For the first problem, the plausibility constraint is under an upper bound of 

0.6 whereas for the second and third problems, it is under the bounds of 0.7 and 0.8, 

respectively. These solutions represent the optimized geometric design of AISI 4340 

externally stiffened circular tubes for maximized SEA under uncertainty in material 

parameters of an Isotropic-Elastic-Plastic plasticity model while meeting the requirement 

that the peak load does not exceed the critical value of 300 kN with different values of 

reliability factor.  

The results in Table 8.17 reveal that EBDO problems with higher values of 

reliability factors yield lower values of optimal SEA.  

Table 8.17 EBDO solutions for externally stiffened tubes under material uncertainty 

Reliability 

Factor, �9�  

SEA 

(kJ/kg) 

Optimal Design Variables 

t (mm) d (mm) S (mm) w (mm) 

0.6 65.76 2.56 2.04 75.73 3.20 

0.7 59.30 2.02 1.20 77.87 1.60 

0.8 47.82 1.28 1.12 74.67 4.00 
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CHAPTER IX 

CONCLUSION AND FUTURE WORK 

This dissertation sought to apply the mathematical tools of evidence theory to 

quantify both epistemic and aleatory uncertainties embedded in plasticity models. The 

evidential uncertainty quantification framework was employed for optimization of 

structures with consideration of all sources of material uncertainty. Based on the results 

of this research, the following conclusions can be drawn: 

• Evidence theory provides an appropriate mathematical tool to consider both epistemic 

and aleatory uncertainties involved in an engineering or a physical system. 

• Identification of the relationship types (agreement, conflict and ignorance) between 

adjacent intervals of uncertainty and their consideration in development of a belief 

structure is the key for accurate representation of parametric uncertainty. 

• Since in evidence theory, the joint belief structure of uncertain variables is defined in 

a discrete space, employment of surrogate models is a major step to reduce the heavy 

computational cost associated with the uncertainty propagation process. 

• Construction of a joint field belief structure that describes representation of 

uncertainty in different regions of a product can effectively consider spatial variation 

of uncertain variables in an evidential uncertainty quantification procedure. However, 

propagation of a joint field belief structure is very computationally expensive. 

• The measured large gap between belief and plausibility of both Johnson-Cook and 

BCJ plasticity models indicates the presence of epistemic uncertainty. However, the 
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estimated large value of plausibility for both BCJ and Johnson-Cook plasticity 

models indicates the validity of these plasticity models in simulation of large 

deformation processes. 

• Application of surrogate models is inevitable in evidence based design optimization 

(EBDO) of structures to reduce the high computational costs. 

The presented methodology for uncertainty quantification and optimization of structures 

under uncertainty can be adopted in the following way as future work: 

• It can be adopted in concurrent design of material and product system through 

decoupling of different scales. 

• For more realistic application of the presented approach, the computational cost of 

uncertainty propagation and design optimization under uncertainty should be reduced.   
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