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An efficient approach to combat the accumulation of aflatoxin is the development 

of germplasm resistant to infection and spread of A. flavus. in maize, one of the most 

important cereal grains in the world. Lipoxygenases (LOXs) are a group enzymes that 

catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxilipins play 

critical roles in plant defense against pathogens such as A. flavus. The objectives of this 

study were to report sequence diversity and expression patterns for all LOX genes, and 

map their effect on aflatoxin accumulation via linkage and association mapping. Genes 

GRMZM2G102760 (ZmLOX 5) and GRMZM2G104843 (ZmLOX 8) fell under 

previously published QTL in one of four mapping populations and appear to have a 

measurable effect on the reduction of aflatoxin in maize grains. The association mapping 

result shows 19 of the total 215 SNPs found within the sequence of the ZmLOXs were 

associated with reduced aflatoxin levels. 
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CHAPTER I 

INTRODUCTION 

The most important group of cultivated crop plants in the world is cereals, of 

which maize (Zea Mays, L) is the most widely grown, with 791.6 million tons of maize 

produced in the year 2008 (USDA 2009). In different processed forms, maize is the staple 

food for a large number of people in the developing world, providing significant amounts 

of nutrients, in particular calories and protein. However, maize is often contaminated 

with aflatoxin produced by the fungus Aspergillus flavus  (Castells et al. 2007). Globally, 

corn kernels infected by toxigenic fungus, including two Aspergillus species, pose a 

serious health threat to humans and animals because aflatoxins are carcinogenic and 

hepatotoxic. Economically, aflatoxin contamination poses a problem for farmers, as 

contaminated grains are not marketable. The U.S Food and Drug Administration (FDA) 

prohibits interstate commerce of grains that have an aflatoxin concentration equal to or 

greater than 20ng/g (Brown et al. 2003), and other countries have similar limits. The 

selection of germplasm that is resistant to either Aspergillus flavus or the production of its 

toxic metabolite aflatoxin has great potential to reduce the problems and risks posed by 

infected corn grains, but the highly quantitative nature of the trait makes it difficult to 

transfer the resistance from resistant lines to new elite inbred parents and hybrid cultivars. 

Quantitative trait loci (QTL) mapping studies have identified several  potential QTL for 

reduced aflatoxin accumulation or Aspergillus flavus and /or ear rot resistance (Widstrom 
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et al.; 2003). In addition, previous Genome Wide Association Studies (GWAS) have 

identified many smaller genomic regions associated with a reduction in aflatoxin levels in 

maize (Warburton et al., 2015). Identification of loci for aflatoxin accumulation reduction 

found in resistant lines and the discovery of molecular markers linked to the genes or 

QTLs would also help to speed up the transfer of resistance from the resistant donor line 

to the elite cultivars (Warburton et al. 2010).  

Aspergillus flavus is found mostly on decaying plant materials in the soil, but can 

also infect living plant tissues that has been stressed (i.e. by drought). It is also found in 

plant products, especially in oil rich seeds such as corn, cotton and peanuts. Aspergillus. 

flavus also produces a secondary metabolite known as aflatoxin, which is the most potent 

carcinogen known, it is hepatotoxic, and known to reduce immune system function and 

juvenile development in humans and many animal species (Geiser et al. 2000). 

Aspergillus flavus, Penicillium puberulum and Aspergillus parasiticus are the three major 

species of fungi that produces aflatoxin (Austwick and Elphick 1964). Aflatoxins are one 

of the mycotoxins regulated by the United States Food and Drug Administration (FDA). 

Restrictions on aflatoxin infected maize has resulted in losses of millions of dollars 

yearly by farmers in the United States (Robens and Cardwell, 2005). Contamination of 

agricultural commodities by aflatoxin also pose a serious health effect on humans and 

animals. Due to the economic losses and the health threat posed by Aspergillus flavus and 

aflatoxins, researchers have been trying to find a solution to reduce aflatoxin 

contamination of maize by implementing several strategies. 

Considering all the various methods and strategies that have been employed to 

reduce aflatoxin accumulation in maize, host plant resistance is one of the most effective 
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and promising long term solution to aflatoxin accumulation. This methodology is the 

easiest for farmers to implement, since all the needed technology is already encapsulated 

into the seed.  Many resistant lines have been identified, including Mp313E, Mp715, and 

Mp717 (Williams et al. 2006); however, these tend to lack the attributes and 

characteristics of acceptable commercial cultivars such as early maturity and high yield.  

They are thus not currently used as parents of commercial cultivars, and transferring the 

resistance into commercial cultivars has proven difficult due to the highly quantitative 

nature of the resistance (Hamblin and White 2000; Warburton et al. 2011). The trait 

involves multiple genes interacting together and their additive effect makes the plant 

more resistant. 

Lipid peroxidation is common to all biological systems, appears in 

developmentally-regulated processes, and as a response to environmental changes. 

(Andrew et al.et al. 2009). Lipoxygenase (LOX), the enzyme responsible for lipid 

peroxidation, is ubiquitous in all eukaryotes and a number of bacteria. (Andreou et al.et 

al. 2009; oliw, 2002). Lipoxygenases are non-heme iron-containing fatty acid 

dioxygenases that catalyze the peroxidation of polyunsaturated fatty acids (PUFA) such 

as linoleic acid, α-linolenic acid and arachidonic acid (Acosta et al.et al., 2009) to form 

fatty acid hydroperoxide. Lipoxygenase reactions may also initiate the synthesis of a 

signaling molecule or be involved in inducing structural or metabolic changes in the cell 

(Brash 1999). The metabolism of PUFA via a LOX catalyzed step as well as alternative 

and subsequent reactions are collectively included in the Oxilipins pathway. Products 

derived from lipid peroxidation (called Oxilipins) are produced by Lipoxygenase 

pathways and are the most understood plant Oxilipins. Lipoxygenase pathways are region 
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specific and the dioxygenation of the substrates such as linoleic acid (18:3) and linolenic 

acid (18:3) to from (9S) hydroperoxyoctadecadienoic acid (9-HPOTE) or (13S) 

hydroperoxyoctadecadienoic acid (13- HPOTE) depends solely on the regions (the 

carbon where the molecular oxygen is added). The 9- and 13- HPOTEs are then used as 

substrates for the seven branches of LOX pathways which includes the peroxygenase, 

divinyl ether synthase, reductase, epoxy alcohol synthase, Hydroperoxide lyase (HPL), 

Allene oxide synthase (AOS) and LOX reactions (Feussner and Wasternack, 2003).  

Lox and the products of the LOX pathway are involved in various biological 

processes such as seed germination (Feussner et al.et al.; 2001), sex determination 

(Acosta et al.et al.; 2009), and fruit ripening (Chen et al.et al.; 2004). Research has also 

shown that the Lox pathways produces a compound known as oxilipins e.g Jasmonic acid 

(JA) which are involved in the regulation of stress induced gene expression (Howe and 

Schilmiller; 2002) due to variety of biotic and abiotic stresses, and also, based on the 

effects of LOX products, a physiological function for LOXs has been proposed for 

growth and development (Rosahl, 1996). The LOX products are not formed prior to 

infection but are formed de novo when the plant is exposed to mechanical injury and or 

herbivore or pathogen attack (Howe and Schilmiller, 2002, Croft et al, 1990 and Keppler 

& Novacky, 1987). Mycotoxin production in fungi is partially regulated by the genes 

belonging to the lipoxygenase family and has been hypothesized to play an important role 

in the susceptibility of plants to fungal invasion (Fuente et al; 2013). 

Based on the global importance of maize, the health and economic damage of 

aflatoxin contamination, and the possible mitigating effects of the Lox genes on aflatoxin 

production, the main objectives of this study are: to identify genes with lipoxygenase 



 

5 

activity by a search of online databases and published literature; to characterize these 

genes based on published or new sequence and expression data; to use genetic linkage 

and disequilibrium mapping to map candidate genes in one association panel and up to 

four QTL mapping populations using linked markers and to determine the phenotypic 

effect each gene has on aflatoxin accumulation resistance (if any).  In addition, new Near 

Isogenic Line genetic mapping populations will be created to validate previously 

identified regions of the genome associated with aflatoxin accumulation resistance. 
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CHAPTER II 

LITERATURE REVIEW 

Maize (Zea Mays L) 

Maize is one of the leading crops in the world (Figure 2.2) and is a critical food, 

fuel and fiber source, and used to extract other industrial components for plastics, paints, 

glues, pharmaceuticals, etc. Due to the importance of maize to food security and in 

industry and easy growth characteristics, it has been a model for plant geneticists as well 

(Tenaillon and Charcosset 2011). Maize was domesticated from of the wild Mexican 

grass known as teosinte (Figure 2.1). The major difference between teosinte and maize is 

that teosinte typically has multiple long branches with tassels and grains at their tips 

whereas maize processes a single stalk tipped by a tassel and one or a few short branches 

tipped by an ear.  Genetic analysis has determined that a single gene, teosinte branched 1 

(tb1), largely controls this difference (Doebley et al.; 1995). 
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Figure 2.1 Teosinte, the wild mexican grass believed to be the progenitor of maize 
(Tenaillon and Charcosset 2011). 

 

Archeological and genetic evidence places the time of maize domestication at 

9000 BP (Matsuoka et al., 2002). Maize cobs morphologically similar to modern ears 

have been observed to date back to 6250BP from Guila Naquitz (Piperno and Flanner 

2001) and 5500BP from the Tehuacan valley (Long et al. 1989) in central Mexico. Maize 

was first recorded in Europe in 1493BP when it was introduced by Columbus, and from 

there it was taken to the Vatican where it was painted in frescoes near Rome around 

1517BP (Janick and Caneva 2005). Today, maize (Zea Mays L), rice (Oryza sativa) and 

wheat (Triticum æstivum) are the world’s main staple crops and maize is the 2nd largest 

harvested crop by area planted (FAOSTAT 2009). The United States is the world’s 

largest producer of maize followed by China, The European Union, Brazil, and Mexico 

(NCGA 2011), while worldwide maize exports is led by the United States, Argentina and 

Brazil (NCGA 2011). In the United States, maize is mainly used for animal feed and 
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residual (38.7%), fuel/ethanol (36.5%), export (14.5%), and high fructose corn syrup 

(3.8%) (NCGA 2011). 

 

Figure 2.2 A graph showing the five highest produced (ha) crops in the world.    
http://faostat.fao.org/default.aspx  

 

Aspergillus flavus. 

Aspergillus is a large genus of fungi which has significant detrimental impact 

economically, ecologically, and medically. Species in this genus are abundant and widely 

distributed in the soil, water, air, and in plants (Klich 2002). During warm, dry periods, 

several of the aspergilla increase rapidly in association with crop plants (Cotty et al.; 

1994). Aspergillus flavus is an anamorphic genus consisting of about 250 recognized 

species. It is characterized by a distinctive spore-bearing structure, the aspergillum 

(Figure 2.3) and in culture, Aspergillus flavus is characterized by fast-growing yellow-

http://faostat.fao.org/default.aspx
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green colonies, usually 65-70mm in diameter after 7 days growth in the dark at 25oC on 

Czapek yeast extract (CYA) and it grows well at 37oC (Klich 2007).  

 

Figure 2.3 Conidiophores of Aspergillus (Klich, 2007) 

 

It has been possible to isolate Aspergillus flavus from all of the major biomes, 

although it is isolated relatively more frequently in warm temperate zones (latitude 26-

35o) than in tropical or cooler temperate zones, and is quite uncommon in latitudes above 

45o (Klich, 2002b; Manabe and Tsuruta, 1978). There are clear interactions between 

agriculture and aflatoxins produced by the fungi in the Aspergillus flavus group. Some 

consequences of these interactions are obvious while some others are virtually 

unexplored (Cotty et al.; 1994). Aspergillus. flavus has a broad host range as an 

opportunistic pathogen/saprobe and infects many economically important crops which 
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can then become contaminated with aflatoxins; these include corn, cotton, peanut, and 

many other tree nuts (Sweany et al. 2011). Aspergillus flavus is also a human pathogen 

(Horn 2009) that has become increasingly important because immunosuppressed 

individuals are susceptible to infections by these fungi 

Aflatoxins 

The discovery and first characterization of aflatoxin occurred in the early 1960’s 

when more than 100,000 turkeys died in England after consuming mold contaminated 

peanut meal (Blout, 1961 and Goldblatt, 1969). Aflatoxins are a group of secondary 

metabolites produces by Aspergillus flavus and Aspergillus parasiticus that can be 

recognized by the yellow-green or gray-green colored growth on corn kernels, 

respectively. Aflatoxin B1 is the most potent naturally formed carcinogen known (Squire 

1981).  Aflatoxins can be detected either on corn still growing in the field or in storage 

after the corn has been harvested. The risk of aflatoxin contamination is higher when 

moldy grains are damaged, providing easy entry of the growing fungus into the kernel. 

Aflatoxin contamination levels are highest during hot, dry summers compared to cool 

and/or wet summers.  

In addition to aflatoxins, Aspergillus flavus also produces unrelated mycotoxins 

known as cyclopiazonic acid (CPA) an indol-tetramic acid that targets the liver, kidneys 

and gastrointestinal tracts of animals (Table 2.1)
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Table 2.1 Secondary metabolites produced by different species of aspergillus. 

Species Aflatoxins Other secondary metabolites 
Aspergillus avenaceus   Avenaciolide 
Aspergillus bombycis B,G Kojic acid 
Aspergillus caelatus   Kojic acid, aspergillic acid and cyclopiazonic acid 
Aspergillus flavus B,G kojic acid, nominine, paspaline, paspaliline 
Aspergillus lanosus   Griseofluvin, kojic acid, met I 
Aspergillus leporis   Antibiotic Y, kojic acid, leporine, pseurotin 

Aspergillus nominus B,G 
Aspergillic acid, kojic acid, nominine, pseurotin, 
tenuazonic acid 

Aspergillus oryzae   Cyclopiazonic acid, kojic acid 

Aspergillus parasiticus B,G 
Aspergillic acid, kojic acid, parasiticol, 
parasiticolide A 

Aspergillus 
pseudotamarii B Cyclopiazonic acid, kojic acid 
Aspergillus sojae   Kojic acid 
Aspergillus tamarii   Cyclopiazonic acid, fumigaclavine A, kojic acid 
Petromycesalliaceus   nominine, ochratoxin A and B, paspaline. 
Reproduced from Scheidegger and Payne 2005 

Aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin 

G2 (AFG2) are the four major types of aflatoxins produced by Aspergillus fungi (Table 

2.2) and the names are derived from the fluorescence they produce under ultraviolet (UV) 

light (which is blue or green). In addition, aflatoxin M1 and M2 are found in milk 

following consumption of feed contaminated with aflatoxin by milk producing animals or 

lactating mothers (Richard and Payne 2002). Oil seed crops such as maize, cotton and 

tree nuts are very susceptible to aflatoxin accumulation because most of these crops are 

grown in the latitude where Aspergillus flavus thrive and possibly due to the carbon 

utilization pattern of Aspergillus flavus (Klich 2007). The high oil content of the grains 

and embryos of these seeds are a very good medium for growth of the fungus. 



 

16 

Table 2.2 Physical data of aflatoxin 

Aflatoxin 
Molecular formula Molecular weight Melting point [α]D23 

B1 C17H12O6 312 268-269* -559 
B2 C17H14O6 314 286-289* -492 
G1 C17H12O7 328 244-246* -533 
G2 C17H14O7 330 237-240* -473 

*Decomposes (Wogan 1966) 

Aflatoxins in Maize 

Due to the essential role played by maize in feeding the world, it is important to 

treat any pathogen that affects maize production, consumption and byproduct utility 

seriously. Infection of maize ears by A. flavus is very difficult to predict by farmers 

(Smart et al. 1990), and it causes ear rot and aflatoxin contamination, with their economic 

and health burdens.  Aspergillus flavus as an opportunistic pathogen has limited direct 

pathogenic abilities, but specific environmental conditions increase the fungi’s ability to 

infect, rot ears, and cause aflatoxin contamination. The two most important factors are 

drought stress and high temperatures (Payne 1998).
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Figure 2.4 Diagram showing the life cycle of Aspergillus flavus and also the routes of 
colonization in maize. (Payne 1998). 

 

Maize kernel colonization by Aspergillus flavus occurs at various stages of the 

plant's life  when the spores are brought to the kernel surface either by insects or by the 

wind (Figure 2.4). Infection of the kernels generally occurs later in the ear development 

(Payne 1998). Preventive strategies such as stopping the infection process, control of 

environmental factors to minimize fungal growth, and pre- and post-harvest crop 

management strategies can be utilized by maize farmers to minimize the level of 

aflatoxin contamination in maize since to date, it is not practically possible to stop it 

altogether (Hell and Mutegi 2011). The most effective biological control for both pre- 

and post-harvest control of aflatoxin contamination is through the application of 

competitive non-toxigenic strains of A. flavus which competes with the natural toxigenic 

strains which can bring about 70-90% reduction of contamination (Yin et al; 2008). 
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Although many of the abiotic factors (heat, drought, and nutrient deficiency) that 

influence Aspergillus flavus infections cannot be prevented,  pre-harvest crop 

management control such as earlier planting dates, irrigation of fields, proper fertilization 

(Jones et al. 1980; Rodriguez-del-Bosque 1996; Bruns 2003; Guo et al. 2005; Abbas et al. 

2009) and other cultural practices such as weed control, low planting densities, 

application of fungicides and tillage (Jones et al. 1981b; Payne et al. 1986; Bruns 2003)  

have been shown to lower drought stress and also reduce aflatoxin accumulation in 

maize. Farmers employ many practices during the harvest to help reduce aflatoxin 

accumulation post-harvest such as a timely harvest to reduce further fungal growth, insect 

damage after harvest, or kernel breakage due to over drying (Hell et al. 2008). After 

harvesting, farmers dry corn to a moisture content of < 14%, reduce further fungal growth 

and subsequent aflatoxin accumulation in maize grain (Bruns 2003; Hell et al. 2008). 

 

Figure 2.5 The structure of aflatoxin B1 (Klich 2007)  

 

Aflatoxin and Health 

Mycotoxins contaminate the diet of a large proportion of the world’s population, 

especially in many low income countries where maize is a staple food (Council for 
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Agricultural Science and Technology (2003). It has been estimated that 25% of the 

world's crop are affected by mold or fungal growth (Mannon and Johnson 1985). 

Aspergillus flavus and Aspergillus parasiticus produce the secondary metabolite aflatoxin 

B1, (Figure 2.5) which is a carcinogenic substance that poses serious health hazards to 

both humans and animals. Figure 2.5. shows the structure of aflatoxin B1. Aflatoxins 

contaminate a variety of staple foods, particularly maize, peanuts or groundnuts and other 

cereals and nuts in low income countries (Williams et al.; 2004). Consumption of high 

amounts of aflatoxin is known to cause aflatoxicosis, symptoms of which include 

hemorrhaging, acute liver damage, edema, problems with nutrient uptake, and possibly 

death. Chronic exposure to low levels of aflatoxin will in addition cause 

immunosuppression, cancer, developmental problems in growth, and other pathological 

conditions.  

In addition to health concerns, aflatoxins also have various other economic 

impacts on animals, such as reduced productivity, immune suppression which leads to 

increased incidence of other diseases, and chronic damage to vital organs. Aflatoxins 

cause decreased milk production in cattle, decreased egg production in poultry, and liver 

damage to animals. Young animals of various species are the most susceptible to 

aflatoxins, and nursing animals will also be affected when exposed to aflatoxin and 

aflatoxin metabolites which are secreted in milk. The economic impact of aflatoxin 

contamination in industrial nations is straightforward because the impact is mostly 

market-related as all commodities that contain aflatoxin above the regulation threshold 

(Table 2.3) for human or animal feed must be discarded (Wu et al., 2008). However, in 
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less developed countries, the estimation of the economic losses is more complex because 

the health-related costs are higher than the market-related costs (Williams 2008). 

Table 2.3 Guidelines for aflatoxin levels by the U.S. Food and Drug Administration 

Aflatoxin Level Commodities & Species (parts per billion) 

20 ppb 

For corn, peanut products, cottonseed meal and other 
animal feeds and feed ingredients intended for dairy animals; 
for animal species or uses not specified below, or when the 
intended use is not known. 

20 ppb 
For corn, peanut products and other animal feeds and 

feed ingredients, but excluding cottonseed meal, intended for 
immature animals. 

100 ppb For corn and peanut products intended for breeding beef 
cattle, breeding swine or mature poultry (e.g. laying hens). 

200 ppb For corn and peanut products intended for finishing 
swine (100 pounds or more). 

300 ppb For cottonseed meal intended for beef cattle, swine or 
poultry (regardless of age or breeding status). 

300 ppb For corn and peanut products intended for finishing beef 
cattle (i.e., feedlot cattle). 

http://agriculture.mo.gov/plants/feed/aflatoxin.php. 

Preventing Aflatoxin Contamination 

Biological and environmental factors such as insects, diseases, weeds and drought 

that can directly cause plant stress also contribute to the process of infection by 

Aspergillus flavus and thus have been the subject of much research effort (Widstrom et 

al; 2003). Control of environmental factors through various measures has been practiced 

to prevent and control fungal penetration, fungal growth and ultimately aflatoxin 

production and accumulation. Aflatoxin accumulation can increase 10-fold within 3 days 

when harvested grains are stored in a high moisture environment (Hell et al. 2008, Kaaya 

and Kyamuhangire, 2006); thus, post-harvest management practices such as keeping 

harvested grains at a safe moisture level (10-13%) can reduce aflatoxin accumulation 

http://agriculture.mo.gov/plants/feed/aflatoxin.php
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post-harvest. This problem is more compounded in Africa due to excessive heat, high 

humidity and insect and rodent damage, conditions that are favorable for the 

development, germination, and proliferation of Aspergillus flavus spores (Hell et al., 

2008). Disinfecting measures such as smoking is a common practice carried out by about 

4 - 12% of farmers in Nigeria to preserve their grains, and this practice was found to 

correlate with reduces aflatoxin accumulation in the farmers’ stores (Udoh et al. 2000). 

Also, it has been established that nixtamalization, a maize preparation process involving 

soaking and cooking the maize grain in alkaline solution usually limewater is effective 

for reducing aflatoxin contamination by 75-90% (Albores et al, 2002). 

Preventive measures not including breeding for resistant lines include good 

cultural practices, harvesting at the optimum stage of maturity, rapid drying after 

harvesting and chemical control (Lisker and Lillehoj, 1991). Other cultural practices 

involving tillage systems and crop rotation can affect soil inoculum availability and 

root/soil interface (alleviating stress during later plant development) and preventing the 

inoculum buildup (Jones 1987). Conventional methods of plant disease control, such as 

fungicide use, has proved ineffective in controlling Aspergillus flavus infection of corn 

when employed at a concentration that are both cost effective and environmentally safe 

(Bhatnagar et al.; 1993). Widstrom et al. (2003) focused on the identification of the most 

important and effective environmental factors that influence aflatoxin accumulation in 

corn and these include temperature, rainfall, relative humidity (Net evaporation) and soil 

type. The authors further stressed crop management factors including planting date, 

irrigation, tillage, fertilization, weed control and fungal competition (Table 2.4). Host 

plant resistance with the ultimate goal of developing resistant germplasm by plant 
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breeders is, in fact, the most effective, efficient and dependable tool that we have in the 

long term arsenal to protect corn from pre- and post-harvest infection and aflatoxin 

contamination process (Widstrom, 1992; Zuber, 1997). 

Table 2.4 Managemental practices to manage aflatoxin resistance (Abass et al.; 2009). 

Strategy Method Rationale 
Avoidance Early planting, supplemental irrigation, 

short season hybrids 
Reduce heat and moisture 
stress 

Fertility management 
 

Provide adequate nutrition N- deficiency corn more 
susceptible 

Insecticide 
application 

Appropriate timing of application to 
control insect damage to ears 

Insects responsible for 
enhanced ingress into 
grains 

Bt Hybrids Hybrids engineered with resistance to 
ear- damaging insects 

Insects responsible for 
penetration into grains 

Natural resistance to 
insects 

Breeding and selecting hybrids for 
resistance 

 

Biological control Use of non-toxigenic isolates of A. 
flavus 

Competitive displacement 
of toxigenic isolates 

Fungicides Control phylosphere fungi Reduce inoculum density 
Soil management Incorporation of crop residue Reduce inoculum density 
http://faostat.fao.org/default.aspx   

Host Plant Resistance  

Breeding for resistance to aflatoxin accumulation is one of the most efficient and 

effective ways of reducing Aspergillus flavus infection and aflatoxin accumulation in 

maize (Paul et al. 2003). It is also a preventive measure that would be an excellent 

remedy without the need for additional inputs beyond the seeds; thus, commercial 

hybrids will ultimately save farmers money that would have been lost to aflatoxin 

accumulation pre- and post-harvest. Germplasm screening studies have been extensively 

used to identify a number of maize lines associated with lower grain aflatoxin levels 

(Thompson et al. 1984, Windham and William 1998). This method, however, is not 

http://faostat.fao.org/default.aspx
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easily implemented largely due to the difficulty in finding elite lines that have high yield 

and good agronomic performance and that are also resistant to aflatoxin accumulation in 

multiple environments (Clements and white 2004) while conventional selection has 

helped to create inbred maize lines that are resistant to aflatoxin accumulation, it is hard 

to transfer aflatoxin resistance from a resistant donor line into an elite favorable 

commercial cultivar due to the highly quantitative nature of the trait. This means that a lot 

of genes are working together to make the plant resistant to aflatoxin accumulation 

therefore and due to recombinations that happens within these genes, it will be hard to 

transfer all the necessary genes into another germplasm(Stoloff and Lillehoj 1981, 

William et al. 2008). It should be noted that, many new strategies that may be used 

someday to enhance host plant resistance involving biotechnology are currently being 

explored (Brown et al. 2003; Warburton and Williams, 2014).  These new strategies 

include the identification of quantitative trait loci (QTL) and related markers for marker 

assisted selection (Warburton et al. 2009) and the identification of resistance-associated 

proteins through proteomics and gene expression studies, and  biochemical marker 

identification (Bhatnagar et al. 2008). The main purpose of the maize proteome mapping 

is to help in identifying and classifying functional gene products that aids in making the 

plants resistance to aflatoxin accumulation (Pechanova; 2013).  

As generations of backcrossing with phenotypic selection are advanced, the 

resistance is often lost, so either the backcrossing must be terminated before the 

generation of a new inbred line with all the characteristics of the elite line, or the 

resistance of the new inbred line is lower than the resistance of the original donor.   
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One method to increase the efficiency of selection of desirable traits is known as 

marker assisted selection (MAS, Lande and Thompson 1989). Genetic or molecular 

markers that are linked to genes or quantitative trait loci (QTL) that are associated with 

the desired trait can be used to develop improved cultivars by selecting specific 

chromosomal regions within the maize genome (Bernardo, 2012); in this case, those that 

contain the gene(s) that contribute to aflatoxin accumulation resistance. The detection of 

these regions in the progeny of breeding crosses will help to validate that resistance was 

transfered into future commercial elite cultivars. Molecular markers associated with 

important traits in maize are becoming increasingly available and this has given rise to 

the incorporation of marker assisted selection into many maize breeding programs such 

as drought tolerance and protein quality (Gao et al. 2008). There has been an aggressive 

use of molecular markers in studying quantitative traits because the cost of various 

marker systems such as simple sequence repeats (SSR), amplified fragment 

polymorphisms (AFLP; Vos et al. 1995), and diversity array technology (DArT; Kilian et 

al. 2005), and more recently, sequence based markers such as single nucleotide 

polymorphisms (SNP), have decreased in most  crop species (Burrow and Blake, 1998; 

Bhattramakki and Rafalski, 2001).  In addition, there has been the development of 

computer software and statistical tools that can be used for the implementation of this 

marker assisted selection procedure (Bernardo 2008). 

Molecular Markers in Breeding Programs 

Marker Assisted Selection (MAS) schemes include marker assisted backcrossing 

and pyramiding are used to increase the effectiveness and efficiency of selecting for a 

particular trait while backcrossing or intermating one or a few genes controlling the 
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selected traits into an adapted cultivar (Collard and Mackill 2007). Markers can use to 

transfer identified QTLs into elite cultivars via marker assisted backcrossing and also be 

used to pyramid resistant QTLs from one or more donor lines (Warburton et al., 2010). 

Marker assisted backcrossing is generally used to move a single trait into a breeding line 

or cultivar. Marker assisted pyramiding is mostly applied to combining multiple genes for 

disease resistance for the development of a stable disease resistance since pathogens are 

likely to overcome single gene host resistance (Shanti et al. 2001, Kloppers and Pretorius 

1997). Genomic selection is used to select for desired traits when the genes controlling 

these traits are unknown.  Using MAS in early breeding generations has a tremendous 

advantage because plants with undesirable genes can be eliminated in the early stages, 

which ultimately leads to reduced labor costs and allow breeders to focus more on the 

important lines with the desirable alleles in subsequent generations (Collard and Mackill 

2007). MAS can be combined with phenotypic screening (Moreau et al. 2004) and thus 

has an advantage over phenotypic screening or MAS alone in order to maximize genetic 

gain (Lande and Thompson 1990).  

Quantitative trait loci (QTL) mapping and Association mapping 

Quantitative traits have been the major focus of genetic studies for over a century 

because most traits important to plant breeding, ecology, human and animal health, etc., 

are associated with a quantitative inheritance. Until recently, the study of quantitative 

traits was based only on statistical techniques with limited knowledge as to the number 

and the location of the genes involved in controlling the trait (Kearsey and Farquhar 

1998). Despite the large number of publications on QTL mapping studies of different 
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quantitative traits, only little has been reported to show the successful integration of the 

QTLs in breeding programs (St. Clair 2010).  

The nature of the variation associated with the trait may be an indication that the 

trait is controlled by a few genes with large effects or by many genes each with smaller 

cummulative effects (Bernardo 2008). To identify QTL for a particular trait, a linkage 

map is constructed using a segregating population, such as F2, F3 or backcross (BC) 

population, most often derived from a bi-parental cross (Collard et al. 2005). The parents 

generally differ in the trait of interest. Previous reviews have shown that QTL mapping 

studies are usually able to detect 3 to 5 QTL for each trait, although ranges of 1 to more 

than 10 have been reported (Kearsey and Farquhar 1998). Detection of genes or QTLs 

influencing a trait is possible due to genetic linkage analysis based on the principle of 

genetic recombination during meiosis (Tanksley 1993). Exploiting QTL requires the 

genetic mapping of linked markers and genes; results of the mapping can lead to markers 

for selection (Bernardo 2008) and a better understanding of the genetic architecture of the 

trait, including the number of genes and their mode of expression, interaction, and 

inheritance (Beckmann and Soller 1986).   In addition to the number of QTL that 

contribute measurably to the trait, QTL output also gives information about the 

magnitude and the gene action for each marker and QTL in each environment measured 

(Mackay 2001). Multiple studies have been carried out to find QTL that are associated 

with aflatoxin resistance and dozens have been identified in maize lines that are resistant 

to aflatoxins (Widstrom et al., 2003), although only a handful of these have a larger effect 

(Mideros et al., 2013).  
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Genetic markers that are polymorphic between the two parents are used to 

genotype the segregating population to create the linkage map (Young 2000). Past QTL 

studies have used AFLP (amplified fragment length polymorphisms), SSR (simple 

sequence repeats), RFLP (restriction length fragment polymorphisms), SNPs (single 

nucleotide polymorphism) and other markers for this purpose (Francia et al. 2005; 

Rafalski 2002; Robertson et al. 2005), and many maize molecular markers are available 

in the public online maize database (maizeGDB.org). Good molecular markers for QTL 

identification and marker assisted selection must be reliable and tightly linked to the 

targeted loci (< 5cM genetic distance).  The visual output from the software after the 

creation of the linkage map shows the specific location of the markers on the 

chromosome and the distance between the markers (Collard et al. 2005), and this map, 

plus phenotypes of all the individuals in the mapping population, are combined to 

perform the QTL analysis.  The association mapping involves the genetic characterization 

of the relatedness of over 282 diverse inbred lines (kinship), their diverse genetic makeup 

and also substructure analysis of the lines (Warburton et al; 2012). TASSEL software 

(Trait analysis by association, evolution and linkage, Bradbury et al, 2007) was used for 

aflatoxin association mapping for each of the candidate genes. It employs two models 

(the general linear model (GLM) and the mixed linear model (MLM)) to determine 

association between sequence polymorphisms and aflatoxin levels within the aflatoxin 

association mapping panel according to Elshire et al (2011).  

Near Isogenic Lines (NILs) 

Near Isogenic Lines (NILs) are homozygous plant lines that are identical to each 

other except at one genomic region or QTL of interest, and are useful for studying the 
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phenotypes associated with any specific locus (Dorweiler et al. 1993). They are a tool for 

detecting linkages and gene action (epistasis) that exist between quantitative trait loci 

(QTLs) and the markers used to map the QTLs to their specific locations on the 

chromosome (Pea et al. 2013). The integration of a QTL into near isogenic materials is 

one effective way for the identification, validation, and subsequent incorporation of the 

QTL into new breeding lines in a breeding program (Kaeppler, 1987). The use of NILs to 

verify and fine map QTLs has been successful in maize (Graham et al., 1997), rice (Yu et 

al., 1991) and tomato (Brouwer and St Clair 2004). QTL mapping with populations of 

about 300 individuals (the usual size of a mapping population) has a precision of only 10-

20cM. For a detailed study of a QTL, development Near Isogenic Lines (NILs) is one 

method that is useful in resolving the map position of a QTL because it differs only for 

markers that are linked to the QTL of interest (Patterson et al. 1990; Kaeppler et al. 

1993). NILs that are different in the QTL of interest are also useful for studying the 

different phenotypes associated with any specific locus (Dorweiler et al. 1993).  

NILs to verify markers that reduce aflatoxin levels in maize are created with 

initial crosses between a line that is resistant to aflatoxin accumulation (donor line) and a 

line that is susceptible (recurrent line) to get the first progeny (F1) that has 50% of the 

resistant parent and 50% of the susceptible parent. Several generations of backcrosses are 

usually the best method to introgess the region that contains the allele of the QTL from a 

donor genome into the recipient genome. The F1 generation is then backcrossed to the 

susceptible parent to get the second generation of progeny that has 75% of the susceptible 

parent and 25% of the resistant parent with the aim of transferring the resistance present 

in the donor parent into the new progeny (but only genes for resistance). The process is 
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continued for 4 to 8 generations after which a progeny between  ~93% - 98% of the 

susceptible parents, but containing a few genes from  the resistant parent is achieved.  

Marker assisted selection is used in each generation after the F1 to keep track of the 

progeny that still have the allele of the QTL from the donor line after each generation of 

backcrossing; otherwise, within a few generations it would surely be lost (Tuinstra et al. 

1997). Despite the large number of QTLs that has been identified in various experiments 

and published in the literature, the use of these QTL to develop elite cultivars is very rare 

(Szalma et al., 2007) because breeders are unsure that the QTL and the markers linked to 

them will be useful in new genetic backgrounds or expressed in new environments. The 

use of NILs to validate previously identified QTL can help boost the confidence of 

breeders attempting to introgress the QTL into elite germplasm for the improvement of 

this germplasm for the trait of interest (Stuber et al., 1992).  

Plant Lipoxygenases 

Plant lipoxygenases or LOX enzymes are produced by plants to catalyze the 

addition of molecular oxygen to polyunsaturated fatty acids (PUFAs) containing a (Z,Z)- 

1,4-pentadiene system to produce an unsaturated fatty acid hydroperoxides (Porta et al., 

2002). Plant LOXs are monomeric proteins with a molecular weight of about 95-100kDa 

that consist of two domains.  These are the β- barrel amino terminal domain which is 

about 25 - 30kDa and the α-helix carboxyl- terminal domain of about 55 - 60kDa. The 

exact function of the amino terminal end is as yet unknown, but it is believed that it has 

some involvement in membrane and substrate binding (May et al. 2000). The carboxyl 

terminal end harbors the catalytic site of the enzyme where the addition of molecular 

oxygen takes place (Schneider et al., 2007). LOX enzymes are classified based on their 
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positional specificity of Linoleic Acid (LA) oxygenation, which is oxygenated either at 

carbon atom 9 (9-LOX) or at carbon atom 13 (13-LOX) of the hydrocarbon backbone of 

fatty acid, leading to (9S) hydroperoxy and (13S) hydroperoxy derivatives of LA, 

respectively (Liavonchanka et al. 2006). The 9-LOX are subsequently used as substrates 

for compounds which their functions are still unknown while the 13-LOX are known as 

the putative producers of compounds that are known to possess anti fungal activities such 

as jasmonic acid (JA) and green leaf volatiles (GLV) (Nemcnenko et al., 2006). The 

intracellular localization of each LOX enzyme after production in the plant cell provides 

a hint about the physiological role and function of different LOX enzymes (Feussner and 

Wasternack 2002).  

The identification of the genes underlying quantitative trait loci (QTLs) associated 

with aflatoxin accumulation resistant in resistant maize inbred lines and the development 

of molecular markers from within these genes can help to speed up the development of 

resistant germplasm. Markers developed from within the gene sequence itself (gene based 

markers) do not have the problem of broken linkages that can happen between 

generations if the marker is too far from the gene causing the trait of interest.  Therefore, 

the identification of the specific genes underlying and causing a QTL would be of great 

interest.  LOX genes may be some of these genes.  

When plants are stressed, due to attacks from harmful invaders such as insects, 

bacteria or fungi, they put up some responses in order to defend themselves against such 

attacks by undergoing specific metabolic processes to initiate direct or indirect defense 

responses to counter these attacks (Maffei et al. 2006). The direct defense measures 

involve the secretion of defensive proteins to repel their invaders while the indirect 
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measures include the release of volatile organic compounds (VOC) which attracts 

predators in attack other plant predators.  This is achieved by metabolic products derived 

from fatty acid biosynthesis and signaling pathways such as metabolites derived from 

lipoxygenase (LOX; Pare and Tumlinson 1997). Lox genes are widespread in many plant 

species and in some cases such as soybean and other legumes, they are abundant proteins 

and might also function as storage rather than defense proteins.  

Lipoxygenase Pathway 

Hydroperoxides produced by LOX reactions are the starting point of a series of 

other enzymatic reactions which eventually leads to the synthesis of a group of 

biologically active compounds collectively called oxilipins (Santino et al. 2003). In 

plants, the biosynthesis of oxilipins starts by the insertion of oxygen at the C9 or C13 of 

either linoleic (C18:2) or linolenic (C18:3) and this is the reason why plant LOX is 

referred to as 9-LOXs and 13-LOXs respectively. During the catalysis of insertion of 

molecular oxygen (oxygenation) into polyunsaturated octadecatrienoic (C18) fatty acid 

by LOX in plants, carbon 9 and 13 are both oxidized to form 9- hydroperoxyl 

10(E),12(Z) and 13-hydroperoxyl-9(Z), 11(E)- derivatives respectively (Blee 2002). 

Hydroperoxide lyase, allene oxide synthase, divinyl ether synthase, reductase and 

peroxygenase are other enzymes which belong to different branches of the LOX 

pathways that further act on both 9- and 13- hydroperoxides to convert them to different 

compounds. Specific LOX isoforms has recently been clarified by an antisense approach 

and their depletion was able to influence plant development or pest /pathogen resistance 

(Feussner and Wasternack 2002). 
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The Lipoxygenase pathway starts with regio- and stereospecific dioxygenation of 

either linoleic acid (18:2) or linolenic acid (18:3) to yield 9-hydroperoxide and 13-

hydroperoxide based on the site where the molecular dioxygenation takes place. The two 

products (9-hydroperoxide and 13-hydroperoxide) formed after dioxygenation are then 

further used as substrate for the 7 branches of LOX pathways which includes reductase, 

epoxy alcohol synthase, allene oxide synthase (AOS), reductase, hydroperoxide lyase 

(HPL), divinyl ether synthase, and LOX reactions. (Feussner and Wasternack, 2002). A 

common metabolic reaction which occurs by either chemical reactions or derived from 

enzymatic reactions in all biological processes called lipid oxidation produces a 

compound called oxilipins which performs various regulatory processes and also respond 

to biotic and abiotic stresses. This reaction mainly catalyzed by Lipoxygenase (LOX) 

enzymes in plants has been researched and the mode of enzymatic reactions has been 

revealed in recent years (Andreou et al. 2009). Metabolic pathways involved in oxilipins 

formation collectively known as oxilipin pathway involves the oxidation of 

polyunsaturated fatty acids (PUFAs) which produces metabolites via a LOX-catalyzed 

and also metabolites produced from the alternative oxidation reaction. The metabolism of 

PUFAs via the Lipoxygenase catalyzed steps and the subsequent reactions are 

collectively known as the Lipoxygenase pathway (Blee, 2002). 
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CHAPTER III 

GENETIC CHARACTERIZATION OF THE MAIZE LIPOXYGENASE  

GENE FAMILY IN RELATION TO AFLATOXIN  

ACCUMULATION RESISTANCE 

Abstract 

Maize (Zea mays L.) is a staple food and one of the most important cereal grains 

in the world. It is prone to contamination by aflatoxin, a secondary carcinogenic 

metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat 

the accumulation of aflatoxin is the development of a germplasm resistant to infection 

and spread of A. flavus. Lipoxygenases (LOXs) are a group of non heme iron containing 

dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs), 

and LOX derived oxilipins play critical roles in plant defense against pathogens such as 

A. flavus. The objectives of this study were to report sequence diversity and expression 

patterns for all LOX genes in the maize genome, and to map their effect on aflatoxin 

accumulation via linkage and association mapping. In total, 13 LOX genes were 

identified, characterized, and mapped. Genes GRMZM2G102760 in bin 5.02 and 

GRMZM2G104843 in bin 2.04 fell under previously published QTL in one of four 

mapping populations and appear to have a measurable effect on the reduction of aflatoxin 

in maize grains. Association mapping results find 19 of the total 215 SNPs tested from 

within the sequence of five genes  GRMZM2G070092, GRMZM2G109130, 
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GRMZM2G015419, GRMZM2G104843 and GRMZM2G102760 were associated with 

reduced aflatoxin levels at  7.51x10-4 ≤ p ≤ 8.43 x 10-5 according to the GLM statistics. In 

addition to confirming the importance of some lipoxygenases for fungal resistance, 

markers from within or linked to the sequence of these genes may be used for marker 

assisted selection and the creation of new resistant germplasm. 

Introduction 

Aspergillus flavus is a fungus found mostly in soil, but is also found in plant 

products, especially in oil rich seeds such as corn, cotton and peanuts. A. flavus produces 

a secondary metabolite known as aflatoxin, which is a carcinogen, mutagen, and 

hepatotoxin (Geiser et al 2000). Most commercial maize hybrids are susceptible to A. 

flavus infection, which ultimately leads to high aflatoxin accumulation under 

environmental conditions favoring fungal growth and sporulation. Aflatoxin was first 

discovered and characterized in the early 1960’s when more than 100,000 turkeys in 

England died after consuming mold contaminated peanut meal (Blount, 1961; Goldblatt, 

1969). Infection by A. flavus and A. parasiticus (which can also make aflatoxin) can be 

recognized by yellow-green or gray-green fungal growth on the corn kernels, 

respectively. Why A. flavus produces aflatoxins is not well understood, but it has been 

reported that both A. flavus growth and the production of aflatoxins is favored by abiotic 

stress such as drought, high heat and nutrient deficiencies (Moreno and Kang 1999). 

Aflatoxins can be detected either on corn still in the field or in storage following harvest, 

where it continue to accumulate grain stored under humid conditions. The risk of 

aflatoxin contamination is higher when the grains are damaged, which creates 

opportunistic entry point for fungal infection.  
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Development of resistant germplasm is one of the most effective methods to 

reduce aflatoxin accumulation in maize, but the quantitative nature of the trait and the 

high environmental variation associated with it makes the creation of resistant germplasm 

difficult to achieve. Identification of maize candidate genes that contribute to aflatoxin 

resistance via QTL or association mapping and development of linked molecular markers 

for marker assisted selection (MAS) is one way to speed development of resistant maize 

varieties. Host plant resistance mechanisms, particularly for resistance to A. flavus, are 

slowly being uncovered (Moreno and Kang, 1999; Warburton and Williams, 2014) but 

many factors have yet to be determined. Nevertheless, maize breeders have been able to 

develop resistant germplasm using phenotypic selection procedures in the form of inbred 

lines including Mp313E, Mp715, Mp717 Mp420 (Campbell et al, 1997; William and 

Windham, 2001; Scott and Zummo, 1990.) 

When plants come under insect or fungal attack, genetic and metabolic processes 

are initiated to help the plant respond directly or indirectly (Maffei et al, 2006). The 

direct measures involve the production of defensive proteins to repel or block the attack, 

while examples of indirect measures include the production of herbivore induced plant 

volatiles (HIPV) emissions, which attract insect predators (Dicke, 2009; Heil, 2006). 

Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes 

that catalyze oxygenation of polyunsaturated fatty acids (PUFAs) such as linoleic acid, α-

linolenic acid and arachidonic acid (Acosta et al, 2009), and LOX derived oxilipins play 

critical roles in plant defense against pathogens. Research has shown that LOX pathways 

are induced by a variety of biotic and abiotic stresses, and a physiological function for 
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LOX enzymes has been proposed for plant growth, development, and response to 

pathogen infection and wound stress.  

The synthesis of jasmonic acid (JA) is initiated when α-linoleic acid (C18:3) is 

released from the membrane lipids of the chloroplast by the action of phospholipase A1 

(DAD1) and converted to 12-Oxo-phytodienoic acid (OPDA) by lipoxygenase, allene 

oxide synthase and allene oxide cyclase (Creelman and Mullet 1997). The production of 

mycotoxins by fungi is partially regulated by fungal genes that also belong to the LOX 

family (Gao and Kolomeits, 2009), indicating a complicated interaction between hosts 

and pathogen using the same enxymes in both organisms. LOX activity in plants has been 

shown to produce metabolites essential for plant defense against pathogen infestations 

through fatty acid oxidation pathways (Matsui, 2006). The oxidized products of plant 

lipids (oxilipins) derived from well studied LOX pathways govern the interactions 

between host and fungal pathogen (Gao and Kolomeits 2009). The role of specific LOX 

isoforms are being clarified, and the deletion of LOX enzymes in maize was found to 

influence plant development or pest /pathogen resistance (Feussner and Wasternack, 

2002). In a study of ZmLOX 3, a LOX that belongs to the 9-LOX group, the insertion of 

a mutator transposon into the coding sequence of this gene resulted in drastic reduction of 

fumonosin production on kernels infected by Fusarium verticillioides (Gao et al; in 

2007). A mutant maize line lox3-4, in which ZmLOX 3 and 4 were knocked out, was 

more susceptible to A. flavus and aflatoxin production than the wild type (WT) maize 

control (Gao et al, 2008). LOX enzymes are widespread in many plant species.  

Peroxidation of PUFAs results in fatty acid hydroperoxide and lipoxygenase 

reactions, which may initiate the synthesis of a signaling molecule or be otherwise 
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involved in inducing structural or metabolic changes in the cell (Brash 1999). 

Hydroperoxides produced by LOX reactions are the starting point of a series of other 

enzymatic reactions which eventually leads to the synthesis of biologically active 

oxilipins (Santino et al 2003). Different branches of the LOX pathways lead to the 

production of JA and aldehyde green leaf volatiles (GLV, Kolomeits et al 2013), which 

are known to help plants defend against abiotic and biotic stresses, including fungi 

(Feussner and Westernack, 2002). JA is a known plant hormone involved in growth and 

development (Creelman and Mullet, 1997) and regulates several defense genes expressed 

in plants in response to attack by pests and pathogens (Pena-Cortes et al, 2004; Acosta et 

al, 2009).  

Linkage and association mapping are two complementary ways of testing the 

magnitude of the effect a gene on the overall phenotypic expression of a trait. Linkage or 

quantitative trait loci (QTL) mapping accurately measures the effect of a larger genomic 

region on the trait of interest because the mapping population has a balanced proportion 

of alleles at all polymorphic loci, giving stronger statistical power when compared to the 

association mapping, but establishing  much larger linkage blocks, due to relatively few 

generations of meiosis and thus recombination. Association mapping utilizes all the 

diversity of many lines to identify multiple sequence polymorphisms and measure the 

phenotypic effect of the favorable alleles associated with the phenotype; in addition, due 

to a very large number of historical recombination events in an association panel, 

resolution can be  within hundreds to a few thousand base pairs (Warburton et al; 2013). 

Because of the importance of the LOX gene family in fungal defense, the objectives of 

this study are to characterize all genes that belong to the lipoxygenase gene family in 
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maize through expression pattern and sequence polymorphisms and to map the 

phenotypic effect of these genes in up to four known QTL mapping populations and one 

association mapping panel. 

Materials and Methods 

Database search for maize LOX genes and information 

A search was carried out on five databases (Gramene, MaizeGDB,Unigene, 

Maizecyc and Uniprot) to find any previously published Lipoxygenase genes in maize 

and also to seek any gene or protein with Lipoxygenase activity (GO: 0016165) that is 

responsible for the end product of any of the seven Lipoxygenase pathways as reported 

by Feussner and Wasternack; (2002). A literature search was also conducted to find any 

maize lipoxygenase genes that were not included in the online resources. A total of 

thirteen genes were found on chromosomes 1 (ZmLox 3, 4, 9 and 13), 2 (ZmLox 6 and 

8), 3 (ZmLox 1, 2 and 12), 4 (ZmLox 10), 5 (ZmLox 5 and 11), and 10 (ZmLox 7) (Table 

3.1). This information was used to identify the coordinates of these genes in the maize 

B73 reference genome and extract the reference DNA sequence of each gene, for BLAST 

alignment and polymorphism identification.  

A sequence alignment was carried out for all genes on the same chromosome with 

coordinates that are physically close to each other to ensure they are not the same gene 

given different names by different authors and databases. LOX genes with high sequence 

homology included ZmLOX 4 and ZmLOX 5 on chromosome 1 and 5, respectively, and 

ZmLOX 1 and ZmLOX 2, a pair of closely linked genes on chromosome 3 (<40kb 

apart)., Aligning the sequences of these genes against each other was also done to explore 

the possibility that one arose from the other in a recent duplication event. In addition, 
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ZmLOX 1 and 2 are either the same gene with a very large intron, or two genes very 

close together on chromosome 3.  These genes have different gene identifiers but only 

one identifier in the maize B73 reference sequence (GRMZM2G156861). Due to a huge 

intron (>100kb) that is present in between exon 1 and exon 2 of the gene 

GRMZM2G156861 (ZmLOX 1 or 2) and also a (>16kb) intron present within exon 2 and 

exon 3 of gene I.D GRMZM2G109056 (ZmLOX 4), a blast search was carried out on a 

maize  database (Gramene) and also the NCBI database  to determine if the introns are 

due to the presence of a transposable element in the maize genome.  

In order to gain more insight into relationship between genes and possible gene 

functions, two more databases were used in the characterization of the lipoxygenase gene 

family.  The genome wide atlas of lipoxygenase transcription during maize development 

adapted from Sekhon et al. [36] and Qteller [35] was searched for expression pattern of 

each LOX gene identified in maize.  Finally, the PIECE (Plant Intron Exon Comparison 

and Evolution) Database http://wheat.pw.usda.gov/piece was used to construct a 

phylogenetic tree (Figure 2) to determine structural relationships between the LOX genes 

and to provide clues about the evolutionary history of the genes. The PIECE database 

uses the pfam database (V26.0) to classify all the plant genes and use the FastTree 

program to build the phylogenies.  

Extracting SNPs for candidate genes using GBS data 

An in-house maize hapmap database was created to store Genotype By 

Sequencing (GBS) data for 273 maize inbred lines that form the aflatoxin association 

mapping panel described in Warburton et al (2014). The database describes where the 

variants occur in the genome of each inbred line and how alleles are distributed between 

http://wheat.pw.usda.gov/piece
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the different lines. This hapmap database was used to identify Single Nucleotide 

Polymorphisms (SNPs) or Insertion/Deletion (InDel) polymorphisms within the 

coordinates of each of the candidate genes (and extending up to 500 kilobases up-and 

downstream). An average of 20 SNPs were found for each candidate gene, and the allelic 

variant for each SNP in each of the 273 maize inbred lines was extracted. Only extracted 

SNPs with a minor allele frequency of greater than 5% were used to carry out the genetic 

mapping. If a sufficient number of SNPs were found within the coding sequence of the 

gene, SNPs further up- and downstream were not sought. 

Aflatoxin association mapping  

TASSEL software (Trait analysis by association, evolution and linkage, Bradbury 

et al, (2007) was used for aflatoxin association mapping for each of the candidate genes. 

It employs two models (the general linear model (GLM) and the mixed linear model 

(MLM)) to determine association.  We ran MLM to determine associations between the 

SNP and InDel sequence polymorphisms and aflatoxin levels within the association 

mapping panel according to Elshire et al (2011). The panel of 273 diverse inbred lines 

had been testcrossed to a common tester and phenotyped for aflatoxin levels in 

inoculated, replicated field trials and reported in Warburton et al. (2013).  

Genetic linkage mapping 

The phenotypic and previously published genotypic data obtained from the four 

F2:3 QTL mapping populations were combined with the new genetic data for each 

ZmLOX sequence. Single Nucleotide Polymorphisms found to be associated with 

aflatoxin levels in the candidate gene association analysis were converted to individual 
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SNP assays using the KASP system from LGC Genomics (Hurts, UK). These were used 

to screen the parents of four QTL mapping populations and where polymorphisms were 

validated, were then scored in all F2:3 QTL mapping families. In addition, 

insertion/deletion (InDel) markers from genes ZmLOX 1, ZmLOX 2, ZmLOX 3 and 

ZmLOX 4, and Short Sequence Repeat (SSR) markers within 1,000kb upstream and 

downstream of the coordinates for each of the candidate gene were sought in MaizeGDB 

and used for linkage mapping analysis for other ZmLOX genes where no polymorphic 

SNPs or InDels were found. Due to the high duplication of the ZmLOX genes and also 

because some of the genes are within less than 1000kb from each other (ZmLOX 1 and 2, 

and ZmLOX 3 and 4) some ZmLOX pairs were treated as a single QTL, as it would not 

be possible to tell which of the genes is responsible for the phenotypic effect on the trait 

(if either) using linkage mapping.  

 The four QTL mapping populations included Mp313E (resistant) x B73 

(susceptible) Brooks et al. (2005), Mp313E (resistant) x Va35 (susceptible) Wilcox et al. 

(2013), Mp715 (resistant) x T173 (susceptible) Warburton et al. (2011) and Mp717 

(resistant) x NC300 (susceptible) Warburton et al. (2011). All markers were amplified via 

PCR according to the manufacturers’ suggestions . The PCR products of the SSR and 

InDel markers were electrophoresed and visualized on a 4% agarose gel with ethidium 

bromide. SNP markers were visualized using the OMEGA plate reader by BMG 

LABTECH GMBH, (Orthenberg, Germany). The allele information obtained for every 

individual in the mapping populations in which the markers segregated was used to map 

and test the phenotypic effects on aflatoxin resistance for each candidate gene. Markers 

used to test each ZmLOX gene, including type, location, and which mapping population 
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they were run in are found in Table 3.2. Quantitative trait analysis for each of the 

ZmLOXs was carried out using the QTL cartographer which carries out the compisite 

interval mapping to estimate the 0.05 significant threshold for each QTL (Figure 3.2) 

Results  

Identification of maize lipoxygenase genes 

A total of 13 lipoxygenase genes were identified through a search carried out on 

numerous online databases and a brief description of all maize lipoxygenase genes 

(ZmLOX) with the gene identification, gene bank accession numbers, Uniprot 

identification and chromosomal locations can be found in Table 3.1. ZmLOX 1, 2 and 12 

(GRMZM2G156861, GRMZM2G106748) are all found on chromosome 3; according to 

NCBI BLAST (Geer et al. (2010), ZmLOX 1 and 2 are 89% identical, and share the same 

gene I.D. (GRMZM2G156861). They are physically ~40kb apart, and the B73 V3 

reference sequence treats them as one gene with a very large intron. Genetically, we treat 

them as one locus in the QTL mapping analysis.  

ZmLOX 3, 4, 9 and 13 (GRMZM2G109130, GRMZM2G109056, 

GRMZM2G017616, GRMZM5G822593 respectively) are all located on chromosome 1. 

ZmLOX 3 and 4 are 79% identical and are < 50kb apart. They do have different gene 

identifiers in the B73 V3 reference, but at such close proximity, QTL mapping will not 

distinguish the genetic effects of the two (although association mapping may). Although 

ZmLOX 6 and 8 (GRMZM2G040095 and GRMZM2G104843) are both located on 

chromosome 2 and although they are located on the same chromosome, there was no 

significant similarities found within the sequence of both genes. ZmLOX 5 and 11 

(GRMZM2G102760 and GRMZM2G009479) are both located on chromosome 5, these 
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pairs of genes are sufficiently distant to map independently and there was also no 

significant similarities found between the sequences of the two genes ZmLOX 7 and 

ZmLOX10 are located on chromosome 4 and chromosome 10, respectively.  

The gene structure for each ZmLOX was identified including the number of 

introns and exons present within each gene sequence, and this information was used to 

create a phylogenetic relationship tree (Figure 1). Two other genes GRMZM2G018275 

(Chr2: 43,746,150 - 43,747,663) and GRMZM2G087245 (Chr4: 180,815,028 - 

180,816,217) were identified by the PIECE phylogenetic analysis; however, these are not 

LOX genes and no gene has been associated with these gene I.Ds in maize.  They are 

probably artifacts created by the Pfam database, which approximates the maximum 

likelihood of the relatedness of proteins, not genes. This also causes multiple transcripts 

of each gene to be entered separately into the phylogenetic tree (Figure 3.1). Clustering 

also occurred on LOX function, as genes from the  9-LOX functional group clustered 

together, and genes from the 13-LOX group together in a distinct cluster. 

Linkage and Association Mapping 

 The linkage was used to determine the phenotypic effect of each marker linked to 

the lipoxygenase genes and to confirm the QTL position in the maize genome. Mapping 

results in one or more mapping populations of the InDel and SSR markers identified 

within each gene sequence or closely linked SSR markers are presented in Table 3.3. An 

SSR that is linked to GRMZM2G104843 [ZmLOX 8, also known as the mutant tassel 

seed 1 (ts1)] in bin 2.04 mapped right under one of the perviously identified QTLs 

present on chromosome 2 of the the MpB population (Figure 3.4) with a LOD score of 

5.6 and explaining about (R2) 5% of the phenotypic variation observed in this population 
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in one environment. The QTL was associated with an additive gene action and the allele 

causing the reduction of aflatoxin came from the resistant parent (Mp313E). ZmLOX8 is 

part of the pathway that provides substrates for the synthesis of JA Christensen et al in 

2013, and the ts1 mutation results in the lack of sufficient JA to properly form male floral 

structures instead of female.  JA is also known to be involved in direct and indirect 

mechanisms for plant resistance to fungal and insect attack (Browse, 2009; Koo and 

Howe, 2009), and annotation of ZmLOX8 includes fungal resitance as a biological 

process in the Gramene maize genome database.  

Another previously published QTL was highlighted in this linkage mapping 

exercise after gene GRMZM2G015419 (ZmLOX 10) bin 4.09 mapped directly under a 

QTL of LOD 2.6 that explains approximately 5% of the phenotypic variation observed in 

the MpT population in one environment. The gene also mapped correctly in two other 

populations (MpT and MpVa) but no QTL was identified at this location in these 

mapping populations. ZmLOX 10 has also been reported to play an important role in the 

biosynthesis of green leaf volatiles (GLVs), a group of compounds that possess both anti-

insect and anti-fungal properties (Prost et al, 2005; Matsui et al, 2006). These GLVs have 

also been reported to induce the expression of other defensive genes (Bate and Rothstein, 

1998). There is evidence that ZmLOX 8 and ZmLOX 10 work synergistically, although 

the enzymes they express are located in different cellular compartments, and the genes 

are found on different chromosomes in the maize genome. A reduced expression of JA by 

ZmLOX 8 leads to diminished levels of (GLVs) by ZmLOX 10 Chrustensen et al (2013). 

Such an epistatic interaction could not be detected in the QTL mapping populations used 

in this study, as they only had ~ 200 F2:3 families each. 
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Two markers, (one InDel and one SSR) linked to gene GRMZM2G156861 

(ZmLOX 1 and 2 in bin 3.06) according to the IBM2 2008 Neighbors map in MaizeGDB, 

mapped within the confidence interval but very close to the edge of another QTL on 

chromosome 3 of the another MpT mapping population. ZmLOX 1 or 2 (or both) could 

therefore possibly be responsible for the phenotypic variation associated with this QTL. 

All other ZmLOXs in the maize genome mapped outside of previously identified QTLs  

(Table 3.2) however, six of the markers mapped in this study did help narrow previously 

reported QTL intervals; although they were not presumed to be the causal gene for the 

QTL, they did help to fine-map them and reduce the interval for future marker 

introgression of the QTL. These included markers linked to GRMZM2G017616 (ZmLox 

9), GRMZM2G106748 (ZmLOX 12), GRMZM2G102760 (ZmLOX 5), 

GRMZM2G070092 (ZmLOX 7), GRMZM2G109130 (ZmLOX 3) and 

GRMZM2G109056 ( ZmLOX 4) (Table 3.2). 

For the association mapping, a total of 215 SNPs were identified within the 

genetic sequence of all the ZmLOX genes using the in-house hapmap database 

(Supplementary Table 1). Of all the 215 SNPs, 19 were identified as associated to 

aflatoxin accumulation resistance according to the general linear model (GLM) of 

TASSEL, with p-values that ranged between 7.51x10-4 ≤ p ≤ 8.43 x 10-5 (Table 3.3). 

Ideally, the same SNPs with a relatively low p-value would be polymorphic in one or 

more of the QTL mapping populations in order to confirm the effect of the locus via QTL 

mapping as well, but none of the associated SNPs could be converted into a polymorphic 

KASP assay in this study. This may have been because of the high sequence duplication 

within the ZmLOX gene family, or they may have simply been monomorphic in all four 
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populations. Only one SNP was found from within or linked to the sequence of ZmLOX 

4 and 11 (GRMZM2G109056 and GRMZM2G009479), which is too small a number to 

be confident that negative results are truly representative of the effects of these genes. 

Sequence Evolution 

Of all 13 LOX genes found in maize, GRMZM2G109056 (ZmLOX 4) located in 

bin 1.09 and GRMZM2G102760 (ZmLOX 5) located in bin 5.02 are the most identical, 

with a sequence similarity of 94% according to a BLAST search carried out using the 

NCBI alignment tool. Both genes consist of 9 exons and 8 introns, but the second intron 

spans ~ 11kb in ZmLOX 4 and only ~ 500bps in ZmLOX 5. A blast search of this intron 

was conducted on the NCBI (a general database for DNA sequences) and GRAMENE 

databases (a maize database) and both databases matches the intron to multiple genes as a 

huge intron and therefore can be assumed that this intron is a retroelement, and since 

nearly 85% of the maize genome is composed of hundreds of transposable element 

families that are randomly dispersed across the whole genome (Schnable et al 2012), this 

strengthens the assumptions that the intron might be a retrotransposon such as Ji, huck 

and opie which are the most common retrotransposons present within the maize genome 

(Phillip et al; 2005) . ZmLOX 4 and 5 are only 40-67% identical to other ZmLOXs 

(Fuente et al, 2012).  

The linked pair of genes ZmLOX 1 and ZmLOX 2 share the same gene I.D. 

(GRMZM2G156861) in all maize databases and taken separately, are the next most 

similar paralogs in the Lox gene family.  This is common with tandemly duplicated genes 

in the maize genome, which may result in duplication following transposable element 

insertion (with or without subsequent excision). Genes GRMZM2G070092 (ZmLOX 7) 
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and GRMZM2G104843 (ZmLOX 8) are a set of segmentally duplicated genes with near 

identical sequences (Fuente et al 2013) both having 7 exons and 6 introns. The first 2 

exons of both genes share 83% and 93% identity and the intron between them is 83% 

identical. Another set of segmentally duplicated genes are GRMZM2G015419 ZmLOX 

10, with 3 exons and 2 introns and GRMZM2G009479 ZmLOX 11, with 5 exons and 4 

introns, which share 94% sequence identity (Fuente et al 2013) and both belongs to the 

13-LOX group as the ZmLOX 7 and 8. Genes GRMZM2G109130 (ZmLOX 3), 

GRMZM2G109056 (ZmLOX 4), GRMZM2G017616 (ZmLOX 9), GRMZM5G822593 

(ZmLOX 13) are all on chromosome 1, and ZmLOX 3 and 4 are only 4kb apart from 

each other and share a sequence identity of 80% (and both are 9-LOX genes). ZmLOX 9 

and 13 are much further away, and not similar to ZmLOX3 and 4, nor each other (and 

both are 13-LOX genes).  

Discussion 

All ZmLOXs were found on six of the ten chromosomes present in the maize 

genome, and all mapped to these locations as expected.  Maize LOX genes are divided 

into two major functional groups: 9-hydroperoxides (9-LOXs) and 13- hydroperoxides 

(13-LOXs), depending on the carbon where their molecular dioxygenation takes place. 

ZmLOX 1, 2, 3, 4 and 5 all belong to the 9-LOXs group and their functions are still not 

well known, while ZmLOX 7, 8, 9, 10, 11, and 13 all belongs to the 13-LOXs group and 

are known or putative producers of JA and GLVs (Nemchenko et al, 2006; Gao et al, 

2008; Part et al, 2010). Compounds produced by the various lipoxygenase pathways 

belonging to the 13-LOX group includes hydroperoxide lyase (HPL) and allene oxide 

synthase (AOS) branches, whose final product, GLV and JA, play a very important role 
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in plant immunity against predatory insects and fungi (Engelberth et al 2004; 2011). The 

composite interval mapping results of this study (Figure 3.4) can be compared with 

published information to suggest a biological role of some of these genes in aflatoxin 

accumulation resistance.  

Genes GRMZM2G104843 (ZmLOX 8) and GRMZM2G015419 (ZmLOX 10) are 

reported to direct and indirect roles in plant defense against herbivory and fungal 

resistance by producing the substrates used in the biosynthesis of JA and GLVs 

respectively Christensen et al (2013); however, due to the physical separation of both 

genes in the maize genome, it has been suggested that the only interaction between both 

genes will be as a result of signaling crosstalk of their products; this has not yet been 

demonstrated in laboratory assays (Christensen et al, 2013). ZmLOX 8 mapped directly 

under a QTL of LOD value 5.6 (Table3.2).  ZmLOX 10 generates 13S-HPOTE, which is 

required for synthesis of GLVs, but this only happens in the presence of five of the other 

13-LOXs (and especially gene GRMZM2G009479, ZmLOX 11) (Nemchenko et al 

2006). ZmLOX10 was found beneath a QTL for aflatoxin accumulation resistance with a 

LOD value of 2.6.  

ZmLOX 5 (and its near identical homolog ZmLox4) belongs to the 9-LOX 

family; ZmLOX 5 is expressed in silks (Park et al; 2010) and mapped directly under 

another QTL found in bin 5.02 with a LOD value of 2.4. The near identical homolog 

ZmLOX4 was neither associated nor linked to a QTL for aflatoxin accumulation 

resistance, and it has a very different expression pattern than ZmLOX 5, as it is expressed 

primarily in the roots (Park et al, 2010). This may explain the lack of association with 
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aflatoxin levels in maize grain, and we may speculate that ZmLOX4 may have more to 

do with resistance to pests that attack corn roots.  

Although most of the ZmLOXs identified in this study with an effect on aflatoxin 

accumulation resistance explainied less than 5% of the phenotypic variation observed in 

the populations measured, it will still be informative to verify the effect of the resistant 

alleles through the creation of transgenic lines, near isogenic lines (NILs), or knock-out 

mutants to verify the effect of these genes in a different background other than the 

background present in the mapping populations of this study. Genes GRMZM2G104843 

(ZmLOX 8) and GRMZM2G015419 (LmLOX 10) both explain approximately 5% of the 

phenotypic variation, which may be a large enough effect to justify further studies. The 

expression pattern of ZmLOXs varies from tissue to tissue and are expressed at different 

times in the life of the plant (Table 3.4a). For example GRMZM2G102760 (ZmLOX 5) is 

expressed more in silks and immature seeds while almost at the same time, gene 

GRMZM2G070092 (ZmLOX 7) is expressed more in the tassel. Gene  

GRMZM2G040095 is moderately expressed in every tissue at any given time in the life 

of the plant Sehkon et al (2011) (Supplemental Figure 1) 

 



 

 

60 Ta
bl

e 
3.

1 
M

ai
ze

 li
po

xy
ge

na
se

 g
en

e 
fa

m
ily

.  

N
am

e 
G

en
e 

I.D
. 

G
en

 B
an

k 
ac

ce
ss

io
n 

U
ni

Pr
ot

 
D

es
cr

ip
tio

n 
B

in
 

Po
si

tio
n 

 (b
p,

 V
3 

B
73

 r
ef

er
en

ce
 se

qu
en

ce
) 

C
hr

 
Fr

om
 

T
o 

Zm
Lo

x1
 

G
R

M
ZM

2G
15

68
61

 
D

Q
33

57
60

 
Q

9L
K

L4
 

Li
po

xy
ge

na
se

 1
 

3.
06

 
3 

16
8,

73
8,

87
3 

16
8,

74
2,

52
4 

Zm
Lo

x2
 

- 
D

Q
33

57
61

 
A

1X
C

H
8 

 
Li

po
xy

ge
na

se
 2

 
3.

06
 

3 
16

8 
69

5,
 5

43
 

16
8,

69
9,

 1
33

 
Zm

Lo
x3

 
G

R
M

ZM
2G

10
91

30
 

A
F3

29
37

1 
- 

Li
po

xy
ge

na
se

 3
 

1.
09

 
1 

26
4,

26
6,

38
1 

26
4,

 2
71

, 1
90

 
Zm

Lo
x4

 
G

R
M

ZM
2G

10
90

56
 

D
Q

33
57

62
 

M
1H

FG
0 

Li
po

xy
ge

na
se

 4
 

1.
09

 
1 

26
4,

27
5,

08
3 

26
4,

 2
91

, 5
10

 
Zm

Lo
x 

5 
G

R
M

ZM
2G

10
27

60
 

D
Q

33
57

63
 

A
1X

C
I0

 
Li

po
xy

ge
na

se
 5

 
5.

02
 

5 
12

,2
85

, 6
56

 
12

, 2
90

,5
64

 
Zm

Lo
x 

6 
G

R
M

ZM
2G

04
00

95
 

D
Q

33
57

64
 

A
1X

C
I1

 
Li

po
xy

ge
na

se
 6

 
2.

02
 

2 
4,

19
2,

 1
52

 
4,

 1
96

, 2
63

 
Zm

Lo
x 

7 
G

R
M

ZM
2G

07
00

92
 

D
Q

33
57

65
 

A
1X

C
I2

 
Li

po
xy

ge
na

se
 7

 
10

.0
4 

10
 

12
0,

23
7,

 3
08

 
12

0,
24

1,
 5

27
 

Zm
Lo

x 
8 

G
R

M
ZM

2G
10

48
43

 
D

Q
33

57
66

 
A

1X
C

I3
 

Li
po

xy
ge

na
se

 8
 

2.
04

 
2 

45
, 8

20
,7

37
 

45
, 8

25
, 1

05
 

Zm
Lo

x 
9 

G
R

M
ZM

2G
01

76
16

 
D

Q
33

57
67

 
A

1X
C

I4
 

Li
po

xy
ge

na
se

 9
 

1.
02

 
1 

16
, 5

73
, 8

27
 

16
, 5

80
, 7

22
 

Zm
Lo

x 
10

 
G

R
M

ZM
2G

01
54

19
 

D
Q

33
57

68
 

 A
1X

C
I5

 
Li

po
xy

ge
na

se
 1

0 
4.

09
 

4 
23

3,
62

6,
68

2 
23

3,
62

9,
28

3 

Zm
Lo

x 
11

 
G

R
M

ZM
2G

00
94

79
 

D
Q

33
57

69
 

Q
06

X
S2

 
Li

po
xy

ge
na

se
 1

1 
5.

04
 

5 
12

3,
23

9,
66

8 
12

3,
24

3,
69

7 

Zm
Lo

x1
2 

G
R

M
ZM

2G
10

67
48

 
D

Q
33

57
70

 
A

1X
C

I7
 

Li
po

xy
ge

na
se

 1
2 

3.
04

 
3 

93
,8

41
,9

05
 

93
,8

45
,7

64
 

Zm
Lo

x 
13

 
G

R
M

ZM
5G

82
25

93
 

- 
- 

Li
po

xy
ge

na
se

 1
3 

 
1 

18
8,

14
8,

38
8 

88
, 1

53
, 4

83
 

N
O

TE
:M

ai
ze

 li
po

xy
ge

na
se

 g
en

e 
fa

m
ily

. G
en

e 
I.D

. (
id

en
tif

ic
at

io
n)

 a
nd

 U
ni

Pr
ot

 p
ro

te
in

 id
en

tif
ic

at
io

n 
nu

m
be

rs
 a

re
 u

se
d 

as
 u

ni
qu

e 
id

en
tif

ie
rs

 o
f e

ac
h 

lip
ox

yg
en

se
 in

 th
e 

st
ud

y.
 B

in
 lo

ca
tio

n 
in

di
ca

te
sg

en
et

ic
 m

ap
pi

ng
 lo

ca
tio

n 
ac

co
rd

in
g 

to
 M

ai
ze

G
D

B
, a

nd
 P

os
iti

on
 

in
di

ca
te

s t
he

 p
hy

si
ca

l i
nt

er
va

l i
n 

re
la

tio
n 

to
 th

e 
B

73
 m

ai
ze

 re
fe

re
nc

e 
ge

no
m

e.
 

 
 



 

 

61 Ta
bl

e 
3.

2 
Li

st
 o

f I
nD

EL
s a

nd
 S

SR
s u

se
d 

to
 m

ap
 th

e 
ph

en
ot

yp
ic

 e
ff

ec
t o

f e
ac

h 
Zm

LO
X

s t
o 

th
e 

Q
TL

 m
ap

pi
ng

 p
op

ul
at

io
ns

, t
he

 
es

tim
at

ed
 m

ar
ke

r s
ta

rti
ng

 p
os

iti
on

s a
nd

 a
ls

o 
th

e 
po

pu
la

tio
ns

 in
 w

hi
ch

 th
ey

 se
gr

eg
at

e.
 

# 
G

en
e 

N
am

e 
G

en
e 

I.D
 

 M
ar

ke
r 

M
ar

ke
r t

yp
e 

Te
st

ed
 B

in
 

# 
Se

gr
eg

at
in

g 
po

pu
la

tio
n 

Es
t M

ar
ke

r 
po

si
tio

n 
LO

D
 S

co
re

a  

1 
Zm

LO
X

 1
 

&
 2

 
G

R
M

ZM
2G

15
68

61
 

Fx
LO

X
_2

7
38

 
In

D
EL

 
3.

06
 

M
pB

, M
pT

 
16

8,
86

2,
73

8 
2.

6 
 (M

pB
), 

N
S 

 (M
pT

) 

2 
Zm

LO
X

 3
 

G
R

M
ZM

2G
10

91
30

 
Ph

i 0
37

 
SS

R
 

1.
08

 
M

pT
, M

pV
a 

22
6,

89
1,

04
3 

N
S 

in
 b

ot
h 

po
pu

la
tio

ns
 

3 
Zm

LO
X

 4
 

G
R

M
ZM

2G
10

90
56

 
Ph

i 0
37

 
SS

R
 

1.
08

 
M

pT
, M

pV
a 

22
6,

89
1,

04
3 

N
S 

in
 b

ot
h 

po
pu

la
tio

ns
 

4 
Zm

LO
X

 5
 

G
R

M
ZM

2G
10

27
60

 
U

m
c 

23
03

 
SS

R
 

5.
03

 
M

pT
, M

pB
 

17
9,

76
6,

86
9 

2.
4 

(M
pT

), 
N

S 
in

 M
pB

 

5 
Zm

LO
X

 6
 

G
R

M
ZM

2G
04

00
95

 
- 

- 
- 

- 
- 

 

6 
Zm

LO
X

 7
 

G
R

M
ZM

2G
07

00
92

 
U

m
c 

14
53

 
SS

R
 

10
.0

4 
M

pT
, M

pN
c 

11
5,

57
1,

58
9 

N
S 

in
 b

ot
h 

po
pu

la
tio

ns
 

7 
Zm

LO
X

 8
 

G
R

M
ZM

2G
10

48
43

 
B

nl
g 

10
18

 

B
nl

g 
19

09
 

SS
R

 

SS
R

 

2.
04

 

2.
05

 

M
pB

, M
pN

c 

M
pT

, M
pV

a,
 

40
,8

90
,0

03
 

47
,1

70
,4

90
 

5.
6 

(M
pB

), 
N

S 
in

 M
pN

c 
   

   
   

   
   

   
   

   
N

S 
in

 b
ot

h 
po

pu
la

tio
n 

8 
Zm

LO
X

 9
 

G
R

M
ZM

2G
01

76
16

 
U

m
c 

19
76

 
SS

R
 

1.
03

 
M

pT
, M

pN
c 

21
,4

19
,7

59
 

N
S 

in
 b

ot
h 

po
pu

la
tio

ns
. 

9 
Zm

LO
X

 1
0 

G
R

M
ZM

2G
01

54
19

 
U

m
c 

22
87

 
SS

R
 

4.
09

 
M

pB
, M

pT
, M

pV
a 

21
3,

90
2,

71
2 

2.
6 

(M
pT

), 
N

S 
in

 o
th

er
 

po
pu

la
tio

ns
 

10
 

Zm
LO

X
 1

1 
G

R
M

ZM
2G

00
94

79
 

- 
- 

- 
- 

- 
- 

11
 

Zm
LO

X
 1

2 
G

R
M

ZM
2G

10
67

48
 

U
m

c 
19

68
 

SS
R

 
3.

04
 

M
pB

, M
pN

c 
95

,2
66

,7
67

 
N

S 
in

 b
ot

h 
po

pu
la

tio
ns

. 

13
 

Zm
LO

X
 1

3 
G

R
M

ZM
5G

82
25

93
 

 
- 

- 
- 

- 
- 

N
O

TE
: a LO

D
 sc

or
e 

w
as

 se
t a

t a
 d

ef
au

lt 
th

re
sh

ol
d 

(2
.5

) o
f t

he
 c

om
po

si
te

 in
te

rv
al

 m
ap

pi
ng

 (C
IM

).



 

 

62 Ta
bl

e 
3.

3 
A

 su
m

m
ar

y 
of

 Z
m

LO
X

s a
ss

oc
ia

tio
n 

m
ap

pi
ng

 re
su

lt.
 

Tr
ai

t 
M

ar
ke

r 
C

hr
 

M
ar

ke
r P

2  
M

ar
ke

r_
R

2  
C

St
a0

9L
SM

 
S1

0_
12

02
19

78
7 

10
 

1.
26

E-
04

 
0.

05
34

7 
C

St
a1

0L
SM

 
S1

0_
12

02
20

58
9 

10
 

4.
39

E-
04

 
0.

04
23

1 
Lu

bb
10

LS
M

 
S1

_2
64

18
30

77
 

1 
4.

85
E-

04
 

0.
04

10
7 

A
ve

LS
M

 
S1

0_
12

02
19

78
7 

10
 

7.
51

E-
04

 
0.

02
74

5 
St

ar
10

LS
M

 
S4

_2
33

62
70

58
 

4 
7.

92
E-

04
 

0.
02

76
7 

St
R

a1
0L

SM
 

S2
_4

18
89

74
 

2 
0.

00
25

7 
0.

06
79

3 
St

ar
09

LS
M

 
S3

_1
68

83
80

69
 

3 
0.

00
28

6 
0.

02
13

6 
Lu

bb
10

LS
M

 
S1

_2
64

17
25

54
 

1 
0.

00
41

7 
0.

02
83

5 
C

St
a1

0L
SM

 
S1

0_
12

02
20

41
9 

10
 

0.
00

42
4 

0.
02

83
6 

C
St

a0
9L

SM
 

S1
0_

12
02

19
85

4 
10

 
0.

00
48

4 
0.

02
30

6 
Lu

bb
10

LS
M

 
S1

_2
64

17
24

89
 

1 
0.

00
48

7 
0.

02
63

1 
C

St
a0

9L
SM

 
S1

0_
12

02
20

34
8 

10
 

0.
00

57
4 

0.
02

11
9 

C
St

a0
9L

SM
 

S1
0_

12
02

19
58

2 
10

 
0.

00
58

4 
0.

02
20

5 
C

St
a0

9L
SM

 
S5

_1
22

77
32

9 
5 

0.
00

61
1 

0.
02

65
 

St
ar

09
LS

M
 

S5
_1

22
77

32
9 

5 
0.

00
75

1 
0.

01
94

3 
St

ar
10

LS
M

 
S4

_2
33

62
61

96
 

4 
0.

00
87

6 
0.

01
77

8 
St

ar
10

LS
M

 
S4

_2
33

62
61

97
 

4 
0.

00
87

6 
0.

01
77

8 
St

ar
10

LS
M

 
S4

_2
33

62
68

21
 

4 
0.

00
89

5 
0.

01
70

3 
A

ve
LS

M
 

S1
0_

12
02

19
58

2 
10

 
0.

00
89

5 
0.

01
32

3 
N

O
TE

: T
he

 n
um

be
r o

f S
N

Ps
 fo

un
d 

w
ith

in
 e

ac
h 

of
 th

e 
ge

ne
 se

qu
en

ce
s w

ith
 p

 v
al

ue
s t

ha
t r

an
ge

 b
et

w
ee

n 
7.

51
x1

0-4
 ≤

 p
 

≤ 
8.

95
 x

 1
0-3

as
 c

al
cu

la
te

d 
by

 th
e 

G
LM

 st
at

is
tic

s a
nd

 a
ls

o 
th

e 
m

ax
im

um
 R

2  v
al

ue
 fo

r e
ac

h 
of

 th
e 

as
so

ci
at

ed
 c

an
di

da
te

 
ge

ne
s 

 



 

 

63 Ta
bl

e 
3.

4 
A

 ta
bl

e 
sh

ow
in

g 
th

e 
ex

pr
es

si
on

 d
at

a 
of

 a
ll 

Zm
LO

X
s i

n 
di

ff
er

en
t t

is
su

es
 a

t d
iff

er
en

t s
ta

ge
s i

n 
th

e 
lif

e 
of

 th
e 

pl
an

t  

G
en

e_
N

am
e 

ge
ne

_I
.D

 
ch

r 
A

nt
he

rs
 

D
ev

el
op

in
g_

ea
r 

En
do

sp
er

m
_2

5D
A

P 
O

vu
le

2 
Si

lk
 

Ta
ss

el
 

Po
lle

n 
Zm

Lo
x 

1 
&

 
2 

G
R

M
ZM

2G
15

68
61

 
3 

2.
50

 
51

.6
5 

13
.5

7 
24

2.
10

 
39

.5
2 

15
.2

2 
0.

00
6 

Zm
Lo

x 
3 

G
R

M
ZM

2G
10

91
30

 
1 

14
.1

7 
14

.8
8 

9.
93

 
37

.2
0 

5.
77

 
57

.3
8 

0.
03

 

Zm
Lo

x 
4 

G
R

M
ZM

2G
10

90
56

 
1 

10
.2

7 
32

.3
7 

2.
11

 
54

.8
7 

19
.9

1 
21

.2
6 

0.
39

 

Zm
Lo

x 
5 

G
R

M
ZM

2G
10

27
60

 
5 

25
.5

2 
19

4.
21

 
5.

33
 

54
9.

3 
55

7.
53

 
18

0.
07

 
0.

06
 

Zm
Lo

x 
6 

G
R

M
ZM

2G
04

00
95

 
2 

0.
45

 
85

.5
0 

13
.2

9 
19

7.
31

 
26

.0
3 

11
3.

55
 

0 

Zm
Lo

x 
7 

G
R

M
ZM

2G
07

00
92

 
10

 
6.

87
 

0.
41

 
0.

88
 

0.
70

 
0.

44
 

1.
58

 
0 

Zm
Lo

x 
8 

G
R

M
ZM

2G
10

48
43

 
2 

4.
27

 
2.

96
 

2.
24

 
1.

96
 

3.
12

 
13

.5
7 

0 

Zm
Lo

x 
9 

G
R

M
ZM

2G
01

76
16

 
1 

9.
45

 
16

.4
0 

3.
07

 
6.

21
 

18
.8

8 
3.

21
 

0 

Zm
Lo

x 
11

 
G

R
M

ZM
2G

00
94

79
 

5 
0.

27
 

33
.0

5 
6.

43
 

13
2.

10
 

66
9.

06
 

53
.3

8 
0 

Zm
Lo

x 
12

 
G

R
M

ZM
2G

10
67

48
 

3 
1.

54
 

0.
32

 
22

.4
2 

8.
09

 
0.

23
 

2.
34

 
0.

51
 

Zm
Lo

x 
13

 
G

R
M

ZM
5G

82
25

93
 

1 
0.

71
 

0.
06

1 
0.

07
 

0.
17

 
0 

1.
83

 
0.

04
 

N
O

TE
: N

ot
 a

ll 
da

ta
 sh

ow
n.

 C
re

at
ed

 u
si

ng
 th

e 
m

ai
ze

 Q
te

lle
r s

of
tw

ar
e.

 A
ll 

va
lu

es
 a

re
 a

bs
ol

ut
e.



 

 

64 Ta
bl

e 
3.

5 
V

is
ua

liz
e 

Ex
pr

es
si

on
 L

in
k 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

2G
15

68
61

 
ht

tp
://

qt
el

le
r.c

om
/q

te
lle

r3
/b

ar
_c

ha
rt.

ph
p?

na
m

e=
G

R
M

ZM
2G

10
91

30
 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

2G
10

90
56

 
ht

tp
://

qt
el

le
r.c

om
/q

te
lle

r3
/b

ar
_c

ha
rt.

ph
p?

na
m

e=
G

R
M

ZM
2G

10
27

60
 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

2G
04

00
95

 
ht

tp
://

qt
el

le
r.c

om
/q

te
lle

r3
/b

ar
_c

ha
rt.

ph
p?

na
m

e=
G

R
M

ZM
2G

07
00

92
 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

2G
10

48
43

 
ht

tp
://

qt
el

le
r.c

om
/q

te
lle

r3
/b

ar
_c

ha
rt.

ph
p?

na
m

e=
G

R
M

ZM
2G

01
76

16
 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

2G
00

94
79

 
ht

tp
://

qt
el

le
r.c

om
/q

te
lle

r3
/b

ar
_c

ha
rt.

ph
p?

na
m

e=
G

R
M

ZM
2G

10
67

48
 

ht
tp

://
qt

el
le

r.c
om

/q
te

lle
r3

/b
ar

_c
ha

rt.
ph

p?
na

m
e=

G
R

M
ZM

5G
82

25
93

 



 

 

65 

 

Fi
gu

re
 3

.1
 

Ph
yl

og
en

et
ic

 tr
ee

 a
na

ly
si

s o
f a

ll 
13

 m
ai

ze
 L

O
X

 g
en

es
, i

nc
lu

di
ng

 G
en

e 
an

d 
tra

ns
cr

ip
t I

.D
. f

or
 e

ac
h 

of
 th

e 
ge

ne
. 

N
O

TE
: T

he
 tr

ee
 w

as
 c

on
st

ru
ct

ed
 u

si
ng

 th
e 

PI
EC

E 
(P

la
nt

 In
tro

n 
an

d 
Ex

on
 C

om
pa

ris
on

 E
vo

lu
tio

n)
 d

at
ab

as
e.

 G
re

en
/b

lu
e 

co
lo

r a
re

 5
’ 

an
d 

3’
 u

nt
ra

ns
la

te
d 

re
gi

on
s (

U
TR

s)
, g

ra
y 

co
lo

r c
or

re
sp

on
ds

 to
 g

en
e 

in
tro

ns
, a

nd
 p

ur
pl

e 
co

lo
r t

o 
ge

ne
 e

xo
ns

. 



 

 

66 

 

Fi
gu

re
 3

.2
 

C
om

po
si

te
 in

te
rv

al
 m

ap
pi

ng
 re

su
lts

 o
f t

he
 M

pB
 p

op
ul

at
io

n 
(c

hr
om

os
om

e 
2)

 a
cr

os
s a

 to
ta

l o
f s

ix
 e

nv
iro

nm
en

ts
 a

nd
 

th
e 

av
er

ag
e.

 

N
O

TE
: G

R
M

ZM
2G

10
48

43
 in

 b
in

 2
.0

4 
m

ap
pe

d 
rig

ht
 u

nd
er

 a
 Q

TL
. T

he
 X

 a
xi

s r
ep

re
se

nt
s t

he
 g

en
et

ic
 le

ng
th

 o
f t

he
 c

hr
om

os
om

e 
an

d 
th

e 
Y

 a
xi

s r
ep

re
se

nt
s t

he
 L

O
D

 si
gn

ifi
ca

nc
e 

se
t a

t 2
.5

. E
ac

h 
pe

ak
 a

bo
ve

 th
e 

th
re

sh
ol

d 
re

pr
es

en
ts

 d
is

tin
ct

 Q
TL

s i
n 

th
e 

ch
ro

m
os

om
e.

 



 

67 

Literature Cited 

Abbas HK, Wilkinson JR, Zablotowicz RM, Accinelli C, Able CA, Bruns HA, Weaver 
MA (2009) Ecology of Aspergillus flavus, regulation of aflatoxin production, and 
management strategies to reduce aflatoxin contamination of corn. Toxin Reviews 
28: 142-153 

Austwick, P. K. C., AND J. J. Elphick. (1964). The occurrence of toxin-producing 
isolates in The Aspergillus flavus-oryzae series. Proc. Intern. Botan. Congr., 10th, 
p. 69. 

Bannenberg, G., Martínez, M., Hamberg, M., Castresana, C., (2009). Diversity Of the 
enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. 
Lipids 44, 85–95. 

Betran F, Isakeit T (2004) Aflatoxin accumulation in maize hybrids of different 
maturities. Agronomy journal 96: 565-570.  

Blount, W.P. (1961) Turkey ‘X’ disease. Turkeys, 9, 52, 55–58, 61, 77. 

Bradbury, Peter J., et al. "TASSEL: software for association mapping of complex traits in 
diverse samples." Bioinformatics 23.19 (2007): 2633-2635. 

Brooks T, Williams WP, Windham GL, Willcox M, Abbas HK (2005) Quantitative trait 
loci contributing resistance to aflatoxin accumulation in the maize inbred 
Mp313E. Crop Sci 45: 171-174. 

Brown, R. L., Chen, Z.-Y., Cleveland, T. E., and Russin, J. S. (1999). Advances in the 
development of host resistance in corn to aflatoxin contamination by Aspergillus 
flavus. Phytopathology 89:113-117. 

Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., Grierson, D., (2004). Identification 
Of a specific isoform of tomato lipoxygenase (TomloxC) Involved in the 
generation of fatty acid-derived flavour compounds. Plant Physiol. 136, 2641–
2651.  

Creelman, R.A., and Mullet, J.E. (1997). Biosynthesis and action of jasmonates in plants. 
Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355–381. 

Croft, K.P.C., Jhttner, F. and Slusarenko, A.J. (1993). Volatile products of the 
lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated 
with Pseudomonas syringaepv phaseolicola. Plant Phys. 101, 13–24. 

Elshire RJ, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, et al (2011) A Robust, 
Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. 
PLoS ONE. 6(5):e19379 ed. 



 

68 

Fry, W.E., and Evans, P.H. (1977). Association of formamide hydro- lyase with fungal 
pathogenicity to cyanogenic plants. Phytopathol- Ogy 67, 1001-1006.  

Gao X, Kolomiets MV (2009) Host-derived lipids and oxylipins are crucial signals in 
modulating mycotoxin production by fungi. Toxin Reviews 28: 79–88. 

Goldblatt, L. (ed.) (1969) Aflatoxin: Scientific Background, Control, and Implications. 
New York: Academic Press. 

Gqaleni N, Smith JE, Lacey J, GettinbyG (1997) Effects of temperature and water 
activity, and incubation time on production of aflatoxins and cyclopiazonic acid 
by an isolate of Aspergillus flavusin surface agar culture. Appl Environ Microbiol 
63:1048 – 1053 

Hamblin AM, White DG (2000) Inheritance of resistance to Aspergillus ear rot and 
aflatoxin production of corn from Tex6. Phytopathology 90: 292-296 

Hwang, I.S., Hwang, B.K., (2010). The Pepper 9-lipoxygenase Gene CaLOX1 Functions 
in defense and cell death responses to microbial pathogens. Plant Physiol. 152, 
948–967. 

Jones, R. K. (1987). The influence of cultural practices on minimizing the development 
of aflatoxin in field maize. Pages 136-144 in: Aflatoxin in Maize: Proc. 
Workshop. M. S. Zuber, E. B. Lillehoj, and B. L. Renfro, eds. International Maize 
and Wheat Improvement Center, Mexico, D.F.  

Keppler, L.D. and Novacky, A. (1987) The initiation of membrane lipid peroxidation 
during bacteria-induced hypersensitive reaction. Phys. Mol. Plant Path. 30, 233–
245. 

Klich MA (2007) Environmental and developmental factors influencing aflatoxin 
production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience 48: 
71-80 

Lisker, N., and Lillehoj, E. B. (1991). Prevention of mycotoxin contamination 
(principally aflatoxins and Fusarium toxins) at the preharvest stage. Pages 689-
719 in: Mycotoxins and Animal Foods.  

Mehdy, Mona C. "Active oxygen species in plant defense against pathogens." Plant 
physiology 105.2 (1994): 467. 

Moreno O, Kang M (1999) Aflatoxins in maize: the problem and genetic solutions. Plant 
Breeding 118:1–16 

Osbourn, A.E. (1996). Saponins and plant defence-A soap story. Trends Plant Sci. 1, 49.  



 

69 

Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C , et al . (2004) Involvement of 
jasmonic acid and derivatives in plant responses to pathogens and insects and in 
fruit ripening. Journal of Plant Growth Regulation 23(3), 246–260 

PIECE: A database for plant gene structure comparison and evolution. Nucleic Acids 
Research, Volume 41 Issue D1 January (2013). 

Richard J L, Payne GA (2002) Mycotoxins: risks in plant, animal, and human systems. 
CAST Task Force Report No. 139. Ames, Iowa: Council for Agricultural Science 
and Technology. 

Robens J, Cardwell KF (2005). The costs of mycotoxin management in the United States. 
In: Abbas HK (editor) Aflatoxin and food safety. New York: Taylor and Francis. 
1-12 

Rosahl, S. (1996) Lipoxygenases in plants – their role in development and stress 
response. Z. Naturforsch. [C], 51, 123–138. 

Sanmiguel, Phillip, and Jeffrey L. Bennetzen. "Evidence that a recent increase in maize 
genome size was caused by the massive amplification of intergene 
retrotransposons." Annals of Botany 82.suppl 1 (1998): 37-44. 

Sekhon, Rajandeep S., et al. "Genome‐wide atlas of transcription during maize 
development." The Plant Journal 66.4 (2011): 553-563. 

Shin, J.H., Van, K., Kim, D.H., Kim, K.D., Jang, Y.E., (2008). The Lipoxygenase gene 
fam- ily: a genomic fossil of shared polyploidy between Glycine Max and 
Medicago Truncatula . BMC Plant Biol. 8 (1), 133 

Squire, R.A. (1981) Rating animal carcinogens: a proposed regulatory approach. Science, 
214, 877–880. 

Stam, (1993). Construction of integrated genetic linkage maps by means of a new 
computer package: JoinMap. The Plant Journal 3: 739-744 

Vincelli, Paul, et al. "Aflatoxins in corn." University of Kentucky Coop. Ext. Serv. Report 
ID-59 (1995). 

Vogt, J., Schiller, D., Ulrich, D., Schwab, W., Dunemann, F., (2013). Identification Of 
lipoxygenase (LOX) Genes putatively involved in fruit flavour formation in apple 
( Malus × Domestica ). Tree Genet. Genomes, 1–19. 

Warburton, Marilyn L., and W. Paul Williams. "Aflatoxin resistance in maize: what have 
we learned lately?." Advances in Botany 2014 (2014). 

http://nar.oxfordjournals.org/content/41/D1/D1159
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.1993.00739.x/pdf


 

70 

Warburton ML BT, Windham GL, Williams WP (2011) Identification of QTL 
Contributing Resistance to Aflatoxin Accumulation in Maize. Mol Breed 27: 491-
499. 

Warburton ML, T.D. Brooks, M.D. Krakowsky, X. Shan, G.L. Windham, and W.P. 
Williams (2009) Identification and Mapping of New Sources of Resistance to 
Aflatoxin Accumulation in Maize. Crop Sci 49: 1403-1408. 

Warburton ML, Williams WP, Hawkins L, Bridges S, Gresham C, Harper J, Ozkan S, 
Mylroie JE, Shan X (2011) A public platform for the verification of the 
phenotypic effect of candidate genes for resistance to aflatoxin accumulation and 
Aspergillus flavus infection in maize. Toxins 3: 754-765 

Widstrom, N. W. (1992). Aflatoxin in developing maize: interactions among involved 
biota and pertinent econiche factors. In: Bhatnager, D.,Lillehoj, E.B., Arora, D. 
K., eds.Handbook of Applied Mycology;Mycotoxins in Ecological Systems. New 
York: Marcel Dekker, Inc.; pp.23 – 58. 

Widstrom, N.W., A. Burton, B.Z. Guo, D.M. Wilson, M.E. Snook, T.E. Cleveland, and 
R.E. Lynch. 2003. Control of pre harvest aflatoxin contamination in maize by 
pyramiding QTL involved in resistance to ear-feeding insects and invasion by 
Aspergillus spp. Eur. J. Agron. 19:563–572. doi:10.1016/S1161-0301(03)00004-2 

Willcox MC, G.L. Davis, G.L. Windham, H.K. Abbas, J. Betrán, J.B. Holland, W.P. 
Williams, and M.L. Warburton (2013) Confirming quantitiatve trait loci for 
aflatoxin resistance from Mp313E in different genetic backgrounds. Mol Breed 
32: 15-26. 

Williams,J.H. et al. (2004) Human aflatoxicosis in developing countries: a review of 
toxicology, exposure, potential health consequences, and interventions. Am. J. 
Clin. Nutr.,80, 1106–1122 

Winter, Debbie, et al. "An “Electronic Fluorescent Pictograph” browser for exploring and 
analyzing large-scale biological data sets." PloS one 2.8 (2007) 

Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, et al. (2012) Disruption of 
OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize 
development and defense. Plant Cell 24: 1420–1436 

Zhang, B., Chen, K.S., Judith, B.,Andrew, A., Richard, E., Sakuntala, K., Ferguson, I.B., 
(2006). Differential Expression within the LOX Gene family in ripening kiwifruit. 
J. Exp. Bot. 57, 3825–3836 

Zuber, M. S., Lillehoj, E. B. (1987). Aflatoxin contamination in maize and its biocontrol. 
In: Murkerji, K. G., Garg, K. L., eds.Biocontrol of PlantDiseases.Boca Raton, FL: 
CRC Press, pp. 85 – 102



 

71 

CHAPTER IV 

CONSTRUCTING MAIZE NEAR ISOGENIC LINES (NILS) TO TEST  

GENOMIC REGIONS FOR RESISTANCE TO AFLATOXIN  

ACCUMULATION IN MAIZE 

Abstract 

Aspergillus flavus is an opportunistic saprophytic and/or pathogenic fungus of 

maize that may infect the living plant when it is under stress. When it is able to overcome 

infection barriers and sporulate, it initiates the production of a secondary metabolite 

known as aflatoxin, a carcinogenic substance that negatively affects the health of 

consumers of contaminated maize, and thus causes farmers in hot or humid areas of the 

world great economic losses. There have been many efforts to combat either the invasion 

of maize by this fungus or its production of aflatoxin. One of the many programs that 

have been practiced to combat this issue is the generation of maize that is resistant to the 

fungus or the accumulation of its toxins. The mapping of molecular markers has helped 

in the identification of Quantitative Trait Loci (QTLs) that are correlated to aflatoxin 

accumulation resistance. For validation and detailed study of QTLs, the creation of near 

isogenic lines (NILs) is a valuable tool, because lines that are nearly isogenic to 

susceptible maize for specific regions, carrying resistance alleles only in this one region 

but otherwise identical to the susceptible line, can help validate the location and physical 

effects of different regions on resistance. 
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Introduction 

Aspergillus flavus is a fungi that is mostly found in soil and plant tissue samples, 

and it is an opportunistic pathogen of many crops.  Under the right conditions for growth, 

A. flavus will infect and produce a carcinogenic secondary substance known as aflatoxin 

(Orum et al 1997). Carcinogenic aflatoxin B1 (AFB1), produced by the fungus, is one of 

the major food safety concerns of maize. Aflatoxins were first discovered in the early 

1960’s in England when a very large group of turkeys died after consuming a grain with a 

high level of aflatoxin accumulation (Richard and Payne; 2003). This secondary 

metabolite is of great concern to both human and animal health because of its damaging 

effect on development and immune systems and extreme carcinogenic properties.  Thus, 

most countries have strict regulations to limit accumulation of aflatoxin in maize and all 

other agricultural products that are susceptible to aflatoxin (Wang and Tang 2005).  

Maize (Zea mays L.) is a staple food for much of the world population especially 

in many developing countries, and in tropical environments it is often contaminated by 

aflatoxin B1 (Castells et al 2007). The U.S Food and Drug Administration (FDA) 

prohibits interstate commerce of maize grains with an aflatoxin concentration equal to or 

greater than 20ng/g (Brown et al 1993). Multiple studies have been published on finding 

Quantitative Trait Loci (QTLs) that are associated with aflatoxin resistance, and dozens 

of the QTLs have been identified in maize lines that are resistant to aflatoxins  

(Windstrom et al, 2003, Mideros et al; 2009). Researchers can use different population 

structures such as backcross (BC), F2, double haploids, testcrossed progenies, half sib and 

full sib families, F2 derived families, recombinant inbred lines (RIL) and diverse inbred 

population structures for detecting and mapping QTLs and for subsequent confirmation 
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of the detected QTLs in different genetic backgrounds. Another way to confirm and 

validate QTLs is the use of near isogenic lines (NILs) which are lines that differ only in 

one region, such as a QTL of interest. The creation of NILs is used for detailed study of 

QTLs that have been previously detected in other populations and are thus known to 

contribute to the trait of interest. Near isogenic lines can be used for the verification, 

mapping and incorporation of desired QTL into an elite cultivar that has all other 

desirable phenotypic characteristics except for the one that the QTL of interest controls 

(Eshed and Zamir 1995; Kaeppler, 1997). The fine-mapping of the NILs using molecular 

markers can in some instances be an effective approach in detecting new QTLs (Osborn 

et al 1987). NILs are useful for the accurate estimation of the effects of a QTL on a 

particular trait, and NILs carrying more than one QTL at a time are suitable for 

determining epistatic interactions, genetic linkage and genomic architecture of a trait (Pea 

et al 2013). The use of NILs to verify and fine map QTLs has been successful in maize 

(Graham et al, 1997), rice (Yu et al, 1991), soybeans (Muehlbaure et al, 1988) and tomato 

(Brouwer and St Clair 2004) among other species.  

The QTL regions are identified in a mapping population with the use of molecular 

markers and estimates of the level at which the QTL contribute to the trait of interest are 

calculated (Kaeppler, 1997). NILs for aflatoxin accumulation resistance are derived by 

the initial crossing of a resistant line with known QTL that contribute to aflatoxin 

resistance to a susceptible line, and subsequently backcrossing the progeny derived from 

the initial F1 to the susceptible parent for five to six generations (Szalma et al; 2007) to 

create a line that differs from the susceptible parent in just the QTL of interest initially 

present in the resistant parent. In this project, the construction of the NIL will be based on 
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one SNP of interest per NIL so that the effect of the each SNP on the trait can be tested 

separately. Conventional backcrossing is a process whereby a desired trait from a donor 

parent is transferred into an elite recurrent parent that has all other desirable phenotypic 

characteristics (Soto-Cerda; 2013).  Identification of molecular markers linked to various 

genes and QTLs allows the marker assisted selection of these genes or QTLs during the 

introgression process via a series of backcrossing to the recurrent (susceptible) parent to 

create the NILs, and prevents the QTL from being lost in the process.  A final selfing step 

fixes the QTL in the NIL in homozygous form. 

Molecular markers are used to identify which alleles have been inherited by 

progeny after each generation. In the final step, both the susceptible parent and the NIL 

will be grown and phenotyped together to determine the effect of the genomic regions 

identified by a QTL or SNP haplotype on aflatoxin accumulation resistance (Kaeppler; 

1997). Despite the large amount of QTLs that has been identified in various experiments 

and published in the literature, the transfer of these QTL into elite germplasm for 

validation and for the improvement of elite cultivars is very rare (Robertson et al; 2005).  

However, the use of NILs to validate QTL can help instill confidence in these QTL for 

breeders who wish to use them in the improvement of quantitative traits via marker 

assisted selection (Stuber et al, 1992). Results presented in this project are preliminary 

and will not complete the backcrossing to the required level, because I can only go as far 

as the BC2 generation in this project for my master’s thesis.  I intend to continue the 

project for my PhD in the immediate future. 



 

75 

Materials and Methods 

Genetic stock and plant material 

A total of 11 unrelated maize inbred lines (7 aflatoxin resistant lines and four 

aflatoxin susceptible lines, Table 4.1) were used to start the creation of near isogenic lines 

(NILs). Individual pairs of resistant and susceptible lines were crossed to generate F1 

progenies. The F1 progeny obtained from each cross was backcrossed to the original 

susceptible parent to create the BC1 generation. Twenty-five Single Nucleotide 

Polymorphisms (SNPs) from the in-house maize genome wide association studies 

(GWAS) hapmap database with the highest influence on aflatoxin accumulation 

(according to p value and R2 from Warburton et al., 2015) was chosen as described in the 

following section.  These SNP makers were used to obtain allelic information from all the 

inbred lines used for the creation of the NILs to know which lines to cross (as parents had 

to be polymorphic for the SNPs of interest). The aim of the crossing was to produce two 

to three NILs for each SNP region, each in a different susceptible genetic background. 

After each generation of backcrossing to the recurrent parent (the susceptible parent in 

this case), the progeny will consist of 50% more of the recurrent parent than the previous 

generation (Figure 4.1).  When the BC1 was again backcrossed to the susceptible parents 

for the creation of a segregating BC2 population, marker assisted selection was carried 

out using the set of 25 SNPs (Table 4.3) to keep plants with the alleles from the resistant 

parent. The plants that were heterozygous for the resistant line's allele at one or more of 

the target loci were selected to be carried into the next generation of backcrossing. Plants 

homozygous for the susceptible recurrent allele were discarded to eliminate plants 

without the desired allele at the loci to be validated for resistance to aflatoxin and also to 
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reduce labor, as fewer plants are carried on to the next generation. Backcrossing with 

selection will continue until the BC3 generation, which will be selfed twice to create the 

BC3S2 generation (Figure 4.2); plants selected with the SNP markers will be fixed for the 

regions to be tested and thus represent the end of the NIL derivation. 

 

 

Figure 4.1 The genome of the donor parent is reduced by 50% after each generation of 
backcrossing. Byrne and Richardson; 2005. 

 

Identification of SNP markers and development of KASP assays 

Warburton et al, (2013; 2015) described the Genotype by Sequencing (GBS) data 

used in this study, which was generated according to Elshire et al (2011) for a panel of 

273 diverse maize inbred lines containing aflatoxin accumulation resistant and 

susceptible genotypes and stored in an in-house hapmap database. The database presents 

the variation in the genomic sequence and allelic distribution of each line for all GBS 

data. The SNPs of interest from the GWAS study of Warburton et al. (2015), those 

associated with aflatoxin accumulation with the lowest p-values (2.87 x 10-10 < p< 9.78 x 
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10-5) were found in the hapmap database for every line in the panel (Table 4.3).  Those 

SNPs that were polymorphic between as many potential parents as possible and that 

displayed a minor allele frequency (MAF) greater than 5% were used for the creation of 

the NILs. 

KASP assays were designed for the SNPs of interest by finding 100bp of DNA 

sequence from both upstream and downstream of the SNP of interest in the B73 reference 

genome Lawrence et al; (2008) and the assay was ordered from LGC genomics (Hurts 

UK) and tested for amplification and polymorphism on the 11 inbred lines used for the 

creation of the NILs. The KASP assays were used to select the individual progeny that 

carried the SNP allele of interest (from the resistant parent) from one generation to the 

next. 
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SNP Genotyping and genomic distribution. 

Leaf samples were collected from all 11 inbred lines that serve as the parents of 

the NILs. DNA was extracted from these parents to verify that each KASP assay 

genotyped the parents in the same way as did the original GBS data. Plants from the BC1 

generation were genotyped as the first generation segregating population for marker 

assisted selection.  From all plants to be genotyped, leaf tissue samples were collected 

from individual plants, frozen to -80oC, lyophilized and ground to a fine powder. DNA 

was extracted as described by Saghai - Maroof (1984) using the CTAB 

(cetyltrimethylammonium bromide) method. The DNA samples were genotyped with 25 

SNPs via KASP as described below and allele calling was carried out using the klustal 

caller software for the OMEGA plate reader by BMG LABTECH GMBH, Orthenberg, 

Germany. 

Before genotyping, the 25 SNPs were individually tested to ensure they mapped 

to the correct location in the maize genome using one of four previously constructed 

mapping populations.  KASP assays work using a 94KDa recombinant thermostable 

DNA polymerase (KlearTaq). The amplification of the DNA at targeted loci using the 

KASP assay involves the use of two specially constructed mixtures, the SNP specific 

KASP assay mix and the KASP master mix. KASP assays enable bi-allelic scoring of 

SNPs at specified loci through competitive allele-specific PCR. The KASP assay mix 

contains 3 primers, two allele specific forward primers which each harbors a unique tail 

sequence connected to a universal FRET (fluorescence resonant energy transfer) 

sequence, and one common reverse primer. The KASP Master mix also contain two 

universal FRET cassettes labeled with FAM or HEX dye (one for each allele), which 
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fluoresce at different wavelengths thereby making the difference in the genotype call for 

different alleles when read by a fluorescent-based plate reader. The PCR conditions for 

the KASP assays designed in this study are presented in table 4.2 below. 

Table 4.2 Thermal cycling conditions using KlearTaq 

Step Temperature Time Number of cycles 
1 95oC 15 mins 1 cycle 

2 
95 oC 30 sec 

34 cycles 61 oC 30 sec 
72 oC 1 min/kb 

3 72 oC 5 mins 1 cycle 
 

The amplification pattern of two specific alleles (including the two homozygous 

classes and the heterozygous class) in the KASP assay for 96 individuals in a 96-well 

microtiter plate is shown in the klustal plot software in Figure 4.3 of the end-point 

fluorescent read after the amplification process. One of the two fluorescent signals is 

generated if the genotype of a given SNP is homozygous while both signal are generated 

if the genotype is heterozygous for the given SNP. 
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Proposed Theory 

Testing phenotypic effect of the alleles of each SNPs (effect on the trait under 

study) and the inheritance of each SNP will be done by observing the differences in 

aflatoxin accumulation resistance averaged over individuals that inherited the desired 

SNPs from the parents and those that did not due to Mendelian inheritance. The 

implementation of this proposed theory will start at the BC3S2 stage of this project when 

the NILs would have been created and the testing of the phenotypic effect of each SNP 

will be underway. The resistant allele of each SNPs will have been completely 

backcrossed and fixed in the heterozygous state in a susceptible background after the 

series of marker assisted backcrossing to the BC3 stage followed by selfing to get the 

BC3S1 and BC3S2 generation. The phenotypic effect of each SNP for the fixed NIL 

carrying it will be calculated as explained by Kaeppler (1997), using the formula for the 

calculation of the linear model as follows: 

yjk = µ + γj + ejk  

where yjk represents the phenotypic value of the kth replication of the jth line, µ 

represents the mean of the two lines, γj represents the effect of the jth line and ejk is the 

residual error where k =1,2,...n = number of replications; (Kaeppler, 1997). To test the 

null hypothesis of equality of the means of the created NIL pairs, analysis of variance 

(ANOVA) will be employed and the difference between the averages of all pairs of lines 

that are tested in the study will be used to determine if a QTL is present in the individuals 

tested or not.  
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Figure 4.2 A scheme showing how plant materials was created. 

 

Results and discussion to date 

The creation of NILs requires at least five to six generations of maize backcrosses 

and subsequent selfing, but it is very important to determine which of the segregating 

individuals in each family carry the desired SNP or QTL allele from all the progeny 

derived each year of backcrossing. To date, 15 KASP assays have been designed and 
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tested, but only 6 of the 25 desired SNPs have been successfully converted to working 

assays and are polymorphic in the parents used for the creation of the NILs. Testing one 

of the SNP assays on all the individual progeny in the BC1 generation of all crosses 

shows that approximately 40% (8 out of 20 individuals per family on average) inherited 

the allele of interest from their parents. This is a bit lower than the 50% expected, but 

within the range of probability.  More assays are being designed and will be ready for the 

next step in the project, being carried out now. 

 

Figure 4.3 A typical genotyping clustal plot showing the genotypes of 95 individuals 
(including the parents) and one negative template controls (NTC). 

NOTE: Genotypes homozygous for the resistant allele reported by the FAM dye in blue, 
genotypes homozygous for the susceptible allele reported by the HEX dye in red, and 
heterozygous genotypes contains both resistant and susceptible alleles in green. 
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The 6 SNPs that have been successfully converted to working assays were tested 

on the QTL mapping population which they expected to be polymorphic according to the 

hapmap data.   Since the resistant parents used in the creation of the QTL mapping 

population (Mp313E and Mp715) are present as parents of the NILs contained but in a 

different susceptible background, it will give an idea of  the heritability of the SNPs. The 

results shows that out 184 individuals in the mapping population, 50 of the individuals 

were homozygous for the resistant’s parent alleles, 35 individuals are homozygous  for 

the susceptible parents allele while the remaining  99 individuals were heterozygous for  

both alleles from both parents (Figure 4.3). Only one plate with 92 individuals is shown.  

Considerations for the use of NILs 

At the BC3 generation it is expected that the genome of all the individual NILs 

will carry ~97% of the recurrent parents and ~3% of the donor parent, including the 

desired alleles for the favorable SNPs (Figure 4.1). Each NIL is designed to examine a 

specific SNP or chromosomal region and the effect it has on aflatoxin accumulation 

resistance. NILs are also very important as they can be used in physically observing the 

effect of the introgressed SNP or region, although not all traits can be physically 

differentiated visually when grown side by side with the susceptible (recurrent) parent.  If 

aflatoxin levels are not different between the NIL pairs, tests to determine the fungal 

biomass via qPCR may show a difference in this case NILs are also a very useful tool in 

studying the interactions of two or more SNPs/chromosome regions in the same 

background and this will provide insight on the epistatic interactions between the 

SNP/loci of interest (Kaeppler; 1997).  Initial results by Williams et al (unpublished) 

provide an indication of these interactions, where the phenotypic effect of 2 or 3 QTLs 
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providing resistance from Mp313E, a resistant maize inbred line, was measured in a 

susceptible background (Va35) and the effect of two QTL together was, in some cases, to 

make the plant more resistant to aflatoxin accumulation than expected based on the 

phenotypic effect of single QTL (Table 4.4). Furthermore, the created NILs can be very 

useful for studying high resolution mapping if smaller chromosomal regions are 

introgressed than were mapped in the original QTL mapping populations (since multiple 

generations of meiosis can provide more recombination and thus a smaller chromosomal 

region being tested). 

Table 4.4 Validation of QTLs in NILs 

QTLs      Phen. Effect ppb aflatoxin 2012 ppb aflatoxin   2014 
2.05 15% 289 231 
3.05 5% 538             401 
4.06 10% 303             278 
4.09 14% 157 368 
3.05, 4.06 5%+10% - 242 
2.05, 4.09             15%+14% - 258 
2.05, 3.05 15%+5% - 36 
3.05, 4.09 5%+14% - 28 

            4.06, 4.09 10%+14% - 10 
      2.05, 3.05, 4.09 15% + 5% + 14% - 82 
      2.05, 3.05, 4.06 15% + 5% + 10% - 12 

None - 690 - 
Va35 - 748 411 
Mp313E - 26 1 

Table adapted from Williams et al; (unpublished). 
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CHAPTER V 

CONCLUSION 

Aflatoxin produced by A. flavus poses a serious threat to public health and causes 

high economic losses for farmers of cotton, maize, and some other crops. This study is 

one of the ongoing effort to make maize more resistant to A. flavus and aflatoxin 

accumulation. Various government and non-government organization and also the 

USDA-ARS Corn Host Plant Resistance Research Unit (CHPRRU) are also working on 

how to make maize more resistant to A. flavus and aflatoxin accumulation. The overall 

objectives of this study are  

1. To identify all the ZmLOXs and report their sequence diversity and 

expression patterns. 

2. To map their effects on aflatoxin accumulation resistance via linkage 

(QTL mapping) and association mapping. 

3. To create Near Isogenic Lines via Marker Assisted Selection, with the 

ultimate goal of validating SNPs identified in a previous GWAS study for 

association accumulation resistance. 

Lipoxygenase enzymes are known to catalyze the addition of molecular oxygen to 

poly-unsaturated fatty acid which are subsequently used in a series of pathway producing 

the jasmonic acid and methyl jasmonate, two compounds that are known to contribute to 

plant resistance to pest and pathogens. Lipoxygenase gene family in maize were 
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identified and their influence on A. flavus and aflatoxin accumulation was determined in 

this study using the aflatoxin association mapping and the QTL mapping methods. Both 

methods show that three of the ZmLOXs have measurable effect on aflatoxin 

accumulation.  

Creation of Near isogenic lines (NILs) is very important for detailed studying the 

effect of a gene or a QTL on aflatoxin accumulation resistance. It also helps to separate 

the effect of the QTL from other genetic effect. NILs are different in just the loci of 

interest and thus helping to differentiate the effect of that loci from other loci. This 

project is still an ongoing project that I will continue to work on for my PhD in the 

nearest future. 
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