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 The public health and veterinary importance of Gulf Coast ticks, 

Amblyomma maculatum Koch (1844) have become more apparent during the 

last several decades.  In addition, new records of this three-host ixodid tick 

presently show a geographic distribution throughout much of the southern United 

States. Rickettsia parkeri, a spotted fever group rickettsia (SFGR) that is 

commonly found infecting the Gulf Coast tick, was only recently recognized as a 

human pathogen. Over the last decade, more than 20 human cases of disease 

caused by R. parkeri have been recognized in the Americas, all of which were 

similar in presentation to mild Rocky Mountain spotted fever. In addition, a novel, 

poorly characterized SFGR, “Candidatus Rickettsia andeanae”, was recently 

identified in A. maculatum from Peru, United States, Chile and Argentina. As the 

recognition of R. parkeri as a pathogen and “Ca. R. andeanae” as an additional 

SFGR in A. maculatum only recently occurred, a general gap exists in our 



 

understanding of the biology of these SFGRs. The overall objective of this 

dissertation was to contribute to our knowledge of SFGR infecting A. maculatum. 

In Chapter 3, we present a prevalence study of R. parkeri and “Ca. R. andeanae” 

in A. maculatum from Mississippi where we detected 15.2% R. parkeri-singly 

infected ticks and 3.1% total “Ca. R. andeanae” infected ticks of which 1.7% were 

co-infected with R. parkeri. In Chapter 4, we discuss finding four genetically 

different populations of A. maculatum from Mississippi infected with a 

homogenous population of R. parkeri, using Single Strand Conformation 

Polymorphism analysis. Those initial data relating to “Ca. R. andeanae” provided 

a foundation for studies described in Chapters 5 and 6. We report the first 

morphological study of “Ca. R. andeanae” using transmission electron 

microscopy in Chapter 5 and isolation of this SFGR in A. maculatum cell co-

culture in Chapter 6. We anticipate that results presented in this dissertation will 

contribute to our understanding of the ecology of A. maculatum as a vector for 

the human pathogen, R. parkeri, and increase the current understanding of both 

R. parkeri and “Ca. R. andeanae” in A. maculatum. 

 

Key words: Amblyomma maculatum, Gulf Coast tick, spotted fever group 
rickettsia, Rickettsia parkeri, America boutonneuse fever, “Candidatus Rickettsia 
andeanae”, prevalence, population heterogeneity, single strand conformation 
polymorphism, transmission electron microscopy, embryonic tick cell line 
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CHAPTER I 

INTRODUCTION 

 

 Gulf Coast ticks (GCTs), Amblyomma maculatum Koch (1844), are ixodid 

three host ticks that are becoming increasingly recognized as public health and 

veterinary threats. Their distribution in the United States has shifted from what 

was historically accepted as a 100 mile northward stretch along the Gulf and 

Atlantic Coasts to presently occurring over much of the southern United States, 

including a population in Oklahoma and Kansas (Hooker and Bishopp 1912, 

Semtner and Hair 1973, Teel et al. 2010). In addition, GCTs, which were long 

established as pests of livestock, wildlife and canids, have become recognized 

as vectors for previously unrecognized disease agents in humans and canids 

during the last three decades.   

 The zoonotic agent, Rickettsia parkeri, is a spotted fever group rickettsia 

(SFGR) initially identified in A. maculatum in 1939, but not considered pathogenic 

to humans for approximately 65 years (Parker et al. 1939, Lackman et al. 1965). 

The index case for human infection with R. parkeri was a man from Virginia who 

initially presented to a clinic in 2002 with fever, body aches and skin reactions 

from a possible tick or other arthropod bites (Paddock et al. 2004). Since then, 

there have been over 20 reported human cases of disease caused by R. parkeri, 
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all of which were similar in presentation to mild Rocky Mountain spotted fever 

(RMSF) (Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Paddock 

et al. 2010). Rickettsia parkeri is also emerging in South America, where there 

infected ticks were reported in Uruguay, Brazil, Argentina and Bolivia, and a case 

report of human infection was recently described in Argentina (Venzal et al. 

2004, Silveira et al. 2007, Nava et al. 2008, Tomassone et al. 2010, Romer et al. 

2011).  

 In addition to the human pathogen, R. parkeri, a second distinct SFGR 

has been identified in A. maculatum. “Candidatus Rickettsia andeanae” is a 

novel, poorly understood SFGR first detected by molecular assays in GCTs in 

Peru and more recently detected in GCTs from the United States, Chile and 

Argentina (Blair et al. 2004, Pacheco et al. 2007, Sumner et al. 2007, Paddock et 

al. 2010, Abarca et al. 2012). While this SFGR has not been detected in 

vertebrate hosts to date and its pathogenicity is unknown, investigations into the 

biology of “Ca. R. andeanae” have been limited due to its relatively recent 

recognition.  

The overall objective of this dissertation was to contribute to our 

knowledge of SFGR infecting A. maculatum. Our goals were to ultimately raise 

awareness of A. maculatum as a vector and R. parkeri infection as an emerging 

rickettsiosis, particularly in the state of Mississippi, as well as increase our 

knowledge of the novel SFGR, “Ca. R. andeanae”, in A. maculatum. Specifically, 

this work identified genetic heterogeneities in populations of GCTs and R. parkeri 

in Mississippi using Single-Strand Conformation Polymorphism (SSCP) analysis. 
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These results shed light on tick movement in Mississippi by defining populations 

present in this state and additionally define genetic heterogeneity of R. parkeri 

detected in GCTs. Further, we anticipate that our results will help fill a gap in 

knowledge regarding “Ca. R. andeanae” through our characterization of the fine 

structure of this SFGR using transmission electron microscopy and through its 

isolation in A. maculatum cell co-culture. We anticipate that these studies will 

provide a foundation for future work elucidating infectivity and pathogenicity of 

“Ca. R. andeanae” as well as evaluating interactions between this SFGR and the 

known pathogen, R. parkeri in A. maculatum. 

 The following specific aims are proposed for this dissertation:  

1. Determine the infection rates of R. parkeri and “Ca. R. andeanae” in 

adult A. maculatum from sites in North and South Mississippi.    

2. Evaluate genetic heterogeneity in populations of adult A. maculatum 

from sites in Mississippi and determine if R. parkeri infecting these 

ticks are genetically different.  

3. Characterize the fine structure and tissue tropism of “Ca. R. 

andeanae” in unfed A. maculatum adults using transmission electron 

microscopy.  

4. Develop an A. maculatum embryonic cell line for isolation of “Ca. R. 

andeanae” and to provide a tick cell line from an additional tick 

species for future research.  
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CHAPTER II 

HISTORICAL REVIEW  

 

Amblyomma maculatum Ticks 
 
 Gulf Coast ticks (GCTs), Amblyomma maculatum Koch (Acari: Ixodidae), 

was first described in 1844 by a German acarologist, Carl Ludwig Koch. The type 

specimen was from “Carolina” and the type host is unknown (Cooley and Kohls 

1944). In general, ticks are effective vectors of a variety of agents comprising 

bacteria, protozoa and viruses. Tick-borne diseases in humans are only second 

in importance to those transmitted by mosquitoes, largely because of malaria. As 

a family, the Ixodidae, also known as hard ticks due to the presence of a hard 

scutum on their dorsum, include the most clinically relevant ticks (Sonenshine 

1991). Amblyomma maculatum is an established pest of livestock in the United 

States. This tick has been implicated with cases of tick paralysis (Paffenbarger 

1951, Espinoza-Gomez et al. 2011), and more recently has been identified as an 

important vector of medical and veterinary infectious agents in the United States 

(Uilenberg 1982, Mathew et al. 1998, Paddock et al. 2004). 

 In North America, A. maculatum can be easily distinguished from other 

tick species partly because it is one of the largest species to occur on this 

continent and has recognizable morphological characteristics, such as an ornate 
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dorsum and long mouthparts (Hooker 1908, Bishopp and Hixson 1936, Cooley 

and Kohls 1944). However, difficulty arises with identification of tick species 

within the general A. maculatum group occurring in the Western hemisphere. 

Ticks in this group belong to the subgenus Anastosiella and include the following 

species: A. maculatum, A. triste, and A. tigrinum (Estrada-Pena et al. 2005). 

Although the three species are very similar in appearance, there is little overlap 

in the geographical distribution of the Neotropical and Nearctic species A. 

maculatum with the two typically Neotropical ticks, A. triste and A. tigrinum 

(Estrada-Pena et al. 2005, Mertins et al. 2010). 

 Historically, A. maculatum in the United States were rarely found more 

than 100 miles inland from the Gulf of Mexico, hence their common name 

(Bishopp and Hixson 1936). Ticks occurring outside the historical range were first 

reported in the mid-20th century (Cooley and Kohls 1944, Semtner and Hair 

1973, Goddard and Norment 1983). Since then, there have been incidental 

collections of A. maculatum as far north as Iowa and Maine (Rand et al. 2007, 

Teel et al. 2010). Established tick populations occur from the eastern part of 

Texas along the Gulf and Atlantic Coasts as far north as Virginia, and include 

originally distinct populations in Oklahoma and Kansas which have now 

coalesced between the two states, and a “hot spot” in Arkansas (Semtner and 

Hair 1973, Teel et al. 2010, Trout et al. 2010b). Some scientists have suggested 

that these recent inland populations were colonized with the movement of 

infested cattle from the Gulf Coast region around 1973 (Semtner and Hair 1973, 

Goddard and Norment 1983). However, Teel (2010) recently proposed that the 
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inland population founded the population along the Gulf and Atlantic coast, as the 

former was more ancient. In Mississippi, GCTs have a more sporadic distribution 

compared to other more commonly found ticks in this state and are mostly found 

in the southern and central regions of Mississippi (Goddard and Paddock 2005). 

A map illustrating current range of A. maculatum in the southern U.S. and 

specifically in Mississippi is shown in Figure 2.1. Outside the United States, A. 

maculatum is found in Mexico, some Caribbean Islands, Colombia, Venezuela 

and Peru (Bishopp and Trembley 1945, Mendoza-Uribe and Chavez-Chorocco 

2004, Teel et al. 2010).  

 Amblyomma maculatum is a three host tick, which means that each 

developmental stage will leave the current host, molt to the next stage off the 

host, and then seek a new host on which to feed. Amblyomma ticks possess long 

mouthparts and inflict painful bites. Ticks of this genus are also aggressive. After 

sensing hosts they actively move towards them in a behavior called “hunting” that 

is used in addition to a passive behavior known as “questing”, whereby they 

crawl up vegetation and wave their forelegs to facilitate clinging to host fur 

(Hooker 1908, Sonenshine 1993). In general, ticks use cues like carbon dioxide 

released from breathing, ammonia from waste, heat radiated from the host, and 

the sounds, vibration and shade produced by the host, for both active and 

passive host-seeking behaviors (Sonenshine 1993).  

 Eggs of GCTs are laid in July and August and hatch by early fall with 

larval stages that often overwinter. Most activity of larval, or “seed”, A. 

maculatum ticks will occur from July until late November, and larvae may 
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continue to be active during warm winters. Nymphal activity for GCTs mainly 

occurs during late winter and the spring. Adult GCTs are very resistant to 

desiccation and can be found from late spring until early fall, although highest 

activity occurs during the hot months of July and August (Bishopp and Hixson 

1936, Hixson 1940, Goddard and Paddock 2005).  

 Unlike some ticks, such as Rhipicephalus sanguineus and A. 

tuberculatum, that mostly feed on dogs and the gopher tortoise, respectively 

(Cooney and Hays 1972, Rhodes and Norment 1979), none of the life stages of 

GCT are very host specific. In nature, a wide host range has been reported. 

Immature GCTs have been described attached to several ground dwelling bird 

species, predominantly bobwhite quail and meadowlarks, as well as small 

mammals, especially rodents (Bishopp and Hixson 1936, Koch and Hair 1975). 

The adult GCT is a known pest of cattle and dogs; they are also frequently found 

on other large mammals, such as goats, sheep, and horses (Hooker and Bishopp 

1912, Bishopp and Hixson 1936). This species will occasionally be found 

attached to people (Felz et al. 1996, Felz and Durden 1999, Goddard 2002). In 

birds and rodents, immature ticks tend to attach to the head and neck while adult 

ticks are often seen in the ears of larger mammals.  

 Damage to the ear produced by large numbers of ticks is a particular 

problem in cattle where inflammation and cartilage destruction cause the ears to 

thicken and droop in a condition known as “gotch ear” (Hooker and Bishopp 

1912, Bishopp and Hixson 1936, Edwards et al. 2010). The parasitized animal is 

less efficient at keeping flies off by flicking its ears, potentially allowing further 
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damage to the ear. In the past this damage also led to detrimental infestations 

with the primary screwworm fly, Cochliomyia hominivorax (formerly C. 

americana, or Callitroga americana) (Bishopp and Hixson 1936). Parasitism by 

the GCT and the gotch ear condition has been reported in other livestock as well 

as cattle for over a century (Hooker 1908, Hooker and Bishopp 1912, Edwards et 

al. 2010).  

 

Amblyomma maculatum as a Vector of Disease Agents 
 
 In the early 1900’s, important diseases transmitted by other ticks to 

animals and humans were becoming recognized, such as bovine babesiosis 

transmitted by Rhipicephalus (Boophilus) annulatus and Rocky Mountain spotted 

fever transmitted mainly by Dermacentor spp. (Hooker 1908, Sonenshine 1993). 

However, at that time, there was no description of biological agents within the 

GCT. It was not until 1939 that a rickettsia, Rickettsia parkeri, was identified in A. 

maculatum (Parker et al. 1939). Although it was found to be pathogenic to guinea 

pigs, its zoonotic potential was unclear and at that time was only known as the 

“maculatum agent” (Parker et al. 1939). The first case of human disease was 

reported within the last decade by Paddock et al. (Paddock et al. 2004). 

 In 1997, a protozoan named Hepatozoon americanum was identified that 

is transmitted to dogs by the ingestion of A. maculatum (Vincent-Johnson et al. 

1997, Mathew et al. 1998). The disease caused by this protozoan, American 

canine hepatozoonosis, is characterized by severe leukocytosis, myositis, and 

proliferation of periosteal bone, becoming very painful and potentially fatal if 
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treatment is delayed. Disease prognosis in canids may be improved if treated 

early, however treatment is long lasting. If left untreated, prognosis was guarded 

to poor in most cases (Potter and Macintire 2010). American canine 

hepatozoonosis was first described in Texas in 1978 (Craig et al. 1978) and now 

is becoming more broadly recognized due to the increasing distribution of the tick 

vector, improved diagnostic assays, and heightened awareness of the disease 

among veterinarians and researchers (Baneth 2011). 

 In the 1800s, cattle imported into the Caribbean Islands from Africa 

brought with them A. variegatum ticks that were infected with Ehrlichia 

ruminantium, which cause heartwater disease in livestock (Uilenberg 1982). 

Heartwater is a severe, fatal ehrlichiosis of African domestic ruminants, and wild 

ruminants, resulting in economic losses to farmers. After heartwater was 

determined to be transmitted at least experimentally by A. maculatum, concern 

over potential introduction of the agent into the United States arose (Uilenberg 

1982, Mahan et al. 2000). Heartwater-infected ticks could enter this country 

inadvertently through animal trade or deliberately by pernicious release as a 

bioterror weapon (Barre et al. 1987). 

 

Biology of Spotted Fever Group Rickettsiae 
 
 The order Rickettsiales comprises small obligate intracellular 

alphaproteobacteria in genera such as the Rickettsia, Ehrlichia, Wolbachia, 

Neorickettsia and Holospora, and is supported by molecular characteristics of 

these genera, including 16S ribosomal RNA phylogeny (Fredricks 2006). Of 
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public health and veterinary relevance are bacteria in the families Rickettsiaceae 

(Rickettsia spp.) and Anasplasmataceae (Anaplasma and Ehrlichia spp.). The 

family Rickettsiaceae consists of gram negative, aerobic, rod-like microparasites 

that can be found intracytoplasmic, and sometimes intranuclear, in both 

vertebrates and arthropods (Fredricks 2006). Rickettsia spp. adhere to the host 

cell membrane by rickettsial outer membrane adhesion proteins, called rOmpA 

and rOmpB. In addition, the SFGR use host cell machinery to produce a 

cytoskeleton of actin which is used to move within the cytoplasm, for nourishment 

and reproduction within the cytoplasm, and for exiting en route to a new cell 

(Walker 2007). Proteomic analysis of the recently identified human pathogen, R. 

parkeri, has shown similarities to pathogenic rickettsiae as it possesses the same 

proteins involved in actin-based motility (Pornwiroon et al. 2009).  

Traditionally, members of the family Rickettsiaceae were classified in 

three groups: spotted fever group, typhus group and scrub typhus group. In 

1965, Lackman created subgroups in the spotted fever group rickettsiae (SFGR) 

based on their antigenic properties in complement fixation tests (Lackman et al. 

1965). For instance, antibodies against R. conorii, the agent of boutonneuse 

fever in Africa and Europe, were more reactive with the “maculatum agent” (R. 

parkeri) antigen than were R. rickettsii antibodies; thus, he grouped R. parkeri 

and R. conorii together, and separated them from the Rocky Mountain spotted 

fever (RMSF) agent. The only member of the original scrub typhus group, 

previously known as R. tsutsugamushi, is now in a new genus, Orientia, which is 

closely related to the genus Rickettsia (Tamura et al. 1995).  
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 Recently, a multi-genic approach proposed separating the spotted fever 

group into two different clades: a spotted fever group that includes the tick-

associated rickettsiae (such as R. rickettsii, R. conorii, R. parkeri) and a 

transitional group (R. akari and R. felis), transmitted by mites and fleas (Gillespie 

et al. 2007). Rickettsia prowazekii and R. typhi remained in the typhus group, 

while a fourth clade of non-pathogenic rickettsiae was assigned which is called 

the ancestral group because it is basal to the other three, includes R. belli and R. 

canadensis (Gillespie et al. 2007). Molecular studies have confirmed over 20 

Rickettsia species as SFGR in the original classification, including R. rickettsii, R. 

conorii, R. parkeri, R. africae, R. peacockii (Fournier et al. 1998, Raoult et al. 

2005, Fournier and Raoult 2007, Socolovschi et al. 2009). In the past two 

decades several other proposed SFGR have been identified but not fully studied, 

as is the case of “Candidatus Rickettsia andeanae” (Blair et al. 2004). The 

designation of rickettsial species has become a dynamic and controversial topic. 

As genetic and genomic approaches for rickettsial taxonomy rapidly advance, a 

plea for including phenotypic and epidemiologic criteria in taxonomic 

classification and nomenclature was recently made (Merhej and Raoult 2011). 

Respectively, example of such criteria to be included are temperature of optimum 

growth and type of host that bacterium is commonly found associated with. 

Descriptive studies like those described in this dissertation provide information 

that will contribute to future efforts that revisit the “species” definition. 
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Significance of SFGR 
 
 Spotted fever rickettsioses have been considered the most important 

neglected emerging infections in the world (Walker 2007). The importance of 

pathogenic SFGR like R. rickettsii, R. prowazekii and R. conorii is clear because 

life-threatening diseases can develop and some scientists suggest that these 

pathogens can also be weaponized for bioterrorism; on the other hand, little is 

known regarding the overall health importance of other SFGR (Azad and 

Radulovic 2003, Walker 2007).  

The most severe spotted fever rickettsiosis in the Western Hemisphere, 

RMSF, appears to be resurging in North and South America (Openshaw et al. 

2010). An example of the resurgence occurred between 2002 and 2004 in 

Arizona. During this time, 13% of children and up to 70% of dogs were 

seropositive for exposure to R. rickettsii and two fatal cases of RMSF occurred in 

a community previously non-endemic for RMSF (Demma et al. 2006). The 

incidence of RMSF in 1997-2002 was reported to be approximately 2.2 cases per 

million persons (Chapman 2006) and as of 2008, the CDC reported 2563 

confirmed or probable cases of RMSF in the United States, an increase of 15% 

from the previous year (CDC 2008). While additional cases of RMSF are likely to 

have occurred, they may not always be reported due to insufficient or non-

specific laboratory testing (Dahlgren et al. 2012). 

Severe morbidity or death may arise when patients do not seek health 

care during the acute phase of RMSF or through misdiagnosis by physicians and 

administration of an incorrect treatment. Despite the fact that antibiotics in the 
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tetracycline class successfully treat RMSF, if left untreated, this disease can be 

fatal in up to a third of patients (Dalton et al. 1995). A review of fatal cases of 

RMSF from 1990 until 2007 showed that the risk groups for disease are children 

five to nine years old, American Indians, immunosuppressed patients and 

delaying in treatment of severe cases (Dahlgren et al. 2012).  

Rocky Mountain spotted fever is the most severe of the spotted fever 

rickettsioses in the Americas, highlighting the medical and veterinary importance 

of correctly identifying and understanding pathogenic SFGR. However, 

similarities in clinical presentation between RMSF and other spotted fever 

rickettsioses and the inability of current routine laboratory techniques to 

differentiate between these rickettsial diseases recently prompted the CDC to 

announce that RMSF cases should now be reported as a “spotted fever 

rickettsiosis” (CSTE 2009, CDC 2010). The most current, although provisional, 

annual data reports a total of 2154 cases (confirmed or probable) of spotted fever 

group rickettsioses cases in 2011, using the updated case definition (CDC 2011). 

 

Rickettsia parkeri, an Emerging Human Pathogen 
 
 In 1939, a rickettsial agent in the spotted fever group, colloquially called 

“maculatum agent”, was reported in the GCT (Parker et al. 1939, Lackman et al. 

1965). For over 60 years the “maculatum agent” was considered only pathogenic 

to guinea pigs, causing fever and scrotal reaction in this host (Parker 1940). 

Lackman et al. eventually gave Parker’s “maculatum agent”, the species name, 
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R. parkeri (Lackman et al. 1965), based on sufficient antigenic differences to 

other SFGR.  

 In the last 20 years over a dozen Rickettsia spp., whether previously 

described or not, have been implicated as agents of animal and human disease 

(Parola and Raoult 2001, Raoult 2010). This includes R. parkeri, which was 

considered non-pathogenic until the first human case of R. parkeri infection was 

diagnosed in 2002 (Paddock et al. 2004). This index case was a man in Virginia 

who presented to a clinic with fever, body aches and skin reactions, including 

multiple eschars, or areas of necrosis, at sites suspected to be tick bites. The 

patient had flu-like symptoms, typical of spotted fever rickettsiosis like RMSF, but 

not as severe. Since that initial case report, there have been approximately 20 

total reported R. parkeri rickettsiosis cases (Whitman et al. 2007, Paddock et al. 

2008, Cragun et al. 2010, Romer et al. 2011). Figure 2.1 provides the 

geographical distribution of 15 out of more than 20 human cases that have been 

reported to date. 

 Despite systemic similarities to mild RMSF in humans, the presence of 

eschars in R. parkeri infection more closely resembles boutonneuse fever 

caused by R. conorii, a SFGR present in Europe and Africa. Given this, Goddard 

suggested the moniker “American boutonneuse fever”  (Goddard 2004). In 

addition, R. parkeri is more closely related phylogenetically to R. conorii, R. 

africae and R. sibirica, than to R. rickettsii based on sequences of rompA, rompB 

and citrate synthase (gltA) genes (Fournier et al. 1998, Roux and Raoult 2000, 

Goddard 2009, Paddock et al. 2010).  
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 Human cases of R. parkeri infection are not restricted to the United States, 

or to the range of A. maculatum, and have been suggested to occur in South 

America where R. parkeri was detected in other Amblyomma spp., namely A. 

triste in Brazil, Uruguay, Argentina (Venzal et al. 2004, Silveira et al. 2007, Nava 

et al. 2008) and A. tigrinum in Bolivia (Tomassone et al. 2010). Serological 

evidence of human rickettsiosis suggestive of R. parkeri infection was described 

in Uruguay (Conti-Diaz et al. 2009). And, most recently, two confirmed cases of 

R. parkeri infection, and other additional probable cases have been reported from 

Argentina (Romer et al. 2011). 

In the United States, another Amblyomma sp., A. americanum, the lone 

star tick, has been found naturally infected with R. parkeri (Goddard and Norment 

1986). Experimental transmission of R. parkeri with A. americanum has also 

been successful using a guinea pig model (Goddard 2003). These ticks, which 

are widespread in the southeastern and south-central U.S., can transmit the 

agent both transovarially and transstadially. When experimentally placed on 

guinea pigs, infected A. americanum successfully transmitted the pathogen, 

causing mild fever and scrotal reactions in exposed animals (Goddard 2003). 

Recently, one study found lone star ticks naturally infected with R. parkeri at a 

very low prevalence (1/418 ticks sampled in Georgia and 1/446 ticks sampled in 

Tennessee) (Cohen et al. 2009), while other studies did not detect R. parkeri in 

any sampled A. americanum (Mixson et al. 2006b, Castellaw et al. 2010, Heise 

et al. 2010). Further work is needed to better understand the role of the lone star 

tick as a vector of R. parkeri. 
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 Prevalence data are important for both disease diagnosis and pest control 

assessment by physicians and public health authorities. Although current 

prevalence data mainly rely on assays that detect DNA of pathogens, historical 

evidence for R. parkeri in GCTs also exists. Specifically, R.  parkeri (formerly 

referred to as the “maculatum agent”) was initially reported from GCTs in 

Mississippi  in the 1950’s using detection by complement fixation tests (Philip and 

White 1955). To the best of our knowledge, prior to work presented in this 

dissertation, two limited surveys using PCR assays provided data evaluating 

presence of SFGR in GCTs in Mississippi. In those studies, 11% to 40% of A. 

maculatum were infected with R. parkeri (1/9 ticks sampled from Copiah county, 

and 2/8 and 25/62 ticks sampled from Jackson and Oktibbeha counties, 

respectively) (Sumner et al. 2007, Paddock et al. 2010). This infection rate is 

consistent with data supported by studies in other states. In Virginia and North 

Carolina, R. parkeri DNA was detected in approximately 42% and 20-33% of 

sampled A. maculatum, respectively (Fornadel et al. 2011, Varela-Stokes et al. 

2011, Wright et al. 2011). Conversely, only about 1% of Dermacentor ticks are 

usually found infected with R. rickettsii in nature (Paddock 2009, Stromdahl et al. 

2011). Since spotted fever rickettsiosis cases occur in Mississippi (Mississippi 

State Department of Health 2011) and misdiagnosis of RMSF is not uncommon 

based on serology and clinical signs, it is important to understand and monitor 

the occurrence of R. parkeri in A. maculatum ticks occurring in the state. 
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The Novel SFGR, “Candidatus Rickettsia andeanae” 
 
 Recently, a novel SFGR was described in A. maculatum and Ixodes 

boliviensis from the Peruvian Andes, hence its proposed name, “Candidatus 

Rickettsia andeanae” (Blair et al. 2004). Later it was detected in A. maculatum 

from the southeastern United States (Sumner et al. 2007). Prevalence of the 

novel SFGR ranged from 2% in Mississippi and Florida in one study (Paddock et 

al. 2010) to approximately 5% in Mississippi, Georgia and Florida (Sumner et al. 

2007). In Virginia, it was about 1-1.5% (Fornadel et al. 2011, Wright et al. 2011) 

and 3.8% from North Carolina (Varela-Stokes et al. 2011). Interestingly, four out 

of 35 ticks found attached to humans were positive by PCR to “Ca. R. andeanae” 

in Oklahoma and Kansas (Jiang et al. 2011). 

Most of our current knowledge regarding “Ca. R. andeanae” comes from 

molecular detection in infected ticks. To date, no vertebrate has been found 

infected with this novel rickettsia. Initial attempts to isolate “Ca. R. andeanae” in 

Vero cells, C6/36 mosquito cells, and ISE6 (Ixodes scapularis) tick cells were 

unsuccessful (Blair et al. 2004, Sumner et al. 2007, Paddock et al. 2010). 

Similarly, the “East Side” agent, R. peacockii, a known endosymbiont in 

Dermacentor andersoni was initially difficult to cultivate.  Only after several 

unsuccessful attempts in several mammalian cell lines was R. peacockii 

ultimately isolated (Niebylski et al. 1997b). Most recently, “Ca. R. andeanae” was 

propagated in mammalian and Drosophila cells (Luce-Fedrow et al. 2011). 

However, the stability of this isolate in these cell lines was unclear and these 
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culture systems may not be ideal for future studies requiring organism for 

experimental infections. 

 To our knowledge, the potential for transmission of or disease by “Ca. R. 

andeanae” has not been explored. Interestingly, there has been an increase of 

spotted fever rickettsioses cases in Tennessee (224 cases in 2008), where an 

epidemiological survey found no ticks out of over 1500 ixodid ticks infected by R. 

rickettsii. The authors suggested other antigenically related SFGR may be 

responsible for disease in the area (Moncayo et al. 2010). While the studies 

presented in this dissertation do not evaluate infectivity or pathogenicity of “Ca. 

R. andeanae” in vertebrate hosts, they do provide a basis for future studies that 

explore these and other questions regarding this novel rickettsia. 

 

Co-infection of SFGR in Ticks 
 
 Rickettsiae have an intimate relationship with their tick vectors, which also 

often function as reservoirs. Transstadial and transovarial transmission, i.e. to 

successive developmental stages and from female ticks to offspring, 

respectively, are important strategies for rickettsial survival outside a vertebrate 

host (Burgdorfer and Brinton 1975). Interestingly, certain SFGR have been 

shown to compete inside the tick, using what is called transovarial interference, 

and natural co-infection of these members of SFGR within individual ticks is not 

common (Azad and Beard 1998). In Dermacentor andersoni, the endosymbiont 

R. peacockii is frequently found infecting female tick ovaries where it replicates 

and is vertically transmitted, but blocks the replication of R. rickettsii in ovaries, 
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thus preventing transmission of R. rickettsii to tick progeny (Burgdorfer et al. 

1981, Burgdorfer 1988). Eventually fewer D. andersoni ticks are infected with R. 

rickettsii in that population. Another example of the phenomenon was more 

recently described between the nonpathogenic species, R. rhipicephali and R. 

montanensis, where infection with one species prevented infection by the other in 

D. variabilis (Macaluso et al. 2002). Despite the rarity of co-infections described 

possibly because surveys of ticks typically used one broad-range assay to detect 

any SFGR, recently a male GCT was reported simultaneously infected with R. 

parkeri and “Ca. R. andeanae” in North Carolina (Varela-Stokes et al. 2011). 

Also, SFGR co-infection has been reported in A. americanum co-infected with R. 

amblyommii and R. rickettsii (Berrada et al. 2011) and in D. occidentalis with R. 

rhipicephali and R. bellii (Wikswo et al. 2008, Berrada et al. 2011). These reports 

warrant further study of rickettsial co-infection, particularly to determine how 

simultaneous infections with sympatric rickettsiae may affect their individual 

maintenance in nature and transmission to vertebrates from ticks. 

 

Single Strand Conformation Polymorphism 
 
 Analysis of genetic variation has been useful for systematic, evolutionary, 

and epidemiological studies of infectious agents and their vectors (Gasser and 

Chilton 2001). For instance, single strand conformation polymorphism (SSCP) 

has proven to be a powerful tool for disease surveillance and control strategies in 

Lyme disease, cryptosporidiosis, and parasitic helminthes (Guttman et al. 1996, 

Anderson and Norris 2006, Jex et al. 2007, Simsek et al. 2011). In addition, 
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SSCP has become more user-friendly with a non-isotopic SSCP method that 

utilizes larger amplicons of sizes up to 500bp (Hongyo et al. 1993, Gasser and 

Chilton 2001, Gasser et al. 2007). SSCP relies on the principle that the mobility 

of denatured, single strands of DNA in a non-denaturing gel is highly dependent 

on chemical composition and number of nitrogenous bases (Orita et al. 1989). 

Thus, DNA sequences differing by single base pair mutations can be identified as 

unique gel profiles, which are also different haplotypes, based on numbers of 

bands and length of migration in electrophoresis.  

 There are few reports describing genetic variation analyses in GCT 

populations. In a recent study, considerable population variability was detected in 

GCT populations in the southern United States (Ketchum et al. 2009). The 

authors found that ticks from Kansas were more heterogeneous than ticks from 

Oklahoma and Texas and suggested a need for additional studies to determine 

reasons for these differences and implications (Ketchum et al. 2009). In Chapter 

4, we present data from our study to identify haplotypes occurring in selected 

areas of Mississippi using SSCP. This study was similarly based on a fragment 

of the tick 16S mitochondrial DNA, chosen because it has been shown to be 

good indicator of variability (Black and Piesman 1994, Anderson et al. 2004, 

Trout et al. 2010a). 

 Genetically distinct populations of ticks may also differ in vector 

competency, such that their capacity to acquire, maintain and transmit pathogens 

may vary (Reichard and Kocan 2006). For example, Qiu et al. found that when 

genetic variability of the tick vector, Ixodes scapularis, was low, infection rates 
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with Borrelia burgdorferi, the agent of Lyme disease, were higher (Qiu et al. 

2002). We hope to use our SSCP data to contribute to the knowledge of R. 

parkeri and A. maculatum genetic heterogeneity in Mississippi. Interestingly, a 

single study of rickettsial genetic variation based on SSCP of rompA gene 

showed no variability in R. montanensis, suggesting that D. variabilis ticks in the 

study area were infected with a single SFGR haplotype (Ammerman et al. 2004). 

Intergenic spacer regions, which are noncoding sequences that are under less 

selection pressure, were significantly more variable than coding genes and split 

or remnant genes and more useful in typing Rickettsia conorii (Fournier et al. 

2004) and R. rickettsii isolates (Karpathy et al. 2007). Thus, as the rompA gene 

sequence may not be very informative due to low variability, an alternative 

approach may be to analyze intergenic spacer regions (Fournier et al. 2004, 

Karpathy et al. 2007).  

 

Ultrastructural Studies of SFGR 
 
 Rickettsiae are small (0.3-0.5 x 0.8-2 µm), rod-shaped bacteria that have 

cell walls and lack flagella (Fredricks 2006). The cell wall of rickettsiae is similar 

to other gram negative bacteria at the light microscopy level, but at the 

ultrastructural level, there is a trilaminar cell wall consisting of the cytoplasmic 

membrane, and an inner and outer leaflet surrounded by an electron lucent layer, 

called a “halo zone” or slime layer (Hayes and Burgdorfer 1979, Silverman 1991).  

 Transmission electron microscopy (TEM) has been frequently utilized to 

elucidate the relationship of ticks and SFGR (Silverman 1991, Simser et al. 2002, 
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Kurtti et al. 2005). Hayes and Burgdorfer reported R. rhipicephali broadly 

infecting the tissues of Rhipicephalus sanguineus ticks, but maximum 

concentrations were found in salivary glands, Malpighian tubules and ovaries 

(Hayes and Burgdorfer 1979). A similar distribution that included the tick midgut 

was described for the SFGR, R. honei, in Aponomma hydrosauri, a reptilian tick. 

That R. honei was also identified in ovaries suggested it was transovarially 

transmitted (Whitworth et al. 2003). In chapter 5, TEM is used to study the fine 

structure of “Ca. R. andeanae” as well as to provide ultrastructural descriptions of 

tissue tropism in A. maculatum, which may generate hypotheses to test aspects 

of pathogenicity and transmission.  

 

Tick Embryonic Cell Lines 
 

Tick cell lines have been utilized in research for over 60 years aiding in 

isolation and study of several arboviruses, bacteria and protozoa (Bell-Sakyi et 

al. 2007). Tick cell lines have been key in isolating pathogens such as the 

Crimean-Congo Hemorrhagic Fever virus, the agent of a serious zoonosis 

especially problematic in Africa and in the Middle East (Bell-Sakyi et al. 2011), R. 

felis, an emerging human pathogen and potential bioterror weapon carried by the 

cat flea (Pornwiroon et al. 2006), and Ehrlichia ruminantium (Bell-Sakyi et al. 

2000). Tick cell lines have also been valuable for studies of host-vector-pathogen 

interactions, proteomics and genomics investigations as well as the production of 

vaccines (Bell-Sakyi et al. 2007, Richards 2011). Primary cultures may be 

established from molting nymphs and ovarian tissues, but the easiest and most 
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widely utilized process is through utilization of tick embryos (Bell-Sakyi et al. 

2007).  

Rickettsiae are obligate intracellular bacteria that are incapable of growing 

in eukaryotic cell-free medium. In vitro cultivation of SFGR is possible using a 

variety of cell lines, including Vero (African green monkey kidney cells), L-929 

(murine aneuploid fibrosarcoma cells), HEL (human erythroleukemia cells) and 

MRC5 (human fetal lung fibroblast cells) (Dumler and Walker 2005). However, as 

most SFGR are maintained within ticks in nature, tick embryonic cell lines have 

been established to aid in isolating many of these SFGR. For example, isolation 

of the fastidious tick endosymbiont, R. peacockii required establishment of a D. 

andersoni cell line (Simser et al. 2001). There are currently over 57 tick cell lines 

from 13 ixodid and one argasid tick species, however no cell line from the GCT 

has been established to date (Bell-Sakyi et al. 2007, Bell-Sakyi et al. 2011).  

As discussed earlier, the public health and veterinary importance of GCTs 

have been increasing with the awareness that GCTs may harbor and transmit a 

human rickettsia and canine protozoan that were only recognized in the last few 

decades. Studies of organisms harbored by this tick species, including the poorly 

characterized SFGR, “Ca. R. andeanae”, will benefit from establishment of an A. 

maculatum cell line. The pathogenicity of “Ca. R. andeanae” is currently 

unknown, and future studies to evaluate both pathogenicity and infectivity to 

vertebrates will require a stable isolate. The most natural environment for the 

propagation of a tick-associated bacterium for studying its biology would be cells 

from the native tick host, A. maculatum. As shown, ehrlichiae grown in vertebrate 

http://www.copewithcytokines.de/cope.cgi?key=Cytokine%20Inter%2dspecies%20Reactivities
http://www.copewithcytokines.de/cope.cgi?key=Cell%20lines%20in%20Cytokine%20Research
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or tick cells showed different levels of protein expression at the p28/p30-Omp 

locus (Singu et al. 2006). Similarly, in R. conorii grown in mammalian compared 

to insect cells, transcription of the SpoT3 gene, a gene involved in adaptation of 

various arthropod-borne organisms to different environments, ceases during 

growth in the insect cells (Rovery et al. 2005). In Chapter 6, we present the 

establishment of a new embryonic cell line from naturally infected A. maculatum 

with “Ca. R. andeanae” and isolation of the rickettsia, both of which will contribute 

to our understanding of GCT-associated organisms as well as “Ca. R. 

andeanae”.  
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Figure 2.1 Geographical ranges of Gulf Coast ticks and human reports of R. 
 parkeri infection in the U.S. and Mississippi and sites of tick 
 collection for chapters 3 and 4 

NOTE: Left map shows the most established distribution of Gulf Coast ticks in 
the U. S. (gray area) and the asterisks are published collections of these 
ticks in incidental reports (may or  may not reflect permanent populations) 
(Teel et al. 2010). Also in the U. S. map are 15 of the reported cases of 
Rickettsia parkeri rickettsiosis (filled circles, confirmed cases; hollow 
circles, probable;(Paddock et al. 2004, Paddock et al. 2008, Cragun et al. 
2010). The inset map shows the Mississippi counties where Goddard and 
Paddock (Goddard and Paddock 2005) reported occurrence of 
Amblyomma maculatum in the shaded counties as well as the previously 
reported cases of rickettsiosis by R. parkeri (Paddock et al. 2008).  Right 
map also shows the sites of GCT collection for chapters 3 and 4 of this 
dissertation (‘x’ marks). Figures adapted with permission. 
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CHAPTER III 

PREVALENCE OF RICKETTSIA PARKERI AND “CANDIDATUS RICKETTSIA 

ANDEANAE” IN GULF COAST TICKS FROM MISSISSIPPI 

 

Abstract 

 During 2008 through 2010, 707 adult Gulf Coast ticks (Amblyomma 

maculatum) were collected from ten sites in Mississippi. Of these, 15.2% were 

infected with the human pathogen, Rickettsia parkeri, and 1.4% of Gulf Coast 

ticks were singly infected with “Candidatus Rickettsia andeanae”, a recently 

described species of unknown pathogenicity. Additionally, 1.7% of ticks were co-

infected with R. parkeri and “Ca. R. andeanae”, demonstrating that co-infections 

occurred at a rate higher than single infections of “Ca. R. andeanae” in Gulf 

Coast ticks. To our knowledge this is the largest collection of Gulf Coast ticks 

tested for these rickettsiae from one state. Studies to examine the role of “Ca. R. 

andeanae” as a potential pathogen and to evaluate the ecological relationships 

among R. parkeri and “Ca. R. andeanae” in Gulf Coast ticks are warranted.    

 

Introduction 

 Gulf Coast ticks, Amblyomma maculatum Koch, are currently found in 

most of the central and southeastern United States, (Figure 2.1) (Semtner and 
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Hair 1973, Teel et al. 2010, Trout et al. 2010b). Amblyomma maculatum ticks 

have attracted attention in the past decade because Rickettsia parkeri, a spotted 

fever group Rickettsia (SFGR) species transmitted by A. maculatum, was 

recently identified as a cause of human disease (Paddock et al. 2004). More than 

20 cases of this infection have been described from the U. S. and Argentina 

(Paddock et al. 2004, Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 

2010, Paddock et al. 2010, Romer et al. 2011). Disease due to R. parkeri 

infection is similar to, but milder than, Rocky Mountain spotted fever, caused by 

R. rickettsii. Misdiagnosis of Rocky Mountain spotted fever with other SFG 

rickettsioses, including R. parkeri infection, may occur due to clinical similarities 

among spotted fever rickettsioses and serological cross-reactivity among SFGR 

using current diagnostic tests (Paddock et al. 2008).  

 Another SFGR species, “Candidatus Rickettsia andeanae”, was recently 

found in A. maculatum. This novel rickettsia was first identified in A. maculatum 

and Ixodes boliviensis from the Peruvian Andes and later identified in Gulf Coast 

ticks in Mississippi, Florida, Georgia, Kansas, Oklahoma and Virginia (Blair et al. 

2004, Sumner et al. 2007, Paddock et al. 2010, Fornadel et al. 2011, Jiang et al. 

2011, Luce-Fedrow et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011). 

Recently, an isolate from an A. maculatum tick was propagated in three cell lines 

collected in Virginia (Luce-Fedrow et al. 2011). As no cases of infection in 

humans or other vertebrates have been described, the pathogenicity of “Ca. R. 

andeanae” is currently unknown.   
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 Mississippi is located centrally in the range of the Gulf Coast tick 

distribution and reported cases of R. parkeri rickettsiosis in the U. S., with at least 

one confirmed and three probable cases of R. parkeri rickettsiosis from this state 

(Paddock et al. 2008). Here we report the results of a three-year collection of 

questing adult A. maculatum from ten sites in Mississippi to more fully ascertain 

the prevalence of R. parkeri and “Ca. R. andeanae” in these ticks.  

 

Materials and Methods 
 
Tick Collection 
 

From June to September of 2008, 2009 and 2010, adult Gulf Coast ticks 

were collected using a 1 m2 muslin drag cloth to sweep ticks from vegetation in 

ten sites in Mississippi (Figure 2.1). Sample sizes were selected based on a 

prevalence estimate of tick-borne rickettsiae (including Ehrlichia spp., Rickettsia 

parkeri, and Anaplasma spp.) in unfed ticks, a 5% precision, and 95% confidence 

level  using the formula by Daniel (Daniel 1999). We used a lower prevalence of 

5% in calculations, resulting in a sample size of 73, and chose a minimum of 70 

Gulf Coast ticks as the goal per site for a total of 700 ticks. Sites were selected 

from counties in Mississippi previously identified as supporting populations of 

Gulf Coast ticks (Goddard and Paddock 2005), including  the towns of Starkville 

in Oktibbeha county, Mathiston in Choctaw county, Byram in Hinds county, Moss 

Point, Pascagoula and Gautier in Jackson county, and Pass Christian in Harrison 

county. Adult ticks were identified morphologically to species and sex and 

preserved in 70% ethanol until DNA extraction.  
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DNA Extraction 
 

Genomic DNA was extracted using Illustra™ Tissue & Cells genomicPrep 

Mini Spin Kit (GE Healthcare, Piscataway, NJ, USA). Individual ticks were 

minced using a sterile scalpel blade in proteinase K and lysis buffer from the kit 

and prepared following the manufacturer’s instructions. Amplifiable DNA was 

assessed by a PCR assay targeting a 299-bp fragment of the tick mitochondrial 

16S rRNA gene (Black and Piesman 1994).  

 

Molecular Evidence of Rickettsia parkeri and “Candidatus R. andeanae” 
 

A nested PCR assay that amplifies a portion of the rickettsial outer 

membrane protein A gene (rompA) (Paddock et al. 2004) was used to screen 

ticks for molecular evidence of any SFGR species. Tick extracts that tested 

positive by this assay were subsequently tested in species specific assays, using 

primers to amplify a 447-bp fragment of the R. parkeri rompA gene (Varela-

Stokes et al. 2011) and 408-bp rompA gene fragment of “Ca. R. andeanae”  

(Paddock et al. 2010). All PCR products were stained with ethidium bromide and 

electrophoresed in a 2% agarose gel. All PCR assays included a positive control 

of DNA extracted from cultured R. parkeri (Tate’s Hell strain) or “Ca. R. 

andeanae”-infected Gulf coast ticks, confirmed previously by PCR and 

sequencing. Water was used as a negative control for all assays. PCR products 

were purified using Montage PCR Centrifugal Filter Device (Millipore, Bedford, 

MA, USA) and sequenced by Eurofins MWG Operon (Huntsville, AL, USA). 
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Consensus sequences were generated by ClustalX2 alignment and identified 

using GenBank BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Statistical Analysis 
 
 Proportions of ticks infected with SFGR, by region and year, were 

compared separately by Fisher’s Exact test followed by pairwise comparisons 

with a Bonferroni adjustment, using PROC FREQ, SAS for Windows, V9.2 (SAS 

Institute, Cary, NC).  A p-value of less than or equal to 0.05 was considered to be 

significant for all analyses unless otherwise noted. An index of co-infection (IC) 

was calculated to determine if the level of co-infections of A. maculatum ticks 

with R. parkeri and “Ca. R. andeanae” was significantly higher than expected due 

to chance alone, using the formula: IC = ((O – E)/N) x 100, where O = observed 

co-infection numbers; E = expected occurrence of co-infection due to chance 

alone and N = total number of ticks infected by either or both microorganisms 

(Ginsberg 2008).  

 

Results 
 
 In this study, most A. maculatum ticks were collected in July and August of 

each sampled year in areas exposed to full sun during hours (9am-3pm) of peak 

temperature. Along the coast, typically ticks were collected in pine savannahs, 

containing mostly wiregrass (Aristida stricta), gallberry (Ilex glabra), and invasive 

torpedograss (Panicum repens). In the central and northern Mississippi sites, 

most ticks were collected in areas containing golden rod (Solidago spp.), 
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Johnson grass (Sorghum halepense), Bermuda grass (Cynodon dactylon), 

Fescue (Festuca spp.) and dallisgrass (Paspalum dilatatum) (Goddard et al. 

2011). Our goal was to collect 70 ticks per site, however this was not possible in 

2008 and additional collections were made in 2009 and 2010 to fulfill this goal. A 

total of 707 adult A. maculatum ticks were obtained during the three-year 

sampling period, comprising 350 in 2008, 194 in 2009 and 163 in 2010.  

Mitochondrial 16S rDNA was detected in 698 (98.7%) of the tick extracts. 

Of 698 ticks with evidence of successful DNA extraction as demonstrated by the 

tick mitochondrial PCR assay, 128 (18.4%) were positive for SFGR DNA 

including 106 (15.2%) singly infected with R. parkeri and 10 (1.4%) that were 

singly infected with “Ca. R. andeanae” (Table 3.1). Interestingly, 12 (1.7%) ticks 

were co-infected with R. parkeri and “Ca. R. andeanae”. All 22 ticks singly or co-

infected with “Ca. R. andeanae” as determined by species-specific PCR assay 

were confirmed by sequencing. For the 12 co-infected ticks, PCR products of R. 

parkeri from the species-specific assay were also purified and sequenced to 

confirm the PCR findings.  

 The majority (94.6%) of tick specimens could be segregated into those 

collected from northeastern Mississippi (N = 260) and those from coastal 

Mississippi (N = 409). There was no significant difference in the prevalence of 

ticks infected singly with R. parkeri between northern and southern Mississippi 

locales (p-value = 0.13) (table 3.1). However, the southern sites had significantly 

more ticks singly infected with “Ca. R. andeanae” than sites from the northern 

region of the state (p-value = 0.03). The prevalence of co-infected ticks in the 
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southern sites was nearly significant higher compared to the northern (p-value = 

0.06). Prevalences were also compared among the three years of collection for 

North and South sites using Fisher’s exact test (Table 3.2). Only the prevalence 

of singly infected ticks with R. parkeri was statistically different among the years 

(p-value = 0.01) and the prevalence of R. parkeri in 2010 was significantly 

greater than in 2009 (p-value = 0.003, α/3 = 0.02). We determined an overall 

index of co-infection with R. parkeri and “Ca. R. andeanae” of 6.5, suggesting 

that the numbers of co-infections were greater than expected due to chance 

alone. 

 

Discussion 
 
 Gulf Coast ticks occurring throughout Mississippi, particularly along the 

Gulf Coast, have been shown to be commonly infected with R. parkeri (Sumner 

et al. 2007, Paddock et al. 2010). We found an overall prevalence of 18.4% in 

sampled Gulf Coast ticks infected with any SFGR species, where 15.2% of ticks 

were singly infected with R. parkeri and 1.7% had both R. parkeri and “Ca. R. 

andeanae”. Typically, R. parkeri has been found in moderate prevalence rates. 

Ticks collected in Georgia, Florida, Kentucky, Oklahoma and South Carolina and 

Mississippi have been detected with an average prevalence rate of 11.5% 

(Sumner et al. 2007). However, two recent studies detected R. parkeri infecting 

about 42% of A. maculatum collected in Virginia (Fornadel et al. 2011, Wright et 

al. 2011) and 20-33% in North Carolina (Varela-Stokes et al. 2011). High 

prevalence rates (over 20%) as reported from Virginia and North Carolina have 
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been found in Jackson and Oktibbeha counties in Mississippi in a previous study 

(Paddock et al. 2010) and in this study from the same two counties. Although we 

did not collect consistently at all ten sites during the three year study period, we 

observed a fluctuation in prevalence of R. parkeri-infected ticks at sites between 

different years. The infection rate observed in this study, equivalent to 

approximately one R. parkeri-infected Gulf Coast tick for every 6 ticks tested, 

suggests that it may not be uncommon for humans to encounter infected Gulf 

Coast ticks in Mississippi. Thus, physicians should consider including  R. parkeri 

rickettsiosis when  formulating a differential diagnosis for febrile patients who 

have nonspecific symptoms accompanied by dermatological reactions,  such as 

a rash, or particularly an eschar at the site of a tick bite; history of tick bite may or 

may not be present (Paddock et al. 2008). 

 “Candidatus R. andeanae” is an uncharacterized SFGR occurring in Gulf 

Coast ticks, first described in Peru (Blair et al. 2004). In studies from the U. S., a 

cumulative infection prevalence of 3% has been reported from questing adult A. 

maculatum ticks collected in Mississippi, Florida, Georgia and Virginia (Sumner 

et al. 2007, Paddock et al. 2010, Fornadel et al. 2011, Wright et al. 2011). We 

also identified “Ca. R. andeanae” infection in approximately 3% of Mississippi 

Gulf Coast ticks; with approximately half of these representing single infections 

and the others as a co-infection with R. parkeri.  To our knowledge, except for 

the recent report of one co-infected Gulf Coast tick in North Carolina (Varela-

Stokes et al. 2011), there are no other reports of ticks co-infected with R. parkeri 

and “Ca. R. andeanae”. Tick surveys for SFGR agents characteristically use one 
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broad-range assay to determine the infecting species. Had we used this type of 

protocol, it is likely that only R. parkeri or “Ca. R. andeanae” infections would 

have been identified in each of the 12 tick specimens that were co-infected with 

both agents. Although simultaneous infection of individual ticks with two 

Rickettsia sp. is rarely reported, and the transovarial interference phenomenon 

(Azad and Beard 1998) contributes to this rarity, there are several mechanisms 

to produce co-infected ticks (Burgdorfer and Brinton 1975, Burgdorfer 1988). Co-

infections with Rickettsia spp. were recently reported involving R. rhipicephali 

and R. bellii in Dermacentor occidentalis, and R. amblyommii and R. rickettsii in 

Amblyomma americanum (Wikswo et al. 2008, Berrada et al. 2011). Our report 

and others underscore the importance of using multiple assays to identify SFGR 

co-infections in ticks. The biological consequences of rickettsial co-infections 

remain to be determined; however, our findings suggest that R. parkeri-“Ca. R. 

andeanae” co-infections occur in Gulf Coast ticks more frequently than expected 

by chance alone. 

 Although the pathogenic status of “Ca. R. andeanae” has not yet been 

investigated, the first report of this novel SFGR was from two infected ticks 

occurring in a region with an outbreak of febrile people where two patients had 

died (Blair et al. 2004). Jiang et al. (Jiang et al. 2011) showed that four ticks 

removed from people in Oklahoma and Kansas were also positive for the 

bacterium. The potential for human infection with “Ca. R. andeanae” is unknown, 

however human infections have been demonstrated with other SFGR that were 

previously thought to be non-pathogenic (Raoult and Roux 1997). We observed 
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that the majority of the infected ticks with “Ca. R. andeanae”, whether singly or 

co-infected with R. parkeri, were from southern Mississippi in comparison with 

the northern sites. Interestingly, there have been four reports of R. parkeri 

rickettsiosis that have occurred in the same southern Mississippi region where 

we collected ticks for this study (Paddock et al. 2008). In addition to the human 

disease potential of “Ca. R. andeanae”, the impact of co-infection in Gulf Coast 

ticks with both “Ca. R. andeanae” and R. parkeri on disease transmission of the 

latter known pathogen is also unknown. The recent isolation of “Ca. R. 

andeanae” may aid in elucidating the relationship of both SFGR and 

pathogenicity of the novel rickettsia (Luce-Fedrow et al. 2011).  
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Table 3.1 PCR results by region for adult Amblyomma maculatum ticks in 
Mississippi, 2008 to 2010 

Sites in 

MS 

Total 

no. ticks 

No. (%; 95% CI) 

SFG rompA 

positive 

No. (%; 95% CI) 

R. parkeri 

positive only  

No. (%; 95% CI)             

“Ca. R. andeanae” 

positive only  

No. (%; 95% CI)           

co-infected 

North 257 49 (19.1*; 

14.5-24.4) 

48 (18.7†; 

14.1-24) 

0 (0‡) 1 (0.4§; 

0-2.1) 

Central 38 4 (10.5) 1 (2.6) 2 (5.3) 1 (2.6) 

South 403 75 (18.6*; 

14.9-22.8) 

57 (14.1†; 

10.9-17.9) 

8 (2.0‡; 

0.9-3.9) 

10 (2.5§; 

1.2-4.5) 

Total 698 128 (18.4) 106 (15.2) 10 (1.4) 12 (1.7) 

* p-value= 0.9187; † p-value=0.1275; ‡ p-value=0.0257; § p-value=0.0578 (comparison 
of prevalences from northern and southern sites only). 
 

Table 3.2 PCR results by year for adult Amblyomma maculatum ticks collected in 
southern and northern Mississippi, USA 

Year 
Total 

no. ticks 

No. (%, 95% CI) 

SFG rompA 

positive 

No. (%, 95% CI) 

R. parkeri only 

positive 

No. (%, 95% CI)  

“Ca. R. 

andeanae”      

only positive 

No. (%, 95% CI) 

co-infected 

2008 343 68 (19.8¶; 

15.7-24.4) 

54 (15.7*; 

12.0-20.0) 

7 (2.0‡; 

0.8-4.2) 

7 (2.0†; 

0.8-4.2) 

2009 161 21 (13.0¶; 

8.3-19.2) 

16 (9.9*; 

5.8-15.6) 

1 (0.6‡; 

0-3.4) 

4 (2.5†; 

0.7-6.2) 

2010 156 35 (22.5¶; 

16.1-29.8) 

35 (22.4*; 

16.1-29.8) 

0 (0‡) 0 (0†) 

¶ p-value=0.0713; * p-value=0.0097; ‡ p-value=0.1359; † p-value=0.1381 
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CHAPTER IV 

POPULATION ANALYSIS OF AMBLYOMMA MACULATUM TICKS AND 

RICKETTSIA PARKERI USING SINGLE STRAND CONFORMATION 

POLYMORPHISM 

 

Abstract 
 

Gulf Coast ticks, Amblyomma maculatum, are expanding into areas not 

previously reported in the United States and are emerging threats for public and 

veterinary health. Genetic analyses of the Gulf Coast tick and the zoonotic agent 

it transmits, Rickettsia parkeri, can provide a better understanding of the 

dynamics of this tick-pathogen system and implications for disease transmission. 

To assess genetic variation of tick and rickettsial populations, we collected adult 

A. maculatum from ten sites in Mississippi, four in the northern, one in central 

and five in the southern part of the state. PCR amplicons from tick mitochondrial 

16S rRNA and rompA genes as well as five intergenic spacer regions were 

evaluated for genetic variation using single strand conformation polymorphism 

analysis. Frequencies of the four tick haplotypes were not significantly different 

among regions of Mississippi, but within sites there were differences in 

distribution that can be explained by the high migration rate estimated. 

Phylogenetically, one tick haplotype was basal to the other three and 
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comparisons to a similar genetic variation study from ticks in Texas, Oklahoma 

and Kansas were drawn. Interestingly, in this study we report finding no genetic 

variation among R. parkeri infecting these ticks. Future studies that include a 

larger selection of intergenic spacer regions may be able to distinguish potential 

genetic heterogeneity between R. parkeri populations.  

 

Introduction 
 

Genetic analyses contribute to an understanding of systematics, 

phylogenetics and the epidemiology of arthropod vectors and the infectious 

agents they transmit (Gasser and Chilton 2001). Large population studies have 

contributed to our understanding of common tick-borne disease vectors in North 

America, specifically, Amblyomma americanum, Dermacentor variabilis and 

Ixodes scapularis (Qiu et al. 2002, Mixson et al. 2006a, Krakowetz et al. 2010). 

However, other North American tick vectors have not been as well studied. 

Amblyomma maculatum, the Gulf Coast tick (GCT), serves as the primary vector 

for Rickettsia parkeri, an agent causing spotted fever rickettsiosis similar to 

Rocky Mountain spotted fever (Paddock et al. 2004). Amblyomma maculatum 

was historically documented along the Gulf and Atlantic coasts; however, 

populations have spread and this species is currently found in most of the central 

and southeastern United States, including Oklahoma, Kansas and Arkansas 

(Figure 2.1) (Semtner and Hair 1973, Teel et al. 2010, Trout et al. 2010b). Since 

the disease and vector potential of R. parkeri and A. maculatum, respectively, 

were overlooked for nearly 70 years, and have only recently been studied more 
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intensively, many gaps in our understanding of this tick-pathogen system still 

exist.  A single genetic study using limited numbers of GCTs found that A. 

maculatum populations from Kansas were more heterogeneous than those from 

Oklahoma and Texas, possibly due to differences in wildlife influence or livestock 

movement among these states (Ketchum et al. 2009). As the public health 

importance of A. maculatum rises, genetic analyses using large populations of 

this tick species would help us understand the dynamics of this tick-pathogen 

system and implications for disease transmission to humans.  

Genetically distinct populations of ticks may possess distinct vector 

competency, such that their capacity to acquire, maintain and transmit pathogens 

may vary in different regions (Reichard and Kocan 2006). Qiu et al. found that 

the tick vector, Ixodes scapularis, and the agent of Lyme disease, Borrelia 

burgdorferi, had an intrinsic relationship related to their co-evolution over time 

and spatial distribution in the United States. The genetic variability of the 

southern tick population may be a cause of low Borrelia infection in the South 

(Qiu et al. 2002). Over 20 cases of spotted fever rickettsiosis due to R. parkeri 

infection have been reported in the U.S. and Argentina (Paddock et al. 2004, 

Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Paddock et al. 

2010, Romer et al. 2011). In Mississippi, approximately one out six ticks (15.2%) 

was found infected with R. parkeri, however a prevalence as high as 40% has 

also been reported (Paddock et al. 2010). Genetic analyses may aid defining 

heterogeneous populations of A. maculatum as well as the rickettsial pathogen it 

transmits.   
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Mississippi is located in the center of both the Gulf Coast tick distribution 

and the range of reported cases of R. parkeri rickettsiosis in the U. S. Thus, 

Mississippi is an ideal location to study population genetics of this tick and 

bacterium. Single strand conformation polymorphism (SSCP), a commonly used 

tool for analyses of genetic variation, has assisted in the surveillance and design 

of control strategies for Lyme disease, cryptosporidiosis, and parasitic helminthes 

(Guttman et al. 1996, Anderson and Norris 2006, Jex et al. 2007, Simsek et al. 

2011). Here we report the results of a three-year collection of questing adult A. 

maculatum from ten sites in Mississippi that analyzed the genetic heterogeneity 

of tick and rickettsial populations from sites in Mississippi using SSCP.  

 

Materials and Methods 
 
Tick Collection 
 
 Adult A. maculatum were collected as part of a previous study (Ferrari, 

F.A.G et al., submitted to Emerging Infectious Diseases journal) from vegetation 

in ten sites (‘x’ marks in the inset map, Figure 2.1) during the summers of 2008, 

2009 and 2010. Sites were selected from counties in Mississippi previously 

identified as supporting populations of Gulf Coast ticks (Goddard and Paddock 

2005).  In addition, 25 adult A. maculatum from a previous study in North 

Carolina (Varela-Stokes et al. 2011) were used as an SSCP outgroup for tick and 

rickettsial studies.  Adult ticks were morphologically identified to species and sex 

and preserved in 70% ethanol until DNA extraction.  

 



 

41 

DNA Extraction 
 
 Genomic DNA was extracted using Illustra™ Tissue & Cells genomicPrep 

Mini Spin Kit (GE Healthcare, Piscataway, NJ, USA). We first minced individual 

ticks using a sterile scalpel blade in proteinase K and lysis buffer from the kit and 

then continued the DNA extraction following the manufacturer’s instructions.  

 

Amblyomma maculatum and Rickettsia parkeri PCR 
 
 PCR products were generated for fragments of tick 16S mitochondrial 

rRNA (Black and Piesman 1994) and rickettsial ompA (Paddock et al. 2004, 

Varela-Stokes et al. 2011) genes as described for all tick DNA extracts (FAGF, 

unpublished data). Additionally, five primers targeting rickettsial intergenic spacer 

regions (ISRs) were chosen. We selected mppA-purC, rpmE-tRNAfMet, RR1240-

tlc5, RR0155-rpmB and cspA-ksgA as they were the most informative regions 

identified in previous studies (Fournier et al. 2004, Karpathy et al. 2007). All PCR 

amplicons were subjected to cold SSCP analysis, described below.  

 

Non-isotopic SSCP Analysis of Amplicons 
 
 Our cold SSCP protocol followed suggestions by the manufacturer of the 

gels and gel apparatus with some adaptations (Elchrom®). For each positive 

sample, 8.4uL of PCR product was added to 3.6 μl of denaturing loading mix 

prepared right before use and mixed well. The mix is composed of 150μl of 

formamide, 1.5μl of 1M NaOH and 3.9μl of each product-specific primer. A few 

grains of bromphenolblue were added to the mix for better visualization. Samples 
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were then denatured by heating at 95°C for 5.5 minutes, snap cooled on ice for 3 

minutes and rapidly loaded into precast GMA™ gels (Elchrom Scientific AG, 

Cham, Switzerland). Electrophoresis took place in an Origins™ gel apparatus 

(Elchrom Scientific AG) in cool (8˚C) pumping buffer at 6 V/cm for 15h to 17h, 

depending on the fragment size, as suggested by the manufacturer. After that, 

gels were stained with ethidium bromide in a shaker for 40 minutes and 

photodocumentation was performed using ChemiDoc XRS+ from Bio-Rad 

(Hercules, CA). All gels included a PhiX molecular weight ladder. 

 

SSCP Patterns and Phylogenetic Analyses 
 
 All gel pictures were analyzed visually to determine gel migration patterns, 

defined by the number of bands and migration distance in the gel. Recurring 

patterns were assigned the same letter. At least four representatives of each 

SSCP pattern visualized in the tick 16S mitochondrial rRNA, rompA or ISR gene 

targets were bidirectionally sequenced to compare phenotype on SSCP gels with 

the nucleotide sequence. For sequencing, PCR products were purified using 

Montage PCR Centrifugal Filter Device (Millipore, Bedford, MA, USA) and 

sequenced by Eurofins MWG Operon (Huntsville, AL, USA). Consensus 

sequences were generated using Clustal W2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) or Vector NTI 9.0 software 

(Invitrogen, Carlsbad, CA) and were adjusted manually as needed by visual 

inspection. MEGA version 5 was used to construct phylogenetic trees of A. 

maculatum 16S mtRNA gene amplicons based on Maximum parsimony and 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Neighbor joining methods (bootstrap, N = 1000). A fragment of the 16S 

mitochondrial rDNA of Amblyomma americanum was used as outgroup 

sequence, obtained from NCBI/GenBank (accession number L34313.1). 

 

Statistical Analysis 
 
 The program HIERFSTAT (Goudet 2005) was used to estimate the F-

statistics for proportion of variance between sites within regions (FSR), between 

sites overall (FST), and between the two regions grouping the sites (FRT). Using G 

statistics, we reassigned samples to either regions or sites (Gregion or Gsite) 

randomly, resampled 1000 times and re-calculate the test statistic for each 

resample (Goudet 2005). To calculate dispersal between sites, the equation FST = 

1/(4Nm+1) was used, where Nm is the number of migrants exchanged by a 

population per generation (Wright 1965). A p-value of less than or equal to 0.05 

was considered to be significant for all analyses unless otherwise noted.  

 

Results 
 
Tick SSCP 
 

A total of 698 adult A. maculatum ticks collected from the 10 Mississippi 

study sites (Figure 2.1) had amplifiable DNA and were used for genetic analysis. 

Of these, 654 samples yielded apparent bands in SSCP gel electrophoresis. 

GCTs from the ten sites analyzed in Mississippi demonstrated four SSCP 

patterns labeled A through D (Figure 4.1). Sequencing of twenty samples 

produced high quality chromatograms and only these were used for further 
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analyses (Table 4.1). There were five single nucleotide polymorphic sites in the 

sequence alignment (298 bp), and these represented one transitional mutations, 

three transversional mutations, and an indel (insertion/deletion). Interestingly, 

there was a hyper variable region of 5bp in the reverse primer flanking region 

that was very informative, including one transversional and four transitional 

mutations (Table 4.1). In addition to the four sequences represented by four 

haplotypes, three unique sequences were identified that could not be matched to 

a unique SSCP gel pattern. The nucleotide constitution for these three samples 

is given in table 4.1 and they were included in the phylogenetic analysis as 

Mississippi C2, C3 and D2, as the sequences were most close related to the 

sequences of patterns C and D (Figure 4.2). Noteworthy, out of 10 samples 

sequenced but not included in the haplotype analysis due to poor quality 

chromatograms, four sequences produced reliable chromatograms except at 

exactly this hyper variable 5bp region of the reverse primer (not included in 

haplotype analysis). Additionally, 22 GCTs from North Carolina were analyzed by 

SSCP. North Carolina ticks presented matching band patterns to Mississippi 

haplotypes A, B, and C. Of the six North Carolina samples sequenced, at least 

one from each A, B, and C haplotype matched identically to respective 

haplotypes from Mississippi. However, like sequence results from Mississippi 

ticks, we identified two additional unique sequences in North Carolina tick 

samples that could not be matched to a unique SSCP pattern. These also 

differed from all Mississippi tick sequences.  
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The tick SSCP haplotype frequencies seen in ten sites collected over a 

three year period are summarized in table 4.2. Nucleotide sequences will be 

deposited in the NCBI GenBank. Thirty samples total were sequenced. To 

assess whether gel patterns in a smaller population of A. maculatum ticks from 

North Carolina differed from those seen in Mississippi samples, we performed 

SSCP using the same conditions for analysis of the tick mitochondrial 16S rRNA 

gene as was used for Mississippi ticks. Twenty two out of 25 ticks from North 

Carolina yielded band patterns in tick SSCP gels that matched Mississippi 

haplotypes A, B and C; three samples failed to show bands on SSCP analysis.  

 A phylogenetic tree using Neighbor-joining analysis demonstrated a 

monophyletic relationship among all haplotypes from this study of Mississippi and 

North Carolina ticks, and including haplotypes from a similar study of GCTs from 

Oklahoma, Kansas and Texas (Ketchum et al. 2009) as shown in Figure 4.2. 

Maximum parsimony analysis produced similar topography, therefore only the 

Neighbor-joining tree will be discussed. Mississippi haplotype D is most similar to 

haplotype C from Oklahoma and Kansas (Ketchum et al. 2009), which were 

basal to all other haplotypes. Mississippi and North Carolina haplotypes A, B, 

and C appears to have diverged from haplotypes A, B, D, E, F, and G found in 

the previous study (Ketchum et al. 2009) although they are a monophyletic 

group.  

We performed statistical analyses on SSCP data of ticks collected from 

the two main regions in Mississippi, northern and southern (N=229 and 387 ticks, 

respectively), that comprised the majority of ticks that yielded bands on SSCP 
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analysis (94.2%). We tested the occurrence of genetic variability following a 

hierarchical genetic structure by regions (North or South Mississippi) and within 

sites per regions. Using the program HIERFSTAT (Goudet 2005), we estimated 

the F-statistics for proportion of variance between sites within regions (FSR), 

between sites overall (FST), and between the two regions grouping the sites (FRT). 

Based on the estimates, there was no variance between populations at the 

regional scale (FRT = -0.001029765) and some variability was seen between sites 

within regions (FSR = 0.02311502) and between sites overall (FST = 0.02210905). 

The F-statistics results were supported by G-statistics, as follows. Resampling 

1000 times, reassigning sites to regions randomly and recalculating the test 

statistic for each resample, we found no support for differentiation between the 

northern and southern samples (Gregion  p-value = 0.572). In 1000 resamples for 

variation within regions, there is strong support for the presence of genetic 

differences between sites within regions (GSite p-value = 0.001). Additionally, we 

estimated dispersal between sites within the two main regions of Mississippi. 

Based on the equation by Wright, we estimate that approximately 10.57 migrants 

per generation are exchanged between sites (Wright 1965).  

Despite the small number of samples, we included the haplotype 

frequencies observed using SSCP analysis of 22 North Carolina ticks for 

preliminary analysis as a third region with a single site. As a region, North 

Carolina was not significantly different (Gregion  p-value = 0.94) from the other two 

regions in Mississippi after 1000 permutations. The test for differentiation 

between sites was significant (Gsite p-value less than 0.001 after 1000 
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permutations). Results from North Carolina ticks agree with data from 

Mississippi.  

 

Rickettsial SSCP 
 

Of the 698 GCTs with amplifiable 16S rDNA, 106 were singly positive for 

R. parkeri, and were used in SSCP analyses for genetic variability of this 

rickettsia. No difference in migration pattern was observed in 33 R. parkeri-

positive GCTs analyzed by SSCP electrophoresis using the rompA PCR 

amplicons. The lack of variability observed is consistent with a previous study 

using rompA in R. montanensis in D. variabilis ticks (Ammerman et al. 2004). 

Five intergenic spacer regions were subsequently chosen as potentially more 

informative regions than rompA due to a higher degree of genetic variability 

(Fournier et al. 2004, Karpathy et al. 2007). All 106 R. parkeri singly infected 

GCTs had DNA amplified by PCR for the five ISRs fragments. Still no difference 

in migration pattern was observed among three of the ISRs: cspA-ksgA, 

RR0155-rpmB and mppA-purC. For RR1240-tlc5, we saw one sample with a 

slightly different gel pattern. Consensus sequences from this sample compared 

to two other samples showed no nucleotide differences. SSCP patterns using the 

rpmE-tRNAfMet PCR amplicon demonstrated a slightly different pattern in three 

R. parkeri-infected tick samples, however they had nucleotide sequences 

identical to the sequences from other samples with the common gel pattern. For 

comparison, we ran 25 samples of Gulf Coast ticks from North Carolina using 
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rpmE-tRNAfMet and we found no variation as well. We will deposit nucleotide 

sequences in the NCBI GenBank prior to journal submission.  

  

Discussion 
 

Mississippi is ideally located for population studies of both A. maculatum 

and R. parkeri. Genetic analysis tools such as SSCP coupled with sequencing 

can be used to determine population heterogeneity of arthropods and pathogens 

transmitted by them, and, in some cases, genetic variability may demonstrate 

altered vector-pathogen interactions (Gasser and Chilton 2001, Reichard and 

Kocan 2006). Here we describe four haplotypes defined by four unique SSCP 

patterns and sequences from A. maculatum in Mississippi. For comparison, we 

studied the genetic variability of a smaller scale of GCTs from North Carolina. We 

relied on a fragment of the tick 16S mitochondrial DNA for haplotype analysis, a 

gene target that has been previously described as a good indicator of variability 

(Black and Piesman 1994, Anderson et al. 2004, Trout et al. 2010a). In addition, 

no genetic variability was reported among R. parkeri populations infecting 

Mississippi ticks or the smaller tick collection from North Carolina.  

SSCP relies on the principle that the mobility of the single strand of DNA in 

a non-denaturing gel is highly dependent on chemical composition and number 

of nitrogenous bases (Orita et al. 1989). Thus, DNA sequences differing by single 

base pair mutations can be identified as unique gel patterns, based on numbers 

of bands and length of migration in electrophoresis and potentially representing 

different haplotypes. Noteworthy, three different sequences (haplotypes C2, C3 
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and D2) in the tick SSCP conditions in this study were not associated with unique 

SSCP gel patterns. Similarly, additional unique sequences were also observed 

with North Carolina ticks (haplotypes A2 and C2). For rickettsial SSCP of 

samples from Mississippi, two ISRs (RR1240-tlc5 and rpmE-tRNAfMet) 

presented four samples total with slightly different gel patterns but no difference 

in nucleotide sequence. While SSCP can theoretically differentiate between 

single nucleotide differences, some differences in the number or patterns of 

bands on SSCP gels may be due to inconsistencies in running conditions. 

Additional optimization of running conditions will be essential in future analyses 

using SSCP.  

 A hierarchical statistic software, HIERFSTAT (Goudet 2005), was used to 

estimate the proportion of haplotype frequencies among subpopulations of Gulf 

Coast ticks collected in Mississippi. In this study, the majority of sampled ticks 

(94%) were collected in nine out of 10 sites belonging to two regions in 

Mississippi, North and South. The individual sites within North and South regions 

had large enough populations that allowed for hierarchical studies of populations 

of GCTs to be performed. F statistics results showed no difference when 

comparing all sites from northern Mississippi from those from southern 

Mississippi; this was also supported by resampling methods (G statistics). 

 Despite the lower sample size of North Carolina ticks, it was interesting 

that ticks from this distant state possessed three SSCP patterns also observed in 

Mississippi ticks. Additionally, observed haplotype frequencies in North Carolina 

were not statistically different from those in the two regions in Mississippi. Similar 
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results of no genetic variability were reported with nine populations of A. 

americanum ticks in Georgia (Mixson et al. 2006a) and D. variabilis ticks from 

four localities in the Canadian prairies (Krakowetz et al. 2010). Notably, the 

Mississippi northern population is apparently established within the last 30 years 

(Goddard and Norment 1983) and not likely to be in drift/migration equilibrium. 

The similarity observed in this study between the northern and southern 

populations suggests that at least at some point in time, a substantial number of 

migrants likely founded (or expanded into) the northern area. Founder events 

could be due to movement of cattle herds or occasional “catastrophic" events 

such as hurricanes. Historically, it was accepted that the GCT distribution was 

restricted to 100 miles inland from the Gulf Coast and southern region of the 

Atlantic Coast (Bishopp and Trembley 1945). However, the northbound 

expansion of that distribution has been reported as far North as Maine (Teel et al. 

2010). In Mississippi specifically, the northbound expansion in range has been 

observed since 1983, with occasional GCTs (six ticks reported in 1982) collected 

200-250 miles inland from the Gulf Coast in the state (Goddard and Norment 

1983). This study reports a relatively large collection of this tick in Northern 

Mississippi. Furthermore, the lack of genetic variability between the northern 

population (approximately 230 miles from the coast) and the coastal southern 

population supports establishment of A. maculatum in areas farther north than 

the historical range. However, genetic differences were significant within the 

individual sites of northern and southern Mississippi regions. The nine individual 

sites reflect small populations that will likely reach equilibrium between drift and 
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migration quickly. We estimated that approximately 10.57 migrants per 

generation are exchanged between these sites (Wright 1965). Migration may be 

the result of phoretic movement of ticks on wildlife they are commonly found 

infesting like deer, cotton rats and birds as well as some anthropogenic 

movement (i.e. cattle sales barns).  

In a similar SSCP study of A. maculatum, Ketchum et al. described seven 

haplotypes (A through G) occurring in Texas (two haplotypes), Oklahoma (three 

haplotypes), and Kansas (four haplotypes in one site and three in another site) 

(Ketchum et al. 2009). These findings are comparable to the variability seen in 

this study in Mississippi (North and South Mississippi, both four haplotypes) and 

North Carolina (one region, three haplotypes). In the phylogenetic analysis by 

Ketchum et al., the haplotype occurring in Kansas and Oklahoma only (C) was 

basal to the other six described, including all Texan haplotypes (A and D) 

(Ketchum et al. 2009). Teel et al. (2010) stated that the lack of more ancient 

haplotypes in samples from Texas coupled with the higher genetic variability 

observed in Kansas (3 or 4 haplotypes) suggested that the Kansas population 

could have founded the U.S. coastal populations (Teel et al. 2010). In our study, 

phylogenetic analysis supports a monophyletic relationship among all haplotypes 

seen in Mississippi, North Carolina, Oklahoma, Kansas and Texas (Figure 4.2). 

Moreover, Mississippi and North Carolina haplotypes ABC diverged from their 

haplotypes ABDEFG. The Mississippi population included a more ancestral 

haplotype, D, which appears closely related to haplotype C from Oklahoma and 

Kansas; both our D haplotype and C identified by Ketchum et al. (2009) were 
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basal to all other haplotypes. Based on our results, we propose that alternatively 

to a movement from Kansas to the Gulf Coast, it is possible that independent 

introductions of ticks from source populations from Central or South America may 

have occurred to form these distinct populations in Kansas and in the coastal 

population.  From a historical perspective, reports of GCTs occurring along the 

Gulf and Atlantic Coasts and 100 miles inland from there date back to the turn of 

the 20th century (Hooker and Bishopp 1912).  Resolving this question would 

require a broad sampling of potential source populations and a larger U.S. 

sampling.  

SSCP has contributed to disease surveillance and the design of control 

strategies for Lyme disease, cryptosporidiosis, and parasitic helminthes 

(Guttman et al. 1996, Anderson and Norris 2006, Jex et al. 2007, Simsek et al. 

2011). Although evaluating R. parkeri genetic variation in the context of A. 

maculatum variation may lead us to test hypotheses regarding differences in R. 

parkeri pathogenicity or aspects of the tick-pathogen relationship, in our study, 

we found no genetic variable populations of R. parkeri in Mississippi. A previous 

study of R. montanensis in Dermacentor ticks using SSCP of the rompA gene 

also showed no variability and it was suggested that ticks in the area of study 

were infected with a single haplotype (Ammerman et al. 2004). In addition to 

limited rompA analyses, we evaluated genetic variability of ISRs, which are 

noncoding sequences under less selection pressure and thus should be more 

variable than other genes (Fournier et al. 2004). For R. conorii and R. rickettsii, a 

selection of multiple ISRs was most informative in evaluating genetic variability 
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(Fournier et al. 2004, Karpathy et al. 2007). We chose five of the most variable 

ISRs identified for R. conorii and R. rickettsii. No genetic variation was observed 

in R. parkeri within Mississippi A. maculatum or within a smaller population 

analyzed from North Carolina. We observed slight differences in gel migration in 

two of the intergenic spacer regions (RR1240-tlc5 and rpmE-tRNAfMet), however 

sequences from two other representatives were identical.  

Additional investigations of R. parkeri genetic variability may benefit from a 

larger selection of ISRs and further optimization of SSCP conditions. Other 

factors to consider include the possibility of sampling infected A. maculatum from 

a larger geographical area and include R. parkeri from different sources, such as 

infected A. americanum ticks and vertebrate hosts. In addition, all Gulf Coast 

ticks in this study were adults. By including immature stages, additional 

heterogeneity may be revealed since A. maculatum immatures use a greater 

variety of hosts (including avian species) that may cover an even larger 

geographical range. Thus, while our findings contribute to the growing knowledge 

of this tick-rickettsia system, the study has also revealed additional factors and 

questions that could be pursued in future studies to better understand A. 

maculatum and R. parkeri populations.  
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Table 4.1 SSCP haplotypes and nucleotidic variation determined by sequencing 
of Amblyomma maculatum mitochondrial 16S rDNA from Mississippi 

Sample name, region 

and year collected 

Gel 

pattern 

Reverse primer  flanking 

region (1-49bp) 

 
Consensus (50bp-298bp) 

41bp 45-49bp  53bp 108bp 124bp 139bp 

Female1 South 08 A A GCTGT  T T A A 

Male4 South 08 A A GCTGT  T T A A 

Male3 South 08 A A GCTGT  T T A A 

Female1 North 09 A A GCTGT  T T A A 

Female2 South 09 A A GCTGT  T T A A 

Female1 South 08 B A ACAGC  T T A A 

Male3 North 09 B A ACAGC  T T A A 

Female12 North 09 B A ACAGC  T T A A 

Female21 North 09 B A ACAGC  T T A A 

Male3 South 08 C A ACAGC  T - A A 

Male15 South 09 C A ACAGC  T - A A 

Female1 North 08 * A GCAGC  T - A A 

Male8 South 08 * A GCAGC  T - A A 

Male1 South 09 * A GCTGC  T - A A 

Female8 South 09 * A GCTGC  T - A A 

Female1 South 08 D T ATAAT  A T T G 

Female12 Central 09 D T ATAAT  A T T G 

Female1 North 09 D T ATAAT  A T T G 

Male2 South 08 * T ATTAT  A T T G 

Male1 Central 08 * T ATTAT  A T T G 

* Reporting as unique sequences, but no gel pattern could be stipulated.  
Consensus of reverse and forward sequences consisted of a region between 
position 50bp-298bp. Position 1 to 49bp of the reverse primer flanking region was 
included in analysis for being very informative for samples that presented 
supporting high quality chromatogram. 
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Table 4.2. Haplotype frequencies determined by SSCP analysis of Amblyomma 
maculatum mitochondrial 16S rDNA by sites of collection in Mississippi  

Sites per 

region of MS 

Haplotypes Number of 

haplotypes 

Sample 

size A B C D 

South 1 0.67 0.04 0.24 0.04 4 70 

South 2 0.71 0.04 0.17 0.07 4 69 

South 3 0.72 0.08 0.13 0.07 4 72 

South 4 0.75 0.01 0.13 0.12 4 103 

South 5 0.56 0.10 0.15 0.19 4 73 

Central 1 0.66 0.05 0.03 0.26 4 38 

North 1 0.59 0.00 0.30 0.11 3 27 

North 2 0.75 0.09 0.06 0.09 4 77 

North 3 0.67 0.02 0.09 0.23 4 66 

North 4 0.83 0.12 0.02 0.03 4 59 
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Figure 4.1 Gel patterns labeled A through D detected by PCR-SSCP of 
Amblyomma  maculatum 16S mitochondrial rDNA gene fragment 

 
NOTE: Single strand DNA, ssDNA and double strand DNA, dsDNA. 
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Figure 4.2 Tamura-Nei neighbor-joining tree of Amblyomma maculatum 16S 

mitochondrial rDNA gene fragment from Mississippi, North 
Carolina, Oklahoma, Kansas and Texas ticks 

 
NOTE: Phylogenetic analysis included from this study four sequences of 

haplotypes A through D from Mississippi (Mississippi A-D) plus three 
sequences called Mississippi C2, C3 and D2 (with unique sequences but 
not different gel pattern), three sequences of haplotypes A-C from North 
Carolina and two unique sequences called “North Carolina A2 and C2”. 
Additionally, sequences of seven haplotypes observed in a similar study 
from Texas, Oklahoma and Kansas were included (Ketchum et al. 2009). 
Amblyomma americanum represents the outgroup. Numbers at internal 
nodes are bootstrap values based on a 1000 bootstrap replicates. The 
scale bar represents the number of nucleotide substitutions per site.  
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CHAPTER V 

ULTRASTRUCTURE OF “CANDIDATUS RICKETTSIA ANDEANAE” WITHIN 

THE GULF COAST TICK, AMBLYOMMA MACULATUM 

 

Abstract 

Gulf Coast ticks, Amblyomma maculatum, occur in the central and 

southern United States, and are vectors of Rickettsia parkeri, a spotted fever 

group rickettsia (SFGR) causing mild human rickettsiosis similar to Rocky 

Mountain spotted fever. A novel SFGR, “Candidatus Rickettsia andeanae”, was 

recently also detected in Gulf Coast ticks though it has not yet been well-studied 

and is not well-characterized at this time. Here we describe “Ca. R. andeanae” 

within the tissues of A. maculatum ticks using transmission electron microscopy.  

In ultrathin sections of unfed A. maculatum adult females, we found evidence of 

bacteria with morphological features consistent with SFGR, including small size 

(approximately 0.3 × 0.9 µm), a halo zone (electron-lucent layer around the 

bacterium), and a trilaminar cell wall. In female ticks, bacteria were present in 

granular salivary glands and ducts, foregut, Malpighian tubules, nerve trunks and 

reproductive tissue. These findings contribute to the current understanding of this 

recently identified rickettsia in A. maculatum.  
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Introduction 
 

Gulf Coast ticks (GCT), Amblyomma maculatum Koch (1844), occur in the 

central and southern United States and may be infected with Rickettsia parkeri 

and “Candidatus Rickettsia andeanae”, two spotted fever group rickettsiae 

(SFGR) (Teel et al. 2010, Jiang et al. 2011). “Candidatus Rickettsia andeanae” 

was first identified in A. maculatum and Ixodes boliviensis from the Peruvian 

Andes, hence its proposed species name (Blair et al. 2004). Since then it has 

been detected in approximately 2-5% of adult A. maculatum sampled in 

Mississippi, Florida, Georgia, Kansas, Oklahoma and Virginia (Blair et al. 2004, 

Sumner et al. 2007, Paddock et al. 2010, Fornadel et al. 2011, Jiang et al. 2011, 

Luce-Fedrow et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011). Unlike R. 

parkeri, which is a known human pathogen, infection in humans or other 

vertebrates by “Ca. R. andeanae” has not been described and the pathogenicity 

of this SFGR is currently unknown. In addition, “Ca. R. andeanae” has not yet 

been fully characterized. However, the recent report of  “Ca. R. andeanae” 

isolation in three different cell lines and establishment of additional isolates in the 

future should help expand our understanding of “Ca. R. andeanae” and evaluate 

potential pathogenicity of this rickettsia in humans (Luce-Fedrow et al. 2011).  

In a previous study, we identified DNA of “Ca. R. andeanae” in 

approximately 3% of Gulf Coast ticks collected throughout Mississippi, 

approximately half of which were co-infected with R. parkeri (Ferrari, F.A.G., 

unpublished data). In a study by Edwards et al. (2011), SFGR were detected in 

salivary glands, ovaries, Malpighian tubules and midgut from field-collected A. 
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maculatum as well as A. maculatum experimentally infected with R. parkeri using 

an immunofluorescence assay (Edwards et al. 2011). In order to further 

investigate “Ca. R. andeanae” in A. maculatum, we utilized transmission electron 

microscopy (TEM), an established technique used in evaluating the fine structure 

of SFGR and to aid in elucidating the relationships of SFGR with tick hosts 

(Silverman 1991). In the current study, we describe the fine structure and tissue 

tropism of “Ca. R. andeanae” by TEM in unfed adult A. maculatum to contribute 

to our understanding of this novel SFGR.  

 

Materials and Methods 
 

Selection of “Ca. R. andeanae”-infected A. maculatum 
 

Fifty adult laboratory-reared A. maculatum ticks were purchased from 

Oklahoma State University. This source of ticks was chosen because we 

previously identified “Ca. R. andeanae” in ticks from this colony by PCR assay 

(Moraru, G. and Varela-Stokes, A., unpublished data). Adult ticks were cleaned 

to remove any external contaminants using 70% ethanol, and then dried and 

their legs removed for DNA extraction. Genomic DNA was extracted from tick 

legs using the Illustra™ Tissue & Cells genomicPrep Mini Spin Kit (GE 

Healthcare, Piscataway, NJ). A fragment of the tick 16S mitochondrial rRNA 

gene was amplified by PCR to confirm successful DNA extraction (Black and 

Piesman 1994). The DNA extracts were screened for the presence of SFGR 

using a nested PCR assay to amplify the rickettsial outer membrane protein A 

(rompA) gene.  Ticks positive for SFGR DNA by this PCR assay were further 
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tested using separate species-specific primers targeting regions of the rompA 

gene specific to R. parkeri and “Ca. R. andeanae” (Paddock et al. 2010, Varela-

Stokes et al. 2011). Amplicons of “Ca. R. andeanae” rompA gene from the four 

ticks analyzed by TEM were submitted for sequencing as well. PCR products 

were purified using Montage PCR Centrifugal Filter Device (Millipore, Bedford, 

MA, USA) and sequenced by Eurofins MWG Operon (Huntsville, AL, USA). 

Consensus sequences were generated by ClustalX2 alignment and identified 

using GenBank BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi). All PCR 

assays included a positive control of DNA extracted from cultured R. parkeri 

(Tate’s Hell strain) or “Ca. R. andeanae”-infected Gulf coast ticks respectively, 

confirmed previously by PCR and sequencing. To verify other bacteria potentially 

found in ticks, PCR assays to amplify the following gene fragments were 

attempted using the respective primers: the ftsZ homolog of Wolbachia spp. 

(alpha Proteobacteria) found in arthropods (ftsZ reverse and forward primers), 

elongation factor G, fusA, of Coxiella spp. (fusA reverse and forward primers) 

and 16S rRNA of Francisella spp. (Fr153FO.1/Fr1281RO.1 primers) (Noda et al. 

1997, Barns et al. 2005, Jasinskas et al. 2007). For each assay, PCR reactions 

included a positive control. For Wolbachia spp., we used DNA extracted from 

Aedes albopictus mosquito known to be infected with Wolbachia by previous 

PCR. Field caught Amblyomma americanum previously determined by PCR to 

be infected with Coxiella were used. DNA from cultured Francisella tularensis 

subsp. holarctica live vaccine strain (LVS) was used as positive control for 

Francisella. All PCR assays also included negative (water) controls. We 
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electrophoresed all PCR products on 2% agarose gels stained with ethidium 

bromide, and visualized gels under ultraviolet light. 

 

Transmission Electron Microscopy (TEM) 
 

Two female and two male A. maculatum ticks that tested positive by PCR 

for “Ca. R. andeanae” and negative for R. parkeri were prepared for TEM. Tick 

bodies were fixed in Karnovsky’s fixative (4% glutaraldehyde; 4% 

paraformaldehyhde) containing 1% DMSO made up in 0.1 M phosphate buffer at 

pH 7.2. Ticks stayed in fixative for 1 hour at room temperature and were then 

rinsed several times with 0.1 M buffer and stored in the refrigerator. Then, they 

were post-fixed in 2% osmium tetroxide (also in 0.1M phosphate buffer) and 

rinsed with water. After an overnight en bloc stain with 2% aqueous uranyl 

acetate, samples were further dehydrated in a graded ethanol series (35%, 50%, 

70%, 95%, and 100%). Using acetone as a transitional fluid, specimens were 

embedded in Spurr’s resin (Electron Microscopy Sciences, Hatfield, PA) and 

cured at 70°C overnight.  

 Semi-thin (0.5 µm) and ultra-thin (60-90 nm) sections were cut with a 

Reichert-Jung Ultracut E ultramicrotome. Semi-thin sections, stained with 1% 

toluidine blue, were used to locate areas of interest for TEM observations. Ultra-

thin sections were stained with alcoholic uranyl acetate and lead citrate and 

observed on a JEOL JEM-100 CXII (JEOL USA, Peabody, MA) at 80 kV. One 

male and one female A. maculatum ticks from Oklahoma State University tick 

colony that tested negative by PCR to all bacterial assays described above were 
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used as negative controls for TEM studies.  Negative control tick bodies were 

processed in an identical manner as the “Ca. R. andeanae”-infected tick bodies. 

Salivary glands, Malpighian tubules, ovaries and midgut tissues of Gulf 

Coast ticks were reported previously as heavily infected with SFGR using an 

immunofluorescence antibody assay (Edwards et al. 2011). In addition, previous 

work with Hayes and Burgdorfer (1979) also focused primarily on these specific 

tissues except digestive tissues (Hayes and Burgdorfer 1979). Thus, in the 

current study, salivary glands, Malpighian tubules, and digestive and 

reproductive organs, were most thoroughly examined under TEM in both infected 

and control ticks.  

 

Results 
 

Bacteria morphologically consistent with Rickettsia species were found in 

the two male and two female Gulf Coast ticks that tested positive for “Ca. R. 

andeanae” and negative for R. parkeri when evaluated by molecular assays 

specific for these SFGR. Sequencing of the four ticks analyzed by TEM using the 

“Ca. R. andeanae” rompA gene resulted in 100% identity to “Ca. R. andeanae” 

rompA fragment. Neither of the female ticks had molecular evidence of infection 

with a Wolbachia, Coxiella or Francisella species. Both male ticks were PCR-

negative for Wolbachia. Both males had a faint PCR product evident by gel 

electrophoresis for the Coxiella spp. PCR and one male had a PCR product for 

Francisella spp. PCR assay. However, repeated PCR assays revealed 

inconsistent results and insufficient DNA was available for sequencing the 
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sample positive for Francisella species. A PCR product amplified from one male 

tick was identical in sequence to Coxiella species. Although Francisella spp. are 

wolbachiae-like, large bacteria approximately 1.2 µm in diameter (Niebylski et al. 

1997a), Coxiella sp., are morphologically identical to rickettsiae. Thus, even if 

present in low numbers in the male ticks as suggested by the inconsistent weak 

PCR amplicons (Dumler and Walker 2005), we excluded male ticks from further 

analysis in this study due to the possible presence of these organisms.  

 In female specimens, small, rod-like bacteria, approximately 0.27-0.35 µm 

× 0.7-0.985 µm in size were often surrounded by a halo zone, the electron-lucent 

layer around the organism correspondent to the bacterial capsule. A trilaminar 

cell wall was also observed, which is consistent with the cytoplasmic membrane 

and the inner and outer membranes present in the cell wall of SFGR (Figure 

5.1a). Bacteria at different physiological stages were observed. There is 

evidence suggestive of multiplication by binary fission (Figure 5.1b) and of older 

cells, represented by smaller and more electron dense bacteria (Dumler and 

Walker 2005). Figure 5.1c shows bacteria in the reproductive organs of a female 

tick where some bacteria show extensions of the cell membrane. We found no 

evidence of bacteria in tick bodies from negative control specimens, which were 

examined to the same extent as “Ca. R. andeanae”-infected tick bodies. 

However, examiners were not blinded to which samples came from ticks with 

PCR positive and negative for “Ca. R. andeanae” rompA.  

 Female ticks contained evidence of bacteria in various tissues including 

granular salivary glands and ducts, the muscle layer of the foregut (Figure 5.2b), 
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connective tissue near trachea, Malpighian tubules (Figure 5.2a), nerve trunks 

and in epithelial cells of ovaries and oocytes where they were found both intra- 

and extracellularly (Figure 5.2c). Clusters of at least 10 bacteria were seen in the 

reproductive organs, with the largest group comprising approximately 100 

bacteria (Figure 5.2d). No bacteria were observed in the female midgut.  

 

Discussion 
 

  Results described in this study provide an ultrastructural characterization 

of bacteria within tissues of female A. maculatum, positive by PCR for “Ca. R. 

andeanae”. The bacteria reported here are most likely “Ca. R. andeanae”, given 

that PCR assays for “Ca. R. andeanae” produced strong bands confirmed by 

sequencing, while PCR assays for Rickettsia parkeri, Wolbachia spp., Coxiella 

spp. and Francisella spp. were negative. To our knowledge, this is the first 

ultrastructural description of “Ca. R. andeanae” in tissues of the primary tick host, 

A. maculatum. 

The organisms suspected to be “Ca. R. andeanae” in this study shared 

morphological similarities with other SFGR. SFGR in the family Rickettsiaceae 

are described as rod-shaped, small bacteria (0.3-0.5 × 0.8-2 µm), that have 

trilaminar cell walls, lack flagella and obligately intracellular, mostly 

intracytoplasmic and sometimes found intranuclear (Fredricks 2006). The 

characteristic trilaminar cell wall seen in the bacteria in this study were consistent 

with that of rickettsiae, consisting of an inner cytoplasmic membrane, and thick 
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inner and thin outer leaflets, surrounded by a thick electron lucent layer, also 

called a slime layer or halo zone (Hayes and Burgdorfer 1979, Silverman 1991).  

Within the female body, bacteria were distributed unevenly with large 

numbers of bacteria in reproductive tissue, moderate numbers in salivary glands 

and ducts, and few bacteria in the foregut, Malpighian tubules and nerve trunks. 

The distribution and numbers of bacteria seen may have been different if a 

greater number of ticks and ticks at different physiological stages (e.g. feeding 

versus unfed, immatures versus adults) were examined, as previously described 

in R. tsutsugamushi in Leptotrombidium pallidum mites (Urakami et al. 1994).  

To date, no animal or humans have been found infected with “Ca. R. 

andeanae”; identification of this rickettsia has been limited to tick specimens and 

infectivity to vertebrates is unknown. Rickettsia peacockii, a known endosymbiont 

of Dermacentor andersoni ticks, is found only in female ticks, primarily distributed 

in ovarian tissues, and is not found in midgut, Malpighian tubules and salivary 

glands (Niebylski et al. 1997b). By comparison, the causative agent of Rocky 

Mountain spotted fever, R. rickettsii, infects all tissues of the tick host (Burgdorfer 

and Brinton 1975). Cytopathic effects observed with pathogenic R. rickettsii may 

include heterochromatin aggregation at nuclear membrane, loss of cytosol, 

ribosomes, mitochondria and endoplasmic reticulum, as well as alterations to the 

integrity of nuclear and cellular membranes (Hayes and Burgdorfer 1982). We 

did not identify any of these cellular alterations in the ticks infected with “Ca. R. 

andeanae”. 
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Until recently, “Ca. R. andeanae” could not be isolated in cell culture, a 

characteristic similar to the fastidious nature of tick endosymbionts like R. 

peacockii (Simser et al. 2001, Paddock et al. 2010). The isolation of “Ca. R. 

andeanae” (Luce-Fedrow et al. 2011) coupled with this ultrastructural description  

of the novel SFGR in tissues of A. maculatum will assist in targeted studies of 

this organism in ticks and vertebrate hosts, and particularly in efforts to evaluate 

the pathogenicity of this rickettsia in vertebrates.  
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Figure 5.1 Transmission electron micrographs depicting fine structure of 
rickettsia-like organisms in female Amblyomma maculatum  

 
NOTE: 1a consists of single bacterium, approximately 250nm (cross section), 

presenting a trilaminar cell wall (TCW) and halo zone (HZ); scale bar = 
100nm. 1b: Four bacteria in the cytoplasm of the female reproductive 
organ. Dividing bacteria (arrowhead); scale bar = 1µm.1c: Over 15 
bacteria in the cytoplasm of the female reproductive organ. An example 
of bacterium with extended cell membrane depicted at the arrowhead; 
scale bar = 1µm. 



 

70 

 
 

Figure 5.2 Transmission electron micrographs of rickettsia-like organisms in 
female Amblyomma maculatum tissues 

 
NOTE: 2a: Bacteria (arrowheads) in the Malpighian tubule wall among excretory 

granules (asterisks); scale bar = 1µm. 2b: Scattered occurrence of at 
least 10 bacteria (arrowheads) between the foregut connective tissue (C) 
and its muscle layer (M), none at the foregut mucosa lining (L); scale bar 
= 5µm. 2c: Cluster of over 20 bacteria (arrowhead), both in cross section 
and as rods in longitudinal section, in reproductive system intracellularly 
near epithelial cell nuclei (N), among protein yolk (PY) and lipid yolk (LY); 
scale bar = 2µm. 2d: Over 100 bacteria intracellularly in the female 
reproductive system; nuclei (N) and trachea (T); scale bar = 2µm.  
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CHAPTER VI 

ESTABLISHMENT OF GULF COAST TICK CELL LINE AND ISOLATION OF 

“CANDIDATUS RICKETTSIA ANDEANAE” 

 

Abstract 
 

 Gulf Coast ticks, Amblyomma maculatum are increasing in public health 

awareness as the vectors of a recently recognized human pathogen, Rickettsia 

parkeri. More recently, these ticks were also found to harbor a novel spotted 

fever group rickettsia in Peru first, then the United States, Chile and Argentina.  

To date, little is known about “Candidatus Rickettsia andeanae” and its 

pathogenicity to vertebrates has not yet been explored, partly due to the lack of 

an isolate. Although the isolation of “Ca. R. andeanae” was recently described in 

several cell lines, its stability in these cells was not clear. A stable isolate is 

essential for studies testing the infectivity of this novel rickettsia in vertebrates. In 

addition, it allows for a better understanding of the basic biology of “Ca. R. 

andeanae”, a more complete genetic characterization that paves the way for 

formal designation of species status. Here we report the establishment of a new 

cell line from A. maculatum ticks that were naturally infected with “Ca. R. 

andeanae” and describe the propagation of “Ca. R. andeanae” in this cell line 
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and subsequent passage to ISE6 and Vero cells, in which propagation was 

limited.   

 

Introduction 
 

Rickettsiae are Gram-negative, obligate intracellular bacteria, of which 

some can be pathogenic to animals. Most bacteria in the spotted fever group of 

rickettsiae (SFGR) are maintained in nature within ticks, which function as hosts 

for the bacteria as well as vectors for transmission of rickettsiae to vertebrates 

during a tick blood meal (Dumler and Walker 2005). In vitro cultivation of SFGR 

is possible using a variety of cell lines, including Vero, L-929, HEL and MRC5 

cells (Dumler and Walker 2005). However, several tick embryonic cell lines have 

been established to aid in isolating fastidious bacteria, including Rickettsia spp., 

that fail to grow in mammalian cell lines like those above mentioned (Bell-Sakyi 

et al. 2000). Tick cell lines have also been valuable for proteomics and genomics 

studies as well as the production of vaccines (Bell-Sakyi et al. 2007, Richards 

2011). Finally, the ability to establish tick cell lines offers an approach to isolating, 

characterizing, and investigating host-pathogen relationships for novel rickettsiae 

in their natural tick host  (Bell-Sakyi et al. 2007). This approach has been 

successful in the propagation of R. peacockii, a fastidious endosymbiont that was 

eventually isolated in cells from its natural tick host, Dermacentor andersoni 

(Niebylski et al. 1997b, Simser et al. 2001). 

In 2004, a novel SFGR was identified in A. maculatum and Ixodes 

boliviensis ticks in the Peruvian Andes (Blair et al. 2004).  “Candidatus Rickettsia 
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andeanae” has now been reported from A. maculatum (Gulf Coast tick) collected 

in Mississippi, Florida, Georgia, Kansas, Oklahoma and Virginia (Blair et al. 

2004, Sumner et al. 2007, Paddock et al. 2010, Fornadel et al. 2011, Jiang et al. 

2011, Luce-Fedrow et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011). 

Current knowledge of “Ca. R. andeanae” is mainly limited to surveys detecting 

the bacterium in ticks by PCR assays. In addition to harboring “Ca. R. 

andeanae”, A. maculatum  is the known vector of R. parkeri, a SFGR first 

isolated in 1939 and considered non-pathogenic until the first human infection 

was diagnosed in 2002 (Parker et al. 1939, Paddock et al. 2004). Although no 

human (or other vertebrate) infections of “Ca. R. andeanae” have been reported 

to date, thorough studies, such as experimental animal infections, require a 

stable isolate to evaluate infectivity and pathogenicity of this rickettsia. Recently, 

“Ca. R. andeanae” was propagated in three different cell lines including two 

mammalian and one insect cell lines (Luce-Fedrow et al. 2011). However, since 

none of those cultures used cells from sources that may be found naturally 

infected with “Ca. R. andeanae”, their usefulness for characterizing “Ca. R. 

andeanae” further is unknown, and may not reflect the natural system. Tick-

borne bacteria may differentially express essential proteins in different 

environments. For example, Ehrlichia chaffeensis propagated in tick cells 

expressed a different set of proteins than when grown in macrophages; similarly, 

transcription levels for the spoT3 gene differed for R. conorii grown in 

mammalian compared to insect cells (Rovery et al. 2005, Singu et al. 2006). 

Additionally, previous attempts to grow “Ca. R. andeanae” in Vero cells, in an 
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arthropod cell line (C6/36), and in Ixodes scapularis tick cell line (ISE6), were 

unsuccessful (Blair et al. 2004, Sumner et al. 2007, Paddock et al. 2010). Thus, 

the viability of this novel rickettsia may not be optimal in traditional cell lines.  

An embryonic cell line developed from the natural tick host species, A. 

maculatum, may provide a more suitable cell system to isolate “Ca. R. 

andeanae”. A stable isolate from the natural tick host will aid in future 

investigations of “Ca. R. andeanae” that enable us to determine its pathogenicity 

and to further characterize the rickettsia using genomic and proteomic 

approaches. Last, studies of other organisms, specifically R. parkeri, a known 

pathogenic rickettsia found in A. maculatum, should benefit from the 

establishment of the new cell line from A. maculatum reported here.  

 

Materials and Methods 
 

Source of Tick Embryos 
 

 To establish Gulf Coast tick cell lines, both naturally infected with “Ca. R. 

andeanae” and not infected with this rickettsia, we used embryonic cells from 

engorged female A. maculatum. Eight fully engorged, gravid A. maculatum 

females were purchased from laboratory-reared colonies at Oklahoma State 

University (OSU; n=4) and Texas A&M University (TAMU; n=4). Tick sources 

were chosen because we previously identified A. maculatum from OSU colonies 

to be infected and those from TAMU colonies to be uninfected with “Ca. R. 

andeanae” by PCR assay (G.M. M. and A.S.V-S. unpublished data). Upon 

arrival, females were allowed to oviposit in sterile multi-well plates in a humidity 
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chamber with humidity maintained at approximately 92% using a saturated 

potassium nitrate solution. Portions of each egg mass were collected to be tested 

by PCR.  

 

Establishment of A. maculatum Cell Line and Isolation of “Ca. R. 
andeanae” 
 
 After tick embryos reached about 75% of their development time, 

approximately 100mg of eggs from individual females were removed for 

establishment of cultures. We surface disinfected egg samples using 3 minute 

washes on a rocker as follows: 0.5% household bleach containing a drop of 

Tween 80, 70% ethanol, twice in sterile phosphate buffer saline (PBS; pH 7.4) 

and last wash in modified Leibovitz’s medium (L-15B300), (Munderloh and Kurtti 

1989, Munderloh et al. 1999). We included an additional disinfection with 0.1% 

benzalkonium chloride for the egg masses produced by TAMU ticks, which were 

processed 15 days after OSU egg masses were processed. After egg samples 

were disinfected, we added 5ml of L-15B300 medium supplemented with heat 

inactivated 20% fetal bovine serum and 10% tryptose phosphate broth, and the 

addition of antibiotics (100U/ml of penicillin and 100mg/ml of streptomycin 

sulfate, Sigma-Aldrich, St. Louis, MO) and antifungals (10mg/mL of amphotericin, 

Sigma-Aldrich, St. Louis, MO). Eggs were crushed in this medium using a sterile 

glass rod and then centrifuged at 100x g for 1 minute to separate embryos from 

egg shells. Using approximately 5 mL of supernatant, we seeded a 12.5cm2 

flask, added 10 mL of medium to the pellet and seeded two other flasks. Flasks 
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were initially incubated at 33°C for tick cell growth and were moved to 28.5°C to 

favor rickettsial growth after three months when tick cell monolayers have 

become more established (U. G. Munderloh, personal communication). 

Antibiotics initially added to establish cultures were discontinued after the third 

week. Cell media was replaced weekly for uninfected cells established from 

TAMU ticks or bi-weekly in infected cells established from OSU ticks; passages 

were made every other week or as needed. When confluent, 10-50% of the cells 

were transferred to other flasks by scraping cells off the flask and pipeting to new 

media for a final volume of 5ml. Alternatively, cells were frozen in L15B300 

medium, 10% DMSO and 20% fetal bovine serum, placed in cryovials, and 

stored at -80°C in a Nalgene Mr. Frosty freezing container (Sigma-Aldrich, St. 

Louis, MO) overnight, then stored in ultra-low freezer. Cultures were observed 

weekly for confluency using an inverted microscope. We evaluated cultures for 

rickettsia infection by cytospins of spent media made approximately every week 

and stained with acridine orange or Diff-Quik (Dade Behring, Newark, DE). 

Culture samples were also tested approximately bi-monthly by PCR and QPCR 

assays and once by immunofluorescence assay following a protocol using 

human anti-R. rickettsii antibodies described by Edwards et al. (Edwards et al. 

2011) for evidence of rickettsia.  

 

Passage of “Ca. R. andeanae” to ISE6 and Vero Cell Lines 
 
 ISE6 (Ixodes scapularis embryonic) cells (provided by U. G. Munderloh, 

University of Minnesota) were maintained at 33°C (during the first month, then 



 

77 

28.5°C thereafter) in L15B300 medium supplemented with heat inactivated 20% 

fetal bovine serum  and 10% tryptose phosphate broth. Vero cells were 

maintained at 37°C, 5% CO2 in MEM plus 10% fetal bovine serum. Vero and 

ISE6 cells were challenged using approximately 0.2 mL of media and cells 

removed by pipetting or scraping from primary cultures and centrifuged to 

concentrate inoculum. When challenged, both ISE6 and Vero received 

amphotericin during the first month.  

 

Molecular Analyses 
 
For genomic DNA extraction from egg masses and cultures at various time 

points, we used an Illustra™ Tissue & Cells genomicPrep Mini Spin Kit (GE 

Healthcare, Piscataway, NJ, USA). Samples of approximately 50 mg of eggs 

were minced using a sterile pestle per sample in proteinase K and lysis buffer 

from the kit following the manufacturer’s instructions for tissues. For the culture 

time points, at least 10 mL of spent media per cell lines were collected in 15 ml 

centrifuge tube then centrifuged at 2500 rpm for five minutes. After the 

supernatant was discarded, we followed kit manufacturer protocol for remaining 

cells. For egg masses, we first screened for evidence of any SFGR DNA using a 

nested PCR protocol with SFGR-wide primers targeting the rickettsial ompA 

(rompA) gene (Paddock et al. 2004). Positive samples were subsequently tested 

by PCR assay using species specific rompA primers for “Ca. R. andeanae” and 

R. parkeri (Paddock et al. 2010, Varela-Stokes et al. 2011). For culture samples 

taken at specific time points, we used only the species-specific rompA assays. All 
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PCR assays included a positive control of DNA extracted from cultured R. parkeri 

(Tate’s Hell strain) or “Ca. R. andeanae”-infected Gulf coast ticks, confirmed 

previously by PCR and sequencing. Water was used as a negative control for all 

assays. All PCR products were stained with ethidium bromide and 

electrophoresed in a 2% agarose gel. PCR products selected for sequencing 

were purified using Montage PCR Centrifugal Filter Device (Millipore, Bedford, 

MA, USA) and sequenced by Eurofins MWG Operon (Huntsville, AL, USA). 

Consensus sequences were generated by ClustalX2 alignment and identified 

using GenBank BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Quantitative Real-Time PCR 
 
 We evaluated relative growth of “Ca. R. andeanae” over time from 

samples of spent media collected from naturally infected established A. 

maculatum cell cultures, tetracycline-treated A. maculatum cell cultures, ISE6 cell 

cultures and Vero cell cultures.  Primers Rx-190-F and Rx-190-R, previously 

designed for detection of “Ca. R. andeanae” by QPCR (Paddock et al., 2010) 

were used at 300nM concentrations in a similar Brilliant II SYBR Green (Agilent 

Technologies, Santa Clara, CA) assay. A template volume of 2 µL was used in a 

final reaction volume of 20 µL. In order to take into account differences in 

rickettsial levels due to variability in collection of samples, number of host cells 

present, and other factors, we measured relative rickettsial levels as a ratio of 

rickettsial PCR product (“CaRa”) to host gene (“HG”). For HGs, we selected 

primers 16S+2 and 16S-1 to amplify an approximately 298-bp portion of the tick 
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16S mitochondrial rRNA gene (Black and Piesman 1994) in A. maculatum and 

ISE6 cell cultures. For Vero cell culture samples, we used primers 17F and 106R 

(Tennant et al. 2011) to amplify a 90-bp portion of the glyceraldehyde-3-

phosphate dehydrogenase gene (GAPDH). Ten-fold serial dilutions using DNA 

template from known positive samples (A. maculatum cell culture, ISE6 cell 

culture, an adult A. maculatum from Mississippi that was positive for “Ca. R. 

andeanae” by PCR and sequencing) were included in all reactions to generate 

standard curves. For each cell culture type, A. maculatum cells, ISE6 cells and 

Vero cells, duplicate samples were included for host cell and “Ca. R. andeanae” 

standards as well as samples from culture flasks. The standard curve was used 

to evaluate reaction efficiency and calculate relative values for the amount of 

rickettsial and host genes present in order to calculate CaRa/HG ratios.  Thermal 

cycler parameters were modified from Paddock et al. (Paddock et al. 2010) after 

empirically determining that an annealing temperature of 54ºC was suitable to 

efficiently amplify rickettsial DNA at the same time as host cell DNA. Thus, 

amplification of “Ca. R. andeanae” occurred concurrently with amplification of the 

specific host cell target, whether this was targeting 16S mitochondrial rRNA or 

GAPDH genes. A standard dissociation curve was included in the thermal cycle 

program and all assays were performed using a Stratagene MX3005P QPCR 

system (Agilent Technologies, Santa Clara, CA).  
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Results 
 

For establishment of the A. maculatum embryonic cell line, we allowed 

female ticks to oviposit in humidity chambers for 25 days to a month after onset 

of oviposition. At this point most of the egg mass contained embryos, not fully 

formed larvae, as observed by daily inspections under a dissection microscope. 

We sought to establish an A. maculatum cell line naturally infected and 

uninfected with “Ca. R. andeanae” from ticks purchased from the OSU and 

TAMU tick colonies respectively. The primary culture from the OSU source grew 

slowly and took two months to form a cell monolayer. After two months, we 

successfully passaged these cells to another flask. At that time, we were also 

successful in freezing and growing cells back from frozen vials. Cells from the 

TAMU source processed using a protocol similar to OSU tick cells did not form a 

confluent monolayer during three months and since they did not thrive, TAMU 

cells were discarded. In order to establish an uninfected cell line, two flasks of 

OSU tick cells were treated with tetracycline (initially 10 mg/ml and then 

increased to 40mg/mL, Sigma-Aldrich, St. Louis, MO) for 40 days to eliminate 

rickettsial infection. Two weeks into treatment, we tested for rickettsial infection 

by stained cytospins and PCR and QPCR assays of treated flasks once a week 

for a month with no evidence of “Ca. R. andeanae”.  

Regarding the isolation of “Ca. R. andeanae” from naturally infected GCT 

cells purchased from OSU, no bacteria were observed in the first biweekly 

cytospins that were started after two weeks of onset of experiment. We used Diff-

Quik, acridine orange staining, and indirect immunofluorescence assay of 
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cytospins to demonstrate growth of “Ca. R. andeanae”. We first identified 

bacteria five weeks after the establishment of cultures when weakly stained 

bacteria were observed in cytospins. After two months and a clear observation of 

rickettsia-like bacteria in cytospins from the A. maculatum cells, we challenged 

ISE6 and Vero cell cultures. Staining using either acridine orange (Figure 6.2) or 

Diff-Quik (Figure 6.3) were performed in weekly cytospins for almost three 

months, alternating the staining method each week for the three cell lines. 

Rickettsia-like bacteria were seen most commonly intracellularly as well as 

extracellularly, no bacterium could be identified intranuclearly. Bacteria were not 

consistently observed in all cytospins of cell culture flasks, and were particularly 

difficult to find in cytospins from ISE6 and Vero cells. Even when observed in 

cytospins, rickettsiae were not present in high numbers (as compared to R. 

parkeri). Immunofluorescence was performed once for OSU cells and showed 

characteristic fluorescence for infected cells when compared with positive control 

(R. parkeri) and just background fluorescence for negative control cells (Figure 

6.1).  

We challenged ISE6 and Vero cells with 0.2 ml of spent media in addition 

to a sample of cells that removed by pipeting or scraping from the source “Ca. R. 

andeanae”-infected A. maculatum flask. After the initial challenge of ISE6 and 

Vero, we tested all three cell lines using cytospins coupled with PCRs and 

QPCRs. Challenges were repeated approximately once a month for three 

months when cell lines were negative by PCR. PCR and QPCR assays were 

performed for 11 and eight time points, respectively, spread over a three month 
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period (Table 6.1). At least two flasks of ISE6 and Vero cells each were kept 

unchallenged to use as negative controls for cytospins, PCRs and QPCRs, which 

remained negative in the cytological and molecular analysis, tested at 11 and 

eight time points respectively. 

We used QPCR to compare the “Ca. R. andeanae” growth from samples 

of spent media collected at eight time points from naturally infected established 

A. maculatum cell cultures, tetracycline-treated A. maculatum cell cultures, ISE6 

cell cultures and Vero cell cultures. From Figure 6.4 (a), the naturally infected A. 

maculatum cell culture was consistently positive throughout the time points. 

Shortly after onset of treatment, antibiotic treated A. maculatum cells were 

positive for rickettsial DNA but became negative in later time points. Inoculated 

ISE6 (Figure 6.4b) and Vero cells (Figure 6.4c) differed from A. maculatum cells. 

QPCR results fluctuated throughout the three months of experiment and 

amplification of “Ca. R. andeanae” generally coincided with a time point occurring 

directly after challenge. Results of QPCR and PCR assays were comparable. 

Tick DNA from two culture time points (March 20th and 27th) was amplified 

by PCR using primers for a fragment of the 16 rRNA gene as described by (Black 

and Piesman 1994) and subsequently sequenced. A BLAST search confirmed 

the 100% identity with 100% coverage of the sample sequenced with A. 

maculatum 16S rRNA sequences deposited in the NCBI Genbank 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), further characterizing the establishment 

of a new cell line. Using “Ca. R. andeanae” rompA gene primers, we amplified 

DNA from a time point (February, 28th) of the rickettsiae infecting A. maculatum, 
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ISE6 and Vero cells and submitted it for sequencing as well. The rickettsial DNA 

present in the three cell lines was confirmed to be 100% identical to “Ca. R. 

andeanae” rompA fragment compared by a BLAST search of the GenBank.  

 

Discussion 
 

In this study, we successfully established a new tick cell line from A. 

maculatum embryonic cells and concurrently propagated “Ca. R. andeanae” in 

those cells. “Candidatus Rickettsia andeanae” demonstrated better growth within 

naturally infected source cells as opposed to growth of passages made to ISE6 

and Vero cells. Given the source of cell line and evidence of “Ca. R. andeanae” 

that was detected in naturally infected GCT cells, as opposed to the Vero and 

ISE6 cells that required additional challenges based on PCR and QPCR results, 

our data suggest that this rickettsia is more stable in the new A. maculatum cell 

line. 

Previous attempts to isolate “Ca. R. andeanae” in Vero E6, ISE6 and 

C6/36 (mosquito) cells, using A. maculatum naturally infected with “Ca. R. 

andeanae”, were unsuccessful (Paddock et al. 2010). As with Rickettsia 

peacockii, after several failed attempts to isolate it, the first successful isolate 

was in Dermacentor andersoni tick cells (Simser et al. 2001). Recently, “Ca. R. 

andeanae” was propagated in mammalian cells (Vero and DH82) and S2 cells 

from Drosophila melanogaster (Luce-Fedrow et al. 2011). However, a stable 

rickettsial isolate propagated by cells from a host in which they are naturally 

found may provide a more realistic model for future studies. Rickettsial proteins 
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may be differentially expressed depending on the environment in which they are 

grown, particularly when grown in mammalian compared to arthropod cell lines 

(Rovery et al. 2005, Singu et al. 2006). In this study, “Ca. R. andeanae” was 

isolated and maintained in cells from GCTs where they were consistently 

detected by PCR and QPCR assays and more routinely detected by cytospins.  

In comparison ISE6 and Vero cells were often negative by assays shortly after 

challenge and were repeatedly challenged to demonstrate rickettsiae.  

On the January 27th time point, a peak in the ratio of “Ca. R. andeanae” to 

tick 16S mitochondrial DNA was seen in the QPCR assay. This peak may have 

been due to differences in sample collection or in the growth status of the 

rickettsia relative to the newly established cells. For example, as this was early in 

the establishment of the cell line, the embryonic cells may have been more tightly 

adhered in the monolayer but the growth of rickettsiae may have been stable. 

Thus, fewer nonadherent cells would be present and the amount of tick 16S 

mitochondrial rDNA would be lower, allowing the ratio to be higher than in later 

time points where more cells have detached. 

Overall, we observed low numbers of “Ca. R. andeanae” in cytospins and 

slow growth, consistent with results reported by Luce-Fedrow et al. (Luce-Fedrow 

et al. 2011). In that study, Vero cells maintained the highest overall quantity of 

“Ca. R. andeanae” in comparison with the growth rates in DH82 and S2, 

Drosophila hemocytes (Luce-Fedrow et al. 2011). In addition, “Ca. R. andeanae” 

was  observed in the cell cytoplasm and extracellularly, with no intranuclear 

bacteria, which is comparable with our findings (Luce-Fedrow et al. 2011, 
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unpublished data). Interestingly, the use of egg masses from infected female A. 

maculatum to establish the “Ca. R. andeanae” isolate supports transovarial 

transmission of this rickettsia. Further investigation is needed to confirm vertical 

transmission. As of May 2012, the new GCT cell line is still growing in our 

laboratory and GCT, ISE6 and Vero cell lines are still infected with “Ca. R. 

andeanae” based on QPCR analysis.  

We were unable to grow the naturally uninfected cells from TAMU eggs. 

Possible reasons for the cell line failure include incorrect timing of embryonic 

development or slightly different conditions in the protocol, as compared with the 

protocol used initially for OSU cells. For example the smaller quantities of TAMU 

eggs used may have yielded less embryonic tissue to seed the flat bottom tubes 

used, instead of flasks used for OSU tick cells. Nevertheless, infected flasks with 

naturally infected cell lines were successfully cleared of the infection using 

tetracycline, and have remained free of bacteria as shown by microscopy, PCR 

and QPCR assays.  

In our study, the use of cells from the natural host for “Ca. R. andeanae” 

appeared to provide a more suitable environment for growth of these rickettsiae 

compared to other traditional cell lines used. In the process, a new embryonic 

tick cell line was established. The isolation of “Ca. R. andeanae” provides a 

source of organism for more in-depth studies investigating its biology, infectivity 

and pathogenicity to vertebrates and future genetic characterization to aid in the 

species status designation of the novel SFGR. In addition, the A. maculatum cell 

line provides an alternative tick cell line for cultivation of tick-associated 
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organisms and will be ideal for A. maculatum associated bacteria. As the 

maintenance of these cells does not differ substantially from the maintenance of 

other tick cell lines, it should be a convenient cell line for use in the laboratory 

setting already accustomed to propagating tick and other arthropod cells. 
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Table 6.1 PCR results of “Ca. R. andeanae”-species specific rompA fragment for 
several time points of rickettsial growth in A. maculatum cell line (GCT 
cells) and in challenged ISE6 and Vero cells.  

Time points 
Naturally infected GCT 

cells 

ISE6 

challenged 

Vero 

challenged 

3-Jan. Positive Negative N/a 

23-Jan. Positive Positive* Positive* 

27-Jan. Positive Positive Positive 

30-Jan. N/a Negative Negative 

10-Feb. Positive Negative Negative 

24-Feb. Positive Negative* Positive* 

28-Feb. Positive Positive Positive 

6-Mar. Positive Negative Negative 

13-Mar. Positive Positive Negative 

20-Mar. Positive Negative Negative 

27-Mar. Positive Negative Positive* 

*indicates a PCR result following a re-challenge (re-challenges occurred on 13 
Jan., 14 Feb. and 21 Feb. for ISE6 and Vero and on 23 Mar., for Vero only).  
 

 

Figure 6.1 Immunofluorescence antibody assay showing extracellular 
rickettsiae in Amblyomma maculatum cells including positive and 
negative controls of assay 

 
NOTE: (a) extracellular rickettsiae (tip of arrow) in GCT cells; (b) Rickettsia 

parkeri grown in ISE6 as positive control and (c) uninfected GCT cells as 
negative control. Images were captured using an Olympus BX41 
microscope and Nikon DS-Fi1 camera at 1000x magnification. 
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Figure 6.2 Acridine orange staining showing “Ca. R. andeanae”-infected 
Amblyomma maculatum, ISE6 and Vero cells including uninfected 
cultures 

 
NOTE: Top row shows rickettsiae (tip of arrows) extra and intracellularly in GCT 

cells (a), ISE6 (b) and Vero (c) at various time points. Bottom row 
represents uninfected cells of GCT cells (d), ISE6 (e) and Vero (f). 
Images were captured using an Olympus BX41 microscope and Nikon 
DS-Fi1 camera at 1000x magnification. 
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Figure 6.3 Diff-Quik staining showing “Ca. R. andeanae”-infected Amblyomma 
maculatum, ISE6 and Vero cells including uninfected cultures 

 
NOTE: Top row shows rickettsiae (tip of arrows) mostly in the cytoplasm of GCT 

cells (a), ISE6 (b) and Vero (c) at various time points. Bottom row 
represents uninfected cells as shown in GCT cells (d), ISE6 (e) and Vero 
(f). Images were captured using an Olympus BX41 microscope and Nikon 
DS-Fi1 camera at 1000x magnification. 
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(a)  

(b)  

Figure 6.4 Ratio of “Candidatus R. andeanae” infection levels by host gene 
amounts based on QPCR results in three different cell lines  

 
NOTE: (a) A. maculatum cell line, “GCT cells”; (b) ISE6 cells and (c) Vero cells. 

Re-challenges occurred on 13 Jan., 14 Feb. and 21 Feb. for ISE6 and 
Vero and on 23 Mar., for Vero only. 
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(c)  

Figure 6.4 (continued) 
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CHAPTER VII 

CONCLUSIONS AND IMPLICATIONS 

 

We proposed to study the ecological relationships of spotted fever group 

rickettsiae (SFGR) in Gulf Coast ticks (GCTs) in Mississippi. All proposed aims 

were completed and are presented in this dissertation. In Chapter 3, we provide 

results from testing a large sampling of GCTs collected over a three year period 

from ten different sites mostly in northeastern and southern Mississippi. In this 

study, 698 GCTs were analyzed by PCR assays for the presence of SFGR DNA. 

Over 15% of GCTs were infected with a recently recognized zoonotic rickettsia, 

R. parkeri. However, to date only four cases of R. parkeri infection, whether 

confirmed or probable, have been reported in Mississippi. Based on the 

prevalence of R. parkeri detected in GCTs collected over a three year period in 

different regions of Mississippi, the risk for R. parkeri exposure in humans may 

be higher than for R. rickettsii; thus, R. parkeri rickettsioses may be 

underreported. Results from this study should raise awareness to rickettsiosis 

caused by R. parkeri infection in Mississippi. Interestingly, in Tennessee there 

the number of reported RMSF cases increased by 20% in 2008  from 2007, 

although no tick (over 1500 ticks surveyed) was found infected with R. rickettsii 

(Moncayo et al. 2010). With RMSF cases now reported as “spotted fever 
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rickettsiosis” to acknowledge the additional SFGR that may cause RMSF-like 

disease, the increase in RMSF cases reported in Tennessee in 2008 may reflect 

misdiagnosis of other spotted fever rickettsioses, particularly considering the high 

prevalence of other SFGR that were detected in resident ticks from that study 

(Moncayo et al. 2010). More cases of RMSF are likely to have occurred than the 

actual reported due to lack of specific laboratory testing (Dahlgren et al. 2012). 

Studies such as that presented in Chapter 3 of this dissertation are important for 

increasing awareness of other tick-borne rickettsiae like R. parkeri and for 

providing epidemiological data for physicians and other health care providers to 

assist in designing appropriate local health care policies for prevention and 

treatment of rickettsioses.  

We also found that 1.4% of GCTs were singly infected with “Ca. R. 

andeanae” and other 1.7% were co-infected with R. parkeri and “Ca. R. 

andeanae”. A low infection rate of ticks singly infected with “Ca. R. andeanae” 

supports data from previous studies in the U.S., although, to our knowledge, no 

other study of “Ca. R. andeanae” used as large a sample size as was used in our 

study.  Interestingly, to our knowledge we are the first group to report co-infection 

of R. parkeri and “Ca. R. andeanae”. Recently, one GCT male from North 

Carolina was reported co-infected with the novel SFGR and R. parkeri (Varela-

Stokes et al. 2011) and 12 GCTs in this study (Chapter 3). Co-infections between 

many rickettsiae are not a common event due to transovarial interference, such 

as that reported with R. peacockii and R. rickettsii (Azad and Beard 1998). 

Further study is needed to determine the relationship of “Ca. R. andeanae” with 
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R. parkeri in GCTs. These efforts are currently being undertaken in our group as 

a result of data presented in Chapter 3. 

From the GCTs collected for the prevalence study, we amplified DNA of 

the tick mitochondrial rRNA gene to examine genetic variation among 

populations of GCTs from the North and South of Mississippi at that locus using 

Single Strand conformational polymorphism analysis (SSCP; Chapter 4). At least 

four genetically different haplotypes or GCT populations exist in Mississippi and 

were resolved based on the SSCP analysis coupled with sequencing. Statistical 

analyses of haplotype frequencies showed no significant differences between the 

four sites in southern Mississippi compared to the four sites in northern 

Mississippi. However, haplotype distribution was significantly different if locally 

analyzed, i.e. by sites. As supported by a calculus of migration, there appears to 

be significant movement between local populations of GCTs.  In a similar SSCP 

study of GCTs from Oklahoma, Kansas and Texas (Ketchum et al. 2009), it was 

suggested that Kansas ticks may have founded the coastal population (Teel et al. 

2010). We propose an alternative event, that different introductions from 

elsewhere in Central and South America may have founded Kansas and the 

coastal population and formed distinct populations in these regions. This 

alternative explanation is based on the high variability in Mississippi haplotypes 

and the unique and ancestral haplotype identified in our samples. This is 

comparable to the scenario observed in Kansas (Ketchum et al. 2009). A more 

complete sampling of GCTs from throughout its distribution in the U.S. and from 
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other potential source populations in South and Central America may answer 

questions raised by this work.  

In addition to tick population analysis, we studied the population of R. 

parkeri infecting those ticks based on SSCP. Our results showed that different 

populations of ticks are infected with the same population of R. parkeri, at least 

for the six loci examined here. That a coding gene, rompA, would show no 

genetic variability among our samples was expected, however finding no 

variation using five different intergenic spacer regions was surprising. In the 

future, the use of a larger selection of intergenic regions may produce a better 

marker for genetic variation among R. parkeri strains. Additionally, it is 

reasonable ecologically that the variability seen with ticks was larger than that 

within the rickettsiae as ticks are capable of reproducing sexually. Additionally, 

selection pressure is larger for arthropods adapted to a variety of habitats while 

the rickettsia is more “protected” in its niche inside the tick, where contact with 

other bacteria, that could add variability, is limited (Roux et al. 2002). As stated 

previously, “the ecologic separation and reduced selective pressure due to these 

associations (rickettsiae in blood-sucking arthropods) may explain rickettsial 

genetic conservation” (Azad and Beard 1998).  

Most of the knowledge of “Ca. R. andeanae” was previously limited to 

molecular evidence of the rickettsia in infected ticks. Blair et al. studied the 

phylogeny of “Ca. R. andeanae” and was able to group it with other SFGR based 

on the rickettsial outer membrane protein B (Blair 2004). In Chapter 5, we 

demonstrated that “Ca. R. andeanae” possess a similar ultrastructural 
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morphology to other previously described SFGR, which corroborates with the 

results from the earlier phylogenetic study (Blair et al. 2004). Additionally, we 

described its occurrence in salivary glands and digestive system of female adult 

GCTs. In female ticks, it was observed in the Malpighian tubules and 

reproductive tissues. Ultimately, a long-term goal for the study of “Ca. R. 

andeanae” is to determine interactions between this SFGR and R. parkeri, as 

well as the infectivity and pathogenicity of the novel SFGR itself. The results 

presented in this dissertation will contribute to the generation of hypotheses and 

design of future studies to pursue these answers. For example, our 

demonstration of rickettsia-like organisms in the salivary glands of the ticks 

analyzed helped support studies to evaluate horizontal transmission of the novel 

SFGR. Horizontal transmission is the ability of some bacteria to infect and 

replicate in vertebrates producing a bacteremia at which point another tick vector 

bites this host becoming infected (Sonenshine 1993); one avenue for horizontal 

transmission is through saliva contaminated with the organism.  

Tick embryonic cells are useful in propagating fastidious organisms, 

especially those that naturally replicate in arthropod cells, like tick-borne 

arboviruses, bacteria, and protozoa (Bell-Sakyi et al. 2007). Chapter 6 presented 

the successful establishment of new cell line from GCT embryonic cells. The 

GCT cell line may prove useful for isolation of other organisms that have been 

fastidious in currently available cell lines. In addition, its maintenance does not 

differ substantially from other currently available tick cell lines. Additionally, as it 

has been shown for R. conorii and Ehrlichia chaffeensis, expression of 
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transcripts or proteins (respectively) was different in bacteria grown in vertebrate 

cells in comparison with arthropod cells (Rovery et al. 2005, Singu et al. 2006). 

Therefore, this cell line may provide a better model for proteomic and genetic 

modification studies for organisms naturally occurring in GCTs (e.g. R. parkeri 

and Hepatoozon americanum), and may aid in further studies on the potential 

bioterrorism agent, Ehrlichia ruminantium.    

Additionally, in chapter 6 we reported successfully isolating “Ca. R. 

andeanae” in the A. maculatum embryonic cell line, which we believe to be a 

better and more stable model for studying of “Ca. R. andeanae”. From that 

isolate, we were also able to propagate the novel SFGR in Vero and ISE6 cells 

although momentarily. An important implication of acquiring an isolate of “Ca. R. 

andeanae” is that the ability now exists to evaluate its pathogenicity. As has been 

shown previously with other rickettsiae, most remarkably with R. parkeri, there is 

a potential for poorly characterized, newly recognized rickettsiae to be 

pathogenic. An established isolate for “Ca. R. andeanae” will allow for more in-

depth studies for evaluating disease potential in vertebrates as well as studies on 

the interactions between this SFGR and R. parkeri in individual ticks and 

vertebrate hosts. Additionally, a stable isolate will allow for a better 

understanding of the basic biology and a more complete genetic characterization 

of “Ca. R. andeanae”, which paves the way for formal designation of species 

status. This isolate of “Ca. R. andeanae” provides a foundation for further studies 

in our lab in elucidating infectivity and pathogenicity of “Ca. R. andeanae”, further 
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characterization of the novel SFGR and interactions between this SFGR and R. 

parkeri in A. maculatum. 

In summary: 

1. GCTs are commonly found infected with a human pathogen, R. 

parkeri, in different regions of Mississippi, including the northern part of 

the state where the occurrence of the tick was not historically accepted 

as established. 

2. At least four genetically different populations of GCT exist in 

Mississippi based on analysis of the tick mitochondrial 16S rDNA gene. 

3. Different populations of ticks are infected with the same population of 

R. parkeri, at least for the six loci examined here. 

4. A recently described SFGR, “Ca. R. andeanae”, is found in a small 

percentage of GCTs in Mississippi. Interestingly, another small 

percentage of ticks are co-infected with “Ca. R. andeanae” and R. 

parkeri. 

5. “Candidatus R. andeanae” possesses similar ultrastructural 

morphology to other SFGR described previously. 

6. Transmission electron microscopy identified “Ca. R. andeanae” in 

salivary glands, gut, Malpighian tubules and reproductive organs of 

female adult GCTs. 

7. A successful cell line from GCT embryonic cells was developed.  

8. “Candidatus R. andeanae” was successfully isolated in the cells of its 

natural host, GCT, as well as propagated in Vero and ISE6 cells. 
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APPENDIX A 

SINGLE STRAND CONFORMATION POLYMORPHISM ANALYSIS 
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Single strand conformation polymorphism analysis 

 

1. Start ORIGINS™ machine (Elchrom Scientific AG, Cham, Switzerland) about 

40 minutes to cool the running buffer to 7-9°C before loading the samples to 

the gel. 

2. Place in a new tube, 8.4μl of PCR products and add to it, 3.6μl of formamide-

NaOH solution:  

a) Mix just before use: 150μl of formamide, 1.5μl of 1M NaOH and 3.9μl of 

reverse and forward primers.  

b) Add a few grains of bromphenolblue for better visualization, the amount of 

powder of dipping a tip in it is enough. Mix well by vortex. 

3. Heat at 95°C for 5.5 minutes. Immediately place the hot tubes on ice for 3 

minutes. Load 9 μl of ladder mix to the gel with pump off (3μl PhiX ladder plus 

6μl of loading buffer provided with the gels).  

4. With pump off, load all 12 μl of the samples as quick as possible. Run the gel 

at 6 V/cm (Elchrom suggests 72V) at 7 to 9°C. Running time depends on the 

size of PCR fragments, the company’s suggestions are: fragments of 250-

300bp run for 15h and 350-450bp for 17h.  

5. After run, release the gel from its plastic backing against a 1L glass bottle 

using a nylon string and stain it with SYBR Green II (10μL in 100ml 1X TAE) 

for 40 min or EtBr (5μL in 100ml 1X TAE). If needed, destain in double 

distilled water or destaining solution for at least 30 min.  
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6. Photograph with Alpha Innotech 302 nm, EtBr filter, ~10 second exposure or 

other photodocumentation machine. 

 

Adapted from: 

http://www.elchrom.com/fileadmin/pdf/Short%20Technical%20Manual%20ORIGI

NS%209C-1.pdf 
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