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When a nanostructure is coupled between two leads, the electron transmission prob-

ability as a function of energy, E, is used in the Landauer formula to obtain the elec-

trical conductance of the nanodevice. The electron transmission probability as a func-

tion of energy, T (E), is calculated from the appropriate solution of the time independent

Schrödinger equation. Recently, a large class of nanostructures called quantum dragons

have been discovered. Quantum dragons are nanodevices with correlated disorder but still

can have electron transmission probability unity for all energies when connected to ap-

propraite (idealized) leads. Hence for a single channel setup, the electrical conductivity is

Go = 2e2

h
where e is the charge of an electron and h is Planck’s constant. Thus quantum

dragons have the minimum electrical conductance allowed by quantum mechanics. These

quantum dragons have potential applications in nanoelectronics.

It is shown that for dimerized leads coupled to a simple two-slice (l = 2, m = 1) de-

vice, the matrix method gives the same expression for the electron transmission probability



as renormalization group methods and as the well known Green’s function method. If a

nanodevice has m atoms per slice, with l slices to calculate the electron transmission prob-

ability as a function of energy via the matrix method requires the solution of the inverse

of a (2 + ml) × (2 + ml) matrix. This matrix to invert is of large dimensions for large m

and l. Taking the inverse of such a matrix could be done numerically, but getting an ex-

act solution may not be possible. By using the mapping technique, this reduces this large

matrix to invert into a simple (l + 2) × (l + 2) matrix to invert, which is easier to handle

but has the same solution. By using the map-and-tune approach, quantum dragon solutions

are shown to exist for single-layer planar rectangular crystals with different boundary con-

ditions. Each chapter provides two different ways on how to find quantum dragons. This

work has experimental relevance, since this could pave the way for planar rectangular nan-

odevices with zero electrical resistance to be found. In the presence of randomness of the

single-band tight-binding parameters in the nanodevice, an interesting quantum mechani-

cal phenomenon called Fano resonance of the electron transmission probability is shown

to be observed.

Key words: Quantum dragons, single-layer planar rectangular crystals, electron transmis-
sion probability, Fano resonances, Perron Frobenius theorem, nanodevices, single-band
tight-binding model
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CHAPTER 1

INTRODUCTION

1.1 Classical Ohm’s law

In the macroscopic regime, when considering a metallic wire (conductor), the electrical

conductance of a wire is simply expressed by Ohm’s law. Ohm’s law is the assertion that

the current, I , flowing through a wire (conductor) is proportional to the electric potential

difference, V , across the conductor. The constant of proportionality is called the electrical

resistance, R. The electrical conductance, G, is the inverse of the electrical resistance and

can be expressed as

G = R−1 =
I

V
. (1.1)

The existence of electrical resistance in daily life has a lot of practical applications. For

instance, the electrical resistance of a wire in a light bulb results in lighting, or as used in

heating systems including electric stoves and electric heaters. The electrical resistance also

describes device losses, including in laptop computers and mobile devices, as described by

the Joule heating law P = I2R for the power dissipated P . Ohm’s law is just an empirical

law, built from numerous measurements. It is not a fundamental law such as Newton’s

law of gravity. For a uniform wire of length, l, and cross-sectional area, A, the electrical

resistance, R, is given by

R =
ρl

A
(1.2)

1



where ρ is the resistivity. See Fig. 1.1

Figure 1.1

A device connected to input (incoming) and output (outgoing) leads.

1.2 Conductance from transmission

When the dimensions of a conductor becomes small enough, Ohm’s law is no longer

valid. Hence to study the transport properties of a nanoscale conductor, such as the electri-

cal conductance, we apply quantum mechanics. As argued by Todorov [1], when a nanos-

tructure is coupled between two leads (incoming and outgoing, as in Fig. 1.1), the quantum

transport properties of the electron moving through the nanodevice can be measured. In his

seminal work in 1957, Landauer [2] showed that the transmission probability, as a function

of energy E, T (E), plays an important role in determining the electrical conductance, G,

of a conductor. The electrical conductance G can be expressed as [2, 3]

G =
2e2

h

(
I1 + I2 + I3 + I4 + · · ·

)
(1.3)

2



where e is the charge of an electron and h is Planck’s constant. The transmisison proba-

bility, T , is calculated from the appropriate solution of the time independent Schrödinger

equation [2, 3, 4, 5].

The Fermi function, f(E), is defined as

f(E) =
1

1 + e
(E−µ)
kBT

(1.4)

where µ is the chemical potential, kB is Boltmann’s constant and T is the temperature.

Consider the simplest case of the Fermi function at zero temperature, T = 0 K, and from

Eq. (1.4) it can be observed that

f(E) =


1 E < µ

0 E > µ

. (1.5)

Eq. (1.5) means that at zero temperature, all states with energy below µ are fully occupied.

All states with energy above µ are empty. The plot for the Fermi function as a function of

energy, E, is shown in Fig. 1.2.

Fig. 1.2, shows a plot of the Fermi function vs E
kB

in units of Kelvin. The parameters

used are µ
kB

= 1. Here, different colors show different temperatures. The minimum tem-

perature used was T = 0.002 K and the maximum temperature was T = 0.02 K with an

increment of 0.002 K.

The shape of the Fermi function for different temperatures is shown in Fig. 1.2, in-

dicating that the energy levels are mostly occupied below a certain energy and mostly

unoccupied above that. A plot of the derivative of the Fermi function is shown in Fig.

3



Figure 1.2

A plot of the Fermi function vs E
kB

for some temperatures.

1.3. The derivative of the Fermi function approaches a delta function as the temperature

approaches zero.

Fig. 1.3, shows a plot of the derivative of the Fermi function vs E
kB

. The parameters

used are µ
kB

= 1. Here, different colors show different temperatures. The minimum tem-

perature used was T = 0.002 K and the maximum temperaure was T = 0.02 K with an

increment of 0.002 K. Room temperature corresponds to about kBT
µ

= 0.01.

Each integral Ik in Eq. (1.3) contains the derivative of the Fermi function and the

transmission probability Tk of the kth conduction channel for an incoming electron of

energy E. For each channel, the integral I can be expressed as

Ik =

∫
Tk(E)

( ∂f
∂E

)
dE ≈ Tk(EF ) . (1.6)
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Figure 1.3

A plot of the derivative of the Fermi function vs E
kB

.

Since the partial derivative of the Fermi Dirac function, f(E), is approximately a delta

function at the Fermi energy, the integral in Eq. (1.6) is approximately the integral eval-

uated at the Fermi energy, EF , as shown in Fig. 1.3. Eq. (1.3) simply suggests that in

order to calculate the electrical conductance, G, of a nanodevice one must calculate the

transmission probability as a function of energy, T (E), from the appropiate solution of

the time independent Schrödinger equation with the attached long (semi-infinite) leads as

described in detail in section 1.4 and shown in Fig. 1.1.

Consider the case, where the first mode has I1 = 1 and invoke a Taylor expansion in

Eq. (1.3). This gives

G =
2e2

h
I1
(

1 +
I2
I1

+
I3
I1

+
I4
I1

+ · · ·
)
. (1.7)

Hence the electrical conductance of the quantum device is well approximated by G = 2e2

h
.

The electrical conductance, Go = 2e2

h
= 7.74× 10−5S is called the conductance quantum.

5



As argued by [6], in theoretical and simulation studies, the linear conductance as a function

of energy, E is plotted at zero temperature. This can seen from the Landauer expression, in

Eq. (1.3). The concept of electron transmission probability, T , for electrical conductance

for one-dimenional (1D) systems such as nanowires and nanoribbons was first introduced

by Landauer [2, 7]. It was later extended by Büttiker et. al [8] to multichannel and multi-

lead systems, including planar conductors and nanotubes [6].

It is known that in the absence of scattering mechanisms, electrons of all energies

which impinge on the nanodevice are fully transmitted, and hence T (E) = 1. In this

case, electron transport is said to be ballistic [2, 5, 9, 10, 11]. Ballistic electron transport

has been observed experimentally in high purity semiconducting wires [12] as well as

graphene nanoribbons and metallic single-walled carbon nanotubes [13, 14].

1.3 Anderson localization

The Anderson model [15, 16] is most often used to study wavefunction localization in

disordered systems. It is based on the single-band tight-binding model. The Hamiltonian

of such a system is expressed as

H =
∑
i

εi | i〉〈i | −t
∑
<ij>

| i〉〈j | (1.8)

where | i〉 denotes the localized state of the lattice at site i, εi is the on-site energy at site i

and | i〉〈j | indicates the nearest neighbor hopping interaction. The hopping strength, t, is

related to the lattice spacing, a, and the mass of the electron, m, by the equation

t =
~2

2ma2
(1.9)
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where ~ = h
2π

and h is the Planck’s constant.

Anderson [15], showed that random disorder in 1D of any system will localize the elec-

tron wavefunction, and hence Tk(E) is small at almost all energies. Anderson localization

simply suggests that T (E) of any nanostructure which has disorder will have a very small

G and consequently very large electrical resistance, R. This simply means that any 1D

device with random disorder should act as an insulator. Fig. 1.4 through Fig. 1.6 shows

the plot of T (E) showing Anderson localization. As it can be seen from Fig. 1.4 through

Fig. 1.6, as the length of the device increases, there are distinct features in the electron

transmission probability as a function of energy. The result of the random disorder of the

tight-binding parameters in all three plots shows the appearance of wavefunction localiza-

tion effects. In other words, the wavefunction becomes localized, meaning that the electron

transmission probability decreases at long distances as a result of interference effects. It

can also be seen from Fig. 1.4 through Fig. 1.6 that a small degree of disorder leads

to localization of quantum states even for devices not very large. Note in particular the

logarithmic scale for T (E) and how small it is for almost all energies.

Fig. 1.4, shows a plot of T vs E. Here, m = 1, and l = 2, 4, 6, 8. It should be noted

that m is the number of atoms per slice and l is the number of slices. The red thick curve

shows l = 2. The blue dotted thick curve shows l = 4, the green dashed show l = 6,

and the magenta, thick dashed curve shows l = 8. The interslice parameters used are

randomly uniformly distributed tij = [−0.5, 0.5] and the on-site energy used are randomly

distributed as εi = [−0.1, 0.1].
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Figure 1.4

A plot of transmission vs E which shows Anderson localization.

Fig. 1.5, shows a plot of T (E). The same as Fig. 1.4, except on a logarithmic scale

and with different choices for the random parameters.

Fig. 1.6, shows a plot transmission vs energy. The device sites are the same as in Fig.

1.4, but the random values of tij and εi are different.

Furthermore, Anderson localization has also been extended to two dimensional (2D) as

well as three dimensional (3D) systems. In the case of two dimensions (2D), Lee and Fisher

[17], observed that all systems in 2D with on-site disorder with uncorrelated randomness

show Anderson localization. This implies that all 2D systems with on-site disorder will

have a very large electrical resistance, R (very small electrical conductance, G). However,

in this work it will be shown that the presence of correlated disorder will not localize the

8



Figure 1.5

A plot of transmission vs E which shows Anderson localization, log scale.

wavefunction of certain classes of 1D and 2D nanostructures. These nanostructures, may

have an even-odd structure. In fact all electrons which impinge on these nanostructures

through the incoming lead have full electron transmission probability, Tk(E) = 1, at all

energies. Earlier in 2014, Novotny named these classes of nanostucture which have full

transmission probability, T (E) = 1 quantum dragons [18]. Each of the nanostructures

(nanodevices) studied in this dissertation will be connected to single channel conducting

1D leads (incoming and outgoing).

1.4 T (E) from solution of time independent Schrödinger equation

In most cases, the tight-binding model is solved using the Green’s function method

[3, 4, 5, 6], however the matrix method can also be used [18, 19, 20, 21, 22, 23, 24, 25, 26].
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Figure 1.6

A plot of transmission vs E which shows Anderson localization.

In this study, the matrix method will be used because it allows the electron transmission

probability to be calculated for a small number of atoms such as a single atom in the device

as well as in situations where there are large number of atoms in the nanodevice. Also, in

finding quantum dragons, the matrix method is easy to use since the algebra is easier to

handle. Using the matrix method, one can easily modify the model parameters, such as the

on-site energies of the atoms in the lead as well as the nanodevices, the connection hopping

strengths ~w and ~u or the intra-slice and inter-slice coupling matrices in the nanodevice.

1.5 Method of finite differences

Several techniques can be used to obtain a numerical solution of the time independent

Schrödinger equation. One such method is the method of finite differences. This technique
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can be used to study transport properties in the quantum realm. A detailed derivation of

the method of finite differences can be found on pp 141-144 of Ref [3]. To set the tone for

the single-channel approach for quantum electron transport, a re-derivation of the method

of finite differences for a 1D linear chain is presented here. The approach leads to a single

band tight binding model.

Let the Hamiltonian,H(r) for an arbitrary shaped conductor in the absence of magnetic

field be expressed as

H(r) =
−~2∇2

2m
+ U(r) (1.10)

where ~ = h
2π

and h is Planck’s constant, m is the mass of the electron and U(r) is the

potential. In 1D, Eq. (1.10) can be expressed as

H(x) =
−~2

2m

d2

dx2
+ U(x) . (1.11)

To obtain the matrix representation for the 1D chain, lets consider the quantityH(x)ψ(x),

Figure 1.7

An infinite linear chain discretized into a 1D lattice.
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where ψ(x) is any function of x. Consider a discrete lattice whose points are located at

x = na, where n is an integer, as in Fig. 1.7. The matrix equation can be expressed as

[Hψ]x=na =

[
−~2

2m

d2ψ

dx2

]
x=na

+ Unψn (1.12)

where ψn → ψ(x = na) and Un → U(x = na). The method of finite differences can be

used to approximate the operator d2ψ
dx2

as

d2ψ

dx2
=

1

a2
[ψn−1 − 2ψn + ψn+1] . (1.13)

This means that Eq. (1.12) can be expressed as

[Hψ]x=na = −toψj−1 + (Uj + 2to)ψj − toψj+1 (1.14)

where to = ~2
2ma2

.

Thus the Hamiltonian operator for the 1D linear chain can be expressed as

H =



· · · −to 0 0 0

−to U−1 + 2to −to 0 0

0 −to Uo + 2to −to 0

0 0 −to U1 + 2to −t0

0 0 0 −t0 · · ·


. (1.15)

Assume a constant potential at every site, Uo. Eq. (1.15) simply suggests that each site is

connected to its nearest neighbor by the hopping term to while the diagonal elements are

expressed as Uo + 2to (i.e potential energy plus 2to). From Eq. (1.14), this means that for

a uniform discrete wire, the time independent Schrödinger equation can be expressed as

Eψj = (Uo + 2to)ψj − toψj−1 − toψj+1 . (1.16)
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To solve Eq. (1.16) assume an ansatz in the form of Bloch wave, ψj = eikja of wavevector

k. Substitute the ansatz back into Eq. (1.16) and upon further simplification this gives

E = (Uo + 2to)− 2to cos(ka) (1.17)

and therefore

cos(ka) =
(Uo + 2to)− E

2to
. (1.18)

Since propagating waves require −1 ≤ cos(ka) ≤ 1 one has

Uo ≤ E ≤ Uo + 4to . (1.19)

Eq. (1.19) is the condition which is imposed on the energy of the incoming electron, E, in

the 1D limit. It leads to a tight binding model, where continuous space has been replaced

by discretized points. The Hamiltonian operator in Eq. (1.15) is a typical example of a

tridiagonal matrix.

1.6 Tight binding model

The single-band tight-binding model has several applications. For instance it can be

used to describe the electronic interactions for 1D or almost 1D systems such as single

crystals with one orbital per site [27]. The single-band tight-binding model can also be used

to describe the electronic interactions for 2D systems such as planar rectangular crystals

with more than 1 atom per slice. For these systems, the Hamiltonian assumes a tridiagonal

or block-tridiagonal form.

Assume an incident wave (an electron of energy E) impinges from z = −∞ on a

potential well (nanodevice) which is located at the origin (z = 0) and scatters off to z =
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±∞. For this incident electron of energy E the probability that it gets transmitted to

z = +∞ or gets reflected to z = −∞ are respectively T (E) andR(E). The transmission

and reflection probabilities, T (E) and R(E) are calculated from the appropriate solution

of the time-independent Schrödinger equation [2, 3, 4, 5].

In the single-band tight-binding model, the inter-slice coupling matrix is taken to con-

tain both the hopping terms of the nearest neighbor (nn) and next-nearest neighbor (nnn)

hopping interactions tx and ty respectively. These hopping interaction terms are the re-

sult of the overlap of the wavefunction between two atoms. The intra-slice coupling matrix

contains the on-site energy at site j, εj , for each slice as well as the intra-slice hopping term

tj . The on-site energy is a result of the discretization of the time independent Schrödinger

equation as well as the electrical potential at site j, Uj . The inter-slice and intra-slice

coupling matrices are Hermitian matrices since they come from the Hamiltonian of the

time-independent Schrödinger equation. These are square matrices of the correct dimen-

sions. Hopping terms between sites within the same slice are referred to as intra-slice.

See Fig. 1.8. Because we connect semi-infinite leads, the matrix is of infinite dimension.

Fig. 1.8, is an example of a nanodevice connected to input and output leads. There are

three atoms shown in the incoming and the outgoing semi-infinite leads. The atoms in the

leads are shown in light green color. The vertical lines show the division into slices for the

device. There are four slices in the nanodevice, and the intra-slice hopping in the device

are shown in red color. The atoms in the device are shown in a forest green color. The

inter-slice hopping terms are nn (violet) and nnn (light green).
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Figure 1.8

An example of a m = 3, l = 4 nanodevice coupled to input (incoming) and output

(outgoing) leads.

The nanodevice is connected to a 1D infinite chain of lead sites from the left (incoming)

and the right (outgoing). The lattice spacing, a, between the lead sites is set to unity for

simplicity. The on-site energy of the atoms in the lead site is set to zero, εL = 0, since the

atoms in the incoming lead sites as well as the outgoing lead sites are assumed identical.

Therefore, we have chosen our zero for the energy. The nanodevice studied in Fig. 1.8

consists of 4 slices (l = 4) for simplicity, though the number of slices can be increased

to any even integer so that the even-odd interactions are maintained through the incoming

(outgoing) lead as well as the nanodevice. Appendix A.1, shows how to go from an infinite

matrix to a finite matrix.
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For the nanodevice with 4 slices (l = 4) in Fig. 1.8, the matrix equation to solve to

calculate the electron transmission probability as a function of energy, E, can be expressed

as [18]

ξ(E) −~w† ~0† ~0† ~0† 0

−~w F1 −Boe 0 0 ~0

~0 −B†oe F2 −Beo 0 ~0

~0 0 −B†eo F1 −Boe
~0

~0 0 0 −B†oe F2 −~u

0 ~0† ~0† ~0† −~u† ξ(E)





χ+ rχ∗

~ψa

~ψb

~ψc

~ψd

tT



=



Λ

~0

~0

~0

~0

0



(1.20)

with the definitions ξ(E) = −Eteoe−iq
teoe−iq+toeeiq

, Λ = −toe
χ∗ (χeiq − χ∗e−iq), χ = −E

teoe−iq+toeeiq
and

Fi = Ai − EI. The vector ~w connects the left (incoming) lead to the nanodevice and the

vector ~u connects the right (outgoing) lead to the nanodevice. For l nanodevice slices, each

of size m, the dimension of the matrix that needs to be inverted to calculate the quantum

transmission probability is (2 + lm) × (2 + lm) Using Eq. (1.20) and solving for the

transmission amplitude, tT , the electron transmission probability, as a function of energy,

E, can be calculated since T = |tT |2. Furthermore, from the conservation of the number

of electrons, the equation |tT |2 + |r|2 = T +R = 1 must always be valid. In Eq. (1.20),

the energy, E, of the incoming electron is only in the diagonal elements.

1.7 Definitions for quantum dragons

Recently, the theoretical discovery of a large class of nanostructures called quantum

dragons for the case of a single conduction channel has been published [18]. Quantum
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dragons are nanodevices that when connected to appropriate leads have unity transmission

probability for all energies [18]. Quantum dragons have unity transmission probability as

a result of the interplay between the leads and the nanodevice. Since quantum dragons

have unity transmission probability, T (E) = 1, this means that in the case of two-probe

and four-probe measurements, G is quantized, G = Go and infinite, G = ∞ (R = 0)

respectively. This can be seen from the Landauer formula for a single conduction channel

at low temperatures for the two-probe measurement and four-probe measurement cases

[5, 28]

G =


G0T (EF ) two− probe

G0
T (EF )

1−T (EF )
four− probe

. (1.21)

Furthermore, since quantum dragons have unity transmission probability, this means that

quantum dragons do not exhibit shot noise power (P = 0). This can be seen from the zero

temperature expression for shot power noise for a 2-terminal coherent device [9]

P =
4e3

h
T (1− T )V (1.22)

where V is the applied voltage. Typical examples of quantum dragons include single-

walled carbon nanotubes (SWCNTs) in armchair or zigzag configurations, and cojoined

Bethe lattices [18]. Novotny in 2015 [24], has shown theoretically how a weighted undi-

rected graph can be turned into a quantum dragon by adjusting the vertex weights. This

study concentrates on single channel quantum dragons from single-layer planar rectangular

crystals, trying to answer the question what kind of single-layer planar rectangular crystals

can be turned into quantum dragons. However some background on single-walled carbon

nanotubes and single layer systems is desired.
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1.8 Experimental and theoretical background for nanotubes and single-atom layer
systems

Atomically thin 2D materials are one of the most researched classes of materials [29,

30]. This is because of their exceptional properties which makes them interesting materials

suitable for electronics and optoelectronics applications [30, 31, 32, 33]. A typical example

of a two dimensional crystal is graphene [34]. Graphene was first isolated in [35] and has

a hexagonal honeycomb lattice.

In recent times, all kinds of nanotubes have been fabricated using different techniques.

Examples include carbon nanotubes [36, 37], MoS2 [38], SnO2 [39], and BN nanotubes

[40]. Most of these nanotubes which have been fabricated have cylindrical symmetry and

therefore this suggests a circular cross-sectional area. There are other known 2D nanos-

tructures which have different crystal structure apart from the ones with a hexagonal lattice.

Typical examples include metallic single-walled silicon nanotubes and silver metallic nan-

otubes which have a square lattice [41, 42] and PbTe nanotubes which have a rectangular

lattice [43]. The hexagonal honeycomb lattice, square lattice and rectangular lattice are

three of the five known 2D Bravais lattice types.

Generally, the position vector R of a 2D Bravais lattice can be expressed as

R = n1a1 + n2a2 (1.23)

where ni are any integers and ai are the primitive vectors that span the lattice. Since the

discovery of 2D materials, many research works have been reported. An excellent review

of the properties of 2D crystals has been conducted [44]. Experimental work has also been
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reported for 2D crystals [45, 46]. In [45], the method of micromechanical cleavage was

successsfully used to synthesize some 2D crystals such as complex oxides.

With recent rapid progress in nanotechnology, some single-atom layer systems have

been reported [43, 47, 48, 49]. For example, free-standing single-atom thick rectangular

lattices of Fe have been fabricated [47] which have a rectangular lattice structure. Also,

single-crystal PbTe nanotubes with rectangular cross section have been synthesized using

a vertical induction furnace [43]. Theoretically, the structural and electronic properties of

carbon nanotubes with square lattice structures have been reported [50].

Many interesting phenomena can occur in classical and quantum systems. One such

phenomenon is Fano resonance (FR). Fano resonance occurs as a result of quantum in-

tereference between a resonant state and a continuum of non-resonant states [51]. Fano

resonance can occur in the coherent regime of an electrical resistance measurement when

a finite nanostructure is coupled between two semi-infinite leads [51]. Theoretically, Fano

resonances have been reported in molecular wires, and in both three-terminal and two-

terminal nanodevices [52, 53]. Experimentally, the first observation of Fano resonance to

be reported in mesoscopic devices is credited to Göres et. al [54]. In their experimen-

tal work in electron transport, they observed Fano resonance in the electrical conductance

when parameters such as gate voltage were varied in a single-electron transistor [54]. Fur-

thermore, other experimental works on Fano resonance have also been reported. These

include metallic single-walled carbon nanotubes, electron waveguides and crossed carbon

nanotubes [51, 55, 56]. Recently, Stanssi et. al in 2017, have reported experimentally Fano

resonances in nanomechanical resonators [57]. The phonemenon of Fano resonances have
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also been observed in classical systems including prism-coupled square micropillars, pho-

tonic crystals, waveguide cavity systems, whispering-gallery microresonators and classical

coupled oscillators [58, 59, 60, 61, 62]. An excellent discussion of the classical analogy

of Fano resonances has been reported [63]. For a single conducting channel, the quantum

electron transport property, such as Fano factor, F , is related to the transmission probability

by [64]

F = 1− T (E). (1.24)

In the slices of rectangular crystals, atoms in different slices may have different hopping

strengths. For these rectangular crystals, the matrices A are symmetric tridiagonal matrices

[65]. A symmetric tridiagonal matrix of dimension N × N can be expressed in the form

[65]

A =



a± β b 0 · · · 0 0

b a b · · · 0 0

0 b a · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · a b

0 0 0 · · · b a± γ



= aI± bZ (1.25)
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where a and b are real numbers. In Eq. (1.25), the matrix Z is defined as

Z =



β
b

1 0 · · · 0 0

1 0 1 · · · 0 0

0 1 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 1

0 0 0 · · · 1 γ
b



. (1.26)

These types of matrices will be used in our analysis to obtain quantum dragons.

1.9 Motivation and Outline

Quantum transport in nanosystems is currently a subject of major interest both experi-

mentally and theoretically as a result of the possible applications in electronic devices. In

this light, recently, a theoretical discovery of a large class of nanostructures called quan-

tum dragons has been reported. Quantum dragons are nanodevices which have full electron

transmission probability when coupled to the appropiate leads. Quantum dragons have po-

tential applications in nanoelectronics [18]. The quantum dragons published previously

had cylindrical symmetry, but this raises the interesting question whether other forms of

quantum dragons with different symmetry could also exist. If these quantum dragons exist,

how can such nanodevices with unity electron transmission probability be found? If these

quantum dragons exist and we are lucky to find them, could they have applications in the

future? These and many more questions form the basis of the quest to look for quantum

dragons in this study.
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The outline for the dissertation is as follows. As a way of warm-up or appetizer on how

to find quantum dragons in single-layer planar crystals, Chapter 2 discusses and shows how

to find quantum dragons for a two site device (m = 1, l = 2). These types of quantum

dragons may be trivial since there is no disorder and consequently electron transmission

is ballistic. However, it is also interesting to see how such two site devices have full

transmission probability. For such linear nanodevices, the transmission probability for the

dimerized leads for two site devices is presented. Here, the matrix method, the matrix RG

method and the Green’s function method will be used to calculate the electron transmis-

sion probability. Chapters 3, 4, 5 and 6 show how to find quantum dragons with differ-

ent boundary conditions and even-odd symmetry using the map-and-tune approach. Each

chapter provides specific details of the technique or details of the calculations on how to

find quantum dragons from single-layer planar rectangular crystals with different bound-

ary conditions. In each chapter, two different ways are provided on how to find quantum

dragons. Explicitly the boundary conditions are noted as 00 (Chap. 3), −− (Chap. 4), ++

(Chap. 5) and −+ (Chap. 6). Chapter 7 contains discussion and conclusions.

In appendix A.1, a complete derivation of the transmission for the dimerized leads is

presented. The dimerized leads have on-site energies as εo and εe for the odd and even

lead sites. This is followed by the mathematics of how to find quantum dragons for a

2 site (l = 2,m = 1) device in appendix A.2. In appendix A.3, numerical results for

quantum dragon solutions are presented for m = 1, l = 2, 4, 8, 16. In appendix B.1,

the decimation renormalization group (RG) calculation is presented. Here, the quantum

transmission solution for two site (l = 2,m = 1) devices is presented. The RG method
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parallels the transmission probability expression using the matrix method and the standard

Green’s function method.

The electron transmission probability as a function of energy E, T (E), is of central

importance in this study because not only does one calculate the electron transmission

probability, T (E), of a nanodevice to find quantum dragons but also to show that indeed

the nanodevice is a quantum dragon. The picture provided in this study is valid as long as

it is reasonable to think in terms of the single-band tight-binding model.

23



CHAPTER 2

TRANSMISSION FOR DIMERIZED LEADS COUPLED TO 2 SITE DEVICES

Three solution methods for electron transport for a two site device are presented using

the single-band tight-binding model. The goals of this chapter are two fold: (1) to provide

the motivation necessary for the analysis of the electron transport using the single-band

tight-binding model and (2) to show that a solution of the matrix method is identical to

the commonly used Green’s function method. In each calculational method, the electron

transmission probability is calculated for two slices (l = 2) in the nanodevice coupled to

single channel incoming and outgoing dimerized leads.

2.1 Matrix Method: Model and approach

Figure 2.1

A device (blue rectangle) connected to input (incoming) and output (outgoing) leads.
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Fig. 2.1, shows a device connected to input and output leads. The direction of the

incident electron is shown with an arrow. Here the leads are uniform (not dimerized).

Consider a nanodevice consisting of a certain number of atoms. The device is connected

to a 1D infinite chain of lead sites from the left (incoming) and the right (outgoing). See

Fig. 2.1 for the problem set-up. The lattice spacing a between the sites is set to unity for

simplicity. To simplify the calculations lets make the following two assumptions: (1) the

distance between the sites are close so that an electron can hop between nearest neighbor

sites and next nearest neighbor sites and (2) the nanodevice consists of slices of sites where

each slice has m sites. We further assume all lead sites have zero on-site energy. This sets

our zero of energy. See Appendix A.1, for the case with dimerized values of the lead on-site

energies. The leads could also have dimerized inter-slice hopping parameters even-odd, teo,

and odd-even, toe. A slice may correspond to atoms in the same plane. The Hamiltonian

for such a system is infinite since we have an infinite chain of sites for the leads. With

the help of an ansatz (physical guess) of the solution, such an infinite dimensional matrix

can be reduced to a finite matrix. With this reduced finite matrix the transport properties

of an electron traversing the nanodevice can easily be determined. Therefore, the time

independent Schrödinger equation can be expressed as

(H− EI∞) ~Ψ = ~0 , (2.1)

where H is the Hamiltonian of the incoming electron, E is the energy of the incoming

electron, and ~Ψ the infinite vector containing as the elements the wavefunction ψj for site

j. I∞ is the infinite-dimensional identity matrix. Some transport quantities include the
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electrical conductance, G in Eq. (1.3), and the Fano factor, F in Eq. (1.24). In the rest of

section 2.1, the uniform leads as well as the dimerized leads are presented. The uniform

leads follow Daboul et. al [19] and the dimerized leads follow Novotny [18].

Daboul et. al [19] proposed to reduce this infinite uniform lead problem into a finite

dimensional one that includes only the nanodevice and the closest points on the input

(incoming) and output (outgoing) lead. The form of the lattice written for two sites (labeled

a and b ) in the nanodevice which is placed between lead sites n = 0 and n = 1 is shown

in Fig. 2.2. T (E) through the nanostructure can be calculated from the solution of the

time-independent Schrödinger equation. Here, the inter-slice hopping terms are uniform.

See Fig. 2.2

Figure 2.2

A uniform wire connected to a two site device. The device is located between site n = 0

and site n = 1.
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The infinite matrix which is the time independent Schrödinger equation Eq. (2.1) then

is 

. . . ...
...

...
...

...
...

...
...

· · · κo −t0 0 0 0 0 0 0 · · ·

· · · −t0 κo −t0 0 0 0 0 · · ·

· · · 0 −t0 κo −tw 0 0 0 0 · · ·

· · · 0 0 −tw εa − E −tab 0 0 0 · · ·

· · · 0 0 0 −tab εb − E −tu 0 0 · · ·

· · · 0 0 0 0 −tu κo −t0 0 · · ·

· · · 0 0 0 0 0 −t0 κo −t0 · · ·

· · · 0 0 0 0 0 0 −t0 κo · · ·

...
...

...
...

...
...

...
...

... . . .



×



...

ψ−2

ψ−1

ψ0

ψa

ψb

ψ+1

ψ+2

ψ+3

...



=



...

0

0

0

0

0

0

0

0

...



.

(2.2)
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where κo = εo − E. The ansatz from [19] is the slice wave function of the leads can be

written as

ψn =


eiqna + re−iqna n ≤ 0

tT e
iq(n−1)a n ≥ 1

. (2.3)

Substitute the ansatz of Eq. (2.3) in the tight-binding equation Eq. (2.2) for the out-

going lead (n ≥ 1) to give

−t0tT ei(n−2)qa + (ε0 − E)tT e
i(n−1)qa − t0tT einqa = 0

−t0e−iqa + (ε0 − E)− t0eiqa = 0

ε0 − E = 2t0 cos qa .

(2.4)

Since, here the leads are uniform, this means that we can choose t0 = 1. This sets our unit

of energy. Assume that the on-site energy is set to zero, thus ε0 = 0, setting our zero of

energy. This means that the energy, E, of incoming electron is related to the wavevector q

by

cos(q) =
−E
2
. (2.5)

Substitute the ansatz of Eq. (2.3) in the tight-binding equation Eq. (2.2) for the in-

coming lead (n ≤ 0). This gives

−t0(eiq(n−1)a + re−iq(n−1)a) + (ε0 − E)(eiqna + re−iqna)− t0(eiq(n+1)a + re−iq(n+1)a) = 0

einqa[−t0e−iqa + (ε0 − E)− t0eiqa] + re−inqa[−t0eiqa + (ε0 − E)− t0e−iqa] = 0

einqa[−2t0 cos(qa) + (ε0 − E)] + re−inqa[−2t0 cos(qa) + (ε0 − E)] = 0

[(ε0 − E)− 2t0 cos(qa)][einqa + re−iqna] = 0 .

(2.6)
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This equation can also be satisfied by the last equation in Eq. (2.6). Furthermore, Novotny

[18] extended this approach to the case of dimerized lead sites. Here the form of the lattice

is written for two sites (labeled a and b ) in the nanodevice which is placed between lead

sites j = 0 and j = 1 as shown in Fig. 2.3.

Figure 2.3

A two site device coupled to dimerized leads.

Fig. 2.3 shows an example of two site device. The device is located between site j = 0

and j = 1. The hopping strength between the device is denoted by tab. The atoms in the

incoming and outgoing leads are identical and are shown by a green color.

The inter-slice hopping interaction between the lead sites, even-odd and odd-even, are

designated as teo and toe respectively. For instance, interactions between lead sites j = 2

and j = 3 is denoted by −teo, with teo > 0 and interactions between lead sites j = 3 and
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j = 4 is labeled toe. The hopping parameters teo and toe come from the discretization of

the time independent Schrödinger equation. The negative sign is inserted so teo and toe

are positive after discretizing the time independent Schrödinger equation. By multiplying

the matrix and vector in Eq. (2.1) to the sites that are not connected directly to the 2-site

device, this results in the set of infinite equations expressed as [18]

−toeψj−1 − Eψj − teoψj+1 = 0 j = · · · ,−6,−4,−2

−teoψj−1 − Eψj − toeψj+1 = 0 j = · · · ,−5,−3,−1

−toeψj−1 − Eψj − teoψj+1 = 0 j = 2, 4, 6, · · ·

−teoψj−1 − Eψj − toeψj+1 = 0 j = 3, 5, 7, · · · .

(2.7)

It should be noted that in Eq. (2.7), the sites numbered 0 and 1 are not included since

they couple to the device sites. Introduce the ansatz [18] for the propagating waves in the

incoming and outgoing leads. The wavefunction have the form

ψj = χeiqj + r χ∗e−iqj j = −∞, · · · ,−4,−2, 0

ψj = eiqj + r e−iqj j = −∞, · · · ,−5,−3,−1

ψj = tT χe
iq(j−1) j = 2, 4, · · · ,+∞

ψj = tT e
iq(j−1) j = 1, 3, 5, 7, 9 · · · ,+∞

(2.8)

where the ansatz also is valid for the sites numbered 0 and 1 which connect to the device.

This is a plane wave with wavevector q from −∞ impinging on the device and being

partially transmitted to∞ and partially reflected to −∞. In other words, the ansatz takes

into account Bloch’s theorem in the parameter χ. Substitute the ansatz in Eq. (2.8) back

into Eq. (2.7) to give an infinite set of equations
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eiqj (−toee−iq − Eχ− teoeiq) + re−iqj (−toeeiq − Eχ∗ − teoe−iq) = 0 j1

eiqj (−teoχe−iq − E − toeχeiq) + re−iqj (−teoχ∗eiq − E − toeχ∗e−iq) = 0 j2

tT e
iq(j−1) (−toee−iq − Eχ− teoeiq) = 0 j3

tT e
iq(j−1) (−teoχe−iq − E − toeχeiq) = 0 j4

(2.9)

where we have defined for convenience

j1 = · · · ,−6,−4,−2 (2.10)

j2 = · · · ,−3,−1 (2.11)

j3 = 2, 4, 6, · · · (2.12)

and

j4 = 3, 5, 7, · · · . (2.13)

The two equations for the output lead in Eq. (2.9) can be manipulated to eliminate the

phase factor χ. The Bloch structure of the even-odd dimerized leads is captured by χ. The

solution of χ gives

χ = −teoe
iq + toee

−iq

E
= − E

teoe−iq + toeeiq
. (2.14)

This resulting equation for χ is satisfied provided

cos (2q) =
E2 − t2eo − t2oe

2teotoe
, (2.15)

or with the double-angle formula for cos(2q) gives

cos(q) = ±

√
E2 − (teo − toe)2

4teotoe
. (2.16)
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From trigonometry, since cos(q)2 + sin(q)2 = 1, this means that from Eq. (2.16)

sin q = ±

√
4teotoe − [E2 − (teo − toe)2]

4teotoe
. (2.17)

Using Eq. (2.16), the energy range of propagation of moving electrons can be calculated

since for traveling waves one requires

−1 ≤ cos q ≤ 1 . (2.18)

In the limiting case when teo = toe = 1, using Eq. (2.16) and Eq. (2.18), the energy of

the incident electron in the leads is restricted to be −2 ≤ E ≤ 2 [4, 19, 23]. Also, when

teo 6= toe, Eq. (2.16) allows propagation modes in the leads for [18]

− |teo + toe| ≤ E ≤ − |teo − toe| and |teo − toe| ≤ E ≤ |teo + toe| . (2.19)

The two solutions are due to the two signs in front of the expression in the square root in

Eq. (2.16). Fig. 2.3, shows a typical example of an infinite chain of lead sites which is

connected to a two site device. Here, the leads are dimerized.

2.2 Matrix Method : Solution for l = 2 via (4× 4) matrix method

The finite matrix equation to solve to calculate T (E) for the single channel dimerized

lead coupled to two site device can be expressed as [18]

ξ(E) −tw 0 0

−tw κa −tab 0

0 −tab κb −tu

0 0 −tu ξ(E)





ψo

ψa

ψb

ψ1


=



Λ

0

0

0


(2.20)
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with the definitions Λ = −toe
χ∗ (χeiq − χ∗e−iq), χ = −E

teoe−iq+toeeiq
, ξ(E) = −Eteoe−iq

teoe−iq+toeeiq
=

χteoe
−iq, κa = εa−E, κb = εb−E and tw and tu connects the incoming and the outgoing

leads to the nanodevice. This is derived for more general dimerized leads in Appendix A.1.

Using the ansatz [18] of Eq. (2.8) for the propagating waves in the leads, the wavefunction

for the lead sites j = 0 and j = 1 can respectively be expressed as ψo = χ + rχ∗ and

ψ1 = tT . From Eq. (2.20), the matrix to invert to calculate the electron transmission

probability for the 2 site device is :

N2 =



ξ −tw 0 0

−tw κa −tab 0

0 −tab κb −tu

0 0 −tu ξ


(2.21)

which has the inverse

N−12 =
1

(t2w − κaξ)(t2u − κbξ)− ξ2t2ab
S (2.22)

where

S =



ξ(κaκb − t2ab)− t2uκa tw(κbξ − t2u) tabtwξ tabtwtu

tw(κbξ − t2u) κbξ
2 − t2uξ tabξ

2 tabtuξ

tabtuξ tabξ
2 κaξ

2 − t2wξ tu(κaξ − t2w)

tabtwtu tabtuξ tu(κaξ − t2w) ξ(κaκb − t2ab)− t2wκa


.

(2.23)
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From Eq. (2.20), Eq. (2.22) and Eq. (2.23) only the lower-left element of N−12 is needed

to calculate the electron transmission probability. One finds the transmission amplitude, tT

can be expressed as

tT =
twtutabΛ

(t2w − κaξ)(t2u − κbξ)− t2abξ2
(2.24)

and

t∗T =
twtutabΛ

∗

(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2
. (2.25)

Therefore the electron transmission probability T = |tT |2 gives

T (E) =
t2wt

2
ut

2
abΛ
∗Λ

[(t2w − κaξ)(t2u − κbξ)− t2abξ2][(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2]
. (2.26)

It should be noted that both tw and tu are real positive numbers, but the quantities ξ and Λ

are complex numbers. Eq. (2.26) is one of the equations plotted in Fig. 2.6 and Fig. 2.7.

In general, the dimensions of the matrix to invert to calculate T (E) for a two slice

(l = 2) device at j = a and j = b can be expressed as (2mL+ma+mb)×(2mL+ma+mb)

where mL is the number of channels in the incoming (outgoing) leads, ma is the number

of site(s) in the device at m = a and mb is the number of site(s) in the device at m = b. In

Eq. (2.20), the dimensions of the matrix to invert to calculate T (E) is 4× 4 since there is

a single channel in the incoming and outgoing leads coupled to the two sites of the device

at j = a and j = b.

2.3 General matrix renormalization group formulation for two site device

In this section, the renormalization group (RG) approach will be used to reduce the

4 × 4 matrix in Eq. (2.20), to a 2 × 2 matrix which can easily be used to calculate T (E).
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A 4 × 4 matrix has already been used to calculate T (E), Eq. (2.26). The type of RG

used is decimation RG. It is important to note that no approximations are made, our RG is

exact. The main purpose of this section is to introduce the concepts of the RG group and

to show that the electron transmission probability for the 2 site device can be calculated in

two ways using the matrix method. Thus either by inverting the 4× 4 matrix in Eq. (2.20)

or by inverting the 2× 2 matrix in Eq. (2.46)

2.3.1 Theory

Figure 2.4

Schematic representation of the decimation procedure for the atomic site labeled a.
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Fig. 2.4, shows the decimation procedure. (a) 2 atom device before decimation. The

nanodevice is located between site j = 0 and j = 1. Eliminating the atom at site j = a we

obtain the renormalized chain in (b).

The finite matrix equation to solve to calculate T (E), through the nanodevice at j = a

and j = b can be expressed as Eq. (2.20). Multiply the four rows of Eq. (2.20), this gives

the four equations

ξψo − twψa = Λ (2.27)

−twψo + κaψa − tabψb = 0 (2.28)

−tabψa + κbψb − tuψ1 = 0 (2.29)

−tuψb + ξψ1 = 0. (2.30)

From Eq. (2.28), solving for ψa gives

ψa = κ−1a tabψb + κ−1a twψo. (2.31)

Substitute Eq. (2.31) back into Eq. (2.27) and upon grouping the like terms gives

(ξ − t2wκ−1a )ψo − twκ−1a tabψb = Λ. (2.32)

Similarly, put Eq. (2.31) back into Eq. (2.29) and upon grouping like terms yields

−tabκ−1a twψo + (κb − κ−1a t2ab)ψb − tuψ1 = 0. (2.33)

Now rewriting Eq. (2.32), Eq. (2.33) and Eq. (2.30) into matrix form gives
(ξ − t2wκ−1a ) −twκ−1a tab 0

−tabκ−1a tw (κb − κ−1a t2ab) −tu

0 −tu ξ




ψo

ψb

ψ1

 =


Λ

0

0

 . (2.34)
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Therefore we have reduced our 4× 4 matrix equation to a 3× 3 matrix equation. See Fig.

2.4. Now for simplicity, from the L.H.S of Eq. (2.34), let G = ξ − t2wκ−1a , B = twκ
−1
a tab,

Q = tabκ
−1
a tw and P = κb − κ−1a t2ab. This means that Eq. (2.34) can be expressed as

G −B 0

−Q P −tu

0 −tu ξ




ψo

ψb

ψ1

 =


Λ

0

0

 . (2.35)

Multiply the three rows of Eq. (2.35) to give the three equations

Gψo −Bψb = Λ (2.36)

−Qψo + Pψb − tuψ1 = 0 (2.37)

and

−tuψb + ξψ1 = 0. (2.38)

Solving for ψb from Eq. (2.37) gives

ψb = P−1tuψ1 + P−1Qψ0. (2.39)

Substitute Eq. (2.39) back into Eq. (2.36) and upon grouping like terms yields

(G−BP−1Q)ψo −BP−1tuψ1 = Λ. (2.40)

Similarly, substitute Eq. (2.39) into Eq. (2.38) and upon grouping like terms results in

−tuP−1Qψo + (ξ − t2uP−1)ψ1 = 0 . (2.41)

Rewrite Eq. (2.40) and Eq. (2.41) into matrix form to giveG−BP−1Q −BP−1tu

−tuP−1Q ξ − t2uP−1


ψo
ψ1

 =

Λ

0

 . (2.42)

37



For simplicity, from the LHS of Eq. (2.42) let α = G − BP−1Q which means that Eq.

(2.42) can be re-expressed as α −BP−1tu

−tuP−1Q ξ − t2uP−1


ψo
ψ1

 =

Λ

0

 . (2.43)

Now substitute the expressions for G, B, Q and P in the above back into α and upon

simplification results in a simple expression for α which can be expressed as

α = ξ − t2w
κa
− t2wt

2
ab

κa(κaκb − t2ab)
. (2.44)

Put α and the rest of the definitions of G, B, Q and P back into Eq. (2.43). This givesξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
−twtutab
(κaκb−t2ab)

−twtutab
(κaκb−t2ab)

ξ − t2uκa
(κaκb−t2ab)


ψo
ψ1

 =

Λ

0

 . (2.45)

See Fig. 2.5. From the ansatz of the propagating waves in the leads, the wavefunctions

[18] , ψo = χ+ rχ∗ and ψ1 = tT . Therefore, Eq. (2.45) can be rewritten asξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
−twtutab
(κaκb−t2ab)

−twtutab
(κaκb−t2ab)

ξ − t2uκa
(κaκb−t2ab)


χ+ rχ∗

tT

 =

Λ

0

 . (2.46)

Using Eq. (2.46), solving for tT gives

tT =
twtutabΛ

(t2w − ξκa)(t2u − ξκb)− ξ2t2ab
. (2.47)

Similarly, from Eq. (2.47),

t∗T =
twtutabΛ

∗

(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2
(2.48)

and therefore the transmission probability, T = |tT |2 can be expressed as

T (E) =
t2wt

2
ut

2
abΛ
∗Λ

[(t2w − κaξ)(t2u − κbξ)− t2abξ2][(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2]
. (2.49)
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Thus Eq. (2.49) is the same as Eq. (2.26). This simply shows the electron transmission

probability can either be found by inverting the 4 × 4 matrix on the L.H.S of Eq. (2.20)

or by inverting 2 × 2 matrix on the L.H.S of Eq. (2.46). Appendix B.1.1 performs the

same decimation RG using a different method. Although the RG method is different, the

expression Eq. (2.49) for the transmission is the same.

Figure 2.5

Schematic representation of the decimation procedure for the atomic site b.

Fig 2.5 shows decimation procedure. Here, one of the three sites is decimated and this

gives two sites both of which are lead sites.
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2.4 Quantum transmission solution for a two site device connected to dimerized
leads: Green’s function method

The Green’s function technique is a standard method used to calculate T (E) through

nanostructures [3, 4, 5, 6]. In this section, the Green’s function method will be used to cal-

culate the electron transmission probability for a 2 site device connected to 1D dimerized

leads (incoming and outgoing). The goal of this section is to show that for the two site

device using the Green’s function method gives same result as using the matrix method

and the matrix RG method for T (E). See Fig. 2.3 for the problem setup.

Let the Hamiltonian for the two site (l = 2,m = 1) be written as

H =

 εa −tab

−tab εb

 (2.50)

where εa and εb are the on-site energies for the two atoms and tab is the hopping strength

between the two atoms in the device. The self energy matrices can be expressed as [3, 4,

5, 6]

Σ1 = twgLt
†
w =

 −t2w
ξ

0

0 0

 (2.51)

and

Σ2 = tugRt
†
u =

 0 0

0 −t2u
ξ

 . (2.52)

Here, gL and gR are the Green’s function of the left and right leads respectively and tw

and tu are the incoming and the outgoing hopping strengths which are connected to the

device. It should be noted that the quantity ξ is complex but tw and tu are real numbers
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and are both positive, tw > 0, tu > 0. The complex quantity ξ is different for uniform and

dimerized leads, namely

ξ(E) =


e−iq uniform

−Eteoe−iq
teoe−iq+toeeiq

dimerized

. (2.53)

From Eq. (2.51) and Eq. (2.52) the coupling matrices can be expressed as

Γ1 = i[Σ1 −Σ1
†] = it2w

 1
ξ∗
− 1

ξ
0

0 0

 (2.54)

and

Γ2 = i[Σ2 −Σ2
†] = it2u

 0 0

0 1
ξ∗
− 1

ξ

 . (2.55)

The coupling matrices may be seen as matrices which connect the incoming and outgoing

leads to the device. In quantum electron transport calculations, the Green’s function, G,

can be expressed in terms of the energy of the incident electron, E, the Hamiltonian for the

device,H, and the self-energy matrices Σ1 and Σ2. The Green’s function is [3, 4, 5, 6]

G = [EI−H−Σ1 −Σ2]−1 =

 t2w
ξ
− κa tab

tab
t2u
ξ
− κb


−1

. (2.56)

From Eq. (2.56), the Green’s function G† can be expressed as

G† = [EI−H−Σ1
† −Σ2

†]−1 =

 t2w
ξ∗
− κa tab

tab
t2u
ξ∗
− κb


−1

. (2.57)
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T (E) can be defined in terms of the Green’s function (G) and the coupling matrices Γ1

and Γ2 as

T (E) = Tr[Γ1GΓ2G†] (2.58)

where Tr is the trace of the matrix. Now put Eq. (2.54), Eq. (2.55), Eq. (2.56) and Eq.

(2.57) back into Eq. (2.58). This yields the electron transmission probability as

T (E) =
t2wt

2
ut

2
abΛ
∗Λ

[(t2w − κaξ)(t2u − κbξ)− t2abξ2][(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2]
. (2.59)

It should be noted that Λ is a complex quantity and is different for uniform and dimerized

leads, namely

Λ(E) =


−2i sin q uniform

−toe
χ∗ (χeiq − χ∗e−iq) dimerized

. (2.60)

Eq. (2.59) is one of the equations plotted in Fig. 2.6 and Fig. 2.7. Fig. 2.6 shows a plot

of transmission vs E for a 2 site dimerized device. If tw = tu = teo = 2, toe = tab = 1 and

εa = εb = εl = 0, the (l = 2,m = 1) device is a quantum dragon with T (E) = 1 for all

three calculation methods used.

Fig. 2.7, shows curves plotted for all three calculational procedure. All results for

the three different methods of solution lie on top of each other. The values plotted have

tw = tu = teo = 2, toe = tab = 1 and εa = εb = 0.5 for the (l = 2,m = 1) device.

2.5 Summary

In this chapter, a compact and explicit expression for T (E), of spinless electrons

through a 2 site nanodevice is provided using the matrix method, the matrix renormal-
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Figure 2.6

T is plotted as a function of E for the 2 site dimerized device.

Figure 2.7

The curves plotted correspond to the final results of section 2.2 (matrix method), section

2.3 (matrix RG method) and section 2.4 (Green’s function method).
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ization group method, and the Green’s function method. It is apparent from Eq. (2.26),

Eq. (2.49) and Eq. (2.59) that for a two site (l = 2, m = 1) nanodevice, the matrix method

yields the same expression as the matrix RG method and the traditional Green’s function

method. Also, it can be seen that there are certain tight binding parameters where T (E)

gives full transmission, T (E) = 1. This can be seen in Fig. 2.6. The equivalence of the

three methods makes sense because these three techniques all solve the time independent

Schrödinger equation for the semi-infinite leads attached to the nanodevice. In the rest of

the chapters that follow, the technique of how to find quantum dragons for single-layer

planar systems is presented.

44



CHAPTER 3

QUANTUM DRAGON SOLUTIONS FOR RECTANGULAR CRYSTALS : CASE 1:

BOUNDARY CONDITION 00

There are an infinite number of possible connections between leads and the device. The

busbar (all strengths equal) and the point-to-point (for a chosen point on the device) are

only two. These two are the ones used in the study of percolation [66]. Experimentally,

one type of connection is about as easy to make as another, but this also depends on the

experimental system. There is another type of connection between leads and the device

called the modified busbar connection. The busbar and modified busbar connection will be

used in this study to find quantum dragons.

It is shown in this section of the dissertation how to find quantum dragons for single-

layer planar rectangular crystals using boundary conditions which we label as 00. We call

the boundary conditions 00 because in Eq. (1.25), we set (β = γ = 0). The connections

used in this chapter are the modified busbar. There are two ways to find quantum dragons:

(1) we assume the inter-slice coupling matrices for the nanodevice has nearest neighbor

(nn) and next nearest neighbor (nnn) interactions and (2) we assume the inter-slice cou-

pling matrices is proportional to the identity matrix. In other words, the device has only

nn interactions. In the absence of nnn interactions this gives results in [24].
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From Eq. (1.25), by setting (β = γ = 0), the matrix of dimension m×m is a Toeplitz

matrix which has the form

A =



a b 0 · · · 0 0

b a b · · · 0 0

0 b a · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · a b

0 0 0 · · · b a



= aI + bQ (3.1)

where a and b are real numbers. The Toeplitz matrix, which is sometimes also called a

diagonal-constant matrix, was named after the German mathematician Otto Toeplitz. In

Eq. (3.1), I is an identity matrix of the correct dimension and the matrix Q is defined as

Q =



0 1 0 · · · 0 0

1 0 1 · · · 0 0

0 1 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 1

0 0 0 · · · 1 0



. (3.2)
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Our nanodevice has an intra-slice coupling matrix of the form (written for m = 8)

A =



ε −t 0 0 0 0 0 0

−t ε −t 0 0 0 0 0

0 −t ε −t 0 0 0 0

0 0 −t ε −t 0 0 0

0 0 0 −t ε −t 0 0

0 0 0 0 −t ε −t 0

0 0 0 0 0 −t ε −t

0 0 0 0 0 0 −t ε



= εI− tQ (3.3)

and an inter-slice coupling matrix of the form (written for m = 8)

B =



−tx −ty 0 0 0 0 0 0

−ty −tx −ty 0 0 0 0 0

0 −ty −tx −ty 0 0 0 0

0 0 −ty −tx −ty 0 0 0

0 0 0 −ty −tx −ty 0 0

0 0 0 0 −ty −tx −ty 0

0 0 0 0 0 −ty −tx −ty

0 0 0 0 0 0 −ty −tx



= −txI− tyQ (3.4)

where t’s are the hopping strengths which are non-negative real numbers and ε is the on-site

energy of the atom which is a real number. The Toeplitz matrix in Eq. (3.1) has eigenvalues

expressed as [67, 68]

λs = a+ 2b cos

(
πs

m+ 1

)
(3.5)
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for s = 1, ....m and eigenvectors expressed as

x
(s)
j =

√
2

m+ 1
sin

(
πsj

m+ 1

)
(3.6)

where j = 1.....,m and s = 1, ....m. In Eq. (3.3) and Eq. (3.4), the matrix Q is shown

in Eq. (3.2). To find quantum dragons for nanostructures, the transformation matrix, X

for a successful mapping needs to be found first. Without this mapping, it would be very

difficult to find quantum dragons. The outline for this chapter is as follows. In section

3.1 and section 3.2, we will show how to find quantum dragons for m = 3, l = 4 and

m = 5, l = 4 respectively. The main objective of these sections are to show how to find

quantum dragons for a small number of atoms per slice and a small number of slices in the

device. However, this same analysis can be applied to any number of atoms per slice and

any number of even slices, l, in the device. In section 3.3, we will introduce the general

mapping method and this will be followed by section 3.3.1 which shows the general case

mapping. In section 3.3, we will introduce the matrix to invert to calculate the electron

transmission probability, for three atoms per slice with two slices in the device. However,

for a large l and m such a matrix to invert could be large, and therefore we will use the

general mapping technique to reduce the dimensionality of the matrix. This section will

then be followed by the general method for 2D system mapping. In section 3.3.3, the

mapping technique is applied to 2D systems, where a six site device will be used as an

example. In section 3.4, we will show the general tuning to obtain a quantum dragon. This

section will be followed by specific tuning of how to obtain quantum dragons as applied to

the six site device. Section 3.5, puts all the results into perspective. Here all plots obtained
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will be shown and discussed. The summary of results for our boundary condition 00 are

given in section 3.6.

3.1 Quantum dragons for m = 3, l = 4 with nn and nnn interactions

Assume the nanodevice has three atoms per slice at slice j = ν. See Fig. 3.1.

Figure 3.1

An example of the case of dimerized leads, and a rectangular nanodevice, for 00 boundary

conditions.

In Fig. 3.1, the vertical lines show the intra-slice hopping. The device has m = 3,

l = 4 and therefore ml = 12 atoms. The device has non-uniform intra-slice hopping

parameters. Only three atoms in the incoming lead as well as the outgoing lead are shown.

The lead atoms are shown by a green color. The connections between leads and the device

are shown by line segments (blue). The inter-slice coupling matrices are for nn shown by

the horizontal line (blue and brown color) and the nnn (coolblack, cyan and pink color)
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shown by line segments which form an X-shape. Appropriate choices of the tight-binding

parameters makes this disordered nanodevice into a quantum dragon.

The intra-slice coupling matrices have the form

Aν =


εν −tν 0

−tν εν −tν

0 −tν εν

 = ενI− tνQ (3.7)

where ν = a, b, c, d for the l = 4 slices and εν are the on-site energies for the atoms in the

slice j = ν and tν are the intra-slice hopping parameters between atoms. Using Eq. (3.5),

the eigenvalues of Eq. (3.7) are λν,1 = εν − tν
√

2, λν,2 = εν , and λν,3 = εν + tν
√

2. Now

assume the device inter-slice coupling matrices have the form

Bω,ω+1 =


−tx,ω −ty,ω 0

−ty,ω −tx,ω −ty,ω

0 −ty,ω −tx,ω

 = −tx,ωI− ty,ωQ (3.8)

where we will let Bω,ω+1 with ω even be Beo and with ω odd be Boe. In Eq. (3.7) and Eq.

(3.8), the matrix Q is explicitly for m = 3

Q =


0 1 0

1 0 1

0 1 0

 . (3.9)

In this example, only a single incoming lead atom is coupled to three atoms in the nanode-

vice at j = 1. The incoming connection vector ~w can be expressed as

~w† =

(
w11 w12 w13

)
(3.10)
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where wij are hopping terms between a lead slice and a device slice. The i index is for the

atom in the lead. Since there is a single atom in a lead slice, i is 1. The j index is for the

atoms in the device, and j can be 1, 2 or 3 since there are 3 atoms in each device slice. For

instance, w11 connects the first site (atom) in the lead to the first atom in the first slice of

the device and w12 connects the first site (atom) in the lead to the second atom in the first

slice of the device. Fig. 3.2, shows a typical connection between the first atom in the lead

coupled to the first 3 atoms in the nanodevice. Furthermore, assume that ~w is equal to ~u,

this means that the connection between the last slice in the incoming lead to the first slice

of the device and the connection between the last slice in the device to the first slice in the

outgoing lead are the same.

Figure 3.2

An example of connection between lead sites and the device where the first atom in the

lead is connected to all three atoms in the first slice of the device.

Fig. 3.2, is an example of the connection between leads and device. The forest green

color shows the atom in the device and the green color shows atoms in the lead. There

51



are only three atoms shown in the incoming lead. Note the even-odd bond structure in the

lead.

After making these assumptions, the set of successful mapping equations become

~w†X =

(
−w̃ 0

)
(3.11)

X~u =

−ũ
0

 (3.12)

XjAjX
†
j =

ε̃j 0

0 Âj

 (3.13)

and

XjBj,j+1X
†
j+1 =

−s̃b 0

0 B̂j,j+1

 (3.14)

where j is the device slice index. Using Eq. (3.6), the normalized eigenvectors for the

intra-slice and inter-slice coupling matrices are

~v3†3 =

(
1
2

1√
2

1
2

)
(3.15)

~v3†2 =

(
1√
2

0 −1√
2

)
(3.16)

and

~v3†1 =

(
1
2
−1√
2

1
2

)
. (3.17)

Now let the matrix of transformation, X be defined as

X =


~v3†3

~v3†2

~v3†1

 . (3.18)
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Note that from Eq. (3.18),

XX† = I. (3.19)

This means that the device intra-slice matrix at site j = ν has been transformed to

XAνX
† =


εν − tν

√
2 0 0

0 εν 0

0 0 εν + tν
√

2

 . (3.20)

From Eq. (3.20) and the mapping Eq. (3.13), tuning for the device and the lead hence

requires

εL = εν − tν
√

2 (3.21)

where εL is the on-site energy of the atom in the lead. Since we have set the on-site energy

of the atoms in the leads to zero, εL = 0, this means Eq. (3.21) can be re-expressed as

εν = tν
√

2 . (3.22)

Note εν can be any value, and the tuning only requires tν and εν satisfy Eq. (3.22). Fur-

thermore, note Eq. (3.22) allows a different εν for every device slice ν. Similarly, for the

inter-slice coupling matrices, use the same transformation matrix, X in Eq. (3.18). Upon

multiplying through this gives

XBω,ω+1X
† =


−tx,ω − ty,ω

√
2 0 0

0 −tx,ω 0

0 0 −tx,ω + ty,ω
√

2

 (3.23)

and therefore the mapping equation, Eq. (3.14) is satisfied provided s̃b1 = tx,ω + ty,ω
√

2.

Now the last task to do is to check for the mapping equations for the incoming and outgoing
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connection vector, ~w and ~u. To do this, use the same transformation matrix, X in Eq. (3.18)

and then define the incoming connection vector, ~w as

~w† =

(
−w

2
− w√

2
−w

2

)
. (3.24)

This means that

~w†X =

(
−w 0 0

)
. (3.25)

Similarly define the outgoing connection vector, ~u as

~u =


−u

2

− u√
2

−u
2

 . (3.26)

This means that

X~u =


−u

0

0

 . (3.27)

Thus in effect the mapping equations, Eq. (3.11) and Eq. (3.12) have been satisfied.

Therefore to find quantum dragons, tune the on-site energy of the atom at slice j = ν

to εν = tν
√

2, as well as s̃b1 = tx,ω + ty,ω
√

2, and ~w = ~u =


− teo

2

− teo√
2

− teo
2

. In defining

the connection vector for the incoming and outgoing leads coupled to the nanodevice, use

the Perron-Frobenius theorem [69, 70, 71]. The inter-slice coupling matrices, Bω,ω+1,

are all real m × m matrices with non-positive entries, and therefore each has a largest

positive eigenvalue with an eigenvector which has all elements the same sign [69, 70, 71].
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Similarly, the intra-slice coupling matrices can undergo a shift procedure to enable use of

the Perron-Frobenius theorem [24].

3.1.1 Quantum dragons for m = 3, l = 4 with nn interactions

In Eq. (3.8), the inter-slice coupling matrices odd-even and even-odd are defined in

terms of nearest neighbor and next nearest neighbor. This assumption has already been

used to find quantum dragons for the three site device. Quantum dragons can also be found

by relaxing this earlier assumption. Here, lets assume that the inter-slice coupling matrices,

Bω,ω+1 are proportional to the identity matrix. Therefore, the device inter-slice coupling

matrices have the simple form Bω,ω+1 = −tx,ωI. Use the same transformation matrix, X

in Eq. (3.18) to satisfy the mapping equations. Therefore the mapping equation, Eq. (3.14)

is satisfied provided s̃b2 = tx,ω. Here assume the device intra-slice coupling matrices are

the same as Eq. (3.7). This means that to find quantum dragons, tune the on-site energy of

the atom at slice j = ν to εν = tν
√

2, as well as s̃b2 = tx,ω, and ~w = ~u =


− teo

2

− teo√
2

− teo
2

.

3.2 Quantum dragons for m = 5, l = 4 with nn and nnn interactions

Assume the nanodevice has five atoms per slice at slice j = ν. See Fig. 3.3.

Fig. 3.3, is an example of 20 site device connected to dimerized leads. The vertical

lines show the intra-slice hopping. The device has m = 5, l = 4 and therefore ml = 20

atoms. The device has non-uniform intra-slice hopping parameters. Only three atoms in

the incoming lead as well as the outgoing leads are shown. The lead atoms are shown by
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Figure 3.3

An example of the case of dimerized leads, and a m = 5 rectangular nanodevice, for 00

boundary conditions.

a green color. The connections between leads and the device are shown by line segments

(blue). The inter-slice coupling strengths are for nn shown by a horizontal line (blue

and black color) and the nnn shown by (pink, dark yellow and cyan color) line segments

which form an X-shape. Appropriate choices of the tight-binding parameters makes this

disordered nanodevice into a quantum dragon.
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The intra-slice coupling matrices have the form

Aν =



εν −tν 0 0 0

−tν εν −tν 0 0

0 −tν εν −tν 0

0 0 −tν εν −tν

0 0 0 −tν εν


= ενI− tνQ (3.28)

where εν are the on-site energies for the atoms at slice j = ν and tν are the intra-slice

hopping parameters between the atoms. From Eq. (3.5), the eigenvalues of Eq. (3.28) are

λν,1 = εν − tν
√

3, λν,2 = εν − tν , λν,3 = εν , λν,4 = εν + tν , and λν,5 = εν + tν
√

3.

Now assume the device inter-slice coupling matrices have the forms

Bω,ω+1 =



−tx,ω −ty,ω 0 0 0

−ty,ω −tx,ω −ty,ω 0 0

0 −ty,ω −tx,ω −ty,ω 0

0 0 −ty,ω −tx,ω −ty,ω

0 0 0 −ty,ω −tx,ω


= −tx,ωI− ty,ωQ . (3.29)

The matrix Q is explicitly for m = 5

Q =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


. (3.30)
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Using Eq. (3.6), the normalized eigenvectors for the intra-slice and inter-slice coupling

matrices are

~v5†5 =

(
1

2
√
3

1
2

1√
3

1
2

1
2
√
3

)
(3.31)

~v5†4 =

(
1
2

1
2

0 −1
2

−1
2

)
(3.32)

~v5†3 =

(
1√
3

0 −1√
3

0 1√
3

)
(3.33)

~v5†2 =

(
1
2
−1
2

0 1
2
−1
2

)
(3.34)

and

~v5†1 =

(
1

2
√
3
−1
2

1√
3
−1
2

1
2
√
3

)
. (3.35)

Let the transformation matrix X be defined as

X =



~v5†5

~v5†4

~v5†3

~v5†2

~v5†1


. (3.36)

From Eq. (3.36),

XX† = I . (3.37)
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This means that the device intra-slice coupling matrix at slice j = ν has been transformed

to

XAνX
† =



εν − tν
√

3 0 0 0 0

0 εν − tν 0 0 0

0 0 εν 0 0

0 0 0 εν + tν 0

0 0 0 0 εν + tν
√

3


. (3.38)

From Eq. (3.38), and the mapping Eq. (3.13), tuning for the device and the lead hence

requires

εL = εν − tν
√

3 (3.39)

where εL is the on-site energy of the atom in the lead. Since the on-site energy of the atom

in the lead is set to zero, εL = 0, this means that Eq. (3.39) can be re-expressed as

εν = tν
√

3. (3.40)

Note εν can be any value, and the tuning only requires tν and εν satisfy Eq. (3.40). Fur-

thermore, note Eq. (3.40) allows a different εν for every device slice ν. Similarly, for the

inter-slice coupling matrices, use the same transformation matrix, X in Eq. (3.36). Upon

multiplying through, this gives

XBω,ω+1X
† =



%1 0 0 0 0

0 %2 0 0 0

0 0 %3 0 0

0 0 0 %4 0

0 0 0 0 %5


. (3.41)
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Here,

%1 = −tx,ω − ty,ω
√

3 (3.42)

%2 = tx,ω − ty,ω (3.43)

%3 = −tx,ω (3.44)

%4 = tx,ω + ty,ω (3.45)

and

%5 = −tx,ω + ty,ω
√

3. (3.46)

Therefore the mapping Eq. (3.14) is satisfied provided s̃b3 = tx,ω + ty,ω
√

3. Now the last

task is to check for the mapping equation for the connection vector for the incoming and

outgoing leads coupled to the device, ~w and ~u. To do this, use the same transformation

matrix, X in Eq. (3.36) and then define the incoming connection vector, ~w by

~w† =

(
− w

2
√
3
−w

2
− w√

3
−w

2
− w

2
√
3

)
. (3.47)

This means that

~w†X =

(
−w 0 0 0 0

)
. (3.48)

Thus in effect the mapping Eq. (3.11) is satisfied. Similarly define the outgoing connection

vector, ~u as

~u =



− u
2
√
3

−u
2

− u√
3

−u
2

− u
2
√
3


. (3.49)
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This means that

X~u =



−u

0

0

0

0


. (3.50)

Thus in effect the mapping Eq. (3.12) is satisfied. Therefore to find quantum dragons tune

the on-site energy of the atom at slice j = ν to εν = tν
√

3, as well as s̃b3 = tx,ω + ty,ω
√

3,

and ~w = ~u =



− teo
2
√
3

− teo
2

− teo√
3

− teo
2

− teo
2
√
3


.

Quantum dragons for m = 5, l = 4 can also be found when the device has only

nn interactions. This means that for such a device, the inter-slice coupling matrices is

proportional to the identity matrix. Thus Bω,ω+1 = −tx,ωI. This assumption has been used

by Novotny in 2015 [24], to find quantum dragons. When the device consists of only nn

interactions, to find quantum dragons, tune the on-site energy of the atom at slice j = ν to

εν = tν
√

3, as well as s̃b4 = tx,ω and ~w = ~u =



− teo
2
√
3

− teo
2

− teo√
3

− teo
2

− teo
2
√
3


.
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3.3 General mapping

To calculate the electron transmission probability, use the matrix method. For the sake

of argument, the matrix method for m = 3 and l = 2 is presented here, although the same

analysis can be extended to any number of atoms per slice in the device and any number

of even slices in the device. The matrix equation to solve for the electron transmission

probability for m = 3, l = 2 is expressed as [18]

M2
~Ψ = ~Ξ (3.51)

where the 8× 8 matrix

M2 =



ξ(E) −w11 −w12 −w13 0 0 0 0

−w11 εa − E −ta 0 −tx −ty 0 0

−w12 −ta εa − E −ta −ty −tx −ty 0

−w13 0 −ta εa − E 0 −ty −tx 0

0 −tx −ty 0 εb − E −tb 0 −u11

0 −ty −tx −ty −tb εb − E −tb −u12

0 0 −ty −tx 0 −tb εb − E −u13

0 0 0 0 −u11 −u12 −u13 ξ(E)



, (3.52)
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as well as

~Ψ =



χ+ rχ∗

ψa,1

ψa,2

ψa,3

ψb,1

ψb,2

ψb,3

tT



(3.53)

and

Ξ =



Λ

0

0

0

0

0

0

0



. (3.54)

3.3.1 General case mapping

The dimensions of the matrix to invert to calculate T (E) in Eq. (3.51) is 8 × 8 since

m = 3 and l = 2 and hence (2 + lm) × (2 + lm) = 8 × 8. In general, 2D systems can

sometimes be mapped onto 1D linear chains by the mapping equations. In most cases,
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if one seeks to calculate the electron transmission probability for a nanodevice with a

large number of atoms, the dimensions of the matrix on the LHS of Eq. (3.51) becomes

large. This simply suggests that the solution could involve taking the inverse of a matrix

of large dimensions. Although this can in priniciple be done numerically, getting an exact

solution is not always possible. As in [18], a mapping is searched for in order to reduce

the dimension of the matrix in Eq. (3.51). The matrix equation to solve for T (E) comes

from the expression of the transmission amplitude, tT (E) with T = |tT |2. The solution of

the matrix equation Eq. (3.51), involves a matrix of the form

N`=



ξ ~w† ~0† ~0† · · · ~0† ~0† 0

~w F1 B12 0 · · · 0 0 ~0

~0 B21 F2 B23 0 0 ~0

~0 0 B32 F3 0 0 ~0

...
... . . . ...

~0 0 0 0 F`−1 B`−1,` ~0

~0 0 0 0 B`,`−1 F` ~u

0 ~0† ~0† ~0† · · · ~0† ~u† ξ



(3.55)

with Fi = Ai − EI a mi × mi matrix. The mi × mi matrices Ai, contain all the intra-

slice coupling parameters and on-site energies, and is independent of the energy, E, of

the incoming electron. The symbol I represents the identity matrix of the appropriate

dimension, which in the equation for Fi is mi ×mi. The matrix equation which needs to
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be solved for T (E) = |tT |2 comes from the expression for tT (E) from the solution of the

matrix equation

N`



χ+ rχ∗

~ψa

~ψb

...

~ψ`

tT



=



Λ

~0

~0

...

~0

0



. (3.56)

Use the eigenvectors of the intra-slice coupling matrices and form the appropiate matrix of

transformation, X. Next introduce the m×m block transformation matrices Xi

X̂ =



1

X1

X2

X3

. . .

X`−1

X`

1



(3.57)
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where all Xi are non-singular. Also multiply both sides of Eq. (3.56) from the left by the

matrix X̂, and insert the identity I = X̂†(X̂†)−1 between N` and the vector of wavefunc-

tions. The equation then reads

X̂N`X̂
†



χ+ rχ∗(
X†1

)−1
~ψa(

X†2

)−1
~ψb

...(
X†`

)−1
~ψ`

tT



=



Λ

~0

~0

...

~0

0



. (3.58)

Next define the (2 + lm)× (2 + lm) matrix M` = X̂N`X̂
† and perform the matrix multi-

plication. Hence, M` has the form

ξ ~w†X†1 ~0† ~0† · · · ~0† ~0† 0

X1 ~w X1F1X
†
1 X1B12X

†
2 0 · · · 0 0 ~0

~0 X2B21X
†
1 X2F2X

†
2 X2B23X

†
3 0 0 ~0

~0 0 X3B32X
†
2 X3F3X

†
3 0 0 ~0

...
... . . . ...

~0 0 0 0 X`−1F`−1X
†
`−1 X`−1B`−1,`X

†
`

~0

~0 0 0 0 X`B`,`−1X`−1 X`F`X
†
` X`~u

0 ~0† ~0† ~0† · · · ~0† ~u†X†` ξ



.

(3.59)

The mapping onto a 1D linear chain of sites is accomplished by finding solutions to the

sets of the mapping equations in Eq. (3.11) through Eq. (3.14). A successful mapping will
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give that the transmission for this large matrix is exactly the same for all energies of the

incident electron as that from a matrix of dimension 2 + ` that has the form

M̃` =



ξ −w̃ 0 0 · · · 0 0 0

−w̃ κ̃1 −t̃12 0 · · · 0 0 0

0 −t̃21 κ̃2 −t̃23 0 0 0

0 0 −t̃32 κ̃3 0 0 0

...
... . . . ...

0 0 0 0 κ̃`−1 −t̃`−1,` 0

0 0 0 0 −t̃`,`−1 κ̃` −ũ

0 0 0 0 · · · 0 −ũ ξ



(3.60)

with κ̃j = ε̃j − E. The transmission coefficient tT (E) can be found from either the (l +

2)× (l + 2) equation



χ+ rχ∗

ψ̃1

ψ̃2

...

ψ̃`

tT



= M̃−1
`



Λ

0

0

...

0

0



(3.61)
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or the (2 + lm)× (2 + lm) equation

(
X̂†
)−1



χ+ rχ∗

~ψ1

~ψ2

...

~ψ`

tT



= M−1
`



Λ

~0

~0

...

~0

0



, (3.62)

and in either case the electron transmission probability is calculated from T (E) = |tT |2.

3.3.2 General method for 2D system mapping

In this section, the general method to do the mapping for a general 2D system is pre-

sented. Let assume there are m atoms per slice in the nanodevice. The intra-slice coupling

matrix associated with the device at site ν can be expressed as

Aν = ενI− tνQ. (3.63)

The eigenvalues of the matrix Aν can be expressed as [67, 68]

λs,ν = εν − 2tν cos

(
πs

m+ 1

)
(3.64)

where s = 1, ....m. Assume the inter-slice coupling matrices for the device (odd-even and

even-odd) have the form

Bω,ω+1 = −tx,ωI− ty,ωQ . (3.65)
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In Eq. (3.63), and Eq. (3.65) the matrix Q has been shown in Eq. (3.2) and the matrix I

is an identity matrix of the same dimension as Q. The eigenvalues of Eq. (3.65) can be

expressed as [67, 68]

λs,ν = −tx,ν − 2ty,ν cos

(
πs

m+ 1

)
(3.66)

where s = 1, ....m. Assume further that there is a single incoming lead atom which is cou-

pled to the m atoms in the device at slice ν = 1. This means that the incoming connection

vector, ~w, is of dimension m. This further suggests that the outgoing connection vector ~u

is also of dimension m. After making these assumptions the sets of mapping equations are

given in Eq. (3.11) through Eq. (3.14). The elements of the eigenvectors of the inter-slice

and intra-slice coupling matrices, Bω,ω+1, and Aν are [67, 68]

x
(s)
j =

√
2

m+ 1
sin

(
πsj

m+ 1

)
(3.67)

where j = 1.....,m and s = 1, ....m. With these eigenvectors, form the m ×m matrix of

transformation X such that

X =

√
2

m+ 1



sin
(

π
m+1

)
sin
(

2π
m+1

)
sin
(

3π
m+1

)
sin
(

4π
m+1

)
· · · · · · · · · · · ·

sin
(

2π
m+1

)
sin
(

4π
m+1

)
sin
(

6π
m+1

)
sin
(

8π
m+1

)
· · · · · · · · · · · ·

sin
(

3π
m+1

)
sin
(

6π
m+1

)
sin
(

9π
m+1

)
sin
(

12π
m+1

)
· · · · · · · · · · · ·

sin
(

4π
m+1

)
sin
(

8π
m+1

)
sin
(

12π
m+1

)
sin
(

16π
m+1

)
· · · · · · · · · · · ·

sin
(

5π
m+1

)
sin
(

10π
m+1

)
sin
(

15π
m+1

)
sin
(

20π
m+1

)
· · · · · · · · · · · ·

sin
(

6π
m+1

)
sin
(

12π
m+1

)
sin
(

18π
m+1

)
sin
(

24π
m+1

)
· · · · · · · · · · · ·

sin
(

7π
m+1

)
sin
(

14π
m+1

)
sin
(

21π
m+1

)
sin
(

28π
m+1

)
· · · · · · · · · · · ·

sin
(

8π
m+1

)
sin
(

16π
m+1

)
sin
(

24π
m+1

)
sin
(

32π
m+1

)
· · · · · · · · · · · ·


(3.68)
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where the matrix is written for m = 8, and only four columns are shown. Note that from

Eq. (3.68)

XX† = I . (3.69)

Since X is unitary, Aν can be diagonalized as

XAνX
† = Adiagonal (3.70)

here Adiagonal is

Adiagonal =



λ1 0 · · · 0 0

0 λ2 · · · 0 0

...
... . . . ...

...

0 0 · · · λm−1 0

0 0 · · · 0 λm


(3.71)

with the eigenvalue λi of Eq. (3.64). Similarly, for the inter-slice coupling matrices use the

same transformation matrix X in Eq. (3.68). Upon multiplying through this gives

XBω,ω+1X
† = Bdiagonal1 (3.72)

here Bdiagonal1 is

Bdiagonal1 =



λ11 0 · · · 0 0

0 λ12 · · · 0 0

...
... . . . ...

...

0 0 · · · λ1,m−1 0

0 0 · · · 0 λ1m


. (3.73)
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with the eigenvalue of Eq. (3.66). Now the last task is to check for the mapping equation

for the connection vector for the incoming and the outgoing leads, ~w and ~u. To do this, use

the same transformation matrix, X in Eq. (3.68) and then define the connection vector, ~w

by

~w† =

(
−w11 −w12 −w13 −w14 · · · −w1m

)
. (3.74)

This means that from Eq. (3.67)

~w†X =

(
−w11 0 0 0 0 · · · 0

)
. (3.75)

provided from Eq. (3.67) ~w† = −w11~v
(1)†. Thus in effect the mapping Eq. (3.11) is

satisfied. Similarly, define the outgoing connection vector ~u as

~u =



−u11

−u12

−u13

−u14

−u15
...

−u1m



(3.76)
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This means that

X~u =



−u11

0

0

0

0

...

0



(3.77)

for ~u† = −u11~v(1), and hence the mapping equation mapping Eq. (3.12) is satisfied.

Figure 3.4

An example of mapping and tuning for a nanodevice with m = 3, l = 4.
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Fig. 3.4, shows a 12 site device where mapping has been done as well tuning. The

device is coupled to dimerized leads. Since, m = 3 and l = 4 this means that the device

has ml = 12. Here, mapping onto a 1D linear chain has been performed, and tuning has

also been done. Hence, the device is a quantum dragon.

3.3.3 Example of mapping for 2D system: Six site device

In this section, we will show how to do the mapping for a 6 site device. Here, m = 3,

l = 2, and mL = 1. Form the matrix of transformation, X, from the eigenvectors and then

introduce the block transformation matrix,

X̂ =



1

X

X

1


. (3.78)

Here, the matrix of transformation, X is shown in Eq. (3.18).

It should be noted that since the dimension of the matrix to invert to calculate the

electron transmission probability is an 8×8 matrix, the block transformation matrix is also
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8× 8 matrix. Clearly X̂† = X̂ and X̂†X̂ = I8×8. Sandwiching N3 with the transformation

matrices gives

X̂N3X̂
†=



ξ(E) −w 0 0 0 0 0 0

−w κ1 0 0 t1 0 0 0

0 0 εa−E 0 0 −tx 0 0

0 0 0 κ2 0 0 t2 0

0 t1 0 0 κ3 0 0 −u

0 0 −tx 0 0 εb−E 0 0

0 0 0 t2 0 0 κ4 0

0 0 0 0 −u 0 0 ξ(E)



. (3.79)

Here,

κ1 = εa−ta
√

2−E (3.80)

t1 = −tx−ty
√

2 (3.81)

κ2 = εa+ta
√

2−E (3.82)

t2 = −tx+ty
√

2 (3.83)

κ3 = εb−tb
√

2−E (3.84)

κ4 = εb+tb
√

2−E. (3.85)

74



Collect the sites connected to the input and output leads, through ξ(E), to give

M̃3 =



ξ(E) −w 0 0

−w εa − ta
√

2− E −tx − ty
√

2 0

0 −tx − ty
√

2 εb − tb
√

2− E −u

0 0 −u ξ(E)


. (3.86)

This is the (l+2)×(l+2) matrix to invert to calculate the electron transmission probability.

The map-and-tune method of finding a quantum dragon is shown in Fig. 3.4.

3.4 General tuning: Quantum dragon

In the absence of a magnetic field, the maximum eigenvalue corresponds to s = 1,

which means that from Eq. (3.71) and the mapping Eq. (3.13), tuning for the device and

the lead requires that

εL = λ1 = 0. (3.87)

Similarly, for the inter-slice coupling matrices for the device, Eq. (3.73), the mapping Eq.

(3.14) is satisfied provided

s̃bx = λ11. (3.88)

Thus in effect the mapping Eq. (3.12) is satisfied. Therefore to find quantum dragons tune

εL = λ1, s̃bx = λ11 and ~w = ~u = −teo~v(1).
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3.4.1 Specific tuning: Quantum dragon for m = 3, l = 2

The six site device in section 3.3.3, will be a quantum dragon with T (E) = 1 as long

as the four relations

−w = −teo

εj − tj
√

2 = 0 j = {1, 2}

−tx − ty
√

2 = −toe

−u = −teo

(3.89)

are satisfied.

3.5 Data

In this section, the results obtained are presented. Here, we show quantum dragon so-

lutions as well as Fano resonance in the electron transmission probability when there is

uncorrelated complete randomness in the device. In Fig. 3.5 through Fig. 3.8, the plot

of T vs E for both the dimerized leads and uniform leads coupled to the nanodevice are

shown. As it can be seen from the graphs, when there is correlated random disorder be-

tween the single-band tight binding parameters, we obtain a quantum dragon solution as

shown by the line T = 1 (darker blue) as expected. As argued by Novotny, [18] quantum

dragon solutions are obtained when there is an interplay between the nanodevice and the

attached leads. When the tight-binding parameters are not correlated, Fano resonances are

seen in the plots of T vs E. By using a simple Mathematica code for a particular strength

of disorder, δ for we calculate numerically the mean electron transmission probability as

well as the standard deviation of the electron transmisssion probability. As it can be seen
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from Fig. 3.9 and Fig. 3.10, the mean electron transmission probability decreases with

increasing strength of the disoder as expected. This makes complete sense because as the

strength of the disorder increases, the uncorrelated randomness of the tight binding param-

eters in the device increases, and hence the electron transmission probability decreases and

consequently a decrease in the mean electron transmission probability. It should be noted

that there is no randomness of the tight-binding parameters of both the dimerized leads

and uniform leads attached to the device. To generate random numbers we used Random-

Variate[distribution] in Mathematica, which generates a pseudorandom variate or numbers

from a particular distribution. In our study, the distribution we used is the normal distri-

bution of mean zero and variance unity. In our choice of particular distribution we choose

the normal distribution. Fig. 3.5 is a plot of transmission vs energy, E. The nanodevice

Figure 3.5

T vs E, boundary condition 00, dimerized leads.

has m = 5, l = 14 and therefore ml = 70 atoms. Here, toe = 1 and teo = 2. The line
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T = 1 (darker blue) has the on-site energy, εj = tj
√

3. The intra-slice hopping strengths

used are non-uniform. The red, green, magenta and cyan color show Fano resonances in

the electrical transmission probability of the nanodevice. The on-site energies are mod-

eled by εj = tj
√

3 + δΣ and the intra-slice hopping terms are modeled by tj = t + δΣ.

The inter-slice hopping parameters are modeled by tx = toe + δΣ and tα = teo + δΣ

where δ = 0.0, 0.05, 0.1, 0.15, 0.2 and Σ is a random number of mean 0 and unit standard

deviation.

Figure 3.6

T vs E, boundary condition 00, dimerized leads, δ = 0.2.

Fig. 3.6, is the same as Fig. 3.5, except only two values δ = 0 (a quantum dragon)

and δ = 0.2 are shown. It should be noted that the mapping equation only hold when

δ = 0. The line T = 1 (darker blue) has the on-site energy, εj = tj
√

3. The intra-

slice hopping strengths used are non-uniform. The cyan color shows Fano resonances

78



in the nanodevice, the darker cyan color and the orange color shows the mean electron

transmission probability and the standard deviation of the T vs E for δ = 0.2.

Figure 3.7

T vs E, boundary condition 00, uniform leads.

Fig. 3.7, shows a plot of transmission vs E. The nanodevice has m = 5, l = 14 and

therefore ml = 70 atoms. Here, teo = 1 and teo = 1. The line T = 1 (darker blue) has the

on-site energy, εj = tj
√

3. The intra-slice hopping strengths used are non-uniform. The

yellow, green, red and the purple color show Fano resonances in the nanodevice. The on-

site energies are modeled by εj = tj
√

3+δΣ and the intra-slice hopping terms are modeled

by tj = t + δΣ. The inter-slice hopping parameters are modeled by tx = toe + δΣ and

tα = teo + δΣ where δ = 0.0, 0.05, 0.1, 0.15, 0.2 and Σ is a normally distributed random

number.
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Figure 3.8

T vs E, boundary condition 00, uniform leads, δ = 0.2.

Fig. 3.8, is the same as Fig. 3.7, except only for two values δ = 0 (a quantum dragon)

and δ = 0.2 are shown. Here, teo = 1 and teo = 1. The cyan and the orange color shows

the mean and the standard deviation of T vs E for δ = 0.2 for the device.

3.6 Summary

In this chapter, it has been shown how to find quantum dragons for m = 3, l = 4

as well as m = 5 and l = 4 for single-layer planar rectangular crystals with boundary

conditions 00. Here, the connection hopping strengths ~w and ~u to the nanodevice are a

modified form of the busbar connection. In the presence of uncorrelated random disorder

in the nanodevice, Fano resonances in the electron transmission probability are seen in

Fig. 3.5 through Fig. 3.8 for both the dimerized and uniform leads with inhomogeneous

slices in the device. Quantum dragons have no Fano resonances just T (E) = 1. The

quantum dragon solutions obtained are nanodevices with non-uniform intra-slice hopping
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Figure 3.9

〈T 〉 vs δ, boundary condition 00, non-uniform leads

terms. However, quantum dragons solution can also be obtained with uniform intra-slices

in the nanodevice. Fano resonances are also expected to be observed when the dimerized

and non-dimerized leads are connected to homogeneous slices when there is uncorrelated

disorder of the tight-binding parameters in the nanodevice. For the six site device, we

have shown how to use the mapping technique to obtain quantum dragon solutions. For m

atoms per slice in the device with l number of slices in the nanodevice, where here l is an

even number, the general approach to find quantum dragons has also been shown. As the

amount of uncorrelated disorder increases (δ increases) the mean transmission falls and the

standard deviation of the transmission increases. This is shown in Fig. 3.9 through Fig.

3.12 for both dimerized and uniform leads.
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Figure 3.10

〈T 〉 vs δ, boundary condition 00, uniform leads.

Figure 3.11

std T vs δ, boundary condition 00, dimerized leads.
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Figure 3.12

std T vs δ, boundary condition 00, uniform leads.
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CHAPTER 4

QUANTUM DRAGON SOLUTIONS FOR RECTANGULAR CRYSTALS : CASE 2 :

BOUNDARY CONDITION −−

It is shown in this section how to find quantum dragons for single-layer planar rect-

angular crystals using boundary conditions which we label as −−. We call the boundary

conditions −− because in Eq. (1.25), we set (β = γ = −b). The connections used in this

chapter are the busbar. There are two ways to find quantum dragons: (1) we assume the

inter-slice coupling matrices for the nanodevice has nn and nnn interactions and (2) we

assume the inter-slice coupling matrices are proportional to the identity matrix. In other

words, the device has only nn interactions. In the absence of nnn interactions this gives

results in [24]. From Eq. (1.25), by setting (β = γ = −b), the symmetric tridiagonal

matrix of dimension m×m has the form

A =



a− b −b 0 · · · 0 0

−b a −b · · · 0 0

0 −b a · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · a −b

0 0 0 · · · −b a− b



= aI− bQ− bΩ (4.1)
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where a and b are real numbers. In Eq. (4.1), the matrix Q is shown in Eq. (3.2) and the

matrix Ω is defined as

Ω =



1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 0

0 0 0 · · · 0 1



. (4.2)

Our nanodevice has an intra-slice matrix of the form (written for m = 8)

A =



ε− t −t 0 0 0 0 0 0

−t ε −t 0 0 0 0 0

0 −t ε −t 0 0 0 0

0 0 −t ε −t 0 0 0

0 0 0 −t ε −t 0 0

0 0 0 0 −t ε −t 0

0 0 0 0 0 −t ε −t

0 0 0 0 0 0 −t ε− t



= εI− tQ− tΩ (4.3)
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and an inter-slice matrix of the form (written for m = 8)

B =



−tx − ty −ty 0 0 0 0 0 0

−ty −tx −ty 0 0 0 0 0

0 −ty −tx −ty 0 0 0 0

0 0 −ty −tx −ty 0 0 0

0 0 0 −ty −tx −ty 0 0

0 0 0 0 −ty −tx −ty 0

0 0 0 0 0 −ty −tx −ty

0 0 0 0 0 0 −ty −tx − ty



= −txI− tyQ− tyΩ

(4.4)

where t’s are the hopping strengths which are non-negative real numbers and ε is the on-

site energy of the atom which is a real number. Eq. (4.1) is a matrix with eigenvalues

expressed as [67, 68]

λs = a− 2b cos

(
(s− 1)π

m

)
(4.5)

for s = 1, 2, ....m and eigenvectors

x
(1)
j =

1√
m

(4.6)

and

x
(s)
j =

√
2

m
cos

(
(2j − 1)(s− 1)π

2m

)
(4.7)

where j = 1.....,m and s = 2, ....m. The outline of this chapter is as follows. In section

4.1, we show how to find quantum dragons for m = 5, l = 4. The main objective of this

section is to show how to find quantum dragons for a small number of atoms per slice and
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a small number of slices in the device. However, this same analysis can be extended to any

number of atoms per slice and any number of even slices, l, in the device. This section

will be followed by the general method for 2D system mapping. In section 4.2, we will

show the general tuning to obtain quantum dragon. Section 4.3 puts all the results into

perspective. Here all plots obtained will be shown and discussed. The summary of results

for our −− boundary condition are given in section 4.4.

4.1 Quantum dragons for m = 5, l = 4 with nn and nnn interactions

Assume the nanodevice has five atoms per slice at slice j = µ. See Fig. 4.1.

Figure 4.1

An example of the case of dimerized leads, and rectangular nanodevice for −− boundary

conditions.

In Fig. 4.1, the vertical lines show the intra-slice hopping. Here, m = 5, l = 4 and

therefore ml = 20. The device has non-uniform intra-slices. The device is coupled to
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the single channel incoming and outgoing leads. Here, only three atoms in the lead are

shown. The inter-slice coupling matrices are for nn shown by the horizontal line (magenta

and light blue color) and the nnn shown by (deep blue, dark yellow and black color) line

segments which form an X-shape. Appropriate choices of the tight-binding parameters

makes this disordered nanodevice into a quantum dragon.

The intra-slice coupling matrices have the form

Aµ =



εµ − tµ −tµ 0 0 0

−tµ εµ −tµ 0 0

0 −tµ εµ −tµ 0

0 0 −tµ εµ −tµ

0 0 0 −tµ εµ − tµ


= εµI− tµΩ− tµQ (4.8)

where µ = a, b, c, d for the l = 4 slices and εµ are the on-site energies for the atoms at slice

j = µ and tµ are the intra-slice hopping parameters between atoms. The eigenvalues of

Eq. (4.8) gives λµ,1 = εµ− 2tµ, λµ,2 = 1
2
(−tµ− tµ

√
5 + 2εµ), λµ,3 = 1

2
(tµ− tµ

√
5 + 2εµ),

λµ,4 = 1
2
(−tµ + tµ

√
5 + 2εµ), and λµ,5 = 1

2
(tµ + tµ

√
5 + 2εµ).

Now assume the device inter-slice coupling matrices have the form

Bϕ,ϕ+1 =



−tp,ϕ − tq,ϕ −tq,ϕ 0 0 0

−tq,ϕ −tp,ϕ −tq,ϕ 0 0

0 −tq,ϕ −tp,ϕ −tq,ϕ 0

0 0 −tq,ϕ −tp,ϕ −tq,ϕ

0 0 0 −tq,ϕ −tp,ϕ − tq,ϕ


= −tp,ϕI−tq,ϕΩ−tq,ϕQ

(4.9)
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where we will let ϕ even be Beo and ϕ odd be Boe. In the matrix equations above, the

matrix Ω is explicitly for m = 5

Ω =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


(4.10)

and the matrix Q is defined as Eq. (3.30). The identity matrix, I has same dimension as

Q. The eigenvectors of Eq. (4.8) and Eq. (4.9) are

~v5†5 =

(
1 1 1 1 1

)
(4.11)

~v5†4 =

(
−1 1

2
(1−

√
5) 0 1

2
(−1 +

√
5) 1

)
(4.12)

~v5†3 =

(
1 1

2
(−3 +

√
5) 1−

√
5 1

2
(−3 +

√
5) 1

)
(4.13)

~v5†2 =

(
−1 1

2
(1 +

√
5) 0 1

2
(−1−

√
5) 1

)
(4.14)

and

~v5†1 =

(
1 1

2
(−3−

√
5) 1 +

√
5 1

2
(−3−

√
5) 1

)
. (4.15)

Now let the matrix of transformation, X be defined as

X =



~c5†5

~c5†4

~c5†3

~c5†2

~c5†1


(4.16)
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where ~c5†i and i = 1 to i = 5 are the normalized vectors of Eq. (4.11) through Eq. (4.15).

Note that from Eq. (4.16)

XX† = I . (4.17)

This means that the device intra-slice matrix at slice j = µ has been transformed to

XAµX
† =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5


. (4.18)

Here

λµ,1 = εµ − 2tµ (4.19)

λµ,2 =
1

2
(−tµ − tµ

√
5 + 2εµ) (4.20)

λµ,3 =
1

2
(tµ − tµ

√
5 + 2εµ) (4.21)

λµ,4 =
1

2
(−tµ + tµ

√
5 + 2εµ (4.22)

and

λµ,5 =
1

2
(tµ + tµ

√
5 + 2εµ). (4.23)

From Eq. (4.19) tuning for the device and the lead hence requires

εL = εµ − 2tµ (4.24)
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where εL is the on-site energy of the atom in the lead. Since the on-site energy of the atom

in the lead is set to zero, εL = 0, this means Eq. (4.24) can be re-expressed as

εµ = 2tµ. (4.25)

Note that εµ can be any value, and tuning only requires tµ and εµ satisfy Eq. (4.25).

Furthermore, note Eq. (4.25), allows a different εµ for every device slice µ. Similarly,

for the inter-slice coupling matrices, use the same transformation matrix, X in Eq. (4.16).

Upon multiplying through, this gives

XBϕ,ϕ+1X
† = Bdiagonal9 (4.26)

where

Bdiagonal9 =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5


(4.27)

Here

λϕ,1 = −tp,ϕ − 2tq,ϕ (4.28)

λϕ,2 =
1

2
(−tp,ϕ − tq,ϕ

√
5− 2tq,ϕ) (4.29)

λϕ,3 =
1

2
(tp,ϕ − tq,ϕ

√
5− 2tq,ϕ) (4.30)

λϕ,4 =
1

2
(−tp,ϕ + tq,ϕ

√
5− 2tq,ϕ) (4.31)

and

λϕ,5 =
1

2
(tp,ϕ + tq,ϕ

√
5− 2tq,ϕ). (4.32)
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From Eq. (4.28), the mapping equation, Eq. (3.14) is satisfied provided s̃b5 = tp,ϕ + 2tq,ϕ.

Now the last task is to check for the mapping equation for the connection vector for both

the incoming and outgoing leads, ~w and ~u. To do this, use the same transformation matrix,

X in Eq. (4.16) and define the incoming connection vector, ~w by

~w† =

(
− w√

5
− w√

5
− w√

5
− w√

5
− w√

5

)
. (4.33)

This means that

~w†X =

(
−w 0 0 0 0

)
. (4.34)

Hence the mapping Eq. (3.11) is satisfied. Similarly define, the outgoing connection vec-

tor, ~u as

~u =



− u√
5

− u√
5

− u√
5

− u√
5

− u√
5


. (4.35)

This means that

X~u =



−u

0

0

0

0


. (4.36)
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Thus the mapping Eq. (3.12) is satisfied. Therefore to find quantum dragons tune the

on-site energy of the atoms at slice µ to εµ = 2tµ, as well as s̃b5 = tp,ϕ + 2tq,ϕ, and

~w = ~u =



− teo√
5

− teo√
5

− teo√
5

− teo√
5

− teo√
5


.

Quantum dragons can also be found when the device has only nn interactions. This

means that for such a device, the inter-slice coupling matrices are proportional to the iden-

tity matrix. Thus Bϕ,ϕ+1 = −tp,ϕI. This assumption has been used by Novotny in 2015

[24] to find quantum dragons. When the device has only nn interactions, to find quantum

dragons, tune the on-site energies of the atoms at slice j = µ to εµ = 2tµ, as well as

s̃b6 = tp,ϕ, and ~w = ~u =



− teo√
5

− teo√
5

− teo√
5

− teo√
5

− teo√
5


.

4.1.1 General method for 2D system mapping

In this section, the general method to do the mapping for a general 2D system is pre-

sented for the single-layer planar rectangular crystals with boundary condition −−. As-
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sume there are m atoms per slice in the nanodevice. The intra-slice coupling matrix asso-

ciated with the device at slice j = µ can be expressed as

Aµ = εµI− tµQ− tµΩ . (4.37)

The eigenvalues of the matrix Aµ can be expressed as [67, 68]

λs,µ = εµ − 2tµ cos

(
(s− 1)π

m

)
(4.38)

where s = 1, ....m. Assume the inter-slice coupling matrices for the device (odd-even and

even-odd) have the form

Bϕ,ϕ+1 = −tp,ϕI− tq,ϕQ− tq,ϕΩ . (4.39)

In Eq. (4.37) and Eq. (4.39), the matrix Q has been shown in Eq. (3.2) and the matrix I is

an identity matrix with same dimension as matrix Q. The eigenvalues of Eq. (4.39) can be

expressed as [67, 68]

λs,ϕ = −tp,ϕ − 2tq,ϕ cos

(
(s− 1)π

m

)
(4.40)

where s = 1, ....m. Assume further that there is a single incoming lead atom which is cou-

pled to the m atoms in the device at slice µ = 1. This means that the incoming connection

vector ~w is of dimension m. This further suggests that the outgoing connection vector ~u is

of dimension m. After making these assumptions the sets of mapping equations are given

in Eq. (3.11) through Eq. (3.14). The elements of the eigenvectors of the inter-slice and

intra-slice coupling matrices are [67, 68]

x
(1)
j =

1√
m

(4.41)
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and

x
(s)
j =

√
2

m
cos

(
(2j − 1)(s− 1)π

2m

)
(4.42)

where j = 1.....,m and s = 2, ....m. With these eigenvectors, form the matrix of transfor-

mation X such that

X =

√
2

m



1√
2

1√
2

1√
2

1√
2

· · · · · · · · · · · ·

cos( π
2m

) cos( π
m

) cos( 3π
2m

) cos(2π
m

) · · · · · · · · ·

cos( 3π
2m

) cos(3π
m

) cos( 9π
2m

) cos(6π
m

) · · · · · · · · · · · ·

cos( 5π
2m

) cos(5π
m

) cos(15π
2m

) cos(10π
m

) · · · · · · · · · · · ·

cos( 7π
2m

) cos(7π
m

) cos(21π
2m

) cos(14π
m

) · · · · · · · · · · · ·

cos( 9π
2m

) cos(9π
m

) cos(27π
2m

) cos(18π
m

) · · · · · · · · · · · ·

cos(11π
2m

) cos(11π
m

) cos(33π
2m

) cos(22π
m

) · · · · · · · · · · · ·

cos(13π
2m

) cos(13π
m

) cos(39π
2m

) cos(26π
m

) · · · · · · · · · · · ·



(4.43)

where the matrix is written for m = 8, and only four columns are shown. Note that from

Eq. (4.43)

XX† = I . (4.44)

Since X is unitary, Aµ can be diagonalized as

XAµX
† = Adiagonal (4.45)

here Adiagonal is
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Adiagonal =



λ31 0 · · · 0 0

0 λ32 · · · 0 0

...
... . . . ...

...

0 0 · · · λ3,m−1 0

0 0 · · · 0 λ3m


(4.46)

with the eigenvalues of Eq. (4.40). Similarly, for the inter-slice coupling matrices use the

same transformation X. Upon multiplying through this gives

XBϕ,ϕ+1X
† = Bdiagonal (4.47)

here Bdiagonal is

Bdiagonal =



λ41 0 · · · 0 0

0 λ42 · · · 0 0

...
... . . . ...

...

0 0 · · · λ4,m−1 0

0 0 · · · 0 λ4m


(4.48)

with the eigenvalues of Eq. (4.40). Now the last task is to check for the mapping equation

for the connection vector for both the incoming and outgoing leads, ~w and ~u. To do this,

use the same transformation matrix, X in Eq. (4.43) and define the incoming connection

vector, ~w by

~w† =

(
−w11 −w12 −w13 −w14 · · · −w1m

)
. (4.49)

This means that

~w†X =

(
−w11 0 0 0 0 · · · · · · 0

)
(4.50)
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provided from Eq. (4.41) ~w† = −w11~v
(1)†. Thus in effect the mapping Eq. (3.11) is

satisfied. Similarly define the outgoing connection vector, ~u as

~u =



−u11

−u12

−u13

−u14

−u15
...

−u1n



. (4.51)

This means that

X~u =



−u11

0

0

0

0

...

...

0



(4.52)

for ~u† = −u11~v(1) and hence mapping Eq. (3.12) is satisfied.
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4.2 General tuning: Quantum dragon

In the absence of a magnetic field, the maximum eigenvalue corresponds to s = 1,

which means that from Eq. (4.46) and the mapping Eq. (3.13), tuning for the device and

the lead requires that

εL = λ31 = 0. (4.53)

Here also, the assumption that the atoms in the incoming and outgoing leads are the same

has been made. It is traditional to chose εL as the zero of energy. Similarly, for the device

inter-slice coupling matrices, Eq. (4.48), the mapping Eq. (3.14) is satisfied provided

s̃bxx = λ41. (4.54)

Here, ~w = ~u = −teo~v(1).

4.3 Results

In this section of the thesis, the results for the boundary condition−− are presented and

then discussed. Here, we show quantum dragon solutions, Fano resonance of the electron

transmission probability, as well as the mean and the standard deviation of the electron

transmission probability vs δ. As seen in Fig. 4.2 through Fig. 4.5, quantum dragons

exist for the nanodevice when there is correlated disorder and when we tune correctly

some tight binding parameters in the device. The quantum dragon solutions are shown

by T (E) = 1 (darker blue) in all cases. Because quantum dragons have unity electron

transmission probability, this means that quantum dragons have no Fano resonance, F ,

since F = 1−T (E). When the tight-binding parameters are uncorrelated, Fano resonances

are seen in all cases. As can be seen in Fig. 4.2 through Fig. 4.5, as the strength of the
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disorder increases, we move away from the quantum dragon solutions. As seen in Fig. 4.6

and Fig. 4.7, the mean electron transmission probability decreases with increasing disorder,

δ. This makes perfect sense because as the strength of disorder increases, the uncorrelated

randomness in the device increases and hence the mean electron transmission probability

decreases. This result is true for both dimerized leads and uniform leads attached to the

nanodevice. It should be pointed out that in all cases the leads attached to the device do

not have disorder.

In quantum dragon solutions, there is correlated disorder between the leads and the

nanodevice and the parameters in the device must be tuned correctly to obtain T = 1 for

all energies. In the case of Fano resonance the random numbers are generated using a

normal distribution.

Figure 4.2

T vs E, boundary condition −−, dimerized leads.
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Fig. 4.2, is a plot of transmission vs E. The device has m = 5, l = 14 and therefore

ml = 70 atoms. This plot is for the non-uniform leads (toe = 1 and teo = 2). The line

T = 1 (darker blue) has the on-site energy, εj = 2tj . The on-site energies are modeled

by εj = 2tj + δΣ and the intra-slice hopping terms are modeled by tj = t + δΣ. The

inter-slice hopping parameters are modeled by tp = toe + δΣ and tλ = teo + δΣ where

δ = 0.0, 0.05, 0.1, 0.15, 0.2 and Σ is a Gaussian random number of zero mean and unit

standard deviation. The intra-slice hopping strengths used are non-uniform. The cyan,

green, magenta and the red color shows Fano resonances in the nanodevice.

Figure 4.3

T vs E, boundary condition −−, dimerized leads, δ = 0.2

Fig. 4.3, is the same as Fig. 4.2, except only for the two values δ = 0 (a quantum

dragon) and δ = 0.2. The red color shows Fano resonances in the nanodevice. The cyan

and the orange color shows the mean and the standard deviation of the electron transmis-

sion probability as a function of E in the nanodevice for δ = 0.2.
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Figure 4.4

T vs E, boundary condition −−, uniform leads.

Fig. 4.4, is a plot of transmision vs E. The nanodevice has m = 5, l = 14 and

therefore ml = 70 atoms. This plot is for the uniform leads (toe = 1 and teo = 1). The line

T = 1 (darker blue) has the on-site energy, εj = 2tj . The on-site energies are modeled

by εj = 2tj + δΣ and the intra-slice hopping terms are modeled by tj = t + δΣ. The

inter-slice hopping parameters are modeled by tp = toe + δΣ and tλ = teo + δΣ where

δ = 0.0, 0.05, 0.1, 0.15, 0.2 and Σ is a normally distibuted random number. The intra-slice

hopping strengths used are non-uniform. The cyan, green, magenta and red color shows

Fano resonances in the nanodevice.

Fig. 4.5, is the same as Fig. 4.4, except only for two values δ = 0 (a quantum dragon)

and δ = 0.2. The cyan and the orange color shows the mean and the standard deviation of

the electron transmission probability as a function of E for δ = 0.2.
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Figure 4.5

T vs E, boundary condition −−, uniform leads, δ = 0.2.

4.4 Summary

In this chapter, it has been shown how to find quantum dragons for m = 5, l = 4 for

single-layer planar rectangular crystals with boundary condition−−. Here, the connection

vector used is busbar. That is the connection between the leads and every atom in the first

and last slice of the device are of the same strength. When there is uncorrelated random

disorder in the nanodevice, Fano resonances are seen as in Fig. 4.2 through Fig. 4.5.

Quantum dragons have no Fano resonances since the electron tranmission probability is

unity for all energies. Fano resonances are also expected to be observed when the dimerized

and non-dimerized leads are connected to homogeneous slices when there is complete

uncorrelated randomness in the nanodevice. For m atoms per slice in the device with l

number of slices in the nanodevice, where here l is even number, the general approach to

find quantum dragons has also been shown.
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Figure 4.6

〈T 〉 vs δ, boundary condition −−, non-uniform leads.

Figure 4.7

〈T 〉 vs δ, boundary condition −−, uniform leads
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Figure 4.8

std T vs δ, boundary condition −−, dimerized leads

Figure 4.9

std T vs δ, boundary condition −−, uniform leads
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CHAPTER 5

QUANTUM DRAGON SOLUTIONS FOR RECTANGULAR CRYSTALS : CASE 3:

BOUNDARY CONDITION ++

It is shown in this section how to find quantum dragons for single-layer planar rect-

angular crystals using boundary conditions which we label as ++. We call the boundary

conditions ++ because in Eq. (1.25), we set (β = γ = b). The connections used in this

chapter are modified busbar. There are two ways to find quantum dragons: (1) we assume

the inter-slice coupling matrices for the nanodevice has nn and nnn interactions and (2)

we assume the inter-slice coupling matrices is proportional to the identity matrix. In other

words, the device has only nn interactions. In the absence of nnn interactions this gives re-

sults in [24]. From Eq. (1.25), by setting (β = γ = b), the tridiagonal matrix of dimension

m×m has the form

A =



a+ b −b 0 · · · 0 0

−b a −b · · · 0 0

0 −b a · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · a −b

0 0 0 · · · −b a+ b



= aI + bΩ− bQ (5.1)
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where a and b are real numbers. In Eq. (5.1), the matrix Q has been shown in Eq. (3.2) and

the matrix Ω is defined as Eq. (4.2). Our nanodevice has an intra-slice coupling matrix of

the form (written for m = 8)

A =



ε+ t −t 0 0 0 0 0 0

−t ε −t 0 0 0 0 0

0 −t ε −t 0 0 0 0

0 0 −t ε −t 0 0 0

0 0 0 −t ε −t 0 0

0 0 0 0 −t ε −t 0

0 0 0 0 0 −t ε −t

0 0 0 0 0 0 −t ε+ t



= εI− tQ + tΩ (5.2)

and an inter-slice coupling matrix of the form (written for m = 8)

B =



−tx + ty −ty 0 0 0 0 0 0

−ty −tx −ty 0 0 0 0 0

0 −ty −tx −ty 0 0 0 0

0 0 −ty −tx −ty 0 0 0

0 0 0 −ty −tx −ty 0 0

0 0 0 0 −ty −tx −ty 0

0 0 0 0 0 −ty −tx −ty

0 0 0 0 0 0 −ty −tx + ty



= −txI− tyQ + tyΩ

(5.3)
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where t’s are the hopping strengths which are non-negative real numbers and ε is the on-

site energy of the atom which is a real number. Eq. (5.1) is a matrix with eigenvalues

expressed as [67, 68]

λs = a+ 2b cos
(sπ
m

)
(5.4)

where s = 1, ....m and with eigenvectors expressed as

x
(s)
j =

√
2√
m

sin

(
(2j − 1)sπ

2m

)
(5.5)

where j = 1.....,m and s = 1, ....m. The outline for this chapter is as follows. In section

5.1 and section 5.2, we show how to find quantum dragons for m = 3, l = 4 and m = 5,

l = 4 respectively. The main objective of these sections are to show how to find quantum

dragons for a small number of atoms per slice and a small number of slices in the device.

However, this same analysis can be extended to any number of atoms per slice and any

number of even slices, l in the device. In section 5.3, we will introduce the general method

for 2D system mapping. In section 5.4, we will show the general tuning to obtain quantum

dragons. Section 5.5, puts all the results into perspective. Here all plots obtained will be

shown and then discussed. The summary of results for our ++ boundary condition are

given in section 5.6.

5.1 Quantum dragons for m = 3, l = 4 with nnn and nn interactions

Assume the nanodevice has three atoms per slice at slice j = υ. See Fig. 5.1. Fig.

5.1 is an example of rectangular device with boundary condition ++. The vertical lines

show intra-slice hopping. Here, m = 3, l = 4 and therefore ml = 12. The nanodevice has

non-uniform intra-slice parameters. The nanodevice is coupled to the single incoming and
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Figure 5.1

An example of the case of dimerized leads, and a rectangular device, for ++ boundary

conditions

outgoing dimerized lead. The inter-slice coupling matrices are for nn shown by the hori-

zontal line (black and cyan colors) and the nnn shown by (violet, light blue and deep green

color) line segments which form an X-shape. Appropriate choices of the tight-binding pa-

rameters makes this disordered nanodevice into a quantum dragon.

Let assume the intra-slice coupling matrices have the form

Aυ =


ευ + tυ −tυ 0

−tυ ευ −tυ

0 −tυ ευ + tυ

 = ευI + tυΩ− tυQ (5.6)

where υ = a, b, c, d for the l = 4 slices and ευ are the on-site energies of the atoms at slice

j = υ and tυ are the intra-slice hopping parameters between atoms. The eigenvalues of
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Eq. (5.6), are λυ,1 = ευ − tυ, λυ,2 = ευ + tυ, λυ,3 = ευ + 2tυ. Now assume the device

inter-slice coupling matrices have the form

Bτ,τ+1 =


−tσ,τ + tρ,τ −tρ,τ 0

−tρ,τ −tσ,τ −tρ,τ

0 −tρ,τ −tσ,τ + tρ,τ

 = −tσ,τI + tρ,τΩ− tρQ (5.7)

where we will let Bτ,τ+1 with τ even be Beo and τ odd be Boe. The normalized eigenvec-

tors of Eq. (5.6) and Eq. (5.7) are

~v3†3 =

(
1√
6

2√
6

1√
6

)
(5.8)

~v3†2 =

(
−1√
2

0 1√
2

)
(5.9)

and

~v3†1 =

(
1√
3
−1√
3

1√
3

)
. (5.10)

Now let the matrix of transformation, X be defined as

X =


~v3†3

~v3†2

~v3†1

 . (5.11)

Note that from Eq. (5.11),

XX† = I . (5.12)

This means that the device intra-slice matrix at slice j = υ has been transformed to

XAυX
† =


ευ − tυ 0 0

0 ευ + tυ 0

0 0 ευ + 2tυ

 . (5.13)
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From Eq. (5.13) and the mapping Eq. (3.13), tuning for the device and the lead hence

requires

εL = ευ − tυ (5.14)

where εL is the on-site energy of the atom in the lead. Since the on-site energy of the atom

in the lead is set to zero, εL = 0, this means Eq. (5.14) and can be re-expressed as

ευ = tυ. (5.15)

Note that ευ can be any value, and the tuning tυ and ευ must satisy Eq. (5.15). Furthermore,

note Eq. (5.15) allows a different ευ for every device slice υ. Similarly, for the inter-slice

coupling matrices, use the same transformation matrix, X in Eq. (5.11). Upon multiplying

through, this gives

XBτ,τ+1X
† = Bdiagonal11 (5.16)

where

Bdiagonal11 =


−tσ,τ − tρ 0 0

0 −tσ + tρ 0

0 0 −tσ + 2tρ

 . (5.17)

Therefore the mapping equation, Eq. (3.14) is satisfied provided s̃b7 = tσ,τ + tρ. Now the

last task is to check for the mapping equation for the connection vector for the incoming

and outgoing leads, ~w and ~u . To do this, use the same transformation matrix, X in Eq.

(5.11) and then define the connection vector for the incoming lead, ~w by

~w† =

(
− w√

6
− 2w√

6
− w√

6

)
. (5.18)
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This means that

~w†X =

(
−w 0 0

)
. (5.19)

Similarly define the connection vector for the outgoing leads, ~u, by

~u =


− u√

6

− 2u√
6

− u√
6

 . (5.20)

This means that

X~u =


−u

0

0

 . (5.21)

Thus in effect the mapping equations, Eq. (3.11) and Eq. (3.12) are satisfied. Therefore

to find quantum dragons tune the on-site energy of the atoms at slice j = υ to ευ = tυ, as

well as s̃b7 = tσ,τ + tρ and ~w = ~u =


− teo√

6

−2teo√
6

− teo√
6

 .

5.1.1 Quantum dragons for m = 3, l = 4 with nn interactions

In Eq. (5.7), the inter-slice coupling matrices odd-even and even-odd are defined in

terms of nearest neighbor and next neighbor interaction. This assumption has already

been used to find quantum dragons for the three atom device. Quantum dragons can also

be found by relaxing this earlier assumption. Here assume that the inter-slice coupling

matrices, Bτ,τ+1 are proportional to the identity matrix. Hence the device has Bτ,τ+1 =
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−tσ,τI. Therefore to find quantum dragons tune the on-site energy of the atoms at slice

j = υ to ευ = tυ, as well as s̃b8 = tσ,τ and ~w = ~u =


− teo√

6

−2teo√
6

− teo√
6

 .

5.2 Quantum dragons for m = 5, l = 4 with nn and nnn interactions

Assume that the nanodevice has five atoms per slice at slice j = υ. See Fig. 5.2.

Figure 5.2

An example of the case of dimerized leads, and a rectangular device for boundary

conditions ++.

Fig. 5.2 is an example of rectangular device with boundary condition ++. The vertical

lines show intra-slice hopping. Here, m = 5 and l = 4 and therefore ml = 20. The device
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has non-uniform intra-slice terms. The nanodevice is coupled to the single incoming and

outgoing lead. The inter-slice coupling matrices are for nn shown by the horizontal line

segments (blush and cyan color) and the nnn interactions shown by (violet, cyan and light

violet color) line segments which form an X-shape. Appropriate choices of the tight-

binding parameters makes this disordered nanodevice into a quantum dragon.

Assume the intra-slice coupling matrices have the form

Aυ =



ευ + tυ −tυ 0 0 0

−tυ ευ −tυ 0 0

0 −tυ ευ −tυ 0

0 0 −tυ ευ −tυ

0 0 0 −tυ ευ + tυ


= ευI + tυΩ− tυQ (5.22)

where υ = a, b, c, d for the l = 4 slices and ευ are the on-site energies for the atoms at

slice j = υ and tυ are the intra-slice hopping parameters between atoms. Finding the

eigenvalues of Eq. (5.22) gives λυ,1 = ευ + 2tυ, λυ,2 = 1
2
(−tυ − tυ

√
5 + 2ευ), λυ,3 =

1
2
(tυ − tυ

√
5 + 2ευ), λυ,4 = 1

2
(−tυ + tυ

√
5 + 2ευ), and λυ,5 = 1

2
(tυ + tυ

√
5 + 2ευ). Now

assume the device inter-slice coupling matrices have the form

Bτ,τ+1 =



−tσ,τ + tρ,τ −tρ,τ 0 0 0

−tρ,τ −tσ,τ −tρ,τ 0 0

0 −tρ,τ −tσ,τ −tρ,τ 0

0 0 −tρ,τ −tσ,τ −tρ,τ

0 0 0 −tρ,τ −tσ,τ + tρ,τ


= −tσ,τI+tρ,τΩ−tρ,τQ.

(5.23)
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The eigenvectors are of Eq. (5.22) and Eq. (5.23) are

~v5†5 =

(
1 −1 1 −1 1

)
(5.24)

~v5†4 =

(
1 1

2
(3 +

√
5) 1 +

√
5 1

2
(3 +

√
5) 1

)
(5.25)

~v5†3 =

(
−1 1

2
(−1−

√
5) 0 1

2
(1 +

√
5) 1

)
(5.26)

~v5†2 =

(
1 1

2
(3−

√
5) 1−

√
5 1

2
(3−

√
5) 1

)
(5.27)

and

~v5†1 =

(
−1 1

2
(−1 +

√
5) 0 1

2
(1−

√
5) 1

)
. (5.28)

Let the matrix of transformation, X be defined as

X =



~x5†5

~x5†4

~x5†3

~x5†2

~x5†1


(5.29)

where ~x5†i and i = 1 to i = 5 are the normalized vectors of Eq. (5.24) through Eq. (5.28).

Note that from Eq. (5.29)

XX+ = I . (5.30)
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This means that the device intra-slice matrix at slice j = υ has been transformed to

XAυX
† =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5


. (5.31)

Here

λυ,1 = ευ + 2tυ

λυ,2 =
1

2
(−tυ − tυ

√
5 + 2ευ)

λυ,3 =
1

2
(tυ − tυ

√
5 + 2ευ)

λυ,4 =
1

2
(−tυ + tυ

√
5 + 2ευ)

λυ,5 =
1

2
(tυ + tυ

√
5 + 2ευ)

. (5.32)

From Eq. (5.32), tuning for the device and the lead hence requires

εL =
1

2
(−tυ − tυ

√
5 + 2ευ) (5.33)

where εL is the on-site energy of the atom in the lead. Since we assume the atoms in the

incoming as well as the outgoing leads are the same, hence it is acceptable to set εL = 0.

This means Eq. (5.33) can be re-expressed as

ευ =
tυ
2

(1 +
√

5). (5.34)

Note ευ can be any value, and the tuning requires tυ and ευ to satisfy Eq. (5.34). Further-

more, note Eq. (5.34) allows a different ευ for every slice υ. Similarly, for the inter-slice
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coupling matrices, use the same transformation matrix, X in Eq. (5.29). Upon multiplying

through, this gives

XBτ,τ+1X
† = Bdiagonal13 (5.35)

where

Bdiagonal13 =



λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5


. (5.36)

Here

λτ,1 = −tσ,τ + 2tρ

λτ,2 =
1

2
(−tσ,τ − tρ

√
5 + 2tρ)

λτ,3 =
1

2
(tσ,τ − tρ

√
5 + 2tρ)

λτ,4 =
1

2
(−tσ,τ + tρ

√
5 + 2tρ)

λτ,5 =
1

2
(tσ,τ + tρ

√
5 + 2tρ)

. (5.37)

Therefore from Eq. (5.37) the mapping equation, Eq. (3.15) is satisfied provided s̃b9 =

1
2
(tσ,τ + tρ

√
5 − 2tµ). Now the last task we do is to check for the mapping equation for

the connection vector, ~w and ~u. To do this, use the same transformation matrix, X in Eq.

(5.29) and then define the connection vector, ~w as

~w† =

(
−wη1 −wη2 −wη3 −wη4 −wη5

)
. (5.38)

This means that

~w†X =

(
−w 0 0 0 0

)
. (5.39)
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Note here that for convenience we have let ηi’s to be elements of the eigenvector which has

all elements of the same sign. Similarly define, the outgoing connection vector, ~u as

~u =



−uη1

−uη2

−uη3

−uη4

−uη5


. (5.40)

This means that

X~u =



−u

0

0

0

0


. (5.41)

Thus the mapping Eq. (3.12) has been satisfied. Therefore to find quantum dragons tune

the on-site energy of the atom at slice j = υ to ευ = tυ
2

(1 +
√

5), as well as s̃b9 =

1
2
(tσ,τ + tρ

√
5 − 2tµ) and ~w = ~u =



−teoη1

−teoη2

−teoη3

−teoη4

−teoη5


Note here that, ηi’s are the elements of

the normalized eigenvectors of the inter-slice and intra-slice matrices for the device which

corresponds to the maximum eigenvalue when you invoke the Perron Frobenius theorem.
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Quantum dragon solutions can also be obtained for m = 5 and l = 4 when the device

has only nn interactions. Assume the inter-slice coupling matrices for the device have the

following simple forms. Thus Bτ,τ+1 = −tσ,τI. Here, to find quantum dragons, tune the

atoms at slice j = υ to ευ = tυ
2

(1 +
√

5), as well as s̃b10 = tσ,τ and ~w = ~u =



−teoη1

−teoη2

−teoη3

−teoη4

−teoη5


.

5.3 General method for 2D system mapping

In this section, the general method to do the mapping for a general 2D system is pre-

sented for ++. Assume there are m atoms per slice in the nanodevice. The intra-slice

coupling matrix associated with the device at site υ can be expressed as

Aυ = ευI + tυΩ− tυQ. (5.42)

The eigenvalues of the matrix Aυ can be expressed as [67, 68]

λs,υ = ευ − 2tυ cos
(sπ
m

)
(5.43)

where s = 1, ....m. Assume the inter-slice coupling matrices for the device odd-even and

even-odd interactions have the form

Bτ,τ+1 = −tσ,τI + tρ,τΩ− tρ,τQ. (5.44)
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In Eq. (5.42), and Eq. (5.44) the matrix Q has been shown in Eq. (3.2) and the matrix I is

an identity matrix of same dimension as the matrix Q. The eigenvalues of Eq. (5.44) can

be expressed as [67, 68]

λs,υ = −tσ,τ − 2tρ,τ cos
(sπ
m

)
(5.45)

where s = 1, ....m. The elements of the eigenvectors of the inter-slice and intra-slice

coupling matrices are [67, 68]

x
(s)
j =

√
2

m
sin

(
(2j − 1)sπ

2m

)
(5.46)

where j = 1.....m and s = 1, ....m. With these eigenvectors, form the m × m matrix of

transformation X such that

X =

√
2

m



sin( π
2m

) sin( π
m

) sin( 3π
2m

) sin(2π
m

) · · · · · · · · · · · ·

sin( 3π
2m

) sin(3π
m

) sin( 9π
2m

) sin(6π
m

) · · · · · · · · · · · ·

sin( 5π
2m

) sin(5π
m

) sin(15π
2m

) sin(10π
m

) · · · · · · · · · · · ·

sin( 7π
2m

) sin(7π
m

) sin(21π
2m

) sin(14π
m

) · · · · · · · · · · · ·

sin( 9π
2m

) sin(9π
m

) sin(27π
2m

) sin(18π
m

) · · · · · · · · · · · ·

sin(11π
2m

) sin(11π
m

) sin(33π
2m

) sin(22π
m

) · · · · · · · · · · · ·

sin(13π
2m

) sin(13π
m

) sin(33π
2m

) sin(26π
m

) · · · · · · · · · · · ·

sin(15π
2m

) sin(15π
m

) sin(45π
2m

) sin(30π
m

) · · · · · · · · · · · ·



, (5.47)

where the matrix is written for m = 8 and only four columns are shown. Note that from

Eq. (5.47)

XX† = I . (5.48)
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Since X is unitary, Aυ can be diagonalized as

XAυX
† = Adiagonal (5.49)

here Adiagonal is

Adiagonal =



λ61 0 · · · 0 0

0 λ62 · · · 0 0

...
... . . . ...

...

0 0 · · · λ6,m−1 0

0 0 · · · 0 λ6m


(5.50)

with the eigenvalue of Eq. (5.43). Similarly, for the inter-slice coupling matrices use the

same transformation X in Eq. (5.47). Upon multiplying through this gives

XBτ,τ+1X
† = Bdiagonal (5.51)

here Bdiagonal is

Bdiagonaloe =



λ71 0 · · · 0 0

0 λ72 · · · 0 0

...
... . . . ...

...

0 0 · · · λ7,m−1 0

0 0 · · · 0 λ7m


(5.52)

with the eigenvalues of Eq. (5.45). Now the last task is to check for the mapping equation

for the incoming and outgoing connection vector, ~w and ~u. To do this, use the same

transformation matrix, X in Eq. (5.47) and then define the incoming connection vector,

~w by

~w† =

(
−w11 −w12 −w13 −w14 · · · −w1m

)
. (5.53)
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This means that

~w†X =

(
−w11 0 0 0 0 · · · 0

)
(5.54)

provided from Eq. (5.46) ~w† = −w11~v
(1)†. Thus in effect we have satisfied the mapping

Eq. (3.11). Similarly define the outgoing connection vector, ~u as

~u =



−u11

−u12

−u13

−u14

−u15
...

−u1m



. (5.55)

This means that

X~u =



−u11

0

0

0

0

...

0



(5.56)

for ~u† = −u11~v(1). Thus in effect the mapping Eq. (3.12) is satisfied.
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5.4 General tuning: quantum dragon

Therefore to find quantum dragons tune the on-site energy of the atoms to εL = λ31 =

0, as well as s̃bzz = λ71 and ~w = ~u = −teo~v(1).

5.5 Data

In this section, the results obtained for our boundary condition ++ are presented. Here,

we show quantum dragon solutions as well as Fano resonance plots in T when there is

complete randomness in the device. Here also, we show the plot of the mean electron

transmission probability vs δ as well as the standard deviation of the electron transmission

probability vs δ. In Fig. 5.3 through Fig. 5.6, quantum dragon solutions are obtained

when there is correlated disorder and the tight binding parameters in the device are tuned

correctly to particular values. The quantum dragon solutions are shown by line T (E) = 1

(darker blue) in all cases. Since the electron transmission probability is unity, quantum

dragons do not have Fano resonance. The stronger the strength of the disorder, the more

we move away from quantum dragon solutions. This can be seen in Fig. 5.3 through Fig.

5.6. The random numbers used in our study are the normal distribution [Gausssian] with

zero mean and the unity standard deviation. Fig. 5.3 is a plot of T vs energy, E for the

rectangular crystal with boundary condition ++. The nanodevice has m = 3, l = 14 and

therefore ml = 42. This plot is for the dimerized leads ( toe = 1 and teo = 2). The line

T = 1 (darker blue) has the on-site energy, εj = tj . The intra-slice hopping strengths used

are non-uniform. The red, green, magenta and purple color shows Fano resonances in the

nanodevice. The on-site energy is modeled by εj = tj + δΣ, and the intra-slice hopping
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Figure 5.3

T vs E, boundary condition ++, dimerized leads.

parameter is modeled by tj = t + δΣ. The inter-slice hopping parameter is modeled by

tσ = toe + δΣ and tτ = teo + δΣ where δ = 0.0, 0.05, 0.1, 0.15, 0.2 where Σ is a Gaussian

random number of zero mean and unity standard deviation. Fig. 5.4 is same as Fig. 5.3,

except only for the two values δ = 0 (a quantum dragon) and δ = 0.2. The line T = 1

(darker blue) has the on-site energy, εj = tj . The intra-slice hopping strengths used are

non-uniform. The purple color shows Fano resonances in the nanodevice, the cyan and

the orange color shows the mean and the standard deviation of T as a function of E for

δ = 0.2. Fig. 5.5 is a plot of T vs E for the rectangular crystal with boundary condition

++. The device has m = 3, l = 14 and therefore ml = 42. This plot is for the non-

dimerized leads toe = 1, teo = 1. The line T = 1 (darker blue) has the on-site energy,

εj = tj . The intra-slice hopping strengths used are non-uniform. The red, green, magenta

and purple color shows Fano resonances in the nanodevice. The on-site energy is modeled

by εj = tj + δΣ, and the intra-slice hopping parameter is modeled by tj = t + δΣ. The
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Figure 5.4

T vs E, boundary condition ++, dimerized leads, δ = 0.0, 0.2

inter-slice hopping parameter is modeled by tσ = toe + δΣ and tτ = teo + δΣ where

δ = 0.0, 0.05, 0.1, 0.15, 0.2 where Σ is a Gaussian random number of zero mean and unit

standard deviation.

Fig. 5.6 is the same as Fig. 5.5, except only for the two values δ = 0 (a quantum

dragon) and δ = 0.2. The line T = 1 (darker blue) has the on-site energy, εj = tj .

The intra-slice hopping strengths used are non-uniform. The purple color shows Fano

resonances in the nanodevice, the cyan and orange color shows the mean and standard

deviation of T vs E of the incoming electron for δ = 0.2.

5.6 Summary

In this chapter, the technique to find quantum dragons from boundary condition ++ for

m = 3, l = 4 as well as m = 5, l = 4 has been shown. Two different ways were used to

find quantum dragons. Here, the connection vector is a modified busbar connection but this
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Figure 5.5

T vs E, boundary condition ++, uniform leads.

connection vector is different from Chapter 3. When the nanodevice has random disorder

as a result of uncorrelated random variations of the tight binding parameters in the device,

Fano resonances are observed as seen in Fig. 5.3 through Fig. 5.6. Fano resonances are

also expected to be observed when the dimerized and non-dimerized leads are connected to

nanodevices with both homogeneous and non-homogeneous slices when there is complete

randomness in the nanodevice. It has also been shown how to find quantum dragons with

boundary condition ++ for m atoms per slice and l slices in the device where here the

number of slices l is even. Here also, as the amount of uncorrelated disorder increases (δ

increases) the mean electron transmission probability falls and the standard deviation of

the electron transmission probability increases. This is shown in Fig. 5.7 through Fig. 5.10

for both dimerized and uniform leads.
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Figure 5.6

T vs E, boundary condition ++, uniform leads, δ = 0.2.

Figure 5.7

〈T 〉 vs δ, boundary condition ++, non-uniform leads.
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Figure 5.8

〈T 〉 vs δ, boundary condition ++, uniform leads.

Figure 5.9

std T vs δ, boundary condition ++, dimerized leads.
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Figure 5.10

std T vs δ, boundary condition ++, uniform leads.
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CHAPTER 6

QUANTUM DRAGON SOLUTIONS FOR RECTANGULAR CRYSTALS : CASE 4:

BOUNDARY CONDITION −+ = +−

It is shown in this chapter, how to find quantum dragons for single-layer planar rect-

angular crystals using boundary conditions which we label as −+. We call the boundary

conditions −+ because in Eq. (1.25), we set β = −b and γ = b. The −+ boundary

conditions are equivalent to +− for planar systems. The connection vector used is a mod-

ified busbar. There are two ways to find quantum dragons: (1) we assume the inter-slice

coupling matrices for the nanodevice has nn and nnn interactions and (2) we assume the

inter-slice coupling matrices are proportional to the identity matrix. In other words, the

device has only nn interactions. In the absence of nnn interactions this gives results in
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[24]. From Eq. (1.25), by setting β = −b and γ = b, the symmetric tridiagonal matrix of

dimension m×m has the form

A =



a− b −b 0 · · · 0 0

−b a −b · · · 0 0

0 −b a · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · a −b

0 0 0 · · · −b a+ b



= aI− bQ + bP (6.1)

where a and b are real numbers. In Eq. (6.1), the matrix Q is defined as Eq. (3.2) and the

matrix P is defined as

P =



−1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 0

0 0 0 · · · 0 1



. (6.2)

Here note that from Eq. (6.1),

aI− bQ + bP = aI− bQ− bP (6.3)
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based on the symmetry of the single-layer planar rectangular crystals, and also how you

count the atoms in the single slice in the nanodevice. Our nanodevice has an intra-slice

matrix of the form (written for m = 8)

A =



ε− t −t 0 0 0 0 0 0

−t ε −t 0 0 0 0 0

0 −t ε −t 0 0 0 0

0 0 −t ε −t 0 0 0

0 0 0 −t ε −t 0 0

0 0 0 0 −t ε −t 0

0 0 0 0 0 −t ε −t

0 0 0 0 0 0 −t ε+ t



= εI− tQ + tP (6.4)

and an inter-slice matrix of the form (written for m = 8)

B =



−tx − ty −ty 0 0 0 0 0 0

−ty −tx −ty 0 0 0 0 0

0 −ty −tx −ty 0 0 0 0

0 0 −ty −tx −ty 0 0 0

0 0 0 −ty −tx −ty 0 0

0 0 0 0 −ty −tx −ty 0

0 0 0 0 0 −ty −tx −ty

0 0 0 0 0 0 −ty −tx + ty



= −txI− tyQ + tyP

(6.5)
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where t’s are the hopping strengths which are non-negative real numbers and ε is the on-

site energy of the atom which is a real number. The tridiagonal matrix in Eq. (6.1) has

eigenvalues expressed as [67, 68]

λs = a+ 2b cos

(
(2s− 1)π

2m

)
(6.6)

where s = 1, ....m and eigenvectors expressed as

x
(s)
j =

√
2√
m

sin

(
(2j − 1)(2s− 1)π

4m

)
(6.7)

where j = 1.....,m and s = 1, ....m. The outline for the chapter is as follows. In section

6.1, quantum dragon solutions for m = 3 and l = 4 are presented. Section 6.2, shows the

general method for 2D system mapping. Section 6.3, presents the general tuning on how

to obtain quantum dragon solutions. The data and the summary of this chapter are given in

section 6.4 and section 6.5, respectively.

6.1 Quantum dragons for m = 3, l = 4 with nnn and nn interactions

Assume the nanodevice has three atoms per slice at sites j = ι. See Fig. 6.1.

Fig. 6.1, is an example of rectangular device with boundary condition −+ coupled to

dimerized leads. The vertical lines show the intra-slice hopping. The device has m = 3,

l = 4 and therefore ml = 12 atoms. The device has non-uniform intra-slice hopping

parameters. Only three atoms in the incoming lead are shown. The lead atoms are shown by

the green color. The connections between leads and the device are shown by line segments

(pink). The inter-slice coupling matrices are for nn shown by the horizontal line (brown

and pink color) and the nnn interactions shown by (blue, light brown and dark yellow
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Figure 6.1

An example of the case of dimerized leads, and a rectangular nanodevice with bounadry

condition −+.

color) line segments which form an X-shape. Appropriate choices of the tight-binding

parameters makes this disordered nanodevice into a quantum dragon.

Let assume the intra-slice coupling matrices have the form

Aι =


ει − tι −tι 0

−tι ει −tι

0 −tι ει + tι

 = ειI + tιP− tιQ (6.8)

where ι = a, b, c, d for the l = 4 slices and ει are the on-site energies for the atoms at slice

j = ι and tι are the intra-slice hopping parameters between the atoms. The eigenvalues
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of Eq. (6.8) are λι,1 = ει − tι
√

3, λι,2 = ει + tι
√

3, λι,3 = ει. Now assume the device

inter-slice coupling matrices have the form

B$,$+1 =


−tf,$ − tz,$ −tz,$ 0

−tz,$ −tf,ι −tz,$

0 −tz,$ −tf,$ + tz,$

 = −tf,$I + tz,$P− tz,$Q. (6.9)

In Eq. (6.8) and Eq. (6.9), the matrix P is explicitly, for m = 3

P =


−1 0 0

0 0 0

0 0 1

 . (6.10)

The normalized eigenvectors of Eq. (6.8) and Eq. (6.9) are

~v3†3 =

( √
1
6
(2 +

√
3) 1+

√
3√

6(2+
√
3)

1√
6(2+

√
3)

)
(6.11)

~v3†2 =

( √
1
6
(2−

√
3) 1−

√
3√

6(2−
√
3)

1√
6(2−

√
3)

)
(6.12)

and

~v3†1 =

(
−1√
3

1√
3

1√
3

)
. (6.13)

Now let the matrix of transformation, X be defined as

X =


~v3†3

~v3†2

~v3†3

 . (6.14)

Note that from Eq. (6.14) that

XX† = I . (6.15)
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This means that the device intra-slice matrix at slice j = ι has been transformed to

XAιX
† =


ει − tι

√
3 0 0

0 ει + tι
√

3 0

0 0 ει

 . (6.16)

From Eq. (6.16), tuning for the device and the lead hence requires

εL = ει − tι
√

3 (6.17)

where εL is the onsite energy of the atom in the lead. Since the on-site energy of the atom

in the lead to zero, εL = 0, this means Eq. (6.17) can be re-expressed as

ει = tι
√

3 (6.18)

where ει can be any value, and the tuning only requires tι and ει satisfy Eq. (6.18). Sim-

ilarly, for the inter-slice coupling matrices, use the same transformation matrix, X in Eq.

(6.14). Upon multiplying through, this gives

XB$,$+1X
† = Bdiagonal14 (6.19)

where

Bdiagonal14 =


−tf,$ − tz,$

√
3 0 0

0 −tf,$ + tz,$
√

3 0

0 0 −tf,$

 . (6.20)

Therefore the mapping equation, Eq. (3.14), is satisfied provided s̃b11 = tf,$ + tz,$
√

3.

Now the last task is to check for the mapping equation for the connection vector, ~w and ~u.
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To do this, use the same transformation matrix, X and then define the incoming connection

vector, ~w by

~w† =

(
−w
√

1
6
(2 +

√
3) −w(1+

√
3)√

6(2+
√
3)

−w√
6(2+

√
3)

)
. (6.21)

This means that

~w†X =

(
−w 0 0

)
. (6.22)

Similarly define the outgoing connection vector, ~u,

~u =


−u
√

1
6
(2 +

√
3)

−u(1+
√
3)√

6(2+
√
3)

−u√
6(2+

√
3)

 . (6.23)

This means that

X~u =


−u

0

0

 . (6.24)

Therefore to find quantum dragons tune the on-site energy of the atom at slice j = ι to

ει = tι
√

3, as well as s̃b11 = tf,$ + tz,$
√

3 and ~w = ~u =


−teo

√
1
6
(2 +

√
3)

− teo(1+
√
3)√

6(2+
√
3)

− teo√
6(2+

√
3)

 .

Quantum dragons can also be found when the inter-slice coupling matrices contain only

nn interactions. This assumption has been used by Novotny in 2015 [24] to find quantum
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dragons. Here, to find quantum dragons tune the on-site energy of the atom at slice j = ι

to ει = tι
√

3, as well as s̃b12 = tf,$ and ~w = ~u =


−teo

√
1
6
(2 +

√
3)

− teo(1+
√
3)√

6(2+
√
3)

− teo√
6(2+

√
3)

 .

6.2 General method for 2D system mapping

In this section, the general method to do the mapping for the 2D system is presented.

Let assume there are m atoms per slice in the nanodevice. The intra-slice coupling matrix

associated with the device at site ι can be expressed as

Aι = ειI + tιP− tιQ. (6.25)

The eigenvalues of the matrix Aι can be expressed as [67, 68]

λs,ι = ει − 2tι cos

(
(2s− 1)π

2m

)
(6.26)

where s = 1, ....m. Assume the inter-slice coupling matrices for the device odd-even and

even-odd interactions have the form

B$,$+1 = −tf,$I + tz,$P− tz,$Q. (6.27)

In Eq. (6.25) and Eq. (6.27) the matrix Q has been shown in Eq. (3.2), the matrix P has

been shown as Eq. (6.2) and the matrix I is an identity matrix. The eigenvalues of Eq.

(6.27) can be expressed as [67, 68]

λs,$ = −tf,$ − 2tz,$ cos

(
(2s− 1)π

2m

)
(6.28)
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where s = 1, ....m. The elements of the eigenvectors of the inter-slice and intra-slice

coupling matrices B$,$+1 and Aι are [67, 68]

x
(s)
j =

√
2

m
sin

(
(2j − 1)(2s− 1)π

4m

)
(6.29)

where j = 1.....,m and s = 2, ....m. With these eigenvectors, form the m ×m matrix of

transformation X such that

X =

√
2

m



sin( π
4m

) sin( 3π
4m

) sin( 5π
4m

) sin( 7π
4m

) · · · · · · · · · · · ·

sin( 3π
4m

) sin( 9π
4m

) sin(15π
2m

) sin(21π
4m

) · · · · · · · · · · · ·

sin( 5π
4m

) sin(15π
4m

) sin(25π
4m

) sin(35π
4m

) · · · · · · · · · · · ·

sin( 7π
4m

) sin(21π
4m

) sin(35π
4m

) sin(49π
2m

) · · · · · · · · · · · ·

sin( 9π
4m

) sin(27π
4m

) sin(45π
4m

) sin(63π
4m

) · · · · · · · · · · · ·

sin(11π
4m

) sin(33π
4m

) sin(55π
4m

) sin(77π
4m

) · · · · · · · · · · · ·

sin(13π
4m

) sin(39π
4m

) sin(65π
4m

) sin(91π
4m

) · · · · · · · · · · · ·

sin(15π
4m

) sin(45π
4m

) sin(75π
4m

) sin(105π
4m

) · · · · · · · · · · · ·



. (6.30)

where the matrix is written for m = 8 and only four colums are shown. Note that from Eq.

(6.30)

XX† = I. (6.31)

Since X is unitary, Aι can be diagonalized as

XAιX
† = Adiagonal (6.32)
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here Adiagonal is

Adiagonal =



λ∗31 0 · · · 0 0

0 λ∗32 · · · 0 0

...
... . . . ...

...

0 0 · · · λ∗3ml−1 0

0 0 · · · 0 λ∗3ml


(6.33)

with the eigenvalue of Eq. (6.26). Similarly, for the inter-slice coupling matrices use the

same transformation matrix X in Eq. (6.30). Upon multiplying through this gives

XB$,$+1X
† = Bdiagonal (6.34)

here Bdiagonal is

Bdiagonaloe =



λ∗41 0 · · · 0 0

0 λ∗42 · · · 0 0

...
... . . . ...

...

0 0 · · · λ∗4ml−1 0

0 0 · · · 0 λ∗4ml


. (6.35)

Now the last task is to check for the mapping equation for the connection vector, ~w and

~u. To do this, use the same transformation matrix, X in Eq. (6.30) and then define the

connection vector, ~w by

~w† =

(
−w11 −w12 −w13 −w14 · · · −w1n

)
. (6.36)

This means that

~w†X =

(
−w11 0 0 0 0 · · · 0

)
(6.37)
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provided from Eq. (6.29) ~w† = −w11~v
(3)†. Thus in effect the mapping Eq. (3.11) is

satisfied. Similarly define, the outgoing connection, ~u as

~u =



−u11

−u12

−u13

−u14

−u15

· · ·

−u1n



. (6.38)

This means that

X~u =



−u11

0

0

0

0

· · ·

0



. (6.39)

for ~u = −u11~v(3), and hence the mapping Eq. (3.12) is satisfied.

6.3 General tuning

Therefore to find quantum dragons tune the on-site energies εl = λ31, as well as s̃bhh =

λ∗41 and ~w = ~u = −teo~v(1).
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6.4 Data

In this section, the results obtained for boundary condition −+ are presented and then

discussed. Here, quantum dragon solutions, Fano resonances as well the mean electron

transmission probability vs δ and the standard deviation of the electron transmission prob-

ability vs δ are shown. As seen in Fig. 6.2 through Fig. 6.5, quantum dragon solutions are

obtained when there is interplay between the leads and the device. The quantum dragon

solutions are shown by the line T (E) = 1 (darker blue) in all cases. Because quantum

dragons have unity electron transmission probability, this means quantum dragons have no

Fano resonance. Fano resonances are seen in Fig. 6.2 through Fig. 6.5 when there is uncor-

related disorder in the tight binding parameters within the device. From Fig. 6.6 and Fig.

6.7, for both the dimerized leads and the uniform leads, the mean electron transmission

probability decreases with increasing disorder strength. This is simply due to the fact that

when the strength of the disorder increases the more uncorrelated disorder we have in the

device, and hence a decrease in the mean electron transmission probability. The random

number used here is also the normal distribution with zero mean and unit standard devia-

tion. Fig. 6.2 through Fig. 6.5 suggest that if an experimentalist intends to find quantum

dragons using the planar rectangular crystal with boundary condition −+, the appropriate

leads must match the device to obtain T = 1 for all energies in the case of correlated

disorder. When the disorder in the device is uncorrlated, Fano resonances are seen in the

device in all cases.

In Fig. 6.2, the nanodevice has m = 3, l = 14 and therefore ml = 42. Here, the

rectangular planar crystal has boundary condition −+. This plot is for the dimerized leads
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Figure 6.2

T vs E, boundary condition −+, dimerized leads.

toe = 1 and teo = 2. The line T = 1 (darker blue) has the on-site energy, εj = tj
√

3.

The intra-slice hopping strengths used are non-uniform. The red, green, magenta and

purple colors show Fano resonances in the nanodevice. The on-site energy is modeled

by εj = tj
√

3 + δΣ, and the intra-slice hopping parameter is modeled by tj = t + δΣ.

The inter-slice hopping parameter is modeled by t1 = toe + δΣ and t3 = teo + δΣ where

δ = 0.0, 0.05, 0.1, 0.15, 0.2 where Σ is a normally distributed random number.

Fig. 6.3, is same as Fig. 6.2, except only for the two values δ = 0 (a quantum dragon)

and δ = 0.2. The purple color show Fano resonances in the nanodevice, the cyan and

the orange colors show the mean and the standard deviation of T as a function of E for

δ = 0.2.

In Fig. 6.4, the nanodevice has m = 3, l = 14 and therefore ml = 42. This plot

is for the non-dimerized leads toe = 1, teo = 1. The line T = 1 (darker blue) has the

on-site energy, εj = tj
√

3. The intra-slice hopping strengths are non-uniform. The red,
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Figure 6.3

T vs E, boundary condition −+, dimerized leads, δ = 0.2.

green, magenta and purple color shows Fano resonances in the nanodevice. The on-site

energy is modeled by εj = tj
√

3 + δΣ, and the intra-slice hopping parameter is modeled

by tj = t + δΣ. The inter-slice hopping parameter is modeled by t1 = toe + δΣ and

t3 = teo + δΣ where δ = 0.0, 0.05, 0.1, 0.15, 0.2 where Σ is a random number of zero

mean and unit standard deviation.

Fig. 6.5, is the same as Fig. 6.4, except only for the two values δ = 0 (a quantum

dragon) and δ = 0.2. The line T = 1 (darker blue) has the on-site energy, εj = tj
√

3.

The intra-slice hopping strengths used are non-uniform. The purple color shows Fano

resonances in the nanodevice, the cyan and orange color shows the mean and standard

deviation of T vs E of the incoming electron for δ = 0.2.
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Figure 6.4

T vs E, boundary condition −+, uniform leads.

6.5 Summary

In chapter 6, it has been shown that for m = 3, l = 4 for both nnn and nn interac-

tions and only nn interactions, quantum dragon solutions exist for both ways for boundary

condition −+. Here, the connection vector used is a modified busbar but this connection

vector is different from Chapter 3 and Chapter 5. When there is uncorrelated random dis-

order of the tight-binding parameters in the nanodevice, Fano resonances are seen in all

cases as shown in Fig. 6.2 through Fig. 6.5. Fano resonances are also expected to be ob-

served when the dimerized and non-dimerized leads are connected to homogeneous slices

when there is complete randomness in the nanodevice. It has also been shown how to find

quantum dragons for m atoms per slice in the device and l slices where the number of

slices is even. As the amount of uncorrelated disorder increases (δ increases) the mean

transmission falls and the standard deviation of the transmission increases. This is shown

in Fig. 6.6 through Fig. 6.9 for both dimerized and uniform leads.
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Figure 6.5

T vs E, boundary condition −+, uniform leads, δ = 0.2.

Figure 6.6

〈T 〉 vs δ, boundary condition −+, non-uniform leads.
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Figure 6.7

〈T 〉 vs δ, boundary condition −+, uniform leads.

Figure 6.8

std T vs δ, boundary condition −+, non-uniform leads.
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Figure 6.9

std T vs δ, boundary condition −+, uniform leads.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

In this dissertation, the technique to find quantum dragons within the single-band tight

binding model has been shown for single-layer thickness nanodevices based on rectangular

lattices. This has been accomplished for four different types of boundary conditions.

In chapter 2, the electron transmission probability for dimerized leads coupled to a two

site device is calculated using the matrix method, the RG method, and the standard Green’s

function method. These methods give the same result for the electron transmission prob-

ability, since they all solve the time-independent Schrödinger equation for semi-infinite

leads coupled to the device. Here also, it was seen that there are certain tight binding

parameters where T (E) = 1 for all energies, E.

In chapters 3,4,5, and 6, the methodology to find quantum dragons for single-layer

planar rectangular crystals using the map-and-tune approach has been shown. The quantum

dragons found could have strong disorder, but still the electron transmission probability is

unity for all energies. This means that in a two-probe technique, the electrical conductance

is quantized, and in a four-probe technique the electrical resistance is zero (R = 0). This

further suggests that in the four-probe technique, quantum dragons are perfect conductors.

For a two-terminal coherent device, quantum dragons have zero shot power noise (P = 0)
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and consequently, an electric current would not cause any heating of the nanodevice. Since

not all conductors have shot power noise [72], quantum dragons could be one example.

This is the first time the matrix method has been used to take into account dimerized leads

as well as dimerized on-site energies in the leads, as derived in Appendix A.1.

To allow the nanodevice to become a quantum dragon requires tuning of specific pa-

rameters in the tight-binding model. With careful tuning, all electrons which impinge on

the nanodevice are fully transmitted, and hence the electron transmission probability is

T (E) = 1.

In chapters 3,4,5, and 6 two different ways are presented in each chapter which allows

quantum dragons to be found for both the non-dimerized leads as well as the dimerized

leads. That is, when the nanodevice inter-slice consists of nn and nnn interactions, as well

when the inter-slice coupling matrices for the device consist of only nn interactions. In

all cases, the quantum dragons found can be for nanodevices with non-uniform leads, but

this also holds true for uniform leads. These quantum dragons found have experimental

relevance since single-atom layer planar systems with rectangular cross section have been

fabricated [47]. The analysis in Chapter 3, 4, 5 and 6 may also hold true for single-layer

planar square lattices with both nearest neighbor and next nearest neighbor interactions.

In looking for quantum dragons within the single-band tight-binding model, the energy

E of the incident electron is primarily at the position of the Fermi-level. This is quite

significant because in nanosystems such as nanowires and nanoribbons and even in field

effect transistors, the position of the Fermi-level with respect to the energy subbands can

be varied by applying an external electric field which is created by a gate electrode [6].
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This technique could help in tuning the nanodevices (within the single-band tight-binding

model) to become a quantum dragon.

The predictions of the existence of quantum dragons for single-layer planar crystals

need to be verified experimentally. Recently, free standing single-atom thick rectangular

lattices of Fe with rectangular crystal structure and single-atom-thick copper oxide with

square lattices have been published [47, 48]. Therefore such tight-binding studies could be

very important to experimental studies. Furthermore, quite recently [73], PbTe nanocrys-

tals of rectangular cross section have been synthesized and therefore our tight-binding

studies could also be very relevant to these experimental studies. When there is tuned cor-

related disorder, T (E) = 1 for all energies. In finding quantum dragons, the nanodevice

is connected to a 1D single channel of single-atom width leads, which is either uniform or

dimerized. Uniform wires such as gold, nickel and platinum [74, 75, 76] of single-atom

width have already been fabricated, and therefore these wires could help in experimental

studies.

Furthermore, by varying the tight-binding parameters in the nanodevice randomly,

novel coherent effects such as Fano resonances of the electrical transmission probability

are expected to be observed in all cases. It can also be seen that the strength of the disorder

determines how pronounced the Fano resonances are as you move away from the quan-

tum dragon solutions. In all the boundary conditions studied, as seen in Fig. 7.1 and Fig.

7.2, the mean electron transmission probability decreases with increasing strength of dis-

order, δ. It should be pointed out that in all our calculations, our averaging of the electron
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transmission probability is done over a single random variate distribution, the averaging is

performed over all transmitted energy values.

Figure 7.1

〈T 〉 vs δ, all boundary conditions for dimerized leads

As the amount of uncorrelated disorder increases (δ increases) the mean transmission

falls and the standard deviation of the transmission increases. This is shown in Fig. 7.1

through Fig. 7.4 for both dimerized and uniform leads for all the four different types

of boundary conditions studied. Experimentally, since measuring the electrical resistance

yields information on the mean electron transmission probability, the mean electron trans-

mission probability is calculated and plotted against E.
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Figure 7.2

〈T 〉 vs δ, all boundary conditions for uniform leads.

From all the above considerations, the proof of the existence of quantum dragons for

m = 1, and l = 2 as well as for single-layer planar rectangular crystals with different

boundary conditions for a single conducting channel has been shown. The proof provided

in this study is within the single-band tight-binding model. If a nanodevice is connected

to appropriate leads, the electron transmission probability is unity and hence all the elec-

trons which are incident on the nanodevice are fully transmitted. Quantum dragons have

energy independent total electron transmission probability of electrons. In the presence of

uncorrelated randomness of the tight-binding parameters, Fano resonances are seen in the

nanodevice.
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Figure 7.3

std T vs δ for all boundary conditions for dimerized leads.

It may be possible to extend this study to a multi-channel leads with even-odd structure

connected to a nanodevice with even-odd symmetry. It is hoped that quantum dragons will

have similar applications as ballistic electron transport devices [5, 9, 77, 78, 79, 80, 81]

and other optoelectronic devices which are based on full electron transmission.

It is found in this thesis that quantum dragon solutions are not only limited to nanos-

tructures with cylindrical symmetry as previously discovered in [18], but the concepts of

quantum dragons are applicable to single-layer planar crystals, such as rectangular lattices

and square lattices. In other words, there are nanodevices with planar symmetry such as

rectangular crystals and possibly square lattices which when connected to appropiate leads

could have unity electron transmission probability, even if the device has strong disorder.
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Figure 7.4

std T vs δ for all boundary conditions for uniform leads.

Although the underlying nanodevice graphs are planar, randomness may cause buckling of

the actual device, as illustrated in Fig. 7.5 and Fig. 7.6

This dissertation has already resulted in one publication in [1] M.A.Novotny, L. Solomon

and G. Inkoom. ”Quantum transport through fully connected network with disorder”.

Physics Procedia (53) 2014, 71-74.

There are two papers in preparation: (1) 00 boundary condition as seen in Fig. 7.5 and

Fig. 7.6 and (2) the other boundary conditions, (−−, ++ and −+).
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Figure 7.5

An example of rectangular nanodevice coupled to dimerized leads. Here, m = 7 and

l = 20.

Figure 7.6

The same device as in Fig. 7.5, showing a different view point.
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APPENDIX A

DERIVATION OF TRANSMISSION PROBABILITY FOR DIMERIZED LEADS AND

OTHER QUANTUM DRAGON SOLUTIONS FOR LINEAR NANODEVICES
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This appendix has three separate parts. They are

• Appendix A.1: Transmission, T for dimerized leads derivation

• Appendix A.2: Quantum dragon solutions for m = 1 and l = 2

• Appendix A.3: Example numerical results for m = 1 with l = 2, 4, 8, 16

A.1 Transmission, T for dimerized leads, derivation

The derivation of the transmission for odd-even interactions and on-site energies in the

semi-infinite leads, i.e., for dimerized leads as in Fig. A.1, is presented.

Figure A.1

A device connected to input (incoming) and output (outgoing) leads.

In Fig. A.1, the m = 1, l = 2 device is located between lead sites j = 0 and j = 1.

The hopping strength between site j = 0 and site j = a is denoted by tw. The inter-slice

hopping parameter between the site j = 1 and the site j = b is denoted by tu. The hopping
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interactions between the even-to-odd sites and odd-to-even sites in the leads are denoted

by teo and toe, respectively. The on-site energy for odd numbered lead sites is εo, and for

the even lead sites εe. The device has on-site energies εa and εb, and hopping strength tab

between the two leads.

The derivation of the transmission for odd-even interactions and on-site energies in the

semi-infinite leads, i.e., for dimerized leads as in Fig. A.1, is presented. The matrix method

is used throughout. The inter-slice hopping strengths between the even-to-odd lead sites

are teo, and between the odd-to-even lead sites are toe. The negative signs for the hopping

interactions are included explicitly, for instance, the hopping between lead sites labeled−1

and 0 is −toe with toe > 0. The time-independent Schrödinger matrix equation to solve is

(H− EI∞) ~Ψ = ~0 , (A.1)

where H is the Hamiltonian of the incoming electron, E is the energy of the incoming

electron, and ~Ψ the infinite vector containing as the elements the wavefunction ψj for site

j. Assume lead sites have different on-site energies. The on-site energies for lead sites

labeled even is εe and the on-site energies for lead sites labeled odd is εo. The form of the

lattice, written for two sites (labeled a and b) in the nano-device which are placed between

lead sites numbered 0 and 1 is shown in Fig. A.1. By multiplying the matrix and vector in
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Eq. (A.1) to the sites that are not connected directly to the 2-site device, this results in the

set of infinite equations expressed as

−toeψj−1 + (εe − E)ψj − teoψj+1 = 0 j = · · · ,−6,−4,−2

−teoψj−1 + (εo − E)ψj − toeψj+1 = 0 j = · · · ,−5,−3,−1

−toeψj−1 + (εe − E)ψj − teoψj+1 = 0 j = 2, 4, 6, · · ·

−teoψj−1 + (εo − E)ψj − toeψj+1 = 0 j = 3, 5, 7, · · · .

(A.2)

It should be noted that in Eq. (A.2), the sites numbered 0 and 1 are not included since they

couple to the device sites. In this approach, an ansatz is used which assumes Bloch wave-

functions for the lead. Let χ an undetermined parameter in the ansatz for the lead wave

functions which takes into account the nature of a Bloch wavefunction in the dimerized

leads. Explicitly

ψj = χeiqj + r χ∗e−iqj j = −∞, · · · ,−4,−2, 0

ψj = eiqj + r e−iqj j = −∞, · · · ,−5,−3,−1

ψj = tT χe
iq(j−1) j = 2, 4, · · · ,+∞

ψj = tT e
iq(j−1) j = 1, 3, 5, 7, 9 · · · ,+∞

(A.3)

where the ansatz is also valid for sites numbered 0 and 1 which connect to the device. The

ansatz is a traveling wave coming from −∞, impinging on the device, and being partly

reflected back to −∞ and partly transmitted to∞. Here, |tT |2 + |r|2 = T +R = 1. Note
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both leads are identical. Substitute the ansatz in Eq. (A.3) back into Eq. (A.2). This gives

the infinite sets of equations expressed as

eiqj[−toee−iq + (εe − E)χ− teoeiq] + re−iqj[−toeeiq + (εe − E)χ∗ − teoe−iq] = 0 j1

eiqj[−teoχe−iq + (εo − E)− toeχeiq] + re−iqj[−teoχ∗eiq + (εo − E)− toeχ∗e−iq] = 0 j2

tT e
iq(j−1)[−toee−iq + (εe − E)χ− teoeiq] = 0 j3

tT e
iq(j−1)[−teoχe−iq + (εo − E)− toeχeiq] = 0 j4 .

(A.4)

where we have defined for convenience j1 as Eq. (2.10), j2 as Eq. (2.11), j3 as Eq.

(2.12) and j4 as Eq. (2.13). The two equations for the outgoing lead in Eq. (A.4) can be

manipulated to eliminate the phase factor χ. The Bloch structure of the even-odd dimerized

leads is captured by χ. This gives

χ =
teoe

iq + toee
−iq

εe − E
=

εo − E
teoe−iq + toeeiq

. (A.5)

Eq. (A.5) is satisfied provided

cos (2q) =
(εe − E)(εo − E)− t2eo − t2oe

2teotoe
, (A.6)

or with the double-angle formula for cos(2q)

cos(q) = ±

√
(εe − E)(εo − E)− (teo − toe)2

4teotoe
. (A.7)

From trigonometry, since cos(q)2 + sin(q)2 = 1, this means that from Eq. (A.7)

sin q = ±

√
4teotoe − [(εe − E)(εo − E)− (teo − toe)2]

4teotoe
. (A.8)
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The quantity in the numerator under the square root in Eq. (A.8) can be simplified and

hence, Eq. (A.8) can be re-expressed as

sin q = ±

√
(teo + toe)2 − [(εe − E)(εo − E)]

4teotoe
. (A.9)

In the case where εe = εo = 0, Eq. (A.7) reduces to

cos(q) = ±

√
E2 − (teo − toe)2

4teotoe
(A.10)

which is the result in Appendix A of reference [18]. From Eq. (A.5), when εo = εe = 0,

the expression for χ reduces to

χ = −teoe
iq + toee

−iq

E
= − E

teoe−iq + toeeiq
. (A.11)

which is the also one of equations in Appendix A of reference [18]. The Schrödinger

equation for the input lead terms are satisfied with these values of χ and q. Using Eq.

(A.7), the energy range of propagation of propagating electrons can be calculated, since

for traveling waves one requires

−1 ≤ cos q ≤ 1. (A.12)

Therefore

−1 ≤ −

√
(εe − E)(εo − E)− (teo − toe)2

4teotoe
≤ 0, (A.13)

and the other sign in Eq. (A.7) gives

0 ≤

√
(εe − E)(εo − E)− (teo − toe)2

4teotoe
≤ 1 . (A.14)

One has a complete freedom to set the zero of energy of the entire quantum system. A

reasonable choice for the zero of energy is εe+εo
2

. Setting the zero of energy at the midpoint
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of εo and εe makes the subsequent algebra easier. Therefore the propagating waves for

negative energies are

−
√
ϑ2 + (teo + toe)2 ≤ E ≤ −

√
ϑ2 + (teo − toe)2 (A.15)

and √
ϑ2 + (teo − toe)2 ≤ E ≤

√
ϑ2 + (teo + toe)2 (A.16)

for positive energies where ϑ = εe−εo
2

. When εe = εo = 0 and teo 6= toe, Eq. (A.15) and

Eq. (A.16) allows propagation modes in the leads for both negative and positive energies

respectively expressed by [18]

− |teo + toe| ≤ E ≤ − |teo − toe| and |teo − toe| ≤ E ≤ |teo + toe| . (A.17)

When toe = teo = tlead this further simplifies to the input lead terms with these values of

−2tlead ≤ E ≤ 2tlead . (A.18)

The Schrödinger equation of Eq. (A.1) is satisfied for all sites, except so far for sites

labeled 0, a, b, and 1. For the two device sites define κa = εa −E and κb = εb −E. Using

the ansatz of Eq. (A.3), there are four equations still to be solved. The part with the device

and the connections between the leads and the device, from

(H− EI) ~Ψ = ~0 , (A.19)

in Eq. (A.1) is
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−toe (εe − E) −tw 0 0 0

0 −tw κa −tab 0 0

0 0 −tab κb −tu 0

0 0 0 −tu (εo − E) −toe





e−iq + reiq

χ+ rχ∗

ψa

ψb

tT

tTχe
iq



=



0

0

0

0


.

(A.20)

Multiplying through gives the four equations

−toee−iq − toereiq + (εe − E)χ+ (εe − E)rχ∗ − twψa

−twχ− twrχ∗ + κaψa − tabψb

−tabψa + κbψb − tutT

−tuψb + (εo − E)tT − toetTχeiq


=



0

0

0

0


. (A.21)

Eq. (A.21) can be rewritten as

−toee−iq − toereiq + (εe − E)χ+ (εe − E)rχ∗ − twψa

−twχ− twrχ∗ + κaψa − tabψb

−tabψa + κbψb − tutT

−tuψb + tT ξR(E)


=



0

0

0

0


(A.22)

where in the bottom equation we can define

ξR(E) = (εo − E)− toeχeiq. (A.23)
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Eq. (A.22) can be written in the matrix form

ξL(E) −tw 0 0

−tw κa −tab 0

0 −tab κb −tu

0 0 −tu ξR(E)





χ+ rχ∗

ψa

ψb

tT


=



Λ(E)

0

0

0


. (A.24)

From the first row of Eq. (A.24) by multiplying through, it can be seen that

ξLχ− Λ + ξLrχ
∗ − twψa = 0 . (A.25)

Similarly, from the first row of Eq. (A.22), by multiplying through it can be seen

−toee−iq + (εe − E)χ+ r[χ∗(εe − E)− toeeiq]− twψa = 0 . (A.26)

From Eq. (A.25) and Eq. (A.26), it can be seen that

ξLχ− Λ = −toee−iq + (εe − E)χ (A.27)

and

ξLχ
∗ = χ∗(εe − E)− toeeiq . (A.28)

Solving for ξL from Eq. (A.28) gives

ξL(E) =
χ∗(εe − E)− toeeiq

χ∗
. (A.29)

Substitute the expression of ξL in Eq. (A.29) back into Eq. (A.27) and then solve for Λ.

Upon substitution and a little algebra this yields

Λ =
−toe
χ∗

(χeiq − χ∗e−iq). (A.30)
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Therefore solving the matrix equation in Eq. (A.24) means the Schrödinger equation is

also satisfied for the device and the lead sites connected to the device. It should be noted

that the matrix equation to solve can easily be extended to more than two sites in the device.

By calculating the probability current of the ansatz, the transmission for any teo and toe and

any εe and εo is given by

T = |tT |2. (A.31)

In the rest of the section, other simplified expressions of ξL(E), ξR(E) and Λ are de-

rived. The goal is to aid in the transmission probability calculation when there are dimer-

ized on-site energies, εe and εo in the leads as well as dimerized hopping strengths teo and

toe. Substitute the definition of χ = (εo−E)
teoe−iq+toeeiq

from Eq. (A.5) into ξR(E) in Eq. (A.23).

This means that ξR(E) can be reexpressed as

ξR(E) = (εo − E)− toeχeiq = (εo − E)

[
1− toee

iq

teoe−iq + toeeiq

]
. (A.32)

Eq. (A.32) can further be written as

ξR(E) =
(εo − E)teoe

−iq

teoe−iq + toeeiq
(A.33)

upon small algebra manipulations. Similarly, from Eq. (A.29) for ξL(E) using the defini-

tion of χ∗ = teoeiq+toee−iq

εe−E from Eq. (A.5) this means that

ξL(E) = (εe − E)− toee
iq

χ∗
= (εe − E)

[
1− toee

iq

teoe−iq + toeeiq

]
. (A.34)

Eq. (A.34) can be further be re-expressed as

ξL(E) =
(εe − E)teoe

−iq

teoe−iq + toeeiq
(A.35)
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upon small algebra manipulations. Now from the definition of Λ in Eq. (A.30) let

Υ = χeiq − χ∗e−iq. (A.36)

This means that the expression for Λ in Eq. (A.30) can be expresssed as

Λ =
−toe
χ∗

Υ. (A.37)

Use the definition of χ and χ∗ from Eq. (A.5), and a little algebra gives that Υ in Eq.

(A.36) can be expressed as

Υ =
2iteo(εo − E) sin 2q

(teoe−iq + toeeiq)(teoeiq + toee−iq)
. (A.38)

Use the definition χ∗ = teoeiq+toee−iq

(εo−E)
from Eq. (A.5) this means that Λ can be rewritten as

Λ =
−toe
χ∗

Υ =
−2iteotoe sin 2q

teoe−iq + toeeiq
. (A.39)

In the limiting case where, teo = toe = 1 for the uniform leads, the expression of Λ in Eq.

(A.39) reduces to [18, 19]

Λ = −2i sin q. (A.40)

A.2 Quantum dragon solutions for l = 2 and m = 1

In chapter 2, it was shown that for a m = 1, l = 2 device, the matrix method, the

matrix RG method, and the traditional Green’s function method all give the same expres-

sion for the electron transmission probability. For simplicity, here we let εe = εo = 0,

also setting our zero of energy. Thus also ξL = ξR = ξ. This also suggests that the atoms

in the incoming as well the outgoing leads are the same. In this section, it will be shown

mathematically how to find quantum dragon solutions for l = 2 and m = 1. The goal is to
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show that quantum dragon solutions are ubiquitous. The electron transmission probability

for l = 2 and m = 1 in chapter 2 was given in Eq. (2.26) as

T (E) =
t2wt

2
ut

2
abΛ
∗Λ

[(t2w − κaξ)(t2u − κbξ)− t2abξ2][(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2]
. (A.41)

The complex quantities ξ and Λ are different for both the non-dimerized leads and dimer-

ized leads. They are expressed as Eq. (2.53) and Eq. (2.60). In the limiting case when

tu = tw, this means that Eq. (A.41) can be re-expressed as:

T (E) =
t4wt

2
abΛ
∗Λ

[(t2w − κaξ)(t2w − κbξ)− t2abξ2][(t2w − κaξ∗)(t2w − κbξ∗)− t2abξ∗2]
. (A.42)

From Eq. (A.42), lets assume further that, tw = tab = 1 and κa = κb which means that Eq.

(A.42) can be expressed as

T (E) =
Λ∗Λ

[(1− κaξ)2 − ξ2][(1− κaξ∗)2 − ξ∗2]
. (A.43)

Note that in the uniform case Λ = −2i sin q and ξ = e−iq. Since κa = εa − E, by setting

εa = 0, this means that Eq. (A.43) can be expressed as

T (E) =
4 sin2(q)

[(1 + Eξ)2 − ξ2][(1 + Eξ∗)2 − ξ∗2]
. (A.44)

In the rest of the section, we perform calculations only for uniform leads. In the case

of the uniform leads, sin q =
√
4−E2

2
this means that Eq. (A.44) can be re-expressed as

T (E) =
4− E2

[(1 + Eξ)2 − ξ2][(1 + Eξ∗)2 − ξ∗2]
. (A.45)

Using the definitions of ξ = e−iq and ξ∗ = eiq this implies that Eq. (A.45) can be expressed

as

T (E) =
4− E2

[(1 + Ee−iq)2 − e−2iq][(1 + eiq)2 − e2iq]
. (A.46)
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Looking at the denominator of Eq. (A.46), for simplicity let

α = (1 + Ee−iq)2 − e−2iq (A.47)

and

α∗ = (1 + Eeiq)2 − e2iq . (A.48)

This means that Eq. (A.46) can be rewritten as

T (E) =
4− E2

αα∗
. (A.49)

Simplify α and α∗ and find αα∗ and put these results back into Eq. (A.49). Simplifying

Eq. (A.47) further gives

α = (1 + Ee−iq)2 − e−2iq = 1 + 2Ee−iq + e−2iq(E2 − 1) . (A.50)

Similarly, from Eq. (A.48)

α∗ = (1 + Eeiq)2 − e2iq = 1 + 2Eeiq + e2iq(E2 − 1) . (A.51)

Using the above definitions for α and α∗ this means that αα∗

αα∗ = 2 + 2E2 + E4 + 4E cos (q) + 2(E2 − 1) cos (2q) + 4E(E2 − 1) cos (q) . (A.52)

Using the double angle formula cos 2q = 2 cos2 q − 1, Eq. (A.52) can be expressed as

αα∗ = 2+2E2+E4+4E cos (q)+2(E2−1)(2 cos q2−1)+4E(E2−1) cos (q) . (A.53)

Using the fact that for uniform leads cos (q) = −E
2

, this means that Eq. (A.53) can be

expressed as

αα∗ = 2 + 2E2 +E4 + 4E(−E
2

) + 2(E2 − 1)(
2E2

4
− 1) + 4E(−E

2
)(E2 − 1) . (A.54)
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Eq. (A.54) can also be rewritten as

αα∗ = 2 + 2E2 + E4 − 2E2 + 2(E2 − 1)
E2

2
− 2(E2 − 1)− 2E2(E2 − 1) . (A.55)

Upon multiplying through and doing a small simplification, Eq. (A.55) can be rewritten as

αα∗ = 2 + E4 + E2(E2 − 1)− 2(E2 − 1)− 2E2(E2 − 1) . (A.56)

Furthermore, Eq. (A.56) can be rewritten as

αα∗ = 2 + 2 + E4 + E4 − 2E4 − E2 = 4− E2 + 2E4 − 2E4 . (A.57)

and therefore

αα∗ = 4− E2 . (A.58)

Consequently, Eq. (A.49) can be expressed as

T (E) =
4− E2

αα∗
=

4− E2

4− E2
= 1 . (A.59)

Therefore we have shown mathematically how a quantum dragon solution comes from

Eq. (A.43). Note that because in the non-dimerized case cos (q) = −E
2

, quantum dragon

solutions only exist for the energy range

−2 ≤ E ≤ 2 . (A.60)

The analysis carried out here can be extended to the case for m = 1 and general l,

but the algebra becomes much complex than for the uniform case. Similar analysis can

also be done for the dimerized leads with l = 2,m = 1 but again the algebra becomes

more complex. Therefore a numerical approach is beneficial. The plots of T (E) vs E for

uniform and dimerized leads are shown in Fig. A.2 and Fig. A.3.
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Figure A.2

T vs E for devices with l = 2 and m = 1 uniform leads and εe = εo = 0.

In Fig. A.2, the three cases are the quantum dragon solution εa = εb = 0 (green, solid)

as well as the cases, εa = εb = 0.5 (red, dashed), teo = toe = 1, and εa = εb = 1 (blue,

dotted).

Fig. A.3, is a plot of T vs E, for devices with l = 2 and m = 1 dimerized leads with

teo = 1 and toe = 3 and all curves have toe = tab and εe = εo = 0. The three cases are

the quantum dragon solution εa = εb = 0 (green, solid) as well as the cases εa = εb = 0.5

(red, dashed) and εa = εb = 1 (blue, dotted).
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Figure A.3

T vs E for l = 2, m = 1 devices for dimerized leads.

A.3 Example numerical results for m = 1 and l = 2, 4, 8, 16 devices coupled to
dimerized leads

In this section, the matrix method will be used to find quantum dragons for m = 1

with l = 2, 4, 8, 16 sites. In Eq. (2.20) of Chap 2, the matrix equation which was used to

calculate T (E) through the nanodevice between site j = 0 and site j = 1 was given. This

matrix expression can be generalized to any number of sites (atoms) in the linear chain so

that the transmission probability as a function of E can be calculated. For instance, for

4 sites in the linear chain in the device which is coupled to single channel incoming and
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outgoing dimerized leads, the matrix equation to solve to calculate T can be expressed as

[18] 

ξL(E) −tw 0 0 0 0

−tw κa −tab 0 0 0

0 −tab κb −tbc 0 0

0 0 −tbc κc −tcd 0

0 0 0 −tcd κd −tu

0 0 0 0 −tu ξR(E)





χ+ rχ∗

ψa

ψb

ψc

ψd

tT



=



Λ

0

0

0

0

0



. (A.61)

Using Eq. (A.61), the transmission probability can be calculated numerically by inverting

the matrix, and solving for tT to obtain the transmission T = |tT |2. A plot of T as a

function of E for m = 1 and l = 2, 4, 8, 16 in the device is shown in Fig. A.4. The

dimension of the matrix to invert since m = 1 is (2+ l)× (2+ l). All couplings and on-site

energies have been turned to the quantum dragon solutions.

Fig. A.4, shows a plot of the electron transmission probability vs E, for a linear chain

of l sites in the device. The hopping strengths are teo = tw = tu = 2 and toe = tab = 3

and the on-site energy for the atom at site j = a and j = b is εa = εb = 0.0. Here,

l = 2, 4, 8, 16 in the linear chain in the device. Thus there is full electron transmission

provided, teo = tw = tu, toe = tab and εa = εb = εL = 0.
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Figure A.4

T (E) is shown for a linear chain of l sites in the device, with m = 1 and l = 2, 4, 8, 16.

180



APPENDIX B

DECIMATION RENORMALIZATION GROUP (RG) CALCULATION

There is more than one way to perform a decimation RG on the transport problem. In

section 2.3.1, the decimation RG followed [22, 26], while in this appendix the decimation

RG follows [82]. Both methods are exact (no approximations), and are equivalent to each

other.

B.1 Decimation Renormalization Group (RG) calculation

The renormalization group (RG) is a mathematical tool which enables one to make

changes in a physical system as one views it at different distance scales. To perform RG,

certain degrees of freedom corresponding to the original problem are eliminated in some
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way. Here, the original problem is assumed to be a quantum system which consists of tight

binding sites. In this way, one can then think about the new system as an assembly of the

chosen sites which form a lattice which has a larger spacing [83]. The central equation

which is used in the RG type of solution for a matrix F which has dimension of size n× n

can be expressed as∫ ∞
−∞
· · ·
∫ ∞
−∞

d~x exp [−~xTF~x+~b~x] =
π
n
2

√
det F

exp

[
1

4
~bTF−1~b

]
. (B.1)

The matrix F is symmetric, where the determinant of the matrix det F can be expressed as

det F =

πn exp

[
1
2
~bTF−1~b

]
( ∫∞
−∞ · · ·

∫∞
−∞ d~x exp [−~xTF~x+~b~x]

)2 . (B.2)

B.1.1 Quantum transmission solution for 2 site device : RG method

Fig. B.1, shows a schematic representation of the decimation procedure. (a) 2 atom

device before decimation. The device is located between site j = 0 and j = 1. Eliminating

the atom at site j = a we obtain the renormalized chain in (b).

By decimating one of the sites, the finite matrix equation to solve for a 2 site device

can be expressed as
(ξ − t2wκ−1a ) −twκ−1a tab 0

−tabκ−1a tw (κb − κ−1a t2ab) −tu

0 −tu ξ




χ+ rχ∗

ψb

tT

 =


Λ

0

0

 (B.3)

where the transmission probability, T (E) = |tT (E)|2 and the reflection probability,R(E) =

|r(E)|2 can be calculated. Eq. (B.3) is the same as Eq. (2.34) except that here, the wave-

function for the device site j = a has been decimated. Eq. (B.3) comes as a result when
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Figure B.1

Schematic representation of the decimation procedure for the atomic site labeled a.

one of the sites in the l = 2 linear chain is decimated, or in other words eliminated. In

other words, we have used the RG of sec 2.3.1 to decimate the site j = a. The RG is

shown schematically in Fig. B.1.

To demonstate the RG method of this appendix, we now decimate the site j = b. This

is shown schematically in Fig. B.2. From Eq. (B.3), the matrix to find the inverse to

calculate electron transmission probability is

M3 =


(ξ − t2wκ−1a ) −twκ−1a tab 0

−tabκ−1a tw (κb − κ−1a t2ab) −tu

0 −tu ξ

 . (B.4)

Then from Eq. (B.3) this means that

χ+ rχ∗ = (M−1
3 )(1,1)Λ . (B.5)
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In Eq. (B.5), (M−1
3 )(1,1) is the (1, 1) element of the inverse of the matrix M3. To carry

out the decimation renormalization group calculation for M3, number the site just before

the blob as x− and the site after the blob as x+ and the site of the blob as x1 and form the

vector

~x =


x−

x1

x+

 . (B.6)

Fig. B.1 shows a typical setup of the problem. From Eq. (B.2), the determinant of the

matrix can be expressed as

det M3 =
π3(∫∞

−∞

∫∞
−∞

∫∞
−∞ d~x exp [−~xTM3~x]

)2 . (B.7)

Therefore using Cramer’s rule to calculate the (1, 1) element of the inverse gives,

χ+ rχ∗ = Λ
η

ρ
(B.8)

where η =

∣∣∣∣∣∣∣∣
κb −

t2ab
κa
−tu

−tu ξ

∣∣∣∣∣∣∣∣ and ρ =

∣∣∣∣∣∣∣∣∣∣∣∣

ξ − t2w
κa

− twtab
κa

0

− twtab
κa

κb −
t2ab
κa
−tu

0 −tu ξ

∣∣∣∣∣∣∣∣∣∣∣∣
,

χ+ rχ∗ =
Λ

π

(I3
I2

)2
(B.9)

where

I3 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dx−dx1dx+ exp

[
− ~xTM3~x

]
(B.10)

and

I2 =

∫ ∞
−∞

∫ ∞
−∞

dx′1dx
′
+ exp

[
−
(
x′1 x′+

) κb −
t2ab
κa
−tu

−tu ξ


x′1
x′+


]
. (B.11)
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From Eq. (B.11), let

β =

(
x′1 x′+

) κb −
t2ab
κa
−tu

−tu ξ


x′1
x′+

 . (B.12)

Multiplying through and re-arranging like terms, Eq. (B.12) can be expressed as

β =
(
κb −

t2ab
κa

)
x′21 − 2tux

′
+x
′
1 + ξx′2+ . (B.13)

Put Eq. (B.13) back into Eq. (B.11), Eq. (B.11) can be expressed as

I2 =

∫ ∞
−∞

∫ ∞
−∞

dx′1dx
′
+ exp

[
−
(
κb −

t2ab
κa

)
x′21 − 2tux

′
+x
′
1 + ξx′2+

]
. (B.14)

Eq. (B.14) above can be re-expressed as

I2 =

∫ ∞
−∞

dx′1 exp
[
−
(
κb −

t2ab
κa

)
x′21 − 2tux

′
+x
′
1

] ∫ ∞
−∞

dx′+exp
[
− ξx′2+

]
. (B.15)

For simplicity, in Eq. (B.15), let

γ1 =

∫ ∞
−∞

dx′1 exp
[
−
(
κb −

t2ab
κa

)
x′21 − 2tux

′
+x
′
1

]
. (B.16)

The above integral, γ1 can easily be integrated since

∫ ∞
−∞

exp
[
− (ax2 + 2bx)

]
dx =

√
π

a
exp

(
b2

a

)
(B.17)

where (a > 0). Using the above standard integral, Eq. (B.16) can be calculated and this

gives

γ1 =

√
πκa

κaκb − t2ab
exp

[ x′2+t
2
uκa

κaκb − t2ab

]
. (B.18)

Substitute Eq. (B.18) back into Eq. (B.15) and do some algebra manipulation. This gives

I2 =

√
πκa

(κaκb − t2ab)

∫ ∞
−∞

dx′+ exp
[
− (ξ − κat

2
u

(κaκb − t2ab)
)x′2+

]
. (B.19)
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Similarly, calculate I3 by substituting Eq. (B.4) and Eq. (B.6) back into Eq. (B.10). Do

some algebra manipulation and this gives

I3 =

√
πκa

(κaκb − t2ab)
I∗2 (B.20)

where

I∗2 =

∫ ∞
−∞

∫ ∞
−∞

dx−dx+ exp

[
−
(
x− x+

) ξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
− twtutab

(κbκa−t2ab)

− twtutab
(κbκa−t2ab)

ξ − t2uκa
(κaκb−t2ab)


x−
x+


]
.

(B.21)

In calculating the integral I3 in Eq. (B.20) make use of the standard integral in Eq.

(B.17). Now collect all terms together and we have

χ+ rχ∗ = Λ
detϕ

detµ
(B.22)

where ϕ = ξ − κat2u
κaκb−t2ab

and µ =

 ξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
− twtutab

(κbκa−t2ab)

− twtutab
(κbκa−t2ab)

ξ − t2uκa
(κaκb−t2ab)

 so

χ+ rχ∗ = Λ(M−1
2 )1,1 (B.23)

where

M2 =

 ξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
− twtutab

(κbκa−t2ab)

− twtutab
(κbκa−t2ab)

ξ − t2uκa
(κaκb−t2ab)

 . (B.24)

Then

M2

χ+ rχ∗

tT

 =

ξ − t2w
κa
− t2wt

2
ab

κa(κaκb−t2ab)
−twtutab
(κaκb−t2ab)

−twtutab
(κaκb−t2ab)

ξ − t2uκa
(κaκb−t2ab)


χ+ rχ∗

tT

 =

Λ

0

 .

(B.25)
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The above matrix equation can be solved by taking the inverse of M2. The decimation of

the site j = b has been accomplished. Using Eq. (B.25) and solving for tT , the transmission

probability as a function of energy, E, T (E) gives

T (E) =
t2wt

2
ut

2
abΛ
∗Λ

[(t2w − κaξ)(t2u − κbξ)− t2abξ2][(t2w − κaξ∗)(t2u − κbξ∗)− t2abξ∗2]
. (B.26)

Fig. B.2 is a schematic representation of the decimation procedure. Here, one of the three

Figure B.2

Schematic representation of the decimation procedure for the atomic site labeled b.

sites is decimated and this gives two sites, both of which are lead sites.

This means that Eq. (B.26), Eq. (2.26), Eq. (2.49) and Eq. (2.59) are all the same.

Thus both RG methods, the matrix method and the standard Green’s function method all
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give the same result for the transmission probability as a function of energy, E, T (E) for

the 2 site device. Eq. (B.26) is one of the equations plotted in Fig. 2.6 and Fig. 2.7.
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