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Listeria monocytogenes is an enteric pathogen that can replicate within bile, yet 

this capability differs between strains. This project analyzed whether the pathogenic 

potential of the strain affects the ability to resist bile. We tested this hypothesis by 

examining the effect of bile on the morphology of a virulent strain (EGD-e) and an 

avirulent strain (HCC23) under aerobic and anaerobic conditions. Our data showed that 

exposure to bile greatly impacted the growth of HCC23. Additionally, scanning electron 

microscopy and transmission electron microscopy analyses indicated that bile affects the 

cell envelope of EGD-e and HCC23 differently. Our results suggest that differences exist 

in the ability of EGD-e and HCC23 to survive and replicate in the presence of bile. We 

propose that the virulence capability of L. monocytogenes directly correlates to its ability 

to resist the detergent properties of bile.
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CHAPTER I 
 

INTRODUCTION 

 

Introduction 

 The digestive system typically plays a vital role against combating potentially 

pathogenic microorganisms before food-borne infections are established. The digestive 

system combats these microbes through producing several bactericidal agents along the 

tract. Some of these bactericidal agents are gastric secretions, hydrochloric acid, and bile. 

These agents all have distinct roles in ensuring infections do not arise, but depending on 

the conditions, they are not always effective in eliminating pathogens. 

 Gastric secretions and hydrochloric acid together lower the pH of the stomach to 

approximately 3.0. This acidic environment destroys a majority of bacteria that initially 

enter the stomach. The importance of this acidic environment is evident in studies with 

patients with the disease hypochlorhydria where production of less gastric juice results in 

an increase in the number of bacteria that survive within the stomach. Since the 

bactericidal property of the stomach is weak in these patients, potentially pathogenic 

microbes can then migrate to the small intestine to establish disease. This is evident by 

the fact that hypochlorhydria patients are more prone to infections by Helicobacter pylori 

and Salmonella (31, 53).  
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Bile is another bactericidal agent that is found in the digestive system. Bile is 

produced in the liver and stored in the gallbladder (37). The circulation of bile through 

the digestive system is a part of the enterohepatic circulation, which is activated with the 

intake of food. During this process the production of cholecystokinin triggers contraction 

of the gallbladder. This contraction leads to the release of bile into the intestines where it 

will eventually circulate back to the liver via the bloodstream (44). Bile comes into 

contact with ingested bacteria in the gastrointestinal tract during the enterohepatic 

circulation and inhibits the colonization of bacteria within the small intestine (21). The 

small intestine, which contains a very high amount of bile acids, typically harbors very 

few bacteria. If less bile is secreted, such is observed in patients with cirrhosis of the 

liver, bacterial overgrowth is observed in the small intestine, (13, 49) suggesting that bile 

has bactericidal properties in addition to aiding the digestion of fatty acids.  

The composition of bile plays a role in its ability to exert its bactericidal effects. 

Bile is composed of a multitude of components, such as proteins, ions, pigments, 

cholesterol, and various bile salts. The bile salts are initially produced in unconjugated 

forms, such as cholate (CA), chenodeoxycholate (CDCA), deoxycholate (DOCA), 

lithocholate (LCA), and ursodeoxycholate (UDCA) (20). Further metabolism in the liver 

results in the formation of “conjugated” bile salts through the attachment of either a 

glycine or taurine to the side chain of these various bile salts. These conjugated bile salts 

can then pass into the gallbladder and continue through the enterohepatic circulation (44) 

(Fig. 1). Since the composition of bile, especially in regards to the type of bile salts 

present, may change as it passes through the gastrointestinal tract,  
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Figure 1.1   A diagram illustrating bile salt synthesis, processing, and cycling through the 
human gastrointestinal system.   

 

understanding the differences in the antimicrobial properties of both conjugated and 

unconjugated forms of bile salts is of great importance in combating against resistant 

pathogenic bacteria. As a result many studies elucidating the role of bile salts in bacterial 

virulence have been conducted on bile mixtures that contain both conjugated and 
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unconjugated forms of salts, such as bile from ox gallbladder (oxgall) (14, 25, 55), bovine 

bile (38) and human bile (2). 

Even though the gastric microbial barriers of the stomach and small intestine 

decrease the chance of colonization by pathogenic bacteria, they do not provide 

protection against bacteria that have adapted to survive within these extremely harsh 

conditions. The enteric bacteria are one class of bacteria that have mechanisms that allow 

them to survive and proliferate within the human gut. Several of these bacteria invade the 

gallbladder, including Listeria monocytogenes, Salmonella enterica, intestinal colonizer 

Enteroaggregative Escherichia coli, and feces present Bacillus cereus (12, 19, 22, 28). It 

is possible that the ability of these microbes to be able to survive in the presence of large 

quantities of bile salts is directly related to their ability to establish invasive infections.   

 In recent years there has been much work dedicated to understanding the role of 

bile salts in the resistance of these enteric bacteria. It has been speculated that the 

pathogenic potential of an enteric bacterium is directly related to its ability grow in the 

presence of bile. However, to determine if this hypothesis is true, the mechanisms by 

which bacteria are able to grow in bile environments need to be determined. To date, the 

mechanisms by which bile induces cell death are poorly understood; it has not been 

determined whether cell death results from damage at the membrane and/or DNA level. It 

is possible that the antimicrobial effect of bile salts elicit various mechanisms of 

resistance including the activation of several different stress response genes involved in 

membrane synthesis and protection and also in DNA repair (6, 28, 41).  

Determining the effect that bile salts have on the integrity of the bacterial 

membrane has been mainly investigated through molecular analyses studying the 
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regulation of membrane proteins in the presence of bile (46). The upregulation of genes 

encoding outer membrane proteins, efflux pumps, and cell membrane biosynthesis 

enzymes are good indicators of the effect of bile and its interaction with the bacterial cell 

membrane (33, 45, 46). The membrane damaging capability of bile is exhibited with 

mutations in tol-pal genes that are essential for preserving the outer membrane of gram-

negative bacteria such as E. coli and Erwinia chrysanthemi (15, 43) . These findings 

corroborate that the membrane and various components of the membrane are important 

for bacterial resistance to bile salts. The membrane components of efflux pumps in 

various pathogenic and commensal bacteria such as E. coli, V. cholera and C. jejuni expel 

bile salts from the interior after they have breached the cell membrane (10, 29, 54). 

 In addition to looking at the upregulation of genes involved in cell membrane 

synthesis, studies have also investigated the interaction of bile and the bacterial cell 

membrane by analyzing the composition of the membrane grown in the presence of bile. 

Bile alters the fatty acid composition as well as the ratio of membrane proteins to 

phospholipids, resulting in an altered cell surface structure in bacteria such as 

Bifidobacterium animalis and Lactobacillus reuteri (47, 52). Visual confirmation of cell 

surface deformities induced by bile can be accomplished by scanning electron 

microscopy or transmission electron microscopy (7, 8, 47). The integrity of the 

membrane of enteric bacteria in the presence of bile plays an important role in allowing 

for survival in the human digestive system.  

The effect of bile on the integrity of the membrane has been reviewed in detail by 

others (3). Therefore, this review will focus on the mechanisms recently discovered that 

allow for protection and continued proliferation in bile environments of the Gram-
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negative enteric pathogenic bacteria Escherichia coli and Salmonella enterica (Table 1) 

and the Gram-positive enteric pathogenic bacteria Listeria monocytogenes and Bacillus 

cereus (Table 2). The aim of this review is to aid in establishing a cohesive link between 

the effects of bile on bacteria to determine a common mechanism of resistance as it 

relates to protection of the DNA and the cell membrane among the enterics.  

 

Bile Induced Damage in Gram Negative Bacteria

Escherichia coli.

 Escherichia coli is an enteric pathogen and has been extensively studied as a 

model organism for the effect of bile on gram-negative bacteria. An initial study in 1991 

by Kandell and Bernstein investigated whether bile salts could directly induce damage to 

the DNA of E. coli using a modified SOS chromotest (23). In the presence of 

chenodeoxycholic acid and sodium deoxycholate, E. coli had increased expression of the 

gene sulA. sulA is part of the SOS response system of bacteria and acts  
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Table 1.1 
 

Bile Response-Associated Genes Induced in Gram-Negative Bacteria 
 

Genes/operons  Induction Bile Salt Organism/Strain Reference 
SOS response 

sulA  +  NaDC  E.coli JL1705  (23) 
sulA  +  NaCDC E.coli JL1705  (23) 
umuDC  -  NaGC  E.coli K12   (6) 
umuDC  +  NaUDC E.coli K12  (6) 
umuDC  -  NaCDC E.coli K12  (6) 
umuDC  -  NaDC  E.coli K12  (6) 
dinD  +  NaGC  E.coli K12  (6) 
dinD  +  NaUDC E.coli K12  (6) 
dinD  +  NaCDC E.coli K12  (6) 
dinD  +  NaDC  E.coli K12  (6) 
uvrB  -  NaDC  S.typhimurium  (41) 

SV5142 
   uvrB   -  Ox bile  S.typhimurium  (41)  

        SV5142 
   dinB  +  NaDC  S.typhimurium  (41)  

        DA7974 
   dinB   +  Ox bile  S.typhimurium             (41)  

        DA7974 
   umuDC  -  NaDC  S.typhimurium   (41)  

        SV5144 
    umuDC  -  Ox bile  S.typhimurium  (41)  

        SV5144 
Oxidative Genes  

micF              +  NaGC  E.coli K12  (6) 
micF   +  NaUDC E.coli K12  (6) 
micF   +  NaCDC E.coli K12  (6) 
micF   +  NaDC  E.coli K12  (6) 
zwf  +  NaGC  E.coli K12  (6) 
zwf  -  NaUDC E.coli K12  (6) 
zwf  +  NaCDC E.coli K12  (6) 
zwf  +  NaDC  E.coli K12  (6) 
soi28   -  NaGC  E.coli K12  (6) 
soi28   -  NaUDC E.coli K12  (6) 
soi28   +  NaCDC E.coli K12  (6) 
soi28   +  NaDC  E.coli K12  (6) 
katG  +  NaGC  E.coli K12  (6) 
katG  -  NaUDC E.coli K12  (6) 
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(Table 1 continued) 
 
katG  -  NaCDC E.coli K12  (6) 
katG  -  NaDC  E.coli K12  (6) 
dps   +  NaDC  S. typhimurium  (41) 

SV5158 
katG  +  NaDC  S. typhimurium  (41) 

SV5157 
fumC  +  NaDC  S. typhimurium  (41) 

SV5154 
Stress Response  

   clpB  -  NaGC  E.coli K12  (6) 
   clpB  +  NaUDC E.coli K12  (6) 

      clpB  +  NaCDC E.coli K12  (6) 
      clpB  +  NaDC  E.coli K12  (6)  
      uspA  +  NaGC  E.coli K12  (6) 
      uspA  -  NaUDC E.coli K12  (6) 
      uspA  -  NaCDC E.coli K12  (6) 
      uspA  +  NaDC  E.coli K12  (6) 
       dps  +  NaDC  S.typhimurium  (41) 

SV5158   
Base-excision Repair  

alkA  -  NaDC  S.typhimurium  (41) 
SV5110  

   alkA  -  Ox bile  S.typhimurium  (41) 
SV5110 

   tagA  -  NaDC  S.typhimurium  (41) 
SV5111, 
SV5112 

tagA  -  Ox bile  S.typhimurium  (41) 
SV5111, 
SV5112 

mutM  -  NaDC  S.typhimurium  (41) 
SV5213 

mutM  -  Ox bile  S.typhimurium (41) 
 SV5213 

mutY  -  NaDC  S.typhimurium  (41) 
SV5167 

mutY  -  Ox bile  S.typhimurium  (41) 
SV5167 

nei   -  NaDC  S.typhimurium  (41) 
SV4992 
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(Table 1 continued) 
 
nei   -  Ox bile  S.typhimurium  (41) 

SV4992 
nth   -  NaDC  S.typhimurium  (41) 

SV4994 
nth   -   Ox bile  S.typhimurium  (41) 

SV4994  

Mismatch repair  
mutH  -  NaDC  S.typhimurium  (40) 

SV4802 
mutL  -  NaDC  S.typhimurium  (40) 

SV4721 
mutS  -  NaDC  S.typhimurium  (40) 

SV4858  
 
DNA Repair 

impB  +  NaDC  E.coli 60 A   (22) 
nfo   +  NaGC  E.coli K12  (6) 
nfo   +  NaUDC E.coli K12  (6) 
nfo   +  NaCDC E.coli K12  (6) 
nfo   +  NaDC  E.coli K12  (6) 
ada   -  NaGC  E.coli K12  (6) 
ada   +  NaUDC E.coli K12  (6) 
ada   -  NaCDC E.coli K12  (6) 
ada   -  NaDC  E.coli K12  (6) 
recA  +  NaGC  E.coli K12  (6) 
recA  -  NaUDC E.coli K12  (6) 

      recA  +  NaCDC E.coli K12                   (6) 
recA  -  NaDC  E.coli K12  (6) 
recA  +  NaDC  S.typhimurium  (41) 

SV4933 
recA  +  NaC  S.typhimurium  (41) 

SV4851 
recA  +  NaCDC S.typhimurium  (41) 

SV4851 
recA  +  NaGC  S.typhimurium  (41) 

SV4851 
recA  +  NaTC  S. typhimurium  (41) 

SV4851 
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(Table 1 continued) 
 
recA  +  NaGCDC S.typhimurium  (41) 

SV4851 
recA  +  NaDC  S.typhimurium  (41) 

SV4869 
recA  +  Ox bile  S.typhimurium  (41) 

SV4869 
recB  +  NaDC  S.typhimurium  (41) 

SV4844 
recB  +  Ox bile  S.typhimurium  (41) 

SV4844 
recC  +  NaDC  S.typhimurium  (41) 

SV5082 
recC  +  Ox bile  S.typhimurium  (41) 

SV5082 
recD  -  NaDC  S.typhimurium  (41) 

SV5166 
recD  -  Ox bile  S.typhimurium  (41) 

SV5166 
recF  -  NaDC  S.typhimurium  (41) 

SV5080 
recF  -  Ox bile  S.typhimurium  (41) 

SV5080 
recJ  -  NaDC  S.typhimurium  (41) 

SV5076 
recJ  -  Ox bile  S.typhimurium  (41) 

SV5076 
      ada                        -                       NaDC             S.typhimurium  (41) 

 SV5111 
ada   -  Ox bile  S.typhimurium  (41) 

 SV5111 
ogt   -  NaDC  S.typhimurium  (41) 

SV5141 
ogt   -  Ox bile  S.typhimurium  (41) 

SV5141 
nfo   +  NaDC  S.typhimurium  (41) 

SV5159 
dinB  +  NaDC  S.typhimurium  (41) 

DA7974 
      dinB  +  Ox bile  S.typhimurium  (41) 

DA7974 
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(Table 1 continued) 
 
Transcriptional regulation

merR  -  NaGC  E.coli K12  (6) 
merR  +  NaUDC E.coli K12  (6) 
merR  +  NaCDC E.coli K12  (6) 
merR  -  NaDC  E.coli K12  (6) 
ada   -   NaGC  E.coli K12  (6) 
ada   +  NaUDC E.coli K12  (6) 
ada   -  NaCDC E.coli K12  (6) 
ada   -  NaDC  E.coli K12  (6) 
marR   +  NaDC   S. typhimurium  (42) 

JSG782 
marRAB  +  NaDC  S. typhimurium (42) 

 JSG782 
marRAB  -  NaTC  S. typhimurium (42) 

 JSG782 
marRAB  -  NaGC  S. typhimurium (42) 

 JSG782 
marRAB  -  NaGCDC S. typhimurium (42) 

 JSG782 
acrAB  +  NaC  S. typhimurium  (42) 

JSG782   

Cell Wall  
osmY  +  NaGC  E.coli K12  (6) 
osmY  +  NaUDC E.coli K12  (6) 
osmY  +  NaCDC E.coli K12  (6)  
osmY  +  NaDC  E.coli K12  (6) 
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Table 1.2 
 

Bile Response-Associated Genes Induced in Gram-Positive Bacteria 
 
Genes/operons  Induction Bile Salt Organism/Strain Reference 
Motlility 

motA         +  NaC:NaDC B.cereus 14579 (28) 
cheY         +  NaC:NaDC B.cereus 14579 (28) 
fliS           -  NaC:NaDC B.cereus 14579 (28) 
 fliF          -  NaC:NaDC B.cereus 14579 (28) 
fliG          -  NaC:NaDC B.cereus 14579 (28) 
flagellum-specific  

ATP synthase         -  NaC:NaDC B.cereus 14579 (28) 
flgE          -  NaC:NaDC B.cereus 14579 (28) 
flagellin (BC1657)        -  NaC:NaDC B.cereus 14579 (28) 
flagellin (BC1658)       +  NaC:NaDC B.cereus 14579 (28) 
flagellin (BC1659)       +  NaC:NaDC B.cereus 14579 (28) 

 
Transportation 

ABC transporter  
permease        +  NaC:NaDC B.cereus 14579 (28) 

Di-or tripeptide  
Transporter        +  NaC:NaDC B.cereus 14579 (28) 

Lincomycin  
Resistance        +  NaC:NaDC B.cereus 14579 (28) 

Na+ driven multidrug   
efflux pump        +  NaC:NaDC B.cereus 14579 (28) 

Transporter, Drug/Metabolite  
Exporter         +  NaC:NaDC B.cereus 14579 (28) 

Multidrug resistance protein  
B (BC4000)        +  NaC:NaDC B.cereus 14579 (28) 

Multidrug resistance protein  
B (BC4568)        +  NaC:NaDC B.cereus 14579 (28) 

Multidrug resistance protein  
A          +  NaC:NaDC B.cereus 14579 (28) 

Multidrug resistance protein  
B (BC4707)        +  NaC:NaDC B.cereus 14579 (28) 

Bacitracin transport permease  
protein BCRB        +  NaC:NaDC B.cereus 14579 (28) 

gadE (lmo0448)        +  oxgall            L.monocytogenes  
LO28  (4) 

yxiO (lmo1417)        +  oxgall  L.monocytogenes   
LO28  (4) 
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(Table 2 continued) 

Transcription Regulation 
RNA polymerase  

sigma factor        +  NaC:NaDC B.cereus 14579 (28) 
 

Transcriptional regulator  
ctsR  +  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator, GntR family  
(BC4603) -  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator, GntR family  
(BC1302) +  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator,  
LytR family +  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator,    
MarR family +  NaC:NaDC B.cereus 14579 (28) 

tcdA-E operon negative  
regulator  +  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator, TetR family  
(BC3160) +  NaC:NaDC B.cereus 14579 (28) 

Transcriptional regulator, TetR family  
(BC1814) +  NaC:NaDC B.cereus 14579 (28) 

Bm3R1  +  NaC:NaDC B.cereus 14579 (28) 
plcR  +  NaC:NaDC B.cereus 14579 (28) 
hrcA  +  NaC:NaDC B.cereus 14579 (28) 
Two-component response  

regulator  +  NaC:NaDC B.cereus 14579 (28) 
zurR  +  oxgall  L.monocytogenes   

LO28  (4) 
Stress Response 

groES  +  NaC:NaDC B.cereus 14579 (28) 
groEL  +  NaC:NaDC B.cereus 14579 (28) 
clpP  +  NaC:NaDC B.cereus 14579 (28) 
clpB  +  NaC:NaDC B.cereus 14579 (28) 
cspD  +  NaC:NaDC B.cereus 14579 (28) 
hsp20  +  NaC:NaDC B.cereus 14579 (28) 
sodA1  +  NaC:NaDC B.cereus 14579 (28) 
terD  +  NaC:NaDC B.cereus 14579 (28) 
thioredoxin +  NaC:NaDC B.cereus 14579 (28) 
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(Table 2 continued) 
 
thioredoxin  

reductase +  NaC:NaDC B.cereus 14579 (28) 
Peptide methionine sulfoxide  
Reductase  +  NaC:NaDC B.cereus 14579 (28) 
 

 
DNA Repair 

Site-specific  
recombinase     +  NaC:NaDC B.cereus 14579 (28) 

mutS       -  NaC:NaDC B.cereus 14579 (28) 
Superfamily I DNA and  

RNA helicases      +  NaC:NaDC B.cereus 14579 (28) 
Cytosine-specific   

methyltransferase    -  NaC:NaDC B.cereus 14579 (28) 
Type I restriction-modification system restriction subunit  

(BC4456)      +  NaC:NaDC B.cereus 14579 (28) 
Type I restriction-modification system methylation subunit  

(BC4459)      +  NaC:NaDC B.cereus 14579 (28) 
Carbamoyl-phosphate synthase   

small chain      -  NaC:NaDC B.cereus 14579 (28) 
pyrK       -  NaC:NaDC B.cereus 14579 (28) 
carA       +  NaC:NaDC B.cereus 14579 (28) 
uvrA       +  porcine bile L.monocytogenes 

LMB472 (26) 
Virulence

Hemolysin BL lytic  
component L1 +  NaC:NaDC B.cereus 14579 (28) 

Internalin  -  NaC:NaDC B.cereus 14579 (28) 
Collagenase -  NaC:NaDC B.cereus 14579 (28) 
 
(continued) 
Perfringolysin O +  NaC:NaDC B.cereus 14579 (28) 
Sphingomyelin  

Phosphodiesterase +  NaC:NaDC B.cereus 14579 (28) 
capA (lmo0516)     +  oxgall  L. monocytogenes 

         LO28  (4) 
Cell Wall 

Peptidoglycan N-acetylglucosamine  
deacetylase      -  NaC:NaDC B.cereus 14579 (28) 
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(Table 2 continued) 
 
UDP-N-acetylglucosamine  

4-epimerase      -  NaC:NaDC B.cereus 14579 (28) 
UDP-bacillosamine  

synthetase      -  NaC:NaDC B.cereus 14579 (28) 
Beta-1,3-N-acetylglucosaminyltransferase 

           -  NaC:NaDC B.cereus 14579 (28) 
Cell wall endopeptidase,    

family M23/M37    +  NaC:NaDC B.cereus 14579 (28) 
S-layer homology domain / putative murein  

endopeptidase      +  NaC:NaDC B.cereus 14579 (28) 
 

Fatty Acid Biosynthesis and Degradation 
Fatty acid  

desaturase      +  NaC:NaDC B.cereus 14579 (28) 
Lysophospholipase  

L2       +  NaC:NaDC B.cereus 14579 (28) 
CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase   

        +  NaC:NaDC B.cereus 14579 (28) 
Acetyl-coenzyme A carboxylase carboxyl transferase  
subunit beta      -  NaC:NaDC B.cereus 14579 (28) 

 
Metabolism

 crr       +  NaC:NaDC B.cereus 14579 (28) 
(R,R)-butanediol  

dehydrogenase     +  NaC:NaDC B.cereus 14579 (28) 
Pyruvate kinase     +  NaC:NaDC B.cereus 14579 (28) 
pfkA      -  NaC:NaDC B.cereus 14579 (28) 
 
(continued from page 12) 
Fructose-1,6-bisphosphatase  

          +  NaC:NaDC B.cereus 14597 (28) 
NADH-dependent butanol dehydrogenase A  

          +  NaC:NaDC B.cereus 14579 (28) 
Flavodoxin     +  NaC:NaDC B.cereus 14579 (28) 
 

Protein Synthesis  
rpsS      -  NaC:NaDC B.cereus 14579 (28) 
rplK2      +  NaC:NaDC B.cereus 14579 (28) 
infA      -  NaC:NaDC B.cereus 14579 (28) 
fmt       -  NaC:NaDC B.cereus 14579 (28) 
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(Table 2 continued) 
 
pheS      -  NaC:NaDC B.cereus 14579 (28) 
miaA      +  NaC:NaDC B.cereus 14579 (28) 

 
Other 

thiocillin        +  NaC:NaDC B.cereus 14579 (28) 
thiocillin        +  NaC:NaDC B.cereus 14579 (28) 
lytB        +  oxgall  L.monocytogenes  

   LO28 
bsh (lmo2067)       +  oxgall  L.monocytogenes  (5) 

         LO28 
pva (lmo0446)       +  oxgall  L.monocytogenes  (5) 

         LO28 
Bile acid 7-alpha  

dehydratase       +  oxgall  L.monocytogenes  (5) 
                    LO28 

 

to halt cell division through inhibiting the formation of the FtsZ ring, which is a critical 

step in the early stages of cell division. This result indicates that the SOS response is 

induced in the presence of bile salts, and the activation of the SOS response is essential 

for the survival of the bacterium in the presence of bile. The authors compared their 

results to those of SOS-deficient cells in the presence of mitomycin c, a known inducer of 

the SOS response. Both studies produced similar results, supporting the theory that bile 

salts induce DNA damage in vivo in bacteria and that exposure to bile activates the SOS 

response. 

Expanding upon these results, Berstein et al. (1999) investigated the ability of 

various bile salts to induce stress response genes to gain a general understanding of the 

effect of bile on the repair and stress response of E. coli (6).  They tested the effect that 

the bile salts sodium deoxycholate, sodium chenodeoxycholate, sodium 

ursodeoxycholate, and sodium glycocholate had on 13 specific E. coli stress-response 
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genes (osmY, recA, umuDC, micF, clpB, dinD, zwf, soi28, nfo, katG, uspA, merR, ada). 

Using a similar technique as the Kandell and Bernstein study, the promoters of each gene 

were fused with a lacZ reporter gene allowing for detection of activity by measuring the 

level of �-galactosidase. The results of the study indicated that three promoters, dinD, 

micF and osmY, were significantly activated by all four bile salts. dinD is well known for 

being induced in the presence of DNA damage (24, 30, 36, 56), but its function remains 

unknown. The increase in expression of dinD indicated that the SOS response is a 

possible mechanism elicited in response to bile salts. osmY encodes for a periplasmic 

protein of unknown function commonly involved in osmotic stress, and micF is a 

negative regulator for the outer membrane porin protein OmpF (34). The increased 

transcription levels of osmY and micF genes are also indicators of oxidative damage (11, 

34). Together, these results suggest that bile salts induce DNA damage through oxidative 

stress.  

 Recently a study on enteroaggregative E. coli showed that bile salts may induce 

error-prone DNA repair in strains containing an imp-positive locus (22). Error prone 

repair involves the polymerases Pol IV, encoded by dinB, and Pol V, encoded by umuDC. 

This mechanism allows for cells to continue to replicate in the presence of DNA damage, 

although it also leads to an increase in spontaneous mutations (17). In the study, the 

expression pattern of the repressed LexA gene impB, which is involved in error-prone 

DNA repair and a known homologue of umuC, was analyzed following treatment with 

either UV irradiation or bile salts. Following treatment, the SOS response gene lexA was 

derepressed and the impB gene was upregulated. Thus, it was proposed that SOS was 

induced to allow for repair of the damaged genome and continued survival. In support of 
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this hypothesis, treatment of the impB mutants of E. coli with 1% sodium deoxycholate 

significantly decreased the survival rate. This study provided further evidence that bile 

salts are damaging not only the membranes of bacterial cells, but also the DNA.  

Salmonella. Salmonella typhimurium is an important enteric pathogen and is associated 

with diseases such as gastroenteritis. Additionally, it is a chronic colonizer of the 

gastrointestinal system (35). A recent study investigated the role of the drug resistance 

operon marRAB in conferring bile resistance to S. typhimurium (42). The marRAB 

operon, a regulator of multiple antibiotic resistance, consists of a repressor (marR) and a 

positive transcriptional regulator (marA) of antibiotic resistance genes, such as the efflux 

genes acrA and acrB (51). Using microarray analyses, �-galactosidase activity assays, gel 

electrophoretic mobility shift assays, and bile resistance assays, they demonstrated that 

the marRAB operon is activated in the presence of bile. This work suggested that 

resistance to bile and to antibiotics is interconnected to the survival of S. typhimurium in 

a host. A model was proposed in which bile salts enter the bacterium and then the bile 

salts bind with MarR, resulting in increased transcription of the mar operon. This 

regulation would in turn affect unknown genes involved in surviving the host’s 

environment. The acrAB efflux pump, which was also found to be necessary for bile 

resistance, is transcribed in tandem to allow for the excretion of bile salts from inside the 

bacterium. Based on their model, activation of marRAB, which has been shown to 

possibly induce a decreased level of the transcription of the porin protein OmpF (1), 

would reduce influx into the cell, while acrAB would promote the efflux of bile salts out 

of the cell, thus creating a mechanism for resisting the damaging effect of bile salts. 
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 The DNA damaging effect of bile and the bacterial response mechanisms utilized 

during exposure to bile has also been analyzed in S. enterica using the bile sensitive DNA 

adenine methyltransferase (Dam) mutant SV4392 (40). Using a random insertion to 

desensitize the strain to bile, they discovered that the mismatch repair proteins MutH, 

MutL and MutS confer bile sensitivity to dam mutants. RecA, a recombination protein, is 

a well known indicator of SOS response and is important to repair processes in bacteria 

(39). A �-galactosidase activity assay demonstrated that the SOS response was induced in 

the presence of sodium deoxycholate and ox bile but only when a functional RecA 

protein was present. Inversions were detected in three alleles: hisC3072 (a +1 frameshift),

hisG46 (a nucleotide substitution causing a missense mutation), and leuA414 (a 

nucleotide substitution resulting in an amber codon). This work provided evidence that 

bile increases the frequency of nucleotide substitutions, frameshifts and chromosomal 

rearrangements, further supporting the idea that bile is a DNA damaging agent and 

possibly produces double strand DNA breaks.   

Another study by Prieto et al. provided evidence for the SOS response and use of 

homologous recombination as repair mechanisms in the presence of bile (41). This study 

showed that RecA, RecBCD and PolV are required for survival in the presence of bile 

(41). The RecBCD pathway is a recombination repair process activated in the presence of 

double stranded breaks and has been shown to be essential to S. enterica’s virulence (9). 

To determine whether bile induces oxidizing or alkylating DNA damage, various assays 

were performed using strains deficient in genes involved in oxidative repair or alkylation 

damage repair. Bile was found to act more as an oxidizing agent rather than an alkylating 

agent based on the minimal inhibitory concentrations against mutants deficient in specific 
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repair pathways. Those same data also indicated a role for base excision repair in the 

presence of bile-induced damage. The investigators proposed a model for DNA repair in 

response to bile-induced damage: initial lesions produced by bile are repaired by Dam-

directed mismatch repair and by base excision repair, which in turn induce the SOS 

response and possibly impair DNA replication. This, in turn, would then require DinB 

and RecBCD to repair the damaged DNA and aid in restarting replication. This study was 

essential in supporting the theory that bile salts act as DNA damaging agents and that the 

role of DNA repair in virulent bacteria allows for survival and proliferation within the 

host digestive system.  

 

Bile Induced Damage In Gram Positive Bacteria

Bacillus cereus 

Bacillus cereus is a common cause of food-borne acquired infections, making it 

an important bacterium to study in relation to its interaction with the host’s 

gastrointestinal tract. However, the pathogenesis of this bacterium is not fully understood, 

especially in regards to its ability to colonize the human intestine. There are two proposed 

methods of infection: 1) infections are mediated by the production of a toxin and 2) 

infections are mediated by the production of spores and subsequent release of a toxin 

(50). In both cases either the cells or the endospores must resist the presence of bile salts 

to establish the infection. A study conducted on 40 strains of B. cereus in the presence of 

bile showed that low levels of bile salts had a significant effect on the survival. The study 

found 100 genes were upregulated and 133 genes were downregulated (28). Genes 
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involved in general stress response, such as efflux pumps and transcriptional regulators 

(including MarR) were upregulated. Several genes associated with cell motility, cell wall 

and membrane synthesis, and DNA replication, recombination and repair were 

downregulated in the presence of bile. However, bile inducing oxidative damage was 

supported by the upregulation of genes involved in oxidative protection (superoxide 

dismutase and thioredoxins) and several chaperon-encoding genes. The motility genes 

motA and cheY were also upregulated, possibly indicating the cell’s response to the bile 

salts. Additionally, the strains were only able to grow in the presence of low 

concentrations of bile salts (sodium cholate:sodium deoxycholate, 1:1). The upregulation 

of genes encoding efflux pumps and other membrane components, as well as 

transcriptional regulators and chaperones, provides support that membrane and DNA 

protection mechanisms are utilized for the survival of B. cereus in the presence of bile. 

This same study also tested the possibility that spore-production is essential for 

the pathogenesis of B. cereus (28). Spores were grown in the presence of a bile salt 

mixture. The authors found that spores were able to tolerate high levels of bile, indicating 

that the spores are much more resistant to bile damage. This result suggests that B. cereus 

endospore formation could be a preferred mechanism of establishing an enteric infection 

through its ability to resist bile.  

Listeria monocytogenes 

Listeria monocytogenes is a food-borne pathogen that is responsible for nearly 

28% of food related deaths each year (32). This gram positive bacterium can grow in 

similar environments as the gram negative Salmonella enterica, including that of the 
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gallbladder (19).  Additionally, both L. monocytogenes and S. enterica respond to stress 

similarly and have similar virulence systems (18). As a result of these similarities, the 

influence of bile on the host-microbe interaction is becoming an important area of 

research, as this mechanism is poorly understood. Several genes have been identified in 

L. monocytogenes to be important for bile resistance, including genes involved in the 

preservation of the cell envelope and in stress response (4). Recently, it was found that L.

monocytogenes contains certain genes required for bile resistance and these genes are 

regulated by the main virulence regulator prfA (5, 16). These genes are the btlB and bsh 

genes and are involved in detoxifying bile salts that have been conjugated with either 

glycine or taurine (5). Another important discovery was the identification of a novel bile 

exclusion system, also under the regulation of prfA, that allows the bacterium to survive 

in high concentrations of bile salts (48). Additionally, it was found that the nucleotide 

excision repair protein UvrA is important for survival in bile (26). The deletion of uvrA 

resulted in a significant impairment on the growth of L. monocytogenes in as little as 

0.3% bile salts.  

The ability of L. monocytogenes to survive in the presence of bile was also found 

to be influenced by the growth atmosphere (aerobic or anaerobic), the growth phase 

(stationary or exponential), and strain specificity (27). Four different strains isolated from 

food, environment, or clinical settings were subjected to both acid and bile and various 

atmospheric conditions, including air, 100% nitrogen, 40% carbon dioxide: 60% 

nitrogen, and 100% carbon dioxide. The acidic and bile environments were utilized to 

model the environment that ingested bacteria would encounter within the human 

digestive system. In all environments tested, stationary cells were much more resistant 
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than exponential cells. In general the bile salt environment proved to be more difficult for 

the strains to resist. It was found that only the stationary bacterial cells grown in air and 

100% nitrogen survived after being exposed to the bile salt environment. These results 

suggest that atmospheric conditions and strain specificity of L. monocytogenes determine 

the microbe’s ability to resist bile. Despite the possibility of being strain specific, these 

studies indicate that the pathogenic potential of L. monocytogenes is related to its ability 

to resist bile and possibly activate repair systems in the presence of bile.  

Concluding Remarks

Bile is an important antimicrobial component of the human digestive system. The 

ways in which bacteria, both gram negative and gram positive, cope with its toxic effect 

differ in the exact mechanism, but a general theme can be determined. These bacterial 

models show that resistance is not exclusive to just overcoming damage to the membrane 

or the DNA, but rather is a result of a combination of repair mechanisms. One 

mechanism several enteric bacteria posses is that of efflux pumps to remove bile salts out 

of the cell, thus preventing potential damage to the membrane. If the membrane is 

compromised by bile salts, then the toxic effects could be conveyed onto the DNA, 

leading to extensive damage in the form of reactive oxygen species. This would lead to a 

cessation of replication and eventually cell death. Many recent studies, as outlined above, 

have focused upon determining the role that DNA repair has in the virulence capability of 

enterics. While the level of resistance seems to vary, the ability of the bacterium to 

breach certain areas of the host digestive system is contingent on its ability to resist 

damage induced by bile salts. Bile has repeatedly been found to be an oxidative agent 
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with the ability to induce the SOS response in several bacteria. The identification of this 

mechanism of damage as well as the bacteria’s resistance and repair could aid in 

understanding its interaction with similar bactericidal agents and provide a better 

understanding of the role of the host response in the enteric infection process. While bile 

does induce both DNA damage and membrane damage, the interaction between the two 

types of damage is still not greatly understood in any bacteria. In particular, research 

pertaining to the connection of the pathogenic potential of a bacterium to its ability to 

resist bile is still in its infancy. The relationships between the virulence capabilities of 

these various pathogenic bacteria that are able to survive within the human digestive tract 

and the expression of resistance genes and repair mechanisms need to be further 

analyzed. 
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CHAPTER II 

EFFECT OF BILE ON THE MEMBRANE INTEGRITY OF VIRULENT AND 

AVIRULENT STRAINS OF LISTERIA MONOCYTOGENES 

Introduction 

Listeria monocytogenes is a gram-positive bacterial pathogen and is the causative 

agent of the food-borne illness listeriosis. L. monocytogenes is responsible for nearly 28% 

of reported food-related deaths each year in the United States (23). This bacterium is able 

to proliferate in a wide range of environments, including temperatures ranging from -0.4 

to 50°C, stressful environments encountered within food processing plants, and high salt 

and acidic environments encountered during infections (4, 8, 9, 11). These characteristics 

make this microbe a very dangerous source of food contamination. It is because of the 

morbidity associated with this microbe that the FDA issued a “zero-tolerance policy” for 

the presence of Listeria in ready-to-eat (RTE) food products in 1989, which led to a 

drastic reduction in the incidence of Listeria contaminated RTE-products. However, there 

are still many reported cases of Listeria contamination and listeriosis annually (5), 

indicating that it is essential to understand the pathogenesis associated with this microbe. 

The establishment of listeriosis infection is dependent upon the ability of L.

monocytogenes to survive the acidic and bile environments encountered in the 

gastrointestinal tract and to invade and replicate within the epithelial cells lining the 
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intestinal tract. Resistance to bile is considered a major virulence determinant for 

enterics, is evident by the fact that the numerous commensal organisms found throughout 

the gut are tolerant to bile. Bile acts as a detergent and has been linked to the degradation 

of phospholipids and fatty acids found within the membranes of the gram-positive enteric 

bacteria Bifidobacterium animalis and Lactobacillus reuteri (30, 33). Bacteria have 

evolved several different mechanisms of resistance against bile to survive. One 

mechanism utilized by several bacteria is a two component regulatory system that acts to 

detect the presence of bile salts and upregulate response mechanisms after receiving a 

signal via transmembrane sensing domains of histidine protein kinases (21, 25, 28, 31). 

Another mechanism is through the use of bile-specific efflux pumps that remove the bile 

salts that have crossed into the cytoplasm. These bile transporters and pumps have been 

identified not only in gram-negative bacteria such as Escherichia coli and Salmonella

enterica (24, 34) but also gram-positive bacteria such as Bifodobacterium longum and 

Lactococcus lactis (12, 22, 35). L. monocytogenes has several genes involved in bile 

tolerance, including the bilE operon that excludes bile from the cytoplasm and bsh, which 

encodes a bile salt hydrolysis enzyme involved in converting bile to a less toxic form (2, 

6, 32). These genes have been shown to be essential for resistance to bile during the 

hepatic and intestinal stages of listeriosis (6). In addition, the virulence regulator prfA 

regulates expression of these bile tolerance genes (2, 6, 32), indicating the necessity for 

bile resistance in the pathogenesis of L. monocytogenes.  

Bile is mostly composed of bile salts, cholesterol, and phospholipids. The 

detergent activity of bile is primarily attributed to the bile salt component (13). Two 

forms of bile salts are found within the digestive tract: unconjugated and conjugated. 
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Unconjugated bile salts are initially synthesized through the enzymatic conversion of 

cholesterol, expelled from hepatocytes, and then are converted to conjugated forms 

following the addition of either a glycine or taurine (16). Unconjugated forms of bile salts 

are the most toxic against microbes, yet are not present in the GI tract (17). Conjugated 

forms are the predominant types of bile salts encountered by bacteria in the GI tract. 

Through a process known as enterohepatic circulation, bile salts undergo structural 

alterations enabling their travel from the liver to the gallbladder, where they are stored 

until the intake of food triggers the release of bile into the small intestine (16, 29). From 

here the bile salts are reabsorbed and returned back to the liver (29). As a result of this 

circulation through the gastrointestinal tract, the concentration and composition of the 

bile salts undergo several changes due to conjugation, deconjugation and 

dehydroxylation, which in turn causes altered cytotoxicity against microbes (16).  

L. monocytogenes is highly resistant to bile (1, 2). However, it has not been 

analyzed whether this capability is directly related to pathogenicity. To determine if bile 

resistance is related to the virulence capability of L. monocytogenes, we examined the 

effect that conjugated bile salts and a mixture containing unconjugated and conjugated 

bile salts have on the survival and maintenance of membrane integrity for the virulent 

strain EGD-e (serovar 1/2a) and the naturally isolated avirulent strain HCC23 (serovar 

4a) (7) under both aerobic and anaerobic conditions. We found that bile salts affected the 

membrane of both EGD-e and HCC23, but this effect was much more severe in the 

avirulent strain. These results suggest that the pathogenic potential of L. monocytogenes 

is related to bile tolerance, but bile tolerance cannot be used as a sole indicator for 
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virulence capability. We present these data and suggest a model for how bile can act as a 

bactericidal agent against L. monocytogenes.  

Materials and Methods 

Bacterial strains, bile salts, and growth conditions

The L. monocytogenes strains EGD-e (serovar 1/2a) and HCC23 (serovar 4a) 

were grown in brain heart infusion (BHI) media at 37°C. For growth in the presence of 

bile salts, 1 ml of BHI was supplemented with 0 mg (0%), 100 mg (10%) or 200 mg 

(20%) of either bile from bovine or ovine (oxgall), sodium glycodeoxycholate (GDCA), 

or sodium taurodeoxycholate hydrate (TDCA) (Sigma Aldrich). All experimental 

methods were performed with cultures grown either aerobically or anaerobically. 

Anaerobic conditions were achieved by placing Wheaton serum bottles containing 1 ml 

of bile-infused BHI media in a vinyl anaerobic chamber for two days (Type B, Coy 

Laboratory Products INC.), after which bottles were capped with aluminum seals. 

Syringes were used to inoculate cultures and remove samples. Anaerobic conditions for 

BHI plates were achieved by incubating the plates in a BBL Gas Pak System. Anaerotest 

strips were used to verify anaerobic conditions.  

Growth analysis in the presence of bile salts  

Fresh, overnight cultures of EGD-e or HCC23 were diluted 1:100 in 2 ml of bile-

infused BHI medium containing 0%, 10%, or 20% oxgall, GDCA, or TDCA and were 

grown at 37°C in a shaking incubator under aerobic or anaerobic conditions. For each 
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time point, 2 �l of culture were used for OD600 measurements with a Nanodrop ND-1000. 

Pathlengths for the Nanodrop readings were adjusted 10 fold in accordance with the 

manufacturer. Three independent experiments were completed and averaged for each bile 

salt under both anaerobic and aerobic conditions. Additionally, cultures grown in 0%, 

10% or 20% of oxgall, GDCA or TDCA for 6 hr at 37°C were plated onto BHI agar and 

incubated overnight at 37°C. Analyses of growth on agar plates were performed for three, 

independent experiments under both aerobic and anaerobic conditions. 

 

Scanning electron microscopy (SEM)

Fresh overnight cultures of EGD or HCC23 were diluted 1:100 in 2 ml of BHI 

media infused with either 0% or 20% oxgall. After a 6 hr shaking incubation at 37°C, 

cells were centrifuged at 8,000 g for 3 min (Eppendorf Centrifuge 5415R). The resulting 

bacterial cell pellets were fixed in 2.5% (v/v) glutaraldehyde in 0.1M cacoldylate buffer, 

washed in 0.1M cacoldylate, post-fixed in 1% (v/v) osmium tetraoxide in 0.1M 

cacoldylate buffer, re-washed in distilled water, dehydrated in an ethanol series, and dried 

in an hexamethyldisilazane (HMDS) series. Samples were sputter coated with gold-

palladium (Polaron SEM coating system) prior to observations with a field emission 

scanning electron microscope (JEOL JSM-6500F). Samples were prepared from three 

independent experiments of 0% and 20% oxgall under both aerobic and anaerobic 

conditions. The length and width of 20 individual cells from each independent 

experiment were collected for analysis using the JEOL-PC-SEM 6500 software provided 

with the microscope. A mean average was calculated for cell length and cell width for 

data collected from the control cells (0% oxgall) and treated cells (20% oxgall). The 
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mean average from the control cells was compared to the mean average from the treated 

cells within a strain using a student t-test. A p-value < 0.05 indicated that the parameter 

measured (cell length or cell width) had significantly changed during exposure to oxgall. 

Transmission electron microscopy (TEM) 

Sample preparation for TEM observations were performed as indicated above for 

the SEM with the following exceptions. After the dehydration step, the cells were treated 

in a stepwise resin/ethanol series and embedded into resin at 68-70�C overnight. The 

cells were then sectioned using an ultramicrotome (Reichert-Jung Ultracut E) and viewed 

under a transmission electron microscope (JEOL JEM-100CXII). The width of the cell 

wall, cell membrane and cell envelope for 20 individual cells from each independent 

experiment was collected for analysis. Microscopic analyses were performed on three 

independent experiments for cells grown under aerobic or anaerobic conditions in the 

presence of either 0% or 20% oxgall. A mean average was calculated for the cell wall, 

cell membrane, and cell envelope thickness for control cells (0% oxgall) and treated cells 

(20% oxgall). The mean average from the control cells was compared to the mean 

average from the treated cells within a strain using a student t-test. A p-value < 0.05 

indicated that the parameter measured (cell membrane, wall, or envelop thickness) had 

significantly changed during exposure to oxgall.
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Results

Analysis of EGD-e and HCC23 growth in the presence of bile salts 

The ability of virulent and avirulent strains of L. monocytogenes to grow in the 

presence of 0%, 10% or 20% oxgall, GDCA or TDCA was investigated under both 

aerobic and anaerobic conditions. Under aerobic conditions, growth was impaired for 

both EGD-e and HCC23 in the presence of oxgall, TDCA, and GDCA (Fig. 2.1). The 

growth of HCC23 in the presence of bile salts was much more impaired than that 

observed for EGD-e. The data show that increasing the concentration of bile salts 

exaggerates the growth deficiency exhibited by HCC23 (Fig. 2.1A). However, the 

avirulent strain did appear to maintain some viability through spectrophometric analysis. 

To confirm that the HCC23 cells were still viable following exposure to bile salts, cells 

were plated after 6 hr of incubation in the presence of oxgall, TDCA, or GDCA. Our 

results confirmed that HCC23 was viable in the presence of high concentrations of bile 

salts (data not shown). HCC23 growth never recovered in the presence of bile, yet bile 

was not 100% lethal to this avirulent strain. The growth of EGD-e in the presence of bile 

salts was impaired as compared to the control cells (Fig. 2.1B). However, in contrast to 

HCC23 bile-exposed cells, growth of EGD-e increased following an extended lag period 

(Fig. 2.1B). Under  
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Figure 2.1   Growth Response Curves. HCC23 (A) and EGD-e (B) grown under aerobic 
conditions in 0% (�), 10% (�) and 20% (�) oxgall, GDCA or TDCA. The 
averages of three independent experiments are graphed.  

 

normal growth conditions, EGD-e exhibited a 1 hr lag phase. In the presence of 10% 

oxgall, TDCA, or GDCA this growth period was extended to 2 hr. In the presence of 20% 

oxgall, TDCA, or GDCA this growth period was extended to 5 or 6 hr depending on the 

bile salt present. The effect of the bile salt was similar regardless of whether conjugated 

GDCA or TDCA or oxgall containing a mixture of conjugated and unconjugated bile 

salts was used. 
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To determine if similar growth patterns were observed in conditions found within 

the human digestive system, we analyzed the ability of EGD-e and HCC23 to grow in the 

presence of bile salts under anaerobic conditions. In general, the growth of both strains 

was less prolific under anaerobic conditions. However, similar growth patterns were 

observed for both strains in the presence of oxgall, TDCA, and GDCA under anaerobic 

conditions (Fig. 2.2) as compared to aerobic conditions (Fig. 2.1). Both strains exhibited 

a decrease in growth with an increase in the concentration of bile salt. The concentration 

of HCC23 in the presence of 20% bile salt remained low until a slight increase by 8 hr of 

incubation (Fig. 2.2A). However, further analysis indicated that this increase does not 

continue at 12 hr and 24 hr of incubation (data not shown). EGD-e showed similar 

growth patterns in 10% bile salts as observed under aerobic conditions. However, the 

increase of bile salts to 20% had a slightly greater inhibitory affect on the growth of 

EGD-e under anaerobic conditions. These results were also further confirmed by plating 

cells following a 6 hr incubation in the presence of 20% bile salts on BHI agar. While the 

plates exhibited viable cell growth of both strains in 20% bile, there were fewer colonies  
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Figure 2.2   Growth Response Curves. HCC23 (A) and EGD-e (B) grown under 
anaerobic conditions in 0% (�), 10% (�) and 20% (�) oxgall, GDCA or 
TDCA. The averages of three independent experiments are graphed. 

 

of the treated HCC23 present compared to its control than the treated EGD-e cells 

compared to its control. Similar to what was observed under aerobic conditions, the effect 

of the bile salt was not specific to certain bile salts.  
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Bile salts induce morphological changes in both virulent and avirulent strains of L. 

monocytogenes

To investigate the effect that bile salts have on the cell surface of HCC23 and 

EGD-e, samples exposed to bile salts were examined using a scanning electron 

microscope. Since similar growth patterns were observed for oxgall, TDCA, and GDCA 

treated cells, only oxgall was used for morphological analyses. Changes in cell length and 

width were examined for three independent experiments for untreated and bile-exposed 

(treated) EGD-e and HCC23 cells under aerobic or anaerobic conditions. Nearly 78% of 

oxgall treated HCC23 cells exhibited visible surface deformities, such as indentations, 

that indicated a loss of rigidity to the surface (Fig. 2.3A).  These distortions were not 

present in the control treatment of HCC23, signifying that these alterations to the 

membrane were due to the presence of bile salts. EGD-e cells showed less deterioration 

of the surface of the membrane when exposed to 20% oxgall. Only 22% of the bile 

treated EGD-e cells exhibited minimal damaged to the cell surface.  

 The length and width of control and treated cells were measured to determine if 

oxgall alters the shape of the L. monocytogenes. Oxgall did not significantly alter the cell 

length of either EGD-e or HCC23 (Table 2.1). The cell width of both strains was 

significantly altered by the presence of bile salt. The cell width of HCC23 decreased in 

the presence of 20% oxgall. Interestingly, the cell width of EGD-e increased in the 

presence of oxgall. This correlates with SEM micrographs showing indentations 

throughout the surface of the cell wall in HCC23, while the rigidity and structure of the 

EGD-e cell membrane remained intact with little visible change (Fig. 2.3). 
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To determine if similar deformities occur under anaerobic conditions, EGD-e and 

HCC23 exposed to 20% oxgall under anaerobic conditions were observed with the SEM. 

As seen under aerobic conditions, the presence of bile salt induced damage to the surface 

of HCC23 cells (Fig. 2.3B). Under anaerobic conditions nearly 73% of HCC23 cells 

exhibited damage to the cell surface, while only 27% of EGD-e cells exhibited minimal 

damage to the cell walls. In anaerobic conditions growth in the presence of oxgall only 

significantly changed the cell morphology for HCC23 (Table 2.1). HCC23 exhibited a 

significant decrease in the cell length and cell width (Table 2.1). 

 

Bile salts induce damage at the cell membrane in both virulent and avirulent strains 

of L. monocytogenes

To further investigate the effect that bile salts have on the cell wall of EGD-e and 

HCC23, cells exposed to 20% oxgall under aerobic and anerobic conditions were 

examined using the TEM. Cells were analyzed for alterations in the thickness of the 

layers that make up this natural bacterial barrier of defense. Visible differences in the 

nucleoid and the cytoplasm of control cells and the treated cells also contributed to the 

analysis of the TEM micrographs (Fig. 2.4A). Comparing the nucleoids of the HCC23 

control cells to the bile treated cells revealed that in the presence of bile  
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Figure 2.3   Morphological changes in aerobically grown (A) and anaerobically grown 
(B) HCC23 and EGD-e cells after 6 hours in 0% or 20% oxgall as 
investigated by scanning electron microscopy.  
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Table 2.1 
 
Average cell length and width of HCC23 and EGD-e cells in the presense of 0% and 20% 
oxgall under aeroibic and ananerobic conditions. *depicts significant changes (p<0.05) in 

treated cells as compared to untreated cells  
 

 
 

Strain,
% oxgall Cell Length Cell Width 

aerobic anaerobic aerobic anaerobic

HCC23, 0% 

EGD -e, 20% 

Average (µm)

EGD -e, 0% 

HCC23, 20% 

1.347

1.329

1.450

1.518

1.376

1.340

1.376

1.406*

0.376

0.519

0.529 

0.503 

0.512*

0.375*

0.508

0.429 * 

Strain,
% oxgall Cell Length Cell Width 

aerobic anaerobic aerobic anaerobic

HCC23, 0% 

EGD -e, 20% 

Average (µm)

EGD -e, 0% 

HCC23, 20% 

1.347

1.329

1.450

1.518

1.376

1.340

1.376

1.406*

0.376

0.519

0.529 

0.503 

0.512*

0.375*

0.508

0.429 * 

Strain,
% oxgall Cell Length Cell Width 

aerobic anaerobic aerobic anaerobic

HCC23, 0% 

EGD -e, 20% 

Average (µm)

EGD -e, 0% 

HCC23, 20% 

1.347

1.329

1.450

1.518

1.376

1.340

1.376

1.406*

0.376

0.519

0.529 

0.503 

0.512*

0.375*

0.508

0.429 * 

aeroibic 

Strain,
% oxgall Cell Length Cell Width 

aerobic anaerobic aerobic anaerobic

HCC23, 0% 

EGD -e, 20% 

Average (µm)

EGD -e, 0% 

HCC23, 20% 

1.347

1.329

1.450

1.518

1.376

1.340

1.376

1.406*

0.376

0.519

0.529 

0.503 

0.512*

0.375*

0.508

0.429 * 
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Figure 2.4   Morphological changes in aerobically grown (A) and anaerobically grown 

(B) HCC23 and EGD-e cells after 6 hours in 0% or 20% oxgall were 
investigated by transmission electron microscopy. Arrows indicate 
deformities including damaged nucleoid and membrane dissociating from the 
cytoplasm. Magnification of 40,000x for all photos.  
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nearly 28% of the cells exhibited fragmentation of the DNA (Fig. 2.4A). Less than 10% 

of the bile salt exposed EGD-e cells exhibited this same nucleoid alteration. Yet in both 

strains, approximately 8% of the cells exhibited areas where the membrane was 

dissociated from the cytoplasm but had an intact membrane and nucleoid (Fig. 2.4).  

 Comparing the thickness of the cell wall, membrane, and envelope between the 

control cells and treated cells of both strains revealed that bile had a significant effect on 

both strains. Oxgall treated HCC23 and EGD-e cells grown under aerobic conditions 

showed a significant decrease in the average cell wall and cell envelope thickness when 

compared to their respective control cells (Table 2.2). EGD-e cells also had a significant 

decrease in the thickness of the cell membrane. Under aerobic conditions, the presence of 

a high concentration of oxgall caused a decrease in the cell wall possibly contributing to 

the significant decrease in the thickness of the cell envelope.  

 The TEM micrographs of EGD-e and HCC23 grown under anaerobic conditions 

in the presence of 20% oxgall also indicated that the nucleoid and cytoplasm may be 

affected by the presence of bile (Fig. 2.4B). Nearly 54% of the HCC23 bile-treated cells 

exhibited damage to the nucleoid compared to only 9% of EGD-e cells. Cells exhibiting 

dissociation of the membrane from the cytoplasm under aerobic conditions were seen in 

7% of HCC23 cells and only 2% of EGD-e cells.  

Using anaerobic conditions and high concentration of bile salt to model the 

gallbladder of the human digestive system (27), alterations in the thickness of the cell 

envelope of EGD-e and HCC23 cells were analyzed to determine if membrane damage  

 

 



46 

Table 2.2 
 
Average thickness of the cell wall, membrane and envelope of HCC23 and EGD-e cells 

grown in 0% or 20% oxgall under aerobic and anaerobic conditions. * 
depicts  
significant changes (p<0.05) in treated cells as compared to untreated cell. 

 

 

 

could potentially occur in vivo. Oxgall induced significant changes to the cell wall, 

membrane and envelope of both strains (Table 2.2). The average thickness of the HCC23 

cell wall, membrane and envelope significantly decreased when grown in the presence of 

bile under anaerobic conditions. While the cell wall and cell envelope of the EGD-e 

decreased, the cell membrane thickness increased when grown in the presence of oxgall. 

Bile had a significant effect on the thickness of the cell wall, cell membrane and cell 

envelope of both strains, yet the micrographs suggest that the changes to the HCC23 cell 

membrane may also allow damage to the nucleoid and cytoplasm contained inside the 

cell.  

Strain,
% oxgall Cell Membrane Cell Envelope

aerobic anaerobic aerobic anaerobic aerobic anaerobic

HCC23, 0%

EGD - e, 20% 

20.31

Average Thickness (nm)

15.91*

25.57

20.17*

5.02

5.21*

3.72

5.74*

25.02 

20.91 *

29.07

EGD- e, 0% 17.79 25.87 8.54 3.50 27.32 29.47

26.06*

3.32* 21.13 * 16.25*HCC23, 20% 15.57* 13.15* 5.58

Cell WallStrain,
% oxgall Cell Membrane Cell Envelope

aerobic anaerobic aerobic anaerobic aerobic anaerobic

HCC23, 0%

EGD - e, 20% 

20.31

Average Thickness (nm)

15.91*

25.57

20.17*

5.02

5.21*

3.72

5.74*

25.02 

20.91 *

29.07

EGD- e, 0% 17.79 25.87 8.54 3.50 27.32 29.47

26.06*

3.32* 21.13 * 16.25*HCC23, 20% 15.57* 13.15* 5.58

Cell Wall
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HCC23 may exhibit intracellular accumulation of bile salts 

TEM micrograph examination indicated that HCC23 had patterns of intracellular 

darkening following 6 hr of exposure to oxgall. To determine if this cytoplasmic defect 

was due to an influx of bile salts, we examined HCC23 cells at 3 hr and 6 hr in the 

presence of 0% or 20% oxgall under anaerobic conditions. TEM micrographs indicated 

that a visible darkening occurred within the cytoplasm of these cells. After 3 hr of bile 

exposure, approximately 13% of the treated HCC23 cells exhibited the phenotype of 

darkening in the cytoplasm. By 6 hr 20% of HCC23 cells exhibited this phenotype. 

HCC23 cells that were not exposed to oxgall did not have any areas of intracellular 

darkening within the cytoplasm. Additionally, no areas of cytoplasmic darkening were 

observed within EGD-e cells in the presence or absence of bile salts (Fig. 2.5).   
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Figure 2.5   TEM images of HCC23 anaerobically grown cells in the presence of 0% or 
20% oxgall at 3 and 6 hrs exhibiting an increase darkening within the 
cytoplasm. Arrows indicate darkened cytoplasm. Magnification: 27,000x for 
3 hr photos and 40,000x for 6hr photos. 
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Discussion 

 L. monocytogenes acts as a foodborne enteric pathogen. It must be able to invade 

and survive within the human digestive system to establish infections. The gastric juices 

that make up this hostile environment serve as a natural barrier to combat the bacteria as 

it travels through the liver, gallbladder, and the intestinal tract. Throughout this 

environment, bacteria are exposed to various concentrations of bile ranging from 15% or 

higher (13). Bile and gastric enzymes function to break down the lipid constituent of 

food. Bile also acts as a bactericidal agent against bacteria that possibly enter the 

digestive system through ingestion of contaminated food products. Bile resistance has 

been proposed to be an indicator for bacterial pathogenicity, yet this has not been well  

characterized for L. monocytogenes. To establish an infection this pathogenic 

microorganism must be able to resist the detergent effect of bile and must also be able to  

repair any damage induced by this bactericidal agent. In the current study our purpose 

was to look at the effect that bile has on the bacterial membrane and to determine whether 

that effect differed based on the virulence capability of the strain.  

 Bile salts are the damaging component of bile. Their presence in various 

concentrations throughout the body makes them a constant source of damage to the 

bacteria (27). With the recent finding that L. monocytogenes is able to replicate 

extracellularly within the gallbladder (14, 15)  where bile salt concentrations can be 15% 

or higher, it has been suggested that resistance to high concentrations of bile salts is 

essential for the pathogenesis of this pathogen. To investigate whether virulence is related 

to the ability to resist bile, we determined the ability of the naturally isolated avirulent 

strain HCC23 and the virulent strain EGD-e to grow in the presence of high 
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concentrations of bile salts. We found that both strains were able to grow in the presence 

of conjugated and non-conjugated forms of bile salts. However, the growth of HCC23 

was severely impaired in the presence of all forms of bile salts tested.  

However, the virulent strain exhibited the capability to adapt to the environment 

and continue to proliferate in the presence of bile salts. For all conditions tested, EGD-e 

had an extended lag period followed by a rapid increase in cell growth. This result 

suggests that these cells are able to adapt to this stressful environment, repair any damage 

that might have been introduced by the bile salts, and resume replication.  

 Utilizing scanning electron microscopy, we were able to visually observe the 

effect bile salts have on the cell surface of virulent and avirulent strains of L.

monocytogenes. Exposure to oxgall resulted in very little damage to the EGD-e cell 

surface as compared to the untreated EGD-e cells. HCC23 exhibited more damage to the 

cell surface, as was indicated by indentations observed on the cell surface. To quantify 

these changes in the cell surface, the length and width of HCC23 and EGD-e cells were 

measured. Under aerobic conditions, the cell width of both strains was significantly 

altered; HCC23 had a decrease in cell width and EGD had an increase in cell width. 

Under anaerobic conditions, the length and width of only the HCC23 cells were 

significantly decreased when grown in the presence of bile salts. It is possible that the 

HCC23 cells became shorter and less wide as cytoplasmic material is lost through the 

compromised membrane. In the gram-positive bacteria Lactobacilli and Bifidobacteria, it 

has been shown that bile salts dissipate the transmembrane electron potential (20). This 

disrupts the membrane integrity and allows the leakage of protons, potassium ions, and 
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other cellular components out of the cell (20).  The fact that EGD-e cells are expanding in 

cell length could indicate a mechanism utilized to keep the membrane intact.  

 Analysis of the TEM images resulted in several conclusions concerning the effect 

of bile on HCC23 and EGD-e cells. The cell wall, membrane, and envelope of both 

strains were significantly affected by the presence of bile. This decrease in the thickness 

of the layers of the membrane is probably due to the detergent effect of bile salts. The 

damaged nucleoid, dissociation of the membrane from the cytoplasm, and dark 

accumulation within the cell occurred in the presence of bile salts in the avirulent strain. 

This supports the conclusion drawn from the SEM data that bile salts affect the individual 

layers of the cell envelope thus making it more permeable. The space within the cell 

where the membrane seems to be dissociating from the cytoplasm could also be due to 

the loss of intracellular material, which would also correlate to the overall decrease in cell 

width of HCC23.  

We believe the alterations occurring at the membrane level allow the bile salts to 

affect the intracytoplasmic components of L. monocytogenes and this effect is 

exaggerated in the avirulent strain HCC23.  The increase in intracellular darkening occurs 

over time in the cytoplasm of HCC23 cells and we believe could indicate intracellular 

accumulation of bile salts. Because our SEM data indicates that the membranes of the 

HCC23 cells are being significantly affected in the presence of bile salts it is no surprise 

that the intracellular darkening was specific to the HCC23 cells. The damage occurring at 

the membrane would allow a flux of material, such as the bile salts, into the cell.  In this 

case bile salts that were able to breach the cell wall and accumulate within the cytoplasm 

could then exert DNA damage and lead to cell death. This idea is supported by the fact 
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that more HCC23 cells exhibited a damaged nucleoid than the EGD-e cells. This damage 

to the nucleoid would render the cell non-functional, which would explain the decrease in 

growth, especially in HCC23 cells, in increasing concentration of bile salts.  

From these data and literature supporting the detergent properties of bile salts on lipids 

(10) , we propose the following model for the effect of bile on the viability of L.

monocytogenes (Figure 2.6). Bile salts act on the phospholipids and fatty acids of the 

membrane to disrupt the proton and potassium ion pumps, thus altering the 

transmembrane electron gradient and allowing for the influx of bile salts into the cell and 

efflux of cellular components out of the cell. Bile salts move into the cytoplasm and are 

targeted to the nucleoid. The bile salts then induce DNA damage, most likely through 

reactive oxygen species. If damage is too profound for repair, the cell will cease to 

replicate and will eventually undergo cell death. DNA damage induced by bile salts is 

well described in gram-negative bacteria (3, 18, 26) but remains in its infancy in gram-

positive bacteria, though a recent study did find the induction of the nucleotide excision 

repair gene urvA in L. monocytogenes cells in presence of bile salts (19). The thickness of  
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Figure 2.6   A model for bile induced damage in L. monocytogenes HCC23 cells. Bile 
salts damage the structure of the membrane resulting in the loss of the 
electron chemical gradient, the influx of bile salts into the cell and the efflux 
of intracellular components. Finally the bile salts accumulate inside the cell 
and act on the nucleoid of the cell to damage the DNA. If the damage reaches 
the point beyond repair the cell will undergo cell death.

the cell envelope layers in EGD-e cells were significantly affected, but the overall shape 

of the cell was not altered. This suggests that EGD-e has a mechanism for excluding the 

bile salts from the cell. Recently, a bile exclusion system (BilE) in L. monocytogenes was 

characterized for its ability to prohibit bile salts from entering the cell (32). bilE 
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expression was also shown to be regulated by the main virulence regulator PrfA, which 

indicates that the exclusion of bile is related to virulence. Yet, even in this work, 

radiolabelled bile salt was still shown to accumulate within the cell whether bilE was 

present or mutated, thus indicating that other mechanisms may be in place to export the 

bile once it has penetrated the membrane. This would account for the few damaged 

nucleoids observed and the absence of significant changes to the overall cell shape for 

EGD-e. Interestingly, HCC23 (NCBI Reference Sequence NC_011660) contains the bilE 

operon and shows 91% sequence similarity to the bilE gene in EGD-e (NCBI Reference 

Sequence NC_003210). It also shows 97% similarity to the bsh gene of EGD-e 

(lmo2067) and 99% similarity to the proposed bile salt dehydrolase, btlB gene (lmo0754). 

HCC23 lacks pva (lmo0446), which is the only other gene identified for bile resistance in 

L.monocytogenes. This indicates that there may be other genes in EGD-e that are yet to 

be characterized for their involvement with tolerance and adaptation to bile.  
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CHAPTER III 

CONCLUSION 

  

Bile represents an important natural mechanism of defense in the human 

gastrointestinal system. Enteric pathogens must have the ability to survive the stressful 

conditions created by the gastric juices and bile. It is this resistance to bile that enables 

some bacteria to invade and establish infections in the many organs that make up the 

human digestive system. The fact that bacteria have evolved mechanisms to sense the bile 

salts, as seen in Lactobacilli and Bifidobacteria, as well as utilize antibiotic resistance 

efflux pumps to remove bile salts, indicates that bile provides a barrier to the survival of 

bacteria (3, 7).  

The effect of bile on the membrane and DNA of several different gram-negative 

and gram-positive pathogenic bacteria was investigated in a literature review in chapter 1 

of this thesis. The aim of this review was to illustrate how bile induces damage on enteric 

bacteria and illustrate that bacteria utilize several different mechanisms to cope with the 

presence of bile and its resulting damage. Bile has been shown to upregulate several 

genes involved in efflux pumps, membrane biosynthesis, as well as DNA repair and 

general stress response (2, 4-6). This work leads to the idea that the ability and 

mechanisms of the bacteria to overcome the presence of bile may be specific to each 

strain.  
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 To further investigate the influence of bile on bacteria and how it relates to 

pathogenicity, a virulent strain (EGD-e) and a naturally occurring avirulent strain 

(HCC23) of L. monocytogenes were grown under aerobic and anaerobic conditions in the 

presence of various concentrations of bile salts. The growth of each strain was assessed to 

ensure that growth was possible under high concentrations of bile salts that mimic those 

encountered throughout the digestive tract (1). Comparing the growth of EGD-e and 

HCC23 in media containing 0%, 10%, or 20% bile from bovine (oxgall), sodium 

glycodeoxycholate (GDCA), and sodium taurodeoxycholate (TDCA) indicated that 

increasing the concentrations of bile salts decreases the viability of L. monocytogenes. In 

HCC23, the presence of 20% bile salts greatly inhibited the growth of the strain but did 

not eliminate the organism, regardless of whether the cells were grown under aerobic or 

anaerobic conditions. EGD-e cells showed a decrease in growth in 20% bile salts, and 

this effect was exacerbated under anaerobic conditions that mimic those found in the 

human digestive system.  

Micrographs from scanning electron microscopy and transmission electron 

microscopy of both strains in 20% oxgall under aerobic and anaerobic conditions gave 

visible confirmation of bile induced damage on the membrane of the cells; this effect was 

exaggerated in HCC23. Measuring the length and width of the cells along with the 

thickness of the cell wall, cell membrane and cell envelope indicated that bile alters the 

cell membrane of both avirulent and virulent strains of L. monocytogenes. The HCC23 

cells became slightly shorter and thinner and the layers of the cell envelope significantly 

decreased when exposed to bile. EGD-e cells also experienced a significant decrease in 

most of the layers comprising its cell envelope, indicating that bile also has an effect on 
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its cell structure. Another important discovery from the TEM images was the darkening 

that occurred within the nucleoid and cytoplasm in bile exposed HCC23 cells over time. 

We believe this indicates that the nucleoid is damaged and that the darkening is actually 

the accumulation of the bile salts within the cytoplasm of the cell.  

 These data and the supporting literature lead us to propose a model in which bile 

salts induce damage to the membrane of the cells allowing for changes in the electron 

chemical gradient and the permeation of the membrane for the flux of bile salts into the 

cell and cellular components out of the cell. Once the bile salts have accumulated in the 

cytoplasm, the DNA is damaged. As a result this may cause an increase in expression of 

several genes involved in the general stress and repair, such as those discussed in several 

bacteria in Chapter 1. If excessive damage occurs, the cell will lose its membrane 

integrity, the cell will experience extensive genomic damage, leading to a cessation of 

replication and ultimately cell death. 

 The importance of this work lies in its ability to give insight to the host-microbe 

interaction of L. monocytogenes and several other pathogenic bacteria within the human 

digestive system. This physiological study indicates a need for further research into the 

DNA damaging capabilities of bile salts on L. monocytogenes and the repair mechanisms 

involved in this and other enteric pathogens allowing them to establish infection within 

the human gastrointestinal tract. The resistance to bile is a useful indicator pathogenicity 

of a bacterial strain.  
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APPENDIX A 
 

ATTEMPTED METHODS: PULSE FIELD GEL ELECTROPHORESIS
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Pulse Field Gel Electrophoresis 

The ability of bile to induce double-stranded breaks into the DNA of Listeria

monocytogenes was investigated using pulse field gel electrophoresis. This method has 

previously been utilized by others to examine the effect of DNA damaging agents on 

bacterial and mammalian cells (2, 3, 5). The single-stranded, double-stranded or intact 

DNA will migrate through the agarose gel differently once a charge is administered. The 

intact DNA should migrate slowly while the damaged DNA will migrate through the gel 

more quickly, allowing for separation and determination of the amount of DNA damaged 

by bile salts.  

 

Materials and Methods 

The strains EGD-e and HCC23 were subjected to a 6 hr exposure to 0%, 10%, or 

20% of oxgall at 37°C under anaerobic and aerobic conditions. Following the exposure, 

the cell concentration was adjusted to 1x108 cells/ml and integrated into plugs that fill the 

wells of a 1% agarose gel (Pulsed Field Certified Agarose Bio-Rad #162-0137) in 0.5X 

Tris-Borate-EDTA. The plugs were made using the Bio-Rad CHEF Bacterial Genomic 

DNA Plug kit (#170-3592). The gel was run in 0.5X TBE buffer for 40 hours at 160 V 

(6-7 V/cm) using a ramp from 3 ms forward/1 ms back to 180 ms forward/60s backward 

(2) on a CHEF Mapper XA System (Bio-Rad #170-3670). The gel was then stained in 

ethidium bromide and photographed using a BioRad gel documentation workstation. 
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Results and Discussion 

The assay was attempted in order to assess the effect that bile salts have on the 

genomic integrity of EGD-e and HCC23. Previous studies in gram-negative bacteria such 

as E. coli and Salmonella enterica have indicated that bile salts induce damage on the 

DNA of enteric bacteria (1, 4). We were not able to achieve separation of the bands from 

the plugs or the standard marker after several attempts. After contacting BioRad 

representatives, changing the running buffer, and changing the running program, we were 

not able to resolve the problems with the assay. The problem may be the running 

conditions program and settings since the standard marker did not properly migrate.  
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APPENDIX B 
 

ATTEMPTED METHODS: COMET ASSAY
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Comet Assay 

The comet assay, also known as single cell gel electrophoresis, is a way to 

visualize double and single-stranded breaks within the DNA. This assay involves the 

electrophoresis of lysed cells embedded in agarose. If DNA is damaged, the DNA will 

migrate from the intact DNA, forming a “comet” tail to appear from the intact DNA. This 

occurs because when a charge is applied, the intact DNA will migrate slower as it is 

confined to the nucleoid and damaged DNA will migrate away from the intact nucleoid. 

This can then be visualized by staining the cells and then viewing the cells with a 

fluorescent or confocal microscope.  The purpose was to use the CometAssay assay kit 

(Trevigen) to determine whether bile salts induce DNA damage and to assess whether the 

amount of damage differs between the virulent strain EGD-e and the avirulent strain 

HCC23 of Listeria monocytogenes.

 

Materials and Methods 

Overnight cultures of HCC23 and EGD-e cells were diluted 1:100 into fresh BHI 

media supplemented with either 0% or 10% oxgall. Cultures were then grown at 37�C for 

4 hr and samples were extracted at 1, 2, 3, and 4 hr. Cell concentrations were determined 

using Beer’s law in order to determine a 1:10 ratio of low melting agarose to cells. 1 x107 

CFU/ml were centrifuged for 10 min at 13 rpm, after which cells were washed in cold 

PBS (MP tablets, 2810305). Using the CometAssay kit (Trevigen )(#4250-050-K), the 

cells were lysed and placed in an alkaline solution made of NaOH and 200 mM EDTA. 

After a short 20 min electrophoresis at 25 V, the cells were dried, stained with the nucleic 



67 

acid stain SYBR Green I, and visualized under a confocal laser scanning microscope 

(Axiovert 200 M Inverted Research microscope).  

 

Results and Discussion 

The data collected from the comet assay did not provide conclusive results. 

However, it was still difficult to examine the DNA due to magnification restraints of the 

microscope. Some “comet tails” appeared to occur, yet once magnified the quality of the 

photo and the appearance of a distinct tail were lost. This assay may be better served 

under a higher powered confocal or higher powered fluorescent scope. The prospect of 

the cells exhibiting the tails indicated that DNA damage was occurring but could be 

better determined through an alternative assay. 

 



68 

APPENDIX C 
 

ATTEMPTED METHODS: LIVE/DEAD ASSAY
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Live/Dead Assay 

The LIVE/DEAD BacLight Bacterial Viability Kit (Invitrogen, L70012) is a way 

to assess viability of bacterial cells based on whether the cell membrane is intact or 

compromised. This kit utilizes two nucleic acid stains: SYTO 9 and propidium iodide. 

SYTO 9 stain will label all the bacteria in a population, but propidium iodide will only 

penetrate through damaged membranes and will cause a reduction in the SYTO 9 stain. 

When the cells are examined using a fluorescent or confocal microscope, the SYTO 9 

will excite/emit at 480/500 nm and propidium iodide will excite/emit at 490/635 nm. 

Based on these dyes the viability of cells and the degree that bile salts are compromising 

the membranes can be determined for the avirulent HCC23 strain and EGD-e strain of 

Listeria monocytogenes.   

 

Materials and Methods 

Overnight cultures of EGD-e or HCC23 were diluted 1:100 into BHI media 

containing either 0% or 10% oxgall. The cultures were grown at 37°C for 6 hr and 

samples were extracted at 1, 2, 3, 4, 5, and 6 hr post inoculation. At each time point, 1 ml 

of cells were centrifuged at 8,000  g, washed in PBS, then resuspended in 1 ml of cold 

PBS. The component A (SYTO 9 dye, 3.34 mM in DMSO) and component B (propidium 

iodide, 20 mM in DMSO) were mixed in a 1:1 ratio and 3 μl of this dye mixture were 

added to every 1 ml of sample. This stained bacterial suspension was incubated at room 

temperature in the dark for 15 min. 5 μl of the stained bacterial sample was transferred to 

a glass microscope slide and viewed under a fluorescent microscope.  
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Results and Discussion  

We were able to visually examine both treated and untreated HCC23 or EGD-e 

cells. However, it was difficult to determine if the membrane was intact or compromised. 

Cells contained both SYTO 9 and Propidium iodide stains. This was also observed under 

control conditions. This might be due to too much stain or poor filters on the fluorescent 

scope. This assay may be better served using a flow cytometer to give a percentage of 

live bacterial cells versus those cells with damaged or compromised membranes.  
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