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Occidiofungin is a novel glycolipopeptide, synthesized and secreted by 

Burkholderia contaminans MS14, demonstrating broad-spectrum antifungal activity and 

potential for successful clinical applications. Its mechanism of action has not yet been 

determined but is known to exhibit fungicidal activity via the induction of apoptosis in a 

manner unique from that of currently approved antifungals. As an early investigation into 

occidiofungin’s mechanism of action, we aimed to identify environmental and cellular 

factors that significantly alter the susceptibility of the model organism, Saccharomyces 

cerevisiae. To that end, we have demonstrated that occidiofungin’s bioactivity requires 

active cellular growth, that new protein synthesis is necessary to adequately respond to 

occidiofungin exposure, and that alterations in transcriptional regulation in response to 

glucose and phosphate deprivation have synergistic and antagonist consequences, 

respectively, on occidiofungin’s effectiveness. Together, this data provides a foundation 

on which occidiofungin’s mechanism of action can be illuminated.  
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CHAPTER I 

INTRODUCTION 

Invasive Fungal Infections 

An Invasive Fungal Infection (IFI) is the infection of blood, normally sterile body 

fluids, tissues, and organs by fungal organisms. These are typically classified as being 

either endemic or opportunistic in nature, and their classification is an indication as to 

how the infection was acquired (Pfaller and Diekema 2007). Endemic IFIs are associated 

with exposure to a fungal pathogen in its natural environment, thus the causative 

organisms vary according to geographical region. In the United States, endemic IFIs are 

most commonly caused by Histoplasma capsulatum and Blastomyces dermatitidis in 

southern and midwestern states, and by Coccidioides immitis in southern and western 

regions (Chu, et al. 2006). The organisms of endemic IFIs capably infect 

immunocompromised patients, but differ from their opportunistic counterparts in their 

propensity to infect healthy hosts. One population-based study, conducted on a national 

database of hospital inpatient stays in 2002, found that 13% of patients who died from 

endemic IFIs were likely already at an increased risk of mortality due to serious 

underlying conditions, while the remaining 87% were healthy and immunocompetent 

prior to infection onset. This study also found a relatively low rate of mortality for 

endemic IFIs, with crude mortality rates for children and adults at 5% and 7%, 

respectively (Chu, et al. 2006).  The same was not found for opportunistic IFIs. 
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Opportunistic IFIs, most commonly caused by Candida spp., Cryptococcus 

neoformans, Pneumocystis jirovecii, and Aspergillus spp., are of particular concern 

because almost all are Healthcare Associated Infections (HAIs) (Pfaller and Diekema 

2010). The Centers for Disease Control and Prevention (CDC) defines an HAI as “a 

localized or systemic condition resulting from an adverse reaction to the presence of an 

infectious agent(s) or its toxin(s) that was not present on admission to the acute care 

facility” (The Centers for Disease Control and Prevention 2014). In order to more 

accurately classify HAIs for epidemiological purposes, these infections are further 

divided into two subclasses, Community-Onset (CO) and Healthcare Facility-Onset (HO; 

formerly termed “nosocomial”), based on the period of time between a patient’s 

admission to a healthcare facility and the onset of infection (before and after 72 hours 

post-admission, respectively) (National Healthcare Safety Network (NHSN) Overview 

2012).   

The Epidemiology of Opportunistic Invasive Fungal Infections 

The true presence of fungal infections is difficult to quantify, but improvements in 

hospital reporting practices and the culmination of data from numerous studies has 

provided a glimpse into their increasing epidemiological significance. One such study is 

the National Hospital Discharge Survey (NHDS), a database compiled by the National 

Center for Health Statistics consisting of inpatient data from roughly 500 nonfederal 

acute care hospitals representatively distributed across all geographic regions in the U.S. 

An analysis of this database found that, between 1979 and 2000, the rate of sepsis caused 

by fungal organisms increased by 207%, greater than that of sepsis caused by gram-

positive or -negative organisms (Martin, et al. 2003). In 1996, the incidence of 
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hospitalization for invasive mycoses was 306 per million (Wilson, et al. 2002), and the 

overall incidence of such infections has continued to rise (Alangaden 2011; Oren and 

Paul 2014; Pfaller and Diekema 2010). Further, opportunistic IFIs are generally 

associated with high mortality rates.  

Numerous factors complicate resolving true case-fatality ratios. This is due to the 

tremendous variations in patient age, health, prior exposure to risk factors, and 

underlying conditions.  However, studies using case-control methods are more accurately 

able to determine the mortality rates due to IFIs by matching relevant background 

information of patients with and without fungal infections and comparing the patients’ 

outcomes. Using this method, attributable mortality rates for candidemia (also called 

invasive candidiasis [IC]), cryptococcosis, and invasive aspergillosis (IA) have been 

estimated at between 10-49%, 21%, and 58%, respectively (Pfaller and Diekema 2010). 

Even this method of analysis is inaccurate on some level, however, as a 2014 study 

analyzing data from 11 single-center, multi-center, and nationwide reports on nearly 

200,000 autopsies found that, of the 9,187 autopsies indicating the presence of IFIs, only 

46% were diagnosed pre-mortem. This investigation revealed that much of the 

epidemiological data based on the pre-mortem diagnosis of IFIs could be grossly 

underestimated (Dignani 2014).  

Regardless of the true epidemiological presence of IFIs, it is generally accepted 

that this trend is – in part – due to, rather than in spite of, the development and more 

widespread application of advanced medical and surgical procedures (Weinstein and 

Fridkin 2005). Though these practices generally improve patient welfare, many of these 

advances have increased the number of groups at-risk for the development of 
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opportunistic IFIs. The largest of these high-risk groups include those with previous 

exposure to broad-spectrum antibiotics (due to a disruption of the host’s natural flora, 

opening up formerly competitive growth environments to pathogenic organisms), 

recipients of immunosuppressive therapy (particularly for cancer, hematopoeitic stem cell 

transplants [HSCT] and solid organ transplants [SOT]), major surgery (especially those 

involving the gastrointestinal [GI] tract), those with AIDS, neoplastic diseases, advanced 

age, and premature birth (Procop and Roberts 2004; Weinstein and Fridkin 2005; Pfaller 

and Diekema 2010; Alangaden 2011). These risk factors often leave the host extremely 

vulnerable to pathogens that would otherwise be defeated by a healthy immune system.  

With the increasing incidence of fungal infections, their association with high 

mortality rates, and the growing size of populations at-risk, the fact that IFIs are a 

tremendous financial burden on the U.S. healthcare system is not surprising. In 1998 

alone, attributed costs for the treatment of systemic fungal infections were estimated to be 

$2.6 billion, averaging $31,200 per patient and making up approximately 0.24% of the 

total U.S. health expenditures for that year, an expense incurred by only 0.03% of the 

total U.S. population. Further investigation found that the extended length of stay 

required for many fungal infections was responsible for 47% of these costs, drug 

expenses for 17%, laboratory tests 11%, and the remaining amount accounted for by 

other factors (Wilson, et al. 2002). With such a significant portion of healthcare 

expenditure dedicated to the treatment of fungal infections, the characterization of fungal 

pathogens for use as model systems is an essential foundation for the development of 

safer and more effective antifungals. 
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Candida and Candidemia 

Of the approximately 600 fungal species known to be human pathogens, Candida 

species are a valuable prospect for the characterization of fungal pathogenicity (Mayer, 

Wilson and Hube 2013). This is largely due to the high mortality rate and frequency of 

infections by Candida spp. in comparison to other fungal pathogens. As shown in Table 

1.1, the incidence of infections by Candida spp. is comparable only to that of 

Cryptococcus species – a pathogen with a relatively low case-fatality ratio – and far 

exceeds the incidence of fungal infections with analogous mortality rates (Rees, et al. 

1998).  Candida’s identity as the most important cause of opportunistic mycoses is 

supported by numerous other studies.  

For example, studies evaluating the epidemiology of IFIs throughout various time 

periods have consistently reported Candidemia (the presence of Candida species in the 

blood) as the most prevalent of all systemic fungal infections, and for the last two 

decades Candida species have remained the fourth leading cause of HO Bloodstream 

Infection (BSI) in the United States, making up between 8-10% of all such BSIs 

(Edmond, et al. 1999; Wisplinghoff, Bischoff, et al. 2004). Given that 10% of HO 

infections are BSIs, and that a conservatively estimated 8% of those are candidemia, 

Wenzel et al postulated that the annual number of HO candidemia cases ranges from 

7,000-28,000. Considering that – according to data from the Surveillance and Control of 

Pathogens of Epidemiologic Importance (SCOPE) – the crude mortality rate of 

candidemia is 40%, Wenzel and colleagues estimated that 2,800-11,200 deaths per year 

are associated with HO candidemia (Wenzel and Edmond 2001). Therefore, based on the 

assumption that two-thirds of all Candida BSIs are HO, the number of candidemia cases 
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in the U.S. could range from 10,500-42,000 infections per year (Pfaller and Diekema 

2007).   

Table 1.1 Incidence and case-fatality ratios for selected fungal infections, San 
Francisco Bay Area counties, 1992 – 1993 a 

   

Pathogen 
Incidence (no. 

cases/million/yr) b Case-fatality ratio (%) 
   
Candida species 72.8 33.9 
        C. albicans           37.1          38.1 
        Non-albicans           35.7          29.5 
Cryptococcus 65.5 12.7 
Coccidioides 15.3 11.1 
Aspergillus 12.4 23.3 
Histoplasma 7.1 21.4 
Zygomycetes 1.7 30.0 
Other 3.5 < 0.2 

Total 178.3 22.4 
a Data adapted from Rees et al. 1998.  
b Based on cases known to be the patient’s first episode of the infection. 

The high occurrence of Candida infections thus places a much greater burden on 

the U.S. healthcare system than other IFIs. Though the incidence of other major systemic 

fungal infections – such as Invasive Aspergillus (IA) – appear to be decreasing, the 

frequency of Invasive Candidiasis has remained steady over the past decade; and recent 

data revealed that, with respect to IC, the risk of death during hospitalization is no lower 

now than in the 1980s and early 90s (Pfaller and Diekema 2007). Furthermore, 

hospitalization due to IC has been shown to increase the length of stay by an average of 

14 days, burdening hospitals by limiting the space and personnel resources available to 

care for other patients. The incidence, high mortality rates, and extended length of stay 
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for treatment associated with IC (Table 1.2) translated to an estimated total cost of $1.7 

billion in 1998 (65% of the total costs for systemic fungal infections in that year), at an 

average per-patient additional cost of $14,804 (Wilson, et al. 2002). This financial burden 

has continued to rise, with more recent studies indicating that the costs of IC average 

$39,331 in additional expenses for adults and $92,266 for pediatric patients (Zaoutis, et 

al. 2005).  

These aforementioned factors have obligated clinical investigators to place great 

emphasis on finding ways to reduce the burden of IC and other IFIs. The primary tactic 

used is similar to that of the prevention of other HAIs: improved training of health care 

workers (HCW) (Alangaden 2011). This strategy includes three simple, “low-tech” 

practices: maximizing conformity to existing hand hygiene recommendations, improving 

adherence to guidelines for the insertion and maintenance of central venous catheters, and 

the rigorous enforcement of responsible antimicrobial application (Pfaller and Diekema 

2007; Alangaden 2011). However, as indicated by the persistent incidence of IC 

compared to other IFIs, reducing the infection rate of Candida spp. has proven 

particularly difficult.  
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Table 1.2 Incidence and associated costs of candidiasis and other common invasive 
fungal infections a 

NHDS 1996  

       
 

N 

Rate per 
million US 
population 

Incremental  
costsb 

LOSc  
(days) 

In-hospital 
mortality 
rate per 

admission 

 

       

Candidiasis 61,680 228.19 $14,804 14 6.3%  

Aspergillosis 9,261 34.26 $36, 867 19 3.9%  

Cryptococcosis 7,987 29.55 $6,328  16%  

Histoplasmosis 3,681 13.62 $329  3.4%  

Total 82,608 305.62 $15,813  6.8% 
 

a Wilson 2002.  
b average per-person hospitalization costs projected to 1998 dollars.  
c LOS – Length of Stay (excess hospitalization due to infection). 

One reason for this resilience is that some Candida species, particularly Candida 

albicans, are natural constituents of human microbial flora; thus, infections frequently 

arise when these natural residents of the gastrointestinal tract gain an advantage over the 

immune system of their host (Nucci and Anaissie 2001; Alangaden 2011). In fact, a 

review of 203 published candidemia studies found 21 that evaluated specific sources for 

Candida infections, and an analysis of these identified the gut as the primary endogenous 

source for candidemia (Nucci and Anaissie 2001).  For the remaining infections of 

exogenous origin, the culprit could be any number of things, as Candida spp. have been 

isolated from environmental cultures of various items in health care facilities such as 

floors, countertops, other inanimate surfaces, and even food (Vazquez, Sanchez, et al. 

1993; Vazquez, Dembry, et al. 1998). This seemingly omnipresent residency status in the 

host and healthcare environments makes IC prevention understandably difficult. Thus, 
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although the continued implementation of HAI prevention strategies is important, the 

search and development of novel antifungal therapies through the use of established 

model fungi is an essential step towards improving patient outcomes. 

Two Yeasts in a Pod: Candida albicans and Saccharomyces cerevisiae 

Of the more than 200 described Candida species, just 5 are responsible for the 

majority of candidemia cases. As part of the ARTEMIS DISK Global Antifungal 

Surveillance Study, data from 127 medical centers in 39 countries indicated that C. 

albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei were responsible for 

90-95% of cases worldwide (Pfaller and Diekema 2007; Warnock 2007; Guinea 2014). 

Of the 1,890 HO BSI Candida isolates identified in the SCOPE project between 1995-

2002, C. albicans accounted for 54% of cases, with C. glabrata ranking second at 19%, 

followed by C. parapsilosis and C. tropicalis at 11% each, and C. krusei at 2% 

(Wisplinghoff, Bischoff, et al. 2004). Its prevalence makes C. albicans an exceptional 

candidate for use as a model fungal pathogen and, as a result of such studies, much has 

been discovered about its pathogenicity mechanisms and complex host-pathogen 

relationship (Mayer, Wilson and Hube 2013). In addition to its prevalence in healthcare, 

other factors have also strengthened its nomination as a model for IFIs. Particularly 

notable is its similarity to one of the most extensively studied eukaryotic model 

organisms, the budding yeast, Saccharomyces cerevisiae.  

Saccharomyces cerevisiae, or Baker’s Yeast, has long been an integral part of the 

continued pursuit to discover and understand the eukaryotic cell. Its single-cellular 

nature, relatively quick replication cycle, and ease of handling/manipulation have 

reinforced its continued use as a model eukaryote. From the early characterization of 
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eukaryotic organelles and cellular trafficking, to the descriptions of interactions between 

proteins and the mapping of entire regulatory cascades, the molecular techniques 

perfected in S. cerevisiae ushered in entire new fields of study like “functional genomics” 

and “systems biology”. Specifically, in April 1996, S. cerevisiae became the first 

eukaryotic organism to have its entire genome sequenced. Like many studies before it, 

what began in yeast has now expanded to more complex organisms, strengthening the 

foundation of our current understanding of eukaryotic cell biology (Botstein and Fink 

2011). The published sequence of its 16 chromosomes, encoding 6,604 open reading 

frames, has enabled comparisons of functional genomics and evolutionary biology 

studies between S. cerevisiae and numerous other organisms. The addition of this genetic 

perspective has not only refined current phylogenetic tree models but also given a “head-

start” to the genomic characterization of other organisms, particularly C. albicans 

(Botstein and Fink 2011; Scannell, Butler, and Wolfe 2007). In fact, such studies on S. 

cerevisiae and C. albicans have revealed that over 80% of the genes are similar between 

both organisms (Kabir, Hussain and Ahmad 2012). 

Both S. cerevisiae and C. albicans are members of the Saccharomycetaceae 

family, characterized by reproduction via budding, within the Ascomycota (sac-fungus) 

phyla of Fungi (Scannell, Butler and Wolfe 2007). These two yeasts share many qualities 

including rapid growth, easy handling, dispersed cells, and replica plating. Additionally, 

they frequently share certain aspects of many cellular signaling cascades. For example, 

the Hog1 Stress-Activated Protein Kinase (SAPK) involved in sensing osmotic and 

oxidative stresses is homologous between the two species, while the putative K+ 

transporter Kch1 involved in the ER stress response of both yeasts are merely orthologs 
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(Smith, Morgan, and Quinn 2010; Stefan and Cunningham 2013). Because of this close 

relationship, many molecular technologies that have been discovered and perfected in S. 

cerevisiae are directly transferrable to C. albicans after only small procedural 

modifications (Kabir, Hussain and Ahmad 2012). These congruencies have continued to 

support the role of C. albicans as a model for IFI pathogenicity. However, despite its 

overarching prevalence in healthcare and likeness to S. cerevisiae, there are significant 

limitations to using C. albicans that make S. cerevisiae more appropriate for initial 

studies aimed at characterizing the Mechanism of Action (MoA) of novel antifungals. For 

example, one key difference between the two organisms is the genetic complexity of C. 

albicans.  

Researchers in S. cerevisiae labs first began working with C. albicans around the 

time when its identification as a microbial pathogen became increasingly common in the 

1970s and 1980s, and even more began to study it in the ‘90s; but the chromosomal 

instability and diploid nature of C. albicans greatly slowed the pace at which genetic 

manipulation became readily feasible. Even with the publication of the complete genome 

sequence of the C. albicans in 2004, progress was considerably slower than that of S. 

cerevisiae, primarily due to the work required to make the C. albicans genome amenable 

to manipulation. Hence, genomic studies have since experimentally verified the function 

of only 1,403 genes (22.97% of its genome). Another 77.03% (4,705) of its genes’ 

functions have been assigned via comparative sequence analysis, but the remaining 152 

genes/ORFs have yet to be characterized at all (Kabir, Hussain and Ahmad 2012). 

Although select homozygous and heterozygous deletion mutants and regulated 

expression strains are available for C. albicans, these libraries are incomplete 
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(McCluskey, Wiest and Plamann 2010). To the contrary, a complete library of unique 

deletion mutants for every nonessential S. cerevisiae gene exists and is readily available. 

This mutant library is a vital asset for studies on the bioactive mechanisms of antifungal 

agents. Thus, the abundant similarities between the two organisms, combined with the 

comprehensiveness of the S. cerevisiae mutant library, make it a comparable subject for 

the wide-scale susceptibility testing required for antifungal MoA determination. Its 

successful history as a research tool for other drugs also supports its continued use in this 

regard (Cardenas, et al. 1999). 

After the publication of the complete genome sequence of S. cerevisiae in 1996, 

the scientific community’s understanding of conserved cell biology began improving 

considerably. Of particular importance was the realization that the baker’s yeast has far 

more in common with mammalian cells than previously thought. Though there are 

expected differences, a surprising number of partially or completely conserved gene and 

protein functions were discovered to exist between mammals and this yeast. In fact, at 

least 31% of S. cerevisiae’s genes have homologs in humans (Botstein, Chervitz and 

Cherry 1997). In instances where homologs do not exist, the ability to heterologously 

express mammalian genes in S. cerevisiae has proved particularly useful. As such, it has 

commonly (and successfully) been used to study genetic components of various human 

diseases and the mechanisms of a wide array of drugs, including immunosuppressants 

(cyclosporine A, FK506, and rapamycin) and steroid receptor antagonists (tamoxifen) 

(Cardenas, et al. 1999). As discussed previously, S. cerevisiae also shares many features 

with the pathogenic yeast, C. albicans (Goldstein and McCusker 2001). Its unique 

relationship to both mammalian and fungal cells offers a unique opportunity, as S. 
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cerevisiae appears to stand in the middle ground between two distinct yet frequently 

cohabitating organisms (Cardenas, et al. 1999). Using this concept as an advantage, it is 

possible to identify cellular pathways in S. cerevisiae that, when altered, have an impact 

on antifungal susceptibility.  This information can subsequently serve as the groundwork 

for describing an antifungal’s MoA. Additionally, characterizing the activity of 

antifungals could highlight novel, fungi-specific targets and potentially open doors to the 

development of entirely new classes of drugs.  

Modern Antifungal Therapies 

With such a significant impact on healthcare worldwide, fungal infections surely 

deserve attention with regards to the research and development of effective antifungal 

treatments. Unfortunately, antifungal research is a relatively young field and, 

consequently, severely lacking in the variety of clinically available therapies. The first 

antifungal agent, griseofulvin, was isolated in 1939 from a culture of Penicillium 

griseofulvum dierckx, but its antifungal activity was not described until 1955, when it was 

discovered to possess activity in vitro against pathogenic skin fungi. In 1958 it was found 

that only oral administration was effective for the treatment of dermatomycoses. 

Unfortunately, its activity was limited to this fungal group, making griseofulvin 

unsuitable for treating systemic infections (Flint, Forsey and Usher 1959). Most of the 

systemic antifungal drugs in use today were introduced after 1990, but the history of 

these antifungals began with the discovery of amphotericin B in the 1950s (Nett and 

Andes 2012). Amphotericin B’s potent and broad-spectrum activity led to its widespread 

use against serious invasive fungal infections, but the dose-limiting toxicities associated 

with its use illuminated the need for safer alternatives (Lewis 2011). Since, considerable 
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progress has been made in antifungal therapy and there are now four classes of antifungal 

drugs available for the treatment of systemic and invasive fungal infections. These 

include Polyenes, Pyrimidine Analogs, Azoles, and Echinocandins. Their respective 

cellular targets, spectrums of activity, bioavailability, toxicities, pharmacological 

characteristics, and potentials for resistance development vary between and even within 

classes, therefore all characteristics need to be considered when comparing the clinical 

effectiveness (Nett and Andes 2012). Each class with their respective drugs and 

characteristics are described in further detail below. 

The Polyene Class 

In the polyene drug class, amphotericin B (AmB) is the only molecule approved 

for treating systemic fungal infections and is clinically available in four formulations 

(Nett and Andes 2012). Its discovery in 1953 was a result of the broad screening of 

Streptomycete cultures for antifungal activity. AmB possessed remarkable antifungal 

activity but, in its pure form, had limited solubility in aqueous solutions at physiological 

pH. It was determined that clinical use of AmB would require its association with another 

molecule to facilitate clinical bioavailability, so a complex of AmB and sodium 

deoxycholate was constructed that allowed for successful treatment by means of 

intravenous infusion (Dutcher 1968; Laniado-Laborin and Cabrales-Vargas 2009). 

Amphotericin B primarily kills yeast by binding ergosterol, but also has a secondary 

mechanism wherein it permeabilizes the membrane by forming discrete channels through 

which ions freely pass. This secondary effect is not required for AmB’s fungicidal 

activity; instead, it is believed to increase the drug’s potency and the rate of fungal cell 

death (Gray, et al. 2012). This dual-threat mode of action is a key factor in its broad 
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spectrum of activity. Because ergosterol is such a ubiquitous component of fungal cell 

membranes, AmB possesses activity against a variety of fungi, including many 

pathogenic yeasts, molds, and dimorphic species (White, Marr and Bowden 1998).  

However, AmB’s partial affinity for cholesterol (ergosterol’s mammalian homolog) can 

cause serious infusion-related side effects, most notably renal toxicity. This led to the 

development of three AmB lipid conjugates in the late 1990s that, although less severe, 

still possess similar infusion-related toxicities. Thus, lipid-based AmB preparations are 

considered first-line treatment options and AmB deoxycholate as an alternative choice 

(Nett and Andes 2012).  

The Pyrimidine Analog Class 

The Pyrimidine Analog class also contains just one approved drug. Flucytosine 

(5-fluorocytosine; 5-FC) is a fluorinated cytosine analog first synthesized in 1957 as a 

potential candidate for anti-tumor therapy (Duschinsky, Pleven and Heidelberger 1957). 

Though its effectiveness as a cancer drug was limited (Heidelberger, et al. 1958), it was 

soon discovered to possess activity against Candida spp., Cryptococcus neoformans, and 

fungi causing chromoblastomycosis (a fungal infection of the skin) (Benson and Nahata 

1988). Flucytosine is approved for use as an oral capsule, with bioavailability of the drug 

remarkably high (between 80-90%) (Schönebeck, et al. 1973). Interestingly, 5-FC 

possesses no antifungal activity in its native form; rather, fungal uptake of the molecule 

by cytosine permease allows for subsequent intracellular conversion to 5-fluorouracil (5-

FU) via cytosine deaminase. This molecule is then further converted to two additional 

active metabolites that inhibit RNA and DNA synthesis (Waldorf and Polak 1983). There 

are multiple factors limiting 5-FC’s successful use as an antifungal. First, dependence on 
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cytosine deaminase for 5-FC sensitivity is a major limiting factor in its spectrum of 

activity, as fungi lacking this enzyme are obviously unable to convert the inactive 5-FC to 

its active metabolite (A. Polak 1977). Further, this limitation cannot be circumvented 

through the direct use of 5-FU because of its severe toxicity to mammalian cells and 

limited uptake of 5-FU by fungi (Polak and Grenson 1973). Second, the intrinsic 

resistance of many strains and the frequent occurrence of resistance during treatment 

further complicate the use of 5-FC. Consequently, 5-FC is not typically utilized as a 

monotherapeutic agent, but rather co-administered with other antifungals such as AmB 

(Vermes, Guchelaar and Dankert 2000). 

The Azole Class 

Azoles are the most abundant class of antifungals, with at least 9 different drugs 

approved for the treatment of either topical or systemic fungal infections. These drugs are 

characterized by the presence of a five-membered heterocyclic ring that contains one or 

more additional atoms (either nitrogen, sulfur, or oxygen). In the case of antifungal 

azoles, they contain either two or three nitrogens and are termed imidazoles or triazoles, 

respectively (Sheehan, Hitchcock and Sibley 1999). The imidazoles (apart from 

ketoconazole) are only used as superficial antifungal therapies. Triazoles, on the other 

hand, are used to treat a variety of superficial and systemic fungal infections and also 

show greater specificity for fungal cells versus those of the host, making them much safer 

in comparison. Regardless of their structure or effective use, azole antifungals function 

by interfering with the synthesis of ergosterol via inhibition of the enzyme, lanosterol 

demethylase. This enzyme, also called 14-sterol demethylase (encoded by the ERG11 

gene), is a cytochrome P450-dependent component of the ergosterol synthesis pathway, 
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and its inhibition results in the depletion of total ergosterol and a buildup of the enzyme’s 

usual substrate, 14-methylated sterols. Ergosterol is both the major sterol of the fungal 

cell membrane (and therefore essential for membrane integrity and fluidity) and a vital 

component in nutrient transport and chitin synthesis. Further, trace amounts of ergosterol 

are required, as it serves a “sparking” function to allow progression through the cell cycle 

(Sheehan, Hitchcock and Sibley 1999). Because their MoA results in inhibited growth 

and altered membrane structure and function, azoles are merely fungistatic in their 

activity. Thus far, four mechanisms of azole resistance have been described in Candida 

species. These mechanisms involve the induction of efflux pumps that reduce 

intracellular drug concentrations, point mutations in the ERG11 gene that reduce drug 

affinity, upregulation of lanosterol 14-alpha-demethylase (thereby increasing the azole 

concentration required for effect), or the development of bypass pathways in which the 

membrane-disruptive effects of azoles are circumvented. Strains resistant to azoles may 

possess one or more of the above mutations (Pfaller 2012). Like most antifungals, azoles 

are typically administered in combination with other therapeutic agents to improve 

therapy effectiveness and reduce the likelihood of resistance development. 

The Echinocandin Class  

Echinocandins are the newest and final class of antifungal drugs approved for the 

treatment of systemic infections. The FDA approved the first agent, caspofungin, in 2002, 

and two additional class members, micafungin and anidulafungin, were subsequently 

approved in 2005 and 2006, respectively. Echinocandins are semisynthetic, cyclic 

hexapeptides that are N-linked to a fatty acyl side chain (Perlin 2011). While polyenes 

and azoles target the cell membrane, echinocandins possess concentration-dependent 
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antifungal activity via strong inhibition of ß-1,3-D-glucan synthase, which synthesizes the 

cell wall biopolymer ß-1,3-D-glucan (Pfaller 2012). This enzyme is composed of two 

subunits, Fks and Rho. The Rho subunit is a GTP-binding protein and regulates ß-1,3-

glucan synthase activity. The catalytic activity of enzyme is contributed by Fks (encoded 

by the FKS1, FKS2, and FKS3 genes) and is the target of echinocandins. Though the 

exact mechanics of the echinocandin–glucan synthase interaction are unclear, studies 

have indicated that enzymatic removal of the aliphatic tail results in the drug’s 

inactivation. It is also unknown whether the activity of echinocandins is dependent upon 

transport into the cell, but it is hypothesized that the tail inserts itself into the lipid bilayer 

of the cell membrane and carries out its inhibitory affects from the extracellular side 

(Perlin 2011). Regardless of the exact mechanism, echinocandins have rapidly become 

the preferred treatment against a number of fungal pathogens (Perlin 2011). This is partly 

due to their specificity for impact on the fungal cell wall – a target conveniently absent 

from mammalian cells – making it a relatively low-risk therapy. This, combined with a 

lack of cross-resistance potential with other antifungals and their activity against 

susceptible Candida spp. and Aspergillus spp., equates to a favorable therapeutic index. 

Though echinocandins are fungicidal against yeast and even azole-resistant Candida 

strains, their activity against molds like Aspergillus spp. is fungistatic. Although clinical 

failure as a result of echinocandin resistance in susceptible species like Candida is 

unusual, isolates with reduced susceptibility to these drugs are being identified with 

increasing frequency (Perlin 2011). Resistance is typically associated with mutations in 

two highly conserved regions of FKS1 and/or FKS2 that result in amino acid substitutions 
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in the Fks subunit; these mutations generally impart cross-resistance among the 

echinocandin class (Perlin 2011). 

The Need for Novel Antifungal Therapies 

With the limited treatment diversity, various associated toxicities, and increasing 

occurrences of antifungal resistance in already-prevalent fungal strains, great emphasis 

has been placed on the discovery of novel antifungal agents to fill the gaps in, and 

improve, current therapy options. 

Occidiofungin, a Novel Antifungal 

Occidiofungin is a novel cyclic glycolipopeptide demonstrating great potential for 

clinical antimycotic application as a broad-spectrum antifungal agent. The soil bacterium 

Burkholderia contaminans MS14 synthesizes the peptide via nonribosomal peptide 

synthetases and secretes it into the surrounding environment, thus it was first recognized 

to have antifungal activity as a result of the bacteria’s suppression of a fungal turf grass 

disease, Brown Patch (Lu, et al. 2009). Structural analysis revealed two closely related 

variants, occidiofungin A (1199.55 Da) and B (1215.55 Da). Both possess a cyclic 

structure composed of eight amino acids, one of which is ß-hydroxy tyrosine and another 

is an 18-carbon novel fatty amino acid. This novel fatty amino acid contains a small acyl 

group and functions as an attachment point for a xylose sugar. The two variants differ 

only in the addition of an oxygen atom to occidiofungin B’s asparagine (forming ß-

hydroxy asparagine), which explains the slight difference in mass.  

A 56kb genomic DNA region containing 16 genes, now termed the occidiofungin 

gene (ocf) cluster, is responsible for occidiofungin’s biosynthesis in B. contaminans 
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MS14 and has been described (Gu, Smith and Liu, et al. 2011). Further analysis of this 

genetic and biochemical map demonstrated that the ocfC gene, which encodes a 

glycosyltransferase, is responsible for the addition of xylose to occidiofungin. After 

examining the antifungal activity of the ocfC gene mutant, MS14KC1, it was determined 

that presence of xylose is not important for occidiofungin’s bioactivity (Chen, et al. 

2013).  

Additional research conducted on the chemical stability and in vitro activity have 

revealed that occidiofungin retains the full potency of its activity after exposure to not 

only extreme pH ranges (2-9) and high temperatures (100°C), but also after incubation 

with gastric proteases. These findings suggest that occidiofungin may be suitable for oral 

administration, as these parameters are representative of the environments the drug will 

encounter in the GI tract. This is significant because the only currently available oral 

therapies are azole-class antifungals, to which a growing number of Candida spp. strains 

are acquiring resistance (Ellis, et al. 2012). Also supporting occidiofungin’s potential for 

clinical use are recent studies conducted on its toxicity in a mammalian system. These 

studies revealed that a single dose as high as 20 mg/kg in mice did not affect 

hematological or serum biochemistry, and additional experiments using lower, repeated 

dosing returned similar results. This indicates that occidiofungin administration may not 

result in substantial alterations in organ function. Though initial examinations reveal a 

low potential for toxicity, the researchers did note that further investigation was vital to 

completely characterize the range of occidiofungin’s pharmacological effects (Tan, et al. 

2012).  
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Although its exact mechanism of action is not fully understood, studies indicate 

that occidiofungin possesses broad-spectrum activity against fungi and exhibits its effects 

via a mechanism unique from currently available antifungals. Thus far, Minimum 

Inhibitory Concentration (MIC) assays have determined that occidiofungin’s activity is 

not reliant on disruption of the plasma membrane or other lytic pathways, the binding of 

ergosterol, or the activity of β-1,3-glucan synthase. Further, occidiofungin exposure does 

not appear to impact cell cycle progression (Emrick, et al. 2013). Occidiofungin does, 

however, impart morphological changes on fungal cells at subinhibitory concentrations, 

as cells analyzed after exposure to such doses demonstrated reduced coat (manno) 

proteins on the outer cell wall, possessed intracellular inclusions, and had an enhanced 

distribution of chitin (primarily at emerging bud tips) in daughter cells (Emrick, et al. 

2013). Additionally, occidiofungin appears to induce damage to the cell wall, as indicated 

by the activation of the Cell Wall Integrity pathway as soon as 10 minutes after exposure. 

However, occidiofungin’s fungicidal activity is primarily via apoptosis due to the 

increased production of reactive oxygen species (ROS), double stranded DNA breakage, 

and the externalization of phosphotidylserine that occurs upon exposure to lethal 

occidiofungin concentrations. Further, under anaerobic conditions (an environment 

known to reduce the production of ROS), the MIC of the wild type and mitochondrially 

dysfunctional yeast was double that of typical conditions, suggesting ROS may play a 

significant role in supporting occidiofungin’s MoA. Further supporting an apoptotic 

mechanism of action is the two-fold increase in the occidiofungin concentration required 

to inhibit growth in the YCA1 gene mutant. This gene encodes a caspase-like cysteine 

protease responsible for, among other things, regulating apoptosis in response to high 
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levels of reactive oxygen species (Emrick, et al. 2013). The role of another apoptosis-

associated gene, NDE1 (encoding for a mitochondrial external NADH dehydrogenase), 

was assessed via MIC analysis and the deletion strain was found to be 2-fold more 

sensitive than the wild type. Other apoptotic mutants exhibiting resistance to 

occidiofungin include those deleted for RNY1, a gene encoding a vacuolar RNase that 

promotes apoptosis under oxidative stress, and CSG2, a calcium regulatory protein 

involved in the biosynthesis of sphingolipids. Due to the considerable amount of cross-

talk between apoptotic and autophagic pathways, various autophagic mutants were also 

assessed via MIC, but none suggested a role for autophagy in occidiofungin-induced cell 

death. Thus, apoptosis appears to be the cause of death in occidiofungin exposure. 

Objectives and Experimental Design 

In this study, our goal is to further characterize occidiofungin’s bioactivity by 

comparing the susceptibility of yeasts to occidiofungin under a variety of environmental 

conditions. In this way, we hope to identify cellular pathways that, when their regulation 

is altered in response to these conditions, have an impact on occidiofungin’s bioactivity. 

By categorizing pathways as having a positive, negative, or neutral impact on 

susceptibility, we will establish a number of directions in which research on this novel 

antifungal can confidently progress.  

To accomplish this, we will utilize Colony Forming Unit (CFU) assays using sub-

lethal concentrations of occidiofungin. Though the Minimum Inhibitory Concentration 

(MIC) assay is the standard tool for determining antifungal resistance in the clinical 

setting, we have found that its results have limited utility with regards to detecting subtle 

variances in susceptibility. By design, the MIC assay allows for the determination of the 
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minimum concentration of an antimicrobial agent required to inhibit the visible growth of 

a microorganism. This is in contrast to a Minimum Lethal Concentration (MLC) assay, in 

which the data reported indicates the minimum concentration required to kill a 

microorganism. In the context of occidiofungin with regards to MIC and MLC values, 

occidiofungin’s fungicidal activity renders the two values equal, meaning that yeasts are 

either killed by the drug or survive unscathed. Additionally, both assays report results 

after overnight incubation. Thus, a single yeast surviving exposure to a particular 

concentration of occidiofungin in these assays may be able to proliferate to detectable 

levels, therefore impacting the reported values.  Consequently, for our purposes, 

MIC/MLC values are insufficient in reporting whether certain strains or environmental 

conditions lend yeasts more or less vulnerable to occidiofungin. The CFU assay, 

therefore, has been selected due to its increased sensitivity and ability to monitor cell 

viability over a period of hours instead of days. Additionally, our goal of detecting subtle 

variances in susceptibility led us to conduct CFU assays using sub-lethal concentrations 

of occidiofungin, as lethal concentrations would leave no surviving cells and lend our 

assay no more useful than an MIC. 

Cellular Pathways Examined in This Study 

Due to our interest in using altered environmental conditions to induce 

transcriptional changes in the yeast cell, it is important to establish which pathways are 

responsible for sensing and responding to these altered conditions. In this regard, 

important pathways involved in nutrient sensing are described below. 
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Quiescence  

Like most living cells, yeast are capable of exiting the cell cycle and entering an 

alternative resting state called quiescence. Early studies described quiescence as a single 

G0 state of the cell cycle, initiated by the prolonged deprivation of nutrients regardless of 

the specific environmental conditions in which the cell was placed. These studies were 

conducted on cells grown to saturation in rich media, and the results described particular 

characteristics that came to define quiescence, namely resistance to heat-shock and 

oxidative stress, thickened cell walls, and altered transcriptional profiles (Gray, et al. 

2004). Recent work by Klosinska et al, however, has indicated that only a small subset of 

genes is consistently associated with quiescent cells independent of the specific nutrient 

for which the cell is starved. The remaining transcriptional changes appear to reflect 

compensation for the declining availability of specific nutrients. For instance, the 

upregulation of genes involved in vacuolar transport and autophagy allows the cell to 

recycle existing proteins and organelles upon starvation for nitrogen in order to reallocate 

its limited resources (Klosinska, et al. 2011). Based on these findings, it was proposed 

that quiescence is not a single, distinct phase of the cell cycle, but rather a limited set of 

discrete cellular programs tailored to improve survival under specific stresses 

encountered by the cell. Further, it was illustrated that most of the stress-resistant 

properties associated with quiescence are simply extensions of those found in slow 

growing cells (Klosinska, et al. 2011). Additionally, apart from the detection of a carbon 

source (the presence of which is a primary and sufficient stimulant for cell cycle reentry) 

quiescent yeast are also capable of responding to changes in their environment, such as 

irradiation, heat shock, oxidative stress, and exposure to certain chemicals and toxins, and 
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do so by altering the transcription of genes just as actively proliferating yeast do (Gray, et 

al. 2004). For these reasons, it is desirable to assess the bioactivity of occidiofungin in 

quiescent cells, as establishing whether active cellular growth or normal physiological 

processes are required for its activity could be an important indicator as to its mechanism 

of action. 

Nutrient Signaling and the Cellular Response to Starvation Conditions 

Nutrient sensing and signaling mechanisms related to nutrient-controlled cellular 

regulation have been well characterized in yeast. Most of these pathways are regulated 

using the nutrient itself as an indicator, and these nutrients have been shown to modulate 

numerous signaling cascades associated with their transport and metabolism. For 

example, glucose is the preferred fermentable carbon source for S. cerevisiae and serves 

as the key signaling molecule in a variety of cellular pathways. Some of these pathways 

are involved in catabolic repression and serve to conserve resources by suppressing 

alternative metabolic pathways when a more favorable energy source, like glucose, is 

available (Conrad, et al. 2014). The presence of glucose also regulates other pathways, 

such as those involved in repressing stress tolerance mechanisms and stimulating cell 

proliferation. By using glucose as the central signal for these regulatory cascades, the cell 

is able to mount a whole-cell transcriptional response appropriate for the availability of 

glucose. This theme is central to other nutrient-dependent cellular responses, such as the 

phosphate-regulated PHO pathway  (Conrad, et al. 2014). 

Additionally, although the deprivation of particular nutrients impacts regulatory 

pathways specific to their reacquisition, broader signaling cascades responsible for 

synchronizing cellular processes to nutrient availability are also activated. For example, 
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the Target of Rapamycin (TOR) kinases play an important role in regulating the 

transcriptional response to nutrient availability (Aronova, et al. 2007). As the name 

suggests, it was first discovered as the target of the inhibiting drug, rapamycin. Upon 

exposure to rapamycin, cells exhibited significant alterations in physiology similar to the 

starvation response, thus providing the first indication of TOR’s role in the cell. 

Saccharomyces cerevisiae have two TOR kinases, Tor1p and Tor2p, which associate with 

other proteins to form the TOR1 Complex (TOR1C). This complex is responsible for 

regulating cellular growth in response to the availability of extracellular nutrients, and its 

inhibition by rapamycin mimics the native response to nutrient deprivation (Aronova, et 

al. 2007).  Although the exact manner in which nutrient levels are communicated to TOR 

remains to be described, the varying branches of the TOR pathway provide an 

opportunity to identify transcriptional profiles in the cell that, when altered, might have 

an impact on the bioactivity of antifungals. Though our early studies using MIC assays 

indicated that the deletion of tor1 had no impact on occidiofungin bioactivity (data not 

shown), characterizing occidiofungin activity as it pertains to nutrient-specific 

transcriptional responses could reveal further paths to pursue.  
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CHAPTER II 

MATERIALS AND METHODS 

Strains, Media, and Reagents 

All yeast strains used in this study are derivatives of Saccharomyces cerevisiae 

BY4741, obtained from Thermo Fisher Scientific, and are listed in Table 2.1. The 

CIT2:HA3::HIS3 strain was constructed as reported previously by Ünlü and colleagues 

(Ünlü, Narayanan and Gordon 2013). All media preparations (Table 2.2) were conducted 

using previously published protocols (Sherman 1991). A working dilution of 

occidiofungin at 0.4mg/mL in 100% DMSO was prepared from the 1mg/mL stock 

solution. Rapamycin (Sigma) was prepared at 1mg/mL in 100% ethanol. Cycloheximide 

(Sigma) was prepared at 10mg/mL in sterile distilled water. Chloramphenicol (Sigma) 

was prepared at 34mg/mL in 100% ethanol. 

Table 2.1 Saccharomyces cerevisiae strains used  

Mutant Strain * Systematic Name 

∆tor1::KanR YJR066W 

CIT2:HA3::HIS3  YCR005C 

∆pho4::KanR YFR034C 

∆pho80::KanR YOL001W  

* all strains are derivatives of S. cerevisiae BY4741, having the 

genetic background MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
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Table 2.2 General preparation of media 

Media Components 

YPD +  10g Bacto™ Peptone  

+  5g Bacto™ Yeast Extract  

^ distilled water to 475mL 

Autoclave 28 minutes @ 121°C 

+  25mL 40% Glucose  

YPD agar plates +  10g Bacto™ Agar  

+  10g Bacto™ Peptone 

+  5g Bacto™ Yeast Extract 

^ distilled water to 475mL 

Autoclave 28 minutes @ 121°C 

+  25mL 40% Glucose  

Depleted YPD A 25mL culture of wild-type yeast were grown 

to saturation in YPD at 30°C with shaking for 5 

days. Depleted YPD media was obtained by 

passing the culture through a 0.2µm filter to 

remove yeast prior to use. 

Synthetic Defined  

(Minimal Complete) 

+  0.85g Yeast Nitrogen Base  

    (w/o amino acids and ammonium sulfate) 

+  10g Glucose 

+  2.5g Na2SO4 

+  2.5g (NH4)2SO4 

+  0.01g Histidine 

+  0.04g Leucine 

+  0.01g Methionine 

+  0.01g Uracil 

^ distilled water to 500mL 

Autoclave 23 minutes @ 121°C 

SD –Glucose SD media was prepared as previously described, 

without the addition of glucose. 

SD –Nitrogen SD media was prepared as previously described, 

without the addition of ammonium sulfate 
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Table 2.2 (continued) 

SD –Phosphate +  0.85g Yeast Nitrogen Base  

  (w/o amino acids and ammonium sulfate) 

+  2.5g Na2SO4 

+  2.5g (NH4)2SO4 

+  5mL 1M MgSO4 

+  10mL 29% NH4OH 

^ distilled water to 500mL 

• Mix 1 hour @ RT 

• Filter 2X through Buchner Funnel 

+  10g Glucose 

+  0.01g Histidine 

+  0.04g Leucine 

+  0.01g Methionine 

+  0.01g Uracil 

• Autoclave 23 minutes @ 121°C 

(Kaneko, Toh-e and Oshima 1982) 

SD Complete +Glutamate +  0.85g Yeast Nitrogen Base  

 (w/o amino acids and ammonium sulfate) 

+  10g Glucose 

+  2.5g Na2SO4 

+  2.5g (NH4)2SO4 

+  0.05g Glutamic Acid 

+  0.01g Histidine 

+  0.04g Leucine 

+  0.01g Methionine 

+  0.01g Uracil 

^ distilled water to 500mL 

Autoclave 23 minutes @ 121°C 

SD +2% Raffinose SD Media was prepared as previously 

described, with the addition of 10g raffinose 

substituted for glucose. 
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Colony Forming Units (CFU) and Spotting Assays 

For each condition tested, unless otherwise noted, cells were removed from a 

culture in mid-log phase of growth (~0.5 OD600) via centrifugation (13,000 x g for 8 

minutes at 4°C) and resuspended in the appropriate media at a final cell density of 0.5 

OD600, or approximately 1.67 x 107 cells/mL. At indicated time points, 200µL of cells 

were transferred to the first column on a 96-well microtiter plate. Each sample was then 

5-fold serially diluted 7 times by transferring 40μL cells from one column into the next 

well containing 160μL of the same media. Depending on the viscosity of the media, 

between 3.0 – 4.0µL from each well was spotted in profile onto a 150mm YPD plate and 

then incubated at 30°C. Multiple images were recorded between 24 and 48 hours of 

incubation. To determine colony-forming units (CFU), 50µL from select dilutions were 

spread, in duplicate, onto 100mm YPD agar plates. Colonies were counted after 48 hours 

of incubation at 30°C. Only data from plates that had between 30 and 300 colonies were 

used in determining CFUs. The CFU value for each sample was calculated using the 

following formula: 

 CFU = N × 20 × 5D–1 (Equation 2.1) 

where N = # colonies on plate and D = column # of the corresponding dilution 

For all samples, the Mean CFU at each indicated time point was determined, and 

its value was plotted as the Log10 (Average CFU) versus time (hours).  

For instances in which samples were treated with occidiofungin, cells were treated 

with 1μg/mL occidiofungin, indicated by “+occ”, and that sample’s counterpart treated 

with an equivalent volume of vehicle control, indicated by “Ø” (theta). Samples were 
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treated immediately after the dilutions at T0 hours and then incubated at 30°C with shaking 

for the indicated duration of the experiment. 

Where indicated, samples were pre-treated with either 25µg/mL cycloheximide or 

60µg/mL chloramphenicol, or their vehicle controls (sterile distilled water or 100% 

ethanol, respectively). In these instances, all samples were prepared simultaneously and 

those which were selected for pre-treatment (as indicated) received one of the 

pharmacological agents while untreated samples received the appropriate vehicle 

control(s). All samples were incubated at 30°C with shaking for 30 minutes followed 

select samples (as indicated) being treated with one of the drugs immediately prior to the 

T0 CFU dilution. Appropriate samples were subsequently treated with occidiofungin or its 

control, as indicated and described above. 

Preparation of Quiescent Cells and Verification of the Quiescent Cell State 

A quiescent culture was obtained by growing wild type cells in 25mL YPD at 

30°C with shaking for 4 days. To verify quiescence, resistance to oxidative stress and 

elevated temperatures was tested as previously described (Klosinska, et al. 2011).   

Briefly, to assess resistance to oxidative stress, 1mL aliquots of cells were subjected to 

0mM, 1mM, 5mM, 10mM, and 50mM hydrogen peroxide for 1 hour at 30°C.   Cells 

were subsequently diluted in YPD (unless otherwise noted) to 1.67 x 107 cell/mL and a 

200µL aliquot from each sample was 5-fold serial diluted in YPD in a 96-well microtiter 

plate in the same manner as described in “Colony Forming Units (CFU) and Spotting 

Assays”. 3.75µL of each dilution was spotted, in profile, onto a 150mm YPD plate. A 

similar treatment and dilution protocol was followed in parallel for cells from an 
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exponentially growing culture. Plates were incubated at 30°C and images recorded 

between 24 and 48 hours to compare cell viability.  

To test resistance to elevated temperatures, 1mL aliquots of both quiescent and 

exponentially growing cells were subjected to temperatures of 50°C, 53°C, and 55°C for 

0, 5, 10, and 20 minutes. Cells were diluted to 1.67 x 107 cells/mL in distilled water and a 

200µL aliquot from each sample were 5-fold serial diluted in YPD in a 96-well microtiter 

plate, as previously described.  3.75µL of each dilution was spotted, in profile, onto a 

150mm YPD plate. Plates were incubated at 30°C and images recorded between 24 and 

48 hours. 

Percent Cell Viability with Exposure to Elevated Temperatures 

A mid-log culture was prepared as outlined above. As described above, a 

quiescent culture was prepared and split into a control and fresh media group. Samples of 

each group were prepared simultaneously by pelleting via centrifugation (13,000 x g for 8 

minutes at 4°C) and subsequent resuspension in media to a cell density of 0.5 OD600. The 

mid-log and quiescent fresh media samples were resuspended in fresh YPD while the 

quiescent control sample was resuspended in Depleted YPD. At the start of the 

experiment (T0hours), 1mL of cells from each culture was exposed to 53°C for 10 minutes 

and a volume equivalent to 1x105 cells was diluted with YPD in a microtiter plate, as 

previously described. Following the same protocols outlined above, Spotting and CFU 

Assays were carried out. Cultures were incubated at 30°C with shaking for the duration 

of the experiment and the assays repeated after 0.5, 1, and 2 hours of exposure to the 

media. Percent cell viability was calculated at the indicated time points by dividing each 

sample’s post-heat treatment CFU value by the untreated CFU value of the same sample.  
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Western Blot Analysis 

Total cellular protein was extracted by alkaline cell lysis followed by TCA 

precipitation and then solubilized in SDS-PAGE loading buffer via bath sonication 

(Riezman, et al. 1983). For western blot analysis, protein samples equivalent to 0.1 OD600 

of original cell culture were separated by SDS-PAGE and transferred to nitrocellulose. 

After staining the membrane with amido black to visually confirm equal loading, the 

membrane was blocked with 1X TBS-Tween (20mM Tris pH 7.4, 200mM NaCl, 0.1% 

Tween-20) supplemented with either 2% BSA or 5% non-fat dry milk. Protein detection 

was conducted using murine primary antibodies at 1:5,000 (HA3; Covance) and 1:20,000 

(Pgk1p; Invitrogen) dilutions and an HRP-conjugated anti-murine secondary antibody 

(GE Healthcare) at a 1:8,000 dilution. Pierce enhanced chemiluminescence detection 

system from Thermo Scientific was used for detection. 

Antifungal Preparation 

The occidiofungin used in this study was a gift from James Leif Smith, 

Department of Biology, Texas A&M University and was isolated as previously described 

(Gu, Smith and Wang, et al. 2009). In summary, Burkholderia contaminans strain MS14 

was cultured in potato broth at 28°C for 7 days without shaking. The culture extract (cell 

free) was precipitated using 50% weight/volume ammonium sulfate and the resulting 

pellet resuspended in 35% acetonitrile (ACN):water (volume/volume) and further 

purified by Reversed-Phase High Performance Liquid Chromatography using a 4.6 × 

250mm C18 column (Grace-Vydac). Aliquots of lyophilized occidiofungin were 

resuspended in 100% DMSO to generate a 1mg/mL stock.  
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CHAPTER III 

RESULTS 

Quiescent Yeast Exhibit Resistance to Occidiofungin 

Due to the similarities between quiescent and slow growing yeast, it was desirable 

to characterize the susceptibility of quiescent cells to occidiofungin exposure. To verify 

that the yeasts had reached a quiescent state by the four day incubation period, their 

resistance to oxidative stress and elevated temperatures was assessed. As shown in Figure 

3.1, exponentially growing cells were markedly more susceptible to oxidative stress than 

quiescent yeast. A similar sensitivity profile was obtained when elevated temperature was 

used as the stressor (Figure 3.2). Therefore, retention of cell viability for the quiescent 

culture after exposure to oxidative stress and elevated temperatures confirmed that these 

cells were in quiescence. 
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Figure 3.1 Quiescent cells exhibit resistance to oxidative stress 

Depiction of differences between mid-log and quiescent cells in resistance to oxidative 
stress. An aliquot of cells from mid-log and quiescent cultures were incubated at 30°C in 
0mM, 1mM, 5mM, 10mM, and 50mM H2O2 for 1 hour prior to 5-fold serial dilution and 
spotting. Representative image shown (n=2). 

 

Figure 3.2 Quiescent cells exhibit resistance to elevated temperatures 

Depiction of the differences between mid-log and quiescent cells in resistance to elevated 
temperatures. Aliquots of 1mL cells from mid-log and quiescent cultures were subjected 
to 50°C and 55°C for 0, 5, 10, and 20 minutes. 200µL from each was five-fold serial 
diluted 7 times and 3µL were spotted, in profile, onto a 150mm YPD agar plate. 
Representative image shown (n=2). 

To determine if these differences in cell viability impact susceptibility to 

occidiofungin, the sensitivity of quiescent cells was compared to that of mid-log phase 
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cells by Colony Forming Unit determination (CFU; Figure 3.3) and Spotting Assay 

(Figure 3.4). The data confirm that quiescent cultures were resistant to occidiofungin 

compared to actively growing cells during the first hour of exposure. However, cells 

maintained in culture for a longer period of time showed a decline in viability, likely due 

to cells exiting their quiescent state and reentering the cell cycle in response to newly 

available carbon source.  

 

Figure 3.3 Quiescent cultures exhibit temporary resistance to occidiofungin in fresh 
YPD 

Graph illustrating the temporary resistance of quiescent cells compared to mid-log in 
YPD with 1.0µg/mL occidiofungin (+occ). Representative graph shown (n=2). 
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Figure 3.4 Quiescent cells exhibit temporary resistance to occidiofungin in fresh YPD  

Mid-log and quiescent cells – after treatment with 1.0µg/mL occidiofungin (+occ) or an 
equivalent volume of 100% DMSO control (Ø) for the indicated time – were 5-fold 
serially diluted in YPD in a microtiter plate and 4.0µL from each dilution were spotted, in 
profile, onto a YPD agar plate. Representative image shown (n=2).  

To further characterize the initial resistance and subsequent decline in cell 

viability, the same experiment was conducted with the addition of “depleted” YPD media 

(see “Materials and Methods”) to determine the effects decreased nutrient availability had 

on occidiofungin bioactivity in both cell types. As seen in Figure 3.5, quiescent cell 

viability trends in fresh YPD were similar to previous findings: cells exhibited an initial 

resistance to occidiofungin followed by a decline in cell number. Quiescent cultures in 

depleted media, however, maintained almost complete resistance to occidiofungin up to 4 

hours post-exposure. Interestingly, mid-log phase cells were significantly more 

susceptible to occidiofungin in depleted YPD than in the fresh media control.  
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Figure 3.5 Nutrient availability has a significant impact on susceptibility to 
occidiofungin 

Graph illustrating mid-log and quiescent cells in new and depleted (depl.) YPD with 
1.0µg/mL occidiofungin (+occ). Representative graph shown (n=2).  

The delayed susceptibility of quiescent cells to occidiofungin is of particular 

interest. Given that the biological target of occidiofungin has yet to be identified, it is 

important to characterize the shift from resistant to susceptible that occurs when 

quiescent cells are exposed to occidiofungin in fresh media, as it may aid in uncovering 

the mechanism by which occidiofungin induces cell death. To monitor the transition from 

a quiescent to actively growing state, the assay comparing % Cell Viability after exposure 

to elevated temperatures was repeated with the addition of a quiescent cell sample placed 

in fresh YPD media (as described in the Materials and Methods). As shown in Figures 3.6 

and 3.7, quiescent cell resistance to high temperatures declined over time when cells were 

introduced to fresh media and approached that of actively growing cells within 2 hours.  
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Figure 3.6 Quiescent cells approach mid-log levels of sensitivity to elevated 
temperatures (53°C) in fresh YPD with respect to time 

This graph indicates the percentage of viable cells remaining after 10 minutes of 
exposure to 53°C, relative to unexposed cells, with respect to the indicated time 
maintained in fresh YPD (“mid-log” and “quiescent + fresh YPD” samples) or depleted 
YPD (“quiescent” sample). Representative graph shown (n=3). 

The loss of resistance to elevated temperatures is indicative of cells exiting their 

quiescent state and resuming proliferative growth. This is in support of the notion that 

yeasts are protected from occidiofungin as long as they remain in quiescence. 
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Figure 3.7 Quiescent cells placed in fresh YPD lose their resistance to elevated 
temperatures (53°C) over time 

Spotting Assay depicting cell viability of mid-log cells in YPD, quiescent cells in their 
culture medium, and quiescent cells in fresh YPD for 0, 1, and 2 hours prior to exposure 
to 53°C for 10 minutes. Representative image shown (n=3). 

Occidiofungin Bioactivity and Nutrient Deprivation 

To expand on the impact nutrient availability had on occidiofungin’s bioactivity, 

mid-log cells were exposed to occidiofungin in synthetic defined media lacking glucose, 
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nitrogen, or phosphate. As seen in Figures 3.8 and 3.9, cell viability after occidiofungin 

exposure varied greatly depending on the starvation conditions in which cells were 

placed. Mid-log cells exposed to glucose-deprivation conditions appeared to be more 

susceptible to occidiofungin, while those in SD media lacking phosphate were resistant. 

Nitrogen availability did not appear to impact occidiofungin bioactivity. 

 

Figure 3.8 Cellular response of mid-log cells to occidiofungin is dependent on nutrient 
availability and is nutrient-specific 

CFU Assay depicting cell viability of mid-log cells post-exposure to 1.0µg/mL 
occidiofungin (+occ) in Synthetic Defined (SD) media as well as SD media lacking 
Glucose (No Carbon), Nitrogen, or Phosphate. Representative graph shown (n=2).  
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Figure 3.9 The susceptibility of mid-log cells varies in normal and starvation 
conditions 

Spotting assay depicting differences in susceptibility at 2 hours post-exposure to 1µg/mL 
occidiofungin (+occ), or vehicle control (Ø), under normal and various starvation 
conditions. SD; Synthetic Defined. Representative image shown (n=2). 

Glucose Starvation and Rapamycin-Induced Inhibition of the Nutrient Sensing 
Complex, TOR1C 

The largest difference in susceptibility was the response to glucose-starvation 

conditions. The stark decrease in viable cells seen in the absence of glucose may be due 

to the abrupt inhibition of protein synthesis seen in cells whose extracellular glucose 

source is removed (Ashe, De Long and Sachs 2000). To evaluate whether this translation-

inhibiting response to the absence of glucose is what resulted in such drastic differences, 

we compared the cellular response to occidiofungin under a chemically induced 

starvation response with the response to the absence of glucose. 

To further characterize the cellular response to occidiofungin in glucose-starved 

cells, we took advantage of rapamycin’s TOR inhibiting capabilities in a CFU assay 

utilizing media both with and without glucose in the presence of rapamycin and 
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occidiofungin. To initially confirm that rapamycin blocked TOR signaling, we measured 

changes in Cit2p levels by Western blot analysis. Previous work has shown that 

rapamycin induces expression of CIT2, a finding that was repeatable (Giannattasio, et al. 

2005). As shown in Figure 3.10, mid-log cells exposed to 0.1µg/mL rapamycin showed a 

significant increase in Cit2p levels within 20 minutes of addition. Occidiofungin is 

unlikely to interfere with signaling downstream of Tor1C, as Cit2p expression was still 

increased in the presence of both rapamycin and occidiofungin (data not shown).  

 

Figure 3.10 Expression of Cit2p:HA3 increases upon exposure to 0.1µg/mL rapamycin 
but not after exposure to 1.0µg/mL occidiofungin 

Expression of Cit2p:HA3 increased within 20 minutes of exposure to rapamycin. Total 
cell protein extracts (equivalent to 0.1 OD600) were separated by SDS-PAGE. Protein 
detection by western blot was conducted using anti-HA to detect Cit2p and anti-Pgk1p to 
detect Pgk1p. Pgk1p was included to confirm equal loading. Representative image shown 
(n=2).  

The resulting data (Figure 3.11) holds strong implications for the role of the cell’s 

response to nutrient availability in occidiofungin’s varying bioactivity. Cells exposed to 

both rapamycin (at 0.1µg/mL) and occidiofungin (1.0µg/mL) experienced a much greater 

decline in cell viability in both media types than with occidiofungin alone, though this 

effect was more pronounced in media lacking glucose.  
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Figure 3.11 Rapamycin enhances the effects of occidiofungin 

CFU data of mid-log cells exposed to 0.1µg/mL rapamycin (+rap) and 1.0µg/mL 
occidiofungin (+occ) in the presence (SD; synthetic defined) and absence (SD-g) of 
glucose. Representative graph shown (n=2). 

Inhibition of Cytosolic and Mitochondrial Protein Synthesis  

In addition to rapamycin, cycloheximide was also used to pharmacologically 

assess occidiofungin bioactivity. We subjected mid-log cells to 25µg/mL cycloheximide 

and 1.0µg/mL occidiofungin and found a marked decrease in the ability of cultures to 

recover from occidiofungin exposure (Figure 3.12). However, because cells exposed to 

cycloheximide experience no growth, it remained unclear if the difference was because 

the cells’ inability to complete the cell cycle simply revealed total cell death unmasked by 

the usual culture recovery, or if they are due to other factors. 
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Figure 3.12 Cycloheximide addition inhibits the culture's recovery from occidiofungin 

Graph depicting the effect of 25µg/mL cycloheximide (+cxm) on the susceptibility of 
cells to 1.0µg/mL occidiofungin (+occ) in SD (synthetic defined) media as compared to 
occidiofungin treatment in SD-glucose media. Representative graph shown (n=2). 

To this end, it was decided that pre-treating cells with cycloheximide for 30 

minutes would aid in elucidating the cause of this effect, as the effects of translation 

inhibition would be established in pre-treated cells. Our data (Figure 3.13) demonstrates 

that pre-treatment with cycloheximide actually provides a protective effect against 

occidiofungin, as opposed to the synergistic effects seen when cells were concurrently 

exposed to both drugs.  
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Figure 3.13 Pre-treatment with cycloheximide is protective against occidiofungin, 
while simultaneous treatment has synergistic effects  

Graph illustrating the protective effects of 30 minutes of pre-treatment (T=-30’) with 
25µg/mL cycloheximide (cxm) and the synergistic impact of simultaneous treatment 
(n=5) with 1µg/mL occidiofungin (+occ). Representative graph shown (n=3). 

In addition to cycloheximide, the effects of pre- and concurrent treatment with 

chloramphenicol were also evaluated with respect to occidiofungin. As the 

mitochondrion is a significant producer of ROS in the cell, we hoped that utilizing this 

mitochondrial translation inhibitor might aid in elucidating whether mitochondria might 

play a role in occidiofungin-induced cell death. Further, due to the mitochondrial 

repression effects induced by glucose, we were also interested in investigating the effects 

of chloramphenicol when mitochondrial activity was not repressed (Mian, Küenzi and 

Halvorson 1973). In this regard, the impact of chloramphenicol was tested in synthetic 
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media containing 2% glucose and compared to the same media containing 2% raffinose 

as the carbon source (Figure 3.14). 

  

Figure 3.14 Pre-treatment with chloramphenicol (chl) had little impact on 
occidiofungin bioactivity, but is synergistic when added simultaneously 
with occidiofungin 

Graph demonstrating the effect of pretreatment (T= -30’) with 60µg/mL chloramphenicol 
(chl) versus concurrent treatment with 1.0µg/mL occidiofungin (+occ) in synthetic media 
containing glucose (no marker outlines) as compared to synthetic media containing 
raffinose (outlined markers) as a carbon source. Representative graph shown (n=2). 

Our results indicate that chloramphenicol treatment at 60µg/mL in conjunction 

with 1.0µg/mL occidiofungin treatment appears to exhibit synergistic effects in synthetic 

media with glucose as well as in media with raffinose as a carbon source.  In both media 

types, pre-treatment of cells with chloramphenicol may have slight protective effects, 

though this effect appears to be minimal. 
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Phosphate Deprivation and Occidiofungin Activity 

With a small number of factors identified that increase susceptibility, we shifted 

our focus to the resistance demonstrated in phosphate deprivation conditions. We selected 

two primary PHO pathway deletion mutants, ∆pho4 and ∆pho80, to aid in characterizing 

the resistance response that occurs under phosphate starvation conditions.  As shown 

below in Figures 3.15 and 3.16, the ∆pho4 mutant was resistant to occidiofungin 

compared to both the wild type and ∆pho80 cells under phosphate replete and deplete 

conditions, while ∆pho80 exhibited only slightly greater susceptibility than the wild type.  

 

Figure 3.15 Occidiofungin is more effective against pho4 mutants than pho80 mutants 
and the wild type in SD media 

Values for the average % ∆CFU (n=3) after occidiofungin exposure in SD media for pho4 
and pho80 mutants were calculated by taking the mean change in the CFU value between 
T0 and subsequent time points. The average of this value over 3 trials was then used to 
represent the average % change in CFU values for each strain after occidiofungin 
exposure, with respect to time. 
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Figure 3.16 Occidiofungin is more effective against pho4 mutants than pho80 mutants 
and the wild type in SD media lacking phosphate 

Values for the average % ∆CFU (n=3) after occidiofungin exposure in SD media lacking 
phosphate for pho4 and pho80 mutants were calculated by taking the mean change in the 
CFU value between T0 and subsequent time points. The average of this value over 3 trials 
was then used to represent the average % change in CFU values for each strain after 
occidiofungin exposure, with respect to time. 
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CHAPTER IV 

SUMMARY 

Discussion of Results 

The need for novel antifungal therapies has never been more apparent. The 

increasing significance of IFIs in healthcare and rising prevalence of resistance 

development in fungal pathogens makes the discovery and characterization of novel 

antifungal therapies ever important. Occidiofungin’s unique and broad-spectrum activity 

against fungi, limited toxicity to mammalian tissue, and chemical stability support its 

candidacy for further investigation as a useful antifungal in clinical therapy. Though its 

mechanism of action is not fully understood, we have identified a number of cellular and 

environmental factors that either enhance or reduce occidiofungin’s effectiveness against 

Saccharomyces cerevisiae.  

Unfortunately, the nature of conducting CFU assays using dose-dependent 

drugs makes statistical analysis of the data difficult. Even slight varia tions in starting 

cell culture density appear to have an impact on the degree to which differences in 

sensitivity are detected. Thus, graphs exemplifying general trends in susceptibility 

consistent across multiple trials were used to illustrate results.  

We have demonstrated that yeast in a starvation-induced quiescent state are 

resistant to the effects of occidiofungin and retain this resistance until environmental 

stimuli (specifically, the availability of a carbon source) induce their reentry into the cell 



 

51 

cycle, after which they become susceptible to the drug. This suggests that occidiofungin 

may be less effective in quiescent cells or that susceptibility may require active 

growth. Further, this sustained resistance allows us to deduce that occidiofungin must 

require active transport processes in order to exhibit its effects. If occidiofungin were 

able to interact with the quiescent yeast in depleted media in a manner that promoted 

its eventual import into the cell (via receptor binding or non-specific interactions with 

the outer cell wall), these cells are likely to have succumbed to occidiofungin upon 

transfer to YPD agar and the data would have reflected cell death.  

The potential for genes involved in quiescence to be effective targets of 

antifungals seems unlikely. However, these findings are significant due to the metabolic 

characteristics that quiescent yeast share in common with slow growing cells, which are 

often found within biofilms, and provides support for the notion that active cellular 

processes may be required for occidiofungin’s import and activity. For drugs that rely on 

active cellular processes to exhibit their activity, one would expect their efficacy to 

decrease as cell metabolism slows. This has been demonstrated in one study aimed at 

characterizing the contribution of slow growth rates to amphotericin B and azole 

resistance in fungal biofilms. Though it was found that the antifungal resistance of 

biofilms is not solely attributable to the slow growth of its cells, their findings did 

indicate that planktonic cells at very low growth rates (a trait the authors noted was 

also found in the innermost cells of fungal biofilms) exhibited similar resistance 

(Baillie and Douglas 1998). For these reasons, it was decided that the retained ability 

to respond to stimuli and abundant characteristics of slow growth found in quiescent 

cells may suffice as a preliminary model to aid in determining whether 
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occidiofungin’s activity is reliant on active cellular processes. However, our results 

are not conclusive with regards to the impact of growth rate on occidiofungin 

susceptibility, and these findings should be confirmed through the use of a chemostat 

to manipulate growth conditions before characteristics on the susceptibility of slow 

growing planktonic cells can be reported. 

Further, we have shown that transcriptional responses to starvation for specific 

nutrients have variable impacts on occidiofungin bioactivity. The absence of glucose, the 

key signal in regulating normal cellular processes (particularly gene expression as it 

relates to growth), drastically increases susceptibility to occidiofungin (Ashe, De Long 

and Sachs 2000). This effect is presumably due to the starvation-induced alteration of the 

cell’s transcriptional profile and abrupt cessation of translation, and not due specifically 

to the absence of glucose. Knowing this, the possibility arises that the increased 

susceptibility to occidiofungin in the absence of glucose may be due the cells’ 

inability to synthesize the proteins necessary to respond to and repair cellular damage 

caused by occidiofungin. This would result in more rapid cell death than in cultures 

able to compensate for some of the stresses.  

This hypothesis is supported by the synergistic effects seen under rapamycin-

induced TOR1C inhibition (falsely interpreted by the cell as starvation), as these effects 

were observed in both the presence and absence of glucose. With regards to previously 

published research concerning the concurrent use of rapamycin and antifungals, the data 

is inconclusive. One report by Dannaoui, et al. indicated that synergistic effects between 

rapamycin and the antifungals amphotericin B, itraconazole, posaconazole, and 

ravuconazole were present in 70%, 50%, 40%, and 30% of the 10 zygomycete isolates 
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tested, respectively, while antagonistic effects were observed with itraconazole in 20% of 

isolates and with ravuconazle in 10% (Dannaoui, Schwarz and Lortholary 2009). These 

results are in contrast to data reported later by Narreddy, et al., which demonstrated 

“consistent and significant antagonism” with rapamycin and posaconazole in most of the 

28 clinical zygomycete isolates tested. This research group attributed these contrasting 

findings to the different endpoint readings utilized in the two studies, as Narreddy, et al. 

used the CLSI M38-A2 standard of 100% inhibition as the endpoint, while Dannaouri, et 

al. used an endpoint of 50% inhibition (Narreddy, et al. 2010). The utility of rapamycin 

as a candidate for combination therapy is therefore unresolved, and additional research 

will be necessary to definitively characterize these effects. 

Notably, a mutant strain lacking TOR1 showed no change in MIC value compared 

to a wild type strain (data not shown), a result seemingly contrary to data reported here. 

We suspect this is likely due to sensitivity differences between MIC and CFU assays 

discussed previously and not an indication of conflicting results, as these discrepancies 

have been demonstrated in our lab before (data not shown). As CFU assays are a more 

accurate analysis of cell number as it relates to susceptibility, we suggest reevaluating the 

∆tor1 strain using a CFU assay. Regardless, there is significant evidence for the role of 

glucose starvation-induced changes in transcriptional regulation in the increased 

susceptibility we demonstrated. 

We also demonstrated seemingly conflicting trends in the effects of 

cycloheximide-mediated inhibition of cytosolic translation and chloramphenicol-induced 

inhibition of mitochondrial translation. Cycloheximide (cxm) is a standard tool used in 

molecular biology as it inhibits the elongation phase of eukaryotic translation by 
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interfering with the translocation step. This is useful for the general analysis of 

mRNA translation and ribosome profiling, but was also helpful in our case, as it 

allowed us to determine that active translation is necessary for surviving 

occidiofungin exposure (Gerashchenko and Gladyshev 2014). Chloramphenicol (chl), 

in contrast, is a bacteriostatic translation inhibitor that functions by inhibiting the 

peptidyl transferase activity of prokaryotic and mitochondrial ribosomes, thereby 

preventing protein chain elongation. Chloramphenicol does not interfere with 

cytosolic translation. We demonstrated that concurrent addition of these inhibitors with 

occidiofungin resulted in greater cell death than samples that received occidiofungin 

alone. This suggests that translation may be required to abrogate cellular damage due to 

occidiofungin exposure. When cells were exposed to occidiofungin after being pre-

treated with these drugs, however, the effects were opposite: cells were somewhat 

protected. In the case of cycloheximide pre-treatment, it is possible that the lack of 

growth under such conditions could play a role in this antagonistic effect. Given that 

occidiofungin activity appears to be reliant on active cellular processes, it is also possible 

that, while cells enduring cycloheximide-induced translation inhibition are indeed still 

active, either occidiofungin’s transport into the cell or its mechanism of inducing cell 

death may be dependent on processes heavily influenced by the rate of new protein 

synthesis. In support of the latter conclusion, previous research has indicated that 

cycloheximide-induced translation inhibition prevents both apoptotic chromatin 

condensation and DNA fragmentation. It was demonstrated that treatment with 15µg/mL 

cycloheximide, a concentration sufficient to reduce the rate of cytosolic translation by 

>92%, for 30 minutes prior to hydrogen peroxide exposure provided protective effects 
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against oxidative-stress, thereby preventing the cell from inducing its own cell death 

(Madeo, et al. 1999). The lack of growth seen in the cycloheximide pre-treatment 

control (not exposed to occidiofungin) not only supports the active growth 

requirement for occidiofungin’s activity, but also indicates a potential disadvantage of  

combination therapy using cycloheximide and occidiofungin, as any number of 

factors impacting the utility of the two compounds could drastically alter 

occidiofungin’s effectiveness. 

With regards to mitochondrial translation inhibition, pre-treatment with 

chloramphenicol had little impact on cell death due to occidiofungin, while 

simultaneous treatment resulted in increased cell death. One implication of these 

results is that the mitochondria may not play a direct or significant role in 

occidiofungin’s bioactivity. Rather, it is likely that the production of ROS due to 

normal or increased mitochondrial activity may only enhance the degree to which the 

cell experiences oxidative stress, potentially hastening an apoptotic response. The 

resistance to occidiofungin seen in cells under anaerobic conditions supports this 

conclusion (Emrick, et al. 2013). 

Finally, we demonstrated that cells exhibit resistance to occidiofungin under 

phosphate-deprivation conditions, and examined this resistance further by evaluating 

two phosphate signaling pathway mutants and their respective susceptibilities to 

occidiofungin. Phosphate signaling in budding yeast has been well characterized and 

is mediated by a subset of genes in what is known as the PHO pathway. This pathway 

utilizes the phosphorylation of the transcription factor Pho4p to control its 

localization in the cell and therefore its access to its effector genes in the nucleus. In 
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the presence of phosphate, the Pho80p-Pho85p complex phosphorylates Pho4p, 

preventing its entry into the nucleus. Under phosphate deprivation conditions, this 

complex is unable to phosphorylate Pho4p, which consequently results in its 

translocation to the nucleus where it upregulates the expression of phosphatase and 

phosphate scavenging genes (Mouillon and Persson 2006). Due to the role of Pho80p 

in phosphate signaling, one would have expected the ∆pho80 mutant to display a 

resistance profile similar to that of cells placed into phosphate starvation conditions, 

as the Pho80p-Pho85p complex would no longer exist to phosphorylate Pho4p, 

resulting in a perpetual cellular response to phosphate starvation regardless of actual 

nutrient availability. On the other hand, the ∆pho4 mutant in phosphate starvation 

conditions would be expected to behave as the wild type did in SD complete media 

due to the inability of the strain to respond to phosphate deprivation. Our results, 

however, were in direct contrast to our hypothesis of the impact of occidiofungin on these 

PHO pathway mutants. With regards to the pho4 mutant, research by Hu et al identified a 

number of genes whose transcriptional regulation was altered in strains deleted for pho4 

(Hu, Killion and Iyer 2007). We suspect these transcriptional changes may well be 

responsible for the resistance effects seen in our study and that genes within this dataset 

would be interesting candidates for future pursuit. Regardless, we did identify the 

deletion of PHO4 as a contributor to occidiofungin resistance, the mechanism of 

which could be resolved through an analysis of the transcriptional changes that occur 

in the cell upon deletion of this transcription factor. 
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Directions for Future Research 

The role of occidiofungin in the arsenal of modern antifungal therapies has yet to 

be determined, as there is much to be discovered about its activity in the fungal cell. 

Through our studies, we have identified a number of potential avenues in which 

information about occidiofungin’s mechanism of action could be further characterized. 

First, altered transcriptional profiles in response to starvation conditions are clear 

effectors of occidiofungin bioactivity. An investigation of the literature associated with 

starvation response and TOR1C inhibition, and the inclusion of a CFU analysis of yeast 

deleted for TOR1, could yield promising indicators of where this novel antifungal 

functions in the cell. Further, as we have established that active cellular processes may be 

required for its import and activity, studies evaluating the effects of slow growth rates 

and the role of various transport mechanisms of yeast on occidiofungin’s bioactivity 

could prove worthy of inquiry.  
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