
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2016

Towards Autonomous Unmanned Vehicle Systems Towards Autonomous Unmanned Vehicle Systems

Sheng Cai

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Cai, Sheng, "Towards Autonomous Unmanned Vehicle Systems" (2016). Theses and Dissertations. 4760.
https://scholarsjunction.msstate.edu/td/4760

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4760?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4760&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Towards autonomous unmanned vehicle systems

By

Sheng Cai

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in Electrical and Computer Engineering

in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2016

Copyright by

Sheng Cai

2016

Towards autonomous unmanned vehicle systems

By

Sheng Cai

Approved:

J. Patrick Donohoe
(Major Professor)

Sherif Abdelwahed
(Committee Member)

James E. Fowler
(Committee Member and Graduate

Coordinator)

Pan Li
(Committee Member)

Jason M. Keith
Dean

Bagley College of Engineering

Name: Sheng Cai

Date of Degree: December 9, 2016

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Dr. J. Patrick Donohoe

Title of Study: Towards autonomous unmanned vehicle systems

Pages of Study: 97

Candidate for Degree of Doctor of Philosophy

As an emerging technology, autonomous Unmanned Vehicle Systems (UVS) have

found not only many military applications, but also various civil applications. For ex-

ample, Google, Amazon and Facebook are developing their UVS plans to explore new

markets. However, there are still a lot of challenging problems which deter the UVS’s

development.

We study two important and challenging problems in this dissertation, i.e. localiza-

tion and 3D reconstruction. Specifically, most GPS based localization systems are not

very accurate and can have problems in areas where no GPS signals are available. Based

on the Received Signal Strength Indication (RSSI) and Inertial Navigation System (INS),

we propose a new hybrid localization system, which is very efficient and can account for

dynamic communication environments. Extensive simulation results demonstrate the effi-

ciency of the proposed localization system. Besides, 3D reconstruction is a key problem in

autonomous navigation and hence very important for UVS. With the help of high-speed In-

ternet and powerful cloud servers, the light-weight computers on the UVS can now execute

computationally expensive computer vision based algorithms. We develop a 3D recon-

struction scheme which employs cloud computing to perform realtime 3D reconstruction.

Simulations and experiments show the efficacy and efficiency of our scheme.

Key words: UVS, Localization, Computer Vision, Cloud Computing

DEDICATION

To DingDingLa.

ii

ACKNOWLEDGEMENTS

I want to thank my advisor Dr. J. Patrick Donohoe and Dr. Pan Li who gave me

financial support and research guide to finish my PhD Dissertation. In addition, I want to

thank our NEST group who gave me a lot of help. Furthermore, I want to thank my school

and department that provided me with a comfortable environment to finish my PhD degree.

I also want to thank my committees for their comments on this dissertation.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Organization of Disstation . 2

2. CRIL: AN EFFICIENT ONLINE ADAPTIVE LOCALIZATION SYSTEM 4

2.1 Introduction . 4
2.2 Related work . 7
2.3 System Models . 8

2.3.1 System Architecture . 8
2.3.2 Channel model . 8
2.3.3 Observation Model . 10

2.4 CRIL: A Coupled RSSI and INS Localization System 11
2.4.1 RSSI Localization System 12
2.4.2 Inertial Navigation System 15

2.4.2.1 Step detection . 17
2.4.2.2 Stride length estimation 17
2.4.2.3 Orientation estimation 18

2.4.3 Coupling RSSI and INS Systems through a Kalman Filter . 19
2.4.4 Realtime Update of the Channel Model 21

2.4.4.1 Stop condition for the recursive update process for η 22
2.4.4.2 Online updating of the RSSI measurement error co-

variance . 23
2.4.5 Further Improvement . 24

iv

2.4.5.1 Online Reduction of RSSI Signal Outliers via L1 Re-
gression . 24

2.4.5.2 Online Estimation for the RSSI Measurement Co-
variance . 26

2.5 Simulation Results . 28
2.5.1 Simulation Environment and Parameter Setting 28
2.5.2 Results under Constant Path Loss Exponent 29
2.5.3 Results under Dynamic Path Loss Exponent 33

2.5.3.1 Path loss exponent η is slowly changing 33
2.5.3.2 Path loss exponent η is suddenly changed 38

2.5.4 Results under Dynamic RSSI Environments 43
2.5.4.1 Covariance of RSSI values changes 43
2.5.4.2 Outliers randomly are added into the RSSI values . 45
2.5.4.3 Both of the covariance variance and outliers are added 45

2.6 Experiment Results . 45
2.7 Conclusion . 52

3. REALTIME3D: A NEW REALTIME 3D RECONSTRUCTION SCHEME 53

3.1 Introduction and background . 53
3.2 System Models . 57

3.2.1 System Architecture . 57
3.2.2 Camera Calibration . 60
3.2.3 Epipolar Geometry . 61

3.3 Description of Our Proposed Realtime3D System 64
3.3.1 2D Feature Extraction . 65
3.3.2 3D Point Estimation . 66
3.3.3 Bundle Adjustment . 68
3.3.4 Dense Cloud Expansion 71
3.3.5 Summary of the Proposed Realtime3D 71

3.4 Experiment Results . 72
3.4.1 Experiment Environment and Setting 74
3.4.2 Performance of Feature Selection 74
3.4.3 Performance of 3D Point Estimation 75
3.4.4 Performance of Bundle Adjustment algorithm 79
3.4.5 Performance of the Realtime3D scheme 82

3.5 Conclusion . 84

4. CONCLUSIONS . 88

4.1 Contributions . 89
4.2 For Further Research . 90

v

REFERENCES . 91

vi

LIST OF TABLES

3.1 Performance of Feature Extraction Algorithms 75

3.2 FLANN based Matcher . 76

3.3 Performance of Different Computers for BA 81

3.4 Time for Each Computation Part . 83

vii

LIST OF FIGURES

2.1 A typical scenario of indoor localization. 9

2.2 Estimated path loss exponent η by CRIL 30

2.3 Comparison of estimated positions by CRIL and the real trajectory 31

2.4 Comparison of estimated positions by RSSI [67], KF [80] and the real tra-
jectory . 32

2.5 Comparison of estimated path loss exponent η 35

2.6 Comparison of estimated positions by CRIL and the real trajectory. 36

2.7 Comparison of estimated positions by KF[80] and RSSI[67], and the real
trajectory. 37

2.8 The number of iterations in the recursive update process for η. 39

2.9 Comparison of estimated path loss exponent η by CRIL. 40

2.10 Comparison of estimated positions by CRIL and the real trajectory. 41

2.11 Comparison of estimated positions by KF[80], RSSI[67] and the real trajec-
tory. 42

2.12 Comparison of localization errors . 44

2.13 Comparison of localization errors . 46

2.14 Comparison of estimated position errors 47

2.15 Comparison of the estimated path loss exponent η by CRIL. 48

2.16 Comparison of the estimated positions . 50

viii

2.17 Comparison of the localization errors . 51

3.1 A typical scenario of environment exploration using a UVS. 58

3.2 The architecture of our Realtime3D system 59

3.3 Two cameras taking images of the same scene [9] 62

3.4 Camera relative position [9] . 63

3.5 Flowchat of 3D Estimation . 73

3.6 Different Kinds of Features . 76

3.7 Top: SIFT descriptor. Center: SURF Descriptor. Bottom: BRIEF Descriptor 77

3.8 Optical Flow Feature Tracking . 78

3.9 Fountains and 3D Features Views 1 . 80

3.10 3D Features Views and Fountains . 82

3.11 Features views . 85

3.12 3D views . 86

3.13 Dense 3D Point Cloud . 87

ix

CHAPTER 1

INTRODUCTION

With the development of computer, network and sensor, Unmanned Vehicle Systems

(UVS) are used in more and more important situations including environment monitoring

[73], exploration of Mars [39] and industrial production [13]. Google developed and tested

their unmanned car in the real roads [63]. Amazon has already used the robots to manage

their warehouses [48], and in a short time, they will use the Unmanned aerial vehicles

(UAV) to deliver the goods to the customs’ houses [43]. Facebook started their great plan

to deploy the solar powered UAVs to build the wireless network in the areas where the

normal ways cannot be done [49]. To enable these important applications, many important

technologies need to be developed and improved.

1.1 Overview

In this dissertation, we study two key problems for UVS. The first one is an adaptive

localization system without using GPS, and the other is 3D reconstruction based on cloud

computing. In particular, a good Localization system keeps UVS safe and controllable in

complex environments. Without the UVS’s position information, operations like naviga-

tion and tracking cannot be done. GPS is a well developed technology for this purpose.

However, GPS has its own limits, and is not always working. To build a robust localization

1

system, the new technologies are needed. Besides, in order to enable UVS to navigate,

track targets, etc, autonomously, 3D reconstruction needs to be performed efficiently at the

UVS [39]. However, the high computational complexity limits the realtime 3D reconstruc-

tion at the UVS. With the help of cloud computing, the most expensive computation can

be outsourced to the cloud, and 3D reconstruction can be enabled.

1.2 Organization of Disstation

In Chapter 2, we propose a new localization system. To the best of our knowledge, this

method is the first to propose an efficient and adaptive localization system, which can adapt

to dynamic communication environments quickly and effectively. Extensive simulation

results demonstrate that the proposed localization system CRIL is able to track both slow

changes and sudden changes of the channel model in dynamic environments. Besides, the

proposed CRIL can perform accurate localization in the simulations with estimation errors

up to 1m, while previous schemes’ localization errors are up to several meters or even tens

of meters.

In Chapter 3, we propose a 3D reconstruction scheme based on cloud computing. Ba-

sically, we can reconstruct scene geometry and camera motion from two or more images

[22] in four steps [18]: track 2D features, estimate 3D points, optimize: bundle adjust and

fir surfaces. Each step requires large computational resource, where is difficult to realize

in small UVS. High speed Internet and cloud computing service give us a chance to get

enough power to do this. A good outsourcing scheme can accelerate the whole processing,

and enable the other high level tasks. We will continue investing at this problem.

2

In Chapter 4, we conclude this dissertation and introduce my future work. Basically,

we propose a new localization system and a new 3D reconstruction outsourcing scheme to

solve two key technology problems for UVS. In the future, we will complete our previous

work, try to implement them on the real UVS, and show their values.

3

CHAPTER 2

CRIL: AN EFFICIENT ONLINE ADAPTIVE LOCALIZATION SYSTEM

2.1 Introduction

Indoor localization or indoor positioning systems find their use in many important ap-

plications including augmented reality [1], guided tours [26] (e.g., in museums, shopping

malls), tracking and monitoring [15, 73], and situational awareness [19]. For example,

social networks help people find friends at a party based on their location information [1].

To enable effective response in disaster rescue, accurate and reliable location information

is indispensable as well. However, since GPS signals are usually poor in indoor environ-

ments, how to design an accurate indoor localization system is a challenging problem.

Due to the widespread adoption of wireless local area networks (WLANs) and mobile

devices, WiFi signals easily become an alternative of GPS signals for indoor localization.

Some works propose indoor localization techniques based on Angle of Arrival (AOA) [66],

Time Difference of Arrival (TDOA) [77], Time of Arrival (TOA) [38], etc., of the WiFi sig-

nals. These methods require extra hardware to measure such data, which is not practical for

common mobile devices like smart phones or tablets. Some other works develop schemes

by taking advantage of the received signal strength indicator (RSSI), which can be easily

obtained by almost every wireless device. Generally, RSSI based localization can be clas-

sified into two categories: fingerprinting or mapping based schemes [76, 72, 15, 73], and

4

channel modeling based schemes [36, 58, 67]. The first kind of schemes rely on building

comprehensive data maps of RSSI, which requires significant efforts and needs recalibra-

tion whenever the environment changes. The second kind of schemes attempt to construct

an accurate channel model to estimate the distances between a receiver and several known

transmitters, then employ estimation algorithms such as the circular positioning and the

hyperbolic positioning [67, 37] to find the receiver’s location. Although the channel mod-

eling based schemes do not require as much preparatory work as RSSI data mapping based

schemes, they need an accurate channel model, which is difficult to get due to its dynamic

nature in indoor environments. Several calibration methods such as [5, 7] are proposed to

estimate the parameters in the channel model. Unfortunately, some of them like [5] are pas-

sive offline schemes, while the online schemes like [7] require much extra communication

and computation cost.

One way to improve the performance of channel modeling based localization systems

is to integrate it with an Inertial Navigation System (INS) [74]. In particular, an INS uses

an Inertial Measurement Unit (IMU) to estimate an object’s position with high update rate

without any other side information. However, the error of the IMU usually gets accu-

mulated very fast, especially for those cheap IMUs on mobile devices, which renders the

stand-alone INS impractical. Previous works [12, 16, 80, 28, 68] propose to couple these

two systems by data fusion technologies, but they cannot account for the dynamic channel

models in dynamic communication environments.

In this paper, we propose an efficient coupled RSSI and INS localization system called

CRIL, which can adapt to dynamic communication environments quickly and effectively.

5

Specifically, we employ a Kalman filter to fuse the localization results obtained from the

RSSI and INS systems. Moreover, we introduce a recursive process in the update phase

of the Kalman filter to update the parameters of the channel model utilizing the fused re-

sults. In so doing, our system can well model the dynamic communication channels in

realtime without much additional calibration or overhead. In addition, we notice that there

is always noise and measurement error in our localization system. To avoid unstable esti-

mation results, we carefully design a stop mechanism to terminate the recursive process.

Our recursive method of estimating parameters can be applied to other filters or data fu-

sion technologies to model the changing of a subsystem’s parameters. Furthermore, we

have developed schemes to reduce outliers in and update the covariance of RSSI measure-

ments. Our simulation and experiment study shows that the proposed CRIL system can

1) proactively track both gradual and abrupt changes in the channel model in realtime, 2)

effectively account for uncertainties in RSSI measurements, and 3) lead to very small lo-

calization errors (on the scale of meters) compared to large errors (up to tens of meters) in

previous schemes.

The rest of the paper is organized as follows. Section 2.2 reviews previous work on

localization systems. In Section 2.3, we present the system models. Section 2.4 describes

our proposed CRIL system, which is evaluated in Section 2.5 through extensive simulations

and in Section 2.6 through real experiments. Finally, we conclude the paper in Section 2.7.

6

2.2 Related work

The rising interests in the indoor localization problems have drawn intensive attention.

We introduce the most related work below.

Evennou and Marx [15] and Woodman and Harle [73] propose RSSI fingerprinting

mapping based localization schemes. In particular, [15] develops a system where an ac-

celerometer can count the number of walking steps of the user, a gyroscope can tell the

orientation of the user, and the RSSI fingerprinting based scheme provides the location of

the user. [73] does similar work, in which an RSSI mapping scheme is developed to find

the location of a user.

Some previous works [53, 67, 37, 7, 5] design localization schemes through channel

modeling utilizing RSSI. The path loss model with log-normal shadowing is commonly

adopted. For instance, to build a more accurate model, Bernardos et al. [7] and Barsocchi

et al. [5] formulate optimization problems to calibrate the channel model, which needs

extra communication and time. As mentioned before, these schemes cannot account for

dynamic communication channels, which is usually the case in indoor environments where

both the objects under observation and the surrounding people/things may move around.

Data fusion algorithms have been designed to integrate RSSI systems with INS sys-

tems. [12, 16, 80] develop loosely-coupled estimation algorithms to fuse the two systems,

which means that each of the two subsystem outputs an estimated position and the high

level system fuses these results. In contrast, [28, 68] design tightly-coupled estimation

algorithms to fuse both systems, i.e., the high level system will fuse the measurements (an-

gular, velocity, RSSI, etc.) directly from the two subsystems to calculate the final position

7

and the subsystems will not output their own estimated positions. The former estimation

algorithms have lower computational complexity and easy to be designed, while the latter

estimation algorithms have better performance. Our proposed CRIL system takes advan-

tage of both of them and can have better performance.

In addition, there are some other localization systems such as [28, 54, 27] which utilize

both Ultra-Wide Band (UWB) systems and INSs. The use of UWB enables the measure-

ment of AOA, TDOA, TOA, etc., but currently UWB radio interfaces are not very common

on mobile devices and would be more expensive.

2.3 System Models

2.3.1 System Architecture

As shown in Fig. Figure 2.1, we consider an indoor environment where we intend

to track a moving pedestrian’s (or object’s) two-dimensional location on a certain floor

of a building1. There are a number of WiFi anchors in known positions in this space.

The object carries a mobile device with a WiFi radio and an IMU. Thus, the object can

receive WiFi signals from the anchors and can measure the RSSI of each of the signal.

More importantly, we consider a dynamic indoor environment, which implies the dynamic

nature of the communication channels therein.

2.3.2 Channel model

One of the most commonly used channel models is the log-normal path loss model

[53], which has a direct relationship between the distance and the received signal strength.

1In this paper, we use pedestrian and object interchangeably.

8

Figure 2.1

A typical scenario of indoor localization.

9

Specifically, the RSSI (in dBm) of a signal received at a receiver, denoted by PRX , can be

calculated as:

PRX(dBm) = A− 10η log10(d/d0) +N0 (2.1)

where A is the received signal strength at a reference distance d0, η is the path loss expo-

nent, and N0 is the noise in the environment. The value of A depends on the transmitted

signal power PTX and the antenna gains of the transmitter and the receiver. The noise N0

is usually defined as a zero-mean Gaussian random variable N (0, σ).

Rewriting (2.1), the distance d between the transmitter and the receiver can be calcu-

lated by:

d = d0 · 10
A−PRX+N0

10η . (2.2)

Note that η typically varies between 2 and 4 in outdoor environments, and can range from

4 to 6 in indoor environments [67].

Obviously, time-consuming experiments need to be conducted in order to calibrate the

value of η before we use this channel model to estimate the distance d. The overhead be-

comes more intolerable in dynamic environments where channel models constantly change

due to its sensitivity to surrounding movements, temperature, air pressure, air moisture, etc.

[52]. Therefore, a realtime calibration process is indispensable to track the changes in the

path loss exponent η and hence perform more accurate localization.

2.3.3 Observation Model

The observation model defines the relation between the measurements and the actual

states of the observed object. The proposed CRIL system includes two subsystems: an

10

RSSI localization system and an INS localization system, both of which will output their

observation results, i.e., measurement results. Let Z denote the measurement of the ob-

served object’s location X = [x, y]⊤ ∈ ℜ2×1. Note that the object’s position in the z-axis

is denoted by z∗ and does not change, which does not need to be estimated. Then, we can

have the following observation model:

Z =

 ZINS

ZRSSI

 = CX +Υ (2.3)

where ZINS and ZRSSI are the measurements of the object’s position from the INS sys-

tem and RSSI system, respectively, and Υ is the measurement noise. Note that C is the

observation matrix which is defined as:

C =

 I2×2

I2×2

 (2.4)

where I is the identity matrix.

As shown in (2.3), the observation error affects the measurement results. Thus, the

object’s position cannot be directly obtained, but need to be estimated based on the mea-

surements.

2.4 CRIL: A Coupled RSSI and INS Localization System

In this section, we detail our proposed online adaptive localization system: coupled

RSSI and INS localization (CRIL). In particular, the RSSI system has bounded error but

low accuracy, while the INS has high accuracy in the short run but large drift error in the

long run. Thus, CRIL couples these two systems in order to obtain better localization

11

performance. One salient feature of CRIL is that it can fuse the results from RSSI and INS

and in return update the channel model in RSSI in realtime. In so doing, CRIL can quickly

and efficiently track the dynamic channel model, and better fuse the results from RSSI and

INS to provide more accurate localization results. In what follows, we first describe the

RSSI and INS systems, and then the proposed CRIL localization system.

2.4.1 RSSI Localization System

Theoretically, we can determine the location of the object based on the distances be-

tween the object and three anchors through triangulation algorithms. However, because of

the inaccuracy of the measurement results, the triangulation algorithms cannot be used di-

rectly. In the literature, there are mainly two kinds of estimation algorithms that address the

inaccuracy problem: the circular positioning algorithm [67], and the hyperbolic position-

ing algorithm [37]. The circular positioning algorithm minimizes the sum of the squared

errors between the real and estimated distances from the tracked object to the different cho-

sen anchors. The hyperbolic positioning algorithm uses a least squares estimation method

to solve a linear problem in order to estimate the object’s position. Although the circular

positioning algorithm has a better performance than the hyperbolic positioning algorithm,

it has much higher computation cost. Considering that the object is usually a mobile de-

vice with limited computation capability and energy, we employ the hyperbolic positioning

approach.

12

Specifically, consider that we choose N anchors, and anchor 1 is at the reference spot

(0, 0, 0). The square of the distance between the object and an arbitrary anchor i (1 ≤ i ≤

N), denoted by d2i , can be expressed as:

d2i = (xi − x)2 + (yi − y)2 + (zi − z∗)
2. (2.5)

Therefore, subtracting (2.5) when i = 1 from that when i ̸= 1, we get

d2i − d21 = x2
i − 2xix+ y2i − 2yiy + z2i − 2ziz∗. (2.6)

Then, we rewrite (2.6) in the following matrix form:

2x2 2y2

...
...

2xN 2yN



 x

y

 =



x2
2 + y22 + z22 − 2z2z∗ − d22 + d21

...

x2
N + y2N + z2N − 2zNz∗ − d2N + d21


.

(2.7)

Because of the measurement noise and errors, we can only have the estimated distances

of di, denoted by d̃i, according to (2.2). Thus, (2.7) becomes

HX̂ = b̃ (2.8)

where

H =



2x2 2y2

...
...

2xN 2yN


13

b̃ =



x2
2 + y22 − d̃22 + d̃21

...

x2
N + y2N − d̃2N + d̃21



and X̂ =

 x̂

ŷ

 is the estimated position of the object.

The least squares solution to this equation is:

X̂ = (HTH)−1HT b̃. (2.9)

Note that this least squares solution (2.9) assigns the same weight to different estimated

distances d̃2i . However, since the channel model (2.1) is nonlinear, the same gaussian

distributions of the RSSI measurement error will lead to different distributions of the dis-

tance measurement error in the case of different transmission distances. Intuitively, the

larger the distance di, the larger is the distance error caused by the same RSSI error. We

employ a weighted hyperbolic algorithm [67] to solve this issue. The algorithm assigns

larger weights to those estimated distances with higher accuracy, under the assumption

that the shorter estimated distances have better accuracy as mentioned above. The modi-

fied weighted least squares solution is as follows:

X̂ = (HTS−1H)−1HTS−1b̃. (2.10)

14

Here S is the estimated covariance matrix of b̃, which can be estimated by

S =



d̃41 + d̃42 d̃41 · · · d̃41

d̃41 d̃41 + d̃43 · · · d̃41

...
...

d̃41 d̃41 · · · d̃41 + d̃4N


. (2.11)

Note that N should be at least 3 to conduct the least squares estimation in order to have

a fairly good estimation of X . The complexity of this algorithm is low since N can be a

small number in real implementations.

2.4.2 Inertial Navigation System

An Inertial Navigation System (INS) uses an Inertial Measurement Unit (IMU) to es-

timate positions and is widely used as the navigation system for airplane, ships, rockets,

etc. [74]. Advances of the Micro Electro Mechanical System (MEMS) technology lead

to cheap and small IMUs for common mobile devices like smart phones and tablets. The

main advantage of IMUs is that they need no external inputs for measuring their positions

and can be used in indoor environments or wherever satellite signals are not available.

Normally, an IMU includes a gyroscope and an accelerometer. In particular, the gyro-

scope outputs the angular velocity of the object and the accelerometer outputs the linear

acceleration. The angular velocity of an object gives its orientation and attitude. Based

on the orientation, attitude, and other information, we can transfer the linear acceleration

in inertial reference coordinates into navigation reference coordinates. Then, based on the

15

Newton’s laws of motion, the position of the object can be calculated after two integrations.

More detailed descriptions on INS systems can be found in [74].

An IMU position estimation system can be modeled by the following linear equations

[16]:

ϕ̄j+1 = ϕ̄j + W̄ j+1∆t+ Γϕ (2.12)

V̄ j+1 = V̄ j + Āj+1∆t+ ΓV (2.13)

X̄j+1 = X̄j + V̄ j+1∆t+ ΓX (2.14)

where ∆t is the IMU’s sampling period, and ϕ̄, W̄ , Ā, V̄ , and X̄ are the attitude vector,

angular velocity vector, acceleration vector, velocity vector, and position vector, respec-

tively, in the navigation reference coordinates. Γϕ, ΓV , and ΓX are the noises in ϕ̄, V̄ ,

and X̄ , respectively, and assumed to follow Gaussian distribution.

One problem of the INS system is that the accumulated error, which is well-known

as INS drift, can increase very fast as time goes by. To be more prominent, as shown in

equations (2.12)-(2.14), the error introduced in the angular velocity measurement will be

propagated into the estimated attitudes, and the error introduced in the linear acceleration

measurement will be propagated into both the estimated velocity and the estimated objects’

position. Moreover, since the (j+1)th estimated position is based on the previous estimated

position X̄j , the previous errors of the INS system will be accumulated into the future

position estimations [74]. Therefore, after a few position updates, the accumulated errors

may become non-eligible. This problem becomes even more serious in MEMS IMUs.

16

The reason is that the thermo-mechanical white noise and the bias errors account for a

significant fraction of the measurement error [74].

To address the above problem, we propose to employ the Pedestrian Dead-Reckoning

(PDR) method [64, 60, 40], which obtains a pedestrian’s position based on the number of

steps, step length, and orientation. There are three processes in PDR: step detection, stride

length estimation, and orientation estimation.

2.4.2.1 Step detection

In this process, the algorithm counts the number of steps by detecting the number of

swing phases. Particularly, we first calculate the magnitude of the acceleration aj+1 with

the three-axis accelerometer[60]:

aj+1 =
√
a2xj+1

+ a2yj+1
+ a2zj+1

, (2.15)

and then identify a swing phase whenever the magnitude aj+1 is larger than a threshold

Tacc.

2.4.2.2 Stride length estimation

The Zero Velocity Updates (ZUPT) Stride Length (SL) algorithm is widely used with

high accuracy for most statuses of a user (walk or run) [60]. In particular, when the user is

in the stance phase, the velocity is zero. Using this information, the algorithm can correct

the drifts of the accelerometer, and decrease the stride length errors in the swing phases

when we employ (2.12)-(2.14).

17

There are three steps to estimate the length of the ith stride (or the ith swing phase)

denoted by SLi[60]. First, we use equation (2.13) to calculate the linear velocities in the

duration of swing phase i. Note that a swing phase usually contains a number of IMU’s

sampling periods. Second, we correct the drifts as follows: the velocities are decreased by

the linear interpolation of µi, i.e., the mean velocity at the stance phase i, and µi−1 [60].

Third, we carry out the integration of (2.13) to get the position increment, whose abstract

value is the stride length SLi.

2.4.2.3 Orientation estimation

There are two main methods to estimate the orientation of the pedestrian in the ith

stance phase (before the ith swing phase), denoted by θstancei , based on the IMU on his/her

mobile device: the gyroscope method and the accelerometer method. In the gyroscope

method, by using equation (2.12), the INS system can output the orientation θi,gyro. Al-

though the gyroscope method can give accurate results in a short time period, the drift will

increase with time. On the other hand, the accelerometer method is less accurate but does

not accumulate the errors as time goes by. Thus, we combine these two methods as follows

by introducing a control parameter γi (0 ≤ γi ≤ 1):

θstancei = (1− γi) · θi,acc + γi · θi,gyro (2.16)

18

Consequently, when we have all the above results, we can update the user’s position

after every m steps. Particularly, the (k + 1)th estimated position, denoted by X̄k+1, can

be calculated as:

Xx
k+1 = Xx

k +
m∑
i=1

SLi · cos(θstancei), (2.17)

Xy
k+1 = Xy

k +
m∑
i=1

SLi · sin(θstancei). (2.18)

2.4.3 Coupling RSSI and INS Systems through a Kalman Filter

In this section we develop a new Kalman filter that can well integrate the above RSSI

and INS systems to estimate the object’s position.

Specifically, Kalman filters are widely used in data fusion and state estimation [35],

and many Kalman filters [32, 29] have been proposed to solve different problems [71, 17,

31, 14]. These different forms of Kalman filters follow the same two general steps: the

prediction (or propagation) step and the update step. In the prediction step, the system

states are propagated from the last iteration to the predicted states in the current iteration

and the prior distribution is generated by using the estimated model of the system. In

the update step, the filter has two kinds of information: the prior distribution from the

prediction step and the measurement information. By using the measurement information

and the prior distributions of the states, the filter can estimate the posterior distribution of

the states and generate the current estimated states.

In what follows, we detail our Kalman filter design. Note that in the following equa-

tions, the index k denotes the iteration number, the index k|k − 1 denotes the predicted

parameters, and the k|k denotes the estimated parameters.
19

First, in the prediction step, the filter uses the estimation model (2.14) to get a predicted

state X ′
k|k−1 and the predicted estimated state covariance P k|k−1 (or the prior distributions

of the states):

X ′
k|k−1 = X ′

k−1|k−1 + V̄ ∆T (2.19)

P k|k−1 = P k−1|k−1 +Qk (2.20)

where ∆T is the update period of the Kalman filter, P k−1|k−1 is the covariance matrix of

the estimated state vector X ′
k−1|k−1 at time k − 1, and Qk is the covariance matrix of the

current process noise’s distribution. Qk can be calculated as [68]:

Qk = I · (1
2
σa∆T 2)2 + I · (σv∆T)2 (2.21)

where I is the identity matrix, σa and σv are the standard deviation of the acceleration and

of the velocity of the IMU, respectively.

Then, when the system receives enough measurement information from both of the

subsystems, the Kalman filter estimates the posterior distribution of the states and gener-

ates the current estimated states. Specifically, the update step generates the Kalman gain,

estimated state, and covariance matrix of the estimated state for the next iteration. Such

updates can be made by:

Kk = P k|k−1C(CP k|k−1C
T +Rk)

−1 (2.22)

X ′
k|k = X ′

k|k−1 +Kk(Zk −CX ′
k|k−1) (2.23)

P k|k = (I −KkC)P k|k−1 (2.24)

20

where Zk is the observation results from the RSSI system and INS system as shown in

(2.10) and (2.17)-(2.18) respectively, Kk is the optimal Kalman gain, and Rk is the co-

variance matrix of the measurement error Υk:

Rk =

 Qk/INS 0

0 Rk/RSSI

 . (2.25)

The entry Qk/INS corresponding to the INS system is the same as Qk, and Rk/RSSI is the

covariance matrix of the RSSI system’s results. The initial R0/RSSI can be given by:

R0/RSSI = I · σ2
R (2.26)

where σR is standard deviation of the RSSI system’s results that could be predetermined

by a few previous runs a few experiments. We will see later that Rk/RSSI will be updated

in the algorithm.

Note that as shown in (2.23), we can fuse the results from the RSSI and INS systems

by using the Kalman gain Kk (2.22).

2.4.4 Realtime Update of the Channel Model

As indicated in Section 2.3, the RSSI system’s accuracy is directly influenced by the

measurement accuracy of the path loss exponent η. However, this value is difficult to

obtain in a dynamic environment, where η needs to be obtained experimentally every time

we need an estimated position from the RSSI system. Thus, even if η can be accurately

calibrated at the beginning of the estimation, η will continue to change because of the

dynamic nature of the environment. Some prior works [7, 5] claim that their systems can

update the path loss exponent η by using some fixed WiFi anchors and reference points,
21

however, their update is not realtime or accurate enough to catch the changing of the actual

parameters.

Different from the previous works, we update the path loss exponent η by recursively

using the results of the proposed Kalman filter. The basic idea is to use the Kalman filter’s

estimation results as the position state input to calibrate the new path loss exponent η. In

particular, according to (2.1), we can easily calculate η as follows:

ηnew =
(A− PRX)

10 log(
∥∥∥X ′

k|k −Xanchor−i

∥∥∥
2
/d0)

(2.27)

where X ′
k|k and Xanchor−i are the estimated position obtained from the Kalman filter and

the position of anchor i respectively, ∥∥2 is the Euclidean norm, and ηnew is the updated

path loss exponent based on the newly obtained estimated position from the Kalman filter.

After we have an updated ηnew, we employ the Kalman filter again to update X ′
k|k, which

is then used to update ηnew again. This process proceeds recursively until we have a good

enough estimate of the path loss exponent, which is finally used to update η. Moreover, as

will be shown in simulations, the iteration number in the recursive process is very small

(mostly no more than 3), which means that this proposed calibration is very efficient.

2.4.4.1 Stop condition for the recursive update process for η

In the proposed scheme, it is important to find the correct condition to stop the recursive

steps for updating η, so that we can avoid the influence of the noise and measurement

errors. In particular, as shown in the the path loss function (2.1), there is always some

noise that affect the accuracy of the RSSI system. Besides, the received signal strength

PRX may not be very accurate either. Similarly, there is noise and measurement error in
22

the INS system as well. The estimated position X ′ by the coupled Kalman filter thus still

contains uncertainty. Since the new pass loss exponent η is calculated according to (2.27),

it is influenced by these errors too. Thus, we decide to set a suitable threshold to avoid

getting an unstable η in this recursive process.

Particularly, if the newly estimated position X ′new
k|k based on the new path loss exponent

η in any iteration is away from the previously estimated position X ′old
k|k by a threshold T , it

means that the pass loss exponent η did change and the update of η is necessary. Otherwise,

the change of the pass loss exponent η may be due to the noise and measurement errors,

and the system will ignore this update and terminate the recursive process of updating η.

We notice that as shown in (2.24), the covariance matrix P k|k of the estimated states can

be used to obtain a confident range of the estimated position. Therefore, the threshold T

can be set to:

T = α
√
(σx

2 + σ2
y)/2 (2.28)

where σ2
x and σ2

y are the covariances of the estimated position’s coordinates x and y in P k|k

respectively, and α is a coefficient needed to be tuned. In so doing, our recursive algorithm

can generate a threshold online to control the recursive level, so that the update of the pass

loss exponent η will converge.

2.4.4.2 Online updating of the RSSI measurement error covariance

Moreover, after the pass loss exponent η is finally updated as mentioned above, some

other parameters in the Kalman filter should be updated as well.

23

Specifically, since the channel model is updated, the measurement covariance Rk needs

to be updated accordingly. Rewriting the path loss function (2.1), we can know that the

measurement d̃i is a random variable:

d̃i = di · 10
N (0,σ)
10η = 10N (log10di,

σ
10η

). (2.29)

From (2.29), we find that when the pass loss exponent η is updated, the covariance of

the Gaussian distribution changes, and are inversely proportional. Therefore, when the

proposed Kalman filter changes the pass loss exponent η, the new variance of the RSSI

measurement error is updated as follows:

σR/new =
ηold
ηnew

· σR/old. (2.30)

After obtaining these new variances, the Kalman gain Kk and the estimated position

X ′
k|k will also be updated.

2.4.5 Further Improvement

2.4.5.1 Online Reduction of RSSI Signal Outliers via L1 Regression

We notice that RSSI measurements tend to have outliers because of unstable commu-

nications or disturbances caused by obstacles [34]. The performance of the Kalman filter

will be seriously degraded by the outliers, so many robust schemes have been proposed to

reduce them[30, 70, 59, 2, 41]. In this paper, we employ an L1 regression based approach

[30, 41] due to their convenient implementation and low computation complexity.

24

Specifically, in the proposed Kalman filter, we consider that the RSSI measurement

error υk/RSSI is given by:

υk/RSSI = rk/RSSI + ok/RSSI (2.31)

where rk/RSSI and ok/RSSI are the Gaussian noise and outlier in the step k, respectively.

Then, we can estimate ok/RSSI by solving the following optimization problem [41]:

min
ok/RSSI

(υk/RSSI − ok/RSSI)
TW k(υk/RSSI − ok/RSSI)

+ λ
∥∥∥ok/RSSI

∥∥∥
1

(2.32)

where

W k = (I −Kk)
TR−1

k/RSSI(I −Kk) +KT
kP

−1
k|k−1Kk,

∥·∥1 is a L1 norm, and λ is a regularization parameter which is needed to get the solution.

The solution to (2.32) can be obtained by [69]:

ok/RSSI =



υk/RSSI − λ
2W

, if υk/RSSI >
λ

2W

0, if − λ
2W
≤ υk/RSSI ≤ λ

2W

υk/RSSI +
λ

2W
, if υk/RSSI < − λ

2W

(2.33)

where υk/RSSI = Zk|RSSI −X ′
k|k−1, and λ

2W
is used as a threshold to cut the outlier. We

set λ
2W

to the standard deviation of υk/RSSI which is defined by:

Σ2
υk/RSSI

= P k|k−1 +Rk/RSSI . (2.34)

Therefore, λ can be set to:

λ = 2WkΣυk/RSSI
. (2.35)

By calculating the outliers, we can reduce them from the RSSI measurements Zk/RSSI .
25

2.4.5.2 Online Estimation for the RSSI Measurement Covariance

As mentioned above, the RSSI measurements have outliers which can now be removed.

This enables us to have a more accurate estimate of the RSSI measurement error covari-

ance Rk/RSSI . Besides, the change in the environment may lead to different Rk/RSSI’s.

So before we update Rk/RSSI using (2.30) when we conduct realtime update of the chan-

nel model as described in Section 2.4.4, we need to obtain Rk/RSSI by using the RSSI

measurements without outliers.

In particular, let υ′
j/RSSI be equal to υj/RSSI minus the outlier. Based on the adaptive

Kalman filter (AKF) from [42], the covariance of υ′
k/RSSI can be estimated by:

Cυ′
k/RSSI

=
1

N

k∑
j=k−N+1

υ′
j/RSSIυ

′
j/RSSI

T (2.36)

where N is the estimation window size. Then, from (2.34), the RSSI measurement error

covariance can be calculated as:

R̂k/RSSI = C υ̂k/RSSI
− P k|k−1, (2.37)

and then we can update Rk/RSSI as follows:

Rk/RSSI = (1− β)Rk−1/RSSI + βR̂k/RSSI (2.38)

where β is a control parameter.

The complete algorithm description for CRIL is detailed below:

1: procedure CRIL(X ′
0|0, P 0|0, Q1, R1)

2: Collect the position result form the INS system by (2.17) and (2.18).

3: Collect the position result form the RSSI system by (2.10).
26

4: Deduce the RSSI outlier ok/RSSI and estimate the RSSI measurement covariance

Rk/RSSI by (2.33) and (2.38), respectively.

5: Denote their own position results as Zold
k . Compute (2.19), (2.20) to estimate

predicted states X ′
k|k−1 and predicted covariance P k|k−1.

6: Calculate Kalman gain Kk by (2.22) and estimate the estimated position X ′old
k|k by

(2.23) by using the measurement Zold
k .

7: Use the estimated position X ′old
k|k to get the new path loss exponent ηnew by (2.27),

and the new RSSI position result Zk/RSSI .

8: Calculate the new estimated position X ′new
k|k with the new RSSI results and new

ηnew by (2.23).

9: while
∥∥∥X ′new

k|k −X ′old
k|k

∥∥∥
2
> T do

10: Set X ′old
k|k ←X ′new

k|k

11: Update the path loss exponent η, and RSSI position result Zk/RSSI .

12: Calculate the new estimated position X ′new
k|k by (2.23).

13: end while

14: Update the RSSI measurement covariance σR/new by (2.30).

15: Update Kalman gain Kk and P k|k, and calculate final estimated position X ′Final
k|k .

16: end procedure

27

2.5 Simulation Results

In this section, we analyze the performance of our proposed CRIL system through

extensive simulations and validate the proposed scheme by comparing it with the following

two previous methods:

1. RSSI localization system (RSSI)[67]: With a fixed time step, the RSSI localization
system estimates the object’s position based on the RSSI values only.

2. A hybrid RSSI and INS system with Kalman filter without channel model update
(KF)[80]: Kalman filter is employed to fuse the results from the RSSI system and
the INS system, but there is no channel model update process.

As will be seen later, our proposed system gives very accurate and stable localization

results even in dynamic environments.

2.5.1 Simulation Environment and Parameter Setting

In the simulations, we consider that there are three WiFi anchors located at three fixed

points, respectively, in a room of 50m×50m. The tracked object moves around under the

coverage of all three anchors, and they are all on the same plane. These anchors send WiFi

signals to the tracked object at a fixed rate of one per 0.5 sec. The speed of the object is

fixed at 1m/s.

At the start point (5, 5, 0), the object uses its exact position to initialize the parameters

and position states in the proposed Kalman filter. The values of σa and σv in the covariance

matrix Qk of the process noise ΓX are set to 0.1m/s2 and 0.1m/s. In the covariance matrix

of RSSI measurement noise, i.e., RRSSI , the initial value of σR is set to 2m. As explained

in the previous section, this Rk/RSSI will be updated online to enhance the accuracy of our

algorithm.
28

The log-normal shadowing path loss model is used as the signal propagation model,

where σ = 2dBm, and A = −38.0460 dBm.

2.5.2 Results under Constant Path Loss Exponent

In this simulation, the real path loss exponent is set to a constant value of 4. As shown

in the description of the CRIL algorithm, the noise influences the accuracy of the esti-

mated path loss exponent η. In this special situation where the real path loss exponent η

is not changing, the proposed recursive update process for η should keep the estimated η

unchanged. The small variation of the estimated η caused by the noise should be ignored

by the recursive update process. That means the new CRIL system should have the same

performance as the KF method [80].

Specifically, we can see in Figure 2.2 that the estimated path loss exponent η (i.e., blue

circles in Figure 2.2) is unchanged. This is because the proposed recursive update process

for η ignores the influence of noise, and the updated ηnew obtained in the recursive update

process (i.e., blue squares in Figure 2.2, only one iteration) is not accepted by the system.

The results in Figure 2.2 validate the design of the proposed threshold T for controlling the

recursive level of the update process, and shows that we can have a stable and converging

update process in this environment with a constant path loss exponent.

In Figure 2.3 and Figure 2.4, we show the estimated positions by our proposed CRIL

and by RSSI [67] and KF [80], respectively. We can see that both our CRIL and KF [80]

can track the objects’ real positions well, with localization errors on the scale of centime-

ters. The localization errors of RSSI [67] are larger, up to 2.5 1.5 meters. Figure 2.2

29

0 5 10 15 20 25 30 35
3.975

3.98

3.985

3.99

3.995

4

4.005

4.01

P
at

h
Lo

ss
 E

xp
on

en
t η

Simulation Time (sec)

Estimated Path Loss Exponent η
Real Path Loss Exponent η
Path Loss Exponent η in recursive process

Figure 2.2

Estimated path loss exponent η by CRIL

30

5 10 15 20 25 30 35 40
3

4

5

6

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajectory

Real Trajectory
Estimated Position by CRIL

0 5 10 15 20 25 30 35
0

0.5

1

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by CRIL

Figure 2.3

Comparison of estimated positions by CRIL and the real trajectory

31

5 10 15 20 25 30 35 40
0

2

4

6

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajecotry

Real Trajectory
Estimated Position by KF
Estimated Position by RSSI

0 5 10 15 20 25 30 35
0

1

2

3

4

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by KF
Error by RSSI

Figure 2.4

Comparison of estimated positions by RSSI [67], KF [80] and the real trajectory

32

and Figure 2.3 together demonstrate that the proposed recursive update process for η can

have a good performance, even when the noise and the measurement errors influence the

estimation of η.

2.5.3 Results under Dynamic Path Loss Exponent

Previous results show that the proposed CRIL system can obtain the same accuracy

level as the normal Kalman filter when the path loss exponent is a constant. On the other

hand, one of CRIL’s biggest advantages is that it can estimate and update the path loss

exponent η through realtime calibration. This is one main reason that the proposed system

can have high localization accuracy compared to previous RSSI alone localization systems

and hybrid localization systems.

In what follows, two situations are discussed and investigated: first, the value of the

real path loss exponent η slowly changes with time; second, the value of the real path loss

exponent η has a sudden change, i.e., jumps form one value to anther. In the next two

subsections, we show that the proposed CRIL can achieve accurate localization in both

situations.

2.5.3.1 Path loss exponent η is slowly changing

In this simulation, the real path loss exponent η slowly changes form 4 to 4.35. This

can happen when the humidity in the room is slowly increasing [52]. In Figure 2.52,

the estimation error of the path loss exponent is very small, and most of the errors are

below 0.02. The estimated path loss exponent η can follow the slow changing of the real
2Comparison of estimated path loss exponent η by CRIL and the real path loss exponent η which is slowly

changing.

33

path loss exponent η. Although there are still some small errors caused by the noise and

measurement errors, the estimated path loss exponent η is very accurate and can give very

good performance.

Figure 2.63 and Figure 2.7 demonstrate the localization performance of CRIL and of

RSSI [67] and KF [80], respectively. Specifically, in Figure 2.6, the proposed CRIL sys-

tem achieves similar performance under dynamic path loss exponents to that in Figure 2.3

where the path loss exponent is a constant. The variation of the real path loss exponent

η does not influence the accuracy of the proposed CRIL system much. This is because

the recursive update process for η can detect this variation efficiently and accurately. We

also notice that our proposed scheme’s performance (with localization errors up to 0.4m)

is much better than the RSSI [67] and KF [80] localization systems, as shown in Fig-

ure 2.7. The KF scheme leads to localization errors of a few meters, which cannot be

used. The RSSI method is even worse than the KF scheme and has localization errors

more than 20m, due to the inaccurate channel model. From these results, we can see that

the proposed CRIL system can fully utilize the fused results of INS and RSSI systems and

detect the variations of the path loss exponent η quickly, thus improving the localization

performance. Moreover, as shown in Figure 2.8, we notice that the number of iterations

numbers in the recursive update process for η are no more than 3, which demonstrates that

the proposed update process is very efficient.

3Comparison of estimated positions by CRIL and the real trajectory with the slowly changing path loss
exponent η

34

0 5 10 15 20 25 30 35
3.8

4

4.2

4.4

4.6

P
at

h
Lo

ss
 E

xp
on

en
t η

Simulation Time (sec)

(a) Path Loss Exponent η

Estimated Path Loss Exponent η
Real Path Loss Exponent η

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

Simulation Time (sec)

P
at

h
Lo

ss
 E

xp
on

en
t η

 E
rr

or

(b) Extimated Path Loss Exponent η Error

Estimated Path Loss Exponent η Error

Figure 2.5

Comparison of estimated path loss exponent η

35

5 10 15 20 25 30 35 40
3

4

5

6

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajectory

Real Trajectory
Estimated Position by CRIL

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by CRIL

Figure 2.6

Comparison of estimated positions by CRIL and the real trajectory.

36

0 10 20 30 40 50
−10

−5

0

5

10

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajecotry

Real Trajectory
Estimated Position by KF
Estimated Position by RSSI

0 5 10 15 20 25 30 35
0

5

10

15

20

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by KF
Error by RSSI

Figure 2.7

Comparison of estimated positions by KF[80] and RSSI[67], and the real trajectory.

37

2.5.3.2 Path loss exponent η is suddenly changed

In this simulation, the value of the path loss exponent η jumps form 4.0 to 4.2 at about

t = 26 sec. This may happen when the mobile object enters one room form another [52].

From Figure 2.9, we can find that the estimation error of the path loss exponent η is also

very small as that in Figure 2.3 and Figure 2.5, and most of the errors are less than 0.015.

We can easily see that the estimated path loss exponent η can track the suddenly changed

real path loss exponent η very fast. It is important to notice that the estimation error after

t = 26 sec is not much different, compared with that before t = 26 sec. The small error

of η caused by the noise and measurement error will not influence the performance of the

proposed system too much. Figure 2.10 shows that the performance of the proposed CRIL

system is very good and not affected by the sudden change of the real path loss exponent

η.

Particularly, in Figure 2.10, because the successful detection of the sudden jump of

the real path loss exponent η, the proposed system can still output estimated positions

with high accuracy. The performance in this scenario is similar to those in the previous

simulations where the real path loss exponent η is a constant or slowly changing. There

is not much difference in the estimated error before and after the jump of η, which mostly

remains below 0.2m. This means the performance of the proposed CRIL system is smooth

and stable when the parameters are changed suddenly. This is desirable in real-world

applications, where a localization system should be adaptive to these changes and update

its own parameters effectively. We notice in Figure 2.11 that both the RSSI system’s and

the KF system’s localization errors are several meters. Thus, the RSSI [67] and KF [80]

38

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

Ite
ra

tio
n

N
um

be
r

in
 th

e
R

ec
ur

si
ve

 P
ro

ce
ss

Simulation Time (sec)

Figure 2.8

The number of iterations in the recursive update process for η.

39

0 5 10 15 20 25 30 35
4

4.1

4.2

4.3

P
at

h
Lo

ss
 E

xp
on

en
t η

Simulation Time (sec)

(a) Path Loss Exponent η

Estimated Path Loss Exponent η
Real Path Loss Exponent η

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

Simulation Time (sec)

P
at

h
Lo

ss
 E

xp
on

en
t η

 E
rr

or

(b) Extimated Path Loss Exponent η Error

Estimated Path Loss Exponent η Error

Figure 2.9

Comparison of estimated path loss exponent η by CRIL.

40

5 10 15 20 25 30 35 40
3

4

5

6

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajectory

Real Trajectory
Estimated Position by CRIL

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by CRIL

Figure 2.10

Comparison of estimated positions by CRIL and the real trajectory.

41

5 10 15 20 25 30 35 40 45
−10

−5

0

5

10

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajecotry

Real Trajectory
Estimated Position by KF
Estimated Position by RSSI

0 5 10 15 20 25 30 35
0

5

10

15

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

(b) Localization Error

Error by KF
Error by RSSI

Figure 2.11

Comparison of estimated positions by KF[80], RSSI[67] and the real trajectory.

42

systems cannot give good localization results because of the sudden changing of the path

loss exponent.

2.5.4 Results under Dynamic RSSI Environments

In the previous experiments, the RSSI values is following a fixed gaussian distribution,

and there are no strong outliers in the values. However, based on previous research [67, 52],

these are not true in practical environments. In what follows, we discuss and investigate

three situations: first, the covariance of RSSI values changes; second, outliers are randomly

added into the RSSI values; third, both of the covariance changes and outliers are added

into the RSSI values. We show that our CRIL with robust scheme can achieve accurate

localization in these situations.

2.5.4.1 Covariance of RSSI values changes

In this simulation, the σ of the RSSI values changes from 2 dBm to 4 dBm. In Fig-

ure 2.124, the estimation errors in the case of CRIL without RSSI covariance update is

much bigger than the results in the previous simulations. In contrast, the estimation errors

in the case of CRIL with RSSI covariance can give small errors, although they are a little

bigger than the results in the fixed RSSI covariance case.

4Comparison of localization errors by CRIL with RSSI covariance update and CRIL without RSSI co-
variance update when the covariance of RSSI values changes.

43

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

 Localization Error

Error by CRIL w/o RSSI Covariance Update
Error by CRIL w RSSI Covariance Update

Figure 2.12

Comparison of localization errors

44

2.5.4.2 Outliers randomly are added into the RSSI values

In this simulation, the outliers of 15 dBm are randomly added into the RSSI values

with the probability of 0.2. In Figure 2.135, these outliers lead to big localization errors in

the case of CRIL without outlier reduction. However, the localization errors in the case of

CRIL with outlier reduction demonstrate its effect, which give us much better performance.

2.5.4.3 Both of the covariance variance and outliers are added

In this simulation, both the covariance changes and outliers like those in 1) and 2) are

added into the RSSI measurement values. In Figure 2.146, the localization errors in the

case of CRIL with both RSSI covariance update and outlier reduction are much smaller

than those in the case of CRIL without both RSSI covariance update or outlier reduction.

This figure demonstrates that the proposed CRIL scheme can well deal with the uncertainty

in RSSI values.

2.6 Experiment Results

We conduct experiments on a mobile device (iPhone 5S) to evaluate the performance of

our proposed CRIL, which has a tri-gyro and a tri-accelerameter. The IMU data is obtained

through the App ”Sensor Monitor”, and the sampling rate is 120Hz. The four WiFi anchors

are Linksys WRT54GL routers with OpenWrt system. The experiments are done in our lab

of 15meters by 10meters. The WiFi anchors are located at the four corners of the room

5Comparison of localization errors by CRIL with outlier reduction and CRIL without outlier reduction
when the outliers are randomly added into the RSSI values.

6Comparison of estimated position errors by CRIL with RSSI covariance update and outlier reduction and
CRIL without RSSI covariance update or outlier reduction when both the covariance changes and outliers
are present.

45

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

Localization Error

Error by CRIL w/o Outlier Reduction
Error by CRIL w Outlier Reduction

Figure 2.13

Comparison of localization errors

46

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Simulation Time (sec)

Localization Error

Error by CRIL w/o RSSI and Outlier Update
Error by CRIL w RSSI and Outlier Update

Figure 2.14

Comparison of estimated position errors

47

2 4 6 8 10 12
1

1.5

2

2.5

P
at

h
Lo

ss
 E

xp
on

en
t η

Time (sec)

(a) Path Loss Exponent η

Estimated Path Loss Exponent η
Real Path Loss Exponent η

0 2 4 6 8 10 12 14
−0.4

−0.3

−0.2

−0.1

0

0.1

Time (sec)

P
at

h
Lo

ss
 E

xp
on

en
t η

 E
rr

or

(b) Extimated Path Loss Exponent η Error

Estimated Path Loss Exponent η Error

Figure 2.15

Comparison of the estimated path loss exponent η by CRIL.

48

and they all cover the whole room. A basic fingerprint system based on k-closest neighbors

method [76] is implemented as a comparison of our proposed CRIL system.

In the first experiment we test our CRIL system with the path loss exponent η jumping

from 1.2 to 2.1 at t = 7 sec. We make it happen by creating many blocks in the room [52].

From Figure 2.15, we can find that the estimation error of the path loss exponent η is very

small like those in the simulations, and most of the errors are less than 0.25. We can easily

see that the estimated path loss exponent η can track the changed real path loss exponent η

very fast. The error of η caused by the noise and measurement error will not influence the

performance of the proposed system too much.

Besides, Figure 2.167 shows that the localization performance of the proposed CRIL

system is very good and not affected by the sudden change of the real path loss exponent

η. In particular, because of the successful detection of the sudden change in the real path

loss exponent η, the proposed CRIL system can still output estimated positions with high

accuracy. There is not much difference in the estimated error with and without the jump

of η, which mostly remains below 3m. This shows that the performance of the proposed

CRIL system is good and stable.

In the second experiment, we implement the fingerprint system when the value of the

path loss exponent η is 1.20. The same as above, one test is carried out when the environ-

ment does not change, and the other is performed when we change the path loss exponent

η from 1.2 to 2.1. We notice in Figure 2.178 that in the static environment, the average

7Comparison of the estimated positions by CRIL in the static environment and in the dynamic environ-
ment.

8Comparison of the localization errors by the fingerprint system in the static environment and in the
dynamic environment.

49

0 2 4 6 8 10 12 14

2

4

6

8

10

y−axis (m)

x−
ax

is
 (

m
)

(a) Estimated Positions and Real Trajectory

Real Trajectory

Estimated Position by CRIL in the Static Environment

Estimated Position by CRIL in the dynamic Environment

0 2 4 6 8 10 12 14
0

1

2

3

4

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Time (sec)

(b) Localization Error

Error by CRIL in the Static Environment

Error by CRIL in the Dynamic Environment

Figure 2.16

Comparison of the estimated positions

50

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10

Lo
ca

liz
at

io
n

E
rr

or
 (

m
)

Time (sec)

Localization Error

Error by FP in the Static Environment
Error by FP in the Dynamic Environment

Figure 2.17

Comparison of the localization errors

51

error is 2.4m, and in the changed environment, the average error is 5.1m. Obviously,

although in the static environment the fingerprint system have a comparable performance

with our CRIL system, in the dynamic environment our CRIL system can maintain similar

performance and outperform the fingerprint system.

2.7 Conclusion

Involved in many emerging applications, indoor localization systems have attracted in-

tense research interests recently. This paper has proposed an efficient, adaptive and robust

indoor localization system: Coupled RSSI and INS Localization (CRIL). Generally, the

calibration of the channel model in previous methods is complex, not realtime, and time-

consuming. The proposed CRIL system utilizes the fused results from both RSSI and INS

systems through a newly designed Kalman filter to estimate the object’s location while

calibrating the channel model in realtime. Extensive simulation and experiment studies

demonstrate that the proposed system can accurately localize mobile objects. Compared

with previous methods which may not converge and whose localization errors are several

meters or even tens of meters, simulations show that CRIL has much better performance

in dynamic environments with localization errors up to 1m. In particular, CRIL is able

to detect the changes in the environment and adapt to dynamic environments quickly and

effectively. Moreover, with outlier reduction and RSSI covariance update, CRIL can still

give a good performance when there are more uncertainties in the RSSI values. Finally,

through experiments, we prove that our CRIL system works well in practice.

52

CHAPTER 3

REALTIME3D: A NEW REALTIME 3D RECONSTRUCTION SCHEME

3.1 Introduction and background

As a promising technology, Unmanned Vehicle Systems (UVS) find more and more

applications including environment monitoring [73], industrial production [13], and even

exploration of Mars [39]. Except for those large and expensive UVS which are used by

governments and research institutes, a lot of small-sized commercial UVS have emerged

recently, because they are cost-efficient and easy to operate. Such small-sized UVS can

facilitate many commercial and personal applications [79], such as building maintenance,

gaming, filming and education. To enable these non-professional users to easily operate

the UVS and utilize them for different applications, many important technologies need to

be developed, one of which is autonomous navigation.

There are several small popular UVS on the market. Particularly, Parrot AR.Drone [10]

is a cheap and small quadrotor UVS whose mechanical structure comprises four rotors. It

has a vertical camera and a horizontal camera which can transfer UVLC (MJPEG-like)

and P264 (H.264-like) videos at a rate of 15 frames per second, and a set of ultrasonic

transceiver and receiver which can measure the flight height. These sensors enable it to

have the hovering function. In the meantime, DJI Phantom series [79] target the middle to

high end markets. With higher prices, DJI uses cameras with higher quality and stabilized

53

control systems to support more complex flight tasks, e.g. collision avoidance and target

tracking. However, none of these low-price UVS can realize the complete autonomous

navigation, because of the limited on-board computational ability and power.

To enable the real autonomous navigation, one approach is to obtain a realtime local

3D map, so that a UVS can find a candidate path in it. Researchers have proposed a few

technologies utilizing different sensors and devices to perform 3D space reconstruction.

For example, Microsoft Kinect [78] and Asus Xtion [20] use infrared rays to scan the ob-

jects, and estimate their depth based on the reflection. Google’s self-driving car [21] has

a Velodyne 64-beam laser scanner to generate the 3D models of the surrounding environ-

ment. These active sensor methods have high accuracy and good performance without

prior assumptions and requirements. However, such designs are based on certain invisible

light which requires high power and extra costs. In contrast, 3D models can also be recon-

structed using the visible light. A popular way is to use the stereo cameras [3]. Particularly,

two lens are placed apart by a certain distance in a stereo camera. Then simple geomet-

ric equations can be used to calculate the differences between the left image and the right

image, and then obtain the depth of the front objects. Such stereo cameras systems need a

highly accurate synchronization scheme to make sure that the two images from two lenses

are subject to exposures at the same time. Besides, the installation error will propagate into

the 3D estimation process. To address these problems, single visible light camera based

systems are developed, e.g. [51] and [46]. In these designs, a single well calibrated camera

(even a cheap web camera) is enough to conduct 3D reconstruction with well designed al-

gorithms. Unfortunately, such computer vision algorithms involve many procedures which

54

are highly computationally intensive. Thus, most previous systems cannot work in a real-

time fashion, or have degraded results due to the tradeoff between the performance and the

computing efficiency.

To improve computing efficiency of single visitable camera based systems, several at-

tempts have been made in the literature with parallel computing and GPU computing. For

example, Klein and Murray [33] design a Parallel Tracking and Mapping system (PTAM)

by utilizing multi-core to improve the computing speed. GPU computing is also well-

known for processing the images and float computing, because of GPU’s special struc-

tures. Newcombe and Davison [51] developed GPU-based variational optical flow to re-

duce their system’s computational complexity. We notice that these systems enhance the

computational efficiency not by simplifying the algorithms themselves, but by increasing

the hardware’s usage efficiency. Such a methodology may not be appropriate for those

light-weight small UVS for personal users, since these systems are not equipped with ex-

pensive and powerful multi-core GPUs or high-capacity batteries.

On the other hand, cloud computing emerges as a cost-effective and powerful comput-

ing paradigm, which serves as an ideal technology to support computationally intensive

with algorithms on light-weight UVS. Delay is obviously an issue in cloud computing

based systems. Simply outsourcing all the data and compute to the cloud would leave to

significant communication delay. Unfortunately, although so far there have been several

designs that utilize the cloud computing for robot control and realtime image processing

systems [57], [65], [62], most of them simply upload all the raw images to the cloud, with-

out carefully investigating an outsourcing scheme. In fact, a well designed outsourcing

55

scheme can significant reduce the communication delay while keeping low computational

complexity locally. Besides, today’s small UVS also offer multi-core CPUs. Although

they are not as powerful as those in expensive computer server or GPUs, they can help

with certain preprocessing and enable parallel computing in the pipeline of computing vi-

sion algorithms, while the other most heavy tasks are outsourced to the cloud.

In this paper, we develop a new realtime 3D reconstruction system called Realtime3D

based on a single visible-light camera, which can enable a UVS to generate 3D scenes of

its environment in realtime. Based on these 3D scenes, a lot of further processing can be

conducted to realize autonomous navigation, realtime VR, 3D mapping, etc.. The camera

we need can be any common off-the-shelf camera without any special requirement. A web

camera or a mobile phone’s camera can also be used in our system. Besides, the power

consumption of these cameras is much lower than that of the active cameras like infrared

and laser cameras. By using the camera’s raw video as the system input, our system in-

telligently outsources the most expensive computations of th Structure from Motion (SfM)

scheme [50] to the cloud, and further improve the computing efficiency through parallel

computing and preporcessing specifically, the proposed Realtime3D first extracts image

features and estimates the raw 3D points of the objects in the environment by improv-

ing the SfM algorithm design and utilizing parallel computing. These raw 3D points are

further optimized through a bundle adjustment (BA) processing [75] in order to obtain a

global sparse 3D point cloud. The traditional BA optimization is highly computationally

expensive, and hence common on-board computers cannot process it in real-time. In our

proposed system, we improve the efficiency of this process by outsoucing it to the cloud

56

and limiting the amount of data transmitted to the cloud as well. Moreover, we carefully

select certain raw data and transmit from the UVS to the cloud, which can help transform

the sparse 3D point cloud into a dens 3D point cloud. The proposed Realtime3D system is

implemented and validated by extensive real experiments.

The rest of the chapter is organized as follows. In Section 3.2, we present the system

models and fundamentals of 3D reconstruction. Section 3.3 describes our proposed Re-

altime3D system, which is evaluated in Section 3.4 through extensive real experiments.

Finally, we conclude the chapter in Section 3.5.

3.2 System Models

3.2.1 System Architecture

As shown in Figure 3.1, we consider an unknown environment where we intend to

fly a UVS to explore. The unknown environment has many 3D objects in it which the

UVS need to discover. As described in Figure 3.2, the UVS carries an onboard single

visible-light camera, a WiFi radio and an onboard computer. The onboard computer has a

multi-core CPU, which can conduct simple processing on the input video but is not strong

enough to build realtime 3D models of the environment by itself. Our propsed Realtime3D

system processes the live streaming videos from the onboard camera which has been cal-

ibrated already. The WiFi radio on the UVS connects it to a pre-configured cloud server.

Thus, the UVS can conduct the realtime 3D reconstruction by taking advantage of cloud

computing. Furthermore, the 3D map generated by our scheme can be further processed

for autonomous flight control purposes.

57

Figure 3.1

A typical scenario of environment exploration using a UVS.

58

Figure 3.2

The architecture of our Realtime3D system

59

3.2.2 Camera Calibration

Cheap onboard cameras usually have serious distortion problems [25]. In particular,

radial distortion and tangential distortion are two major distortions which have great influ-

ence on images’ quality.

Radial distortions change straight lines into curves, especially those lines in the center

of images. This problem can be resolved into the following equations [25]:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.1)

where (x, y) is the position of one pixel in the distorted image, (xcorrected, ycorrected) is

the corrected or calibrated position, and ki, (1 ≤ i ≤ 3) are the distortion coefficients

regarding the radius r, i.e. the distance from the center of the image to (x, y).

Similarly, tangential distortion makes some points in the images closer than they should

be, because the lens in a camera are not in parallel with the image plane. The following

equations can resolve this problem:

xcorrected = x(2p1xy + p2(r
2 + 2x2))

ycorrected = y + (p1(r
2 + 2y2) + 2p2xy)

(3.2)

where p1 and p2 are the distortion coefficients regarding the radius r.

In summary, we need five distortion coefficients to recover the undistorted input im-

ages; i.e., k1, k2, k3, p1, p2.

Moreover, to perform 3D reconstruction, we need the intrinsic matrix K of a camera,

which is also called the “camera matrix” and camera-dependent. Particularly, camera ma-

60

trix K information includes such as focus length (fx, fy) and optical center (cx, cy), which

is a 3× 3 matrix as follows [25]:

K =



fx cx 0

0 fy cy

0 0 1


(3.3)

To determine all the above camera parameters, we need to conduct calibrations. One

common calibration method is using several standard chessboard images as the input,

which is supported by libraries such as OpenCV [9]. After the calibration process, we

can retrieve the undistort images.

3.2.3 Epipolar Geometry

Before we detail our 3D reconstruction scheme, we introduce some basic concepts

about epipolar geometry in the following. Specifically, the basic idea of reconstructing 3D

models from 2D images is to estimate the depth information, which is lost when we take

the images, based on images from multiple views. From [9], we know that at least two

images are needed to construct what is called “stereo vision”.

Let us take Figure 3.3 as an example, we have two cameras centered at O and O′

respectively, which can each take an image of the current scene. From these two images

(two blocks in the figure), we can estimate a point x’s coordinates in the 3D space, i.e., X ,

centered at point O. Particularly, only with the left image, we cannot obtain X , because

it can be any point along the line Ox. By considering the right image as well, we can

determine X since it is obviously the intersection of Ox and O′x′.

61

Figure 3.3

Two cameras taking images of the same scene [9]

The whole process of determining a point x’s coordinates in the 3D space can be for-

mulated as follows. There are two important matrices: the fundamental matrix denoted by

F and the essential matrix denoted by E, which are both 3 × 3 matrices. By using either

one of these two matrices, we can find one image’s relative position to the other, and then

project the 2D points to 3D points.

Specifically, as shown in Figure 3.4, to obtain the fundamental matrix F , we can con-

struct the following equation involving the point x in the left image and the corresponding

point x′ in the right image:

[xT 1]F

 x′

1

 = 0 (3.4)

where x and x′ are 2D coordinates in images centered at Ol and Or, respective. To solve

for F , we need at least 8 pairs of x and x′ to form 8 equations of Equation (3.4), because F

62

has 8 degrees-of-freedom. What is more, the fundamental matrix (F) and essential matrix

(E) are related as follows:

F = KTEK (3.5)

where K is the camera matrix in Equation (3.3).

Figure 3.4

Camera relative position [9]

Then, we take the SVD decomposition of E, i.e.,

SV D(E) = U · S · V t (3.6)

and construct a rotation matrix R of 3× 3 and a translation matrix T of 3× 1 as follows:

R = U ·W · V t, T = U · [0, 0, 1]T , (3.7)

63

where

W =



0 −1 0

1 0 0

0 0 1


.

After that, we can obtain the relative camera pose matrix P between two images. In

particular, by considering one image as the reference with no rotation and translation,

matrix P can then be composed of R and T in Equation (3.7):

P = [R|T]. (3.8)

Finally, based on matrix P , we can estimate the 3D position X of the 2D point x via

triangulation. The basic ideas is to find the intersection of two rays, i.e., Olx and Orx
′,

as shown in Figure 3.4 which go through the cameras’ centers based on the projection

equation [23]:  x′

1

 = P

 X

1

 (3.9)

where X is the 3D coordinates and a 3× 1 vector.

The above process is about the reconstruction based on two images. Given a group of

images {I0, I1, · · · , It} from time 0 to time t, we need to find the camera’s pose matrices

{P1, · · · , Pt} between two consecutive images. Note that we usually set P0 = [I|0].

3.3 Description of Our Proposed Realtime3D System

In this section, we present the details of our realtime 3D reconstruction scheme called

Realtime3D. The main idea of Realtime3D is to intelligently outsource the most expensive

computation of a 3D reconstruction scheme, which is chosen as SfM [50] in this study.
64

Specifically, SfM reconstructs a 3D space from two or more images [22] in four steps

[18]: 2D feature extraction, 3D points estimation, bundle adjustment, and dense cloud

expansion. However, the traditional SfM is an off-line scheme, and difficult to directly

serve as a realtime tool to deal with live images from the onboard cameras. We modify and

improve the original scheme for our UVS application, and utilize parallel computing and

cloud computing to accelerate the computing speed. In what follows, we first describe the

key processes in each step of the proposed Realtime3D system, and then summarize the

whole system.

3.3.1 2D Feature Extraction

As mentioned in Section 3.2.3, we first need to determine the fundamental matrix F

between two images in order to reconstruct the 3D space which can be obtained by finding

at least eight feature point pairs in the two images. Although it might seem easy to identify

the same features by human eyes on two images, due to the camera’s rotation, translation,

noise, and exposure, the same features may have very different shapes and colors in two

images. There are several feature selection technologies in the literature, including FAST

[55], ORB [56], SIFT [47] and SURF [6], and we need to find a scheme with balanced per-

formance and computational effciency. Among these different technologies, FAST works

very fast, but it is not very accurate; ORB is a little slower than FAST but more accurate;

SIFT is the slowest but has the best performance, which has been widely used in the orig-

inal SfM. In contrast, SURF is slower than FAST and ORB, but much faster than SIFT.

65

In the meantime, SURF’s performance is a little worse than SIFT’s, but much better than

FAST’s and ORB’s. In this study, we develop our scheme based on SURF.

Specifically, to reduce the feature selection time, not all input images will be processed.

The difference of two consecutive frames will be calculated, and only the images which

have enough difference will be chosen for feature extraction. In so doing, we can prevent

the system from reconstructing the same scene repeatedly when the UVS is static. Be-

sides, instead of always employing feature selection algorithms, another approach is to use

optical flow to track the features in the live image stream. Optical flow refers to the move-

ment of the features in the consecutive frames because of the cameras’ and/or the features

movements. It can track the features more efficiently and accurately. One popular scheme

is Lucas-Kanade method [8] which is a least squares fitting technology. The disadvantage

of this method is that it gives poor results when the motion is too fast or some features

disappear. We propose to combine optical flow and feature selection together to better ex-

tract features. In particular, we first employ a feature selection algorithm, i.e., SURF, to

extract the features of an image, and then adopt Lucas-Kanade method method to track the

features in the following images until the performance does not meet a certain threshold.

In that case, we repeat the above process again and proceed.

3.3.2 3D Point Estimation

After extracting the features, the next step is to link the corresponding features in two

images, and then recover the 3D points.

66

Speciafically, in the case that features were obtained by the Lucas-Kanade approach,

the feature points in different images are already linked. Otherwise, i.e., when features

were extracted by using the SURF algorithm, we need to find the matching pairs between

these features in two images based on their descriptors, which is called feature matching.

We employ SURF [6] descriptor in our scheme. It is calculated based on Haar wavelet

responses of square regions around the features. One popular feature matching is FLANN

[45], short for Fast Library for Approximate Nearest Neighbors. It is much faster than the

native brute force search, especially when the number of features is large. FLANN mainly

consists of three steps

• Build a K-Dimension(KD) tree for image I ′js features.

• For each feature in image Ii, find K neighbors in the KD-tree of Ij based on the
distance between their descriptors.

• Find the feature out of K features that has the shortest distance from the feature in
image Ii and make them a pair.

After feature matching, we have the paired features, base on which we can find the

fundamental matrix F . However, due to the noise and possible mismatching of the features,

common methods like [9] can lead to inaccurate results. We apply another method called

Random Sample Consensus (RANSAC) [11], which can well account for noisy raw data

with a lot of outliers. This main idea of RANSAC is as follows:

• Initiate an F by randomly selecting 8 feature pairs, and set it to the optimal Foptimal.

• Calculate the overall error of the other pairs with F .

• Find another F ′ by selecting 8 feature pairs and calculate the overall error of this F ′.

• If the error of this F ′ can beat that of the optimal Foptimal, set the optimal Foptimal to
F ′.

67

• Jump to Step 3 until the Foptimal converges or the iteration number reaches a prede-
fined number.

Morever, we parallelize this process since step 3 can be conducted in parallel, which

can speed up the computation.

Finally, based on F , we can calculate the pose matrix P based on SVD decompostion

[9] and solve for the 3D space coordinates of the matched feature pairs, i.e., x in Equa-

tion (3.9) by the linear least squares(Linear-LS) method [23].

3.3.3 Bundle Adjustment

After the previous two steps, we can add more and more 3D points and form a sparse

3D point cloud. However, errors and noises usually make new points’ coordinates not

well aligned with the previous points’, which results in distorted 3D models. Therefore,

to project all the whole 3D points into a global coordinate system and optimize the related

parameters, we apply a refinement of the reconstruction [4], which is called bundle adjust-

ment. In this refinement, the object is to minimize the re-projection error from 3D space

to 2D space. Assume that we have processed m images to get n 3D points. Then the cost

function of reprojection is defined as

min
Pj ,Xi

n−1∑
i=0

m−1∑
j=0

wijd(Π(Pj, Xi), xij)
2 (3.10)

where Π(·) is the re-projection function of point i on image j defined as Equation (3.9), d

is the Euclidean distance function between the re-projected 2D position of the 3D point Xi

and the corresponding 2D observed point xij , and wij is an indicator variable which equals

68

1 if point i is visible in image j and 0 otherwise which can account for the missing 2D

points in some images.

The above optimization can easily involve tens of thousands or even more nonlinear

equations which is very time-consuming. We employ the Levenberg-Marquardt (LM) [44]

algorithm to solve this nonlinear least squares problem, which can coverage fast with the

3D points obtained in the previous section being the initial starting point [22]. In particular,

the problem can be formulated as [75]:

(P ∗
0 , ..., P

∗
m−1, X

∗
0 , ..., X

∗
n−1) = arg min

(Pj ,Xi)

m−1∑
j=0

fj(Pj, X0, ..., Xn−1) (3.11)

where (P ∗
0 , ..., P

∗
m−1, X

∗
0 , ..., X

∗
n−1) are the estimated pose matrices and 3d positions, and

fj is the overall re-projection error on image j of all the 3D points regarding the pose

matrix Pj

fj(Pj, X0, ..., Xn−1) =
n−1∑
i=0

ωijd
2(Π(Pj, Xi), xij). (3.12)

We further define a f which is a vector of re-projection errors over all the images:

f({Pj}, {Xi}) = [f0(Pj, {Xi}), · · · , fm−1(Pj, {Xi})] . (3.13)

Then, we can solve this optimality problem Equation (3.11) in an iteration way by updating

the previous parameters by δ∗, i.e.,

({Pj}, {Xi})← ({Pj}, {Xi}) + δ∗. (3.14)

δ∗ can be obtained by solving the following linear least squares optimization problem:

δ∗ = argmin
δ
∥Jδ + f∥2 + λ ∥Dδ∥ (3.15)

69

where J is the Jacobian matrix of f , D is a non-negative diagonal matrix which is the square

root of the diagonal of JTJ , and λ is a nonnegative parameter to control the optimization.

The above equation can be solved below:

(JTJ + λDTD)δ = −JTf (3.16)

This is a large linear system that can be solved by using the iterative Conjugate Gradient

(CG) approach. This CG method can also be implemented in a parallel way. Further-

more, we can simplify the CG approach by using the implicit Schur algorithm, because the

augmented hessian matrix is sparse and can be transferred to a Schur complement format.

Although we consider that the onboard CPU has multi-core and hence parallel comput-

ing capability, such a bundle adjustment optimization problem is still very expensive and

time-consuming which does not satisfy our realtime requirement. Therefore, we outsource

this problem to the cloud. What is more, we notice that complete bundle adjustment over

all the input images is not always necessary, because the current scene is more important

for UVS. Thus, a rough 3D scene e.g., for autonomous navigation, can be constructed

by several hundreds of features, which normally can be obtained from only a few images

within a certain time period. Based on such observations, we can significantly reduce the

size of the problem and make it a realtime process. Furthermore, the number of the iter-

ations in the LM method is also considered to save the computing time. Particularly, the

re-projection errors are usually significantly reduced after a few of iterations. Some small

errors will not influence the performance of applications like autonomous navigation too

much.

70

3.3.4 Dense Cloud Expansion

After bundle adjustment, we can now get a sparse point cloud which describes the raw

structure of the front scene of the camera. The sparse point cloud has limitations, and it

cannot give the details of the scene. Maybe it is sufficient for applications like autonomous

navigation, but further processing is needed for other tasks like 3D modeling. We can

expand a sparse poind cloud to a dense point cloud, and then conduct polygonal surface

reconstruction to get a more fine-grained 3D sparse model. Note that only a small number

of images need to be sent from the UVS to the cloud for dense cloud expansion, which are

determined based on the features’ movements and the current network speed. In particular,

in the cloud, we employ an algorithm based on patch-based multi-view reconstruction [18],

where the main idea is as follows:

• Matching: match the small size (2*2) feature patches to those in the sparse 3D model.

• Expansion: iteratively add new neighbors to existing patches until they cover the
surfaces visible in the scene.

• Filtering: Outliers lying outside (left) or inside (right) the correct surface are filtered.

• Polygonal surface reconstruction: turn our collection of patches into surface meshes
for image-based modeling applications.

3.3.5 Summary of the Proposed Realtime3D

In this section, we give a brief summary of the proposed Realtime3D scheme. Specif-

ically, the onboard computer receives live images from its onboard camera. First, Real-

time3D performs preprocessing to decrease the noises and enhance the edges in an image

by employing the bilateral filter [24] and the Sobel operator method [61]. Second, Real-

time3D selects key frames based on the camera’ movements and the time. The scheme

71

chooses the first key frame as the initial view, uses it to help build the global coordinates,

and employs SURF to extract the features on this initial key frame. Third, the scheme

employs the Lucas-Kanade algorithm to track these SURF features in the following new

images. If there are not enough matched features found by the Lucas-Kanade algorithm,

Realtime3D uses SURF to extract the features and SURF feature descriptor to conduct

feature matching based on FLANN, and employs RANSAC to find F subsequently. Other-

wise, Realtime3D checks if the UVS has moved enough distance. If so, it adopts RANSAC

to find the fundamental matrix F . If not, the scheme processes the next key image. After

F is found, Realtime3D utilizes the linear lease squares method to project the 2D points

into a 3D space.

The above computations are done locally. Next, Realtime3D sends the 3D points to the

cloud, where bundle adjustment is conducted with the Levenberg-Margquardt algorithm.

Parallel computing is designed to speed up the process, so that a sparse point cloud can

be constructed efficiently. Furthermore, the scheme selects very crucial images and trans-

mit them from the UAS to the cloud, which are used to improve the sparse point cloud

and construct a dense point cloud. The detailed flow chart of Realtime3D is shown in

Figure 3.5.

3.4 Experiment Results

In this section, we analyze the performance of our proposed Real3D system through

extensive experiments. As will be seen later, our proposed system gives very accurate and

stable 3D point cloud results.

72

Live Video

RANSAC for F matrix

Feature Tracking by Optical Flow

Feature Matching: FLANN

Estimate 3D Cloud and Camera Poses

BA for 3D points cloud

3D Points Cloud

Cloud

Server

Local

machine

Local Image Processing

SURF Feature Extraction

SURF Feature Descriptor

Yes

Yes

Modify the Local Data

Send to VM

Dense 3D Point Cloud

3D Modeling NavigationGolbal 3D Point Cloud

Transformation from Local Coordinates to Global Ones

No

SURF Feature Extraction

Yes No

Keyframe Selection

No

Figure 3.5

Flowchat of 3D Estimation

73

3.4.1 Experiment Environment and Setting

We implement both the local computing and the cloud computing parts of Realtime3D

in Python 2.7, and most of the computer vision algorithms such as SURF, LK, BA are

implemented by OpenCV 3.0. We run the local computing part on a laptop with a dual-

core 2.53GHz i5 CPU, 4GB RAM memory, and a 320GB hard disk at 5,400RPM which

simulates the onboard computer of a UVS. The local computing part receives live images

from a Logitech web camera which simulates the onboard camera of a UVS, and has an

image resolution of 480. The cloud computing part is implemented on a virtual machine.

In particular, we use another laptop to simulate a real cloud server which has quad-core

2.6GHz i7 CPU, 16GB RAM memory. It hosts a virtual machine by using Virtual Box

which has a quad-core CPU and 8GB RAM memory. The first laptop uses TCP to connect

to the virtual machine via a wireless link.

3.4.2 Performance of Feature Selection

In this section, we test four feature extraction algorithms: FAST [55], ORB [56], SIFT

[47] and SURF [6], and show their performance in Table 3.1. we can see that FAST is the

fastest algorithm, and SIFT is the slowest one. The features of an image selected by these

four algorithm are shown in Figure 3.61. We can observe that 1) although FAST generates

the most large features, a lot of them are located in the small same areas; 2) ORB cannot

generate enough features, although it is fast; 3) SIFT gives the fewest features which have

1Top Left: FAST Features. Top Right: ORB Features. Bottom Left: SIFT Features. Bottom Right: SURF
Features

74

high quality, but it is the slowest; 4) SURF results in a good number of features and can

keep a good balance between the computing time and the performance.

Table 3.1

Performance of Feature Extraction Algorithms

Time(Sec) Number of Features
FAST 0.00465835929975 1103
ORB 0.0197941781448 500
SIFT 0.261150506978 321
SURF 0.190460370521 875

3.4.3 Performance of 3D Point Estimation

First, in Table 3.2, we compare three feature descriptors’ matching performance when

we use FLANN as the matching algorithm. Note that the features are all obtained by the

SURF feature selection algorithm. According to the result, SIFT descriptor can find the

fewest matched features, but takes the longest time, i.e., about 24 seconds. So it cannot

be used in a realtime application. BRIEF descriptor is the fastest one, but the quality is

very low. As shown in Figure 3.7, we can see that SIFT descriptor gives the best matching

accuracy, and the BRIEF descriptor is the worst. Among them, SURF descriptor again

keeps the balance between the computing time and the matching accuracy. Although SURF

is not very fast for a realtime application, in our proposed Realtime3D, we delete the low

quality features before we perform feature matching so that the computing time can be

reduced.

75

Figure 3.6

Different Kinds of Features

Table 3.2

FLANN based Matcher

Time(Second) Number of Matched Features
SIFT Descriptor 24.0184239771 119
SURF Descriptor 1.86921224786 602
BRIEF Descriptor 0.331263716699 453

76

Figure 3.7

Top: SIFT descriptor. Center: SURF Descriptor. Bottom: BRIEF Descriptor

77

Second, we show that feature tracking with the Lucas-Kanade method is faster than

feature matching. The matching performance is also shown in Figure 3.8. In particular,

the time needed for the feature tracking is 0.172945539169 seconds with 1695 matched

features, which is much faster than feature matching as shown in Table 3.2. This is be-

cause feature tracking does not need to calculate the feature descriptors and perform global

searching. However, as mentioned before, its disadvantage is that the movement between

two consecutive images cannot be too far. Otherwise, mismatch or feature loss will happen.

When this situation is detected, the feature matching algorithm has to be applied.

Figure 3.8

Optical Flow Feature Tracking

Third, based on the matched features, we can go ahead to calculate the fundamental

matrix F . After that, the camera pose matrix and the 3D point cloud can be obtained. Note

that here no bundle adjustment is done yet. As shown in Figure 3.9, we build a sparse 3D

78

point cloud from two images: Fountain 1 and Fountain 2. The fundamental matrix F is

estimated as:

F =



2.87970795e−08 −2.55772771e−06 8.65910956e−04

6.78077872e−06 9.22882695e−07 1.27240360e−02

−1.9832146e−03 −1.51672530e−02 1


.

We can then estimate the relative movement between Fountain 1 and Fountain 2 from

this F :

R =



0.9903295 −0.0217032 −0.1370275

0.01594782 0.99895005 −0.04294715

0.13781564 0.04034654 0.98963579



T =

[
−0.9777178 0.00372538 0.20989051

]

Two views of the 3D points are shown in Figure 3.92. We can see that the basic structure

is clear. Note that these 3D points are obtained based on two images. When more images

are processed, we need to perform bundle adjustment to transform them into the same

coordinate system.

3.4.4 Performance of Bundle Adjustment algorithm

Here, we evaluate the performance of the bundle adjust algorithm. Consider that we

have three images: Fountain 1, Fountain 2 and Fountain 3, from which we can have two

2Top Left: Fountain 1. Top Right: Fountain 2. Bottom Left: 3D Features View 1. Bottom Right: 3D
Features View 2

79

Figure 3.9

Fountains and 3D Features Views 1

80

pairs: Fountain 1 and Fountain 2, and Fountain 2 and Fountain 3. We can generate two

groups of 3D points, which are then transformed into the global coordinations.

The 3D points clouds before and after bundle adjustment are shown in Figure 3.10: Top

Left: 3D Features View 1 without bundle adjustment; Top Right: 3D Features View 2 with

bundle adjustment; Bottom Left: fountain 1; Bottom Center: fountain 2; Bottom Right:

fountain 3. It is clear that bundle adjustment increases the accuracy of the 3D point cloud.

Particularly, from the two views on the top, we can see that there are still two point layers

before bundle adjustment. After bundle adjustment, this problem gets resolved as shown

in the two views at the bottom. However, such bundle adjustment processing is very time

consuming. In our scheme, we outsource the bundle adjustment processing to the cloud.

Assuming that there are 1000 features points in each of the 5 images, we evaluate the

running time of this process both locally and in the cloud sever, by taking into account

the uploading time and downloading time. From Table 3.3,we can see that we can save a

lot of time by outsourcing bundle adjustment to the cloud, even under very conservative

assumptions on the network connection speed.

Table 3.3

Performance of Different Computers for BA

Time(Second)
Local Computer 23.080846
VM with 4 cores 8.195623 for computation + 5 for communication with 25KBps
VM with 4 cores 8.195623 for computation + 2.5 for communication with 50KBps
VM with 4 cores 8.195623 for computation + 1 for communication with 125KBps

81

Figure 3.10

3D Features Views and Fountains

3.4.5 Performance of the Realtime3D scheme

In this section, we evaluate the performance of the overall Realtime3D scheme. We set

the video to 15 frames per second, and the camera is moving at a constant speed. Besides,

about one key frame every four seconds is captured by the Realtime3D scheme to generate

the 3D point cloud. Based on our observations, 5 images (4 image pairs) generally can give

enough sparse points to represent the front objects in the camera. As shown in Table 3.4,

each 3D estimation takes about 3 seconds. It means that if we do not perform bundle

adjustment, the scheme can handle 3D estimation in realtime. On the other hand, if we do

perform bundle adjustment locally, there will be about 8.76 seconds additional delay and

the local computer cannot deal with the new incoming images; in contrast, if we perform

82

bundle adjustment in the cloud, the delay is less much, i.e., 1.66 seconds. What is more,

the local computer and the cloud can do 3D estimation at the same time. In particular, the

3D point cloud and the related parameters can be sent back to the local computer when

the system is performing the next frame’s processing and not transmitting. Therefore, the

proposed Realtime3D can work in realtime with well controlled short delay.

Table 3.4

Time for Each Computation Part

Time(Second)
Raw 3D estimation for Pair 1 2.43003312859
Raw 3D estimation for Pair 2 3.1542101909
Raw 3D estimation for Pair 3 2.91904988978
Raw 3D estimation for Pair 4 3.2178513536

Bundle adjustment at the local machine 8.75868840451
Bundle adjustment in the Cloud 1.65724234489
Average time for each uploading 0.5
Average time for downloading 1.25

Some detailed graphical results are discussed as follows. In Figure 3.11, Top Left: Fea-

tures View 1 by Optical Flow; Top Right: Features View 2 by Optical Flow; Bottom Left:

Features View 3 by Optical Flow; Bottom Right: Features View 4 by Optical FlowFrom

Figure 3.11, we can see four key frames’ features and their optical flows from the previous

key frames. There are enough number of matching features and very few mismatches. In

Figure 3.12, Top Left: 3D View 1; Top Right: 3D View 2; Bottom Left: 3D View 3; Bot-

tom Right: 3D View 4. From Figure 3.12, we can see the sparse 3D point cloud, and know

83

that there is an object in front of the wall. This sparse 3D point cloud can be used by the

onboard navigation system to detect the obstacles.

Moreover, in the cloud, further processing can be conducted to generate the dense 3D

point cloud which can be used for other applications like virtual reality. Particularly, each

key frame is less than 100KB. So if the Internet speed is higher than 125KBps which is

reasonable in the current wireless networks, these key frames can be uploaded to the cloud

in 1 second. Four key frames can be used to generated a dense 3D point cloud as shown in

Figure 3.13 which takes about 20 seconds. We can easily observe that we have many more

details about the surface of the books and the wall.

3.5 Conclusion

Realtime 3D space reconstruction system design emerges as a very interesting and im-

portant problem because it has very wide applications. In this paper, we design a realtime

3D reconstruction system called Realtime3D by taking advantage of cloud computing, par-

allel computing and image processing. In our extensive experiments, the results show that

our system can generate good sparse and dense 3D point clouds in realtime.

84

Figure 3.11

Features views

85

Figure 3.12

3D views

86

Figure 3.13

Dense 3D Point Cloud

87

CHAPTER 4

CONCLUSIONS

This dissertation studies some technologies which are key to develop UVS. The first

topic is a localization system. When the UVSs cannot utilize the GPS signal, we propose

a new system to localize the UVS with high accuracy. Without additional devices or spe-

cific modules, the new propose system fuse Received Signal Strength Indication (RSSI)

and Inertial Navigation System (INS) which are normally mountable on the UVS. We de-

sign an adaptive and efficient algorithm which can be used in the dynamic communication

environments. Extensive simulation results prove such a conclusion. In the second topic,

we propose a 3D reconstruction scheme based on cloud computing by UVS onboard de-

vices without extra ones. Basically, we can reconstruct scene geometry and camera motion

from two or more images[22] in four steps[18]. Such work needs a lot of computational

resource, where is difficult to realize in small UVS. High speed Internet and cloud comput-

ing service give us a chance to get enough power to do this. A good outsourcing scheme

can accelerate the whole processing and have good performance, and enable the other high

level tasks.

88

4.1 Contributions

To further extend the work in the proposal, we finish some improvements and experi-

ments here. Based on the proposal, the accumulated errors becomes even more serious in

MEMS IMUs. The reason is that the thermo-mechanical white noise and the bias errors

account for a significant fraction of the measurement error [74]. Although there are a lot

of methods which strike minimizing the impact of the measurement error, it still remains

a big problem for the MEMS IMUs. The experiments shows that IMU in the smart phone

(iPhone 5s) cannot give good performance when it uses the ordinal equations (2.12)-(2.14),

even we use the proposed scheme in this dissertation. The reason is that the magnitude of

the noise generated from the low cost MEMS chips is very large, and the error of the

position will be accumulated over 16m even in 30 sec. We use some well designed so-

lutions which are employing some heuristic methods like gait tracking algorithm based

on the papers [60, 40] adaptive Kalman filter (AKF) from [42], and L1 regression based

approach [30, 41] to handle such problems. Real environment experiments is designed

and the results is compared with the other previous systems including a basic fingerprint

system based on k-closest neighbors method [76] and a hybrid RSSI and INS system with

Kalman filter without channel model update (KF)[80].

Another topic is 3D reconstruction based on cloud computing. There are four steps

in the whole scheme: 1, Track 2D features;2, Estimate 3D points; 3, Optimize: Bundle

Adjust;4, Fir Surfaces. The new idea is to outsource the most expensive computations to

the cloud servers, while the local machine deal with the rest tasks. In this scheme, we

identify the particular task: BA for cloud servers. The native way of sending all raw data

89

to the cloud is not efficient for a UVS. Since the raw data’s size is huge, and the Internet

connection cannot afford such a high speed all the time. Besides, Internet disconnection

may get the UVS into the troubles without enough data update. The proposed scheme

aims to keep the system work even while the connection is down, or the Internet speed

is low. The performance and the robustness are issues that we carefully consider. The

related simulation and tests is scheduled after the theoretic design is done. Compared with

previous method which may not be realtime or use some extra devices, simulations show

that Real3D has much better performance in time constrain with result errors is acceptable

with single ordinary cameras.

4.2 For Further Research

In the future, we will complete our previous work, try to implement them on the real

UVS, and show their values. Some improvements and experiments are needed to raise the

systems’ performance, and we will find current designs’ defects. The real UVS have more

limitation on the safety and robustness issues. Solving those problems will be milestones

towards Autonomous Unmanned Vehicle Systems.

90

REFERENCES

[1] “Junaio 2.0 First Indoor Social Augmented Reality App at SXSW With Developers
API,”, Available from http://arabcrunch.com/2010/03/junaio-2-0-first-indoor-social-
augmented-reality-app-at-sxsw-with-developers-api.html, 10 Mar, 2010.

[2] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “An outlier-robust Kalman filter,” IEEE
International Conference on Robotics and Automation, Shanghai, China, 2011.

[3] P. F. Alcantarilla, C. Beall, and F. Dellaert, “Large-scale dense 3D reconstruction
from stereo imagery,” 5th Workshop on Planning, Perception and Navigation for
Intelligent Vehicles (PPNIV13), 2013.

[4] D. L. Baggio, Mastering OpenCV with practical computer vision projects, Packt
Publishing Ltd, 2012.

[5] P. Barsocchi, S. Lenzi, S. Chessa, and G. Giunta, “A Novel Approach to Indoor RSSI
Localization by Automatic Calibration of the Wireless Propagation Model,” IEEE
69th Vehicular Technology Conference, 2009, Barcelona, Spain, April 2009.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF),” Computer vision and image understanding, vol. 110, no. 3, 2008, pp.
346–359.

[7] A. M. Bernardos, J. R. Casar, and P. Tarrı́o, “Real time calibration for rss indoor
positioning systems,” International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Zurich, Sept. 2010.

[8] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade feature tracker
description of the algorithm,” Intel Corporation, vol. 5, no. 1-10, 2001, p. 4.

[9] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV
library, ” O’Reilly Media, Inc.”, 2008.

[10] P.-J. Bristeau, F. Callou, D. Vissière, and N. Petit, “The Navigation and Control
Technology Inside the AR. Drone Micro UAV,” 18th IFAC World Congress, 2011,
pp. 1477–1484.

91

[11] O. Chum and J. Matas, “Matching with PROSAC-progressive sample consensus,”
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Soci-
ety Conference on. IEEE, 2005, vol. 1, pp. 220–226.

[12] P. Coronel, S. Furrer, W. Schott, and B. Weiss, “Indoor location tracking using inertial
navigation sensors and radio beacons,” The Internet of Things, Springer, 2008, pp.
325–340.

[13] B. S. Dhillon, Robot reliability and safety, Springer Science & Business Media,
2012.

[14] A. K. E. A. Hansen, J. Shi, “A POMDP Approach to Influence Diagram Evaluation,”
25th International Joint Conference on Artificial Intelligence(IJCAI-16), New York,
2016.

[15] F. Evennou and F. Marx, “Advanced integration of WiFi and inertial navigation sys-
tems for indoor mobile positioning,” Eurasip journal on applied signal processing,
vol. 2006, 2006, pp. 164–164.

[16] L. Fairfax and F. Fresconi, “Loosely-coupled GPS/INS state estimation in preci-
sion projectiles,” IEEE/ION Position Location and Navigation Symposium (PLANS),
Myrtle Beach, SC, April 2012.

[17] Y. Fu, C. Wang, W. Tian, and M. Shahidehpour, “Integration of Large-Scale Offshore
Wind Energy via VSC-HVDC in Day-Ahead Scheduling,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 2, 2016, pp. 535–545.

[18] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stereopsis,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, no. 8, 2010,
pp. 1362–1376.

[19] S. M. George, W. Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou, R. Stoleru,
and P. Barooah, “DistressNet: a wireless ad hoc and sensor network architecture for
situation management in disaster response,” IEEE Communications Magazine, vol.
48, no. 3, 2010, pp. 128–136.

[20] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martı́nez-Sánchez, and
P. Arias, “Metrological evaluation of microsoft kinect and asus xtion sensors,” Mea-
surement, vol. 46, no. 6, 2013, pp. 1800–1806.

[21] E. Guizzo, “How googles self-driving car works,” IEEE Spectrum Online, October,
vol. 18, 2011.

[22] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge
university press, 2003.

92

[23] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image understand-
ing, vol. 68, no. 2, 1997, pp. 146–157.

[24] K. He, J. Sun, and X. Tang, “Guided image filtering,” European conference on
computer vision. Springer, 2010, pp. 1–14.

[25] J. Heikkila and O. Silvén, “A four-step camera calibration procedure with implicit
image correction,” Computer Vision and Pattern Recognition, 1997. Proceedings.,
1997 IEEE Computer Society Conference on. IEEE, 1997, pp. 1106–1112.

[26] S. Hemachandra, T. Kollar, N. Roy, and S. Teller, “Following and interpreting nar-
rated guided tours,” IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 2011.

[27] E. P. Herrera, R. Quirós, and H. Kaufmann, “Analysis of a kalman approach for
a pedestrian positioning system in indoor environments,” Euro-Par 2007 Parallel
Processing, Springer, 2007, pp. 931–940.

[28] J. D. Hol, F. Dijkstra, H. J. Luinge, and P. J. Slycke, “Tightly coupled UWB/IMU
pose estimation system and method,”, June 2012, US Patent 8,203,487.

[29] B. Jia, S. Cai, Y. Cheng, and M. Xin, “Stochastic collocation method for uncer-
tainty propagation,” AIAA/AAS Astrodynamics Specialist Conference, Minneapolis,
Minnesota, 2012.

[30] Y. Kaneda, Y. Irizuki, and M. Yamakita, “Design method of robust Kalman filter
via l1 regression and its application for vehicle control with outliers,” 38th Annual
Conference on IEEE Industrial Electronics Society, Oct 2012.

[31] A. Kargarian, Y. Fu, P. Liu, and C. Wang, “A system of systems engineering ap-
proach for unit commitment in multi-area power markets,” 2014 IEEE PES General
Meeting— Conference & Exposition. IEEE, 2014, pp. 1–5.

[32] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume III: Practical
Algorithm Development, vol. 3, Pearson Education, 2013.

[33] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International
Symposium on. IEEE, 2007, pp. 225–234.

[34] K. Kurashiki, T. Fukao, K. Ishiyama, T. Kamiya, and N. Murakami, “Orchard
traveling UGV using particle filter based localization and inverse optimal control,”
IEEE/SICE International Symposium on System Integration (SII), Shendai, Japan,
Dec 2010.

93

[35] J. Li and D. Xiu, “A Generalized Polynomial Chaos Based Ensemble Kalman Filter
with High Accuracy,” Journal of Computational Physics, vol. 228, no. 15, 2009, pp.
5454–5469.

[36] X. Li, “RSS-Based Location Estimation with Unknown Pathloss Model,” Wireless
Communications, IEEE Transactions on, vol. 5, no. 12, December 2006, pp. 3626–
3633.

[37] B.-C. Liu, K.-H. Lin, and J.-C. Wu, “Analysis of hyperbolic and circular position-
ing algorithms using stationary signal-strength-difference measurements in wireless
communications,” IEEE Transactions on Vehicular Technology, vol. 55, no. 2, March
2006, pp. 499–509.

[38] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning
techniques and systems,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, vol. 37, no. 6, 2007, pp. 1067–1080.

[39] T. Lozano-Perez, I. J. Cox, and G. T. Wilfong, Autonomous robot vehicles, Springer
Science & Business Media, 2012.

[40] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of IMU and
MARG orientation using a gradient descent algorithm,” IEEE International Confer-
ence on Rehabilitation Robotics (ICORR), ETH Zurich Science City, Switzerland,
June, 2011.

[41] J. Mattingley and S. Boyd, “Real-time convex optimization in signal processing,”
IEEE Signal Processing Magazine, vol. 27, no. 3, 2010, pp. 50–61.

[42] R. K. Mehra, “Approaches to adaptive filtering,” Automatic Control, IEEE Transac-
tions on, vol. 17, no. 5, 1972, pp. 693–698.

[43] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “UAVs for
smart cities: Opportunities and challenges,” Unmanned Aircraft Systems (ICUAS),
2014 International Conference on. IEEE, 2014, pp. 267–273.

[44] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” Nu-
merical analysis, Springer, 1978, pp. 105–116.

[45] M. Muja and D. G. Lowe, “Scalable Nearest Neighbor Algorithms for High Dimen-
sional Data,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
36, 2014.

[46] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with a single moving
camera,” Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. IEEE, 2010, pp. 1498–1505.

94

[47] P. C. Ng and S. Henikoff, “SIFT: Predicting amino acid changes that affect protein
function,” Nucleic acids research, vol. 31, no. 13, 2003, pp. 3812–3814.

[48] S. OConnor, “Amazon unpacked,” Financial Times Magazine, vol. 8, 2013.

[49] S. Perez, “Facebook Looking Into Buying Drone Maker Titan Aerospace [Electronic
resource]/Sarah Perez, Josh Constine,” TechCrunch/AOL Inc.–Mar, vol. 3, 2014.

[50] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. En-
gels, D. Gallup, S.-J. Kim, P. Merrell, et al., “Detailed real-time urban 3d reconstruc-
tion from video,” International Journal of Computer Vision, vol. 78, no. 2-3, 2008,
pp. 143–167.

[51] V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and S. Bathiche, “MonoFu-
sion: Real-time 3D reconstruction of small scenes with a single web camera,” Mixed
and Augmented Reality (ISMAR), 2013 IEEE International Symposium on. IEEE,
2013, pp. 83–88.

[52] C. C. Pu, S. Y. Lim, and P. C. Ooi, “Measurement arrangement for the estimation
of path loss exponent in wireless sensor network,” 7th International Conference on
Computing and Convergence Technology (ICCCT), Seoul, Korea, December 2012.

[53] T. Rappaport, Wireless Communications: Principles and Practice, 2nd edition, Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[54] V. Renaudin, B. Merminod, and M. Kasser, “Optimal data fusion for pedestrian nav-
igation based on UWB and MEMS,” IEEE/ION Position, Location and Navigation
Symposium IEEE/ION, Monterey, CA, May 2008.

[55] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
Computer Vision–ECCV 2006, Springer, 2006, pp. 430–443.

[56] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to
SIFT or SURF,” Computer Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2564–2571.

[57] J. Salmeron-Garcia, P. Inigo-Blasco, F. Diaz-del Rio, and D. Cagigas-Muniz, “A
tradeoff analysis of a cloud-based robot navigation assistant using stereo image pro-
cessing,” Automation Science and Engineering, IEEE Transactions on, vol. 12, no.
2, 2015, pp. 444–454.

[58] T. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various
propagation models for mobile communication,” IEEE Antennas and Propagation
Magazine, vol. 45, no. 3, June 2003, pp. 51–82.

95

[59] S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman filtering by varia-
tional Bayesian approximations,” Automatic Control, IEEE Transactions on, vol. 54,
no. 3, 2009, pp. 596–600.

[60] F. Seco, C. Prieto, J. Guevara, et al., “A comparison of pedestrian dead-reckoning
algorithms using a low-cost MEMS IMU,” IEEE International Symposium on Intel-
ligent Signal Processing, Budapest, Hungary, August, 2009.

[61] I. Sobel, “History and definition of the sobel operator,” Retrieved from the World
Wide Web, 2014.

[62] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration archi-
tecture,” Computers and Communications (ISCC), 2012 IEEE Symposium on. IEEE,
2012, pp. 000059–000066.

[63] N. Spinrad, “Google car takes the test,” Nature, vol. 514, no. 7523, 2014, pp. 528–
528.

[64] R. G. Stirling, Development of a pedestrian navigation system using shoe-mounted
sensors, Master of science, University of Alberta, 2003.

[65] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys, “Live
metric 3d reconstruction on mobile phones,” Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 65–72.

[66] L. Taponecco, A. D’Amico, and U. Mengali, “Joint TOA and AOA estimation for
UWB localization applications,” IEEE Transactions on Wireless Communications,
vol. 10, no. 7, 2011, pp. 2207–2217.

[67] P. Tarrı́o, A. M. Bernardos, and J. R. Casar, “Weighted least squares techniques for
improved received signal strength based localization,” Sensors, vol. 11, no. 9, 2011,
pp. 8569–8592.

[68] P. Tarrio, J. Besada, and J. Casar, “Fusion of RSS and inertial measurements for
calibration-free indoor pedestrian tracking,” 16th International Conference on Infor-
mation Fusion (FUSION), Cairns, Queensland, Australia, July 2013.

[69] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society. Series B (Methodological), 1996, pp. 267–288.

[70] J.-A. Ting, E. Theodorou, and S. Schaal, “A Kalman filter for robust outlier detec-
tion,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, USA, 2007.

[71] C. Wang and Y. Fu, “Fully Parallel Stochastic Security-Constrained Unit Commit-
ment,” IEEE Transactions on Power Systems, vol. PP, no. 99, 2015, pp. 1–11.

96

[72] J. Wang and D. Katabi, “Dude, where’s my card?: RFID positioning that works with
multipath and non-line of sight,” Proceedings of the ACM SIGCOMM, Hong Kong,
China, August 2013.

[73] O. Woodman and R. Harle, “Pedestrian Localisation for Indoor Environments,” Pro-
ceedings of the 10th International Conference on Ubiquitous Computing, New York,
NY, USA, September 2008, UbiComp ’08.

[74] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAMCL-TR-696, vol. 14, 2007, pp. 15–42.

[75] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjustment,”
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,
2011, pp. 3057–3064.

[76] J. Yin, Q. Yang, and L. Ni, “Learning Adaptive Temporal Radio Maps for Signal-
Strength-Based Location Estimation,” IEEE Transactions on Mobile Computing, vol.
7, no. 7, July 2008, pp. 869–883.

[77] C. Zhang, M. Kuhn, B. Merkl, A. Fathy, and M. Mahfouz, “Accurate UWB indoor
localization system utilizing time difference of arrival approach,” IEEE Radio and
Wireless Symposium, San Diego, CA, Oct 2006.

[78] Z. Zhang, “Microsoft kinect sensor and its effect,” MultiMedia, IEEE, vol. 19, no. 2,
2012, pp. 4–10.

[79] G. Zhou, A. Liu, K. Yang, T. Wang, and Z. Li, “An Embedded Solution to Visual
Mapping for Consumer Drones,” Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2014 IEEE Conference on. IEEE, 2014, pp. 670–675.

[80] L. Zwirello, X. Li, T. Zwick, C. Ascher, S. Werling, and G. F. Trommer, “Sensor data
fusion in UWB-supported inertial navigation systems for indoor navigation,” IEEE
International Conference on Robotics and Automation (ICRA), Karlsruhe, May 2013.

97

	Towards Autonomous Unmanned Vehicle Systems
	Recommended Citation

	tmp.1625165283.pdf.eRsFD

