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Glaciers are the essential source of fresh water not only to human sustenance, but it is 

also vital for all lifeforms on earth. Glaciers are also key components in understanding 

rapid changes in climate. This makes understanding of glacier mass, extent, and overall 

state essential. In this dissertation, the objective was to analyze the state of snow and ice 

masses in the mid (California) and low latitude (Chile/Argentina) western American 

regions using geospatial technology. This study also analyzed the effects of anomalies in 

snow mass on the regional agricultural practices in California’s Central Valley.  

In the Southern Andes, the digital elevation models from Shuttle Radar Topographic 

Mission (SRTM) (the year 2000) were compared with the elevation footprints from the 

Geoscience Laser Altimeter System (GLAS) campaign for the years 2004 through 2008. 

Generally, in all sub-regions, in glaciers, the elevation values were lower than the 

elevation for the year 2000, which demarcates continuous recession of ice mass in the 

Andean region. Also, this study quantified snow cover extent and mass balance variations 

in the Sierra Nevada and Mt. Shasta regions in California. To unearth anomalies in snow 

mass, study used digital elevation models generated from the Advanced Spaceborne 



 

 

Thermal Emission and Reflection Radiometer (ASTER) between the year 2000 and 2015. 

A remarkable reduction in snow cover extent of about 80% was observed in the studied 

watersheds of California. Lastly, the impacts of snow mass anomalies on the total water 

storage (TWS) and agriculture land cover in the California’s Central Valley were 

quantified and geovisualized. The study noticed the change in the land cover area of 

about 20% (6993 sq.km) due to the alteration of Agriculture land to impervious land 

covers. Most of the change in the agriculture land cover of about 4402 sq.km occurred in 

the San Joaquin and Tulare Basins of southern Central Valley region.  

This dissertation concludes that the increased temperature in the Andes and California 

has adversely impacted Cryosphere components in the region in the past decade. Besides, 

it provides valuable insights into the changing state of cryosphere components and 

highlight impacts of anomalies in TWS on a billion-dollar agricultural industry. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Water is significant for all life forms on earth. The importance of water in the life of 

earth’s history can be only recognized entirely from analysis of its role in the human and 

environmental sustenance.  About 75 percent of earth’s surface is covered with water, of 

which, about 3% is fresh water. Almost 85% of the fresh water is locked in the glaciers 

and acts as a major contributor to this 3% (Kaser et al., 2003; Singh, 2001). In recent 

years, water enclosed in the frozen reserves are depleting at a rapid rate. Because 

glaciers, snowpacks and ice caps are sensitive to minute changes in temperature, they are 

the essential markers of the climate forcing. Slight variations in the temperature affect the 

equilibrium state of a glacier and its overall mass budget. In the past century, glaciers 

observed to be melting at an incremental rate primarily because of the increased 

temperature (Ambinakudige and Joshi, 2015;  Basagic and Fountain, 2011). This 

dissertation, aimed to understand the state of snow and ice masses in the mid and low 

latitude western American regions using Geographic Information System (GIS) and 

Remote Sensing. This research also quantified the rate of change of these frozen fresh 

water reserves and its possible effects. The dissertation provides a precise temporal 

assessment of glacial extents and mass budgets which will contribute to the 

understanding of global impacts of climate forcing.  



 

 2 

Glaciers are also known as slow-moving rivers of ice, where a huge mass of ice drifts due 

to its weight and under the influence of gravity (Singh, 2001). The river of ice begins 

forming in places where snow deposition exceeds the rate of ablation. Each year snow 

piles up and starts to compress (Singh, 2001). This compression slowly changes light 

snow crystals to dense and tightly packed ice. Principally, glaciers are composed of snow 

(low density), firn (medium density) and ice (high density). The sensitivity of glaciers to 

the increased temperature directly related to the density of glacier components. This 

makes monitoring and thorough understanding of the state of the different glacier 

components and varied effects of temperature on it essential.  

In the last quarter of the past century, the researchers observed increased temperature 

around the globe (Hansen et al., 2006), leading to frequent ENSO occurrence, anomalies 

in precipitation and incremental rates of other catastrophic events (Vuille and Bradley, 

2000). A global surface temperature study (Hansen et al., 2006) used more than 100 years 

of data collected by Goddard Institute of Space analysis and reported an increase in the 

global surface temperature with a gradient of 0.2°C per decade during the past 30 years. 

The steady increasing temperature causes a flux in the Eastern Equatorial Pacific and 

Western Equatorial Pacific regions, which leads to the frequent ENSO events around the 

globe (Hansen et al., 2006). Similarly, many other studies on climate reported an 

uninterrupted rise in the temperature around the world specifically after the industrial 

revolution (Hansen et al., 2006; Rahmstorf et al., 2017; Vuille and Bradley, 2000). The 

years 2014 through 2016 observed new global heat records. Another study (Rahmstorf et 

al., 2017) finds that this increase in temperature aligned with a consistent worldwide 

temperature alteration since 1970 and predicts to follow incremental warming trend. 
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Constantly increasing global temperature is impacting regional and microclimatic 

conditions. In the tropical Andes, the temperature has increased by 0.10°–0.11°C per 

decade since 1939 (Vuille and Bradley, 2000). The rate of warming of mean annual 

temperature has found triplicated over the last three decades by about 0.32°–0.34°C per 

decade (Vuille and Bradley, 2000). Also Vuille and Bradley (2000) observed increasing 

frequency of warmest El Niño events in the recent decade in the Southern Andes. While 

Villalba et al., (2003) examined anomalies in the temperature across the southern Andes 

(37–55° S) using a blend of long-term tree-ring records and instruments and noticed a 

definite warming trend around southern Andeans region ~ 46°S with incremental 

warming rates in the higher altitudes. Similar to the Southern Andes, over the past 

century California has also experienced increased warming rates. California has a history 

of severe, prolonged dry events, including recent droughts between 2012 and 2014 

(Griffin and Anchukaitis, 2014; Swain et al., 2014). Bonfils et al. (2007) analyzed nine 

different observational datasets and found increased temperature of about 2°C with 

higher rates in winter. Importantly Bonfils et al. (2007) attributed increased warming in 

California to anthropogenic activities. Besides, Howat and Tulaczyk (2005) analyzed 

historical climate data using a multivariate model and found that impact of the warming 

is considerably reliant on coexisting precipitation variation and watershed topography in 

the Sierra Nevada. 

 Many recent studies suggest that the climate is changing mainly due to anthropogenic 

activities. These slight variations in climate directly impact the glacier mass balance 

cycle. While the steady increase in temperature after the industrial revolution and 

associated fluctuations in snowfall with the negative trend forces glaciers to melt faster 
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than they are restocked. This results in the disequilibrium state with shrinkage of glaciers 

globally. World glacier monitoring service (2009) reported about 90% of the glaciers are 

retreating.  Johnson et al. (2013) in their laser altimeter analysis in the Glacier Bay region 

of Southeast Alaska, USA, and British Columbia, Canada observed massive retreat with a 

mass loss rate of 3.93±0.89 Gt a–1. Similarly, most of the glacier in Himalaya are melting 

at a high rate (Bolch et al., 2012). Kääb et al. (2012) in their study observed contrasting 

patterns of glacier mass change between 2000- 2008 in the Hindu Kush-Karakoram-

Himalaya region and reported mass loss rate of −0.21 ± 0.05 m w.e. yr−1. A recent time 

series analysis of glacier mass in the Italian Alps observed increasing mass loss rates 

between -1788 to -763 mm w.e. yr-1 (Carturan et al., 2015). While the study (Scheuchl et 

al., 2016) in Western Antarctica using Sentinel-1a (C- band satellite radar interferometry 

data) with Progressive Scans mode noticed continuous retreat Pope, Smith, and Kohler 

glaciers, in West Antarctica, for the years 2014–2016. Further, reconciled estimate of ice 

sheet mass balance between 1992 and 2011 of Greenland, East Antarctica, West 

Antarctica, and the Antarctic Peninsula reported change in mass by –142 ± 49, +14 ± 43, 

–65 ± 26, and –20 ± 14 Gt a−1, respectively (Shepherd et al., 2012). In the Andes, several 

studies have observed retreat and mass loss of glaciers in the last few decades (Gardner et 

al., 2013; Rabatel et al., 2011; Rignot et al., 2003). 

Masiokas et al., (2009) reviewed glacial fluctuations in the last 1000 years and found that 

in the Central Andes, glaciers have retreated throughout the 20th century. A gravimetric 

analysis using Gravity Recovery and Climate Experiment (GRACE) data from 2002 

through 2006 in the Patagonian Icefields reported a mass loss rate as 24.3 ± 4.3 km3yr-1 

(Chen et al., 2007). Likewise, similar recession patterns were observed in the North 
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America. After examining remotely sensed and climate data (McCabe and Fountain, 

2013) found considerable spatiotemporal variability in Western United States glaciers 

occurred between 1900 to 2000 mainly due to warming and fluctuations in rainfall in 

high elevation areas. 

In essence, it is essential to study the state of glaciers, to understand impacts of 

anthropogenic activities, to understand changing climatic conditions, and to comprehend 

depleting total water storage. Multi-decadal evaluation of mass balance variations 

provides chronological information about changing climate events (Singh, 2001). 

Mountain glaciers are sensitive to minute changes in local and global climate, and they 

act as pointers towards climate forcing (Ambinakudige and Joshi, 2015; H. Basagic and 

Fountain, 2011). It is important to monitor components of the cryosphere because, in 

general, these frozen fractions of water play a substantial role as a water reserve, its 

contribution to sea level rise, its role in global energy budget, hydrological cycle, 

Agricultural yield, Dairy industry and much more. 

The dissertation is structured as a series of chapters. The first chapter covers background, 

includes, the significance of study sites, different techniques of mass balance 

measurements, goals and brief overview of the methodology used. Chapter-II comprises 

findings of the glacier mass balance study in the South Andean cryosphere. Chapter-III 

covers findings of mass and extent analysis of snowfields in the Sierra Nevada and Mt. 

Shasta regions in California. Chapter-IV is an extension of chapter-III. In which study 

analyzed possible effects of changing snow patterns in the agricultural fields in the 

Central Valley California. The results of Chapter-IV were achieved by analyzing 

temperature, Total Water Storage (TWS) and Normalized Difference Vegetation Index 
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(NDVI). Conclusively, the last Chapter-V covers brief discussion about the overall 

outcomes and scope for the future research. 

1.2 Why study glaciers in Southern Andes and California? 

 

Figure 1.1 Illustration of study sites 

Southern Andean and California regions lack comprehensive quantitative documentation 

of glacier measurements. Due to the inaccessible terrain and absence of data, the mass 

balance of the South American cryosphere has not been documented extensively over the 

years. On the other hand, in California and other western states, many small perennial 

snow and ice covered regions exist over a vast area. Because of this scattered distribution 

pattern, the California region lacks in the complete historical records of glacier extent and 

mass wastage before the development of recent topographic maps (Krimmel, 2002). As a 

result, the both regions has suffered from the absence of a systematic, long-term and 
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validated mass balance program (Bamber and Rivera, 2007; H. Basagic and Fountain, 

2011; Dyurgerov and Meier, 1997; Krimmel, 2002). 

In addition, Sothern Andes (low latitude) and California (mid-latitude) are chosen for the 

analysis because of their geolocations (Figure 1.1). Southern Andes extends up to the 

polar region, and contrariwise California is situated near the equator. As a result, they 

represent entirely different climatic conditions and topography resulting in diverse glacier 

morphology. As glaciers in Southern Andes are larger in size, on the other hand, small 

scattered snow masses are situated in California. Analysis of these study sites aided 

understanding questions, as, how melting patterns differs in both the regions? Is there 

latitudinal and longitudinal variation in glacier recession? 

Glaciers in Southern Andes and California are primarily situated on high mountains and 

nourishes water to many rivers. In the Western United States, Sothern Andes and several 

other parts of the world rivers originated from glaciers are perennial and act as a primary 

source of fresh water, and also irrigates one-third of the land (Singh, 2001). The glaciers 

of Chile serve as a valuable source of fresh water, as its summer runoff contributes in 

many river basins. It is important support of water to the populated and ecoregions of the 

Chile (Rivera et al., 2006). During the twentieth century, melting glaciers of the Andes 

contributed about 10 percent of the water that caused the sea level rise (Bamber and 

Rivera, 2007; Rignot et al., 2003; Rivera et al., 2002). Similarly, in the state of 

California, snow mass plays a significant role as natural water reservoirs. Because of the 

Mediterranean climatic conditions, the region gets most of its precipitation in winter. It 

makes snow mass as a primary source of freshwater for the rest of the year. Typically, 

snowmelt provides one-third of the water utilized in California’s urban areas and ranches 
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every year (Chou, 2014). Over the past century, California has experienced severe 

prolonged dry events, including those during 1976–1977 and late 1980s droughts, and 

recent drought during 2012-2014 (Griffin and Anchukaitis, 2014; Swain et al., 2014). 

Thus bearing in mind the role of Andean glaciers in sea level rise and water scarcity in 

California (Swain et al., 2014), it is essential to analyze the existing state of glacier 

masses in these regions. 

1.3 Overview of glacier mass balance measurements techniques 

Considering sensitivity of glaciers to the climatic variations; glacier extent and 

mass balance are measured as a part of hydrology and climate studies. The glacier mass 

balance could be analyzed by applying the glaciological (direct), geodetic (mapping), or 

hydrological methods. Following subsections provides the brief overview of different 

measurement methods, and about the process, used in this dissertation for the analysis. 

1.3.1 Glaciological or direct measurement 

The glaciological or in-situ method is conventional method successfully used 

worldwide for analysis of a glacier mass balance. This method needs interaction and 

extensive field work on the glacier site. It includes measurement of snow mass variations 

in the accumulation zone with snow pits or core drill or stack observations in the ablation 

zone. In which ice core drill measurements provide information about paleo-climatic 

conditions (Kaser et al., 2003). Generally, snow pits are preferred over core drills in the 

mass balance studies as it provides more sampling area and accurate snow density (Singh, 

2001). At some sampling points, mass balance is calculated by differencing snow 

thickness through the reference and following summer dates. Conversely, stack measures 
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mass balance in the ablation zone, where stacks are drilled into the ice surface. The 

difference between a top of a stack and reference ice surface measured between the 

beginning and end of the balance period (Singh, 2001). Later this difference is converted 

into the water equivalent using known density value. 

1.3.2 Hydrological method 

Glacier mass balance controls melt runoff. Therefore, it is a valuable parameter 

for hydrological modeling. The hydrological method accounts water balance to estimate 

glacier mass. Therefore, a method involves estimation of parameters such as evaporation, 

precipitation, runoff, and variation in storage elements (S) of catchment area such as 

ground water (equation 1) (Kaser et al., 2003).  

                          𝐵 = 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑅𝑢𝑛𝑜𝑓𝑓 − 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ± ∆𝑆                        (1) 

The hydrological method is least used among other methods for determining mass 

balance changes because of the high uncertainty in the estimation of many parameters in 

the equation (Kaser et al., 2003; Singh, 2001). 

1.3.3 Geodetic method 

Direct or in-situ measurements gives better results as compared to the geodetic 

methods. But ease of taking an ample number of measurements and that too on rough 

terrains makes geodetic methods suitable for large-scale glacier studies (Fischer, 2011). 

Geodetic methods are also known as indirect methods of mass balance measurements. In 

this study, analysis of mass balance is based on the geodetic methods. The geodetic 

method provides an opportunity to report glacier mass balance in inaccessible areas on 

the mountain ranges such as the Andes and the Sierra Nevada. Also, it is efficient in 
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analyzing glacier mass balance on the larger scale. It includes analysis of topography 

using differential GPS, remotely sensed elevation models or other elevation datasets. 

Typically, in contrast to the glaciological method, the geodetic method provides 

measurements of entire glacier rather than at specific locations. However, recent 

advancements in remote sensing provide elevation datasets (laser altimeters) which 

provide accurate elevations at specific locations. This study used a geodetic method, 

where spatiotemporal analysis of glaciers mass balance was performed based on the 

digital elevation models. Where different year datasets were compared to understand 

changes in surface elevation. A product of snow thickness and near surface density was 

quantified for the different regions to get the water equivalent. Generally, ice density is 

considered as 900 kg m-3 and snow density as of 600 kg m-3 (Huss, 2013).  

1.4 Glacier mass balance calculation 

Glacier mass balance is a relationship between mass accumulation and loss (Kaser 

et al., 2003). In other words, glacier mass balance or budget is the alteration in the snow 

or ice mass on a glacier as a function of time (Ostrem M., 1991). Following equation (2) 

represents mass balance (mb) at a specific point. 

 

𝑚𝑏𝑔𝑙𝑎𝑐 = ∫ 𝑚𝑏 𝑑𝑡
𝑡

𝑡1
                                                               (2) 

 

Where dt is a time difference between two measurements at a specific point. 

Similarly, the geodetic method compares surface thickness (dh) at any point on a glacier 

to find mass change on a glacier. The result of equation (2) is expressed in [M T-1] mass 
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change per period. Equation (3) (Kaser et al., 2003) is a representation of mass balance at 

a specific point using surface elevation variation. 

𝑑ℎ =
𝑚𝑏

𝑖𝑑𝑖𝑐𝑒
− �̂�                                                                 (3) 

In equation (3), mb and idice are mass balance change and ice density respectively. 

The horizontal gradient of ice flux (k) becomes zero in the computation of ice volume for 

the entire glacier area (Kaser et al., 2003). Then equation becomes 

𝑚𝑏 = 𝑑ℎ ∗ 𝑖𝑑𝑖𝑐𝑒                                                                (4) 

Based on the availability of data, the mass budget can be computed at a specific 

point or for the entire glacier. The total mass balance of the entire glacier computed by 

integrating glacier extent in equation (2).  

 𝑀𝐵𝑔𝑙𝑎𝑐 = ∬ 𝑚𝑏(𝑑𝑡)(𝑑𝑎)                                                   (5) 

 

In the above equation (5) (Kaser et al., 2003), dt and da represent temporal value 

and total glacier surface area respectively. The cumulative change in mass balance is 

expressed as unit’s mass [M] or mass per area [M L-2]. Generally mass is expressed in 

kilogram (kg) or Gigatonne (Gt). Mass balance can also be expressed in meter water 

equivalent (m.w.e.) by dividing mass per unit area by density (Kaser et al., 2003).  We 

can rewrite equation (5) by using elevation difference values (dh) and ice density (𝑖𝑑𝑖𝑐𝑒). 

While performing preliminary glacier analysis in the Andes, study computed the glacier 

mass balance for the entire region of Chile and Argentina using specific ICESaT 

elevation footprints applying equation (4). More details about data and methodology are 

discussed in the second chapter. On the other hand, the analysis of snow mass in 

California is based on the equation (5), where a change in elevation was computed from 
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DEM generated from ASTER. Additional information about ASTER data and detailed 

methodology are discussed in Chapter III. 

Throughout the year glacier experiences cyclic patterns of accumulation and 

ablation (Ostrem M., 1991). Accumulation is a process which adds the snow and ice mass 

on existing glacier body. Mass gained in the accumulation process is expressed as a 

positive number. There are different processes that add mass into the glacier system 

includes snowfall, freezing rain, drifting snow, refreezing of percolated waters, 

avalanches, etc. Likewise, mass lost in the ablation process is represented as a negative 

number. Some of the ablation processes that reduces the glacier mass include melting, 

avalanching, sublimation, calving, etc. 

𝑀𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛                           (6) 

As in some regions in the winter season glacier surface receives mass in the form 

of snow. For example, in glaciers of Sierra Nevada accumulation months are November, 

December, January, February, March, and April. On the other hand, other months 

represents ablation period. 

Glacier is in equilibrium when mass lost during the ablation period recovers 

during the accumulation season. While disequilibrium status represents the imbalance in 

the state of mass between two seasons (equation 6). This disequilibrium in accumulation 

and ablation results in conditions either as positive mass balance or negative mass 

balance. Generally, in positive mass balance scenario glacier system gains mass in the 

form of snow. Subsequent positive mass balance periods lead glaciers to grow as well as 

to cover the low-altitude regions (Singh, 2001). On the other hand, negative mass balance 
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results in recession in snow and ice mass. Prolonged negative mass balance periods leads 

to the significant retreat of glaciers (Singh, 2001) 

1.5 Study objectives 

This dissertation analyzes a decadal state of mountain glaciers in south western 

territories of North and South American continent. The study covers two sites, Southern 

Andes and California. Following is brief overview of specific objectives and the 

methodology used to achieve those goals.  

1.5.1 Spatial Patterns of glacier mass change in the southern Andes 

(Chapter-II) 

Specific objectives of Chapter II are as follows: 

 To estimate the rate of mass balance change of glaciers in Southern Andes using 

ICESat campaign and SRTM data.  

 To compare contrasting patterns of glacier mass change in different sub-regions 

of the Southern Andes. 

Glaciers in Chile and Argentina are distributed widely along latitude and 

longitude. Due to this widespread extent, topography and microclimatic conditions, 

region cover different types of glaciers, therefore this study analyzed footprints based on 

sub-regions. In addition the elevation footprints classified into snow and ice using 

multispectral Landsat images. The first section in Chapter II explains in detail different 

meteorological scenarios in the Southern Andes. To achieve the goals the study compared 

elevation models of ICESat laser footprints with SRTM data. The study precisely 

analyzed elevation footprints between 2000 and 2008 over the clean ice. The 

methodology section in Chapter II covers sequential order of the process. 
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As GLAS (ICEsat) instrument is aboard polar satellite specifically designed to 

study Polar Regions leads to scarcity of footprints in the outside regions. This issue of an 

uneven number of sample points in each year in each sub-region was addressed by 

performing the bootstrap analysis. ICESat laser altimeter data provides undoubtedly very 

precise measurements on the glaciers, but there are challenges in the data processing and 

unbiased elevation analysis. This study was the first attempt to use GLAS/ICESat data 

over clean ice to estimate mass wastage rates in the Southern Andes. Chapter II 

methodology elaborates in detail the processing challenges of the datasets. The study 

unearths patterns of glacier wastage in the South Andean sub-regions.  

1.5.2 Spatiotemporal analysis of snow cover extent and mass anomalies in 

California (Chapter III) 

Specific objectives of Chapter III are as follows: 

 To quantify snow cover extent variations in the Sierra Nevada and Mt. Shasta, 

California. 

 To estimate snow mass change in the Sierra Nevada and Mt. Shasta, California. 

 To understand an impact of climatic variables on the snow mass change. 

Glaciers in the California are mostly covered with the snowpacks. These snowpacks are 

less dense in comparison to the clean ice. Also, snowpacks in California are widespread 

and smaller in size. The study analyzes snowpacks in Sierra Nevada region based on the 

hydrological basins and the Mt. Shasta region separately. In this study, snow mass 

anomalies are quantified using digital elevation models generated from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) between the year 
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2000 and 2015. Further, Landsat scenes were used to measure snow cover extent 

variations during the same period.  

The methodology section in Chapter III describes the chronological order of the process. 

It was challenging to acquire cloud-free and continuous timespan dataset. However, the 

study used best possible stereo ASTER elevation models and Landsat scenes to 

understand the spatial patterns of snow mass anomalies and snow extent. Uncertainty in 

the elevation models is computed by comparing elevation values of topographic 

benchmarks. The study results demonstrate the significant anomalies in mass balance and 

extent throughout the period between 2000 and 2015. Considering the current water 

crises in California, this study provides valuable insights into the possible role of climatic 

factors in snow mass anomalies in the region. 

1.5.3 Effects of snow mass anomalies on the total water storage and 

agricultural yield in the California’s Central Valley between 2003 and 

2005 (Chapter IV) 

Specific objectives of Chapter IV are as follows: 

 To estimate changing Agricultural patterns in the Central Valley California 

 To assess the effect of changing the climate on the Total Water Storage (TWS) 

and crop yield. 

California is the major agricultural producer in the United States and also grows 

country’s half of the fruits and vegetables worth billions of dollars. The chapter IV 

analyzes impacts of declining fresh water reserves and TWS in the four basins of the 

Central Valley agriculture. In this study, Landsat images were classified for the 

individual years 2003 and 2015 to understand patterns of agricultural change in the 

region. Hybrid classification technique was used by iteratively applying supervised and 
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unsupervised learning. While to understand total water storage in the central valley 

region study analyzed Gravity Recovery Research and Experiment (GRACE) data. These 

gravity anomaly coefficients provided information about the variations in the total water 

storage content (ground water, surface water, soil moisture, precipitation) in the Central 

Valley region. Lastly, study regressed and correlated Normalized Difference Vegetation 

Index (NDVI), TWS and temperature to understand the relation between these different 

parameters. An intention of this statistical analysis was to understand effects of snow 

melt on the TWS and the agricultural production in the California’s Central Valley. 
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CHAPTER II 

SPATIAL PATTERNS OF GLACIER MASS CHANGE IN THE SOUTHERN ANDES1 

2.1 Abstract 

The aim of this chapter was to analyze the spatial patterns of wastage trends of ice 

masses in the Southern Andes. The study compared digital elevation models from Shuttle 

Radar Topographic Mission (SRTM) (Year 2000) with the elevation footprints from the 

Geoscience Laser Altimeter System (GLAS) campaign for the years 2004 through 2008 

in the Dry Central, North Wet, South Patagonia, and Cordillera Darwin regions.  Overall, 

the mean elevation differences on clean ice were negative in all four regions. However, 

the higher mass balance trends were observed in the Cordillera Darwin (-0.126 ± 0.05 m 

w.e.a-1) and the North Wet (–0.122 ± 0.12 m w.e.a-1 ) regions. In contrast, no major 

change in mass balance trends was observed in Dry Central (-0.037 ± 0.13 m w.e.a-1 ) and 

South Patagonian Icefield (-0.037 ± 0.05 m w.e.a-1 ). 

2.2 Introduction 

The South American Cryosphere is composed of both tropical and temperate ice 

masses. The Patagonian Icefields in the Southern Andes is the major temperate ice mass 

in South America (Warren and Sudgen, 1993). Although the retreat of glaciers in the 

Southern Andes has been documented earlier (Lopez et al., 2010; Rignot et al., 2003; 

Willis et al., 2012), glacier of the Southern Andes has long been neglected for mass-

balance measurements. Due to the remoteness, inaccessibility, and tough weather 

                                                 
1 This chapter has been published as an applications paper in the journal Photogrammetric Engineering and 

Remote Sensing: 

Inamdar, P., Ambinakudige, S., 2016. Spatial Patterns of Glacier Mass Change in the Southern Andes. 

Photogramm. Eng. Remote Sens. 82, 811–818. 
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conditions in the Andes, field-based mass-balance studies are sparse (Aniya et al., 

1996). Because glaciers in this region have not been as closely studied, there is an 

uncertainty in the estimation of the contribution of these glacier-melts to the sea level 

rise (Rignot et al., 2003). Similar to other regions of the world, the recession of the 

glaciers and ice caps of the Andes is one of the most visible indications of the effects of 

climate change (Ambinakudige and Joshi, 2012; Ambinakudige, 2010; Lemke et al., 

2007; Lliboutry, 1998; Warren and Sudgen, 1993). Because the annual temperatures of 

temperate ice masses are at the melting point, these glaciers respond very rapidly to 

climatic changes (Fountain, 2011). Climate change also affects the magnitude of the 

accumulation and ablation of the glaciers and the length of the mass balance seasons 

(Kaser et al., 2003; Pachauri et al., 2014). In addition, glaciers are the biggest wellsprings 

of fresh water in the Andes; therefore, the lack of records of water balances in the region 

is of great concern (Dixon and Ambinakudige, 2015). Hence, an estimation of mass 

balance trends in the Andean glaciers has broader impacts at the local, regional and 

global concerns on climate change and water resource management.  This study will 

contribute to the existing knowledge of the glacial conditions in the Southern Andes. The 

study also contributes to the existing methodological approaches to use the sparingly 

available remote sensing data to model temporal changes in the glacial conditions in the 

region. 

2.2.1 Status of glaciers in the Andes 

The annual trends of glacial length and area of many glaciers in the Andes have 

fluctuated over time. Masiokas et al., (2009) reviewed glacial fluctuations over the last 

1,000 years and found that in the Central Andes, glaciers retreated throughout the 
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twentieth century. They also found that after the little ice age (LIA), most glaciers in 

Southern Patagonia retreated and that has continued until today. Masiokas et al., (2009) 

also noticed isolated advances during the first half of the past millennium followed by a 

glacier reactivation between the seventeenth and nineteenth centuries and a widespread 

glacier shrinkage afterward.  

According to Rivera et al. (2006), a significant frontal retreat trailed the glaciers 

located in the Central Andes. Similarly, Espizua and Pitte, (2009) using the historical 

data, aerial photographs and satellite images, observed area loss in Las Vacas, Güssfeldt, 

El Peñón, and El Azufre glaciers between 1894 and 2007. They also noted contrasting 

behavior of the glaciers in the Central Andes. Between 1894 and 1963, there was a 

pronounced glacier retreat followed by the glacial advance in 1963–1986, and nearly 

stationary conditions during 2004–2007 (Espizua and Pitte, 2009). In addition, an 

analysis of radiosonde data by Carrasco et al. (2005) over the central Chile from 1975 to 

2001 revealed that tropospheric warming was the main cause of glacier retreat. Carrasco 

et al. (2005) also noticed a rise in the equilibrium line altitude (ELA) in the region during 

the study period. Furthermore, the comparison study of Shuttle Radar Topographic 

Mission (SRTM) digital elevation models with models generated from aerial photographs 

between 1955 and 2000 in the Cipreses glacier recorded a thinning rate of 1.06 ± 0.45 m 

a-1 (Rivera et al., 2006). 

Most glaciers in the North Wet region of Andes are situated on active volcanoes. 

Rivera and Bown (2013) analyzed the contrasting morphology that glaciers adopt before 

and after volcanic eruptions. Using historical documents and remote sensing data, they 

studied the effects of volcanic events on glaciers and detected significant frontal retreats 
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and glacier areal change, with the maximum loss of -1.16 km2 a-1 in Volcán Hudson. 

Rivera and Bown (2013) also concluded that the recovering capacity of glaciers was 

affected by the tropospheric warming and the decrease in precipitation. Another study of 

debris-covered ice at the Villarrica glacier showed an average shrinking of -0.4 km2 a-1, 

with an extent loss of 25 percent between 1961 and 2003 (Rivera et al., 2006). Figure 2.1 

depicts an example of how glacier extents have changed in parts of the Southern Andes. 

Change in the area of Jorge Montt (in South Patagonian Icefield), Volcan Hudson 

(located in the North Wet region) and Marinelli (located in the Cordillera Darwin 

Icefield) glaciers shown in Figure 2.1 is an example for the glacial retreat in the region.    
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Figure 2.1 Current State of three glaciers in Southern Andes 

Several studies have observed the retreat and mass loss of glaciers in the Andes 

over the last few decades (Dixon and Ambinakudige, 2015; Gardner et al., 2013; Lopez 

et al., 2010; Rabatel et al., 2013; Rignot et al., 2003). Mouginot and Rignot (2015) 

observed some of the fastest flowing glaciers using Interferometry Synthetic Aperture 
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Radar (InSAR), with velocities up to 10 km a-1 in the southern part of the South 

Patagonian Icefields (SPI). A recent spatiotemporal analysis of the San Rafael glacier 

using photogrammetric techniques showed a glacial velocity up to 16 meters per day 

(Maas et al., 2013). 

Similarly, analysis based on satellite data between 1984 and 2011 in the SPI, 

showed that, there was, on an average 1.56 km retreat in 31 glaciers, with the maximum 

retreat more than 6 km in the Jorge Montt, HPS12, and Upsala glaciers (Sakakibara and 

Sugiyama, 2014). A gravimetric analysis using Gravity Recovery And Climate 

Experiment (GRACE) data from 2002 through 2006 in the Patagonian Icefields reported 

a mass loss rate of -24.3 ± 4.3 km3a-1 (Chen et al., 2007). A time series analysis 

comparing ASTER and SRTM DEMs by Willis et al. (2012) also observed a mass loss 

rate of about −24.4 ± 1.4 Gt a−1 between 2000 and 2012 in Patagonian Ice fields, which is 

equivalent to +0.067 ± 0.004 mm a−1 of sea level rise. Likewise, another spatiotemporal 

analysis in the region by White and Copland (2013) found a net loss of the extent of the 

glaciers in 130 basins across the SPI from 1970 to late 2000. Dixon and Ambinakudige, 

(2015) also observed glacial retreat in the San Quintin, HPN1, Pared Norte, Strindberg, 

Acodado, Nef, San Quintin, Colonia, HPN4, and Benito glaciers in the North Patagonian 

Icefields by analyzing ASTER stereo and Landsat datasets. Lopez et al. (2010) recounted 

a maximum retreat of about 12 km in the Cordillera Darwin Icefield between 1945 and 

2005 by comparing aerial photographs, Landsat and ASTER datasets. Melkonian et al., 

(2013) analyzed ASTER and SRTM data from 2000 to 2011and reported varied thinning 

behavior along the north-south axis of the Cordillera Darwin Icefield, with an average 

recession rate of −1.5 ± 0.6 m w.e.a-1, which is equivalent to a sea level rise of 0.01 ± 
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0.004 mm a−1. Given these observations of the glacial changes in the Andes, it is not 

surprising to note that during the twentieth century, melting glaciers of the Andes 

contributed about 10 percent of the water that caused the sea level rise (Bamber and 

Rivera, 2007; Rignot et al., 2003; Rivera et al., 2002). 

 Although many glaciers are retreating in the Andes, some glaciers have shown a 

positive mass budget. Schaefer et al. (2014) showed a progressive surface mass balance 

from 1975 to 2011 in the South Patagonian Icefield. Masiokas et al. (2009) also noted 

glacier growths in certain portions of SPI during the first half of the past millennium. 

Sakakibara and Sugiyama, (2014), in their analysis of 26 calving glaciers from 1984 to 

2011, noticed small advancements in two termini of the Pío XI glacier. Espizua and Pitte, 

(2009) noticed some periods of minor advances in the Central Andes. They concluded 

that the positive mass balance during the period was the outcome of the warm El Niño–

Southern Oscillation (ENSO) events.  

Glaciers of Chile act as a valuable source of fresh water as their summer runoff 

contributes to several river basins. It is an important water resource to the populated and 

eco regions of the Chile (Rivera et al., 2006). But due to the inaccessible terrain and lack 

of data, the mass balance of the South American Cryosphere has not been documented 

extensively. As a result, the region has suffered from the absence of a systematic, long-

term, and validated mass balance program (Bamber and Rivera, 2007; Dyurgerov and 

Meier, 1997; Rivera et al., 2007). In this paper, I use data that were generated using 

active and passive remote sensing techniques to analyze the state of glaciers in the 

Southern Andean Cryosphere from 2004 through 2008. I use GLAS and SRTM elevation 
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data to study trends in glacier wastage in the region. I examine regional elevation-

difference trends in clean ice and analyze glacial thinning in the Southern Andes. 

2.3 Study Area 

 

Figure 2.2 Illustration of the study area in South America 

 

Most of the glaciers in the South America are located in Argentina and Chile. 

These glaciers are found typically in an area from 17° 30’ S latitude to the southern tip of 
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South America at 55°S latitude (Figure 2.2). The Pacific Ocean in the West and the 

Andes Cordillera to the East influence the atmospheric conditions in the region. Varieties 

of glacier forms, such as mountain glaciers, valley glaciers, cirque glaciers, outlet 

glaciers, Piedmont glaciers, ice caps, and ice fields, spread across more than 4,000 km 

along the Andean mountains in Chile and Argentina (Lliboutry, 1998).  

The climatic parameter differs along the longitude and latitude as the study region 

extends from northern Chile to Southern Argentina (Garreaud et al., 2009). Annual 

rainfall increases from 100 mm to 2,000 mm along the latitude within the central region 

(Montecinos and Aceituno, 2003). The studies on climate variability in the region 

reported a decrease in the precipitation and a diminutive increase in temperature (Favier 

et al., 2009; Rabatel et al., 2011). The complex landscapes of the Andes create numerous 

microclimatic zones in the study region (Rosenblüth et al., 1997). The varying climatic 

conditions and topography along the Andes influence the development of glacial masses. 

Therefore, I divided the study area into four regions based on climate and topography. 

These divisions help overcome statistical bias and avoid overlying dissimilar radar signal 

footprints (Kääb et al., 2012). These four climatic regions are Dry Central (31°S–35°S), 

North Wet (35.1°S–46°S), South Patagonian Icefields (48.15°S–51.4°S), and Cordillera 

Darwin Icefield (54.20°S–55°S) (Figure 2.2) (Lopez et al., 2010; Williams and Ferrigno, 

1988).  

In typical meteorological circumstances, stationary high pressure stretches out 

crosswise over South America at about 35°S and along these lines keeps any intrusion of 

moisture-laden air masses into the landmass (Lliboutry, 1998). In the regions, most 

precipitation occurs in the winter, between May and August. The summer months are 
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from December to February (Paruelo et al., 1998). In this study, I grouped ICESat 

footprints of December through February as dry season footprints. I restricted trend 

analysis to only the dry season ICESat footprints for an unbiased comparison with SRTM 

DEM, which is dated February 2000. 

 In the North Wet region, precipitation anomalies are prominent during the El 

Niño and La Niña periods in the Central Andes. The ENSO effect varies across 

geographic locations. In the El Niño years, above-average precipitation occurs between 

30°S and 35°S latitudes from June to August, and between 35 and 38°S from October to 

November. In contrast, the opposite pattern is observed during La Niña years 

(Montecinos and Aceituno, 2003). On the western side of the Patagonian Icefields, near 

the Pacific Ocean, marine impact and westerly frontal frameworks affect the atmosphere. 

A heavy north-south atmospheric pressure gradient induces strong and moist westerly 

winds over Patagonia south of 45° 5’ S (Lliboutry, 1998). The southern SPI receives the 

most extreme precipitation along the coast, at around 51° S (Lopez et al., 2010).  

The CDI region (Figure 2.2) is by far the least inspected part of the Southern 

Andean cryosphere. The lessening of precipitation to the east is observed in the CDI. 

Throughout the winter, strong winds begin from the west and, at the same time, cold air 

comes from the polar region (Holmlund and Fuenzalida, 1995; Lopez et al., 2010).  

These diverse climatic patterns influence glacial extent, mass and velocity in the 

Andes. Any deviation in normal climatic patterns will bring significant change in the 

Andean Cryosphere. 
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2.4 Data 

I used all footprints of the elevation product of GLA14 release 533, Geoscience 

Laser Altimeter System (GLAS2) aboard the Ice, Cloud and land Elevation Satellite 

(ICESat) campaign from 2004 to 2008 that overlay glaciers in the Andean cryosphere. 

The GLAS transmits short pulses (40 pulses per second) of infrared light (1064 nm) and 

visible green light (532 nm). Laser footprints are about 70 m in diameter and spaced 

along-track direction at 170-meter intervals from a 600-km altitude orbit. Global Land 

Surface Altimetry (GLA 14) product provides surface elevations for land. It includes the 

laser footprint geolocation and reflectance (Kääb et al., 2012). The National Snow and 

Ice Data Center (NSIDC) distributes the ICESat GLAS data products. Also, I used a 90 m 

spatial resolution elevation model from the Shuttle Radar Topographic Mission (SRTM3) 

– version 4 for the year 2000. Moreover, I used Landsat ETM+ statellite data acquired 

close to the SRTM acquisition date. Table 2.1 provides acquisition dates of these scenes. 

I used these multispectral images to classify the spectral signatures into different land 

cover classes. I used glacier boundary shapefiles from the Global Land Ice Measurements 

from Space (GLIMS) and Randolph Glacier Inventory 5.0 (RGI) to identify glacial 

boundaries.    

 

 

 

                                                 
2 Thomas, 2012. GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data, Version 33, 

[GLA14]. Boulder, Colorado, NASA DAAC at the National Snow and Ice Data Center. 

 
3 Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available 

from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). 

http://www.cgiar-csi.org/2010/03/108/uot;http:/srtm.csi.cgiar.org
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Table 2.1 List of Landsat (ETM+) scenes used in this study 

Landsat 

path/row 

Scene date Cloud 

(%) 

Landsat 

path/row 

Scene date Cloud 

(%) 

231/095 10/14/01  2  232/084 1/20/00 0 

232/090 12/8/01  0  232/085 2/7/01 0 

232/091 12/8/01  0  232/086 2/7/01 0 

232/092 3/11/01  0  232/087 2/7/01 0 

232/093 3/11/01  8  232/088 12/8/01 0 

232/089 12/8/01  0  233/085 1/29/01 1 

233/083 12/26/99  0  233/086 1/27/00 0 

226/099 12/14/01  18  233/087 11/29/01 0 

227/098 2/7/02  12  232/086 2/7/01 0 

229/096 2/21/02  6  233/082 2/28/00 1 

229/098 3/19/00  32  232/094 5/14/01 10 

230/096 10/2/99  7  232/083 12/5/00 0 

230/097 8/4/01  9  233/080 11/26/00 0 

231/094 10/27/00  10  233/081 3/21/02 0 
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2.5 Methods 

 

 

Figure 2.3 Flowchart summarizes the methodology 

Figure 2.3 shows a flowchart of the methodology used to analyze the glacial 

change in the Andes. The ICESat elevation data was provided in Topex /Poseidon 

ellipsoid, and the SRTM data was in EGM 96 Geoid; therefore, I geo-referenced both 

ICESat and SRTM data to the WGS 84 ellipsoid before the analysis. I created a 5-km 

buffer around the glacier boundaries.  Based on the location of the ICESat footprint, I 
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categorized ICESat footprints as ‘on-glacier’ and ‘off-glacier’ points (Figure 2.3). I used 

off-glacier footprints in the calculation of uncertainty in the estimation of glacier 

elevation differences and mass balance. I excluded the ICESat footprints that fall within 

the SRTM void mask to avoid possible bias in glacier mass estimation (Kääb et al., 

2012).  

I first georectified and mosaicked Landsat images. Then I classified the images 

into five land cover classes, Clean Ice, Snow, Debris, Water, and Others (Figure 2.3), 

using multiple band ratios and classification methods. The high albedo in the snow and 

clean ice helps to separate snow from the encompassing territory (Racoviteanu et al., 

2008). I used the visual and near infrared (VIN) bands of Landsat to create a band ratio of 

Band 3/Band 5. I applied a threshold of 2.05 to this ratio to separate the clean ice and 

snow areas from the rest of the land cover. Although, individual Landsat image had 

different threshold, the value 2.05 was the highest value among all the images that 

separated ice and snow from other land cover class.  Then I created a band ratio of (Band 

4×Band 2)/ Band 5 (Kääb et al., 2012). This ratio helps to separate ice from snow 

because both ice and snow have unique spectral signatures in the VIN region 

(Ambinakudige and Joshi, 2012; Racoviteanu et al., 2008). I used a   threshold value of 

202 on the values of above band ratio (values ranged from 0 to 255) to separate ice and 

snow. Lastly, I classified water and debris manually and excluded those classes from the 

analysis. After the final image classification, in ArcGIS 10.2 software, I overlaid the 

ICESat footprints on the classified image and extracted classified pixel values. I used a 

total of 138,763 elevation footprints in the analysis. Of these footprints, 113,951 

elevation were outside the glaciers, 12,009 were on clean ice, 11,279 were on glacier 
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firn/snow, and 1,524 were on debris-covered ice. There were 2119 footprints in DC, 5538 

in NW, 5741 in SPI, and 1421 in CDI regions.  

After the extraction of land cover classes from overlaying pixel to the ICESat 

footprints, I also extracted the elevation values from the SRTM DEM using the bilinear 

interpolation technique. Then I calculated elevation differences per year by subtracting 

ICESat (from the years 2004 to 2008) elevation and SRTM elevation (from 2000) in the 

clean ice zone during the dry season. I removed points with elevation differences greater 

than +150 and less than -150, because I assume that these are  possible errors in the data 

due to clouds or other factors (Kääb et al., 2012; Phan et al., 2014). Finally, I used the 

remaining footprints to calculate the trends in the elevation differences over the study 

period. 

I computed uncertainty in the trend estimation (u) as the root sum square of the 

standard error of elevation difference trends in glacier (SEgl), elevation difference trends 

outside glaciers (EDTnongl) as shown in equation 1 (Gardner et al., 2013; Kääb et al., 

2012; Neckel et al., 2014).  

    𝑢 =  √𝑆𝐸𝑔𝑙
2 + 𝐸𝐷𝑇𝑛𝑜𝑛𝑔𝑙

2                        (1) 

To prepare the parameters for equation 1, I conducted a bootstrap analysis to 

examine the possible error introduced in the analysis due to the uneven number of sample 

points in each year. From the elevation difference footprints on glaciers, I randomly 

selected points for bootstrap analysis with an increment of 10 percent points at each 

stage, until I covered 100 percent points. I used two hundred iterations at each stage 

(Kääb et al., 2012; Neckel et al., 2014). I fitted a second-order polynomial through all the 
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standard deviations of the elevation difference trend values obtained from the bootstrap 

analysis. I then used the fitted polynomial value at the 100 percent points in calculating 

standard error (SEgl ) and used in equation 1(Kääb et al., 2012; Neckel et al., 2014). I 

noticed representativeness of elevation footprints varies in the regions. In all regions 

except the NW, standard deviation values leveled off at around 55 percent of the points 

(Figure 2.4). In the NW region, standard deviation values leveled off at around 80 percent 

points (Figure 2.4). I therefore used the standard deviation value at 100 percent footprints 

in the uncertainty estimation.             

 

Figure 2.4 Trends of standard deviation of elevation difference from randomly 

selected points over clean ice                                             

The accuracy of the ICESat’s altimetry elevation measurement in the high slope 

areas is very low (Carabajal and Harding, 2005; Kääb et al., 2012; Neckel et al., 2014). 

Therefore, to get the precise error estimates in elevation differences in  off-glacier areas, I 
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fitted a linear trend on elevation differences in off-glacier footprints in areas where slope 

values are less than 10 degrees. I used this trend value (EDTnongl) in Equation 1. Although 

studies have noted that there could be inter-annual biases of about ± 0.03–0.06 m a-1 in 

the ICESat laser period (Gardner et al., 2013). I assume that the uncertainity estimation 

method is inclusive of any inter-annual biases. Finally, I computed glacier mass balance 

trend and associated uncertainty by multiplying a density value of 900 kg m−3 for clean 

ice (Huss, 2013). 

2.6 Results and Discussions                           

The trends of elevation differences indicate varied glacial wastage rates throughout the 

study period. Figure 2.5 depicts the glacial thinning trends in DC, NW, SPI, and CDI 

regions on clean ice areas. I calculated these trends by fitting a linear model through all 

available elevation differences in ICESat footprints from 2004 to 2008 with respect to 

year 2000 SRTM elevation values. I fitted these trends through all footprints that fall 

within one and two standard deviations from the mean. I calculated the elevation 

difference trends and mass balance trends using all points. Figure 2.5 shows the trends of 

elevation differences fitted through all points. 

Generally, in all four regions throughout the study period, elevation values were 

lower than the year 2000 SRTM values with some exceptions in the NW region. Over the 

study period in the Dry Central region, there was a negative elevation difference trend of 

-0.04 ± 0.14 m a-1. This trend indicates a recession of glacial mass compared to the year 

2000, but the uncertainty in this estimation is higher than the elevation difference trend. 

In the DC region, the maximum mean elevation difference (Table 2.2) (Figure 2.5) was -

0.98 ± 0.29m in 2005, and minimum elevation difference was -0.13 ± 0.18m (Table 2.2) 
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in 2006. The overall mass balance in the DC region was -0.037 ± 0.13m w.e.a-1 on the 

clean ice region. Clearly, there were significant negative mass balance in DC in some 

years, but in other years, there were higher uncertainty in the estimated values.  

 

Figure 2.5 Average elevation differences per annum and linear trends between ICESat 

and SRTM data from 2004 through 2008 on clean ice in four regions 
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Table 2.2 Average elevation differences and trends between ICESat and SRTM data 

from 2004 through 2008 

 

In the North Wet region, elevation differences on clean ice fluctuated significantly 

over the study period. However, the overall elevation difference trend was -0.14 ± 0.13m 

a-1. The mean elevation values were lower than the year 2000 values in the years  2005, 

2006, and 2008, while in 2007 and 2004, the mean elevation values were little higher 

than the 2000 value. The maximum mean elevation difference in this region was -0.64 ± 

0.5m (Table 2.2) in 2005, and there was a positive elevation difference of 0.5 ± 0.9m 

(Table 2.2) in 2004. Over the study period, mass balance rate was -0.122 ± 0.12m w.e.a-1 

on the clean ice region.  

In the SPI also there was a negative elevation difference trend of -0.04 ± 0.05m a -

1 during the study period. In all the years, the mean elevation difference was lower than 

the values in 2000. The maximum mean elevation difference (Figure 2.5) I observed for 

this region was -1.17 ± 0.09m (Table 2.2) in 2006 and the minimum elevation difference 

I noticed was -0.75 ± 0.10m (Table 2.2) in 2004. Likewise, there was a negative trend in 

mass balance (-0.037 ± 0.05m w.e.a-1).  

In the Cordillera Darwin Icefields, there was a negative glacier elevation 

difference throughout the study period. The overall trend in the elevation difference was -

0.14 ± 0.06 m a -1. The maximum mean elevation difference (Figure 2.5) I observed in 

 

 
 

Regions 

 

 
Average elevation difference per annum (ma-1) 

 

Elevation 
Difference Trends 

(ma-1) 

 

Mass 
Balance 

Trends (m w.e.a-1) 
2004 2005 2006 2007 2008 

NW 0.530.9 -0.640.5 -0.500.4 0.290.4 -0.420.3 -0.14±0.13 -0.122±0.12 
 

DC -0.460.3 -0.980.3 -0.130.2 -0.460.2 -0.870.2 -0.04±0.14 -0.037±0.13 

SPI -0.750.1 -1.010.1 -1.170.1 -0.920.1 -0.790.2 -0.04±0.05 -0.037±0.05 

CDI -0.110.6 -1.310.3 -1.190.3 -0.990.5 -1.260.2 -0.14±0.06 -0.126±0.05 
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this region was -1.31 ± 0.3m (Table 2.2) in 2005, and the minimum elevation difference I 

noticed -0.11 ± 0.6 m (Table 2.2) in 2004. The mass balance trend was -0.126 ± 0.05m 

w.e.a-1.   Among all the regions, CDI showed highest negative mass balance trend.   

2.7 Conclusions 

The objective of this study was to estimate the trends in glacial mass balance 

using GLAS-ICESat and SRTM elevation models in the Andes of Chile and Argentina. I 

classified the study area into DC, NW, SPI, and the CDI regions. One of the challenges of 

using ICESat data in non-polar regions is the scarcity of footprints outside the Polar 

Regions. This is because the ICESat campaign was originally developed to study polar 

ice dynamics, therefore, its coverage decreases as one moves toward the equator. The 

numbers of footprints across seasons and years varied significantly in the glaciated areas 

in this study region. Some areas covered with a very large number of footprints, but the 

others had only a few footprints. However, researchers have successfully used a limited 

number of ICESat footprints in non-polar regions such as Tibet and parts of the 

Himalayas to study glacial mass balance (Beaulieu and Clavet, 2009; Gardner et al., 

2013; Kääb et al., 2012; Neckel et al., 2014). Highly accurate measurement of elevation 

in ICESat campaign makes it suitable for mass balance study at a regional or a sub-

regional level.  This study is the first attempt to use GLAS/ICESat data over clean ice in 

the Southern Andes. I used only the dry season footprints on clean ice areas of the 

glaciers in the analysis.  

Generally, in all regions and all the years, the elevation values were lower than 

the elevation values from the year 2000, with some annual fluctuations especially in the 

NW region. But the elevation trends fitted through all data points have been always 
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negative (Figure 2.4 and Figure 2.5). Therefore, it is evident that there was a negative 

mass balance in the region. Several other studies in the region using various remote 

sensing satellite data also have indicated glacial retreat and mass balance decline (Chen et 

al., 2007; Dixon and Ambinakudige, 2015; Lopez et al., 2010; Masiokas et al., 2009; 

Mouginot and Rignot, 2015; Rignot et al., 2003; Rivera et al., 2006; Sakakibara and 

Sugiyama, 2014). 

The mass balance of glaciers were significantly negative in the CDI and NW 

regions. The uncertainty in the estimation of mass balance is very low in the CDI ad NW. 

However, in SPI and DC regions, negative trends were not very significant as the 

uncertainties in the estimation of elevation differences are higher than the elevation 

differences. In the CDI region, glacial mass balance was -0.126 ± 0.05 m w.e.a-1.  Lopez 

et al. (2010) studied 25 glaciers in CDI and found 20 glaciers retreating and 5 glaciers 

remaining stationary between 945 and 2005. A recent study by Melkonian et al. (2013) 

used ASTER and STRM DEMs to record an average glacier thinning rate of -1.5 ± 0.6 m 

w.e.a-1 in the CDI region. Overall, it evident from this study and other studies that the 

Cordillera Darwin Icefield is losing mass more rapidly than other regions in the Southern 

Andes. 

In the NW region, glacial mass balance was -0.122 ± 0.12 m w.e.a-1. Rignot et al., 

(2003) and Rivera et al., (2006) studied the glacial retreat in this region and observed 

significant negative trends. This study reiterated these observations even though 

uncertainties in the estimations. Rignot et al., (2003) and Rivera et al., (2006) related 

these negative trends to trophospheric warming and reduced precipitation.  
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In Dry Central, I observed gradual but continuous mass loss at the rate of -0.037 ± 

0.13 m w.e.a-1. Previously in this region, (Rivera et al., 2006) also found a negative mass 

balance of -1.06 ± 0.45 m a-1 in the Cipreses glacier between1955-2000. Similarly, these 

results in the SPI region reveal steady glacier mass balance rates of  -0.037 ± 0.05 m 

w.e.a-1. Considering the uncertainties, these results are comparable to the observations 

made by Willis et al. (2012) in this region where they found −24.4 ± 1.4 Gt a-1 loss in the 

mass between 2000 and 2012. 

One possible reason for the negative mass balance in the region is the increased 

temperature in South America over the twentieth century, as reported by Carrasco et al., 

(2005), Favier et al., (2009), Rabatel et al., (2011), and Villalba et al., (2003). Similarly, 

there might be other climatic factors responsible for glacial melting and variation in the 

snow accumulation, like a fluctuation in the precipitation, as suggested by Favier et al., 

(2009), Prieto et al., (2001) and Rignot et al., (2003). More research is required to 

understand the role of micro-climatic conditions on glacial variations in the region. It is 

also important to understand the effects of ENSO events on Central Andean glaciers 

(Carrasco et al., 2005; Prieto et al., 2001; Rivera and Bown, 2013; Rivera et al., 2006). 

However, the lack of good quality climatic data in glacier regions (Masiokas et al., 2009) 

prevented such analysis. This study attempts to use limited data to study the status of 

glacial change in a large area, but further studies are still required.  
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CHAPTER III 

SPATIOTEMPORAL ANALYSIS OF SNOW COVER EXTENT AND MASS 

ANOMALIES IN CALIFORNIA4 

3.1 Abstract 

The aim of this chapter was to analyze the melting patterns of snow cover in the Sierra 

Nevada and Mt. Shasta regions in California. I use digital elevation models generated 

from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

between the year 2000 and 2015 to study snow mass anomalies. Further, I use Landsat 

scenes to quantify snow cover extent in the hydrological region between 2000 and 2015. 

The study results demonstrate that the snow cover has been significantly receded 

throughout the period. This decline in snow cover is mainly attributed to a decrease in 

snowfall. Further, air temperature and glacier size also played a significant role. A 

remarkable reduction in snow cover extent of about 80% between 2000 and 2015 was 

observed in the studied watersheds. Similarly, during the period snow mass anomalies in 

Mt. Shasta and Crowley lake watershed (Sierra Nevada mountain ranges) were –96.85± 

67.35 megaton and –162.12 ±130.49 megaton respectively. However, some glaciers had 

a surge in snow mass. Considering the current water crises in California, this study 

provides valuable insights into the possible role of climatic factors in snow mass 

anomalies in the region. 

                                                 
4 This chapter is an extension of the work presented in ASPRS (IGTF) 2016 annual conference  
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3.2 Introduction 

Water is essential not only to human sustenance, but it is also vital for all lifeforms on 

earth. Water covers more than 75% of the Earth's surface, yet just 3% of it is freshwater. 

Of this, ice caps and glaciers are the primary contributors. In the state of California, snow 

mass plays a significant role as natural water reservoirs. Because of the Mediterranean 

climatic conditions, the region gets most of its precipitation in winter. It makes snow 

mass as a primary source of freshwater for the rest of the year. Typically, it provides one-

third of the water utilized in California’s urban areas and ranches every year (Chou, 

2014). Thus bearing in mind the water scarcity in California (Swain et al., 2014), it is 

essential to analyze the existing state of perennial and seasonal snow masses in the 

region. 

Alpine glaciers are sensitive to slight changes in climate and similar to the other glaciers 

in the world, they act as pointers towards climate change (Ambinakudige and Joshi, 

2015; Basagic and Fountain, 2011; Inamdar and Ambinakudige, 2016; Marcus et al., 

1995). The changing climate affects the length of the mass balance season (Kaser et al., 

2003) and also impacts the seasonal distribution of streamflow in the high altitude 

regions (Pachauri et al., 2014).  

Over the past century, California has experienced severe and prolonged dry events, 

including those during 1976-1977, late 1980s, and the recent drought during 2012-2014 

(Griffin and Anchukaitis, 2014; Swain et al., 2014). Analysis of nine different 

observational datasets by (Bonfils et al., 2007) to estimate California’s average 

temperature trends between 1950-99 found increased temperature of about 2C, with 

higher rates in the winter. They also noticed more warming at night than in day and 
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attributed this phenomenon to the anthropogenic activities. Additionally, climate 

prediction models forecasted a 20% decrease in precipitation by AD 2100 in the southern 

California (MacDonald, 2007). Howat and Tulaczyk (2005) in their study of climate 

sensitivity of spring snowpack in the Sierra Nevada analyzed historical climate data using 

a multivariate model and found that impact of the warming is considerably reliant on 

coexisting precipitation variation and watershed topography. Because of the high 

elevation of the most of the watersheds in California, snow amassing was found to be 

mainly controlled by precipitation than temperature (Costa-Cabral et al., 2012). Another 

climate model report in the region predicted significant fluctuations in cold season 

precipitations and temperature resulting in increased runoff in the winter as compared to 

the spring/summer (Ashfaq et al., 2013). Similarly, a hydro-meteorological study of 

California rivers (Maurer et al., 2007) reported the increased warming in the recent 

decade caused earlier streamflow timings. They attributed variation in stream flows to 

anthropogenic activities.  

A study by Maurer (2007) in the Sierra Nevada region compared a hydrological model 

under two emissions scenarios (high and low) to determine the probable hydrologic 

changes by 2071–2100. Maurer (2007) study also predicted increased temperature, 

reduced and early stream flows, and reduced snowpack in winter due to the role of 

emissions. Stine (1994) provided the evidence of anomalous climate conditions with 

severe droughts in about AD~1112 and AD ~1350 due to the reorientation of the storm 

tracks in the Sierra Nevada. It shows that the region has suffered droughts in the past too. 

Therefore, Stine (1994) concluded that anthropogenic warming soon might result in 

another reorientation of storm tracks that might cause extreme droughts. Swain et 
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al.(2014) ascribed global warming to boost the probability of North Pacific ridging 

events, which might restate extreme 2013-14 droughts in California. Though probabilistic 

analysis based on Monte Carlo simulation (Margulis et al., 2016) expected the recovery 

period of four years since the recent snowpack drought. Changing climate with long-term 

fluctuations in the precipitation and high evaporation makes the condition vulnerable to 

the states like California, as it affects the discharge in the basins (MacDonald, 2007). 

After examining remotely sensed and climate data McCabe and Fountain, (2013) 

observed considerable spatiotemporal variability of glaciers occurred between 1900 to 

2000 largely due to warming and fluctuations in rainfall in high elevation areas. 

However, despite fluctuation in temperature and precipitation, Howat et al. (2007) 

noticed surge in glaciers in Mt. Shasta due to events of high snow accumulation and 

positive ENSO phases. 

Other than climatic parameters, impurities also decrease the snow albedo and thus results 

in higher melting rate. Several studies showed that trace amounts of aerosol impurities in 

snow affects the surface energy budget as it can remarkably degrade the amount of 

sunlight reflected by snow and ice fields ( Hadley et al., 2010; Kirchstetter et al., 2008;  

Sterle et al., 2013). Hadley et al. (2010) studied the concentration of black carbon in the 

snow before and after the precipitation. They noticed deduction of aerosols from the 

atmosphere by snowflake and its subsequent deposition to the snowpacks of Sierra 

Nevada. A study by Hadley et al. (2010) reveals black carbon concentration in 

precipitation of about 1.7 ng/g to 12.9 ng/g. K. Sterle et al., (2013) reported black carbons 

and dust in the Sierra Nevada region for the year 2009 distressing about a quarter of the 

solar component in the energy balance.  
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Additional factor directly impacting the extent and the melting rate of snow mass is the 

topography of basin. Kessler et al. (2006) modeled irregular terrain in the Sierra Nevada 

during the last glacial maximum. They reported uneven terrain accounts for larger glacier 

extent towards the west as compared to the rain shadowed east draining glaciers. Also, 

glaciers on the west flank are on the low slope and receives high southwest precipitation 

(Kessler et al., 2006). Similarly, a recent analysis of variability in the snowmelt based on 

the topographic elevation by (Rice et al., 2011) observed higher melting of about 40-60% 

in the mid-elevation of Tuolumne and Merced River basins. 

Furthermore, seasonal snow masses in semiarid regions, such as the Sierra Nevada, 

provides suitable habitat for microbial life (Painter et al., 2001). The presence of cold 

tolerant microbes on thawing snow covered regions has been reported in the Serra 

Nevada region and many other parts of the world (Dozier et al., 2009; Painter et al., 2001; 

Segawa et al., 2005; Takeuchi et al., 2006). Painter et al. (2001) developed a linear model 

to retrieve snow algal concentrations and reported red algae biomass concentration of 

0.033 g. m-2 in the Sierra Nevada region. 

In California and other western states, many small perennial snow and ice covered 

regions exist over a vast area. Because of this scattered distribution pattern, the region 

lacks in the comprehensive historical records of glacier extent before the development of 

modern topographic maps (Krimmel, 2002).  

In this paper, I use data that was generated using remote sensing techniques to analyze 

the state of snow extent and mass anomalies in the California between 2000 and 2015. I 

compared classified raster land cover models to quantify snow cover extent in the region. 

Additionally, anomalies in snow mass were analyzed based on digital elevation models 
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generated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). Here I present results of snow extent and mass analysis based on the 

watersheds and named glaciers in the region. 

3.3 Study Area 

Figure 3.1 Illustration of the study area in California 

Perennial snow and ice covered regions in California are mainly located in the 

Sierra Nevada and Mt. Shasta. The Sierra Nevada mountain range extends from around 
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35°N to 39°N about 650 km (Figure 3.1), situated on the eastern border of California. In 

the northern California, Mt. Shasta is located at 44.4°N-112.20°W (Figure 3.1). This 

potentially active volcano marks the end of Cascade Range. Also, Mt. Shasta is the 

largest stratovolcano with a second highest peak (about 4320m) in the Cascade Range. 

During the Pleistocene period, the entire region was significantly glaciated (Clark and 

Gillespie, 1997). At present, the region contains small but scattered perennial snow and 

ice covered regions (Basagic and Fountain, 2011; Krimmel, 2002). California has 

Mediterranean and semi-arid climates with dry summers. It gets precipitation in the form 

of snow during the cool winters between November and May (Serreze et al., 1999). Low-

pressure systems over the Pacific Ocean control the moisture deposition in the region. 

Also, the amount of precipitation varies along the crest based on the rain shadow area in 

the east (Danskin, 1999; Gillespie and Clark, 2011). In this study, snow cover and mass 

change on about 30 named glaciers as small as 0.01 km2 were enumerated. Also, I 

provide quantitative results of the anomalies in the extent and mass loss in the major 

watersheds. This analysis considers American, Crowley Lake, East Walker, Kaweah, 

Kern, Kings, Merced, Mokelumne, Mono, Owens, San Joaquin, Stanislaus, Tahoe, 

Tuolumne, Upper Carson, and West Walker watersheds. In this study, I also measured 

snow cover and mass on named glaciers of the Mt. Shasta such as Bolam, Hotlum, 

Whitney, Wintum, Watkins, and Konwakiton. 

3.4 Data 

Landsat TM, and L8 scenes were acquired with the minimal cloud cover and with 

acquisition dates in the month of August. Finest images were available for the years 

2000, 2002, 2008, 2010, and 2014 covering Sierra Nevada. While scenes of the years 
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2000, 2003, 2008, 2011, and 2015 were available for the Mt. Shasta. These multispectral 

images were used to develop raster land cover models of snow cover in the region. List of 

Landsat data is given in Table 3.1.  

Table 3.1 List of Landsat scenes used in this study. 

Date  Path/Row Cloud cover Landsat Region 

8/27/2000 043/033 0 5 Sierra 

8/20/2000 042/034 0 5 Sierra 

8/27/2000 043/033 0 5 Sierra 

8/1/2002 043/033 0 5 Sierra 

8/3/2002 041/035 0 5 Sierra 

8/10/2002 042/034 0 5 Sierra 

8/1/2008 043/033 1 5 Sierra 

8/3/2008 041/035 0 5 Sierra 

8/26/2008 042/034 0 5 Sierra 

8/16/2010 042/034 0 5 Sierra 

8/23/2010 043/033 0 5 Sierra 

8/16/2010 042/034 0 5 Sierra 

8/18/2014 043/033 0.11 8 Sierra 

8/27/2014 042/034 0.18 8 Sierra 

8/27/2014 042/035 0.15 8 Sierra 

8/25/2000 045/031 0 5 Shasta 

8/18/2003 045/031 0 5 Shasta 

8/15/2008 045/031 0 5 Shasta 

9/9/2011 045/031 0 5 Shasta 

8/19/2015 045/031 35 8 Shasta 

 

Other remote sensing data used was the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) elevation data product (4A01) processed by Japanese 

Space systems utilized for the analysis. The ASTER is a high spatial resolution 

multispectral imaging radiometer onboard NASA’s Terra spacecraft. Obtained three-

dimensional data product is generated using the nadir-looking VNIT (3N) and backward 

looking 3B. I used available ASTER scenes with minimal cloud cover between the year 
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2000 and 2015 that overlay on perennial and seasonal snow covered regions in Mt. 

Shasta and the Sierra Nevada. Specifically, for the Sierra Nevada available ASTER 

scenes were acquired for the years 2000, 2002, 2008, 2010, 2012 and 2014. Similarly, for 

the Mt. Shasta available ASTER scenes were acquired for the years 2000, 2003, 2008, 

2011, and 2015. Obtained ASTER scenes were between the month of June and October 

to understand the state of snow mass cover in the regions. These months were selected to 

coincide the study period with the end of the hydrological year. The ASTER elevation 

data was provided in WGS84 ellipsoid with the transverse Mercator projection.  

Moreover, 7.5-minute series quadrangle topographic maps (1:24000) in mid-nineties 

were obtained from the National Geologic Database project (NGMDB); managed by 

USGS National Geospatial Program (NGP). List of topographic maps used in the analysis 

given in Table 3.2. Whereas watershed boundary shapefiles was acquired from the 

California Department of Forestry and Fire Protection’s Fire and Resource Assessment 

Program (FRAP). Additionally, Global Land Ice Measurements from Space (GLIMS), 

Randolph Glacier Inventory 5.0 (RGI), World Glacier Inventory (World glacier 

monitoring service (WGMS)) and United States Geological Survey report on inventories 

of Sierra Nevada (Raub et al., 2006) were used to identify glacial boundaries and 

locations. Lastly, monthly summaries of mean temperature degree Celsius (1996-2015) 

and total monthly snowfall millimeter (1991-2015) data were obtained from the United 

States National Climate Data Center (NCDC).  
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Table 3.2 List of 7.5-minute series (1:24000) quadrangle maps used in this study. 

Topographic Map Year Topographic Map Year 

Mt. Shasta  1998 Mt. Henry 1994 

Tioga Pass 1994 Mt. Hilgard 1994 

Mt. Dana 1994 Mt. Thompson 1994 

Koip Peak 1994 Mt. Goddard 1994 

Mt. Ritter 1992 North Palisade 1994 

Mt. Lyell 1992 Split Mtn. 1994 

Mt. Abbot 1994 Mt. Whitney 1994 

Mt. Tom 1994 Triple Divide peak 1993 

Mt. Darwin 1994 Mt. Clarence King  1994 

 

3.5 Methods 

 

Figure 3.2 Flowchart summarizes the methodology 
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Figure 3.2 shows a flowchart of the methodology used to analyze snow cover and mass 

anomalies in California. Section 3.5.1 comprises extent analysis of snow cover in the 

region. Snow covered region was analyzed at the end of the hydrological year in named 

glaciers. While the change in the snow extent was quantified based on the major 

watersheds. Section 3.5.2 describes methods used to calculate snow mass anomalies in 

the major watersheds. Uncertainty calculations of mass differences are provided in 

section 3.5.3. Lastly climate data analysis is described in section 3.5.4. 

3.5.1 Snow cover change 

Landsat TM and Landsat-8 scenes were first georectified and mosaicked covering Mt. 

Shasta and Sierra Nevada (Figure 3.2). Several glaciers in this region were missing in the 

GLIMS and Randolph Glacier Inventory (RGI) database mainly because of their smaller 

extent (about 0.01 km2) (H. Basagic and Fountain, 2011; Krimmel, 2002). Therefore, I 

digitized glaciers manually using 7.5-minute series quadrangle maps on a scale of 1:1000. 

Later, I used these as reference glacier boundaries. Topographic maps used in the study 

are listed in Table S2. Additionally, glacier boundaries from GLIMS, RGI, World Glacier 

Monitoring Service (WGMS) and USGS report on inventories of Sierra Nevada (Raub et 

al., 2006) were used as references to determine locations of the perennial snow masses in 

the region.  

Land cover in the study area was classified into two classes: snow covered and non-snow 

covered regions using a band ratio (Red/SWIR) (Figure 3.2). This ratio helps to separate 

high reflectance snow/ice pixels from other land cover classes. A threshold value should 

be selected that separates snow/ice from other land cover class. In this study, the highest 

Red/SWIR band ratio value of 2.05 was selected as the threshold value. I also visually 
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checked each classified area with the actual image to see any area that is visually 

identifiable that has been misclassified. I manually corrected miss-classified water and 

debris pixels. Later I used the zonal statistic tool in the ARCGIS 10.2 to quantify snow 

covered pixels within the glacier and watershed boundaries. The snow covered extent at 

the end of particular hydrological years was measured in the named glaciers. While I 

analyzed the change in the amount of snow cover extent between the year 2000 and 

subsequent years within watershed boundaries. Finally, results of percent snow cover 

extent with linear trends were presented for the two study regions (Mt. Shasta and the 

Sierra Nevada), named glaciers and watersheds. 

3.5.2 Snow mass difference 

To study anomalies in snow mass, for the Sierra Nevada, I used ASTER DEMs for years 

2002, 2008, 2010, 2012 and 2015. Similarly, for Mt. Shasta available ASTER DEMs for 

years 2003, 2008, 2011, 2015 were used. Available images capturing the end of the water 

year were acquired in the months of June-October. Elevation differences were calculated 

by subtracting subsequent ASTER DEMs from the reference ASTER elevation (the year 

2000) (Figure 3.2). Further, pixels in the elevation difference raster data were converted 

into points. Supplementary glacier boundaries overlapping period (2000) compiled for 

the precise classification of elevation difference points. I manually digitized glacier 

boundaries in the region for the specific year 2000 using the Landsat data for the August 

month. Later the year 2000 inventory area was used to calculate mass change. I created a 

100m buffer around the glacial boundaries. Subsequently based on the location of the 

elevation points, they were categorized as ‘snow covered’ or ‘non-snow covered’ points 

(Figure 3.2).  
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A total of 366,640 elevation points were used in the analysis. Out of which, 262,018 

elevation points were off snowfield, and 104,622 were on the snowfield. In the Mt. 

Shasta and the Sierra Nevada, I analyzed 28,504 and 76,118 elevation points respectively. 

The non-snow covered elevation points were used to calculate the standard error as well 

as uncertainty in the estimation of snow elevation differences. Additionally, elevation 

points with very extreme elevation differences were removed, as these are a possible 

error in the data (Kääb et al., 2012; Phan et al., 2014). As I was specifically comparing 

snow mass at the end of hydrological year, I decided to use density value of 750 kg m-3 

which is an average of snow (600 kg m-3) and clean ice (900 kg m-3) density scenarios 

(Huss, 2013). Finally, results of snow mass changes in megaton were presented based on 

named glaciers, regions (Mt. Shasta), and watersheds (Sierra Nevada). 

It is important to note that these results of snow cover extent and geodetic snow mass 

analysis of named glaciers cannot be compared merely to each other. Primarily because 

in snow cover analysis I quantified the snow cover extent at the end of the hydrological 

year. While the mass analysis was based on the surface elevation difference between the 

reference (the year 2000) and successive years. Besides, it covers diverse seasonal snow 

cover extent. However, both outcomes can be compared to the broader scenario. 

3.5.3 Uncertainty assessment  

Initially, the uncertainty in the estimation of elevation differences calculated as the root 

sum square of the standard error of the mean (SEnongl) and mean elevation difference 

(EDmean) of the non-glaciated region (Bolch et al., 2011).  

EDu =  √EDmean
2 + SEnongl

2 + 𝐷𝐸𝑀𝑏𝑖𝑎𝑠                                   (1) 
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Where the mean elevation difference (EDmean) was calculated by averaging the all the 

non-snow covered pixels in the 100m buffer zone. The parameter standard error of the 

mean (SEnongl) in the equation 1, is estimated by the amount of dispersion in the non-

snow covered points divided by the square root of its sample size.  DEMbias (systematic 

error) in the equation 1, measures the degree to which predicted successive elevation 

models (ASTER) are on average differs the true elevation at topographic map benchmark 

locations (Wechsler and Kroll, 2006). I used forty benchmarks. 

𝐷𝐸𝑀𝑏𝑖𝑎𝑠 =
∑ (�̂�𝑗−𝑌𝑗)𝑛

𝑗=1

𝑛
                                                           (2) 

Where, n is the number of benchmark locations, �̂�𝑗 and 𝑌𝑗 refers to the ASTER and 

topographic elevations. Lastly uncertainty in mass differences was quantified by using 

reference inventory area, elevation difference uncertainty (Edu) and using density 

scenario of 750 kg m-3 

3.5.4 Climate data analysis 

Monthly climate summaries were acquired from NOAA's National Centers for 

Environmental Information (NCEI). Fluctuations in temperature (C) and snowfall (mm) 

parameters analyzed for the years between 1991 and 2015. To get an accurate 

representation of climate during the study period; weather stations were selected based on 

their proximity to the named glaciers. Stations located within the radius of about 10 miles 

from the Sierra Nevada and Mt. Shasta glaciers were used. List of the stations with 

details are provided in Table S3. The rate of fluctuation analyzed based on the average of 

dry season months (June, July, August, September, and October) and average of wet 

months (November, January, February, March, April, and May). Finally, results of trend 
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analysis were presented based on seasons (Dry and Wet) and regions (Mt. Shasta and the 

Sierra Nevada). 

3.6 Result and discussion 

The objective of this study was to analyze anomalies in snow extent as well as mass. 

Initially, glacier and watershed boundaries were compiled, and raster land cover models 

were developed to study the state of snow cover in glaciers and watersheds. Snow mass 

change was also quantified in glaciers and watersheds. Finally, outcomes of climatic 

variables are discussed. The results presented in the following three sections.  

3.6.1 Extent of snow cover change in California 

The snow cover analysis in California shows a substantial decrease in the extent of snow 

cover in both Sierra Nevada and Mt. Shasta regions between the years 2000 and 2015.  

I investigated changes in the extent of snow cover in the Mt. Shasta region in six glaciers, 

namely, Konwakinton, Watkins, Whitney, Wintum, Bolam, and Hotlum (Figure 3.3). In 

2015, glaciers in the region had an average snow cover area of 44% of the total glacier 

extent.  In Whitney glacier, only 26% of the glacier area had snow cover in 2015 (Figure 

3.3). However, in Wintum glacier, the entire glacier was covered with snow during the 

years 2000, 2003, and 2011. But, in 2008 and 2015, only 62% and 56% area of the 

glacier was covered with snow (Figure 3.3). It is important to notice that all other glaciers 

in the Shasta region never recovered but rather showed the continuous loss in snow cover 

during the period.  

If we look at the trends in snow covered region during the study period, without any 

exceptions, all glaciers showed a negative trend. Bolam glacier showed a highest negative 
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trend of -3.1% followed by Watkins (-2.8 %), Wintum (-2.4%), Whitney (-2.2 %), 

Konwakinton (-1.4%) and Hotlum (-1.3%) (Figure 3.3). Higher negative growth rate 

shows the uninterrupted retreat in snow cover extent of the glaciers. 

 

Figure 3.3 Percent snow cover extent in major glaciers in Mt. Shasta 

The figure 3.3 represent linear trend fitted through percent extent of snow cover at the 

end of hydrological year in the region. 

I analyzed the state of snow cover extent of 33 glaciers in the Sierra Nevada region. 

Similar to the glaciers of Mt. Shasta region, glaciers of Sierra Nevada also showed a large 

decrease in snow covered area at the end of the hydrological years during the study 

period. On an average snow cover extent in 2014 was found to be 11%. In the year 2014, 

Winchell, Keyhole, Scylla, Mt. Lamarck, Mt. Dade, Mt. Warlo, Matthes, Four Gables, 

Charybdis and most other glaciers were almost completely snow free (Figure 3.4). 

Following in the year 2008, only 34% of the glacier area was under snow cover. While I 

observed in the years 2000 and 2010, there was highest snow cover in many glaciers. Mt. 

Ritter glaciers, for example, had full snow cover in the year 2000 (Figure 3.4). On 
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average 87% and 78% of the total glacier area was under snow cover for the water year 

2000 and 2010 respectively. 

 

Figure 3.4 Percent snow cover extent in major glaciers in the Sierra Nevada 
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The figure 3.4 represent linear trend fitted through percent extent of snow cover at the 

end of hydrological year in the region. 

Linear trends fitted over percent snow covered extent in each glacier found to be negative 

at the end of the hydrological year throughout the study period in all glaciers. Mt. Gabb 

had the highest negative growth rate (-5.3%) (Figure 3.4). The Charybdis glacier had the 

lowest negative growth rate of snow cover extent (-2.0 %) (Figure 3.4). Palisade Glacier, 

one of the largest glaciers (Krimmel, 2002) in the Sierra Nevada region, covered snow in 

about 39% of the glacier the area in 2014 (Figure 3.4). In essence, negative trends in the 

region demonstrate a steady decrease in the extent of snow cover with minor fluctuation 

throughout the period. Generally, the Sierra Nevada region showed the high snow cover 

extent loss as compared to the Mt. Shasta. 

 

Figure 3.5 Percent snow cover extent change in major watersheds in Sierra Nevada 

California 
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Shaded region demonstrates maximum to average (percent) change in the area 

 I also compared snow cover change at the end of the hydrological year 2000 with the 

successive years within sixteen watersheds in the Sierra Nevada. Like the glacier level in 

overall watersheds, loss in the snow cover area was substantial in all years except for the 

year 2010. In 2010, all sixteen watersheds showed higher snow cover. For example, in 

2010, Kaweah watershed snow cover area increased by 200% (Figure 3.5) as compared 

to the year 2000. However, Mono Lake watershed showed only about 4% increase in 

2010 when the average recovery in the region was about 20% in that year (Figure 3.5). In 

the year 2014, there was almost no snow cover in any of the watersheds in August. 

Obviously, the downstream areas of these watersheds faced drought (Griffin and 

Anchukaitis, 2014; Swain et al., 2014). 

3.6.2 Snow mass change 2000-2015 

Snow mass anomalies indicate varied snow mass loss throughout the study period. Figure 

3.6 depicts the overall glacial thinning in the regions of Mt. Shasta and the Sierra Nevada. 

Here I studied eight river watersheds in the Sierra Nevada based on the availability of 

ASTER data. Generally, in both regions, elevation values on snow covered areas were 

lower than the year 2000 ASTER values throughout the study period. 
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Figure 3.6 Average snow mass anomalies (megaton) and linier trends between 

reference ASTER 2000 and ASTER data through 2002-2015 

The figure 3.6 represents linear trend fitted through average snow mass anomalies in the 

Mt. Shasta and major watersheds of Sierra Nevada. Shaded region of the confidence 

interval (68.27%) represents the spread of data in accordance to mean. 

In the Sierra Nevada, over the study period, there was a remarkable mass loss in snow 

covered areas (Figure 3.6) (Table 3.3) (Table 3.4). Between 2000 and 2015, the high 

snow mass loss of –162.12± 130.49 megaton was noticed in Crowley Lake watershed 

(Table 3.3) (Figure 3.6) and the lowest negative snow mass observed at Merced 

watershed (-1.01± 1.66 megaton) (Table 3.3) (Figure 3.6). Similarly, Mt. Shasta region 

showed a significant snow mass loss of -96.85 ± 67.35 megaton (Table 3.5).  
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Table 3.3 Snow mass anomalies in watersheds of Sierra Nevada. Base year: 2000 

 

Mass anomalies quantified by using reference inventory area, elevation difference and 

using density scenario of 750 kg m-3 

Table 3.4 shows the list of named glaciers with corresponding snow mass anomalies in 

the Sierra Nevada region. A maximum snow mass loss of -19.68±12.06 megaton 

observed on snow masses of Lyell glacier in the Sierra Nevada for the year 2010 as 

compared to 2000. Additionally, Goethe and McClure glaciers also showed significant 

recession of -10.16±7.19 megaton and -7.38±4.60 megaton (Table 3.4) respectively for 

the year 2010 as compared to 2000.  

 

 

 

 

 

 

 

 Snow mass anomalies (megaton) 

  2002 2008 2010 2012 2015 

 

Crowley Lake -90.10 ± 35.49 -154.87 ± 100.12 -176.76 ± 173.43 -67.12 ± 70.05 -162.12 ± 130.49 
 

Kern -41.00 ± 17.40 13.63 ± 28.18 -32.27 ± 25.05 -50.08 ± 30.96 -41.88 ± 25.89 

 
Kings -41.58 ± 23.20 -59.88 ± 48.11 -72.34 ± 63.11 -18.88 ± 18.73 -65.63 ± 53.71 

 

Merced -4.35 ± 1.01 -3.48 ± 2.22 -9.26 ± 9.19 -4.20 ± 1.81 -1.01 ± 1.66 
 

Mono Lake -36.49 ± 19.63 -48.97 ± 30.81 -53.68 ± 44.34 -36.93 ± 18.48 -4.51 ± 10.34 

 
Owens Lake 0.05 ± 1.41 -12.16 ± 5.11 -15.63 ± 14.60 -8.99 ± 5.19 -10.90 ± 5.78 

 

San Joaquin -77.17 ± 30.38 -149.12 ± 102.23 -137.69 ± 119.55 -60.28 ± 37.51 -92.82 ± 68.02 
 

Tuolumne -11.38 ± 6.35 -13.80 ± 8.47 -16.56 ± 11.05 -8.54 ± 4.84 -2.61 ± 1.94 
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Table 3.4 Snow mass anomalies in named glaciers of Sierra Nevada. Base year: 

2000 

Mass anomalies quantified by using reference inventory area, elevation difference and 

using density scenario of 750 kg m-3 

 

Almost all glaciers showed perennial snow mass decline except Conness glacier (between 

2000 and 2012), Mt. Gilbert (2010), Mt. Ritter (2008), Goethe (2008) glaciers (Table 

3.4). Conversely, the lowest snow mass loss was observed between the year 2000 and 

2015 in Mt. Dana and Mt. Gabb with the snow mass loss of -0.11±0.72 megaton and -

0.27±4.29 megaton respectively. Whereas snow masses in the Conness (between 2000 

and 2012), Charybdis (2012), Keyhole (2012), and Mt. Powell glaciers (2012) 

demonstrated recovery (Table 3.4). 

 Snow mass anomalies (megaton) 

  2002  2008  2010  2012  2015  

Black Giant -2.94 ± 2.71 -3.42 ± 3.14 -4.51 ± 3.83 -1.21 ± 0.80 -4.17 ± 4.16 

Black Giant E -1.82 ± 1.55 -2.94 ± 2.79 -3.15 ± 2.74 -0.92 ± 0.89 -2.18 ± 2.19 

Charybdis -0.30 ± 0.36 -0.19 ± 0.17 -0.21 ± 0.25 0.06 ± 0.09 -0.39 ± 0.52 

Conness  -6.90 ± 1.85 -7.01 ± 2.12 -5.10 ± 3.10 -9.24 ± 1.21 1.09 ± 0.96 

Darwin -4.92 ± 4.17 -4.58 ± 2.62 -4.96 ± 3.21 -1.21 ± 1.63 -6.07 ± 5.31 

Goethe -6.27 ± 1.85 -7.46 ± 4.43 -10.16 ± 7.19 -1.71 ± 1.61 -5.49 ± 1.20 

Kuna -2.87 ± 1.78 -3.93 ± 3.06 -5.64 ± 4.53 -3.40 ± 2.81 -1.74 ± 0.66 

Lamarck -3.29 ± 1.43 -4.23 ± 2.88 -4.89 ± 4.76 -1.34 ± 1.63 -4.45 ± 2.54 

Lyell -13.49 ± 3.97 -16.48 ± 9.75 -19.68 ± 12.06 -10.07 ± 5.76 -3.03 ± 3.12 

Matthes  -2.23 ± 0.60 -6.22 ± 4.20 -6.34 ± 5.96 -0.32 ± 1.30 -5.53 ± 3.60 

McClure -5.01 ± 1.69 -5.18 ± 2.06 -7.38 ± 4.60 -4.40 ± 1.20 -1.88 ± 0.88 

Mt. Abbot -1.41 ± 0.24 -1.76 ± 0.94 -2.02 ± 2.12 -2.01 ± 1.41 -1.71 ± 1.47 

Mt. Dade -1.92 ± 0.23 -3.11 ± 2.10 -2.66 ± 1.98 -2.83 ± 1.70 -3.43 ± 2.99 

Mt. Dana -2.07 ± 1.65 -1.76 ± 1.39 -2.25 ± 2.24 -1.73 ± 1.36 -0.11 ± 0.72 

Mt. Gabb -0.36 ± 1.39 -2.12 ± 0.57 -2.21 ± 3.73 -2.65 ± 0.75 -0.27 ± 4.29 

Mt. Gilbert -2.67 ± 0.45 -5.60 ± 2.96 -6.15 ± 5.58 -0.82 ± 2.56 -5.58 ± 6.25 

Mt. Goddard -0.63 ± 0.14 -0.88 ± 0.14 -0.90 ± 0.63 -0.26 ± 0.11 -0.48 ± 0.14 

Mt. Mendel -1.67 ± 1.06 -2.24 ± 1.62 -2.05 ± 1.13 -0.06 ± 0.44 -3.65 ± 2.28 

Mt. Mills -1.58 ± 2.59 -1.54 ± 0.80 -1.80 ± 0.40 -2.87 ± 1.43 -2.43 ± 0.84 

Mt. Powell -1.95 ± 0.63 -2.43 ± 1.29 -2.94 ± 2.88 0.19 ± 0.47 -2.94 ± 1.69 

Mt. Ritter -3.21 ± 1.37 -5.33 ± 3.92 -3.43 ± 3.84 -3.77 ± 4.35 -1.07 ± 0.65 

Mt. Warlow  -1.43 ± 0.78 -1.96 ± 0.66 -2.16 ± 1.56 -0.49 ± 0.36 -2.11 ± 1.49 

Parker Creek -1.18 ± 0.21 -1.42 ± 0.66 -2.41 ± 1.42 -1.14 ± 0.35 -0.67 ± 0.33 

Scylla -1.71 ± 0.81 -2.57 ± 1.83 -2.87 ± 2.42 -0.81 ± 0.40 -2.85 ± 2.29 

Keyhole -0.77 ± 0.65 -1.40 ± 0.34 -1.66 ± 1.40 0.02 ± 0.29 -1.24 ± 0.47 
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Table 3.5 Snow mass anomalies in named glaciers of Mt. Shasta. Base year: 2000 

 Snow mass anomalies (megaton) 

  2003 2008 2011 2015 

Mt. Shasta -35.29 ± 38.15 -79.61 ± 68.19 -140.33 ± 111.18 -96.85 ± 67.35 

 
Bolam  -12.23 ± 10.95 2.16 ± 7.56 -9.01 ± 5.34 -7.64 ± 2.86 

 

Hotlum  -15.82 ± 10.45 -25.77 ± 20.50 -46.58 ± 34.28 -32.92 ± 21.68 
 

Konwakiton  2.16 ± 2.66 -2.89 ± 1.03 -9.73 ± 7.60 -4.23 ± 2.09 

 

Watkins  0.38 ± 0.53 -2.12 ± 1.32 -2.69 ± 2.22 -1.78 ± 1.31 

 

Whitney  -8.61 ± 7.63 -1.99 ± 6.24 -10.70 ± 9.04 -5.31 ± 9.38 
 

Wintum  -0.31 ± 4.56 -35.75 ± 22.48 -44.30 ± 37.54 -33.67 ± 21.74 

 

Mass anomalies quantified by using reference inventory area, elevation difference and 

using density scenario of 750 kg m-3 

Table 3.5 provides a list of glaciers with snow mass anomalies in the Mt. Shasta. Over 

the study period, in the Hotlum Glacier in Mt. Shasta, the maximum negative snow mass 

of -46.58±34.28 megaton (between 2000 and 2011) (Table 3.5) was noticed. While the 

minimum mass loss of -1.78±1.31 megaton was noticed in Watkins Glacier (between 

2000 and 2015). It is important to observe that all glaciers in Mt. Shasta displayed snow 

mass decline, but Hotlum and Wintum glaciers lost snow mass severely. Conversely, 

snow mass loss was lowest in Konwakiton and Watkins glaciers, throughout the period 

(Table 3.5). 

3.6.3 Climate data analysis 

The climate data analysis for the Mt. Shasta and the Sierra Nevada region (Figure 3.7 and 

Figure 3.8) shows fluctuations in temperature and snowfall throughout the period. But it 

is important to notice the positive trend in temperature anomalies. It demonstrates that 
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there is an overall increase in temperature for dry as well as wet months in the region. 

Also, a noticeable steady increase in temperature can be seen in the wet season after 2011 

till 2015 throughout the year (Figure 3.7). 

 

Figure 3.7 Average monthly mean temperature from 1996 through 2015 during dry 

and wet seasons. 

The figure represents linear trend fitted through average temperature (C) for the Mt. 

Shasta and Sierra Nevada region. Highlighted symbol represents study data period. 

 Here I present results of average monthly summaries of climate data based on the 

regions and seasons. I considered NOAA weather stations within 10-mile radius of the 

glaciers. I analyzed region-wise anomalies in temperature for the dry and wet seasons 

between 1996 and 2015. Both the regions show a similar pattern but in the dry season, 

Mt. Shasta region warmed at a rate of 0.08 C and the Sierra Nevada region warmed by 

0.04C (Figure 3.7). Similar to the Dry season, Wet season showed the similar trends. 

While Mt. Shasta region warmed at the rate of 0.05 C, Sierra Nevada exhibited a rate of 

0.06 C (Figure 3.7). It is important to notice that warming rate is slightly higher in the 
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Mt. Shasta region (around 0.01 C) for the dry and wet seasons. In the dry season for the 

years 2003, 2014, and 2015, both the regions had above average temperature (about 16-

18 C). While, below average temperature noticed in the years 2004, 2005, 2010 and 

2011 in the dry season, during the wet seasons, highest warming was observed for the 

year 2014 (about 5-7 C) whereas, the lowest temperature was noted in the years 1998, 

2010 and 2011. 

 

 

Figure 3.8 Average monthly mean snowfall from 1991 through 2015 during the wet 

season. 

The figure represents linear trend fitted through average snowfall (mm) for the Mt. Shasta 

and Sierra Nevada region. Highlighted symbol represents study data period. 

On the other hand, snowfall fluctuated significantly but the snowfall trend was negative 

between 1991 and 2016 (Figure 3.8). Because snow deposits in the winter, I considered 

only wet season for the analysis. A negative rate of -2.4 mm and -4.9 mm observed in the 

Mt. Shasta and the Sierra Nevada region (Figure 3.8). It is important to notice that decline 

in snowfall is slightly higher in the Sierra Nevada region (around -4.9 mm). In the Mt. 

Shasta region more than average snowfall observed for the years 1994, 1996, 2001, 2004, 

and 2006 (about 300 mm). While in the Sierra Nevada region, more than average 
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snowfall observed for 1993, 1998, and 2010 (about 700 mm) (Figure 3.8). Conversely, 

lowest snowfall is recorded for the year 2013, 2014 and 2015 in both the regions (Figure 

3.8). 

3.7 Conclusions 

The objective of this study was to estimate the extent and mass anomalies in the snow-

covered regions using ASTER elevation models and Landsat multispectral scenes in the 

Mt. Shasta and Sierra Nevada region. The anomalies in snow cover extent and mass were 

quantified for individual glaciers and watersheds in the region. For this study, I identified 

best available ASTER DEMs that overlaid on the snow-covered areas of the California. I 

compared elevation of snow covered regions from reference ASTER DEMs (the year 

2000) with ASTER DEMs (from 2002-2015). In all regions, the elevation values were 

lower than the 2000 year’s ASTER elevation values. Snow mass anomalies were always 

negative as compared to the reference year. After comparing glacier boundaries and 

mass, it is evident that there is a substantial loss in snow cover area as well snow mass. 

The research outcomes clearly indicate that snow mass never recovered after heavy 

snowfall event of 1998. I noticed that recession in the region is mainly a result of reduced 

snowfall than increased temperature similar to the findings of Costa-Cabral et al. (2012).   

I also encountered contrasting patterns of years with snow mass loss and events of snow 

surge at the individual glacier level. Additionally, I noticed that the snow mass depletion 

in the Sierra Nevada region is higher as compared to the Mt. Shasta region. The study 

results of the snow cover analysis are similar to the finding of Howat et al. (2007) where 

they noticed advances to no change on the glaciers of Mt. Shasta. These results also can 

be compared to the observations of McCabe and Fountain (2013)where they noticed 
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spatiotemporal variation between 1900-2000 on some of the glaciers of Sierra Nevada. 

The other possible reason for higher recession rate in the Sierra Nevada might be the 

result of increased temperature in the wet season as compared to dry months. It is evident 

that slight fluctuation in the snowfall and temperature impacts the state of snow masses in 

the region. For instance for the year 2010, most of the snow cover in the Sierra Nevada 

hydrologic regions recovered the extent that might be the result of below average 

temperatures in both dry (about 15 C) and wet (about 3.5 C) seasons. Also in the same 

year, the region received above average snowfall (about 700 mm).  

The study results found aligned with the observations by most of the climate studies in 

the region (Ashfaq et al., 2013; MacDonald, 2007; Maurer et al., 2007; Stine, 1994; 

Swain et al., 2014) and showed that negative mass balance in the region might be the 

direct result of fluctuations in snowfall and temperature. The increase in temperature and 

decrease in  snowfall in 2013-2014 (Figure 3.7) (Figure 3.8) were the main cause of 2014 

drought like conditions (Griffin and Anchukaitis, 2014; Swain et al., 2014) in California 

that resulted in a  massive snow cover loss of about 87%.   

It is important to study microclimatic conditions for the individual glaciers as well as 

regions. I noticed varied snow mass anomalies in two adjacent glaciers of Black Giant 

and Black Giant E. in Sierra Nevada. The difference in microclimatic conditions of these 

glaciers have resulted in these differences. Not all the glaciers lost mass, for example, 

Kern River watershed had positive snow mass of 13.63±28.18 megaton in the year 2008 

(Table 3.3) (Figure 3.6). It may attributed to high snowfall in the alternate years between 

2006 and 2008 (Figure 3.8), and steady temperature in the dry season, and low 

temperature in the wet season for the years 2007 and 2008(Figure 3.7). But during the 
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same period, snow mass in the other river watersheds continued to regress. So, it is 

important to find the particular effect of climatic and topographic parameters on the snow 

masses in the region. Additionally, there might be other factors such as the traces of 

aerosol (black carbon), dust, red algae, topography etc. in snow that may be impacting the 

magnitude of ablation ( Hadley et al., 2010; Kessler et al., 2006; Kirchstetter et al., 2008; 

Painter et al., 2001; Rice et al., 2011;  Sterle et al., 2013). More work is required to 

understand the role of different climatic factors as well ENSO (Howat et al., 2007) effects 

because of the importance of these freshwater reservoirs.  
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CHAPTER IV 

EFFECTS OF SNOW MASS ANOMALIES ON THE TOTAL WATER STORAGE 

AND AGRICULTURAL YIELD IN THE CALIFORNIA’S CENTRAL VALLEY 

BETWEEN 2003 AND 2015 

4.1 Abstract 

The aim of this chapter was to observe impacts of climate forcing on the total water 

storage and agriculture land cover in the California’s Central Valley. I classified Landsat 

images for the individual year 2003 and 2015 using hybrid classification technique. 

Besides, I quantified total water storage (TWS) in the region using Gravity Recovery 

Research and Experiment (GRACE) data signals. Lastly, regressed and correlated 

Normalized Difference Vegetation Index (NDVI), TWS and temperature to unearth an 

interdependence between the variables. 

The study observed the change in the land cover area of about 20% (6993 sq.km) due to 

the alteration of Agriculture land covers to impervious or non-moist (barren) lands. I 

noticed that out of this change most of the alteration in the agriculture land cover of about 

4403 sq.km occurred in the San Joaquin and Tulare Basins of southern Central Valley 

region. I also observed that the Sacramento and Delta basins in the Central Valley region 

shared the same rate of water depletion of -0.26±0.25 (equivalent water height cm) 

between 2003 and 2015. While in the southern half of the Central Valley, San Joaquin 

experienced slightly higher water depletion rate of -0.49±0.27 (equivalent water height 

cm) than Tulare (-0.48±0.26 equivalent water height cm). It is important to notice that 

total water storage depletion rate was found to be almost double in the southern half (San 

Joaquin, Tulare) than the northern half of the Central Valley. Moreover, study reports 
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decrease in crop yield with an increase in anomalies in TWS in the Central Valley region. 

Whereas I suspect that increased temperature was the reason behind increasing crop 

water demand in the area. In essence, the research concludes that the depleting water 

resource and changing agriculture land cover was the result of increased temperature in 

the past decade.  

The high depletion rates of total water storages than its recharge suggests possible severe 

future impacts on the Californian Agricultural production. Considering current water 

crises in California this study provides valuable insights into the potential role of total 

water storage anomalies on the billion-dollar agricultural and dairy industries in the 

central valley.   

4.2 Introduction 

California is the major agricultural producer in the United States. California’s Central 

Valley not only adds $40 billion to the US economy but also grows country’s half of the 

fruits and vegetables. Additionally, it supports $3 billion dairy industry and employs 

more than million people (Schlenker et al., 2007). With high crop diversity, central valley 

produces over 250 different commodities, which makes California fifth largest supplier of 

food and in other agricultural products (L. Jackson et al., 2011a). Central Valley has been 

one of the most productive regions in the world due to its fertile soil and ample 

availability of water for irrigation (Reilly et al., 2008). The rich agricultural production in 

the region has been made possible through ample water supply through engineered 

irrigation infrastructures as the federal Central Valley Project (CVP), All-American 

Canal, and the State Water Project (SWP) (Cooley et al., 2009).  



 

 69 

Ground water has strategic importance as the world’s largest scattered store of fresh 

water for agriculture use and sustaining ecosystems (Gleeson et al., 2012; Taylor et al., 

2013). But increasing population, changing land use, urban sprawl and economic 

development are key drivers of an increasing demand for water worldwide. Thus, 

mounting water stress in several parts of the world. Due to Mediterranean climatic 

conditions, California gets most of its precipitation in the form of snow. Snow amasses in 

the mountains and serves as freshwater reserves for the California state in the summer. 

But findings of Chapter III showed the anomalies with an incremental loss in snow mass 

in the California in the last decade. Therefore, it is viable to study dependence between 

NDVI and TWS which represents surface and ground water.  

4.2.1 Water depletion in the Central Valley 

Groundwater stored in aquifers beneath the soil and porous rock accounts for 33% of 

total water withdrawals globally. Groundwater is being extracted at far greater rates than 

it replenished and will very likely accelerate mid-latitude drying (Famiglietti, 2014). 

Many areas in the world are facing groundwater depletion because of overexploitation of 

ground water resources than its recharge (Wada et al., 2010). Konikow (2011) calculated 

water depletion using calibrated groundwater models, analytical approaches or 

volumetric budget for multiple aquifer systems. The study (Konikow, 2011) estimated 

global groundwater depletion during 1900, and 2008 of around 4500 km3, equivalent to 

sea level rise of 12.6 mm with maximum loss rates occurred between 2000 and 2008.  

Groundwater depletion in the irrigated high planes and central valley accounts for half of 

groundwater depletion in the United States since 1900 and continues totaling 80 km3 even 

after engineered irrigation infrastructures Scanlon et al. (2012b). Excessive utilization of 
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groundwater could significantly affect agriculture production because more than 50% of 

irrigation relies on aquifers. Scanlon et al. (2012a) also observed a high rate of water loss 

in the South (Tulare Basin) and primarily during droughts. The overexploitation of 

groundwater plays a direct role in land subsidence by causing gentle down warping and 

the sudden sinking of discrete segments of the ground surface (Galloway and Burbey, 

2011). The USGS groundwater availability study report for the period 1962-2003 pointed 

the over extraction of ground water in the central valley region leading to land subsidence 

in the San Joaquin (Reilly et al., 2008).  

Analysis of groundwater depletion in the Central Valley region by Scanlon et al. (2012b) 

using Gravity Recovery and Climate Experiment (GRACE) satellite showed reduction 

totaled about 31.0 ± 3.0 km3 from October 2006 through March 2010. Similar analysis 

using GRACE data by Famiglietti et al. (2011) shows that Central Valley had lost 20.4 ± 

3.9 mm yr-1 of ground water during the 78-month period between October 2003 and 

March 2010. They claimed that groundwater loss at this might would damage the 

economy and food security of the United States. Actual agricultural water use remains 

largely unknown, but ground water exploitation during drought will slowly exhaust 

groundwater storages at a higher cost (Howitt et al., 2014). 

4.2.2 Effects of climate change on the Central Valley agriculture 

Many reports foresaw possible impacts of climate change on the agriculture in the 

California’s Central Valley. If global warming continues unchecked, anomalies in 

precipitation and continuously increasing temperatures will severely affect the 

agricultural industry. A recent study by Cayan et al. (2009) projected increase in 

temperature by 1°C -2°C through 2050. While Christy et al. (2006) carried out time series 
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analysis of temperatures in irrigated San Joaquin Valley and nearby non-irrigated Sierra 

Nevada region between 1910 and 2003. Their findings suggest minimum valley 

temperatures are warming at a highly significant rate, on the other hand, minimum 

temperatures in Sierra Nevada Mountains cooling with the less significant rate. Another 

study by Ladochy et al. (2007) on the air temperature patterns in California from 1950 to 

2000, noted that urbanization showed the largest positive trends while rural, non-

agricultural regions showed the least warming. However, the study also observed a 

pattern of warming with highest rates of warming in the Southern California and 

minimum warming in northeastern basins. Ladochy et al. (2007) recounted positive 

correlation between Pacific sea surface temperatures, Pacific Decadal Oscillation (PDO) 

values, also account for temperature variability throughout the state. 

Most of the agriculture based literature claims that plant growth is directly dependent on 

temperature only within a certain range (Schlenker et al., 2007). Climate warming 

suspected to disturb this balance between crop water demand and its supply. In 

California’s Central Valley, continuously increasing temperatures likely to intensify crop 

water demand, while supply will become less consistent due to depleting and early 

melting snowpack in the mountains. Lo and Famiglietti (2013) demonstrated the effects 

of the resulting increase in evapotranspiration and water vapor distribution, not only will 

significantly impact the atmospheric circulation in the southwestern United States but 

also strengthens regional hydrological cycle. A similar study also identified that irrigation 

in the central valley begins anthropogenic loop in the regional hydrological cycle (L. 

Jackson et al., 2011b). 
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Climate forcing and the effects of greenhouse gas emissions are complex and likely to be 

severe in the dry season than winter, with depletion of precipitation (L. Jackson et al., 

2011b) investigated climate change effects on the irrigation water supply in the Central 

Valley and found that irrigation demand will increase by 26% and 32% under B1 and A2 

baseline climate scenarios. Jackson et al., (2011b) extensively reviewed the possible 

positive and negative effects of climate forcing on the agricultural products. The findings 

show that continuously increasing temperatures will adversely affect the yields of tomato, 

rice, and fruits like grapes but might result in better production of citrus fruits and 

drought tolerant olives in the region (Jackson et al., 2011b). Similarly, the statistical 

analysis of 22 climate models and IPSS global emission scenarios (A1, A2, and B1), 

Lobell et al. (2006) reported that slight increase of 1◦ C would moderate yields such as 

almonds, walnut and table grapes by 2050. In California, Lee et al. (2011) analyzed 

effects of climate forcing on agricultural production in the 21st century. Using emission 

scenarios (A2 and B1), climatic models and by eleven year moving averages for the 

period, 1956 to 2094, (Lee et al., 2011) and predicted 2 % to 9 % decrease in wheat, 

Cotton, Sunflower by 2050 compared to 2009. Lee et al. (2011) also concluded that 

climate forcing would decrease crop production in the Central Valley in the long term 

except for alfalfa crop breed. Agricultural crop production is fully expected to be 

impacted by water depletion in the region (Lee et al., 2011). Further analysis of the 

climate change impacts and potential adaptations strategies were assessed by Joyce et al. 

(2011) using an application Water Evaluation and Planning (WEAP) system in the 

Central Valley region. Results of the study by Joyce et al. (2011) suggested an increasing 

agricultural demand in the Sacramento and San Joaquin may amplify stress on the 



 

 73 

management of water resources, and warm climate might impose additional $400 

million/year as an operating cost.  

California’s Central Valley is one of the highly productive agronomic regions in the 

world. In this chapter, I analyzed effects of snow mass anomalies on the agriculture in the 

Central Valley using remote sensing and GIS technique. Where, I analyzed gravity 

models generated using GRACE data set to determine variation in not only ground water 

but total water storage in the region. Also, using supervised and unsupervised learning, I 

classified Landsat multispectral dataset and quantified changes in agriculture land cover 

by comparing hybrid classified images between 2003 and 2015. Lastly, I correlated and 

regressed total water storage (TWS), and Normalized Difference Vegetation Index 

(NDVI), temperature. This study provides valuable insights on the effects of Snowmass 

anomalies on the ground water recharge and indirectly on the agricultural yield.  

4.3 Study Area 

California's Central Valley marks the geographical center of the California state 

(Fig 4.1). The Central Valley is a large, low altitude valley with Mediterranean climatic 

conditions. The Central Valley extends about 720 km along a north-south axis with the 

breadth of 60-90 km and covers approximately 46,620 sq.km area (Reilly et al., 2008). 

The Central Valley is subdivided into northern one-third Sacramento Valley and 

southern two third as San Joaquin Valley (Reilly et al., 2008). The climate of the Central 

Valley allows long growing season with hot summers and moderate winters. Sacramento 

Valley gets about ten inches more average annual precipitation than San Joaquin basin 

(Reilly et al., 2008). The Central Valley basin can be further subdivided into four sub-

regions: Sacramento, Delta, San Joaquin, and Tulare. The southern part of the San 
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Joaquin Valley, the semiarid region is known as the Tulare Basin. Whereas Delta is the 

region where the Sacramento and San Joaquin Rivers meet, and discharge in the Pacific 

Ocean (Fig 4.1) (Reilly et al., 2008).  

 

Figure 4.1 Illustration of the study area in California 

4.4 Data used 

Landsat TM and L8 scenes for years 2003 and 2015 were acquired with the minimal 

cloud cover and with acquisition dates in the month of July covering California’s Central 

Valley. These multispectral Landsat images were used to classify land covers and to 

perform change detection analysis.  
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All overlapping signals of Gravity Recovery & Climate Experiment (GRACE5) monthly 

land mass grid dataset used to analyze total water storage (TWS). Where all available 

gravity anomalies data footprints based on the RL-05 spherical harmonics were acquired 

from GFZ for the years between 2003 and 2015. This preprocessed data was obtained in 

the raster format with 300 km Gaussian filter and spatially sampled for grids 

approximately ~100 km. 

In addition, to understand and quantify crop pattern and yield I acquired preprocessed 

Normalized Difference Vegetation Index (NDVI) data generated using Moderate 

Resolution Spectroradiometer (MODIS) from Earth Explored (USGS). Monthly 7-10-day 

composite 250 m NDVI data over the agricultural land cover for the period between 2003 

and 2015 was used.  

Lastly, monthly summaries of mean temperature degree Celsius (2003-2015) data for one 

hundred and thirty-six stations in California’s Central Valley was obtained from the 

United States National Climate Data Center (NCDC). Temperature data was used for 

statistical analysis and analyzed based on sub-regions. 

4.5 Methods 

The methodology used for the analysis includes GIS and remote sensing techniques. 

Firstly, multispectral scenes were classified into different land covers using iterative 

combinations of supervised and unsupervised learnings. Further based on the two major 

subregions: Sacramento and San Joaquin change detection analysis was carried out 

between two-year 2003 and 2015. As per the objective of the study, priority was given to 

                                                 
5 S.C. Swenson. 2012. GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. 

PO.DAAC, CA, USA. Dataset accessed [2016-05-01] at http://dx.doi.org/10.5067/TELND-NC005. 

http://dx.doi.org/10.5067/TELND-NC005
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the Agriculture land cover and its associated land (AL, AS). Later additional variables 

like Total water storage and NDVI were used to understand effects of changes in water 

levels on the crop yield in the region. Following sections describes in detailed methods of 

hybrid classification, change detection and statistical analysis. 

4.5.1 Hybrid classification 

Hybrid classification is an iterative combination of supervised and unsupervised 

classification learnings (Singh et al., 2013). Landsat scenes with a minimal cloud cover of 

July month for the year 2003 and 2015 were selected. This specific month was selected 

because it marks the pick of the growing season and end of the hydrological year. Hybrid 

classification takes the advantages of both supervised and unsupervised learnings. This 

classification technique provides an object oriented control over the dataset (Singh et al., 

2013). In the classification priority was given to agriculture, and related land covers such 

as moist soil. Therefore, before classifying images, urban and mountainous barren terrain 

were digitized and masked out from the multispectral images.  

In the first step of hybrid image classification, unadulterated pixels were mapped out. 

Then image scenes were classified using the unsupervised classification technique, which 

identified and clustered pixels with similar spectral signatures. During the first attempt of 

unsupervised classification, unique spectral signatures were placed into 150 ISODATA 

clusters. These unique spectral clusters were assigned labels as “Agriculture (A)”, 

“Agriculture Soil (AS),” “Agriculture low (AL),” “Water (W),” “Barren Land (BL),” 

“Urban (U).” It is important to note that Agriculture Soil and Agriculture low are two 

additional classes included especially to improve the accuracy of agricultural land cover 
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classification. These two classes were identified based on the uniqueness of spectral 

signatures, their association, and shape of the field. Agricultural soil represents fertile 

land with human-made shape and moisture content. While Agricultural low defines low 

crop cover on fertile soil marking intermediate phase in the crop growing cycle. Later 

these different land covers were quantified to understand changes in the crop pattern. 

In the second step of classification, the cluster belonging to respective classes with the 

highest accuracy were selected and removed from the main image. This process was 

iterated, where classified images were recoded to a binary image (‘0’ was assigned to the 

accurately classified clusters and ‘1’ assigned to ‘non-classified’ cluster) (Singh et al., 

2013). In the third step, a masked image obtained in the second step was again classified 

using the unsupervised technique. This time unclassified clusters were placed into 50 

ISODATA clusters. 

 After the thrid step, unclassified pixels or the pixels with the mixed signatures were 

classified using supervised learning (maximum likelihood classifier), where training set 

was selected based on the visual interpretation, an association of pixels and shape of the 

agriculture land cover. The three images obtained through two unsupervised, and one 

supervised classification were then overlaid, and the final classified images for 2003 and 

2015 were generated.  

An independent sample sixty pixels (10 per each class) were randomly selected on the 

google earth and compared to check the image classification accuracy. Kappa statistic 

was generated (Congalton and Green, 2008) and found the accuracy of over 90% for the 

agricultural land cover.  
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Following the classification of imagery from the individual years 2003 and 2015.  

Recoded classified images were subtracted from each other to detect changes in the 

region. The post-subtraction approach provides “from–to” change information, and new 

values tell the landscape transformation patterns that have occurred. These changes in 

Agriculture Land cover were later quantified and visualized. Lastly, a change detection 

map based on the two major sub-regions were generated. 

4.5.2 GRACE data analysis 

Total water storage was derived from the Gravity Recovery & Climate Experiment 

(GRACE) monthly land mass grid dataset. First attenuations in GRACE signals due to 

sampling was corrected by grid scaling as recommended by the data providers. The 

provided scaling coefficients were used for each overlying grid cell, and the product was 

calculated.    For the analysis, missing month’s values in the data sets were filled with 

averaging bounded months. In total twelve grid cells, completely and partially overlying 

central valley region was considered for the analysis. Further, these selected Grid cells 

were classified based on the four sub-regions in the Central Valley. Uncertainties and 

errors associated with each GRACE footprint were calculated using leakage error and 

measurement error values supplemented by the data providers.  Uncertainty associated 

with the scaled and processed GRACE signal footprint was computed as the root of the 

sum of squares of leakage (residual error) and measurement error.  Lastly these monthly 

total water storage values in meter water equivalent used for the regression analysis. 

Statistical analysis was conducted to find a relationship between the variables such as 

total water storage, Normalized Difference Vegetation Index, and Temperature. The 

intention of the statistical analysis was to unearth effects of anomalies in total water 
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storage, and temperature on the agricultural yield in the four hydrological basins of 

California’s Central Valley. Dry season months May, June, July, August, September, 

October, November between 2003 and 2015 were considered for the analysis. Monthly 

mean values were selected for the regression analysis. Where NDVI was used as the 

dependent variable and Temperature, TWS were used as the independent variables. The 

results of linear regression were generated for the four sub-regions: Sacramento, San 

Joaquin, Delta, and Tulare hydrological basins.  

4.6 Results and Discussion 

The results of statistical and change detection analysis demonstrate adverse effects of 

anomalies in snow mass and climate on the agricultural land cover and total water storage 

in the region. The results are organized and discussed here for change detection analysis, 

total water storage (TWS) and statistical analysis of different factors such as TWS, 

Temperature, and NDVI. 

4.6.1 Change detection analysis 

Figure 4.2 represents hybrid classified images for the individual years 2003 and 2015. It 

is important to note that results presented here are based on the area after exclusion of 

major urban centers, mountainous terrain and some of the wetland. I analyzed six land 

classes approximately covering 35483 sq.km of California’s Central Valley.  
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Figure 4.2 Hybrid classified images for the year 2003 and 2015 

Image is classified into six land cover classes: 1-Water, 2-Agriculture Low, 3-Agriculture 

Soil, 4Barren Land, 5-Agriculture, 6-Urban 

In 2003 agricultural (A) and associated land covers i.e. agricultural Low (AL) and 

Agricultural Soil (AS) together covered 82.7% of the land cover area in the Central 

Valley 4.3. While in 2015, combined A, AL and AS land cover area found reduced to 

62.5%. I observed that the change in the land cover area of around 20% occurred due to 

the shift of Agriculture and associated land covers to impervious or non-moist barren 

lands. This 20% alteration accounts for approximately 6993 sq.km. Out of these most of 

the alteration in the agriculture land cover of about 4400 sq.km occurred in the San 

Joaquin and Tulare Basins of southern Central Valley region.   

The study also observed around 3% increase in the urban area. I suspect this increase of 

around 1036 sq.km in the urban area was due to the increased infrastructures on or near 
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the agricultural field other than urban centers. While the area of non-moisture or barren 

land cover increased in the Central Valley by about 17% that accounts for around 5957 

sq.km land cover. Out of this 5957 sq.km barren land about 84% of the barren land, 

around 4662 sq.km, endowed by the southern San Joaquin region. Moreover, about 35% 

of the Agriculture and associated land covers (AL, AS) interchanged between each other. 

For example, A to Al, Al to A, A to AS, AS to A and so on. I suspect this was because 

imageries used for classification represent an instance in the crop growth cycle. 

Therefore, this transition between A, Al and AS was not given too much significance as 

it’s a natural phenomenon. Other than that, analysis observed about 30% of the land 

cover area remain unchanged which accounts approximately 10619 sq.km of land. 
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Figure 4.3 Illustration of change detection analysis:2003-2015 

Figure 4.3 demonstrates the regions in California’s Central Valley with decreased 

agriculture, agriculture pattern (A, AL, AS), No change 

4.6.2 Total Water Storage (TWS) 

This study made use of Gravity Recovery and Climate Experiment (GRACE) to examine 

total water storage change in the Central Valley, California. The results demonstrate an 

uninterrupted decrease of total water equivalent in the region. Total water storage which 

is an amalgamation of snowmelt, groundwater, surface water, precipitation, evaporation 
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does follow a cyclic pattern of recharge (Wet season) and discharge (Dry season) in most 

of the years except years following 2011 (Figure 4.4). The GRACE results of diminishing 

water equivalent height can be coupled with findings of snow mass anomalies in the 

Sierra Nevada (Chapter III). I noticed the relation between receding perineal snow mass 

in the Sierra Nevada region and the declining water content of the central valley aquifers 

with the maximum change in drought period year 2014. Effects of receding source of 

fresh water reserve, snow packs in the Sierra Nevada, shows clear impacts on the total 

water storage in the region. This incremental depletion in the snow mass and anomalies 

in total water storages suggest possible severe future impacts on the Californian 

Agricultural industry.  

 

Figure 4.4 GRACE data anomalies (equivalent water height) monthly and annually  
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Figure 4.4 represents available GRACE data (equivalent water height (cm)) for the 

California’s Central Valley. First part represents month wise data available between 2003 

and 2015.  

 

 

Figure 4.4 (continued) 

Figure 4.4 Second part represents polynomial trend fitted over all available data between 

2003 and 2015. 

Here I contrasted total water storage anomalies in the central valley with the snow 

thickness change in the Sierra Nevada reported by (Chapter III). Figure 4.5 shows mean 

dry season total water storage anomalies in equivalent water height (cm) between 2003 

and 2015 (blue line). While histogram displays snow thickness in meters at the end of the 

hydrological year reported for the years (2003, 2008, 2010, 2012, 2015) (Chapter III). 

Figure 4.5 shows direct effects of changing water reserves on the total water storage in 

the Central Valley region. Especially it is important to notice that, negative mass balance 

years 2003, 2012, and 2015 severely affected surface and ground water levels. Whereas 
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the good snowfall years 2008, 2010 helped recovering the water levels but not for a long 

time. As consecutive drought years around years, 2013 and 2014 worsened the conditions 

and the ground water levels reached to its lowest with almost 90% snowmelt in the region 

(figure 4.5) (Chapter III). 

 

Figure 4.5 Association between snow mass anomalies in the snow elevation difference 

in the Sierra Nevada and total water storage in the Central Valley. 

Figure 4.5 represents snow elevation difference in meters with base year 2000. Blue line 

represents Total Water Storage anomalies in equivalent water height (cm). 

Furthermore, monthly graphical representation of total water storage change between 

2003 and 2015 (Figure 4.6) demonstrates a bimodal pattern. The TWS change in the 

region demonstrates positive values for the years 2005 and 2011, because of high 

snowfall during the period. These positive water equivalent heights can be contrasted 

with the Chapter III findings of positive snow mass surge reported in the Sierra Nevada 

and Mt. Shasta for those years. 
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Figure 4.6 Monthly graphical representation of TWS between 2003 and 2015 in the 

California’s Central Valley 

 

4.6.3 Statistical Analysis 

TWS, temperature and NDVI parameters were studied based on sub-region aquifers 

namely Sacramento, Delta, San Joaquin and Tulare to understand north-south 

geographical pattern between them. Specifically, dry months are taken into consideration 

to understand impacts of changes in TWS on the agricultural land cover.  

The Linear trend is fitted through the mean dry season (May-Nov) TWS (water 

equivalent heights), Temperature (°C), NDVI though 2003 to 2015 for individual sub-

region (Figure 4.7) (Table 4.1). All four sub-regions demonstrate changing agricultural 

pattern with depleting water levels.  
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Figure 4.7 Linear trend fitted through Temperature, TWS, and NDVI through 2003 to 

2015 for the four sub regions. 

Note: Temperature is in (°C) and TWS (equivalent water height in cm)  

Table 4.1 Rate of change for TWS and Temperature between 2003 and 2015 

Regions TWS (cm) Temperature (°C) 

Sacramento -0.26±0.25       0.03±0.04 

Delta -0.26±0.25       0.04±0.03 

San Joaquin -0.49±0.27       0.05±0.04 

Tulare -0.48±0.26       0.07±0.04 

 

Monthly graphical representation of temperature between 2003 and 2015 suggest a slight 

increase in the temperature with the early summer in the recent years (figure 4.8). Linear 

trend fitted through temperature showed a slight positive trend in all four sub-regions. 

However, I noticed geographical dissimilarity in the warming rate, as the Sacramento 

basin observed 0.03±0.04 (°C) while southern tip of the Central Valley observed 

warming rate of 0.07±0.04 (°C). 
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Figure 4.8 Monthly graphical representation of Temperature (°C) between 2003 and 

2015 in the California’s Central Valley 

 

Four regions show depletion in the ground as well as surface water, with a major 

reduction in levels in the total water storages in the southern part of the Central Valley. 

Regression analysis demonstrates a negative trend in all sub-region aquifers.  

I observed that Sacramento and Delta basins in the Central Valley region share the same 

rate of water depletion of -0.26±0.25 (equivalent water height cm) between 2003 and 

2015. While in the southern half of the Central Valley, San Joaquin experienced slightly 

higher depletion rate of -0.49±0.27 (equivalent water height cm) than Tulare (-0.48±0.26 

equivalent water height cm). It is important to notice that ground and surface water rate 

was found to be almost double in the southern half (San Joaquin, Tulare) than the 

northern half of the Central Valley (Figure 4.9). 
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Figure 4.9 Sub-region wise Total water storage anomaly 

The difference of crop yields between northern half (Sacramento) and a Southern half 

(San Joaquin) of the central valley was analyzed by visualizing the monthly distribution 

of vegetation index values for years between 2003 and 2015 (Figure 4.10). Figure 4.3 

demonstrates change detection findings, which showed more agriculture area less barren 

land in the Sacramento as compared to the San Joaquin. Linear trend fitted through 

normalized vegetation index suggest a slight increase in the crop yield in the Sacramento 

region. While San Joaquin and Tulare region showed a constant decrease in crop yield. 
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To confirm assumptions of the impact of TWS change on the agricultural land cover, 

findings are regressed and correlated with the NDVI.  Outcomes of least square 

regression support the assumptions and demonstrate significant positive relation (Table 

4.2, 4.3) between decreasing NDVI and decreasing TWS in all four sub-regions. The 

positive coefficient suggests the decrease in crop yield with an increase in anomalies in 

TWS in the Central Valley region. While positive coefficient between NDVI and 

temperature suggest continuously increasing crop water demand. Furthermore, these 

results can be compared with the change detection analysis finding. Change detection 

analysis (Figure 4.3) findings demonstrate the decreased agricultural land cover in the 

San Joaquin. It is important to note that coefficients for NDVI (agriculture cover) and 

TWS (Table 4.3) are not significant primarily because of the size of the GRACE data 

unique footprint.  

Table 4.2 Statistical analysis based on the sub regions in the Central Valley using 

NDVI, TWS and Temperature for the dry season months between 2003 

and 2015  

Model Summary 

Region R R Square Std. Error est. 

Delta 0.68 0.47 0.04 

Sacramento 0.83 0.69 0.06 

San Joaquin 0.72 0.52 0.04 

Tulare 0.81 0.66 0.07 

 

Note: dependent Variable: NDVI 
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Table 4.3  Statistical analysis: Regression between TWS, NDVI and Temperature 

Region Variables Coefficients Sig. 

Delta 

TWS 0.08 0.25 

Temperature 0.67 0.00 

Sacramento 

TWS 0.06 0.25 

Temperature 0.82 0.00 

San Joaquin 

TWS 0.03 0.71 

Temperature 0.72 0.00 

Tulare 

TWS 0.20 0.00 

Temperature 0.76 0.00 

 

Note: dependent Variable: NDVI 

 

 

Figure 4.10 Monthly graphical representation of crop yield (NDVI) between 2003 and 

2015 in the California’s Central Valley 
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4.7 Conclusion 

The objective of this analysis was to observe impacts of climate forcing on the total water 

storage and agriculture cover in the California’s Central Valley. To achieve this goal first 

I classified multispectral Landsat image for the individual years 2003 and 2015. Then I 

compared and analyzed these hybrids classified images to quantify changes in agriculture 

and associated land cover. As the amount of agricultural yield is directly dependent on 

water accessibility in the region, I used Gravity Recovery Research and Experiment 

(GRACE) data signals and studied changes in equivalent water height (cm) for the 

California’s Central Valley. Lastly, I statistically identified the relation between crop 

yield, TWS, and temperature. 

I conclude that groundwater and surface water in the region was found to be declining 

continuously at an incremental rate.  The water levels in the aquifers were noticed to be 

sensitive to changes in the freshwater reserves in the Sierra Nevada. Statistical analysis 

between NDVI and TWS showed the decrease in crop yield with an increase in TWS 

anomalies in the Central Valley region. 

During the study period region also experienced minor changes in the agriculture land 

cover and increased warming. I suspect the increased temperature might have resulted in 

high crop water demand. To maintain the crop water demand and yield; farmers depend 

on the ground waters. This assumption can be substantiated by the findings of the other 

studies, reported depletion of groundwater levels in the region (Famiglietti et al., 2011; 

Mehta et al., 2013; Scanlon et al., 2012b). 

The study results indicate that the conditions are severe in the southern regions (San 

Joaquin and Tulare Basins) of California’s Central Valley. The ground and water levels 
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in the San Joaquin and Tulare Basins are depleting with the rate almost double to the 

basins in the North (Sacramento and Delta). Besides, the region lost more agricultural 

land in the south compared to the North parts of the central valley. These findings are 

aligned with the observations of Reilly et al., (2008) and Scanlon et al. (2012b) where 

they observed a high rate of water loss and followed land subsidence in Southern Basins 

(San Joaquin and Tulare Basins). Also, results of total water storage are comparable to 

the findings of Famiglietti et al. (2011) where they found negative ground water levels 

between 2003 and 2010 in the central valley.  

Also, increasing population and urban areas are building stress on water resources. Proper 

water management techniques like drip irrigation, controlled water extraction, and use, 

alternate use of drought-tolerant species like olives, citrus, water holding structures and 

water literacy will help sustainable management. This study provides insights into the 

state of ground and surface water levels and the agricultural pattern using the limited 

available data. More research is required to understand impacts of Pacific sea surface 

temperatures in the region. Also, more work is required to understand detailed impacts of 

changing water levels on the region wise specific crop and soil types.  
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CHAPTER V   

CONCLUSIONS 

5.1 Discussions on the overall outcomes and scope for the future research 

The overall objective of this dissertation was to understand spatial patterns and state of 

cryospheric components in southwestern regions of North and South America. 

Specifically, this study performed temporal analysis of large glaciers in Southern Andes 

and snowpacks of California. Also, study quantified, geovisualized and statistically 

reported potential effects of increased glacier and snow melting on the fresh water 

reserves and agricultural cover. 

In the Southern Andes and California, the elevation values over glaciers and snow covers 

were found lower in the past decade than the elevation values for the year 2000. It shows 

that cryospheric components are retreating irrespective of geolocations and their 

proximity to the polar region. Specifically, in the Southern Andes, the mass balance of 

glaciers was significantly negative in the Cordillera Darwin Icefields (CDI) and the North 

Wet (NW) region. Of which CDI represents the southern tip of Chile and is close to 

Antarctica, while NW region is situated in the north-central region of Chile. In  CDI, 

Lopez et al. (2010) noticed major retreat in twenty major glaciers between 1945 and 

2005, which is indirectly comparable to the negative mass balance of -0.126 ± 0.05 m 

w.e.a-1 reported in this study in Chapter II. Besides, recent findings by Melkonian et al. 

(2013) also found similar recession in  in CDI  (-1.5 ± 0.6 m w.e.a-1.)  

The study reports second highest negative mass balance rate of -0.122 ± 0.12 m w.e.a-1 in 

the NW region. Rignot et al., (2003) and Rivera et al., (2006) linked these negative trends 

in NW region to tropospheric warming and reduced precipitation. In essence, it is evident 
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from this study and other studies that the CDI region, which is a southern end near the 

south pole is losing ice mass more rapidly. While, SPI and DC regions showed 

insignificant but continuous melting. To understand the factors responsible for this 

phenomenon, it is necessary to study microclimatic conditions of the individual glaciers 

as well as of the sub-regions. The results of several other studies in the region on glaciers 

and climate data found aligned with the findings of state of glaciers in Southern Andes 

reported in Chapter II (Chen et al., 2007; Dixon and Ambinakudige, 2015; Lopez et al., 

2010; Masiokas et al., 2009; Mouginot and Rignot, 2015; Rivera et al., 2006). 

It is essential to note that in California, the snow mass depleted more rapidly in the Sierra 

Nevada than in Mt. Shasta. Like in the Andes, the elevation values over the perennial 

snow cover were lower than the year 2000 elevation values. The research outcomes 

indicate that snow mass never recovered after heavy snowfall event of 1998 in the 

California region. These findings of the snow extent and mass anomalies in California  

(Chapter IV) are comparable to other similar  cryosphere and climate studies in the region 

(Ashfaq et al., 2013; MacDonald, 2007; Maurer et al., 2007; Stine, 1994). 

Conversely, this study also observed positive mass balances and contrasting patterns in 

some of the basins and glaciers for the individual years. For example, there was a positive 

snow mass in the Kern River basin in the year 2008, and fluctuating snow mass 

anomalies in two adjacent glaciers of Black Giant and Black Giant E. in the Sierra 

Nevada.  

This contrasting behavior of the some of the glaciers for the individual years could be 

attributed to the varied topography. Also, high snowfall in the alternate years between 

2006 and 2008 and the steady temperatures in the dry season, while the low temperatures 
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in the wet season for the years 2007 and 2008 might have played an important role in 

amassing snow. But to substantiate this theory, more information on climatic parameters 

and underlying factors is required, as, during the same period, snow mass in the other 

river basins and many other glaciers of California continued to regress.  

The study concludes that the increased melting in both the regions is a result of rapidly 

changing climate after the industrial revolution. The primary reason for the negative mass 

balance in the Southern Andes and California might be increased temperature over the 

twentieth century, as reported by recent reports (Carrasco et al., 2005; Favier et al., 2009; 

Griffin and Anchukaitis, 2014; Rabatel et al., 2011; Villalba et al., 2003). Besides, as 

suggested by many studies, there might be other climatic parameters accountable for 

glacier and snow mass anomalies, like a fluctuation in the precipitation (Favier et al., 

2009; Prieto et al., 2001; Rignot et al., 2003). The increase in temperature and decrease in 

snowfall in California between 2013 and 2014 was the main cause of 2014 drought like 

conditions (Griffin and Anchukaitis, 2014; Swain et al., 2014) in the California state that 

resulted in a massive snow cover loss of about 87%. 

The depleting fresh water reserves in the California region are directly affecting total 

water storage and agricultural production in the Central Valley region. Analysis of 

GRACE data (Chapter IV) shows that groundwater and surface water in the region are 

declining continuously at an incremental rate. This variation in surface and ground water 

in the region found related to the increased melting patterns in the Sierra Nevada 

watersheds.  The study observed the relation between receding perineal snow mass in the 

Sierra Nevada region and the declining water content of the central valley aquifers with 

the maximum change in the drought year 2014. Effects of receding source of fresh water 
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reserve, snow packs in the Sierra Nevada, shows clear impacts on the total water storage 

in the region. This incremental depletion in the snow mass and anomalies in total water 

storages suggest possible severe future impacts on the Californian Agricultural industry. 

Especially it is important to understand that, negative mass balance years 2003, 2012, and 

2015 severely affected surface and ground water levels. Whereas the good snowfall years 

2008, 2010 helped recovering the water levels but not for a long time. As consecutive 

drought years around years, 2013 and 2014 worsened the conditions and the ground water 

levels reached to its lowest with almost 90% snowmelt in the region. This indicates the 

cyclic pattern of snow mass deposition and ablation with dominant negative mass balance 

trend in the region.  

During the study period (Between 2003 and 2015) the change in the land cover area of 

around 20% occurred due to the shift of Agriculture land cover to impervious or non-

moist barren lands. This 20% alteration accounts for approximately 6993 sq.km. Out of 

these most of the alteration in the agriculture land cover of about 4400 sq.km occurred in 

the San Joaquin and Tulare Basins of southern Central Valley region. The study also 

observed around 3% increase in the urban area. This increase of around 1036 sq.km in 

the urban area might be a result of the increased infrastructures on or near the agricultural 

field other than urban centers. While the area of non-moisture or barren land cover 

increased in the Central Valley by about 17% that accounts for around 5957 sq.km land 

cover. Out of this 5957 sq.km barren land about 84% of the barren land, around 4662 

sq.km, endowed by the southern San Joaquin region. 

The statistical analysis between NDVI and TWS showed the decrease in crop cover with 

an increase in TWS anomalies in the Central Valley region. It shows that continuously 
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increasing temperature leads to increased snow melt and crop water demand. This has 

resulted in more utilization of surface and ground water leading to drought-like 

conditions in the region (Famiglietti et al., 2011; Mehta et al., 2013; Scanlon et al., 

2012a). The ground and surface water levels in the southern regions (San Joaquin and 

Tulare Basins) are depleting with the rate almost double to the basins in the North 

(Sacramento and Delta). In this research, geographical dissimilarity in the warming rate 

was detected, as the Sacramento basin observed 0.03±0.04 (°C) while southern tip of the 

Central Valley observed warming rate of 0.07±0.04 (°C). Similarly, GRACE data 

analysis showed variation in depletion rate along north-south axis in California’s Central 

Valley. Where Sacramento and Delta basins in the Central Valley region observed 

sharing the same rate of water depletion of -0.26±0.25 (equivalent water height cm) 

between 2003 and 2015. However, in the southern half of the Central Valley, San Joaquin 

experienced slightly higher depletion rate of -0.49±0.27 (equivalent water height cm) 

than Tulare (-0.48±0.26 equivalent water height cm). It is important to comprehend that 

ground and surface water rate was found to be almost double in the southern half (San 

Joaquin, Tulare) than the northern half of the Central Valley.  

The study results indicate that the conditions are severe in the southern regions (San 

Joaquin and Tulare Basins) of California’s Central Valley. Besides, the region lost more 

agricultural land in the south and compared to the North parts of the central valley. These 

findings are aligned with the observations of Reilly et al., (2008) and Scanlon et al. 

(2012b). Where the USGS report for the period 1962-2003 found the over extraction of 

ground water in the central valley region leading to land subsidence in the San Joaquin 
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(Southern region) (Reilly et al., 2008). Besides, results of total water storage are 

comparable to the findings of  Famiglietti et al. (2011).  

More research is required to understand the role of regional and micro-climatic 

conditions on glacial and snow mass variations in the Southern Andes and California. It 

is also important to understand the effects of ENSO events on Central Andean glaciers 

and the Sierra Nevada glaciers (Carrasco et al., 2005; Howat et al., 2007; Prieto et al., 

2001; Rivera and Bown, 2013; Rivera et al., 2006). Future work should also focus on the 

potential factors such as the traces of aerosol (black carbon), dust, red algae, topography, 

etc. in snow that are capable of impacting the magnitude of ablation as reported by many 

studies (O. Hadley et al., 2010; Kessler et al., 2006; Kirchstetter et al., 2008; Painter et 

al., 2001; Rice et al., 2011; K. Sterle et al., 2013). More detailed research work is 

required in future to evaluate crop specific water requirement and irrigation potential 

using high spatio-temporal resolution datasets. An, increasing population and urban areas 

are constantly building stress on water resources. But proper water management 

techniques like drip irrigation, controlled water extraction, and use, alternate use of 

drought-tolerant species like olives, citrus, water holding structures and water literacy 

will help sustainable management. This dissertation provides valuable insights into the 

state of cryospheric components in the Southern Andes and California. Also, highlights 

the effects of snow mass anomalies on the ground and surface water levels and the 

agricultural pattern in the last decade. This research study has used possible limited 

available data to understand phenomenon on the larger scale. More focused and detailed 

work is required to recognize other underlying factors. 
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