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The Multichannel Analysis of Surface Waves (MASW) method traditionally uses 

an array of collinear vertical geophones to measure seismic wave propagation velocity at 

discrete points along the ground surface. Distributed fiber optic sensors (FOS) measure 

the average longitudinal strain over discrete lengths (i.e., zones) of a buried fiber optic 

cable. Such strain measurements can be used to assess ground motion and thus analyzed 

with the MASW method. To evaluate the feasibility of using FOS strain measurements in 

the MASW method, field experiments were conducted with both FOS and surface 

vertical geophones. Synthetic seismograms were also used to compare FOS to vertical 

and horizontal geophones and investigate the effect of installation depth and sensor type. 

Through the MASW method, shear wave (Vs) profiles from the FOS showed comparable 

results to those obtained with the geophones and achieved the same degree of uncertainty 

from the non-uniqueness of the MASW inversion process. 
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CHAPTER I 

INTRODUCTION 

The direct relationship between shear wave velocity (VS) and the soil’s shear 

modulus can be used for characterization of stress-strain soil behavior in the linear elastic 

regime. Determining the VS variation with depth, referred to as a shear wave velocity 

profile, could then be used to investigate changing stiffness conditions with depth. Shear 

wave velocity profiling can be applied for earthquake ground response analysis, 

estimating potential of liquefaction, advanced three dimensional characterization of a site, 

construction quality control, and detection of subsurface anomalies (Nazarian, 2012). In 

addition to these applications, the interest for VS profiling has expanded in recent years 

since the requirement of the average VS of the upper 30 meters (VS30) for use in seismic 

site classification adopted by the National Earthquake Hazards Reduction Program 

(Building Seismic Safety Council, 2003) and the ASCE/SEI 41-06 (Nazarian, 2012; Wair 

et al., 2012).  

Over the past two decades, application of Multichannel Analysis of Surface 

Waves (MASW) has emerged as a reliable, flexible, and affordable tool for estimating VS 

profiles for use in geotechnical site characterization (Penumadu & Park, 2005; Williams 

& Pnemadu, 2011). When MASW analysis is used over multiple in-line seismic surveys, 

a 2-D VS profile can be estimated to detect the existence of subsurface anomalies by 

means of VS variations with depth (Xia et al., 2000; Miller et al., 2004). Performing this 
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analysis over time to monitor changes in VS can be used to find developing detrimental 

subsurface conditions (Miller & Ivanov, 2005). Prospective applications include 

monitoring seasonal seepage conditions in levees and earthen dams, internal erosion on 

hydraulic structures, and construction and maintenance of roadbeds and levees. 

Evaluating these particular applications go beyond the scope and intent of the current 

research, but illustrate the need of using a robust cost effective permanent sensor that can 

be easily installed over large distances (i.e., more than 10 km).  

1.1 Problem Statement 

Traditional MASW seismic surveys make use of an array of twelve or more 

collinear vertical geophones to measure seismic wave propagation velocity at the surface. 

Geophones are highly adaptable temporary receivers for MASW surveys; however, due 

to the extensive setup and equipment required, they are costly and maintenance intensive 

when employed in permanent long distance arrays.  

By using buried fiber optic cable, distributed fiber optic sensor (FOS) systems 

offer desirable qualities to create permanent linear sensors over distances that can reach 

tens of kilometers in distance. These sensors measure the average longitudinal strain over 

discrete lengths (i.e., zones) of the buried fiber optic cable, which can be used to assess 

ground motion. In addition to its sensing capabilities, the optical fiber comprising the 

FOS serves as a transmission medium. As a result, strain locations can be determined 

along the cable length. Due to its simplified setup, the FOS requires less equipment; and 

therefore, less maintenance, making the installation more cost efficient to implement over 

long distances. 
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Employing MASW in conjunction with permanently installed fiber optic sensors 

offers the potential to monitor areas susceptible to change without the added expense of: 

(1) deploying geophones each time a test is performed or (2) involving complicating test 

layouts and setups. The use of FOS is a promising technology. However, results of 

MASW analysis using data from both FOS and geophones need to be compared due to 

the differences in measurements, sensitivity, and installation of the two technologies. 

1.2 Objective 

The objective of this study is to evaluate the feasibility of using a buried FOS 

with the MASW method to obtain a 1-D VS profile. 

1.3 Approach 

Data from distributed FOS and geophones was obtained using field experiments 

and synthetic (modeled) seismograms and then analyzed with MASW method. This 

allowed comparison of FOS to conventional geophones typically employed in MASW 

seismic surveys. 

Field experiments were conducted to simultaneously record data from both buried 

FOS at depths of 0.5 m and 1.0 m and vertical geophones at the surface. Data collected 

was analyzed with the MASW method, and 1-D VS profiles were obtained for the 

different sensors. In addition, a Seismic Cone Penetrometer Test (SCPT) was performed. 

The SCPT provided a direct 1-D VS profiles that served for ground truth verification of 

the data. 

Synthetic seismograms from a 2-D axisymmetric finite element (FE) analysis 

were used to further explore the effects of installation depth and sensor orientation. The 
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FE model simulated a MASW seismic survey of an idealized multi-layer soil model of 

the test site used in the field experiments. Synthetic seismograms were obtained for 

simulated FOS, vertical geophones, and horizontal geophones. Each of these sensors was 

investigated at depths of 0.0 m (i.e., at the ground surface), 0.5 m, and 1.0 m. These 

seismograms were processed and analyzed in the same manner as the field experiments 

seismograms. Results were verified against the FE input VS profile.  

Comparisons were made between the MASW VS profile results (i.e., using FOS 

and geophones) and the expected VS profiles (i.e., SCPT VS profile for the field 

experiments and FE input VS profile for synthetic seismograms). The root mean square 

error (RMSE) of the VS for the different sensors was used to evaluate the adequacy of 

using FOS for MASW surveys. 

 



 

5 

CHAPTER II 

LITERATURE REVIEW 

2.1 Surface (Rayleigh) Waves 

This section presents a review of seismic surface waves that form the basis of 

development of the MASW analysis method. Given the purpose of this study, some of the 

fundamental characteristics are worth discussing in order to understand its effect on 

buried distributed fiber optic sensors.  

2.1.1 Wave Propagation in an Infinite Medium 

When a seismic disturbance acts on a solid medium it generates a stress wave field, 

whose energy propagates away from the disturbance location (Stokoe & Santamarina, 

2000). The stress waves get transferred from one portion of the solid medium to another 

in a distinguishable propagation velocity pattern (Foti et al., 2015), referred to as wave 

propagation. In geologic materials, wave propagation is described by treating geologic 

media as continuous (Kramer, 1996). This is achieved by using the general small strain 

assumption that is approximated with linear elastic relationships (Foti et al., 2015). 

Equations of motion of waves traveling through an infinite, homogeneous, 

isotropic, linear elastic medium form the basis of wave propagation (Richart et al., 1970; 

Kramer, 1996). These equations are manipulated to reveal two solutions describing 

waves propagating through the mass or body of an infinite medium, referred to as body 
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waves. The first type of body wave is known as the P-wave or primary wave (also 

referred to as compressional or longitudinal wave), since they are the first to arrive in 

seismic records (i.e., seismograms). The P-wave wave describes particle motion 

occurring parallel to the direction of wave propagation through compression and dilation 

causing changes in volume without shear or rotation, as shown in Figure 2.1.  

 

Figure 2.1 P-wave particle motions generated from body waves in an infinite, 
homogeneous, isotropic, linear elastic medium.  

(Modified from Kramer, 1996) 

The P-wave’s propagation through a medium can be described through its velocity, 

VP, using the linear elastic relationship: 

  𝑉𝑃 = √
𝜆+2𝐺

𝜌
= √

𝑀

𝜌
 , (2.1) 

where λ and G are Lamé’s constants and ρ is the material mass density. Linear elastic 

relationships can be used to simplify the Lamé’s constants into the longitudinal modulus, 

or P-wave modulus, M. 
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A second type of body wave occurs referred to as the S-wave or secondary wave 

(also known as shear or distortional waves). These are the second wave to arrive on a 

seismogram. The particle motion occurs on a perpendicular plane to the wave 

propagation direction. Since S-waves act on a perpendicular plane these are often divided 

into two perpendicular components. Particle motion moving in a horizontal plane referred 

to as SH-waves and particle motion acting on a vertical plane referred to as SV-waves. A 

vector sum of its SH and SV components can be used to represent an arbitrary particle 

motion of an S-wave. Figure 2.2 shows idealization of an SV-wave moving in a vertical 

plane.  

 

Figure 2.2 SV component of an S-wave particle motion generated from body waves in 
an infinite, homogeneous, isotropic, linear elastic medium.  

(Modified from Kramer, 1996) 

The S-wave can be described with the shear wave velocity, VS, using the linear 

elastic relationship: 

 𝑉𝑆 = √
𝐺

𝜌
 .  (2.2) 
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For a homogeneous, isotropic, elastic medium, the P-wave and S-wave velocities are 

related through the Poisson’s ratio, υ, by: 

 𝑉𝑃

𝑉𝑆
= √

1−𝜐

0.5−𝜐
 . (2.3) 

The body wave propagation velocities are directly related to the medium’s 

stiffness though its relationships to longitudinal modulus and shear modulus as observed 

in Equations (2.1) and (2.2). If body wave velocities are determined experimentally, these 

relationships show that linear elastic constants can be determined for use in material 

characterization (Foti et al., 2015).  

2.1.2 Idealized Plane Waves in Semi-Infinite Media 

The idealization of an infinite medium (discussed in section 2.1) is not 

appropriate for near surface geotechnical characterization since the geologic medium 

consists of an upper stress-free surface affecting the stress wave propagation. A semi-

infinite body, also referred to as a half-space, is frequently used to model wave 

propagation near the surface as concerned in this study. It is possible for P- and S-waves 

to propagate in a semi-infinite medium, however, other types of waves develop due to the 

stress free boundary on the half-space surface. These waves are referred to as surface 

waves. Although different types of surface waves develop under specific conditions, for 

the purpose of this study only Rayleigh waves will be considered. 

2.1.2.1 Rayleigh Waves in a Homogeneous Half-Space 

The existence of Rayleigh waves was first introduced by Lord Rayleigh (1885) 

and later explained in greater detail by Lamb (1904). A plane-wave traveling through a 
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homogeneous half-space, as shown in Figure 2.3, was used to describe the Rayleigh wave 

propagation.  

  

Figure 2.3 Plane-wave propagating in the x-direction. 

(From Kramer, 1996) 

The idealization of a plane-wave with an imposed zero stress boundary condition 

at the surface constrained particle motion to one plane. This allowed particle motion to be 

resolved into horizontal and vertical displacement components with varying amplitude 

with depth. The generalized variation of the displacement components as a function of 

depth is shown in Figure 2.4. This generalization is achieved normalizing the 

displacement components amplitudes by their respective amplitudes at the surface (i.e., at 

z = 0) and normalizing depths by the R-wave wavelength. 
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Figure 2.4 Generalized variation of Rayleigh wave displacement components with 
depth.  

Showing normalized displacement as a function of normalized depth. (After Richart 
et al., 1970) 

In a homogeneous elastic half-space, the particle motion decays exponentially 

with depth as observed in Figure 2.4. The respective decay on the displacement 

component amplitudes is projected into the particle motion trajectory. The ratio of 

vertical to horizontal surface amplitudes for different Poisson’s ratio is shown in  

Figure 2.5. Since the ratio is always greater than one, it shows that, at the surface, the 

vertical component is always greater than the horizontal component. This characterizes 

the elliptical motion behavior that combines the vertical and horizontal displacement 

results at the surface of the half-space. 
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Figure 2.5 Vertical to horizontal surface displacement ratio as a function of Poisson’s 
ratio. 

(From Lin, 2014) 

As previously shown in Figure 2.4, the displacement components change with 

depth. Near the surface, both the vertical and horizontal components are positive, and 

these combine to create a retrograde motion trajectory (describing a particle moving 

counter-clockwise to a wave propagating in the right hand direction). At a critical depth, 

Zcritical, the horizontal displacement goes to zero and becomes negative. This is often 

approximated to occur at a normalized 20% of the Rayleigh wavelength, i.e., 0.2λ (Lin, 

2014). However, the critical depth can also be defined by (Foti et al., 2015): 

 𝑍𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(ln(1−

𝑉𝑅
2

2𝑉𝑠
2))

𝜔𝑅(√
1

𝑉𝑅
2 −

1

𝑉𝑆
2 −√

1

𝑉𝑅
2 −

1

𝑉𝑃
2 )

 , (2.4) 

where ωR is the R-wave cyclic frequency (i.e., 2πfR) and VP, VS, and VR are the P-, S-, 

and R-wave velocities, respectively. At this depth, the motion becomes purely vertical. At 

greater depths, the motion turns into a prograde motion trajectory (describing a particle 
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moving clockwise to wave propagation in the right hand direction). The trajectories of 

these motions are shown in Figure 2.6. 

 

Figure 2.6 Particle motion trajectories with depth of a Rayleigh wave in a 
homogeneous elastic half-space.  

(Modified from Foti et al., 2015) 

Generally, seismic disturbances propagating along a ground surface contain 

contributions from both Rayleigh waves and body waves. Lamb (1904) obtained the 

solution for the displacement field produced by a transient point load on a homogeneous 

half-space. Corresponding motions were recorded as a time history, shown in Figure 2.7. 

The particle motion associated with different wave types arrive at a given location based 

on their propagation velocities.  
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Figure 2.7 Time history of particle motion at a distant surface location from a point 
source acting on an elastic half-space.  

(After Lamb, 1904) 

Differences in relative displacements amplitudes are accounted by the partition of 

the total energy of a seismic disturbance into the different wave types. For the case of a 

vertical oscillating circular foundation, the partition of energy between different wave 

types is displayed in Figure 2.8. Rayleigh waves (R-waves) account for two thirds of the 

total transmitted seismic energy and attenuate slower than body waves for a seismic 

source at the surface (Richart et al., 1970). For that reason, the arrival of R-wave particle 

motion results in larger displacements, as observed in Figure 2.7. 
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Figure 2.8 Wave motion on a homogeneous, isotropic, linear elastic half-space caused 
by vertical oscillations of a circular footing. 

(From Richart et al., 1970) 

2.1.2.2 Rayleigh Wave Velocity in a Homogeneous Half-Space 

The R-wave velocity, VR, can be determined through relationship interactions of 

P-wave and S-wave. The ratios between R-wave and P- and S-wave velocities can be 

used to show how these velocities are interrelated for varying Poisson’s ratio. Figure 2.9 

shows the generalized variation of wave velocities as a function of Poisson’s Ratio. This 

generalization is achieved normalizing the corresponding wave velocities by the shear 

wave velocity.  
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Figure 2.9 Generalized relationship between wave velocities and Poisson’s ratio on a 
uniform elastic half-space. 

 (After Richart et al., 1970) 

Using the normalized wave velocities, the variation of VR in terms of VS and 

Poisson’s Ratio can be approximated as (Stokoe & Santamarina, 2000): 

 𝑉𝑅 =
0.874+1.117𝜐

1+𝜐
𝑉𝑆 . (2.5) 

This approximation reflects the range of VR/VS being between 0.874 and 0.955 for 

Poisson’s ratio values ranging from 0.0 to 0.5, as shown in Figure 2.9. In a homogeneous 

half-space, body wave velocities are constant with depth and VR are related to these 

velocities by only Poisson’s ratio, thus resulting in a constant VR value with depth 

(Richart et al., 1970).  

2.1.2.3 Rayleigh Waves Dispersive Nature in Vertical Heterogeneous Half-Space  

The fundamental behavior of Rayleigh waves propagating in a homogeneous half-

space was described in the previous section. Using this assumption, Rayleigh waves are 
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related to body waves only by Poisson’s ratio and have no dependency on frequency 

(Richart et al., 1970). As previously mentioned, R-wave velocity will thus be constant 

with depth, as shown in Figure 2.10(a). Due to its independence with frequency, R-waves 

in a homogeneous body are referred to as non-dispersive (Richart et al., 1970). 

  

Figure 2.10 Dispersion phenomenon of Rayleigh wave velocity due to material 
heterogeneity.  

(After Rix et al., 1991) 

Dispersion describes the phenomenon in which the propagation of wave velocities 

is frequency (and wavelength) dependent. In many near-surface applications and as 

studied herein, material is heterogeneous and stiffness usually increases with depth (Foti 

et al., 2015). Since the depth of Rayleigh wave motion depends on the wavelength, as 

shown in Figure 2.4, varying material stiffness with depth generates Rayleigh waves of 

different wavelengths. Faster R-wave velocities are observed for waves of lower 
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frequencies, while slower R-wave velocities are seen for higher frequency waves; this 

effect is called geometrical dispersion (Foti et al., 2015). These wavelengths then alter the 

propagation velocity observed at or near the surface. The geometrical dispersive behavior 

for increasing stiffness profiles, shown in Figure 2.10(b), is referred to as a normally 

dispersive. Sites with stiffness decreasing with depth also exist, referred to as inversely 

dispersive, however, these will not be discussed. 

Figure 2.11 shows two layers overlying a half-space (which can be inferred to be 

bedrock extending to infinity). High frequency (i.e., short wavelength) particle motion is 

mostly controlled by the material properties of Layer 1, since the wavelength does not 

penetrate further than the depth of Layer 1. Low frequency (i.e., long wavelength) motion 

reaches greater depth and particle motion is significantly concentrated in the upper two 

layers. Therefore, the low-frequency Rayleigh wave velocity will be controlled by a 

proportional combination of the two layer’s material properties individually affecting the 

particle motion. Velocities in the lower frequency range (i.e., longer wavelength) 

penetrate into deeper, stiffer layers resulting in higher phase velocities. Since higher 

phase velocities exist for lower frequencies, low frequency Rayleigh waves will arrive 

before high frequency R-waves. 
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Figure 2.11 Geometrical dispersion of Rayleigh in heterogeneous materials.  

(After Foti et al., 2015) 

Rayleigh wave dispersion caused by changes in material stiffness in vertically 

heterogeneous media could consequently be used to assess the subsurface material 

stiffness properties (e.g., estimating shear wave velocity). Data needs to be collected over 

a broad range of frequencies to obtain a corresponding change of velocities, resulting in a 

characteristic dispersion curve for a site. 

The fundamental mode (M0) is associated with the displacement pattern of 

R-waves propagating in a homogeneous half-space, as shown in Figures 2.4 and 2.6. 

However, R-waves can propagate with different modes in vertically heterogeneous 

media. Each mode is associated with its respective displacement pattern. Different modes 

can occur simultaneously, and such effect is shown in the solid curves on Figure 2.12. As 

a result, multiple wavelengths, and consequently different phase velocities can coexist at 

given frequencies (Strobbia, 2003).  
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Figure 2.12 Multiple Rayleigh wave modes and cut-off frequencies for higher modes.  

Also shown are the acquired (effective) phase velocities coinciding with the phase 
velocities of the fundamental mode M0. (Adapted from Strobbia, 2003) 

The associated energy for each mode depends on the subsurface properties and 

the type of seismic source (Strobbia, 2003). Lower frequency limits, also known as cut-

off frequencies, specify where each respective higher mode can exist. The frequencies 

fcM1, fcM2, and fcM3 in Figure 2.12 show the cut-off frequencies associated with the first 

three higher modes respectively. Below the cut-off frequency of the first higher mode 

(M1), only the fundamental mode (M0) is present. The fundamental mode does not have 

a cut off frequency. Fundamental modes predominate wide frequency ranges when the VS 

profile increases gradually with depth, as commonly found in geotechnical field 

investigations (Foti et al., 2015). An example of a fundamental mode (M0) dispersion 

curve for a site with vertically increasing material stiffness is shown in the dotted curve 

on Figure 2.12. The M0 dispersion curve can then be related to geotechnical subsurface 

properties, through the solution of the inversion problem (as discussed in the next 

section), to estimate a shear wave velocity profile.  



 

20 

2.2 Shear Wave Velocity (VS) Profiling and Surface Wave Methods 

Due to the direct relationship between S-wave propagation velocity and the soil’s 

shear modulus (shown in Equation (2.2)), VS is typically used for characterization of 

stress-strain soil behavior. The VS variation with depth is referred to as a shear wave 

velocity profile. 

Shear wave velocity profiling can be used for earthquake ground response 

analysis, estimating potential of liquefaction, advanced three dimensional 

characterization of a site, construction quality control, and detection of subsurface 

anomalies (Nazarian, 2012). In addition to these applications, the interest for VS profiling 

has expanded in recent years since the requirement of the average VS of the upper 30 m 

(VS30) for use in seismic site classification adopted by the National Earthquake Hazards 

Reduction Program (Building Seismic Safety Council, 2003) and the ASCE/SEI 41-06 

(Nazarian, 2012; Wair et al., 2012). Due to these uses and necessary characterization of 

soils, VS profiling is essential in geotechnical engineering. 

There are different in situ techniques that can be used to estimate the profile of 

shear wave velocities with depth. These are categorized as invasive and non-invasive 

tests. 

2.2.1 Invasive In Situ Techniques for VS Profiling 

Invasive tests involve conventional borehole techniques, such as the Standard 

Penetration Test (SPT) and the Cone Penetration Test (CPT), which are typically used in 

standard geotechnical field investigations. These methods are mainly intended to measure 

the resistance to penetration of geologic material with depth; however, a significant 

number of published dataset regression correlations are available to estimate the shear 
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wave velocity with penetration resistance values (Wair et al., 2012). Other invasive 

techniques include geophysical methods such as cross-hole logging, suspension logging, 

and down-hole logging. The Seismic Cone Penetration Test (SCPT), which is a CPT used 

in conjunction with down-hole measurements, has become more commonly used for VS 

profiling due to the method’s cost effectiveness and relatively fast ability to acquire data 

compared to other invasive methods (Wair et al., 2012). For this reason the SCPT was 

used for ground truth comparison during the field experiments in this study. A schematic 

representation of these methods is shown on Figure 2.13. Although invasive tests are 

considered to be reliable for this VS estimation, they tend to be relatively expensive (e.g., 

due to required equipment, personnel, logistics, access, etc.) and time-consuming (e.g., 

drilling, backfilling, etc.). 

 

Figure 2.13 Invasive test methods.  

(Adapted from Mayne, 2012) 
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2.2.2 Non-Invasive In Situ Techniques for VS Profiling 

Tests conducted at the ground surface are known as non-invasive tests, since they 

do not “invade” the soil generating significant soil disturbance. Since no direct physical 

measurements are made, these methods have a greater degree of uncertainty than invasive 

tests (Foti et al., 2015). These methods, however, are generally more affordable (e.g., less 

equipment), more adaptable (e.g., making it very convenient to implement in highly 

urban settings), more practical to cover areas of large extent, and cause less 

environmental impact (e.g., equipment is placed temporarily). 

Non-invasive tests include: seismic reflection, seismic refraction, and surface 

wave methods. In general, these methods are performed by recording the response from 

an active known seismic source acting on the surface with discretely placed surface 

receivers (also referred to as a channels). In most common applications, these methods 

use multiple receivers placed in a linear array. The response captured at such receivers 

with time is known as a seismogram or seismic record. The seismic record consists of the 

time history response of each receiver location. A representation of the target seismic 

paths of such methods is shown in Figure 2.14. Representation of target response paths 

can be observed on a seismogram, as shown on Figure 2.15. 
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Figure 2.14 Target seismic paths to be measured in non-invasive geophysical seismic 

methods.  

(Adapted from Nazarian and Stokoe, 1983) 

 
Figure 2.15 Representative target wave responses observed on a seismogram. 

(Adapted from Park, 2005) 
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Seismic reflection and seismic refraction methods have been mostly dedicated to 

deep investigations providing a coarse global average of soil conditions. P-waves served 

as the basis for the early development of the seismic reflection and seismic refraction 

methods, however, S-waves are currently considered as well. Estimation of S-wave 

velocity with these methods, however, can be challenging since the amount of energy that 

is transmitted as a horizontally polarized shear waves makes it difficult to estimate the 

S-wave time of arrivals (Foti et al., 2015). The need to adequately estimate S-wave 

velocities and ensure high signal-to noise ratio for the FOS proposed in this study led to 

disregard these methods. 

Surface wave methods exploit surface waves generated by a seismic source, 

which were regarded as noise in seismic reflection and seismic refraction methods (Park 

et al., 1999). This is justified by the fact that Rayleigh waves (R-waves) account for two 

thirds of the total transmitted seismic energy for a seismic source at the surface, as shown 

in Figure 2.8. The higher energy carried by the R-waves compared to the body waves, 

results in higher amplitudes, making it easier to detect these waves at the ground surface 

receivers. 

The basis of these methods relies on the dispersion of Rayleigh waves in 

vertically heterogeneous materials, as discussed in section 2.1.2.3, which is characterized 

by the dependence of the R-wave velocity with frequency. This dependent relationship is 

shown as a dispersion curve, which is obtained from the field data using a variety of 

signal processing techniques. Through the solution of the inversion problem, the 

dispersion curve is then used to relate to geotechnical subsurface properties and 

determine a shear wave velocity profile. The surface wave method procedure is 
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summarized in Figure 2.16. Different surface wave methods have been developed over 

the years. An overview of these methods is presented in the following subsections.  

 

Figure 2.16 Typical procedure for surface wave methods. 

(From Strobbia, 2003) 

2.2.2.1 Steady-State Rayleigh Method (SSRM) 

The first surface wave applications to engineering go back to the 1950s (Foti 

et al., 2015) and is known as the Steady-State Rayleigh Method (SSRM). The SSRM was 

proposed by Jones (1958, 1962) in the United Kingdom and was later adopted in the 

United States by (Ballard, 1964) at the Waterway Experiment Station, Vicksburg, MS. 

The SSRM was initially performed to determine the thickness and deformation of 

concrete slabs. It was later adapted to soil exploration when it was noted that velocity was 

a function of frequency for vertically heterogeneous sites (Foti et al., 2015).  

This method involves using a steady-state vertical mechanical vibrator to generate 

a continuous Rayleigh wave of specified frequency, f. Dispersion is obtained by moving a 

vertical receiver collinearly away from the source. Receiver to source distances are 
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recorded where receiver response is in-phase with the mechanical vibrator. Distances 

between in-phase locations represent a wavelength, λR. Figure 2.17 shows a schematic of 

the SSRM procedure.  

 

Figure 2.17 Experimental setup and procedure of the Steady-State Rayleigh Method. 

(After Richart et al., 1970) 

Since frequency input is known, the phase velocity (assumed to be equal to the 

Rayleigh wave velocity, VR) can be determined as: 

 𝑉𝑝ℎ𝑎𝑠𝑒  = 𝑉𝑅  = 𝑓 ∗ 𝜆𝑅. (2.6) 

The procedure is repeated for different frequency inputs to generate a complete 

dispersion curve. This is a very time consuming procedure due to the large number of 

points required to define a dispersion curve and the time it takes to test each frequency 

(Rix et al., 1991). Several in-phase source offsets can be used to obtain an average 

wavelength, and thus a better estimate of phase velocity, as shown in Figure 2.18(a). 

Changing the frequency and repeating these steps, it is possible to obtain the 

characteristic dispersion curve (i.e., VR vs. f) of the site, as shown in Figure 2.18(b). 
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Figure 2.18 Steady-State Rayleigh Method dispersion curve procedure. 

Showing (a) Average wavelength determination, and (b) resulting dispersion curve 
determination from tested frequencies. (Modified after Rix et al., 1991) 

A straightforward empirically based inversion procedure was designed due the 

limited computational ability when the SSRM method was proposed during the 1950s 

and 1960s (Rix et al., 1991; Foti, 2000). The shear wave velocity is directly related to the 

Rayleigh wave phase velocity as shown in Equation (2.5). This relationship is dependent 

on Poisson’s ratio; and since Poisson’s ratio for typical soils ranges from 0 to 0.5, it can 

be averaged to a Poisson’s ratio value of 0.25 and further simplified as (Foti, 2000): 

 𝑉𝑆  ≈ 1.1 𝑉𝑅  (2.7) 

To relate the inverted VS values to a characteristic depth, the procedure uses the 

assumption that most the energy of the surface wave concentrates in the top half to third 

of the wavelength depth (Gazetas & Yegian, 1979). This behavior can be observed 

through the concentrated magnitude of the displacement amplitudes in the shallow 

regions shown in Figure 2.4. Mapping the measured phase velocities to a characteristic 
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depth, Z, representative of the inverted shear wave velocities is performed by scaling the 

Rayleigh wavelength, λR. Such relationship can be estimated as: 

 𝑍 =
𝜆𝑅

3
 𝑡𝑜 

𝜆𝑅

2
 (2.8) 

With the inverted shear wave velocities determined from the approximation in 

Equation (2.7) and the estimated depths computed from Equation (2.8), a shear wave 

velocity profile is constructed, as shown in Figure 2.19. 

 

Figure 2.19 SSRM simplified inversion procedure. 

(Adapted from Foti, 2000) 

The SSRM method focused primarily on research applications and never gained 

acceptance by the practicing community due to the time required to perform testing and 

skepticism toward the use of empirically based inversion algorithms (Rix et al., 1991). 

This method, however, provided significant contributions to the theoretical framework 

for the surface wave methods to follow. 
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2.2.2.2 Spectral Analysis of Surface Waves (SASW) 

Nazarian and Stokoe (1983) of the University of Texas at Austin introduced the 

Spectral Analysis of Surface Waves (SASW) method during the early 1980s. This 

method involved generating a wide frequency range of Rayleigh waves using a transient 

seismic source (e.g., sledgehammer), instead of a single testing frequency steady-state 

source. This simplified the surface wave testing of frequencies previously established by 

the SSRM. This idea was made possible by taking advantage of the development of the 

Fast Fourier Transform (FFT) algorithm developed by Cooley and Tukey (1965) and 

technological improvements in data acquisition equipment and computational tools (Foti, 

2000; Lin, 2014). This led to a faster field test methodology and a more accurate 

inversion process than the SSRM (Foti, 2000).  

The signals generated by the transient seismic source are recorded with two 

receivers. The recorded signals are processed with the FFT routine to estimate the 

difference in phase response, Δ𝜙(𝑓), between the two receivers for the range of 

frequencies generated by the seismic source. The time delay for each frequency, Δ𝑡(𝑓), 

can be calculated as: 

 Δ𝑡(𝑓) =
Δ𝜙(𝑓)

360∗𝑓
 . (2.9) 

Since the distance, ΔX, between the two receivers is known; the Rayleigh wave phase 

velocity can be calculated as: 

 𝑉𝑅(𝑓) =
ΔX

Δ𝑡(𝑓)
 , (2.10) 

and the R-wave wavelength, λR, can be calculated as: 
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 𝜆𝑅(𝑓) =
𝑉𝑅(𝑓)

𝑓
 . (2.11) 

By following this procedure for each frequency, the dispersion curve can be determined.  

Since using two-receivers imposes a frequency range limitation, different receiver 

spacing configurations are used to acquire a broader range of frequencies (and thus a 

broader range of wavelengths). For practicality, the receiver spacing is often doubled in 

every new test. Different receiver configuration strategies can be used to achieve this. 

The typical receiver array configurations are Common Mid-Point (CMP) and Common 

Source (CS); these are shown in Figure 2.20. The CMP is often preferred since it uses the 

source in a mirror configuration that can be used to verify tests reliability and check for 

any site inhomogeneity affecting the results (Foti, 2000).  

 

Figure 2.20 Acquisition strategies used in SASW. 

Showing (a) Common Midpoint (CMP), and (b) Common Source (CS) configurations. 
(From Foti, 2000) 
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Regardless of the acquisition strategy used, the resulting dispersion curves from 

each receiver spacing and source offset experiment are combined into one single, 

composite curve to be used for inversion (Foti et al., 2015). Inversion can then be 

performed empirically as suggested by the SSRM method or more typically using least-

squares techniques (Nazarian & Stokoe, 1983) such as presented later in this section. 

The use of only a pair of receivers leads to the necessity of performing the test 

using several testing configurations and results in quite a time consuming procedure to 

collect all necessary data. Reconfiguration of receivers also leads to challenges when 

extracting noise from the signal due to possible misinterpretation of coherent and 

incoherent noise (Foti et al., 2015). In spite of its limitations, the SASW has been 

successfully implemented in several geotechnical projects and is still in widespread use 

(Foti et al., 2015). 

2.2.2.3 Multichannel Analysis of Surface Waves (MASW) 

A group at the Kansas Geological Survey (KGS) of the University of Kansas 

developed the Multichannel Analysis of Surface Waves (MASW, Park et al., 1999) 

method. The proposed MASW method employed the use of a multiple receiver approach 

(typically twelve or more) collinearly placed at the ground surface at an equidistant 

spacing, ΔX. This overcame some of the limitations of using the two-receiver approach 

established by the SASW and simplified the testing procedure by eliminating the need for 

different field receiver configurations. The most common acquisition configuration is the 

CMP, shown in Figure 2.20(a). A schematic of the typical data acquisition setup for 

MASW is shown in Figure 2.21. 
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Figure 2.21 Typical MASW data acquisition setup. 

(From Pnemadu and Park, 2005) 

In the past two decades the application of the Multichannel Analysis of Surface 

Waves (MASW) has emerged as a reliable, flexible, and affordable tool for estimating 

shear wave velocity (VS) profiles for use in geotechnical characterization of a site 

(Penumadu & Park, 2005; Williams & Pnemadu, 2011). In addition, MASW results have 

been reported to be in good agreement to other methods based on site stratigraphy and 

shear wave estimates (Xia et al., 2000; Anderson & Thitimakorn, 2004; Penumadu & 

Park, 2005) and thus has increasingly gained acceptance in the geotechnical community. 

In a typical application, it is environmentally non-intrusive, affordable (e.g., less 

equipment and labor intensive) and practical for covering areas of large extent.  

The use of multiple receivers essentially filters out much of the incoherent noise 

(Park et al., 1999). This allows for an improvement in quality control over the SASW 
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method since measurements from using only two stations may have introduced coherent 

and incoherent noise that would have been difficult to extract as previously mentioned in 

section 2.2.2.2. 

With the introduction of a multi-receiver approach, a high-resolution dispersion 

image can be achieved to show the relation between phase velocity and frequency, 

discussed in section 2.2.2.3.1. A simplified inversion technique, discussed in 

section 2.2.2.3.2, was also introduced to construct a shear wave velocity using the 

dispersion characteristics. Algorithms using these techniques are implemented in KGS’s 

SurfSeis® software, which was used for data processing and analysis under this study.  

2.2.2.3.1 MASW Dispersive Energy Imaging Procedure 

The transient source generates a seismic wave containing a broad range of 

frequencies, which are recorded by the receivers. Data obtained is recorded in the offset-

time (x-t) domain, where offset, x, is the relative distance between the seismic source and 

a receiver, as shown in Figure 2.22(a). A multichannel data processing technique can be 

used to objectively determine dispersive trends of phase velocity for different 

frequencies. This is referred to as dispersive imaging. Three transformation methods are 

commonly used to achieve this: the f-k transform (Nolet & Panza, 1976), the τ-p 

transform (McMehan & Yedlin, 1981), and the phase-shift method (Park et al., 1998). 

For conciseness, only the phase-shift method is discussed since it is the one pertinent to 

this study. This method has been considered as a robust, cost-effective solution able to 

provide accurate phase velocities for detection of fundamental mode and isolate (or 

ignore) high frequency modes (Xia et al., 2007). 
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The phase-shift method consists of first applying a Fourier transform to 

decompose a multichannel record, r(x,t), into its frequency components R(x,ω) as:  

 𝑅(𝑥, 𝜔) = ∫ 𝑟(𝑥, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 . (2.12) 

The frequency domain transform R(x,ω) can be written as a product of the amplitude, 

A(x,ω), and phase, P(x,ω), spectrums as: 

 𝑅(𝑥, 𝜔) = 𝐴(𝑥, 𝜔)P(𝑥, 𝜔) . (2.13) 

The amplitude spectrum term, A(x,ω), contains properties such as attenuation, spherical 

divergence, and source spectrum, which change with both seismic source offset and 

frequency (Ryden et al., 2004). The phase spectrum term, P(x,ω), contains information of 

time of arrival which reveals the dispersion properties, and thus phase velocity for each 

frequency (Park et al., 1998). Therefore, R(x,ω), can be expressed as  

 𝑅(𝑥, 𝜔) = 𝐴(𝑥, 𝜔)𝑒−𝑖𝛷𝑥 . (2.14) 

where Φ = ω/cω is the phase angle, ω (=2πf ) is the angular frequency in radians, and cω 

is the phase velocity for a given frequency. Using the following integral transformation 

(Park et al., 1998): 

 𝑉(𝜔, 𝜙) = ∫ 𝑒𝑖𝜙𝑥 [
𝑅(𝑥,𝜔)

|𝑅(𝑥,𝜔)|
] 𝑑𝑥 = ∫ 𝑒−𝑖(𝛷− )𝑥 [

𝐴(𝑥,𝜔)

|𝐴(𝑥,𝜔)|
] 𝑑𝑥 , (2.15) 

R(x,ω) is converted into frequency-phase-shift (ω-ϕ) domain. In essence, the integral 

transform V(ω,ϕ) applies an offset-dependent phase-shift (ϕ=ω/cω) and then performs a 

summation over the different trace offsets in R(x,ω). This is performed over an assumed 

frequency ω and phase velocity cω. R(x,ω) is normalized to compensate for the effects of 

attenuation and spherical divergence and insure equal weighting during the analysis of 
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the different trace offsets (Park et al., 1998). This results in maximum values of V(ω,ϕ) 

for any given frequency ω, such that ϕ = Φ = ω/cω, because the amplitude spectrum 

A(x,ω) is both real and positive when normalized (Park et al., 1998). By changing the 

variables from phase, ϕ, to phase velocity, cω (=ω/ϕ), the phase-shift integral transform 

V(ω,ϕ) is converted into frequency-phase velocity domain, I(ω,cω) that defines a 

dispersive image.  

This procedure is performed in practice by scanning through a specified range of 

phase velocities (e.g., 0-500 m/sec) by small increments (e.g., 1 m/sec) over a selected 

range of frequencies (e.g., 5-50 Hz) (Ryden et al., 2004). Figure 2.22(b) shows an 

example of the data for an individual frequency component of 20 Hz and how the 

scanning of different phase velocities compare to the normalized transform of R(x,ω) for 

that frequency. Note that at each given phase velocity, the phase was calculated to 

account for the offset-dependent phase shift. The resulting integral transforms for this 

frequency can be shown as a 2-D curve representation of V(ω,ϕ) versus phase velocity, as 

shown in Figure 2.22(c). The procedure is repeated over a specified frequency range to 

obtain a dispersive image as shown in Figures 2.22(d and e). It can be observed that the 

2-D representation is projected vertically in the dispersive image at a frequency of 20 Hz. 

If the fundamental mode (M0) is only present, single peak values of I(ω,cω) will be 

observed for given frequency ω, shown in Figure 2.22(d). In the presence of significant 

amount of energy in higher modes, more than one peak will exist for given ω, as shown 

in Figure 2.22(e). 
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Figure 2.22 Dispersive image phase-shift method scheme. 

Showing: (a) multichannel record in offset-time domain, (b) frequency transform for 
frequency of 20 Hz, (c) 2-D representation of normalization using integral transform, 
(d) dispersive image showing dominant fundamental mode, and (e) dispersive image 
showing fundamental mode and existence of higher mode. (Adapted from Park 2011) 

The use of dispersive energy imaging permits: objective determination of 

dispersion curve nature (insensitive to data processing), multi-modal delineation in the 

presence of higher modes, and selection of parameters of interest to constrain the 

analysis. 

Although isolation of different modes (if present) is achieved, only the 

fundamental mode (M0) is of interest to this study as discussed in section 2.1. Subjective 

interpretation is used to follow trends of interpreted peak amplitude fundamental mode in 

the dispersive energy image. Points of peak amplitude are selected to define the 

fundamental mode dispersion curve, as shown in the dotted line in Figure 2.23. The 
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dispersion curve is then used in an inversion process to obtain the VS profile 

representative to the center (or midstation) of the receiver spread. 

 

Figure 2.23 Dispersion curve selection from points of peak amplitude in dispersive 
energy image. 

 

2.2.2.3.2 MASW Inversion Procedure 

As stated before, the VS profile can be determined through the solution of the 

inversion problem, by relating the dispersion curve to the geotechnical subsurface 

properties. A procedure is commonly performed to compare experimentally obtained 

dispersion curves to a theoretically calculated dispersion curve found using assumed 

subsurface properties (in some cases using a priori information from other geotechnical 

tests). The theoretical dispersion curve is calculated from a forward model of Rayleigh 

wave propagation that contains the four unknowns in the inversion problem, which are: 
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layer thickness (h), density (ρ), S-wave velocity (VS; or interchangeably shear modulus 

(G) as shown in Equation (2.2) with known or estimated density and Vs) and Poisson’s 

ratio (υ; or interchangeably VP as shown in Equation (2.3)). Each of these parameters has 

different contributions to the dispersion curve calculations, however, the influence of 

Poisson’s ratio and density are considered negligible. These can be estimated based on 

past experience without affecting the final results of the inversion (Foti, 2000). Thickness 

has a higher contribution than Poisson’s ratio and density; however, the number of layers 

can be subdivided to account for any changes. Shear-wave velocity, VS, has the most 

influence on the fundamental mode dispersion curve (Xia et al., 1999). This is taken into 

advantage by reducing the inverse problem from four unknowns to one unknown. This 

permits updating of only VS, and leaving υ, ρ, and h unchanged through the inversion 

process (Park et al., 1999). VS profile is iteratively updated until an acceptable match 

between the theoretical and experimental dispersion curves is obtained. Judgment 

regarding the effectiveness of the new iteration is performed by visual inspection or a 

least-square acceptance criterion (Foti, 2000). 

The inversion procedure pertinent to this study is a simplified least squares 

approach established by Xia et al. (1999), using an iterative solution with the Levenberg–

Marquardt and singular-value decomposition techniques. Details on the inversion will not 

be covered, as these require introduction to topics outside the scope of this study. Figure 

2.24 shows the iterative procedure. An initial VS profile is assumed and its respective 

theoretical forward dispersion curve is calculated. Fitting of the theoretical dispersion 

curve is compared against the experimentally measured dispersion curve points. It can be 

noted that the first iteration does not provide a good fit. The VS profile is updated 
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iteratively until an acceptable fit of the theoretical dispersion curve to the measured 

points is achieved. The final VS profile iteration is assumed to be the shear wave profile 

of the site. 

 

Figure 2.24 Iterative least-squares procedure used in the inversion process.  

Shown are only the initial and final iterations.  

As mentioned when discussing the SSRM method, estimating the dispersion 

curve from the measured phase velocities needs to be performed by scaling the Rayleigh 

wavelength, λR, to a characteristic depth, Z. Such relationship can be estimated as: 

 𝑍(𝑓) = 𝛼 𝜆𝑅(𝑓) , (2.16) 

 
where α is a coefficient that changes with frequency as shown in Figure 2.25. With this 

relationship and relating the measured phase velocity, VR, at Z(f) to VS using 
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Equation (2.5) with an assumed Poisson’s ratio, a VS profile can be constructed. The 

vertical VS profile construction is performed, in essence, in the same way as the SSRM 

method shown in Figure 2.19. 

  

Figure 2.25 Coefficient α used to relate wavelengths to depths as function of frequency. 

(From Park et al., 1999) 

In general, inversion is not a trivial task since the solution is non-unique (Foti, 

2000). Multiple possibilities of material parameters can yield a similar dispersion curve, 

thus multiple stiffness profiles can exist. This results in a certain degree of uncertainty in 

the final VS profile. For the purpose of this research, non-uniqueness will not be 

investigated; however, MASW analysis will be compared against a SCPT ground truth 

verification test and an idealized FE model for differences in results. 

2.3 Data Acquisition Receivers 

To this point, the type of receiver used has not been specified, allowing for this 

section to introduce geophones (which are typically employed in MASW surveys) and 

distributed fiber optic sensors (FOS).  
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2.3.1 Geophones 

Velocity transducers, commonly known as geophones, have a long success history 

and are the most commonly employed sensors in MASW data acquisition and seismic 

surveys (Hons, 2008). Geophones measure instantaneous velocity, which is proportional 

to an electric voltage generated by the movement of a spring-mounted magnetic mass 

inside a wire coil. When used in the ground, the measured velocity is proportional to the 

ground particle velocity at the discrete installed location. A schematic representation of a 

typical geophone and its parts is shown in Figure 2.26. 

  

Figure 2.26 Schematic representation of the parts of a moving coil geophone.  

 

MASW surveys typically make use of an array of twelve or more collinear 

vertical geophones to measure seismic wave propagation velocity. Low frequency 

geophones (i.e., 4.5 Hz) are typically recommended for MASW data acquisition (Miller 

et al., 2000). These are coupled to the ground by pushing the geophone-attached spike 

(1 to 3 in. in length) into the ground surface at a desired spacing. Each geophone, referred 
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to as a channel, responds to the ground vertical motion, such as that resulting from an 

active seismic source (e.g., sledgehammer). Vertical motion response is recorded with 

time as a seismogram. The typical setup requires: seismographs capable of connecting all 

geophone channels, batteries, spread cables to connect geophones, sync cable to 

interconnect seismographs, trigger cables for the active source, and communication 

cables for computer connection. This setup makes geophones highly adaptable temporary 

receivers for MASW surveys, but costly and maintenance intensive to employ in 

permanent long distance arrays. Figure 2.27 shows the complexity long arrays add with 

the amount of geophones and equipment required. 

 

Figure 2.27 Equipment required for a long MASW survey. 

(EPI Group, 2015) 

2.3.2 Fiber Optic Sensing 

An optical fiber consists of three components: a core, a cladding, and a protective 

coating, as shown in Figure 2.28. The fiber’s core operates as a cylindrical optical 

waveguide and is composed of fused silica glass with an outer diameter (OD) that can 
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range from 5 to 10 μm for a single-mode fiber, to 50 μm for a multi-mode optical fiber 

(Glisic, 2013). Single-mode fibers (i.e., smaller diameter core) are preferred because 

higher data rates are achieved over long distances (Mitschke, 2010). A cladding, typically 

with an OD of 125 μm, surrounds the core and it is composed of silica glass with a 

slightly lower index of refraction. The outer layer consists of a protective coating for 

environmental protection and physical robustness of the fiber (Glisic, 2013). The 

protective coating has an OD of 250 μm but it can vary depending on the material and 

design purpose. Multiple optical fibers can be bundled together into a fiber optic cable, as 

shown in Figure 2.29, which can be used for multiple measurements (or multiple 

transmissions as used in the telecommunications industry) and as spare fibers in case of 

malfunction in one of the fibers being used as a sensor. Regardless of the number of 

fibers in the fiber optic cable, the fiber optic sensor makes use of only one optical fiber.  

  

Figure 2.28 Components and typical outer diameters (OD) of a multi-mode and single-
mode optical fiber.  
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Figure 2.29 Example of a fiber optic cable. 

(Adapted from EFON, 2015) 

Single-mode optical fibers are ideal to carry optical signals over long distances; 

however, attenuation (i.e., losses) plays an important role in how far such signals can 

travel and be adequately measured. This is accounted by losses in the silica glass 

resulting from absorption, radiation, and Rayleigh scattering (Hui & O'Sullivan, 2009). 

The spectral contributions of absorption and Rayleigh scattering losses are shown in 

Figure 2.30. Absorption losses are caused by absorption of ultraviolet and infrared 

wavelength bands by pure silica molecules (Hui & O'Sullivan, 2009). Radiation losses 

are caused by fiber bending in the manufacturing process (Hui & O'Sullivan, 2009). 

Rayleigh scattering losses are caused by the statistical microscopic defects in the silica 

glass, which produce localized variations in density (Mitschke, 2010; Bao & Chen, 

2012). The Rayleigh scattering phenomenon occurs in the optical fibers because the 

particles causing scattering are much smaller than the wavelength of the optical signal 

(Hui & O'Sullivan, 2009). As seen in Figure 2.30, Rayleigh scattering dominates the total 
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loss of the fiber, at the wavelengths typically used in FOS, 1310 nm and 1550 nm (Hui & 

O'Sullivan, 2009). 

 

Figure 2.30 Losses in a single mode optical fiber. 

(From Mitschke, 2010) 
 

Rayleigh scattering creates a backward propagating wave at the same frequency 

that is known to be proportional to the power of the incident light (Bao & Chen, 2012). 

The backward propagating wave (Rayleigh backscatter) is used in the FOS measurement 

system, as discussed in the next subsection. A schematic representation of the Rayleigh 

scattering process is shown in Figure 2.31. In Rayleigh scattering, no energy is 

transferred to the silica glass and no changes in frequency occur from the incident to the 

scattered light, hence it is referred to as linear scattering (Bao & Chen, 2012).  
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Figure 2.31 Representation of spontaneous Rayleigh scattering process.  

(From Bao and Chen, 2012) 
 

2.3.2.1 Optical Time Domain Reflectometry (OTDR)  

By introducing a laser pulse into the fiber, a forward propagating incident light is 

guided through the optical fiber. Some of the Rayleigh backscattered light travels in a 

direction 180° to the incident light and is returned to the source (Udd, 1990). The 

variation of the returned backscatter intensity can be monitored and attenuation as well as 

spatial variation can be obtained as a function of time. The optical time domain 

reflectometry (OTDR) was introduced using this idea for diagnostics and determining 

location of faults along an optical telecommunications fiber (Udd, 1990; Bao & Chen, 

2012). OTDRs later evolved into sensing applications, where any local perturbation (e.g., 

strains, vibrations) affecting the optical fiber was observed to modulate the backscattered 

signal (Bao & Chen, 2012), as shown in Figure 2.32. In doing so, optical fibers can be 

used to sense physical measurements throughout its length, thus achieving distributed 

fiber optic sensors (FOS).  
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Figure 2.32 Operation of an optical time domain reflectometer.  

(From Udd, 1990) 

2.3.2.2 Fiber Optic Strain Sensing 

For the current application, FOS reveals strain information within sections of the 

fiber, referred to as zones. An interrogation light pulse of specified duration is injected 

into a fiber optic cable from a narrow line-width, coherent laser. As the light pulse 

propagates through the fiber, backscattered light travels to the OTDR interrogator where 

the laser pulse was emitted (Bao & Chen, 2012). At the interrogator the backscatter signal 

from both ends of a fiber zone are combined. The mixed signal is demodulated to 

determine the change in phase, ∆𝜙, which is the output of the interrogator. 
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An acoustic or seismic disturbance will produce strains within a fiber zone, which 

in turn, will cause the optical path length within that zone to change. The change in 

phase, ∆𝜙, is caused by the changes in optical length over a zone length of fiber, L. The 

change in optical length is proportional to the longitudinal strains, ℇx, exhibited in the 

fiber (modified from Udd, 1990): 

 ∆𝜙

𝐿
= 𝑘𝜉𝑛ℇ𝑥 = 𝑘𝜉𝑛

𝑑𝐿

𝐿
 , (2.17) 

where: 𝑘 is the optical wavenumber in a vacuum (2𝜋

𝜆
, where 𝜆 is the wavelength of the 

interrogation light pulse); 𝜉 is the strain optic correction factor (typically having a value 

of 0.78); 𝑛 is the index of refraction of the silica glass core in the fiber (typically about 

1.46); and 𝑑𝐿 is the change in length of the fiber. The length L can be canceled on both 

sides of Equation (2.17). For a typical pulse wavelength of 1550 nm, this results in a 

proportional relationship of optical phase shift with the elongation of the fiber: 

 ∆𝜙 ≈ 4.43𝐸6 ∗ 𝑑𝐿 . (2.18) 

In the case of this study, strains are generated from seismic disturbances occurring 

in the ground and transferred to the buried fiber. The measured phase difference is 

proportional to longitudinal strains over lengths of fiber along the entire FOS length. 

Longitudinal strain obtained with the FOS is averaged over each zone length of fiber. The 

fiber zone sensing lengths (typically 5 to 10 m) are based on the averaging of multiple 

spatial resolutions to achieve better signal to noise ratio (Udd, 1990). A schematic of the 

averaging of strain when compared to the strains at the fiber is shown in Figure 2.33. 
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Figure 2.33 Strain measurement averaging in a fiber zone using a distributed fiber optic 
sensor. 

(From Glisic, 2013) 

The strain proportional change in phase is obtained as a function of time by 

repeating the light pulse with time. After the pulse travels the whole length of fiber and 

back, the pulse is repeated. The pulse repetition rate determines the actual sampling rate 

the data is recorded.  

In addition to its sensing capabilities, the FOS serves as a transmission medium 

simplifying the installation setup into a cleaner layout for easier bookkeeping of channel 

locations. Because of the simplified setup, it requires less equipment and therefore less 

maintenance, thus making FOS installation more cost efficient to implement over long 

distances. Distributed fiber optic sensor (FOS) systems offer the potential of using buried 

fiber optic cable over distances that can reach up to 100 km (Bao & Chen, 2012).  

2.3.3 Seismic Surveying using Distributed Fiber Optic Strain Sensing 

The use of seismic surveying using distributed fiber optic strain sensing systems 

have been mostly dedicated to the oil and gas industry for monitoring well applications to 
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detect leakage and monitor contaminants through the use of vertical seismic profiling 

(Cox et al., 2012; Webster et al., 2013). These applications have showed very reasonable 

agreement between measurements with distributed FOS and conventional geophones, but 

have been mostly in borehole configurations and attached to pipelines. 

The Engineer Research and Development Center (ERDC), Vicksburg, MS has 

investigated the use of FOS in SASW analysis and compared to horizontal and vertical 

geophones (Costley et al., 2015). The primary objective of the investigation was to 

compare the coherence of the signals measured with FOS and geophone sensors and to 

evaluate the use of array processing techniques for processing FOS signals. The 

dispersion curves from different FOS zones showed decent agreement with the dispersion 

curves obtained from geophones. No inversion was performed to find the resulting VS 

profile. 

Daley et al. (2013) showed early indications of using buried distributed FOS for 

surface wave analysis. They observed a high content of Rayleigh waves in FOS 

measurements as part of a CO2 monitoring pilot program on a site located in Victoria, 

Australia. Only initial results were shown and details on installation protocols and depths 

were not mentioned. Results showed only dispersive imaging performed with the f-k 

transform method; results from shear wave inversion or comparison to geophone results 

were not presented. It was also noted that Daley et al. (2013) used a specialized FOS 

cable. Glisic (2013) presented costs of different specialized fiber optic sensor 

configurations and showed that specialized fibers may cost 15-30 US$/m when compared 

to standard telecommunication fiber optic cables which range from 2-5 US$/m. Although 

the specialized FOS may provide better signal to noise ratio, it will be more expensive 
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over long runs when compared to standard telecommunication optical fiber cable as 

considered herein. This further justified exploring standard telecommunication fiber optic 

cables as proposed in this study. This study intends to verify the feasibility of using FOS 

for MASW analysis and cover further details to expand its application. 
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CHAPTER III 

FIELD EXPERIMENTS METHODOLOGY 

3.1 Introduction 

Field experiments were conducted at a site referred to as the Test Track located on 

the Engineer Research and Development Center (ERDC, previously known as the 

Waterways Experiment Station, WES), Vicksburg, MS. The site was selected due to an 

existing installation of standard telecommunication optical fiber cable. The fiber optic 

cable had been installed along the shoulder of an unsurfaced road at depths of 0.5 m and 

1.0 m along the same alignment, as shown in Figure 3.1. A linear 120 m section of cable 

was chosen for this study. A linear array of vertical geophones was installed on the 

ground surface over the location where the fiber cable was buried. Data was collected 

from the two types of sensors and subsequently compared. 
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Figure 3.1 Test site overview showing approximate location of buried FOS. 

 

3.2 Site Description 

No site-specific geotechnical information was available at the time the tests were 

performed. Geologic information from the 680 acres ERDC facility describes 

6 distinguishable geologic units determined from a selection of 92 logs boring logs 

(Murphy & Albertson, 1996). The reported geologic units, from oldest to youngest, were: 

“(1) the Eocene Yazoo Clay, (2) the Oligocene Forest Hill Formation, (3) the Oligocene 

Mint Spring Marl, (4) the Oligocene Glendon Limestone, (5) an undifferentiated 

uppermost Tertiary unit consisting of the Miocene Catahoula Formation and Oligocene 

Formations, presumably the Bucatunna Clay and Byram Marl, and (6) the Pleistocene 

Vicksburg loess”. Four deep borings, shown in Figure 3.2, were selected by Murphy & 
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Albertson (1996) to show the variation of these geologic units within ERDC. A vertical 

profile constructed from these borings, in conjunction with electrical resistivity 

measurements (E-logs), is shown in Figure 3.3.  

 

Figure 3.2 General plan of ERDC facility. 

Showing location of geologic profile and location of four deep borings relative to the test 
site. (Adapted from Murphy & Albertson, 1996) 

From these geologic units, the Glendon Limestone is considered to be the first 

“rock” encountered in borings in the ERDC area (Murphy & Albertson, 1996). It is 

assumed that the depth of investigation from the MASW analysis will be controlled by 

this geologic formation. At this depth, shear wave velocities drastically increase 
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compared to the overlying geology. Seismic signals traveling to the underlying geology 

will be attenuated by the Glendon Limestone and will not be captured in the acquired 

seismic signals for MASW analysis. For that reason underlying geologic units are not 

discussed.  

 

Figure 3.3 Vertical profile for four borings at ERDC. 

Showing geologic units, E-logs, and corresponding ground surface elevation at the test 
site. (Adapted from Murphy & Albertson, 1996) 

The ground surface elevation at the test site location is approximately 43 m, as 

shown in Figure 3.3. Contours of top elevation of the Glendon Limestone are shown in 

Figure 3.4. According to these contours, the top elevation of the Glendon Limestone at 

the test site is expected to be between the 60- to 80-ft (approx. 18- to 24-m) contours. 

This results in an expected depth to the Glendon Limestone at the test site between 19 to 
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25 m. This range in depth were considered to be the depths of investigation that would be 

achieved through the MASW analysis. Water contents for the Glendon Limestone had 

been reported between 26.1 to 33.3% (Murphy & Albertson, 1996). No strength 

characteristics or other geotechnical information was found.  

 

Figure 3.4 Top elevations of Glendon Limestone surface in central Warren County, 
MS.  

Test site location shown with yellow star and location of closest boring V-1 shown with 
red balloon symbol. (Adapted from Murphy & Albertson, 1996) 
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The two upper geologic units, i.e., the Undifferentiated Tertiary and the 

Vicksburg Loess, are the primary geologic units assumed to be captured in the site under 

investigation. The top elevations of these two geologic units vary considerably by 

location, as shown in Figure 3.3. Since no other borings were found in the proximity of 

the test site, it was assumed that the geologic profile would resemble the vertical profile 

for boring V-1. The location of this boring was approximately 800 m west of the test site. 

Based on the site ground elevation projected onto this vertical profile, the 

Undifferentiated Tertiary unit will extend from the Glendon Limestone (at around 19 to 

25 m in depth) up to an approximated depth of 3 to 8 m from the top surface. As 

previously mentioned the Undifferentiated Tertiary consists of three different formations 

(from oldest to youngest): the Byram Marl, Bucatunna Clay, and the Catahoula.  

The Byram Marl Formation consists of a mix of clayey marl and limy clay. Water 

contents have been reported to range from 22.1 to 54.8%, with mean values of 30.2% 

(Murphy & Albertson, 1996). Relative strengths of 12 to 46 blows per foot with a mean 

of 28 blows per foot have also been reported (Murphy & Albertson, 1996). A variety of 

empirical correlations relating SPT-N values to shear wave velocity are available 

(Brandenberg et al., 2010). For simplicity in calculations, the correlation from Seed & 

Idriss (1981), VS = 61.4 * N0.5, was chosen to get an estimated VS range. Using this 

correlation, VS results in a range of about 210 to 425 m/sec and a mean of 325 m/sec. 

The Bucatunna Formation is identified as a dark gray to brown fat clay (CH). The 

thickness of this formation varies across ERDC and may or may not be present (Murphy 

& Albertson, 1996). No strength characteristics or other geotechnical characteristics were 

found regarding this formation.  
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The Catahoula Formation consists of gray to white sands, silts and silty clays. 

Green & Bograd (1973) mentioned that some of the Catahoula sands are hardened in 

sandstone layers. They also suggested a range from 22 to 90 blows per foot for sandy 

Catahoula. Based on the SPT-N VS empirical correlation by Seed & Idriss (1981), this 

results in a range of about 290 to 580 m/sec. Green & Bograd (1973) also indicated a 

range of undrained shear strengths (Su) for weathered to unweathered clayey Catahoula of 

800 to 4000 psf, which is about 38.3 kPa to 191.5 kPa. Using the empirical correlation of 

Su values to shear wave velocity from Dickenson (1994), VS = 23 * Su 0.475, results in 

VS values in the range of about 130 to 279 m/sec. To cover the different ranges of the 

Catahoula formation, values can be summarized to range from 130 to 580 m/sec.  

Above the Undifferentiated Tertiary lies the Vicksburg Loess which is expected 

to cover the top 3 to 8 meters below the ground surface. Loess consists of a windblown 

deposit with mainly silt-sized particles. Available information on Vicksburg Loess 

includes liquid limits (LL) between 21 and 43, plastic limits (PL) between 19 and 29, and 

plasticity index (PI) between 2 and 16 (Murphy & Albertson, 1996). Reported densities 

were 79.4 to 104.2 lb/ft3, which is about 1.27 to 1.67 g/cm3. Specific gravity was 

described to range from 2.69 to 2.74. Water contents were reported between 18 and 33%. 

Undrained shear strengths (Su) of 0.06 to 1.04 tsf have been reported, which is about 

5.75 to 99.59 kPa. Using the empirical correlation of Su values to shear wave velocity 

from Dickenson (1994) results in VS values in the range of about 52 to 204 m/sec.  

The site used in this study had been previously used for assessing the effects of 

tire pressures on different road surfaces. The primary interest of these previous studies 

was in the proximity of the surface for pavements and for soils to be used as a base or 
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subbase material. Reports indicated the test site consisted of a “lean clay (loess) deposit” 

(Grau, 1993), which confirms this upper layer. No information regarding other geologic 

units was mentioned.  

A summary of ranges of depths and VS of the expected geologic formation are 

shown in Figure 3.5.  

 

Figure 3.5 Summary of ranges of depth and shear wave velocities based on the 
expected geologic formations at the test site. 

 

To provide ground truth verification, a Seismic Cone Penetration Test (SCPT) 

will be conducted at the test site location to verify the shear wave velocity profiles 

determined using MASW. 
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3.3 Equipment 

3.3.1 Geophone Data Acquisition 

Seventy-two 4.5 Hz vertical geophones manufactured by Geospace 

Technologies® were used, shown in Figure 3.6(a). Geophones were connected thru a 

spread cable to 24-channel Geometrics Geode® seismographs, shown in Figure 3.6(b). 

Since 72 channels were used, three seismographs were required and a sync cable was 

used to interconnect these. The seismographs were powered using 12V batteries. A 

trigger switch connected to the seismographs was attached to a sledgehammer, as shown 

Figure 3.6(c). The trigger switch initiated recording during the active seismic surveys. A 

striker plate coupled the energy imparted by the sledgehammer into the ground. A digital 

cable connected seismographs to a PC. A PC software called Geometrics Seismodule 

Controller® enabled setup configuration and data acquisition parameters and saved the 

survey records. Data was sampled at 1000 Hz (i.e., sampling interval of 0.001 sec) for a 

total recording time of one second. 

 
 

Figure 3.6 Geophone data acquisition system. 

(a) Low frequency (4.5-Hz) vertical geophone. (b) Seismograph and connections. 
(c) 4.5-kg (10-lb) Sledgehammer with attached trigger switch, and striker plate for 
ground coupling. 
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3.3.2 FOS Data Acquisition Equipment 

The fiber optic system data acquisition system consisted of a standard fiber optic 

telecommunications cable and a coherent OTDR interrogator.  

The fiber optic telecommunications cable contained 24 single-mode Corning® 

SMF-28e+® fibers as shown in Figure 3.7(a, b). The fibers are arranged in a ribbon 

configuration inside a protective armor and coatings, as shown Figure 3.7(b). Only one of 

the fibers was used as a sensor, as shown in Figure 3.7(c). 

 

Figure 3.7 FOS data acquisition system. 

(a) SST-Ribbon™ Single-Tube, Gel-Free, Armored Cable, 24 F, Single-mode (OS2). 
(b) Cross section representation. (c) Schematic of single mode SMF-28e+® fiber used as 
FOS. (From Corning 2015) 

The fiber was connected to a Coherent OTDR interrogator manufactured by 

Optiphase® referred to as the CR3 Prototype System (Optiphase, Inc., 2012). This system 

contains the laser and receives and demodulates the coherent Rayleigh backscatter from 

laser pulses. According to the manufacturer’s specifications, this system is capable of 

interrogating 25 km of fiber optic cable and measures the change in optical phase, or 
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optical path length, over 5-m sections of fiber optic cable, referred to as zones. The zones 

are distributed every 2.041 m, and thus overlapped. After the laser light pulse is emitted, 

the subsequent digitizer records the Rayleigh backscatter of the light pulse to define each 

respective zone along the fiber optic cable. The light pulse is repeated to control the 

recording sampling rate. During these experiments the light pulse was repeated at a rate 

of 5000 Hz, which gave a sample interval of 0.0002 sec. Data was retrieved for a total 

recording time of one second, similar to the geophone data. Data was recorded 

simultaneously with both the geophone seismographs and FOS. The sledgehammer 

connected to the geophone seismographs generated the seismic excitation. 

3.4 Test Setup and Procedure 

MASW field experiments were performed over a 120-m section, as shown in 

Figure 3.1. Within this section, 72 geophones were placed at 1-m spacing along the 

ground surface. The 1-m receiver spacing is typically sufficient for most sites to provide 

adequate spatial resolution for the soil layers to be resolved under the MASW analysis 

(Park et al., 2002). Furthermore, since the spacing between the FOS zones is about two 

meters (i.e., 2.041 m), the 1-m spacing provided additional spatial resolution in the event 

spatial aliasing was observed on the FOS data. In this manner FOS data quality control on 

the FOS data could have been accounted for. During post-processing, it was noted that 

using the data from the 72 geophones at 1-m spacing or choosing 24 geophones at 3-m 

spacing from the original data produced negligible differences. For that reason, the use of 

1-m geophone spacing was considered reasonable when comparing to the FOS at a larger 

spacing.  



 

63 

There were 36 FOS zones at the 2.041-m distributed spacing for both FOS 

installations depths. Start and end locations along the fiber had been pre-determined by 

observing FOS zones of higher amplitudes response relative to sledgehammer surface 

impact locations. 

Selection of seismic source offset with respect to the location of the receivers is 

an important part of designing a MASW survey to prevent contamination from near-field 

and far-field effects. The goal is to select an offset so that the wave field contains only 

plane surface wave components and not be affected by body waves and higher modes 

(Foti et al., 2015). Near-field and far-field effects are minimized by proper choice of 

distance between the source and nearest receiver, commonly known as source offset (X1), 

and the receiver spread length (L), respectively (Park et al., 1999). 

Park et al. (1999) suggested a rule of thumb by setting the offset equal or larger to 

the maximum depth of interest, Zmax. In 2010, Park & Carnevale investigated multiple 

receiver offsets and observed error estimation of phase velocities appear to be highly site 

dependent. In one instance, a source offset of one receiver spacing was used and 

compared to further offset distances. Differences in their respective dispersion curves 

were negligible. Similar results were obtained for an offset of 1 receiver up to an offset of 

24 receivers. In the current study, the offset was selected based on a percentage of the 

total spread length (i.e., %L, where L is the length of installation or spread). The selected 

source offsets (and respective percentage of spread length) were 1 m (≈1.5%L), 2 m 

(≈3%L), 6 m (≈8%L), 10 m (≈14%L), 18 m (≈25%L), and 28 m (≈40%L). Source offsets 

were applied to the left and right sides of the spread to verify lateral homogeneity. Since 

the test site was expected to be laterally homogeneous, the two source side offsets also 
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provided additional verification of repeatability of the results. Due to the presence of a 

culvert at an offset of 20 m from the left side of the spread, a maximum source offset of 

18 m was used to avoid introducing inhomogeneity in the data. Larger source offsets 

could not be accomplished since the fiber cable did not continue in the desired linear 

alignment beyond these offsets and signal-to-noise (S/N) ratio observed in the fiber was 

observed to decay. The decay in the S/N ratio results from the high sensitivity of the fiber 

as it gets contaminated with environmental noise. 

The spread length (L) is typically adjusted to avoid the maximum receiver offset 

(i.e., the distance from the source to the furthest-most receiver). The reason is that 

contamination of body waves results from rapid attenuation of high frequency (short 

wavelength) surface wave components (Park et al., 1999). Highest accuracy can be 

achieved using a spread length equal to the maximum desired wavelengths (λmax), which 

is estimated to be about two times the maximum depth (Zmax) (Park & Carnevale, 2010). 

A maximum expected depth of around 25 m was considered for the test site as a result of 

the depth to the Glendon Limestone geologic unit, expected to be 19 to 25 m in depth 

(Murphy & Albertson, 1996). Under this study, the spread length used was 71 m for the 

geophones and about 71.5 m for the FOS spreads. With these spreads, maximum 

measurable wavelengths will correspond to depths of about 30 m considered to be able to 

resolve further than the maximum expected depths. 

Park et al. (1999) recommended guidelines of optimum MASW field installation 

for the source offset distance and spread length to avoid near-field and far-field effects. 

These were not strictly adopted and are justified by the purpose of this study to compare 
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the response on the FOS with traditional geophones regardless of source location and 

spread length configuration. 

A schematic of the experimental setup is shown in Figure 3.8. Spacing and 

receiver location of geophones and FOS were maintained constant during the experiment. 

A 4.5-kg (10-lb) sledgehammer was used as the active seismic source for the experiments 

at the source offsets specified previously. Each sledgehammer impact, referred to as a 

shot record, was recorded simultaneously with both the geophone and FOS arrays. Three 

shot records were performed at each active source location for repeatability and use in 

stacking of records to increase signal-to-noise ratio.  
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Figure 3.8 Schematic of experimental setup for MASW survey with surface vertical 
geophones and FOS at depths of 0.5 m and 1.0 m.  

Notes:  
(1) A metric stationing system was established referencing the leftmost surface vertical 
geophone at station 1001. Relative locations of geophones, FOS zones, and seismic 
source offset made use of this reference.  
(2) FOS zones corresponding to the extent of the geophone spread were used. The meter 
marking of the fiber optic cables corresponding to these FOS zones are shown. The 
difference in meter marking was about 1048 m. The speed of light within the fiber is 
given by the speed of light in a vacuum (i.e., approx. 0.3 m/ns) divided by the index of 
refraction (approx. 1.5), resulting in about 0.2 m/ns. The time interval that takes the light 
pulse to travel from the first meter marking of the FOS at 1.0 m to the first meter marker 
of the FOS at 0.5 m can be determined by diving the respective distance by the speed of 
the light pulse. This results in 5240 ns, or about 0.005 ms. Since the data was recorded 
every 0.2 ms, the time interval to travel the distance of cable corresponded to about 2.5% 
of the sampling interval. Therefore, the FOS at the two different depths could adequately 
measure the same seismic response from the shot records. 
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3.5 Assumptions 

The current study used the following assumptions as basis of its investigation. 

1. Rayleigh surface waves are expected to predominate from the surface 

down to the installation depths of the FOS (i.e., up to 1 m deep). It was 

expected that these would be captured in the signals of both sensor types. 

2. Strains occurring in the ground as a result of the impulsive source are 

directly transferred into the FOS as longitudinal strains in the optical fiber. 

These longitudinal strains correspond to a change in length of optical path 

of the fiber. The optical interrogator interprets the change in length as an 

optical phase change. Hence, the measured optical phase change will 

correspond to longitudinal ground strains. 

3. Signals received from the optical interrogator are processed as received, in 

units of optical phase, or radians. The optical phase is proportional to the 

elongation of the fiber as shown in Equation (2.18). This equation, 

however, was developed for a single optical fiber not placed inside a 

protective cable. The fiber optic cable used in this study has a protective 

armor and additional coatings. To account for these, additional calibration 

is required to find a proportionality factor to convert optical phase to 

absolute strain. Since this study makes use of the strain proportional 

optical phase to assess motion and the MASW method performs amplitude 

normalization (as shown in the integral transformation in Equation (2.15)), 

it was considered unnecessary to have absolute strain amplitudes; thus 

justifying the use of the original output units. 
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4. Costley et al. (2015) investigated the coherency between the signals of 

FOS and geophones to a sledgehammer seismic source from tests 

performed at a predominantly sandy site. The FOS was found to have 

acceptable coherency to the seismic source between a frequency range 

between 20 and 120 Hz. The geophones had a stronger coherence than the 

FOS, and this occurred at the 20 to 100 Hz frequency range. For the 

current study, it is assumed that the geophones and FOS will respond 

coherently to the propagating seismic disturbances.  

5. It is assumed that the effective (i.e., measured) phase velocities collected 

during this study coincide with the phase velocities of the fundamental 

mode (M0). 
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CHAPTER IV 

FIELD EXPERIMENTS ANALYSIS AND RESULTS 

4.1 Data Collection 

MASW field data was collected with surface vertical geophones and buried FOS 

during the day of 17 March 2015. The weather was mostly clear during the time of 

testing. Temperatures were around 75°F. Subsequently, MASW analysis of the data from 

the geophones and FOS was conducted and results of the analysis were compared.  

A seismic cone penetrometer test (SCPT) was later performed for ground truth 

verification. The test was conducted during the day of 08 April 2015. Weather was clear 

during testing. Temperatures ranged between 70°F and 75°F. A shear wave velocity 

profile was generated from the SCPT test. This was further compared with the previously 

determined VS profiles from the MASW analysis using the geophones and FOS. 

4.2 Test Matrix 

A matrix of tests was measured simultaneously with the vertical geophones at the 

surface and the FOS at 0.5 m and 1.0 m. Three shot records were performed at 

11 locations (shown in Figure 3.8) for a total of 33 shot records. From these, 15 shot 

records were from source offsets to the left side of the spread and 18 shot records were 

from source offsets to the right side of the spread. These are referred to as left side offsets 
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and right side offsets. The respective stations of the seismic source location relate to 

those shown in Figure 3.8 and are summarized in Table 4.1.  

Table 4.1 Test matrix summary measured simultaneously with vertical geophones at 
the surface, and FOS at depths of 0.5 m and 1.0 m. 

Source 
Offset  %L 

Left Source 
Offset Location 
(# Shot Records) 

Right Source 
Offset Location 
(# Shot Records) 

Shot Record 
Number (Test 

Number) 

1m ≈1.5%L 

1000  
(3)  2028-2030 

 1073  
(3) 2070-2072 

2m ≈3%L 

999  
(3)  2025-2027 

 1074  
(3) 2073-2075 

6m ≈8%L 

995  
(3)  2013-2015 

 1078  
(3) 2076-2078 

10m ≈14%L 

991  
(3)  2010-2012 

 1082  
(3) 2079-2081 

18m ≈25%L 

983  
(3)  2001-2003 

 1090  
(3) 2088-2090 

28m ≈40%L 
*  

 * 

 1110  
(3) 2091-2093 

Total Number of Shot Records:  
15 18 

 
33 

*Source offsets beyond 18 m to the left side of the spread were not possible due to 
obstruction from the presence of a culvert 
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These tests generated a total of 99 seismic data files: 33 for the surface vertical 

geophones, 33 for the FOS at 0.5 m, and 33 for the FOS at 1.0 m. These data files were 

then used for the analysis. 

4.3 Analysis Procedure for Field Experiment Seismograms 

The resulting data files consisted of seismograms for the respective channel 

locations of the surface vertical geophones and the respective zones of the buried FOS at 

0.5 m and 1.0 m. These seismograms were analyzed with the MASW method using 

Kansas Geologic Survey (KGS) SurfSeis®, a software dedicated to process seismic data 

for use with the MASW method. Analysis was performed for each sensor using the shot 

records for each respective seismic source side offset. This helped verify lateral 

homogeneity and repeatability of the results.  

4.3.1 Preprocessing Field Experiment Seismograms 

4.3.1.1 File Format Conversion and Filtering of Field Experiment Seismograms 

To import data into SurfSeis®, data is required to be in the standard SEG-2 binary 

format (Pullan, 1990). Data obtained from geophones was already in the required format. 

FOS data, however, was in the CR3 proprietary format corresponding to Optiphase, Inc. 

It needed to be converted to SEG-2 format. This was performed using a script created in 

Matlab® named CR3toSEG2.m, shown in Appendix A.1. A band pass filter from 5 to 

100 Hz was used to obtain the frequency range of interest. This frequency range is 

observed in Figure 4.1 through the Fast Fourier Transform (FFT) of one of the surface 

vertical geophones. The high pass cutoff of 5 Hz is used to approximate the lowest 

frequency recorded by the geophones of 4.5 Hz. The low pass cutoff of 100 Hz was used 
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to limit the signal to the frequencies excited by the sledgehammer. The band pass filter 

used in this study is shown in Figure 4.2. An example of filtering of a FOS zone is shown 

in Figure 4.3. Once data was available in the required format, it was imported into 

SurfSeis®. 

  

Figure 4.1 FFT response at surface vertical geophone. 

Example shown for geophone located at Station 1001 resulting from sledgehammer at 
1 m left source offset from Test 2028. 
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Figure 4.2 Frequency response of band pass filter used in the preprocessing. 

 

 

Figure 4.3 Results from band pass filtering from 5 to 100 Hz. 

Example shown for the 0.5 m FOS zone 1 (at Station 1001) resulting from sledgehammer 
at 1-m offset for Test 2028. 
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4.3.1.2 Installation Geometry Assignment of Field Experiment Seismograms 

The next step involved defining the installation geometry. This consisted of 

specifying the location of the receivers (i.e., geophone channels or FOS zones) and 

seismic source. These locations were specified based on the metric stationing referenced 

in Figure 3.8.  

4.3.1.3 Stacking Shot Records from Field Experiment Seismograms 

The three replicate shot records at each seismic source location contained the 

same installation geometry. The responses for each set of replicate shots were similar for 

each type of sensor. This resulted from having been initiated by the sledgehammer 

trigger; differences occurred in signal amplitude and noise. Seismic amplitudes imparted 

by the sledgehammer impact were observed in seismograms of all different sensors. The 

main seismic energy amplitudes are demonstrated with dashed polygons in the trace 

seismograms for the different sensors in Figures 4.4 through 4.6.  
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Figure 4.4 Replicate shot records from surface vertical geophones. 

Three shot records measured with surface vertical geophones were produced using a 
sledgehammer at 1-meter offset. Similarities in Rayleigh wave amplitudes in main 
seismic energy amplitudes are show with dashed polygons. 

  

Figure 4.5 Replicate shot records from FOS at 0.5-m depth. 

Three shot records measured with FOS at depth of 0.5-m were produced using a 
sledgehammer at 1-meter offset. Similarities in Rayleigh wave amplitudes in main 
seismic energy amplitudes are show with dashed polygons. 
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Figure 4.6 Replicate shot records from FOS at 1.0-m depth. 

Three shot records measured with FOS at depth of 1.0-m were produced using a 
sledgehammer at 1-meter offset. Similarities in Rayleigh wave amplitudes in main 
seismic energy amplitudes are show with dashed polygons. 

The replicate seismograms were subsequently combined using SurfSeis® to 

increase signal to noise ratio and attenuate incoherent noise resulting from the 

environment and sensor measurements. This was performed by summing the respective 

traces from each shot record on the same time scale in a process called stacking. An 

example of stacking of seismograms is shown in Figure 4.7. 



 

77 

 

Figure 4.7 Example of three replicate records summed into a single stacked record. 

 

4.3.2 Dispersion Analysis from Field Experiment Seismograms 

4.3.2.1 Individual Dispersive Imaging from Field Experiment Seismograms 

With the resulting summed stacked seismograms, the coherency patterns of the 

propagating velocities of each constituent measurement were used to calculate the 

variation of phase velocities as a function of frequency, i.e., dispersive imaging. This was 

performed in SurfSeis® as discussed in section 2.2.2.3.1 using the phase-shift method by 

scanning through different phase velocities over the desired frequency of interest. For this 

study scanning was performed for phase velocities ranging from 50 to 1000 m/sec in 

1-m/sec increments over a selected frequency range of 5 to 100 Hz in 0.01-Hz 

increments. These ranges were considered to cover the expected phase velocities 

(corresponding to the expected shear wave velocities) and the depths of investigation. 

The scheme used by this method was summarized in Figure 2.22. An example of the 

resulting dispersive imaging is shown in Figure 4.8. 
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Figure 4.8 Example of dispersive image from vertical geophones. 

Obtained using the stacked surface vertical geophone seismograms from Tests 2001-2003 
with the left source offset at 18 m. 

4.3.2.2 Combined Dispersive Imaging from Field Experiment Seismograms 

In MASW analysis, the investigated subsurface profile represents the average 

properties at the mid-station (or center location) of the receiver spread. Receiver locations 

were maintained constant during testing and thus contained the same mid-station. This 

justified the combination of individual dispersive images into one representative image of 

seismic source side (i.e., left side or right side) for each sensor. The combination of 

dispersive images was achieved by scanning through the range of frequencies and 

summing the respective normalized phase velocity amplitudes of individual dispersive 

images. The resulting combined dispersive image captures the energy imparted by the 

different seismic source offsets and allows for a better representation of the fundamental 

Rayleigh-mode, M0. Figure 4.9 shows how the combined dispersive image takes 

advantage of the response captured by the individual dispersive images at different source 
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offsets. By adding together the respective amplitudes from different source offsets, the 

lower frequencies as well as the higher frequencies are better represented allowing for a 

more defined M0 dispersive curve. 

 

Figure 4.9 Example of a combined dispersive image from the individual dispersive 
images. 

Using tests performed with surface vertical geophones from left side seismic source 
offsets. 

4.3.2.3 Dispersion Curve Selection from Field Experiment Seismograms 

Using the combined dispersive images, qualitative interpretation was applied to 

select discrete points of peak fundamental-mode phase velocity amplitude over different 

frequencies and obtain a dispersion curve. An example is shown in Figure 4.10. Selection 

of these points was based on phase velocity amplitude energy of above 50%. It was 
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decided that, at a minimum, 15 points were to be selected. In many instances, however, 

more points were needed to better define the curvature representing the dispersion curves. 

Other considerations for interpretation of the dispersion curves included: (1) avoiding 

frequencies gaps greater than 5 Hz over which the M0 dispersion curve could not be 

interpreted with high confidence, and (2) avoiding locations of possible higher mode 

contamination of the fundamental mode (M0). An example of these considerations is 

shown in Figure 4.11.  

Data from geophones and FOS were treated independently. Interpretation of the 

fundamental mode for each respective sensor was performed with no consideration of the 

dispersion curve selection of other sensors (and other source offset side) to reduce data 

manipulation.  

Influences on higher modes were noted in the dispersive images. However, since 

the MASW, on which this study concentrates, focuses on determination of the 

fundamental modes of Rayleigh waves, only the M0 dispersion curve was used for 

analysis.  
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Figure 4.10 Well-defined M0 qualitative dispersion curve interpretation. 

Using combined dispersive image for tests performed using surface vertical geophones 
from left source offsets. 

   

Figure 4.11 Considerations for qualitative dispersion curve interpretation when higher 
modes and gaps were observed. 

Using combined dispersive image for tests performed using 1.0 m deep FOS from left 
source offsets. 
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4.3.3 Inversion Analysis from Field Experiment Seismograms 

The resulting dispersion curves were then used for inversion (back-calculation) to 

obtain 1-D VS profiles with depth for the different sensors. This was performed in 

SurfSeis® as discussed in section 2.2.2.3.2 making use of a simplified least squares 

approach using an iterative solution with the Levenberg–Marquardt and singular-value 

decomposition techniques. In essence, the experimentally obtained dispersion curve is 

compared to a theoretically calculated dispersion curve found using assumed subsurface 

properties. Using an initial model with assumed material properties shown in Table 4.2, a 

theoretical forward dispersion curve was used to compare to the measured dispersion 

curve. The theoretical dispersion curve is calculated from a forward model of Rayleigh 

wave propagation that contains the four unknowns in the inversion problem, which are: 

layer thickness (h), density (ρ), S-wave velocity (VS) and Poisson’s ratio (υ). Each of 

these parameters has different contributions to the dispersion curve calculations, 

however, the influence of Poisson’s ratio and density are considered negligible. These 

can be estimated based on past experience without affecting the final results of the 

inversion (Foti, 2000).  

Due to unknown the variability of the expected soil deposits with depth, a 

constant value of Poisson’s ratio of 0.3 was chosen. This value covers the range of 

Poisson’s ratio for loess of 0.1 to 0.3 (Bowles, 1995), while covering other typical ranges 

for silts and sands, which vary from 0.2 to 0.4 (Holt and Kovacs, 1981). Although this 

value might be considered low for saturated clay soils, which can range from 0.4 to 0.5 

(Holt and Kovacs, 1981), it was considered justifiable due to negligible effect of 

Poisson’s ratio on the inversion process (Foti, 2000).  
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A constant density with depth of 1.55 g/cm3 was used for the inversion model. 

This value was selected to represent the range of values of 1.27 to 1.67 g/cm3 for loess 

referenced by Murphy & Albertson, 1996), while also tries to account for other types of 

soils whose range can vary from about 1.2 g/cm3 in dry densities to about 2.4 g/cm3 in 

wet densities (Holt and Kovacs, 1981). This constant value was justified due to the 

unknown elevation of the water table (to distinguish between wet and dry densities), 

unknown subsurface variability to where densities will change, and negligible effect of 

density on the inversion process (Xia et al., 1999; Foti, 2000). 

The initial model consisted of ten layers with variable thickness. Ten layers were 

considered adequate for vertical resolution as well as numerical stability. A lower number 

of layers will trade-off vertical resolution, while a larger number will add greater 

uncertainty in the inverted values (Xia et al., 1999). The variable thickness of the layers is 

made to accommodate layers to the dispersion curves curvature. The corresponding 

thickness of layers was adjusted based on the wavelength scaling as a function of 

frequency as outlined in Equation (2.16). To project the maximum depth of investigation, 

a depth to wavelength ratio (ZMAX/λMAX) of 0.35 was used. This ratio followed the 

conservative end of the range defined in the relationship of Equation (2.8). The maximum 

wavelength, λMAX, was solved for using Equation (2.6), with inputs of phase velocity at 

the lowest frequency defined in the dispersion curve and its corresponding frequency.  

Estimates of shear wave velocities for the initial model were found multiplying 

the average phase velocity over each layer by a factor of 1.08. The value of 1.08 was 

determined from Equation (2.5) using the selected Poisson’s ratio of about 0.3. 
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Table 4.2 Initial Model Parameters Used for Inversion Analysis from Field 
Experiment Seismograms 

Material Property Values considered for analysis 

Layer Thickness (h) 

Depth is scaled using the corresponding 
wavelengths as a function of frequency as 

shown in Equation (3.13). Layers are 
adjusted by the rate of change of values 

picked in the dispersion curve.  
Density (ρ) 1.55 g/cm3 

Poisson’s Ratio (υ) 0.3 

Shear Wave Velocity (VS) 
Initial estimate is based on average 
dispersion curve phase velocities 

corresponding to each layer as 1.08 VR  
 

Through the inversion process, only VS was updated iteratively to obtain a new 

forward theoretical dispersion curve until an acceptable fit to the measured dispersion 

curve was achieved. Stopping criteria considered for an acceptable fit included a root 

mean square error (RMSE) in phase velocity of 5.0 m/sec and a maximum of 

10 iterations. These values were considered appropriate, as smaller RMSE values yielded 

similar results and the iterations never reached the specified maximum number of 

iterations. The final VS values were considered to be the 1-D VS profile of the site. An 

overview of the analysis procedure is presented as a flowchart in Figure 4.12. 
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Figure 4.12 MASW procedure to obtain 1-D S-wave velocity profile from field 
experiment seismograms. 

 

4.4 Field Experiment Seismogram Results 

4.4.1 Stacked Field Experiment Seismograms  

Seismic signals were recorded with vertical geophones mounted at the ground 

surface and FOS buried at depths of 0.5 m and 1.0 m. The time domain signals for the 

different geophone channels and FOS zones were obtained for each individual shot 

record and represented as digital seismograms. Resulting seismograms were stacked (i.e., 

summed) for each seismic source-offset distance to improve signal-to-noise ratio. The 
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resulting stacked seismograms from the surface vertical geophones, FOS at depth of 

0.5 m, and FOS at depth of 1.0 m are shown respectively in Figures 4.13 through 4.15 for 

the seismic source to the left side of the spread. Figure 4.16 through 4.18 show the 

stacked seismograms for the same sensors using the seismic source to the right side of the 

spread. 

The signals obtained with the FOS (shown in Figures 4.14, 4.15, 4.17, and 4.18) 

exhibited greater noise than the signals obtained with the surface vertical geophones 

(shown in Figures 4.13 and 4.16). A likely source of noise is referred to as fading, which 

occurs when the backscattered light from a zone end is low and the receiver does not 

have sufficient signal to demodulate. This causes large fluctuations in the output signal. 

Although the amount of noise in the data was evident, seismograms were used “as is” for 

MASW analysis. This is justified by the fact that incoherent noise between traces will 

cancel. 
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4.4.2 Combined Dispersive Imaging Results from Field Experiment Seismograms  

Representative combined dispersion images were created with data acquired with 

each sensor array for the left and right seismic source side offsets. Results are shown in 

Figures 4.19.  

 

Figure 4.19 Combined dispersive images obtained with the different sensors for the left 
and right side seismic source offsets.  

Also showing peak amplitudes phase velocities corresponding to R-wave fundamental 
mode (M0) and the existence of higher modes. The frequency ranged from 5 to 100 Hz in 
the analysis. Figure shows frequencies under 50 Hz to focus on the frequency range were 
most of the energy in the FOS signal concentrated. 
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By visually comparing the results for the seismic source offsets located to the left 

and right side of the spreads, similarities in the trends of phase velocities as a function of 

frequency were observed. These similarities suggested that the site was laterally 

homogeneous and results were reproducible for each sensor.  

4.4.3 Dispersion Curve Results from Field Experiment Seismograms 

Patterns of the apparent fundamental Rayleigh mode M0, noted in Figure 4.19, 

were used for dispersion curve interpretation. Discrete points of interpreted peak 

fundamental-mode phase velocity amplitude over different frequencies were selected to 

obtain the M0 dispersion curve. The selected dispersion curves are shown in Figure 4.20. 

 

Figure 4.20 Comparison of interpreted dispersion curves from the field experiment 
seismograms for the different sensors and respective seismic source offset 
sides. 
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The frequency range of the dispersion curves govern the wavelengths of the 

excited Rayleigh waves, and thus the depths to which the shear wave velocities can be 

estimated. Frequencies, as low as 6 Hz, were perceived with the FOS and geophone 

arrays. As a result, this allowed the MASW VS profiles to reach approximately the same 

depths of investigation.  

The M0 dispersion curves obtained using the geophone array extended to higher 

frequencies than those obtained with the FOS. Higher frequencies are used to determine 

the VS at shallower depths. Figure 4.19(a) shows a well-defined M0 for the geophone 

dispersive images up to frequencies of about 50 Hz. This allowed for easier interpretation 

of the M0 dispersion curve. The combined dispersive images obtained from the FOS 

measurements, shown in Figures 4.19(b, c), show separation of M0 at the lower 

frequencies. At higher frequencies, contamination of higher modes prevented further 

interpretation of the M0 dispersion curves. The detection of higher modes was likely the 

result of the sensor depth rather than sensor type. This is further explored through 

synthetic seismograms in the following chapter. The observed frequencies of the M0 

dispersion curves were limited to below 15 to 25 Hz for the FOS at a depth of 0.5 m. The 

frequencies of the M0 dispersion curve for the FOS at a depth of 1.0 m were limited to 

below 20 Hz.  

Both the geophones and FOS dispersion curves were fairly consistently 

interpreted as shown in Figure 4.20. One of the main differences in the interpretation of 

the M0 dispersion curves was the limitation in frequency range in the FOS previously 

mentioned and minor discrepancies in the selection of points to represent the dispersion 

curves.  
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4.4.4 Shear Wave Inversion Results from Field Experiment Seismograms 

A least-squares inversion of the selected M0 dispersion curves was applied to 

estimate 1-D VS profiles as described in section 4.3.3. Inversion parameters were used 

consistently for all sensors. The final inverted VS profiles obtained using the dispersion 

curves are shown in Figure 4.21.  

 

Figure 4.21 Final inverted VS profiles obtained from the different dispersion curves 
using the field experiment seismograms. 

 

It was noted that the VS profile obtained with the different sensors was within the 

ranges of depth and VS of the expected geology described in Figure 3.5. Differences in 

shear wave velocities show the non-uniqueness of the inversion process, where multiple 

shear wave profiles (and also other changing material properties) can yield similar 
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dispersion curves. Depths from 24.21 to 26.32 m were obtained using the surface vertical 

geophones. Depths from 19.78 to 24.21 m were obtained using the FOS at a depth of 

0.5 m. Depths from 25.53 to 28.74 m were obtained using the FOS at a depth of 1.0 m. 

Irrespective of these differences, the shear wave velocities obtained with the FOS at the 

two different depths were in the same range as those obtained with surface vertical 

geophones. Depths of investigation up to about 25 m were achieved during the inversion 

using the MASW analysis. This depth is about the expected depth of the Glendstone 

Limestone considered to define the depth of interest, as previously described in 

Chapter III.  

4.5 Ground Truth Verification using Seismic Cone Penetrometer Test 

In order to validate the VS inversions obtained with the MASW analysis, a 

Seismic Cone Penetrometer Test (SCPT) was performed at mid length of the sensor 

installation. The SCPT test was performed about 22 days after the MASW field 

experiments with the FOS and geophones, due to unavailability of the SCPT equipment. 

As mentioned in section 2.2.1, the SCPT is a Cone Penetrometer Test (CPT) used in 

conjunction with down-hole measurements and it is commonly used for VS profiling due 

to its cost effectiveness and fast data acquisition. Furthermore, since this method is 

invasive, direct measurements are made and it does not suffer from the non-uniqueness of 

the inversion solution. The experiment followed the ASTM D 7400-14: Standard Test 

Methods for Downhole Seismic Testing.  

The SCPT setup involved the CPT cone and push rod normally pushed into the 

ground and a steel shear beam pressed onto the ground using the CPT vehicle weight. 

These are shown in Figure 4.22. Two horizontal geophones located inside the push rod 
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were used for measurements. A sledgehammer was used to horizontally strike the end of 

the steel shear beam and generate a SH-wave. A contact trigger attached to the 

sledgehammer measured the exact starting time of the hammer strike. One of the two 

geophones was aligned parallel to the shear beam to record the arrival time of the strike. 

Care was taken by keeping track of the rod alignment to avoid rotating the geophones as 

additional rods were added and the cone was pushed further into the ground.  

  

Figure 4.22 Seismic Cone Penetrometer Test (SCPT) setup. 

 

Seismic recordings were performed every approximately 1 m in depth. To do this, 

the cone rod was pushed down manually about every 1 m and then stopped. When 

stopped, a hammer strike was performed on the shear beam. Amplitude and times of 

arrival were recorded at the geophone for each depth location. The average shear wave 

velocity was calculated for each given depth interval as (ASTM D7400-14): 

 𝑉𝑆 =
𝐿2−𝐿1

Δ𝑇𝑅2−𝑅1
 , (4.1) 
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as shown in Figure 4.23, L1 and L2 are the respective straight-line distances. Generalized 

at increasing depths of the CPT geophones, the hypotenuse, Li, is given by: 

 𝐿𝑖 = √𝐷𝑖
2 + 𝑋𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒

2  (4.2) 

and ΔTR2-R1 is the difference in arrival times of the measured shear waves at the 

increasing depths. The distance from the shear beam producing the SH source to the 

location of the cone, 𝑋𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑜𝑢𝑟𝑐𝑒, was 2 m. Straight-line distances were found using 

this offset. A schematic of this procedure is shown in Figure 4.23.  

 

Figure 4.23 Methodology to obtain VS using SCPT. 

(Taken from ASTM D7400-14) 

During the SCPT field tests, cone rod penetration with depth was controlled 

manually and depths were recorded and used to calculate the straight-line distance to the 
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sensor. At each depth the cone penetrometer was stopped, seismic measurements were 

made, as shown in Figure 4.24. A total of 21 SCPT records (depths) were collected. 

Readings were taken from 0.61 m from the ground surface up to a depth of 21.44 m. 

Although a target depth of 25 m was selected for the SCPT test, greater depths than 

21.44 m were not possible due to drilling refusal of the CPT rig. At the depth of 21.44 m, 

the Glendon Limestone, which is considered first bedrock encountered in borings in the 

area, may be present and likely prevented advancement to further depths. In addition, the 

final depth achieved with the SCPT was comparable to depths achieved with the MASW 

method. 

The delay time from the source to the receiver at each depth was interpreted using 

the first trough point of the recorded wave trains. These are shown as crosses in 

Figure 4.24. By comparing the delay times between respective depths from the SCPT 

depth records, the shear wave velocity was estimated using Equation (4.1). 

Corresponding VS values are shown in Figure 4.24.  

From the SCPT results, a shear wave velocity profile was constructed, as shown 

in the solid thick black line in Figure 4.25. MASW results shown in Figure 4.21 are also 

included for comparison. 
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Figure 4.24 Depth records obtained using SCPT and calculated VS with depth. 
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Figure 4.25 Shear wave velocity profile from SCPT test compared to field MASW 
inverted shear wave velocity profiles. 

 

When comparing the SCPT VS with the MASW inverted VS for the different 

sensor arrays, larger discrepancies were observed at depths greater than 10 m. CPT tip 

resistance and sleeve friction data was collected as the push rod advanced further with 

depth to perform SCPT soundings and are included in Appendix B. CPT data suggests 

that at these depths, thin sand layers with higher tip resistance were encountered. Based 

on the expected geology at these depths, it could have been caused by the Catahoula 

Formation, which may have existing sandstone layers (Murphy & Albertson, 1996). 

Resolving thin layers at greater depths is a limitation of the MASW method. When thin 

layers are close to the ground surface, these can be well resolved; at great depths the 

resolution is limited and only large changes can be detected (Foti et al., 2015). 
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Differences in the MASW VS profiles are also justified by the non-uniqueness of the 

inversion problem, in where different subsurface properties could yield an identical 

theoretical dispersion curve that is used for inversion (Foti et al., 2015). 
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CHAPTER V 

SYNTHETIC SEISMOGRAMS METHODOLOGY 

5.1 Introduction 

A dynamic 2-D axisymmetric finite element (FE) analysis was used to model a 

field MASW survey and obtain time domain signals (i.e., traces) of vertical velocities, 

horizontal velocities, and longitudinal strains at discrete locations. These traces were to 

simulate data collected with vertical geophones, horizontal geophones and FOS, 

respectively. The data was extracted at three different depths: 0.0 m (i.e., at the ground 

surface), 0.5 m, and 1.0 m. At each depth, a set of signals for each modeled sensor type 

resulted in a synthetic seismogram dataset. These were then used in MASW analysis in 

the following chapter. The main objective of the synthetic seismograms was to further 

explore the phenomenon occurring at depth with the buried FOS and orientation of the 

FOS measurands. 

5.2 Finite Element Model Description 

A MASW survey test was modeled using a 2-D axisymmetric finite element (FE) 

geologic soil half-space model using the commercial software package COMSOL 

Multiphysics®. The FE model consisted of a simplified multi-layer model of the material 

properties of physical test site of the field experiments, and boundary conditions and 

excitation to simulate a MASW field data collection. 
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5.2.1 Finite Element Model Geometry 

The test site was modeled as a 2-D axisymmetric 100-m-wide by 100-m-deep 

half-space. The axisymmetric boundary condition was applied to the leftmost boundary to 

reduce the model to 2-D; this is further explained in section 5.2.3. The extents of the 

model were selected to accommodate the array of sensors to be investigated (i.e., a 70-m 

sensor spread) and minimize undesirable reflections from the bottom and right side 

boundaries of the model.  

At the surface (i.e., at 0.0 m) and at depths of 0.5 m and 1.0 m, 36 discrete points 

at 2-m spacing were added to the model starting at an offset of 2.5 m from the 

axisymmetric axis. Such discrete points are representative of 70-m spreads of geophone 

channel and FOS zone locations at the three different depths. The 2-m spacing 

represented the location between such channels and zones. This spacing was selected, as 

this was similar to the spatial distribution of FOS zones used in the field experiments 

(i.e., 2.041 m). The spacing was applied identically for all synthetic receivers to provide 

direct comparison of results. The offset of 2.5 m from the axisymmetric axis represented 

the distance from the seismic source to the first receiver (i.e., source-offset distance).  

Geometrical discretization was also applied to the model for mesh consideration. 

Two fine layers were set up near the free surface to simplify meshing and data extraction 

at depths of 0.5 m and 1.0 m. At the ends of the spread, lines were extended to depth to 

ensure meshing uniformity. The resulting model geometry is shown in Figure 5.1. 
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Figure 5.1 Finite element model geometry showing channel/zone locations. 

 

5.2.2 Finite Element Model Material Properties 

In the 2-D FE axisymmetric model, layers of soil were assumed to be horizontally 

homogeneous and isotropic. In the vertical direction, material properties varied. Layers of 

materials were not outlined in the geometry since interfaces within the different geologic 

materials were assumed to be continuous (Kramer, 1996), and thus were defined in the 

model as a function of depth.  
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Based on elastic wave propagation theory, material properties follow linear elastic 

relationships (Foti et al., 2015). To define soil layers in the wave propagation model, 

linear elastic material properties included: S-wave velocity, P-wave velocity and density.  

An S-wave velocity profile was idealized to simulate MASW results of the field 

experiments discussed in the previous chapter. The idealization was based on an 

approximated visual average of the inverted shear wave velocities from the different 

sensors in the MASW field experiments. The VS profile idealization consisted of five 

different layers as shown in Figure 5.2. The selection of five layers was selected to 

accommodate to the variation of VS values with depth every 5 m up to a depth of 20 m. A 

constant VS value was assigned for depths below 20 m. 

 

Figure 5.2 Finite element idealized input shear wave velocity profile compared to 
inverted MASW shear wave profiles obtained through field experiments. 
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The resulting VS profile with depth was: 165 m/sec from 0.0 to 5.0 m in depth; 

210 m/sec from 5.0 to 10.0 m in depth; 280 m/sec from 10.0 to 15.0 m in depth; 

360 m/sec from 15.0 to 20.0 m in depth; and 600 m/sec beyond 20.0 m in depth. The 

idealized VS profile input used in the FE model served to compare the accuracy of the 

inverted MASW VS profile results from the synthetic seismograms. 

P-wave velocities were set up based on the VP/VS ratio defined in Equation (2.3) 

using a constant Poisson’s ratio value with depth of 0.3 (as defined in the field 

experiments). This resulted in a VP with depth equal of about 1.87 VS.  

A constant density with depth of 1550 kg/m3 was used, equal to the one assumed 

during the analysis of the field experiments. The use of a constant Poisson’s ratio (used in 

VP) and density allowed this study to ignore the effects on the variation of these 

properties with depth, and instead focus on the difference with depth in inverted MASW 

VS results.  

Material properties for the idealized layers are summarized in Figure 5.3. 

5.2.3 Finite Element Model Boundary Conditions 

The leftmost boundary of the model was defined as an axisymmetric boundary 

condition to simplify the 3-D wave propagation problem into a 2-D axisymmetric model. 

This simplification allowed signal decay due to geometrical spreading. The geometrical 

spreading permits the vertical transient displacement applied at the surface along the 

axisymmetric axis to propagate along cylindrical wave fronts (Foti et al., 2015). These 

wave fronts subsequently attenuate body waves and surface waves as a function of 

distance and depth, as would be expected in field measurements.  
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The upper surface (ground surface) was a free boundary condition to allow 

surface waves (i.e., Rayleigh waves) to generate.  

The bottom and rightmost boundaries were low-reflecting boundary conditions, as 

defined by COMSOL® (2012). This type of boundary condition attempts to create a 

perfect impedance match, σ  n, for both P- and S-waves at the boundary such that: 

 𝜎 ∙ 𝒏 = −𝜌𝑚𝑎𝑡 𝑉𝑃𝑚𝑎𝑡
 (

𝑑𝒖

𝑑𝑡
∙ 𝒏) 𝒏 − 𝜌𝑚𝑎𝑡 𝑉𝑆𝑚𝑎𝑡

 (
𝑑𝒖

𝑑𝑡
∙ 𝒕) 𝒕 , (5.1) 

where n and t are the unit normal and tangential vectors at the boundary, respectively; 

ρmat, VPmat and VSmat are the density, P- and S-wave velocities of the material domain 

adjacent to the boundary; and du/dt is the derivative of the displacement vector at the 

boundary. Equation (5.1) can be generalized as:  

 𝜎 ∙ 𝒏 = −𝒅𝑖(𝜌𝑚𝑎𝑡, 𝑉𝑃𝑚𝑎𝑡
, 𝑉𝑆𝑚𝑎𝑡

) 
𝑑𝒖

𝑑𝑡
 , (5.2) 

where the mechanical impedance di is a diagonal matrix that can be modified for user 

input. The default impedance in COMSOL® defined as: 

 𝒅𝑖 = −𝜌𝑚𝑎𝑡 (
𝑉𝑃𝑚𝑎𝑡

+𝑉𝑆𝑚𝑎𝑡

2
) 𝑰 , (5.3) 

was used. Using the impedance in these boundary conditions, significant reflections from 

the boundaries back into the region of interest in the model (i.e., 70 m spreads of sensors) 

were prevented without the added expense of extending the size of the model.  

Boundary conditions used in the model are summarized in Figure 5.3. 
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Figure 5.3 Boundary conditions and material properties used in the 2-D axisymmetric 
finite element model. 

 

5.2.4 Finite Element Model Transient Impulse Loading  

A vertical transient displacement was imposed on the axis of symmetry at the 

ground surface, as shown in the upper left corner of the model in Figure 5.3. The impulse 
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was a Gaussian pulse with center at 0.05 sec with a standard deviation of 0.01 sec. The 

resulting time domain displacement input is shown in Figure 5.4. 

 

Figure 5.4 Gaussian vertical transient input displacement used during the simulation. 

 

The FFT response from the Gaussian displacement input is shown in Figure 5.5. It 

can be observed that at frequencies of about 60 Hz and above, amplitudes were limited by 

the energy imparted by the input Gaussian transient displacement pulse. 
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Figure 5.5 FFT of Gaussian vertical transient input displacement.  

 

5.2.5 Finite Element Mesh 

After preparing the model, spatial discretization considerations were needed. This 

was defined in the simulation through the mesh element size. The mesh element size was 

controlled by the minimum Rayleigh wavelength, λRmin, defined in this study as: 

 𝜆𝑅𝑚𝑖𝑛 =
𝑉𝑅𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
 , (5.4) 

where VRmin is the minimum R-wave velocity and fmax is the maximum frequency input 

imparted by the input seismic source load. In this study, VR can be approximated as 

0.93VS using Equation (2.5) with the constant Poisson’s ratio of 0.3. Thus, since the 

minimum shear wave velocity, VSmin, defined in the model was 165 m/sec, this resulted in 

a VRmin of about 153 m/sec. The fmax used in this study was considered to be 

approximately 60 Hz, based on the FFT response shown in Figure 5.5. Using these values 

in Equation (5.4), λRmin is about 2.56 m. To ensure that the finite element mesh could 
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resolve λRmin, the maximum element size, Δxmax, was set to allow discretization of a 

minimum of eight elements per wavelength, such that: 

 Δ𝑥𝑚𝑎𝑥 =
𝜆𝑅𝑚𝑖𝑛

8
 . (5.5) 

This resulted in a Δxmax of 0.32 m. For meshing uniformity within discrete locations to be 

sensed, Δxmax was further simplified to 0.25 m. This allowed for about 10 elements within 

the minimum wavelength considered. A quadratic discretized mesh with quadrilateral 

element size of 0.25 m was used throughout the model. The mesh consisted of a total of 

160,800 elements, as shown in Figure 5.6. 

  

Figure 5.6 Quadratic discretized mesh with uniform square quadrilateral elements of 
size of 0.25 m used throughout the model.  
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5.2.6 Finite Element Time Domain Analysis 

Following the spatial discretization, temporal resolution was defined using a 

critical time step, Δtcritical. Although COMSOL® mainly uses an implicit time integration 

solver, Δtcritical was determined using the Courant-Frederichs-Lewy (CFL, 1928) 

condition defined by: 

 𝐶𝐹𝐿 =
𝑉𝑃𝑚𝑎𝑥Δ𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

∆𝑥𝑚𝑎𝑥
  (5.6) 

where VPmax is the maximum P-wave velocity, given by 1.87 VSmax (i.e., 1.87 * 

600 m/sec), which results in 1122 m/sec. Solving for a CFL value of 0.5 to ensure 

numerical stability, Δtcritical, can be solved for as: 

 Δ𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
0.5∆𝑥𝑚𝑎𝑥

𝑉𝑃𝑚𝑎𝑥
 . (5.6) 

This resulted in a critical time step of 0.00011 sec. Therefore, for the time dependent 

simulation, a time-step size of 0.0001 sec was used for a total simulation time of 1 sec. 

Data was saved for every 0.001 sec of simulation time, similar to the data collected 

during the field experiments. A snapshot of displacement at 0.2 sec of simulation is 

shown in Figure 5.7. Corresponding vertical velocities, horizontal (i.e., radial) velocities, 

and horizontal (i.e., radial) strains for the same snapshot in time are shown in Figure 5.8, 

5.9, and 5.10, respectively.  
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Figure 5.7 Snapshot of total displacement at 0.2 sec of simulation time. 

 

 

Figure 5.8 Snapshot of vertical velocities at 0.2 sec of simulation time.  
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Figure 5.9 Snapshot of horizontal velocities at 0.2 sec of simulation time. 

 

 

Figure 5.10 Snapshot of horizontal strains at 0.2 sec of simulation time. 
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5.3 Extraction of Synthetic Seismograms  

Although velocity and strain data were obtained throughout the model in the finite 

element analysis, as shown in Figures 5.8 through 5.10, time domain signals (i.e., traces) 

were only extracted at discrete points defined in the geometry shown in Figure 5.1. 

Remaining data was not used in this study. Extraction of time domain signals of vertical 

and horizontal velocities at the discrete points represented vertical and horizontal 

geophones, respectively, at depths of 0.0 m (i.e., at the surface), 0.5 m, and 1.0 m. Traces 

of average horizontal strain over 5-m lengths centered at the defined discrete points 

representative of FOS zones were obtained at the same depths. Synthetic seismograms 

resulting from acquired traces allowed comparisons to be made for the geophones and 

FOS at different depths.  

Although no sensors were used in the model, the point vertical velocities are 

referred to as vertical geophones, point horizontal velocities will be referred as horizontal 

geophones, and average horizontal strains will be referred to as FOS. The respective 

depths were used to describe the sensor location. 
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CHAPTER VI 

SYNTHETIC SEISMOGRAMS ANALYSIS AND RESULTS 

6.1 Synthetic Seismograms Data 

Synthetic seismograms of simulated vertical and horizontal geophones, and 

simulated FOS for different installation depths were obtained through a finite element 

(FE) dynamic analysis, as described in Chapter V. MASW analysis of the synthetic data 

from the geophones and FOS was conducted. Results of the MASW analysis were 

compared with respect to sensor type and installation depth. The subsequent MASW 

inverted VS profiles for the different types of sensors and installation depths were 

compared to the idealized input shear wave velocity profile used in the FE model.  

6.2 Synthetic Seismogram Test Matrix 

As previously described, spreads of vertical and horizontal geophones, and FOS 

zones were simulated using discrete points in the 2-D FE model. A total of 36 discrete 

points were used, spaced every 2 m. The sensor arrays formed spreads of 70 m in length. 

All measurements were obtained from the same FE model using the vertical displacement 

pulse acting on the ground surface along the axis of symmetry, at a source offset of 

2.5 m. A test matrix describing the difference in the synthetic seismogram data is shown 

in Table 6.1. 
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Table 6.1 Test matrix summary of synthetic seismograms obtained with vertical and 
horizontal geophones, and FOS at depths 0.0 m, 0.5 m, and 1.0 m. 

Sensor Type  Sensor Depth 

Vertical 
Geophones 

0.0 m 
0.5 m 
1.0 m 

Horizontal 
Geophones 

0.0 m 
0.5 m 
1.0 m 

 FOS Zones 
0.0 m 
0.5 m 
1.0 m 

 

These synthetic seismograms generated a total of nine seismic data files: three for 

the vertical geophones, three for the horizontal geophones and three for the FOS. Every 

set of three seismic data files for each sensor corresponded to depths of 0.0 m, 0.5 m, and 

1.0 m. These data files were then used for the MASW analysis. 

6.3 Analysis Procedure for Synthetic Seismograms 

Synthetic seismograms were processed using a similar procedure as the field data 

using KGS’s SurfSeis® software.  

6.3.1 Preprocessing Synthetic Seismograms 

6.3.1.1 File Format Conversion of Synthetic Seismograms 

All seismograms from the FE were obtained in ASCII format and needed to be 

converted in the standard SEG-2 binary format (Pullan, 1990) required to import data into 

SurfSeis®. This was performed using a script created in Matlab® named ASCIItoSEG2.m, 

shown in Appendix A.2. Once data was available in the required format, it was imported 

into SurfSeis®. 



 

120 

6.3.1.2 Installation Geometry Assignment of Synthetic Seismograms 

After data was imported into SurfSeis®, installation geometry was assigned. This 

involved specifying the location of the synthetic receivers (i.e., geophones and FOS) and 

offset of the seismic source (i.e., transient pulse) to the first receiver. The metric 

stationing system used referenced the first receiver from the seismic source as 

station 1001. The increment between stations was set as 2 m based on the spacing of the 

receivers. Following this stationing system, receiver locations were assigned to be from 

station 1001 to station 1036. Seismic source offset was set at 2.5 m, which represents 

Station 999.75. The geometry assignment with the corresponding metric stationing 

reference is shown in Figure 6.1.  

 

Figure 6.1 Synthetic seismogram installation geometry metric stationing system. 
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6.3.2 Dispersion Analysis from Synthetic Seismograms 

6.3.2.1 Dispersive Imaging from Synthetic Seismograms 

Using the synthetic seismograms, the coherency patterns of the propagating 

velocities of each constituent measurement were used to calculate the variation of phase 

velocities as a function of frequency, i.e., dispersive imaging. This was performed using 

the phase-shift method (as discussed in section 2.2.2.3.1) implemented in SurfSeis® by 

scanning through different phase velocities over the desired frequency of interest. 

Identically to the analysis of the field data, scanning was performed for phase velocities 

ranging from 50 to 1000 m/sec in 1-m/sec increments over a selected frequency range of 

5 to 100 Hz in 0.01-Hz increments. The scheme used by this method was summarized in 

Figure 2.22. An example of the resulting dispersive imaging from the synthetic 

seismograms is shown in Figure 6.2. Compared to the analysis of the field data, no 

combination of dispersive images was performed since only one source offset was used 

for the simulation. 

       

Figure 6.2 Example of dispersive image obtained using synthetic seismograms of 
vertical geophones at the surface. 
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6.3.2.2 Dispersion Curve Selection from Synthetic Seismograms 

The resulting dispersive images from each synthetic seismogram were used to 

determine the fundamental mode dispersion curves. This was performed applying 

qualitative interpretation to select discrete points of peak fundamental-mode phase 

velocity amplitude over different frequencies. An example was shown in Figure 4.10 for 

the field data analysis. In the same manner as the analysis of the field data, selection of 

these points was based on phase velocity amplitude energy of above 50%. It was decided 

that, at a minimum, 15 points were to be selected. In many instances, however, more 

points were needed to better define the curvature representing the dispersion curves. 

Other considerations for interpretation of the dispersion curves included: (1) avoiding 

frequencies gaps greater than 5 Hz over which the M0 dispersion curve could not be 

interpreted with high confidence, and (2) avoiding locations of possible higher mode 

contamination of the fundamental mode (M0). An example of these considerations was 

shown in Figure 4.11.  

Interpretation of the fundamental mode for each respective sensor was performed 

with no consideration of the dispersion curve selection of other sensors (and other depths) 

to treat each data independently.  

Influences on higher modes were noted in the dispersive images. However, since 

the MASW, on which this study concentrates, focuses on determination of the 

fundamental modes of Rayleigh waves, only the M0 dispersion curve was used for 

analysis.  
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6.3.3 Inversion Analysis from Synthetic Seismograms 

Following the same steps used in the analysis of the field data, the resulting 

dispersion curves were then used for inversion (back-calculation) to obtain 1-D VS 

profiles with depth for the different sensors. An initial inversion model was defined using 

the input material properties used in the FE model shown in Table 6.2. A theoretical 

forward dispersion curve was calculated using the initial inversion subsurface properties, 

which consisted of: layer thickness (h), density (ρ), S-wave velocity (VS), and Poisson’s 

ratio (υ). Although the layer thicknesses of the FE model were known, the initial 

inversion model consisted of ten layers with variable thickness. Similar to the inversion 

of the field data, having ten layers was considered to provide adequate vertical resolution 

as well as numerical stability for the inversion to resolve changes in the dispersion 

curves. The variable thickness of the layers was made to accommodate layers to the 

dispersion curves curvature. The corresponding thickness of layers was adjusted based on 

the wavelength scaling as a function of frequency as outlined in Equation (2.16). To 

project the maximum depth of investigation, a depth to wavelength ratio (ZMAX/λMAX) of 

0.35 was used. This ratio followed the conservative end of the range defined in the 

relationship of Equation (2.8). The maximum wavelength, λMAX, was solved for using 

Equation (2.6), with inputs of phase velocity at the lowest frequency defined in the 

dispersion curve and its corresponding frequency.  

Estimates of shear wave velocities for the initial inversion model were found 

multiplying the average phase velocity over each layer by a factor of 1.08. The value of 

1.08 was determined from Equation (2.5) using the selected Poisson’s ratio of about 0.3. 
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Table 6.2 Initial Model Parameters Used for Inversion Analysis of Synthetic 
Seismograms 

Material Property Values considered for analysis 

Layer Thickness (h) 

Depth is scaled using the corresponding 
wavelengths as a function of frequency as 

shown in Equation (3.13). Layers are 
adjusted by the rate of change of values 

picked in the dispersion curve.  
Density (ρ) 1.55 g/cm3 

Poisson’s Ratio (υ) 
0.3 (In the FE model VP was defined using 

this constant value of Poisson’s ratio, which 
resulted in VP = 1.87 VS) 

Shear Wave Velocity (VS) 
Initial estimate is based on average 
dispersion curve phase velocities 

corresponding to each layer as 1.08 VR  
 

Through the inversion process, only VS was updated iteratively to obtain a new 

forward theoretical dispersion curve until an acceptable fit to the measured dispersion 

curve was achieved. Stopping criteria considered for an acceptable fit included a root 

mean square error (RMSE) in phase velocity of 5.0 m/sec and a maximum of 

10 iterations. These parameters were identical to those used in the field data analysis, and 

were considered appropriate, as smaller RMSE values yielded similar results and the 

iterations never reached the specified maximum number of iterations. The final VS values 

were considered to be the 1-D VS profile of the site. An overview of the analysis 

procedure is presented as a flowchart in Figure 6.3. 
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Figure 6.3 MASW procedure to obtain 1-D S-wave velocity profile from synthetic 
seismograms. 

 

6.4 Synthetic Seismogram Results 

6.4.1 Synthetic Seismograms 

Seismograms of the vertical geophones (represented using point vertical 

velocities), horizontal geophones (represented using point horizontal velocities), and 

distributed FOS (represented by averaged horizontal strains) were obtained at depths of 

0.0 m, 0.5 m, and 1.0 m using the FE model. The normalized trace amplitude synthetic 

seismograms are shown in Figure 6.4 for the vertical geophones, horizontal geophones, 
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and FOS, respectively. Because of the absence of noise in the synthetic signals, the 

arrival times of the different wave types are easily distinguished. The normalized 

amplitudes shown in Figures 6.4 depict slight variations in trends of arrival times. This 

variation may be likely caused by the interaction of different wave types or the arrival 

times associated with different modes. This is further justified by the decrease of vertical 

and horizontal amplitudes with depth as shown in Figure 2.4. By comparing the trace 

amplitudes of the geophones and FOS, there is better agreement of the FOS with the 

horizontal geophones since both measured the horizontal component of the wave 

propagation. It was also noted that the seismograms recorded minor reflections due to the 

low-reflecting boundary ends of the model. Since the seismic source offset and direction 

is specified in the installation geometry, such minor inverse propagating amplitudes, 

although coherent, were ignored in the post processing.  
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6.4.2 Dispersive Imaging Results from Synthetic Seismograms  

Dispersive images were created with synthetic data obtained for each simulated 

sensor at the different depths investigated. Results are shown in Figure 6.5.  

Amplitudes were limited by the energy imparted by the input Gaussian transient 

displacement pulse at frequencies above 60 Hz, as previously shown in Figure 5.5. Even 

though this was evident at frequencies above 60 Hz, these high frequencies are typically 

not excited in field data collections by the type of seismic source used (e.g., 

sledgehammer). For this reason, the ultimate goal of obtaining a VS profile with depth 

was not affected. 

Although the dispersive images from the different sensors are similar in many 

ways there are some important differences. The vertical geophones dispersive images, 

shown in Figures 6.5 (a1, a2, a3), showed good consistency with depth where the 

fundamental modes were apparent. On the other hand, the dispersive images of the 

horizontal sensors (i.e., horizontal geophone and FOS), shown in Figures 6.5 (b1, b2, b3, 

c1, c2, c3), were not as consistent with depth. As explained through the seismograms, this 

could have resulted from the interaction of different wave types and effects associated 

with different modes. 

The dispersive image of the horizontal geophones at the surface (Figure 6.5(b1)) 

showed a very well defined fundamental mode. At depths of 0.5 m and 1.0 m (Figures 6.5 

(b2, b3)), the existence of higher modes was more evident and frequencies were more 

limited in range.  
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The FOS dispersive images (Figures 6.5(c1, c2, c3)) displayed higher modes at 

the surface and these were more apparent with increasing depth. The frequency ranges of 

the fundamental mode were similar to those obtained with the horizontal geophones.  

6.4.3 Dispersion Curves Results from Synthetic Seismograms 

As in the case of the field experiments, patterns of the apparent fundamental 

Rayleigh mode M0, noted in Figure 6.5, were used for dispersion curve interpretation. 

Discrete points of interpreted peak fundamental-mode phase velocity amplitude over 

different frequencies were selected to obtain the M0 dispersion curve. The selected 

dispersion curves are shown in Figure 6.6. 

  

Figure 6.6 Comparison of interpreted dispersion curves from the synthetic experiment 
seismograms for the different sensors and respective sensor depths. 
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Ranges in frequency of the dispersion curves affect the depths at which the shear 

wave velocities can be estimated. Frequencies, as low as 5 Hz, were achieved for all 

sensor types. As a result, this allowed the survey to reach about the same depths of 

investigation.  

The M0 dispersion curve obtained with the vertical geophones achieved higher 

frequencies than horizontal geophones and FOS. As previously mentioned, higher 

frequencies are used to determine VS at shallow depths. It was also observed that higher 

frequencies were obtained with the simulated sensors placed at the ground surface than 

the buried sensors. 

The R-wave M0 dispersion curve was defined for the dispersive images of the 

vertical geophones up to frequencies to about 75 Hz with no apparent influence of higher 

modes, as shown in Figures 6.5(a1, a2, a3). As a result, the M0 dispersion curve was 

selected with easier judgment for the different investigated depths.  

The selection of M0 dispersion curves for the horizontal geophones and the FOS 

were similar since both sensors are essentially a function of the horizontal component of 

wave propagation. The M0 could be resolved easily for both of these sensors at the lower 

frequencies. The maximum frequency at which M0 could be resolved, however, 

decreased with depth as higher modes obscured the fundamental mode, as shown in 

Figures 6.5(b2, b3, c2, c3).  

The dispersive images associated with the horizontal geophones at the surface 

were easier to interpret. This was a result of the peak amplitude phase velocities in the 

dispersive images representing M0 extending continuously to higher frequencies, as 

shown in Figures 6.5(b1, b2, b3). The dispersive images associated with the FOS, 



 

132 

however, were more difficult to interpret. This was due to gaps caused by possible higher 

modes in the peak phase velocity associated with M0, as shown in Figures 6.5(c1, c2, c3). 

These gaps are likely the result of the sensor length, or aperture, of the longitudinal strain 

measurement. The aperture relates to the FOS measuring the average strain over 5-m 

zones in comparison to the geophones measuring velocity at discrete point locations. A 

possible higher mode displacement pattern could have generated a stronger frequency 

response over a length of FOS, not perceived otherwise by the geophones. For this 

reason, based on the frequency gap considerations on selecting dispersion curve points 

mentioned in section 6.3.2.2, slightly higher frequencies were interpreted for the 

dispersion curves of the horizontal geophones.  

6.4.4 Shear Wave Inversion Results from Synthetic Seismograms 

To maintain consistency in the interpretation for estimating 1-D VS profiles for 

each of the obtained dispersion curves, the inversion procedure was performed in the 

same manner as the field experiments. The procedure and inversion parameters used are 

described in section 6.3.3. The final inverted VS profiles obtained using the dispersion 

curves are shown in Figure 6.7.  
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Figure 6.7 Final inverted VS profiles obtained from the different dispersion curves 
using the synthetic seismograms. 

  

Differences in shear wave velocities show the non-uniqueness of the inversion 

process, where multiple shear wave profiles (and also other changing material properties) 

can yield similar dispersion curves. Depths from 32.23 to 33.98 m were obtained using 

the vertical geophones. Depths from 24.77 to 25.96 m were obtained using the horizontal 

geophones. Depths from 25.59 to 27.96 m were obtained using the FOS. Irrespective of 

these differences, the shear wave velocities obtained with the FOS at the different sensor 

depths were in the same range as those obtained with vertical and horizontal geophones.  
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6.5 Verification using Idealized Shear Wave Velocity Input in Finite Element 
Model 

In order to verify the VS inversion results obtained through the MASW analysis, 

the FE input shear wave velocity profile, shown in Figure 5.2, was utilized. Figure 6.8 

includes the FE input VS profile, as well as the inverted MASW VS profiles for 

comparison from Figure 6.7. 

 

Figure 6.8 Input shear wave velocity profile used in finite element model compared to 
MASW inverted shear wave velocity profiles obtained from synthetic 
seismograms. 

 

Comparing the FE VS input with the MASW inverted VS for the different sensor 

arrays, comparable VS values were observed, particularly at the shallower depths. Results 

show that the vertical geophones have slightly more variation near the surface than the 
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horizontal sensors and overestimate the VS at the lowest layer outlined in the FE model. 

This was observed at the three different sensor depths, shown in Figure 6.8. Profiles 

determined with horizontal geophones and FOS appeared to have better overall 

agreement with the FE input VS profile. As explained in the results from the field 

experiments, differences in the MASW VS profiles are also justified by the non-

uniqueness of the inversion problem, in where different subsurface properties could yield 

an identical theoretical dispersion curve that is used for inversion (Foti et al., 2015). 
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CHAPTER VII 

SUMMARY AND DISCUSSION OF RESULTS 

7.1 Introduction 

The results from field experiments and synthetic seismograms are summarized 

and discussed. The results from both approaches are used to describe the effectiveness of 

FOS when compared to geophones. The main two topics to be discussed include the 

effects of sensor orientation (i.e., vertical vs. horizontal measurements) and depth; and 

differences in uncertainty related to the measurements with FOS and geophones. 

7.2 Horizontal Surface Wave Propagation and Effects of Installation Depth 

The effects on sensor orientation and installation depth was investigated through 

synthetic seismograms obtained with the finite element model and were compared to 

results obtained in the field experiments. In the synthetic seismograms shown in 

Figure 6.4 it can be noted that the seismograms measured by the FOS resemble more 

those produced by the horizontal geophones than those produced by the vertical 

geophones. This is due to the fact that horizontal (or longitudinal) strains measured by the 

FOS are dependent on the horizontal displacement of wave propagation. The distinction 

between vertical and horizontal orientation sensors (i.e., vertical geophones and FOS, 

respectively) can be also observed in the field experiment seismograms in Figures 4.13 

through 4.18. 
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The dispersive images resulting from the synthetic seismograms were similar to 

the dispersive images obtained in the field experiment. At the surface (i.e., depth of 

0.0 m), the dispersive images of the synthetic vertical geophones (Figure 6.5(a1)) 

compared very well to those obtained in the field experiment (Figure 4.15(a)), where the 

fundamental mode was dominant. Similarities in the dispersive images using synthetic 

seismograms from the buried FOS (Figure 6.5(c2, c3)) were also observed with regard to 

the appearance of higher modes measured in the field (Figures 4.5(b, c)). The appearance 

of higher modes was observed in the dispersive images produced by the buried horizontal 

synthetic seismograms, i.e., horizontal geophones (Figure 6.5(b2, b3)) and FOS 

(Figure 6.5(c2, c3)), and not in the buried vertical geophones with depth (Figure 6.5(a2, 

a3)). A possible explanation for this is that the horizontal displacement vanishes with 

depth and becomes negative at greater depths, as shown in Figure 2.4 and Figure 2.5, 

while the vertical motion stays always positive. This occurs at a critical depth, Zcritical, 

near the surface. This depth can be calculated using Equation (2.4) for different values of 

VR, VS, VP, and fR. For demonstration purposes, assuming a VS of 165 m/sec (which was 

about the minimum determined VS), calculating VR and VP as a function of Poisson’s 

ratio of 0.3 and VS using Equations (2.5) and (2.2) (resulting in VR ≈ 0.93VS, and 

VP ≈ 1.87 VS), and assuming a frequency, fR, of 20 Hz, results in Zcritical of about 1.38 m. 

However, at a higher frequency, fR, let’s say 60 Hz, Zcritical will be 0.46 m. This shows 

that horizontal measurements, such as those measured with horizontal geophones and 

FOS, at wavelengths related to higher frequencies will vanish at Zcritical and become 

negative below this depth. For this reason the horizontal velocities and strains measured 

at these depths are likely to be more sensitive to higher modes (related to a different 
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displacement pattern) and less sensitive to the fundamental mode. Hence, the maximum 

frequency at which the fundamental mode M0 is observed decreases with increasing 

sensor depth for both horizontal sensors. This results in a limitation in frequency range in 

the M0 dispersion curves. These limitations in frequency range associated with the 

horizontal measurements at depth were observed to be in similar ranges for the dispersion 

curves obtained from the field experiments and synthetic seismograms. The limitations in 

frequency ranges for the surface vertical geophones and buried FOS, which are the 

measurements of interest to this study, are summarized in the following:  

1. Surface vertical geophones provided broader frequency ranges from about 

5 Hz to above 50 Hz. 

2. For the FOS at a depth of 0.5 m, frequencies ranged from about 5 Hz to 

under 25 Hz. 

3. For the FOS as a depth of 1.0 m, the range in frequencies was from about 

5 Hz to less than 20 Hz.  

Regardless of the limitations in frequency content, a minimum frequency limit of 

about 5 Hz was achieved for all measurements. This was used to determine the maximum 

depth of investigation. This depth is based on the maximum wavelength, which is based 

on the phase velocity at the minimum frequency, as previously discussed in Chapters IV 

and VI. For this reason, the dispersion curves used for VS inversion reached similar 

depths of investigation.  

As previously noted, higher frequencies in the dispersion curves differed in ranges 

for the different sensors and depths, particularly in the horizontal sensors. To resolve VS 

at shallow depths, higher frequencies than those measured were determined through 
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theoretical dispersion curves used in the inversion analysis. Theoretical dispersion curves 

were compared to the measured dispersion curves from the field experiments and 

synthetic seismograms. Once an acceptable least-square fit of theoretical dispersion 

curves to the measured dispersion curve was found, the theoretical dispersion curve 

extended to higher frequencies to define VS at the shallow depths of the profile. It should 

be noted that for the site considered, VS in the shallow portion of the profile was not 

expected to have significant variation. Thus, the acceptable fit made by the theoretical 

dispersion curve extending to higher frequencies than those measured did not seem to 

have an adverse affect in the results. For that reason, although differences in frequency 

ranges existed, VS profiles could be obtained from the surface down to the maximum 

depths.  

7.3 Uncertainties in MASW Inversion from the Different Sensors 

The MASW inverted shear wave velocity profiles in Figures 4.21 and Figure 6.8 

demonstrate that the inversion solution is non-unique. In the field experiments, the 

MASW VS profiles were expected to resemble the VS profile determined from the 

Seismic Cone Penetration Test (SCPT). In the synthetic seismograms, the MASW VS 

profiles were expected to resemble the Finite Element (FE) input VS profile. Comparing 

the adequacy of the MASW VS profiles, VS_MASW, obtained from the different sensors to 

the expected VS profiles, VS_EXPECTED, could not be performed qualitatively. An attempt 

was made to quantify the discrepancies of errors between the VS_MASW and VS_EXPECTED 

using the root mean square error (RMSE) of VS:  

 𝑅𝑀𝑆𝐸𝑉𝑆
= √∑ (𝑉𝑆_𝐸𝑋𝑃𝐸𝐶𝑇𝐸𝐷−𝑉𝑆_𝑀𝐴𝑆𝑊)

2𝑛
𝑖=1

𝑁
 , (7.1) 
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where N is the total number of inversion points. Since a total of 10 layers was used for all 

inversions, the number of inversion points, N, was 10. 

The RMSEVs was calculated at the mid-depth of the inverted layers, since inverted 

values are representative to these depths. Figures 7.1 and 7.2 show the VS_MASW values 

projected at the mid-depth of the inverted layers for each sensor/depth for the field 

experiments and synthetic seismograms, respectively. The RMSEVs accounted for the 

overall error magnitude of VS when comparing the VS_MASW with respect to the expected 

values, VS_EXPECTED, at these corresponding depths. Lower RMSEVs values are 

representative of closer agreement of inverted MASW VS profile to the expected VS 

profile. RMSEVs values were computed independently for the field experiments using the 

SCPT VS profile and for the synthetic seismograms using the idealized input VS profile. 

As previously stated, these were assumed to be the expected values. 

  

Figure 7.1 Field experiment VS_MASW and VS_EXPECTED used in RMSEVs calculations. 

VS_MASW at the mid-depths of each layer for the corresponding sensor/depth from results 
obtained using field experiments seismograms. Also included is the SCPT VS profile 
considered to be VS_EXPECTED for the field experiments. 
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Figure 7.2 Synthetic seismograms VS_MASW and VS_EXPECTED used in RMSEVs 
calculations. 

VS_MASW at the mid-depths of each layer for the corresponding sensor/ location from 
results obtained using synthetic seismograms. Also included is the FE idealized input VS 
profile considered to be VS_EXPECTED for the synthetic seismograms. 

RMSEVs values are summarized in Table 7.1 for the field experiments, grouped 

according to sensor type, depth, and seismic source offset side combinations. The two 

seismic source offset sides (i.e., to the left and right side of the spread) were included to 

verify repeatability of experimental results. Averaging the two seismic source offsets 

resulted in average RMSEVs values for each sensor. The results in Table 7.1 show that 

average RMSEVs for the different sensors and depths were in the range of about 81 to 

87 m/sec. While the RMSE for the FOS were slightly lower, it must be noted that the 

inversion results depended on the interpretation of the dispersion curve and thus the 

points selected to represent the dispersion curves may have propagated some variations 

that influenced the differences in RMSE. The RMSEVs of field experiment results show 
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that the FOS at depths of 0.5 m and 1.0 m yield similar errors as those obtained with the 

vertical geophones at the surface. 

Table 7.1 Summary of RMSEVs values from field experiments VS inversion. 

Sensor Depth 
(m) 

Seismic 
Source Side 

Offset 

RMSEVs  
(m/sec) 

Average RMSEVs 
for Sensor  

Type and Depth 
(m/sec) 

Vertical 
Geophones 0.0 Left 101.1 86.8 Right 72.4 

FOS 
0.5 Left 76.7 81.1 Right 85.4 

1.0 Left 90.4 85.8 Right 81.3 
 

RMSE values of VS obtained using synthetic seismograms are summarized in 

Table 7.2. These are listed according to sensor type and depth combinations. 

Corresponding RMSEVs are shown for each combination. Results show that RMSE for 

the different sensor and depth combinations varied from sensor to sensor. This might 

have been caused by the limitation of using one source offset instead of having multiple 

source offset to obtain a better representation the fundamental mode dispersion curve, as 

done in the field experiments. RMSEVs values obtained for the vertical geophones were 

the highest, and were in the range of about 63 to 73 m/sec. RMSEVs values associated 

with the horizontal geophones were lower, in the range of about 27 to 35 m/sec. The 

values of RMSEVs for the FOS were in the range of about 15 to 36 m/sec. It must be 

noted, however, that RMSE values at depths 0.0 and 0.5 m were about 15 m/sec and the 

RMSE value at the depth of 1.0 m was 36 m/sec. The RMSEVs values associated with 
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synthetic seismograms show that the VS_MASW obtained with the FOS had overall less 

errors than those obtained with the geophones. 

Table 7.2 Summary of RMSEVs values from synthetic seismograms VS inversion. 

Sensor Depth (m) 

RMSEVs for 
Sensor 

Type and Depth 
(m/sec) 

Vertical  
Geophones 

0.0 63.3 
0.5 73.1 
1.0 62.9 

Horizontal Geophones 
0.0 30.1 
0.5 27.5 
1.0 34.5 

FOS 
0.0 15.2 
0.5 15.7 
1.0 36.0 

 

The uncertainties in the RMSEVs values obtained from the inverted VS profile 

from the field experiments were similar in range, whereas greater differences were 

observed using the synthetic seismograms. The differences in uncertainty may have 

occurred because:  

1. Field experiments were compared against a VS profile obtained with the 

SCPT that exhibited greater variation than the idealized VS profile from 

the FE model. 

2. Inversion of field experiments was performed with dispersion curves from 

combined dispersive images of multiple offsets while the synthetic 

seismograms only used the dispersion curve from one source offset. 
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3. FOS seismograms from the field experiments exhibited noise, which 

although did not provide coherent signals for use in MASW analysis may 

have added a degree of error to the results.  

4. Slight differences in dispersion curve interpretation may have propagated 

to the VS inversion.  

Other factors may have contributed to the difference in errors; however, although 

the VS inversion using the MASW method will be subject to non-unique solutions, the 

buried FOS achieves comparable errors to surface vertical geophones typically employed 

for data acquisition. 

 



 

145 

CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The major goal of this study was to demonstrate the feasibility of performing 

MASW analysis to obtain a 1-D VS profile using distributed FOS for data acquisition by 

comparing it to traditional vertical geophones placed at the surface. These results 

demonstrate the feasibility of using FOS to perform an MASW survey. Through field 

experiments and synthetic seismograms it was observed that FOS provided comparable 

results to those obtained using surface vertical geophones. Although differences in 

dispersive images were observed, the fundamental mode dispersion curves for the lower 

frequencies were interpreted in a consistent manner. It was also observed that the 

limitation in the FOS dispersion curves in the upper frequency range (from 20 to 25 Hz) 

was a result of the FOS being installed at depths were it is suspected that horizontal 

displacements may have vanished for higher frequencies (i.e., longer wavelengths). 

Dispersion curves in general were determined for similar lower frequencies (around 

5 Hz), achieving thus similar depths of investigation. Shear wave inversion results of the 

FOS to the geophones were also observed to be comparable in range. Differences were 

justified by the non-uniqueness of the inversion process. The RMSEVs values obtained for 

field experiments and synthetic seismograms show that the errors of the VS inversion 

were to the same degree or better than those obtained with vertical geophones.  



 

146 

8.2 Recommendations for Future Research 

While this research proved the feasibility of using the MASW method with buried 

FOS, further research is needed to investigate other aspects not covered herein such as: 

 Other test sites and soil types. In the field experiments and synthetic 
seismograms, the site was normally dispersive (i.e., increasing stiffness 
with depth). Other sites may display different behavior and additional 
effects. 

 Multimodal MASW analysis. As observed in the FOS during the 
experiments and synthetic seismograms, higher modes were evident. Since 
this study is an initial feasibility study, it was constrained to only using the 
fundamental mode (M0) for analysis. The potential use of multi modal 
data to incorporate higher modes can provide better accuracy during the 
VS inversion by reducing the number of non-unique solutions (Ivanov 
et al., 2010). 

 Joint Inversion Analysis. While the seismic acquisition for MASW 
analysis was performed, further investigation can be done to perform 
seismic refraction, briefly described in section 2.2.2, using buried FOS for 
joint analysis with MASW (Ivanov et al., 2000; Foti et al., 2015).  

 Specialized Fibers. A standard telecommunication fiber cable was used in 
this study due to its availability to be used for distributed sensing. This 
was further justified by the difference in cost of standard fiber optic 
telecommunication cable (2-5 US$/m) when compared to specialized fiber 
optic cable (15-30 US$/m) (Glisic, 2013). While the feasibility of using 
standard fiber optic telecommunication cable in the field experiments 
provided adequate results, they exhibited noise in their signals. 
Specialized fiber cable configurations with different coatings have been 
developed for sensing purposes, as used in Daley et al. (2013). These are 
expected to be less subject to noise since they are intended specifically for 
high fidelity measurements. The performance of different specialized fiber 
optic cables for collecting data to perform MASW analysis should be 
evaluated to determine if data quality could provide improvements in 
MASW VS results. 

 New technology advancements. The rapid growing fiber optic sensing 
community is continuously advancing with new Optical Time Domain 
Reflectometers (OTDRs), fibers and software. As technology improves, 
other system configurations may provide beneficial advantages in the use 
of FOS as a sensor with increased resolution and improved sensitivity.  
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MATLAB® SCRIPTS
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A.1 CR3toSEG2.m. 

The FOS data was in the CR3 proprietary format corresponding to Optiphase, Inc. 

and needed to be filtered and converted to SEG2 format to be able to be imported into 

SurfSeis®. A band pass filter from 5 to 100 Hz was used. This frequency range covers the 

frequencies of interest that are excited with the sledgehammer as the seismic source, as 

well as the typical frequency range used for MASW analysis. The following script shows 

how this was performed. 

% --------------------------------------------------------------------- 

% 

%   Program:      CR3toSEG2.m 

%   Date created: 2015/01/31 

%   Last changed: 2015/07/11 

%   Description:  Converts CR3 proprietary FOS format into seg-2 format 

%   Author:       Gustavo Galan-Comas 

%   Dependencies: c32readin.m  

%                   (Not available for public release-  

%                   Includes Proprietary format from Optiphase, Inc.) 

%                 fn_writeseg2_mod.m  

%                       (Modified from fn_writeseg2.m (Lamb, 2011) 

%   References:   Lamb, A., 2011, fn_writeseg2.m (Matlab function  

%     developed to write a SEG2 formatted file to read 

%     into rayfract): 

%                   (http://rayfract.com/pub/fn_writeseg2.m) 

%                 Pullan, S. E., 1990, Recommended standard for  

%                   seismic (/radar) files in the personal computer  

%                   environment: Geophysics, 55, no. 09, 1260-1271.  

%                 SegyMAT code: http://segymat.sourceforge.net/  

%  

% --------------------------------------------------------------------- 

  

clear all; clc 

  

%% User Input parameters 

% ------------------------------------- 

%Predetermined FOS zones corresponding to MASW spread were included 

%in function 'cr3readin.m' 

Sensor={'FOS_0.5m','FOS_1.0m'}; 

  

%Seismic Source Station 

SourceStation=1000; 

  

% Filter cutoffs 

hp = 5;   % Hz, high pass cutoff 

lp = 100; % Hz, low pass cutoff 

  

%% Select file to convert and process 

% ------------------------------------- 

[ file_name, directory_name ] = uigetfile( '*.CR3P.data' ); 
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for FOSi=1:2 %Get data from both FOS depths 

%% Read in CR3 file and import raw data 

% ------------------------------------- 

% (Function Not shown due proprietary information) 

% ------------------------------------- 

[ t,FOSdata_raw, samplefreq, FOSdx, FOSzones, RECORDnum ] ... 

    = cr3readin( file_name, directory_name, Sensor{FOSi}); 

  

%% Apply Band Pass Filter 

% ------------------------------------- 

    Wn = [0 0]; 

    Wn(1) = hp/(samplefreq/2);  % High Pass cutoff  

    Wn(2) = lp/(samplefreq/2);  % Low Pass cutoff 

    [b,a] = cheby1(4,0.5,Wn); 

  

FOSdata_filt = filter( b, a, FOSdata_raw, [], 1 ); 

  

%% Convert CR3 imported data into Seg-2 file 

% ------------------------------------- 

   %% Inputs for SEG2 required 

    %Sample rate 

        smrate= 1 / samplefreq;  %secs 

    %Number of channels/traces  

        c=length(FOSzones); 

    %Number of samples per trace 

        ns= length(t); 

    %Trace Data  

        Data=FOSdata_filt;  

    %H=SegTraceHeaders structure  

        for i=1:c 

           field1='DelayRecordingTime';    value1=0;  %No Delay 

            offset=1; %starting station of 1st Receiver 

            dx=FOSdx;  

           field2='GroupX'; value2=offset+dx*(i-1);  %Receiver Location 

           field3='cdp'; value3=1; %Common Depth Point Option(Default) 

           field4='cdpTrace';  value4=i; %Channel Number 

           field5='EnergySourcePoint'; value5=RECORDnum ;  

                %'Shot number' - Set to Record number, since shot  

records were different for every shot 

           field6='SourceX';value6=SourceStation; %'Source Station no.' 

           field7='FieldRecord'; value7=RECORDnum;  %'Record number' 

  

           H(i)=struct(field1,value1,field2,value2,field3,value3,... 

field4,value4,field5,value5,field6,value6,field7,value7); 

        end 

    %Path 

        %path= directory_name; 

  

 

 

 

 

   %% Call function 'fn_writeseg2_vFOS.m' to get data into Seg-2 format 

    fn_writeseg2_mod(Data,smrate,c,ns,H,directory_name,Sensor{FOSi}); 

    %*Note: File will save as: "[RECORDnumber]_[Sensor].sg2" 

      

end 

     

% --------------------------------------------------------------------- 
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A.2 ASCIItoSEG2.m. 

Synthetic data from the different sensors extracted from the finite element 

analysis was stored as CSV data files in ASCII format. These needed to be converted to 

the SEG-2 binary format to be able to be imported into SurfSeis®. The following script 

shows how this was performed. 

% --------------------------------------------------------------------- 

% 

%   Program:      ASCIItoSEG2.m 

%   Date created: 2015/02/15 

%   Last changed: 2015/07/20 

%   Description:  Converts CSV files from synthetic seismograms into  

%                   SEG-2 binary format 

%   Author:       Gustavo Galan-Comas 

%   Dependencies: fn_writeseg2_mod.m  

%                       (Modified from fn_writeseg2.m (Lamb, 2011) 

%   References:   Lamb, A., 2011, fn_writeseg2.m (Matlab function  

%     developed to write a SEG2 formatted file to read 

%     into rayfract): 

%                   (http://rayfract.com/pub/fn_writeseg2.m) 

%                 Pullan, S. E., 1990, Recommended standard for  

%                   seismic (/radar) files in the personal computer  

%                   environment: Geophysics, 55, no. 09, 1260-1271.  

%                 SegyMAT code: http://segymat.sourceforge.net/  

%  

% --------------------------------------------------------------------- 

  

clear all; clc 

  

%% User Input parameters 

% ------------------------------------- 

    c=36; %number of traces  

    dx=2; %Sensor Spacing in m 

    SourceStation=999.75; 

    RECORDnum=1000; 

  

 

%% Select file to convert 

% ------------------------------------- 

[ file_name, directory_name ] = uigetfile( '*.csv' ); 

% Get Sensor Name from filename string 

Sensor=[file_name(65:end-4),'_SynthSeis']; 

  

%% Read and store data in temp data array 

% ------------------------------------- 

temp= csvread(strcat(directory_name,file_name),6,0);  

  

%% Parse temp data array to get values 

% ------------------------------------- 

    %Time Vector 

    t=temp(:,1); 

     

    % Trace Data (% Data = recorded data for each trace in ASCII format) 

    Data=temp(:,2:(c+1)); 
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%% Convert CR3 imported data into Seg-2 file 

% ------------------------------------- 

   %% Inputs for SEG2 required 

    %Sample rate 

        smrate=t(100)-t(99);  %secs 

    %Number of channels/traces  

        %c=c; 

    %Number of samples per trace 

        ns= length(t); 

    %Trace Data  

        %Data=Data;  

    %H=SegTraceHeaders structure  

        for i=1:c 

           field1='DelayRecordingTime';    value1=0;  %No Delay 

            offset=1; %starting station of 1st Receiver 

            %dx=dx;  

           field2='GroupX'; value2=offset+dx*(i-1);  %Receiver Location 

           field3='cdp';  value3=1; %Common Depth Point Option(Default) 

           field4='cdpTrace';  value4=i; %Channel Number 

           field5='EnergySourcePoint'; value5=RECORDnum ;  

                %'Shot number' - Set to Record number, since only  

                %one shot was simulated. 

           field6='SourceX';value6=SourceStation; %'Source Station no.' 

           field7='FieldRecord'; value7=RECORDnum;  %'Record number' 

  

           H(i)=struct(field1,value1,field2,value2,field3,value3,... 

              field4,value4,field5,value5,field6,value6,field7,value7); 

        end 

    %Path 

        %path= directory_name; 

  

   %% Call function 'fn_writeseg2_vFOS.m' to get data into Seg-2 format 

    fn_writeseg2_mod(Data,smrate,c,ns,H,directory_name,Sensor); 

    %*Note: File will save as: "[RECORDnumber]_[Sensor].sg2" 

 

% --------------------------------------------------------------------- 

A.3 Function: fn_writeseg2_mod.m 

This function was called in the main programs to write data in the standard SEG-2 

binary format. The function consisted of minor edits to the original function 

fn_writeseg2.m developed by Andrew Lamb (2011). 

% --------------------------------------------------------------------- 

function [] = fn_writeseg2_mod(Data,smrate,c,ns,H,path,Sensor) 

% Developed using: 

%  fn_writeseg2.m version 1.1 created by Andrew Lamb, BSU, August 2011 

%   Edited by: Gustavo Galan-Comas 

%   Edits include: 

%     Sensor string input for filenaming purposes for the diff sensors 

%     tds{13} changed from ['SOURCE VIBROSEIS'] to ['SOURCE HAMMER'] 

% References: 

%   Pullan, S. E., Recommended standard for seismic (/radar) data files  

%   in the personal computer environment. Geophysics 55, 1260-1271  

%   (1990) 

%      
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%% Function Input Parameters 

% Data = recorded data for each trace in the SegyMAT format 

% smrate = sample rate 

% c = number of channels/traces  

% ns = number of samples per trace 

% H=SegyTraceHeaders structure created by SegyMAT's ReadSegy command 

% path = path to write seg2 file according to definition by Pullan 1990 

% Sensor = FOS_0.5m or FOS_1d0m used for output filename  

%  

%% Function Output 

% seg2 file with 'RECORDnumber_Sensor.sg2' as the filename 

  

% --------------------------------------------------------------------- 

  

%% Filename Output 

fid=fopen([path,num2str([H(1).EnergySourcePoint]),'_',... 

                    num2str(Sensor),'.sg2'],'w'); 

  

%% SEG2 file format schematic (example) 

% Schematic is based on example using c=48, ns=150 

% and strings with * as recommended by Pullan 1990. 

% These strings are 'TRACE_SORT AS_ACQUIRED' and 'UNITS METERS' for the  

% File Descriptor Block (total 44 bytes) and DELAY, RECEIVER_LOCATION  

% and SAMPLE_INTERVAL for the Trace Descriptor Block (total 64 bytes) 

% --------------------------------------- 

% |*******FILE DESCRIPTOR BLOCK*********| 

% |           MAIN HEADERS              | 

% |         bytes 1 - 16 (16)           | 

% |             RESERVED                | 

% |             17 - 32 (16)            | 

% |         TRACE POINTER SUB-BLOCK     | 

% |             33 - 224 (192)          | 

% |  assumes 4 bytes/trace & 48 traces  | 

% |               STRINGS               | 

% |             225 - 268 (44)          | 

% |             [TOTAL=268]             | 

% --------------------------------------- 

% --------------------------------------- 

% |******TRACE DESCRIPTOR BLOCK 1*******| 

% |           MAIN HEADERS              | 

% |         bytes 269 -284 (16)         | 

% |             RESERVED                | 

% |            285 - 300 (16)           | 

% |               STRINGS               | 

% |             301 - 364 (64)          | 

% |            [SUBTOTAL=96]            | 

% --------------------------------------- 

% --------------------------------------- 

% |************DATA BLOCK 1*************| 

% |           365 - 964 (600)           | 

% |            [SUBTOTAL=600]           | 

% --------------------------------------- 

% |       [BLOCK 1 TOTAL=696]           | 

% ||||||||||||||||||||||||||||||||||||||| 

% TRACE DESCRIPTOR AND DATA BLOCKS 2 - 47 

% ||||||||||||||||||||||||||||||||||||||| 

% --------------------------------------- 

% |******TRACE DESCRIPTOR BLOCK 48******| 

% |           MAIN HEADERS              | 

% |      bytes 32981 - 32996 (16)       | 

% |             RESERVED                | 

% |          32997 - 33012 (16)         | 
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% |               STRINGS               | 

% |          33013 - 33076 (64)         | 

% |            [SUBTOTAL=96]            | 

% --------------------------------------- 

% --------------------------------------- 

% |************DATA BLOCK 48************| 

% |         33077 - 33676 (600)         | 

% |            [SUBTOTAL=600]           | 

% --------------------------------------- 

% FILE SIZE = 33,676 bytes (as written to disk) 

  

%% Prepare Strings for File Descriptor Block 

fds1='TRACE_SORT AS_ACQUIRED'; %File Descriptor String 1 

fds2='UNITS METERS';           %File Descriptor String 2 

  

%Combined length of strings including the two empty bytes required at  

%the end of the string sub-block to mark the end 

fdslen=length(fds1)+3+length(fds2)+3+2;  

  

%Checks how many bytes are needed to pad file descriptor block 

%to a division of 4 

fdspad=4-((fdslen)/4-floor((fdslen)/4))/0.25; 

if fdspad==4  

    fdspad=0; % no need to pad 

end 

  

%% Prepare Strings for Trace Descriptor Block 

% This section estimates the lengths of each string in the Trace 

% Descriptor Block and assigns an initial value 

i=1; %counter 

tds{1}=['DELAY ' sprintf('%8.4f',[H(i).DelayRecordingTime])]; 

tds{2}=['RECEIVER_LOCATION ' sprintf('%15.3f',[H(i).GroupX])]; 

tds{3}=['SAMPLE_INTERVAL ' sprintf('%0.4f',smrate)]; 

tds{4}=['CDP_NUMBER ' sprintf('%08d',[H(i).cdp])]; 

tds{5}=['CDP_TRACE ' sprintf('%08d',[H(i).cdpTrace])];  

tds{6}=['RECEIVER_GEOMETRY ' sprintf('%15.3f',[H(i).GroupX])]; 

tds{7}=['SHOT_SEQUENCE_NUMBER ' 

sprintf('%08d',[H(i).EnergySourcePoint])]; 

tds{8}=['SOURCE_LOCATION ' sprintf('%15.3f',[H(i).EnergySourcePoint])]; 

tds{9}=['SOURCE_GEOMETRY ' sprintf('%15.3f',[H(i).SourceX]*0)]; 

tds{10}=['SOURCE_STATION_NUMBER ' sprintf('%08d',[H(i).SourceX])];  

tds{11}=['CHANNEL_NUMBER ' sprintf('%08d',[H(i).cdpTrace])];  

tds{12}=['RAW_RECORD ' sprintf('%08d',[H(i).FieldRecord])];  

tds{13}=['SOURCE HAMMER'];  

  

%Combined length of strings including the two %empty bytes required at  

%the end of the string sub-block to mark the end 

tdslen=sum(cellfun(@length,tds))+3*size(tds,2)+2; 

  

%Checks how many bytes are needed to pad trace descriptor block  

%to a division of 4 

tdspad=4-((tdslen)/4-floor((tdslen)/4))/0.25;  

if tdspad==4  

    tdspad=0; % no need to pad 

end 

  

%% Write FILE DESCRIPTOR BLOCK 

% This section writes the File Descriptor Block using the definitions  

%from the SEG2 standard definition (Pullan 1990). 

% Write Main Headers 

fwrite(fid, hex2dec('3A55'), 'uint16', 0, 'n'); %File descriptor 0-1 55  

%1st => PC 
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fwrite(fid, 1, 'uint16', 0, 'n'); %Revision number. 2-3 int16 

fwrite(fid, c*4, 'uint16', 0, 'n'); %Size of Trace Pointer SubBlock.4-5 

fwrite(fid, c, 'uint16', 0, 'n'); %No. of traces in this file 6-7 

fwrite(fid, hex2dec('01'), 'uint8', 0, 'n'); %Size of string term. 8 

fwrite(fid, 0, 'uint8', 0, 'n'); %Null. 9 int8 

fwrite(fid, hex2dec('02'), 'uint8', 1, 'n'); %Size of string term. 11 

fwrite(fid, hex2dec('0A'), 'uint8', 0, 'n'); %1st line of terminator  

%(LF). 12 

fwrite(fid, hex2dec('0D'), 'uint8', 0, 'n'); %1st line of terminator  

%(CR). 13 

  

%Write trace pointer sub-blocks. These give byte location of trace = i 

for i =1:c 

    if i==1 % When c==1 the pointer skips over the RESERVED Bytes 

        fwrite(fid, 32+(4*(c))+fdslen+fdspad ... 

+((32+tdslen+tdspad+(ns*4))* ... 

(i-1)), 'ulong', 18, 'n'); 

    else  %Writes byte location of remaining trace pointer sub-blocks 

        fwrite(fid, 32+(4*(c))+fdslen+fdspad ... 

+((32+tdslen+tdspad+(ns*4))*... 

              (i-1)), 'ulong', 0, 'n'); 

    end 

end 

  

% Write Strings for File Descriptor block 

% Write TRACE_SORT string 

fwrite(fid, length(fds1)+3, 'uint16' ,0,'n'); 

fwrite(fid, fds1,'char',0,'n'); 

fwrite(fid, 0, 'uint8', 0,'n'); 

% Write UNITS string 

fwrite(fid, length(fds2)+3, 'uint16' ,0,'n'); 

fwrite(fid, fds2,'char',0,'n'); 

fwrite(fid, 0, 'uint8', 0,'n'); 

  

%% Write TRACE DESCRIPTOR and DATA BLOCK loops 

% Write Main Headers 

for i=1:c 

    % Reassign trace descriptor strings with i value 

    tds{1}=['DELAY ' sprintf('%8.4f',[H(i).DelayRecordingTime])]; 

    tds{2}=['RECEIVER_LOCATION ' sprintf('%15.3f',[H(i).GroupX])]; 

    tds{3}=['SAMPLE_INTERVAL ' sprintf('%0.4f',smrate)]; 

    tds{4}=['CDP_NUMBER ' sprintf('%08d',[H(i).cdp])]; 

    tds{5}=['CDP_TRACE ' sprintf('%08d',[H(i).cdpTrace])]; 

    tds{6}=['RECEIVER_GEOMETRY ' sprintf('%15.3f',[H(i).GroupX])]; 

    tds{7}=['SHOT_SEQUENCE_NUMBER ' 

sprintf('%08d',[H(i).EnergySourcePoint])];  

    tds{8}=['SOURCE_LOCATION ' 

sprintf('%15.3f',[H(i).EnergySourcePoint])]; 

    tds{9}=['SOURCE_GEOMETRY ' sprintf('%15.3f',[H(i).SourceX]*0)];  

    tds{10}=['SOURCE_STATION_NUMBER ' sprintf('%08d',[H(i).SourceX])];  

    tds{11}=['CHANNEL_NUMBER ' sprintf('%08d',[H(i).cdpTrace])];  

    tds{12}=['RAW_RECORD ' sprintf('%08d',[H(i).FieldRecord])];  

    tds{13}=['SOURCE HAMMER'];  

  

    if i==1 

        skip=2+fdspad; %Number of bytes to skip to ensure file  

%descriptor block is a division of 4 

    else 

        skip=0; %No skipping is required on first byte of Trace  

%descriptor block has been written 

    end 
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    fwrite(fid, hex2dec('4422'), 'uint16', skip, 'n'); %Trace  

%descriptor 0-1 

    fwrite(fid, 32+tdslen+tdspad, 'uint16', 0, 'n'); %X=Size of this  

%block 2-3 

    fwrite(fid, ns*4, 'ulong', 0, 'n'); %Y=Size of data block 4-7 

    fwrite(fid, ns, 'ulong', 0, 'n'); %NS=Number of samples in data  

%block 8-11 

    fwrite(fid, hex2dec('04'), 'uint8', 0, 'n'); %Data format 

     

    %Write Strings for Trace Descriptor block 

    for k=1:size(tds,2) 

        if k==1 

            skip=19; %This skips over the 20 reserve bytes before  

%writing strings 

        else 

            skip=0; 

        end 

        fwrite(fid, length(tds{k})+3, 'uint16' ,skip,'n');%Skip 20  

%reserved bytes 

        fwrite(fid, tds{k}, 'char',0,'n'); 

        fwrite(fid, 0, 'uint8', 0,'n'); 

    end 

  

   % DATA BLOCK loop 

    for j=1:ns 

        if j==1 

            fwrite(fid, Data(j,i), 'float32', 2+tdspad, 'n'); 

        else 

            fwrite(fid, Data(j,i), 'float32', 0, 'n'); 

        end 

    end 

end 

fclose(fid); 

 

% --------------------------------------------------------------------- 
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APPENDIX B 

CONE PENETROMETER TEST (CPT) DATA OBTAINED DURING SEISMIC CONE 

PENETROMETER TEST (SCPT) 
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B.1 Cone Penetrometer Test (CPT) Data Obtained During SCPT Tests 

Stops were made during the SCPT test to perform soundings and attach new rods. 

As the push rod was advanced further with depth, CPT data was collected. The results are 

shown in Figure B1. Of relevance to this study is the difference in higher tip resistance 

measured at depths of about 13 to 15 m indicating thin sand layers. Based on the 

expected geology at these depths, it could have been caused by the Catahoula Formation, 

which may have existing sandstone layers (Murphy & Albertson, 1996). These will yield 

higher stiffness and thus higher shear wave velocities, which relate to the variations 

observed in the SCPT results in Figure 4.25.  
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