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Invasive species are organisms whose introduction and spread in exotic ranges 

result in a multitude of ecological impacts. Understanding the factors that constrain the 

exotic distributions of invasive species is of considerable interest. Biotic associations 

formed with taxa in the invaded community may be particularly important in shaping 

invader distributions. These associations emerge from interactions between the traits of 

the invasive species and some subset of the traits present in the invaded community. 

Focusing on how organism traits influence the outcomes of biotic interactions may 

inform predictions of invader distributions. This kind of trait-based approach may be 

most easily applied to systems where invaders specialize on particular hosts because such 

associations imply a close correspondence between the traits of the invader and hosts. 

This dissertation focuses on the South American cactus moth (Cactoblastis cactorum, 

Lepidoptera: Pyralidae), an invasive consumer in North America whose larvae infest 

prickly-pear cacti (Opuntia spp.).   

Chapter One is a brief introduction providing background and context to the 

presented research. In Chapter Two, I quantify Opuntia morphological and tissue 

macronutrient traits hypothesized to correlate with patterns of C. cactorum host use. 



 

 

Tissue macronutrient traits appear important in predicting C. cactorum infestation 

whereas a model containing Opuntia morphological traits had poor predictive ability. 

Chapter Three describes a method that uses host Opuntia identity and availability to 

estimate habitat suitability in order to predict the North American distribution of C. 

cactorum. I then simulate C. cactorum dispersal relative to scenarios of habitat suitability 

and Opuntia availability. Chapter Four alters the model in Chapter Three so that habitat 

suitability for C. cactorum is determined by the availability of trait-based groupings of 

Opuntia hosts. I then simulate C. cactorum dispersal via a different method from that 

described in Chapter Three. In Chapters Three and Four, I evaluate the degree of 

similarity among model predictions and the relative contribution of modeling constraints 

in generating variation in this similarity. Chapters Three and Four predictions were most 

affected by estimates of abiotic suitability and dispersal constraints, respectively. Chapter 

Five is a short summary of my results and a discussion of their more general 

applicability. 
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INTRODUCTION 

Ecologists have long pursued the study of species’ niches in an effort to 

understand the mechanisms governing the limits of species’ distributions (Grinnell 1917, 

Elton 1927, Hutchinson 1957, MacArthur 1958, Connell 1961, Guisan and Zimmermann 

2000, Chase and Liebhold 2003, Soberon and Peterson 2005, Pagel and Schurr 2012, 

Schurr et al. 2012). Chase and Liebhold (2003) define a species’ niche as the set of 

environmental conditions that allow a species to persist (e.g., Grinnellian niche; Grinnell 

1917), as well as the effect of the species on its local environment (e.g., Eltonian niche; 

Elton 1927). The concept of a species’ niche has subsequently inspired many attempts to 

characterize species niches through correlations between large-scale abiotic conditions 

and a species’ known occurrence (e.g., species distribution models, environmental niche 

models, invasive species distribution models). Yet, large-scale correlative techniques 

often neglect fine-scale biotic factors influencing a species’ local population dynamics 

and persistence. As a result, much attention has focused on integrating large-scale 

correlative techniques with understanding of the fine-scale biotic factors that influence 

local patterns in species distributions (Peterson 2003, Soberon and Nakamura 2009, 

Brooks et al. 2012, Kissling et al. 2012, Wisz et al. 2013).  

Methods of predicting species’ distributions that reconcile large-scale correlative 

techniques with fine-scale understanding of biotic factors will need to address what 
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Simon Levin (1992) called the central problem in ecology – how do patterns observed at 

one scale emerge from patterns and processes operating at both larger and smaller scales? 

Levin argues that the solution will require “…study of how pattern and variability change 

with the scale of description, and the development of laws for simplification, aggregation, 

and scaling.” The scale-dependent nature of linkages among large-scale environmental 

conditions and local biotic interactions present considerable difficulties to both 

overcoming Levin’s problem and constructing mechanistic models to predict species’ 

distributions.   

Focusing on organism traits and how they influence the outcomes of biotic 

interactions may be useful in relating local biotic factors to broader scale patterns in 

species’ niches and distributions. This is because individuals survive and reproduce based 

on the adaptive fit of their traits (Webb et al. 2010, Verberk et al. 2013) to local 

environmental selective pressures (McGill et al. 2006, Westoby and Wright 2006, Webb 

et al. 2010). However, trait-based approaches have generally been unsuccessful in 

characterizing the niches and informing predictions of the distributions of invasive 

species. This is because ecological niche shifts (Brooks et al. 2012) or rapid evolutionary 

changes in invader traits (Lee 2002, Sax et al. 2007, Keller and Taylor 2008) can prevent 

predictive success based on individual traits (Peterson 2003, Wiens and Graham 2005, 

Strubbe et al. 2013). 

Effective distribution models rely on consistent relationships between a species’ 

occurrence and selected predictor variables. In this respect, the conservation of invader 

traits may aid in the development of predictive distribution models. Yet, the extent to 

which an invader’s traits are conserved or differ between its native and exotic ranges is 
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often unknown. Factors that strongly restrict a species’ niche, such as invader obligate 

specialization on hosts or resources, can limit the number of confounding factors and 

thereby simplify the construction of predictive models. This is especially the case when 

trait-based approaches are applied to biological invasions because the traits of specialist 

invaders that influence their biotic interactions with taxa in their native range are 

expected to closely correspond, or have tight ecological fit (Janzen 1985, Agosta 2006), 

with the traits of the taxa associated with in invaded communities. 

The following dissertation uses a conceptual framework proposed by Catford et 

al. (2009) to characterize the interactions and predict the exotic distributions of an 

invasive consumer, the South American cactus moth (Cactoblastis cactorum), that 

specializes on its host plants, prickly-pear cacti (Opuntia spp. in tribe Opuntieae). This 

framework proposes that biological invasions are governed, and invader distributions 

constrained, by three main groups of factors: 1) the number of invaders introduced to and 

dispersing across the exotic range (propagule pressure); 2) invader physiological 

tolerances to abiotic conditions; and 3) invader gain or loss of biotic interactions (Catford 

et al. 2009). Each dissertation chapter deals with either an individual main factor or seeks 

to characterize the effect of all three main factors on C. cactorum distributions. As a 

result, this dissertation represents an initial step towards obtaining trait-based 

understanding of the biotic associations and North American distribution of C. cactorum. 

The second chapter of this dissertation uses a trait-based approach to investigate 

how organism traits may influence invader gain or loss of biotic interactions. Chapter 

Two is motivated by the question: what traits of Opuntia influence C. cactorum-Opuntia 

associations? It is hypothesized that Opuntia morphological and tissue macronutrient 
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traits correlate with patterns of C. cactorum host use. The morphological and tissue 

macronutrient traits of several Opuntia taxa are quantified and then evaluated for 

correlations with patterns of C. cactorum host use.  

The third chapter of this dissertation focuses on characterizing the intersection of 

the three main factors that influence biological invasions and constrain invader 

distributions. Chapter Three is motivated by the question: how does incorporating 

propagule pressure, abiotic conditions, and biotic interactions affect predictions of the 

North American distribution of C. cactorum? It is hypothesized that predictions generated 

via the modeling method described in this chapter will differ from Maxent (Phillips et al. 

2006) predictions generated using just environmental conditions. The method described 

in this dissertation chapter uses host Opuntia identity and availability to estimate 

scenarios of habitat suitability for C. cactorum. This method then simulates C. cactorum 

dispersal relative to scenarios of habitat suitability and Opuntia availability. The degree 

of similarity (or overlap) among predictions generated by the method described in this 

chapter, as well as the relative contribution of modeling constraints in generating 

variation in overlap among predictions, is evaluated. 

The fourth chapter of this dissertation seeks to reconcile trait-based understanding 

of C. cactorum-Opuntia associations with methods for predicting invader distributions. 

Chapter Four is motivated by the question: how does incorporating trait-based 

understanding of C. cactorum-Opuntia associations influence predictions of the North 

American distribution of C. cactorum? It is hypothesized that predictions informed by 

trait-based understanding of C. cactorum-Opuntia associations would differ from 

predictions generated by Maxent and the modeling method described in Chapter Three. 
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The method described in Chapter Four uses trait-based Opuntia groupings to estimate 

habitat suitability for C. cactorum. Dispersal of C. cactorum is then simulated across 

tissue macronutrient-based maps of habitat suitability via a different method than used in 

Chapter Three. The degree of similarity (or overlap) among predictions generated by the 

method described in Chapter Four, as well as predictions generated in Chapter Three, is 

evaluated. Lastly, the relative contribution of modeling constraints in generating variation 

in overlap among Chapter Four predictions is evaluated.  
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NATIVE HOST TRAITS PREDICT PATTERNS OF INVADER HOST USE 

A major goal of invasion ecology is to understand the factors that influence the 

geographic distributions of invaders in exotic ranges. Invader niches and distributions can 

be constrained at multiple scales by abiotic and biotic factors (Grinnell 1917, Elton 1927, 

Hutchinson 1957, MacArthur 1958, Chase and Leibold 2003). The traits possessed by an 

invader, as well as the traits of the species it associates with in the exotic community and 

landscape, can mediate the abiotic and biotic factors that constrain invader distributions. 

Invaders are often introduced into communities that differ from those in the native 

range, and experience abiotic conditions that are novel (Torchin et al. 2003, Colautti et al. 

2004, Jiménez-Valverde and Peterson 2011). The ability of the invaders to establish in 

such conditions has prompted discussion of whether invader traits are conserved or can 

rapidly evolve following displacement (Wiens and Graham 2005, Sax et al. 2007, Keller 

and Taylor 2008, Brooks et al. 2012, Petitpierre et al. 2012, Strubbe et al. 2013, Stigall 

2014). Rapid evolutionary changes can alter both the invader’s niche and its ability to 

successfully colonize poorer quality (relative to those occupied in the native range) 

habitats (Lockwood et al. 2005, Simberloff 2009, Guisan et al. 2014). Alternatively, 

invader niches and traits can be conserved following displacement (Wiens and Graham 

2005, Wiens et al. 2010), and changes in occupied habitat may be explained by shifts in 

the abiotic conditions where suitable biotic associations are available (Brooks et al. 
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2012). Invader establishment and spread are challenging to predict because of the 

difficulties in distinguishing between instances of evolutionary change or ecological 

shifts (Brooks et al. 2012, Petitpierre et al. 2012, Strubbe et al. 2013, Stigall 2014). As a 

result, the extent to which invader niches and traits are conserved may influence the 

ability to predict invader distributions. 

The gain or loss of biotic interactions between the invader and members of the 

invaded community is influenced by the traits of both the invader and native taxa (Sih et 

al. 2010, Guisan et al. 2014, Tingley et al. 2014). There is growing evidence that 

organism traits mediate intra- and inter-specific biotic interactions in native communities 

(Werner and Peacor 2003, Stang et al. 2006, Verberk et al. 2013, Leach et al. 2015). Both 

pieces of evidence are consistent with Darwin’s naturalization hypothesis (Darwin 1859, 

Daehler 2001, Shea and Chesson 2002, Mitchell et al. 2006). Instances where 

environmental conditions are suitable, but there is low similarity in traits between invader 

native and exotic communities, may result in ecological shifts that cause an invader to 

occupy different habitats than those occupied in its native range (Brooks et al. 2012). As 

a result, focusing on the traits of taxa that associate with the invader in its native and 

exotic ranges may identify traits that mediate the invader’s biotic interactions.  

Systems where invaders specialize and form few obligate associations with their 

hosts or resources may facilitate the identification of traits important to invader 

occurrence and persistence. This is because few, direct obligate associations between an 

invader and its hosts or resources may reduce the number of biotic associations that 

directly influence the invader’s occurrence and persistence. In this respect, the South 

American cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae), is an excellent 
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study organism for evaluating how invader establishment and spread can be influenced 

by host or resource traits. The natural history of this moth species is described elsewhere 

(Dodd 1940, Zimmerman et al. 2004), but its larvae often infest and feed on prickly-pear 

cacti (Opuntia spp.). Used as a biological control of pest Opuntia in Australia (Dodd 

1940), South Africa (Pettey 1948), and the Caribbean (Simmonds and Bennet 1966), C. 

cactorum was unintentionally introduced to North America as early as the 1980’s 

(Habeck and Bennet 1990, Dickel 1991). Following its introductions to North America 

(Simonsen et al. 2008), C. cactorum has since spread north along the Atlantic coast to 

Charleston, South Carolina (Hight et al. 2002) and west along the Gulf coast to parishes 

southwest of New Orleans, Louisiana (Rose 2009).  

Propagule pressure likely played an enormous role in C. cactorum establishment 

and spread when it was used as a biological control in Australia (A.P. Dodd estimated in 

his notebooks that he released more than three billion eggs), but the factors driving the 

North American invasion of C. cactorum are less clear. Models generated using abiotic 

conditions from the native range of C. cactorum successfully recaptured its native 

distribution, but failed to accurately predict its North American distribution (Brooks et al. 

2012). There is considerably less microsatellite diversity in North American C. cactorum 

populations than exists in the native range (Marsico et al. 2011), and environmental 

conditions at sites that were invaded in Australia, South Africa and North America were 

widely divergent relative to those in the native range (Brooks et al. 2012). Taken 

together, it is unlikely that there is sufficient genetic variation across exotic populations 

to allow for large evolutionary changes in the physiological tolerances of C. cactorum to 

conditions in Australia, South Africa and the southern United States (Marsico et al. 2011, 
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Brooks et al. 2014). Instead, Brooks et al. (2012, 2014) suggest that the observed shift in 

the abiotic conditions occupied by C. cactorum in North America is likely driven by an 

ecological shift in host availability relative to abiotic conditions.  

The identity and availability of Opuntia hosts appear to influence both the native 

and North American distributions of C. cactorum (Brooks et al. 2012, Sauby et al. 2012, 

Brooks et al. 2014). As a result, focusing on host Opuntia traits could be useful in 

determining suitable habitat for C. cactorum. A trait-based approach is adopted here for 

several reasons. First, previous research indicates host plant nutritional quality can affect 

larval lepidopteran survival and performance (Awmack and Leather 2002). In addition, 

Opuntia morphological traits appear to affect C. cactorum selection of and oviposition on 

Opuntia hosts (Myers et al. 1981, Robertson 1987, Jezorek et al. 2010, Sauby et al. 

2012). Lastly, taxonomic relationships among Opuntia have been difficult to resolve as a 

result of extensive hybridization and polyploidy (see Majure et al. 2012a, 2012b). The 

lack of taxonomic resolution among Opuntia has complicated efforts to elucidate general 

patterns in C. cactorum-Opuntia associations relative to Opuntia taxonomic identity. 

This investigation represents a step towards identifying Opuntia traits that 

mediate the biotic interactions thought to be responsible for shaping the realized niche of 

C. cactorum in North America. It is hypothesized that Opuntia morphological and tissue 

macronutrient (i.e., crude fiber, lipid, and crude protein) traits are correlated with patterns 

of C. cactorum host use. This work primarily focuses on C. cactorum, but the degree to 

which the traits of C. cactorum overlap with closely related taxa native to North America 

may influence the ability of C. cactorum to establish and spread in this range 

(naturalization hypothesis; Darwin 1859). As a result, the same suites of Opuntia traits 
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were examined for correlations with patterns of host Opuntia use by a native cactus moth 

species, Melitara prodenialis. In general, our results indicate that Opuntia tissue 

macronutrient traits may be useful in predicting patterns of C. cactorum-Opuntia 

infestation. 

Materials and Methods 

Study area and cladode sampling procedures 

Collections of Opuntia cladodes were made between spring 2012 to summer 2014 

across 94 unique GPS locations in South Carolina and Florida (Figure 2.1). This 

geographic area includes much of the existing North American ranges of M. prodenialis 

and C. cactorum, as well as the ranges of multiple North American Opuntia taxa 

(Anderson 2001, Rebman and Pinkava 2001, Stuppy 2002, Hunt 2006, Majure et al. 

2012a, 2012b). Sites were visited from August-October, November-February, and 

March-May in order to 1) capture spatiotemporal variation in M. prodenialis and C. 

cactorum infestation, 2) sample Opuntia taxa that persist throughout South Carolina and 

Florida, and 3) collect Opuntia cladodes exposed to heterogeneous environmental 

conditions that may influence tissue macronutrient content. 

All sites were visited, and cladodes collected, in the morning or mid-afternoon. A 

time-constrained search of 1 person-hour was conducted at the start of each visit to a site 

in order to detect cactus moth infestation. During a search, cladodes with suspected 

cactus moth infestation were removed from the plant and set aside for further inspection. 

Cladodes with suspected cactus moth infestation were dissected after the time-

constrained search to confirm infestation status and moth identity. Any C. cactorum 

found were collected and preserved in 90% ethanol. Uninfested cladodes were collected 
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from both infested and uninfested plants after the time-constrained search and cladode 

dissection. No more than 3 terminal cladodes were collected from any individual Opuntia 

plant, but the total number of cladodes collected per site varied relative to the number of 

plants present. The GPS location for each cladode collection was recorded along with 

information on host Opuntia height and growth form.   

Quantifying Opuntia morphological and tissue macronutrient traits 

A total of 273 cladodes were collected from 148 plants across all locations from 

spring 2012 to summer 2014 (Table 2.1). Pictures were taken of each cladode collection 

at a resolution of no less than 3264 x 2448 pixels. Majure and Ervin (2007) and Majure et 

al. (2012b) were used to identify collected Opuntia cladodes.  

Morphological traits were quantified for a total of 236 cladodes. Thirty-two of 

these were collected from Opuntia plants infested with M. prodenialis and 22 from plants 

infested with C. cactorum. Data on cladode morphology were collected in a laboratory 

setting (Table 2.2). Morphological traits included; spines per areole, spine color, cladode 

shape, plant growth form, plant height, spine shape, spine persistence, spine pattern, 

mean number of spines per areole, mean length of up to 10 spines, median length of up to 

10 spines, and length of the longest spine. Measurements of spine length were made from 

digital photographs using ImageJ (Rasband 1997). Measurements in ImageJ were 

calibrated using the known length of a whiteboard included in each photograph. 

Morphological traits were chosen for their ease of measurement and because previous 

studies suggest they are correlated with infestation by C. cactorum (Myers et al. 1981, 

Robertson 1987, Jezorek et al. 2010, Sauby et al. 2012). Yet, it is possible that the 
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morphological traits used here may not be the specific traits that female C. cactorum use 

to identify Opuntia hosts on which they can successfully oviposit and their larvae infest. 

Proximate analysis was used to quantify the macronutrient (i.e., crude fiber, lipid, 

and crude protein) content of the remaining 37 cladodes. Of the cladodes used to quantify 

Opuntia tissue nutritional content, 4 and 10 cladodes were collected from Opuntia plants 

infested with M. prodenialis and C. cactorum, respectively. The internal tissue 

(chlorenchyma, vascular tissue and medullar parenchyma) of each cladode was removed, 

frozen at -80oC, and then freeze-dried at -45oC and 133 x 10-3 mbar Torr until sample 

mass was constant. Procedural guidelines from the Association of Official Analytic 

Chemists (AOAC; AOAC 2012) were followed to quantify the crude fiber, lipid, and 

crude protein content of these freeze-dried tissues. Crude fiber was measured by H2SO4 

and NaOH extraction (AOAC Official Method 962.09), % lipid was measured by 

petroleum ether extraction (AOAC Official Method 920.39), and % crude protein was 

measured via nitrogen analysis (AOAC Official Method 984.13).  

Data analysis 

All data analyses were performed in the R statistical language, version 3.2.3 

(Appendix A, R Development Core Team 2016).  Model averaging and an information 

theoretic approach (Akaike’s Information Criterion [AIC]; Burnham and Anderson 1998, 

2004) were used to identify which Opuntia morphological or tissue macronutrient traits 

best predicted cactus moth infestation. Generalized linear models (GLMs) were generated 

and fit using either solely Opuntia morphological or tissue macronutrient traits. All 

GLMs considered infestation by either M. prodenialis or C. cactorum as the binomially-

distributed response variable.  
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An exhaustive search of all main predictors, as well as one-way and two-way 

predictor interactions, was conducted for GLMs including solely Opuntia tissue 

macronutrient or morphological traits (package glmulti; Calcagno and de Mazancourt 

2010). The fit of subsequent models was assessed using AIC. A subset of fitted GLMs 

containing solely Opuntia tissue macronutrient traits and within AIC of 2 of the model 

with the lowest AIC value were used to generate averaged models predicting either M. 

prodenialis or C. cactorum infestation. Theses averaged models were also used to 

calculate model-averaged coefficient estimates, unconditional variance, predictor 

importance (number of models within AIC of 2 including each predictor), and the 95% 

confidence interval around each model-averaged coefficient estimates. Fit of the 

averaged models predicting either M. prodenialis or C. cactorum infestation was assessed 

by calculating each model’s coefficient of determination (R2).  

A genetic algorithm was used to explore potential combinations of individual 

predictors, as well as one-way and two-way predictor interactions, in GLMs including 

solely Opuntia morphological traits (package glmulti; Calcagno and de Mazancourt 

2010). Genetic algorithms provide an efficient way to explore large candidate sets of 

models (Trevino and Falciani 2006, Orestes Cerdeira et al. 2009, Calcagno and de 

Mazancourt 2010) because the algorithm initially selects a combination of predictor 

variables (and their interactions) randomly and then proceeds through model fitting and 

selection by successively fitting better models (as measured by AIC). A total of 5 

replicate runs of the genetic algorithm were conducted for M. prodenialis or C. cactorum 

infestation. Collinearity between predictor variables was evaluated prior to running the 

genetic algorithm, and interactions between highly correlated terms were explicitly 
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excluded from consideration in each replicate run. A consensus best model (package 

glmulti; Calcagno and de Mazancourt 2010) was then generated for each cactus moth 

species. The consensus best models for M. prodenialis and C. cactorum were then 

evaluated to determine if any morphological traits, or the model itself, were correlated 

with infestation by their respective cactus moth species. 

Results 

Substantial variation in tissue crude fiber, crude protein, and lipid content was 

observed within and among Opuntia taxa included in this investigation (Figure 2.2). A 

total of 11 and 21 GLMs with equal predictive power were generated to predict M. 

prodenialis and C. cactorum infestation, respectively (Tables 2.3 and 2.4). The averaged 

models were positively correlated with M. prodenialis (R2 = 0.905) and C. cactorum (R2 

= 0.555) infestation (Table 2.5). Crude protein and the interaction of crude fiber and 

crude protein were the most important variables in predicting M. prodenialis infestation 

(Table 2.5). Alternatively, crude fiber and the interaction of crude fiber and crude protein 

were most important to predicting infestation by C. cactorum (Table 2.5). 

Cactus moth infestation was poorly predicted by models containing solely 

Opuntia morphological traits. The consensus best models for predicting M. prodenialis 

(Adjusted R-squared: -0.06567, F18,217=0.03456, P = 1; Table 2.6) and C. cactorum 

(Adjusted R-squared: -0.0807, F18,217=0.02212, P = 1; Table 2.7) infestation were not 

correlated with data on cactus moth infestation.    
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Discussion 

The data suggest that infestation by cactus moths is correlated with, and can be 

predicted by, the nutritional content of Opuntia tissues. Specialist lepidopterans appear 

particularly sensitive to the nutrient content of their host plants and diets (Moore 1985, 

Genc and Nation 2004). The crude protein content of Opuntia tissues appears to be 

important for influencing M. prodenialis infestation. Increasing dietary crude protein 

content can increase larval lepidopteran nitrogen content but simultaneously decrease 

larval fat content (Karowe and Martin 1989). Lipid reserves acquired during larval 

feeding and growth can subsequently affect adult fecundity and fitness (Boggs and 

Freeman 2005, Colasurdo et al. 2009), but additional work is needed to verify this occurs 

with M. prodenialis. Alternatively, crude fiber content and the ratio of crude fiber to 

crude protein in Opuntia tissues appear important for influencing infestation by C. 

cactorum. Increasing tissue fiber content (and thus tissue toughness) can reduce tissue 

palatability and digestibility for herbivores (Grubb 1986, Hanley et al. 2007) as well as 

increase the time required to mechanically process plant tissues (Laca et al. 2001). In this 

system, neonate larval C. cactorum survival is negatively affected by increasing Opuntia 

epidermal toughness (Jezorek et al. 2010), and more neonate larvae are required to 

successfully penetrate and infest tougher Opuntia cladodes (Varone et al. 2012). In 

addition, the nutritional tradeoff between the crude fiber and sugar contents of plant 

tissues (Brokensha 1996) can suppress larval lepidopteran feeding (Beck 1956, Bartelt et 

al. 1990). Adding sugars to meridic diets can increase larval C. cactorum survival 

(Carpenter and Hight 2012), but the extent to which C. cactorum is affected by the 

nutritional tradeoff between dietary crude fiber and sugar is not understood. 
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Cactus moth infestation was poorly predicted by models containing solely 

Opuntia morphological traits. As a result, it is difficult to conclude if individual 

predictors, or interactions among predictors, significantly correlated with cactus moth 

infestation are indeed biologically important. Host Opuntia spine characteristics were 

significantly correlated with infestation by M. prodenialis, but the extent to which host 

Opuntia morphology influences plant choice and infestation by M. prodenialis is 

currently unknown. Results were also consistent with studies of C. cactorum that suggest 

Opuntia height or plant size (Myers et al. 1981, Robertson 1987, Sauby et al. 2012) and 

spine characteristics (Jezorek et al. 2010) may be important. Yet, the observed non-

existent correlations between host Opuntia morphology and infestation by either cactus 

moth species suggest that previous relationships with traits other than plant size do not 

reflect a direct influence of morphological traits on host use. In this respect, plant size 

(height or biomass) may be better predictors of C. cactorum host use than traits of 

individual cladodes. Alternatively, the morphological traits used in this investigation may 

not include those traits that influence cactus moth, particularly C. cactorum, infestation 

success. It currently is impossible to distinguish between these explanations given the 

available data.  

Invasive species can drive native populations extinct (Rose et al. 2005), influence 

the evolutionary pathways of native species (Mooney and Cleland 2001), and disrupt the 

function of the communities and ecosystems they invade (Dukes and Mooney 2004, 

Kenis et al. 2008, Gallardo et al. 2016). Catford et al. (2009) suggested that invasion 

success occurs at the intersection of three broad factors; 1) propagule pressure; 2) abiotic 
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conditions; and 3) the gain and/or loss of biotic interactions. The importance of each 

factor in defining a specific invader’s distribution is often unclear.  

It has previously been hypothesized that novel biotic interactions are important in 

shaping the realized niche and North American distribution of C. cactorum (Torchin et al. 

2003, Mitchell et al. 2006, Brooks et al. 2012, 2014). A potentially important interaction 

for C. cactorum may be the extent to which it competes with M. prodenialis. This 

expectation is consistent with Darwin’s naturalization hypothesis (Darwin 1859). In this 

respect, C. cactorum and M. prodenialis may possess similar suites of traits that interface 

with Opuntia traits. Similarity in the traits of M. prodenialis and C. cactorum may 

subsequently affect competition between these cactus moth species. The degree to which 

competition occurs between these species is not well understood, and it is currently 

impossible to test this hypothesis given the data collected in this investigation.  

The research presented here also suggests the potential for Opuntia tissue 

macronutrient concentrations to affect C. cactorum-Opuntia associations. Variation in 

tissue macronutrient content among Opuntia hosts, particularly in areas of greater 

Opuntia diversity, could affect the future spread of C. cactorum. But, the nutritional 

profiles of most North American Opuntia have not been characterized, and manipulative 

experiments have not been conducted. An analysis of host traits in Argentine Opuntia 

(those in the native range of C. cactorum) may allow for the detection of additional, trait-

based C. cactorum-Opuntia associations. Trait-based clusters of Argentine and North 

American Opuntia correlated with C. cactorum infestation may then be compared to 

suggest Opuntia traits that may be mediating C. cactorum-Opuntia associations. 
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Table 2.2 Morphological traits quantified for Opuntia cladodes. 

Trait Type of 
Variable 

Number of 
trait states Trait states/units of measurement 

Spines per 
areole Categorical 19 

0, 0 or 1, 0 to 2, 0 to 3, 0 to 4, 0 to 5, 1, 1 or 2, 
1 to 3,1 to 4, 1 to 5, 1 to 6, 2, 2 or 3, 

2 to 3, 2 to 4, 2 to 5, 3 to 5, 3 to 6 

Spine color Categorical 17 

black to white tip, black to yellow tip, brown, 
brown-yellow, grey, grey and red, grey-yellow, 

none, purple, purple to white tip,  
red and white bands, red to white tip,  

red to yellow tip, white, yellow, yellow-white 

Cladode 
shape Categorical 4 elliptic, lanceolate, obovate, orbicular 

Plant 
growth 
form 

Categorical 2 erect, sprawling 

Plant 
height Categorical 2 < 1m, > 1m 

Spine 
shape Categorical 3 curved, none, straight 

Spine 
persistence Categorical 2 none, persistent 

Spine 
pattern Categorical 3 birds-foot, none, other 

Mean 
spines per 

areole 
Numerical Discrete # spines per areole 

Mean 
length of 
up to 10 
spines 

Numerical Continuous cm 

Median 
length of 
up to 10 
spines 

Numerical Continuous cm 

Length of 
longest 
spine 

Numerical Continuous cm 
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Table 2.3 GLMs predicting infestation by M. prodenialis.  

Model Model AIC Weight 

1 Melitara ~ 1 + crude protein 27.256 0.169 

2 Melitara ~ 1 27.348 0.162 

3 Melitara ~ 1 + crude fiber:crude protein 27.930 0.121 

4 
Melitara ~ 1 + crude protein + crude fiber:crude 

protein 
28.937 0.072 

5 Melitara ~ 1 + crude protein + lipid:crude protein 28.949 0.073 

6 Melitara ~ 1 + crude protein + crude fiber 28.949 0.073 

7 
Melitara ~ 1 + crude fiber:crude protein + lipid:crude 

fiber 
29.028 0.070 

8 Melitara ~ 1 + crude fiber 29.071 0.068 

9 Melitara ~ 1 + lipid:crude protein 29.117 0.067 

10 Melitara ~ 1 + crude protein + lipid 29.201 0.064 

11 Melitara ~ 1 + crude protein + lipid:crude fiber 29.256 0.062 
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Table 2.4 GLMs predicting infestation by C. cactorum 

Model # Model AIC Weight 
1 Cacto ~ 1 + crude fiber + lipid:crude protein 29.741 0.089 

2 Cacto ~ 1 + crude fiber:crude protein + lipid:crude fiber 29.866 0.084 

3 Cacto ~ 1 + crude fiber + lipid 29.881 0.083 

4 Cacto ~ 1 + lipid + crude fiber:crude protein 30.043 0.077 

5 Cacto ~ 1 + crude fiber + lipid:crude fiber 30.272 0.065 

6 Cacto ~ 1 + crude fiber:crude protein 31.076 0.046 

7 Cacto ~ 1 + crude protein + lipid + crude fiber:crude 
protein 31.099 0.045 

8 Cacto ~ 1 + crude fiber + lipid + crude fiber:crude protein 31.186 0.432 

9 Cacto ~ 1 + lipid:crude fiber 31.234 0.042 

10 Cacto ~ 1 + lipid + crude fiber:crude protein + crude 
lipid:crude protein 31.290 0.041 

11 Cacto ~ 1 + crude protein + crude fiber + lipid 31.398 0.039 

12 Cacto ~ 1 + crude protein + crude fiber:crude protein 31.510 0.037 

13 Cacto ~ 1 + crude protein + crude fiber:crude protein + 
lipid:crude protein 31.526 0.036 

14 Cacto ~ 1 + crude protein + crude fiber:crude protein + 
lipid:crude fiber 31.540 0.036 

15 Cacto ~ 1 + crude fiber 31.546 0.036 
16 Cacto ~ 1 + crude fiber + lipid + lipid:crude protein 31.580 0.036 

17 Cacto ~ 1 + crude fiber + crude fiber:crude protein + 
lipid:crude fiber 31.645 0.034 

18 Cacto ~ 1 + crude fiber:crude protein + lipid:crude protein 31.701 0.033 

19 Cacto ~ 1 + crude fiber + crude fiber:crude protein + 
lipid:crude protein 31.717 0.033 

20 Cacto ~ 1 + crude fiber + lipid:crude protein + lipid:crude 
fiber 31.719 0.033 

21 Cacto ~ 1 + protein + crude fiber + lipid:crude protein 31.740 0.0327 
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Figure 2.1 Map of Opuntia cladode collection sites. 
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Figure 2.2 Boxplots of Opuntia cladode tissue macronutrient content. 
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EVALUATING THE RELATIVE IMPORTANCE OF FACTORS GOVERNING 

INVADER DISTRIBUTIONS 

Biological invasions have increased in frequency throughout the 20th and 21st 

centuries (Simberloff et al. 2013). Consequently, an increasing number of biological 

invasions pose threats to communities and ecosystems worldwide.  The threats posed by 

biological invasions to invaded communities and ecosystems make clear the need for 

both understanding of the factors that govern biological invasions and techniques for 

predicting invader distributions.  

Catford et al. (2009) suggest that biological invasions are governed, and invader 

distributions ultimately shaped, by three broad groups of factors: 1) the number of 

invaders introduced to and dispersing across the exotic range (propagule pressure); 2) 

invader physiological tolerances to abiotic conditions; and 3) invader gain or loss of 

biotic interactions. Two approaches to characterizing how conditions in an exotic range 

influence invader distributions appear feasible. The first approach focuses on 

understanding the individual contributions of propagule pressure, abiotic conditions, or 

biotic interactions to shaping an invader’s distribution. Considering only one broad factor 

governing invader distributions can simplify the generation and interpretation of model 

predictions (Kearney 2006, Morin and Lechowicz 2008, Paine 2010, Pigot and Tobias 

2013). Yet, this approach can affect the extent to which methods of modeling species 
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distributions can be extrapolated to new regions or different suites of constraining 

conditions (Beaumont et al. 2009, Brooks et al. 2012, Wang and Jackson 2014, Bradley 

et al. 2015). Alternatively, propagule pressure, abiotic conditions, and biotic interactions 

can be simultaneously considered when predicting an invader’s distribution. Methods for 

modeling species distributions that adopt this approach are uncommon. However, 

considering all three major factors simultaneously may allow researchers to discern the 

relative importance of each factor in constraining invader distributions by evaluating 

variation among ensuing predictions. 

Predictions of invader distributions that simultaneously consider propagule 

pressure, abiotic conditions, and biotic interactions may be most easily developed in 

systems where invaders form few obligate associations with hosts or resources. This is 

because obligate associations between an invader and its hosts or resources imply 

decreased complexity in the network of biotic interactions that directly influences the 

invader’s occurrence and persistence. It follows that abiotic suitability for the invader in 

an exotic range can be estimated from locations where the invader has formed and 

maintains obligate biotic associations (Sih et al. 2010, Guisan et al. 2014, Tingley et al. 

2014). Lastly, invader spread is influenced by invader ability to form and maintain 

obligate associations when host or resource availability is heterogeneous (Davis et al. 

2000). Predictions of invader distributions should therefore consider both invader 

dispersal abilities and factors that influence the number of dispersing individuals 

(Lonsdale 1999, Williamson 1999). 

The South American cactus moth, Cactoblastis cactorum (Lepidoptera: 

Pyralidae), is a well-known invader whose larvae are dependent on host plants in the tribe 
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Opuntieae for survival. Although successfully introduced as a biological control of pest 

prickly-pear cacti (Opuntia spp.) in Australia (Dodd 1940), introductions of C. cactorum 

into South Africa (Pettey 1948) and the Caribbean (Simmonds and Bennet 1966) led to 

its unintentional introduction to the United States. First detected in the Florida Keys in 

1989 (Habeck and Bennet 1990, Dickel 1991), field surveys have determined C. 

cactorum has spread north to Charleston, South Carolina (Hight et al. 2002) and west to 

parishes west of New Orleans, Louisiana (Rose 2009, Rose et al. 2011).  

The factors driving the North American invasion of C. cactorum are not clear. 

The North American distribution of C. cactorum appears to be relatively stable (Hight et 

al. 2002, Rose et al. 2009, 2011). Previous work using Maxent (Maxent; Phillips et al. 

2006) and abiotic conditions from the native range of C. cactorum (Argentina) generated 

predictions that successfully recaptured the native, but not North American, distribution 

of C. cactorum (Brooks et al. 2012). Also, estimates of C. cactorum genetic diversity in 

North America indicate low diversity that may decrease the potential for evolutionary 

change in C. cactorum physiological tolerances to North American abiotic conditions 

(Marsico et al. 2011). Consequently, it is thought that the North American invasion of C. 

cactorum is being driven by biotic interactions. 

Host Opuntia identity and availability appear to play important roles in 

conserving C. cactorum host preferences and forming novel C. cactorum-Opuntia 

associations (Dodd 1940, Marsico et al. 2011, Brooks et al. 2012, Sauby et al. 2012). It is 

estimated that approximately 30 Opuntia taxa occur in the United States, but this number 

is debatable due to issues with hybridization and polyploidy among Opuntia (Anderson 

2001, Rebman and Pinkava 2001, Stuppy 2002, Hunt 2006, Majure et al. 2012a, 2012b). 
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Several North American Opuntia taxa are known hosts for C. cactorum (Johnson and 

Stiling 1998, Soberon et al. 2001, Sauby et al. 2012). As a result, concern has arisen over 

the potential for C. cactorum to invade regions of greater Opuntia diversity in the 

southwestern United States and Mexico (Soberon et al. 2001). Current understanding of 

North American Opuntia ranges indicates considerable variation in range size (Powell et 

al. 2008), but abiotic constraints on many (if not all) Opuntia ranges are not well 

understood. Knowledge of the geographic ranges of Opuntia hosts may provide 

information on Opuntia availability to C. cactorum that can be used to inform predictions 

of the North American distribution of C. cactorum.  

This work describes the development of a method that incorporates propagule 

pressure, abiotic conditions, and biotic interactions to predict the North American 

distribution of C. cactorum. Predictions of species distributions are often appropriately 

called species distribution models (SDMs). The predictions generated by the method used 

in this investigation are referred to as PAB predictions to distinguish these predictions 

from other SDMs as a result of their inclusion of propagule pressure (P), abiotic 

conditions (A), and biotic interactions (B). It was hypothesized that PAB predictions 

would differ from predictions generated using Maxent (Phillips et al. 2006). It was 

expected that the geographic extent of PAB predictions would be more constrained than 

the geographic extent of Maxent-generated predictions. The degree of similarity (or in 

other words, overlap) between PAB and Maxent predictions, as well as the relative 

contribution of propagule pressure, abiotic suitability, and biotic interactions in 

generating overlap among PAB predictions, is quantified. Results indicate that abiotic 

suitability is more important than biotic interactions and propagule pressure in generating 
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overlap among PAB predictions.  The work described here provides a foundation to 

incorporate additional biological complexity in order to improve predictions of the North 

American distribution of C. cactorum and, more generally, to implement similar methods 

to characterize the distributions of other species of interest.  

Materials and Methods 

Study area and occurrence records 

A total of 5214 Opuntia occurrence records from 4737 unique GPS locations, and 

233 C. cactorum occurrence records from 227 unique GPS locations, were compiled for 

the current study (Figure 3.1). The region sampled spans from Arizona to South Carolina 

and includes the known North American distribution of C. cactorum and the ranges of 

many North American Opuntia taxa. Occurrence records for C. cactorum and the 

Opuntia taxa included in this study were collected during field study by members of the 

Brooks lab (2008, 2012-13) and supplemented with records from the Cactus Moth 

Detection and Monitoring Network (CMDMN, 1990 - 2012). GPS coordinates were 

collected for each Opuntia and C. cactorum occurrence record. Researchers associated 

with the CMDMN identified Opuntia to taxa when occurrence records were collected. 

For samples collected by members of the Brooks lab, Powell and Weedin (2004) and 

Powell et al. (2008) were used to identify Opuntia from Arizona, New Mexico, and 

Texas based on plant morphology. Majure and Ervin (2007) and Majure et al. (2012b) 

were used to identify Opuntia from South Carolina and Florida. 
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Generating Maxent predictions of C. cactorum and Opuntia taxa distributions 

All model simulations and statistical analyses were conducted in the R statistical 

language (Appendix B, R Development Core Team 2016). Maxent (Phillips et al. 2006) 

was used to generate predictions of the North American distributions of C. cactorum and 

each Opuntia taxon for which occurrence records were compiled (package dismo; 

Hijmans 2013). The WorldClim database (http://www.worldclim.org; Hijmans et al. 

2005) was used to obtain 19 BIOCLIM rasters at 30 arc-second (~1km2) resolution to act 

as predictive environmental variables (Table 3.1). All C. cactorum or Opuntia taxa 

occurrence records for which associated BIOCLIM information could be extracted were 

used to generate each Maxent prediction. All BIOCLIM layers were utilized when 

generating Maxent predictions in order to produce the most conservative Maxent 

predictions possible.  

The occurrence records for C. cactorum and each Opuntia taxon were partitioned 

into 5 groups via k-fold partitioning (package dismo; Hijmans 2013). A total of 10,000 

background points were then randomly selected from within the geographic boundary of 

the study region for each taxon modeled. The occurrence records for C. cactorum or each 

Opuntia taxon, as well as the randomly selected background points generated for each 

taxon modeled, were used to train and test Maxent predictions. Only Maxent’s logistic 

output for each taxon modeled was used in this investigation. All Maxent predictions 

were projected across the extent of the study region at a resolution of 30 arc-seconds.   

Threshold-dependent metrics informed by the threshold value that maximized 

Maxent sensitivity and specificity were used to evaluate Maxent’s ability to accurately 

predict abiotic suitability for each taxon modeled. This threshold value was used because 

http://www.worldclim.org/
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it balances Maxent’s ability to predict a species’ presence and absence (Liu et al. 2005, 

2013) and thus discern suitable from unsuitable habitat. The threshold-dependent 

performance metrics used here included: model omission rate (proportion of true 

occurrences misidentified by the defined threshold), sensitivity (proportion of actual 

positives identified as such), specificity (proportion of actual negatives identified as 

such), proportion of presence and absence points correctly identified, Cohen’s kappa 

(Cohen 1960), and the true skill statistic (TSS; Allouche et al. 2006). Both Cohen’s kappa 

and the TSS normalize overall model accuracy (the number of cells where an organism is 

correctly classified as present or absent) by model accuracy that might have occurred due 

to chance. Values of Cohen’s kappa and the TSS can range from -1 to 1; a value of 1 

indicates perfect agreement between model accuracy and accuracy expected due to 

chance whereas negative values indicate that the model’s predictions are no better than 

random chance (Cohen 1960, Allouche et al. 2006). Threshold-independent metrics also 

were used to assess Maxent’s performance; the threshold-independent metric used was 

the area under receiver operator curve (AUC).  

Estimating habitat suitability for C. cactorum 

Habitat suitability for C. cactorum was estimated by combining the Maxent 

predictions of abiotic suitability for Opuntia taxa relative to scenarios considering host 

Opuntia availability to C. cactorum. Scenarios of Opuntia availability were generated 

with consideration given to whether host Opuntia were known to be hosts for C. 

cactorum. The first scenario of host Opuntia availability used the Maxent predictions of 

eastern Opuntia taxa known to be hosts for C. cactorum, including; O. humifusa var. 

ammophila, O. austrina, O. engelmannii var. engelmannii, O. ficus-indica, O. humifusa 
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var. humifusa, O. engelmannii var. lindheimeri, O. macrorhiza, O. pusilla, and O. stricta 

(Johnson and Stiling 1998, Soberon et al. 2001, Sauby et al. 2012). The second scenario 

of host Opuntia availability used the Maxent predictions of all Opuntia taxa modeled.  

The Maxent predictions for each Opuntia taxon in each host availability scenario 

were stacked together (package raster; Hijmans et al. 2011). Three different estimates of 

habitat suitability were then calculated based on the mean, median, or maximum value of 

each raster cell across all stacked Opuntia predictions in both host Opuntia availability 

scenarios. In total, 6 habitat suitability maps (2 scenarios of host Opuntia availability, 3 

estimates of habitat suitability based on abiotic suitability for Opuntia) were generated. 

All maps of habitat suitability for C. cactorum were projected across the same spatial 

extent as the taxon-level Maxent predictions and at a resolution of 30 arc-seconds.  

Simulating C. cactorum dispersal 

The R package MIGCLIM (Engler and Guisan 2009, Engler et al. 2012) was used 

to simulate C. cactorum dispersal relative to host Opuntia availability and estimates of 

habitat suitability for C. cactorum. Several dispersal scenarios, each with multiple 

constraints, were generated. The first dispersal scenario solely considered local dispersal. 

Local C. cactorum dispersal in North America is not well understood, so historical 

information regarding C. cactorum dispersal in Australia (Dodd 1940) was used to 

impose local dispersal constraints up to distances of 4km (5 raster cells). Variation in C. 

cactorum local dispersal abilities was generated by drawing 10 different dispersal kernels 

(labelled kernels 1-10) from exponential distributions over a distance of approximately 

4km. Local dispersal kernels primarily differed in regards to the probabilities associated 

with very local dispersal (2km, up to 3 raster cells); for example, kernels 9 and 10 had 
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greater probabilities of very local dispersal than all other dispersal kernels. In simulations 

involving solely local dispersal constraints, the total probability of dispersing across the 5 

raster cells in each local dispersal kernel was re-scaled to sum to a value of 1.  

The remaining dispersal scenarios considered both local and long-distance 

dispersal (LDD) constraints. In general, the abilities of C. cactorum to disperse over long 

distances in field conditions are not well understood, but Dodd (1940) anecdotally 

observed a female that dispersed at least 24km. This dispersal distance (24km, 30 raster 

cells), as well as a distance of 12km (15 raster cells; approximately the longest total 

distance flown by a male C. cactorum in laboratory settings; Sarvary et al. 2008a), were 

used as the maximum distances over which individual moths could potentially disperse. It 

is inherently difficult to quantify the probability of LDD for many organisms as LDD 

events can require specific conditions and are typically rare (Hengeveld 1994, Buchan 

and Padilla 1999). Few adult C. cactorum appear to disperse over distances greater than 

2.5km (Hight et al. 2005, Sarvary et al. 2008a, 2008b), but the probability with which C. 

cactorum LDD occurs under field conditions is currently unknown. As a result, two 

scenarios were generated where C. cactorum LDD occurred with arbitrarily chosen 

probabilities of 0.01 or 0.001. Varying both the maximum distance and the probability of 

LDD occurring allowed for evaluation of the degree to which this SDM method was 

sensitive to modifications in dispersal parameters. Scenarios involving LDD also 

involved the process of local dispersal. Local dispersal kernels were therefore re-scaled 

so the total probability of local dispersal summed to 0.99 or 0.999.   

C. cactorum is known to be multivoltine in warmer climates (Hight et al. 2003) 

and can have up to three dispersal flights per year in the southeastern United States 
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(Simonson et al. 2005). Based on this information, all dispersal simulations were run 

using a total of 300 dispersal steps, or the equivalent of 100 years. The minimum number 

of replicate simulations needed for each combination of abiotic suitability, host Opuntia 

availability, and dispersal constraints was determined by evaluating variation in the 

number of cells occupied across replicates. Scenarios including 10, 25, and 50 replicates 

were examined. The number of cells occupied across 10 replicates was substantially 

lower than the number of cells occupied across 25 or 50 replicates. As a result, 25 

replicate simulations were generated for each combination of modeling constraints (i.e., 

Opuntia availability, habitat suitability values, and dispersal scenario). 

Evaluating similarity among PAB and Maxent predictions 

The two goals associated with this research were: 1) compare the degree of 

similarity (or overlap) among PAB and Maxent predictions; and 2) evaluate the relative 

contribution of propagule pressure, abiotic suitability, and biotic interactions in 

generating overlap among PAB predictions. Comparing the degree of overlap among 

PAB and Maxent predictions necessitated that all predictions were on the same value 

scale. Values of Maxent’s logistic output range from 0 to 1 and represent Maxent’s 

estimate of the probability that a species is present at a location given the environment at 

that location (Elith et al. 2011). PAB predictions were thus re-scaled by classifying all 

raster cells in each replicate prediction as occupied (value of 1) or unoccupied (value of 

0) by C. cactorum. Replicates generated for each model scenario (i.e., Opuntia 

availability, habitat suitability values, and dispersal scenario) were then stacked and 

averaged. Raster cell values in final PAB predictions of the North American distribution 
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of C. cactorum ranged from 0 to 1 and represented the proportion of replicates in which 

any particular cell was occupied by C. cactorum at the end of 300 dispersal steps.   

Schoener’s D (Schoener 1968) was used to evaluate the degree of overlap among 

predictions of the North American distribution of C. cactorum (package ENMeval; 

Muscarella et al. 2014). Schoener’s D permits direct comparisons between predictions 

generated using different SDM methods (Warren et al. 2008). Values of Schoener’s D 

range from 0, indicating predictions that are highly divergent and do not overlap, to 1, 

which indicates predictions that overlap exactly. A Kruskal-Wallis analysis of variance 

was used to evaluate variance in Schoener’s D values among PAB and Maxent 

predictions relative to the modeling constraints of propagule pressure, abiotic conditions, 

and biotic interactions included in the simulation process. A Dunn’s test (Dunn 1964) for 

multiple comparisons (package dunn.test; Dinno 2014) with a  Bonferroni correction was 

then used to compare pairs of all predictions relative to the constraints of propagule 

pressure, abiotic conditions, and biotic interactions included in the simulation process.  

The relative contribution of abiotic suitability, host Opuntia availability, and 

dispersal constraints in generating overlap among PAB predictions was also evaluated. 

Discrete probability distributions were fit to Schoener’s D values from comparisons 

among all PAB predictions, and the fit of each probability distribution was assessed via 

Akaike’s Information Criterion (AIC; Burnham and Anderson 2004). A beta distribution 

best fit all Schoener’s D values. Nested beta regression models (package betareg; Cribari-

Neto and Zeileis 2010) considering all modeling constraints simultaneously, as well as 

models including individual constraints, were fit. In all beta regression models, 

Schoener’s D values were used as the response variable whereas abiotic suitability, host 
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Opuntia availability, and C. cactorum dispersal constraints were used as predictor 

variables. Likelihood ratio tests were used to assess the amount of variation in Schoener’s 

D explained by each of the nested regression models. Predictor significance in each beta 

regression model was evaluated using a coefficient test (package lmtest; Zeileis and 

Hothorn 2002). 

Results 

A total of 21 Maxent predictions were generated for the Opuntia taxa included in 

this study (Table 3.2, Figures B.1-B.21). A Maxent prediction of the North American 

distribution of C. cactorum was also generated (Figure 3.2). The AUC value for the C. 

cactorum prediction was 0.979 and AUC values ranged from 0.786 to 0.997 for Opuntia 

predictions. The threshold that maximized Maxent sensitivity and specificity for C. 

cactorum was 0.28, and thresholds ranged from 0.025 to 0.55 for Opuntia predictions. 

Maxent omission rates never exceeded 21%. Cohen’s kappa was 0.345 for the C. 

cactorum prediction and ranged in value from 0.018 to 0.958 for Opuntia predictions. 

Values of the TSS ranged from 0.355 to 0.994 for Opuntia predictions, whereas the TSS 

for the C. cactorum prediction was 0.957.  

Habitat suitability for C. cactorum varied relative to its method of calculation and 

whether eastern or all Opuntia hosts were considered available to C. cactorum (Figure 

3.3). In general, habitat suitability maps generated using eastern Opuntia hosts had more 

extreme ranges of suitability values than scenarios considering all Opuntia hosts. Habitat 

suitability values ranged from 3.07 x 10-7 to 0.663, 0.0018 to 0.486, and 0.0085 to 0.879 

for scenarios considering the median, mean, and maximum values for eastern host 
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Opuntia. Median, mean, and maximum habitat suitability values ranged from 2.9 x 10-6 

to 0.413, 0.0038 to 0.347, and 0.023 to 0.927 when all Opuntia taxa were considered.  

Considerable variation in Schoener’s D was observed when evaluating all 

predictions relative to how constraints on propagule pressure, abiotic conditions, and 

biotic interactions were imposed during the modeling process (Figure 3.4). A Kruskal-

Wallis analysis of variance revealed substantial variation in Schoener’s D values among 

all predictions relative to constraints of abiotic suitability (χ2 = 5476.1 , df = 3, p-value = 

<0.001), host Opuntia availability (χ2 = 2187.2,df = 2,p-value = <0.001), local dispersal 

kernel (χ2 = 339.41,df = 10,p-value = <0.001), long-distance dispersal probability (χ2  = 

960.29,df = 3,p-value = <0.001), and maximum distance dispersed during long-distance 

dispersal (χ2  = 387.22, df = 3,p-value = <0.001). When all predictions were compared to 

each other, it was observed that PAB predictions generally had greater median overlap, 

and greater variation in that overlap, with all other predictions than did the Maxent 

prediction. The Dunn’s test for multiple comparisons indicated nearly all pairwise 

comparisons of all predictions were significantly different (P < 0.05) with respect to the 

modeling constraints of interest (Table 3.3). Pairwise comparisons also revealed 

predictions generated using dispersal kernels 9 and 10 differed significantly (P < 0.05) 

from predictions generated using kernels 1-8.  

Likelihood ratio tests of nested beta regression models were used to explore the 

contribution of abiotic suitability, host Opuntia availability, and dispersal conditions to 

overlap among PAB predictions of the North American distribution of C. cactorum 

(Table 3.4). The full beta regression model that contained all predictor variables 

explained the greatest amount of variation in Schoener’s D values among PAB 
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predictions. How abiotic suitability was estimated, followed by host Opuntia availability 

to C. cactorum, accounted for the greatest amount of variation in Schoener’s D values 

among PAB predictions (Table 3.4). The frequency of long-distance dispersal was the 

most influential dispersal constraint in generating variation in Schoener’s D values 

among PAB predictions. 

Discussion 

This research focused on generating predictions (PAB predictions) of the North 

American distribution of C. cactorum that included the three major factors that shape 

invader distributions (propagule pressure, abiotic conditions, and biotic interactions). 

These PAB predictions were then compared to a prediction generated by Maxent  and 

amongst themselves. The relative contribution of propagule pressure, abiotic conditions, 

and biotic interactions in generating overlap among PAB predictions was also evaluated. 

The hypothesis that PAB predictions would differ from predictions generated by Maxent 

was supported, but the expectation that PAB predictions would be more constrained than 

a Maxent prediction was not upheld. PAB predictions were generally broader in extent, 

and extended further inland, than the Maxent prediction. Assessing overlap among PAB 

and Maxent predictions revealed that PAB predictions generally had greater median 

overlap, as well as greater variation in overlap, among all predictions than did the Maxent 

prediction. Abiotic conditions, followed by biotic interactions, were most the influential 

modeling constraints in generating variation in overlap among PAB predictions. Methods 

that increase understanding of the influential factor(s) governing similarities among SDM 

predictions may enable hypothesis testing about specific mechanisms governing 

biological invasions. Understanding of the effects of specific mechanisms governing 
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biological invasions may then be used to inform efforts to manage invader establishment 

and spread throughout an exotic range. 

The manner in which abiotic suitability was calculated (i.e., maximum, mean, or 

median suitability) was the most important factor influencing the extent of, and 

consequently variation in overlap among, PAB predictions. This result is not entirely 

surprising as abiotic suitability can influence both invader spread across an exotic 

landscape and predictions of invader exotic distributions (Capinha et al. 2013, 

Muthukrishnan et al. 2015, Stewart-Koster et al. 2015). Scenarios of maximum suitability 

considered only one value (i.e., the maximum value of any particular Opuntia taxa 

present in a raster cell) whereas mean and median suitability were aggregate values that 

considered all Opuntia hosts present in a raster cell. Maximum suitability scenarios 

resulted in the furthest inland and westward spread of C. cactorum. Alternatively, mean 

or median suitability scenarios generated predictions that, to varying degrees, indicated 

more restricted distributions of C. cactorum. A mean suitability scenario, in particular, 

resulted in an intermediate degree of spread of C. cactorum. This intermediate degree of 

spread in turn resulted in PAB predictions with the most median overlap among all PAB 

predictions. Conversely, scenarios of median suitability generated more restricted PAB 

predictions that had the least median overlap with other PAB predictions.  

Biotic interactions, specifically host Opuntia availability to C. cactorum, were the 

second-most influential factor in generating variation in overlap among PAB predictions. 

This result appears to corroborate previous work suggesting particular Opuntia taxa are 

important in influencing C. cactorum occurrence (Dodd 1940, Marsico et al. 2011, 

Brooks et al. 2012, Sauby et al. 2012). PAB predictions generated under a scenario of all 
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Opuntia taxa availability to C. cactorum exhibited a greater degree of westward and 

inland spread of C. cactorum than predictions generated under a scenario considering 

eastern Opuntia taxa availability. The observed discrepancies in C. cactorum spread 

between PAB predictions relative to scenarios of host Opuntia availability are likely 

attributable to eastern Opuntia taxa having range limits that more closely coincide with 

the current distribution of C. cactorum. Abiotic suitability west of the ranges of these 

eastern Opuntia taxa was less and thus restricted C. cactorum spread primarily to the 

southeastern US. Resource availability in the western portion of the study region also 

may have affected C. cactorum spread and ensuing predictions. Increasing native 

biodiversity can increase local scale resistance to vector-borne and fungal pathogens, as 

well as invasive species (Knops et al. 1999, Naeem et al. 2000, Kennedy et al. 2002, 

Fargione and Tilman 2005, Keesing et al. 2006). In the case of invasive species, extrinsic 

factors such as heterogeneity in resource availability can generate positive correlations 

between native biodiversity and invader establishment and spread at regional or 

community-level scales (Davis et al. 2000, Levine 2000, Byers and Noonburg 2003, 

Hooper et al. 2005). The western portion of the study region had more Opuntia diversity, 

but aside from the western Opuntia taxa included in a study by Jezorek et al. (2010), the 

suitability of most western Opuntia taxa as hosts for C. cactorum is not known.   

Invader dispersal abilities influence whether an invader can capitalize on resource 

availability (Davis et al. 2000) or reach unoccupied, but suitable, habitat (Lonsdale 1999, 

Williamson 1999). The probability of long-distance dispersal was the most important 

dispersal constraint imposed in generating PAB predictions. Yet, the uncertainty 

associated with the frequency with which C. cactorum disperse long-distances highlights 
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the need for additional research focused on quantifying C. cactorum LDD abilities. The 

local dispersal kernel used in scenarios considering solely local dispersal resulted in 

substantially different PAB predictions. This is especially true with regards to predictions 

generated using dispersal kernels 9 and 10 as these two kernels had greater probabilities 

of dispersing shorter distances (up to 3 raster cells), but lesser probabilities of dispersing 

longer distances (5 raster cells), relative to kernels 1-8. The results reported here thereby 

highlight the importance of the shape of a dispersal kernel in dictating local invader 

spread (Kot et al. 1996). The maximum distance which individuals could disperse was 

the least important constraint imposed. Predictions where propagules could disperse 

maximum distances of 12km and 24km did not significantly differ (P > 0.05) in their 

degree of overlap. However, these maximum distances may be conservative estimates as 

factors such as human-mediated dispersal (Wilson et al. 2009) or inclement weather 

(Andraca-Gomez et al. 2015) can increase invader dispersal distances. Additional 

research about C. cactorum dispersal under field-conditions in North American would be 

useful in refining future simulation attempts. 

The geographic ranges of important prey or host plant species have been used in 

SDM methods to integrate biotic interactions and abiotic suitability in order to predict the 

distributions of organisms in their native communities (Trainor and Schmitz 2014, 

Trainor et al. 2014, de Araujo et al. 2015). Yet, similar approaches are less commonly 

used when applying SDM methods to biological invasions (but see Silva et al. 2014, da 

Silva Doge et al. 2015). Integrating abiotic suitability and biotic interactions in order to 

estimate habitat suitability for C. cactorum highlights a key point: if organism traits 

mediate biotic interactions (Werner and Peacor 2003, Stang et al. 2006, Verberk et al. 
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2013, Leach et al. 2015), then the presence or absence of taxa possessing specific suites 

of traits that mediate interactions with an invader may dictate habitat suitability for the 

invader. In this respect, scenarios of maximum habitat suitability may be an appropriate 

constraint when predicting C. cactorum distributions if C. cactorum perceives habitat 

suitability relative to the presence of particular Opuntia taxa that possess specific suites 

of traits. Previous work in this system suggests C. cactorum occurrence is influenced by 

the presence of particular Opuntia taxa (Dodd 1940, Marsico et al. 2011, Brooks et al. 

2012, Sauby et al. 2012), so where these important Opuntia taxa occur may also 

constitute good habitat for C. cactorum. Alternatively, aggregate measures of habitat 

suitability (e.g., mean or median) may be more appropriate constraints if C. cactorum 

perceives habitat suitability as function of all Opuntia taxa and traits available.  

The over-arching goal of this investigation was to develop an SDM method that 

integrates propagule pressure, abiotic suitability, and biotic interactions to predict the 

exotic distributions of invasive species. This work also sought to evaluate the relative 

importance of all modeling constraints on ensuing predictions. The results presented here 

indicate both goals were accomplished. However, the accuracy of any SDM predictions 

can be hindered by limited researcher understanding of invader perception of habitat 

suitability, which biotic interactions influence invader occurrence in an exotic range, and 

invader dispersal biology. Researcher lack of understanding about invader life history 

also hinders the interpretation of SDM predictions, especially with respect to identifying 

and quantifying what factors are influential in generating SDM predictions and 

potentially driving specific biological invasions. Future improvements to the method 
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described here should focus on integrating trait-based approaches that characterize how 

invader traits mechanistically influence the major factors governing invasion. 

Table 3.1 List of 19 BIOCLIM predictor rasters.  

BIOCLIM 
Layer Environmental variable 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min 
temp)) 

BIO3 Isothermality (BIO2/BIO7)*100 

BIO4 Temperature Seasonality (standard deviation * 100) 

BIO5 Maximum temperature of warmest month 

BIO6 Minimum temperature of coldest month 

BIO7 Temperature annual range (BIO5 - BIO6) 

BIO8 Mean temperature of wettest quarter 

BIO9 Mean temperature of driest quarter 

BIO10 Mean temperature of warmest quarter 

BIO11 Mean temperature of coldest quarter 

BIO12 Annual precipitation 

BIO13 Precipitation of wettest month 

BIO14 Precipitation of driest month 

BIO15 Precipitation seasonality (Coefficient of variation) 

BIO16 Precipitation of wettest quarter 

BIO17 Precipitation of driest quarter 

BIO18 Precipitation of warmest quarter 

BIO19 Precipitation of coldest quarter 
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Table 3.3 Dunn’s test for multiple comparisons between PAB and Maxent-generated 
predictions.  

Scenario Comparisons Z value P value 

Abiotic suitability 

Maximum - Maxent 18.984 < 2.2E-16 
Maximum - Mean -7.350 5.96E-13 

Maximum - Median 58.453 < 2.2E-16 
Mean - Maxent -20.019 < 2.2E-16 

Median - Maxent -10.757 < 2.2E-16 
Mean - Median 65.791 < 2.2E-16 

    

Biotic interactions 
All - Eastern -43.706 < 2.2E-16 
All - Maxent 14.100 < 2.2E-16 

Eastern - Maxent 19.131 < 2.2E-16 
    

LDD Probability 

Local - 0.1% 0.458 1 
Local - 1% -19.178 < 2.2E-16 

Local - Maxent 15.359 < 2.2E-16 
0.1% - 1% -24.047 < 2.2E-16 

0.1% - Maxent 15.350 < 2.2E-16 
1% - Maxent 18.443 < 2.2E-16 

    

LDD Maximum 
Distance 

12km - 24km -2.284 0.067 
12km - Local 8.423 < 2.2E-16 

12km - Maxent 16.749 < 2.2E-16 
24km - Local 10.288 < 2.2E-16 

24km - Maxent 17.043 < 2.2E-16 
Local - Maxent 15.359 < 2.2E-16 

Reported P values are exact values calculated from the Dunn’s test. 
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Table 3.4 Likelihood ratio tests of nested beta regression models.  

Model df LogLik Chisq Pr 
(>Chisq) 

Suit. + Host  + LDD Prob. + Disp. method + 
Disp. kernel 9 7994.9   
Suitability 4 6506.8 2976.3 < 0.001 
Host 3 5240.9 2531.8 < 0.001 

LDD Probability 3 4632.3 1217.1 < 0.001 
Disp. method 4 4343.8 577.1 < 0.001 
Disp. kernel 3 4318.8 49.925 < 0.001 

 

 

Figure 3.1 Map of 5214 Opuntia (open points) and 233 C. cactorum (black points) 
occurrence records.  
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Figure 3.2 Maxent prediction of the North American distribution of C. cactorum. 

 

 

Figure 3.3 Mosaics of habitat suitability for C. cactorum. 
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Figure 3.4 Boxplots comparing Schoener’s D values associated with PAB and 
Maxent-generated predictions.  
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A TRAIT-BASED METHOD FOR PREDICTING THE EXOTIC DISTRIBUTIONS OF 

INVASIVE SPECIES 

Introduction  

Trait-based approaches offer considerable promise to identify mechanisms 

influencing patterns of community assemblage and structure (Keddy 1992, Poff 1997, 

Lavorel and Garnier 2002, McGill et al. 2006, Verberk et al. 2013). This is because trait-

based approaches are founded on the premise that individuals are selected for by local 

environmental filters relative to the individual’s collection of traits (Poff 1997, McGill et 

al. 2006, Violle et al. 2007, Webb et al. 2010). Surviving individuals subsequently 

express phenotypes that vary predictably relative to local environmental conditions. It 

follows that populations separated by large spatial scales, but persisting under similar 

local environmental conditions, may exhibit similar population-level distributions of 

phenotypes (Swenson and Enquist 2007, Cornwell and Ackerly 2009, Whitehead et al. 

2011). Trait-based approaches may therefore aid in predicting how organism traits affect 

species occurrences, and thus patterns in species distributions.  

Much interest has focused on developing methods to predict the exotic 

distributions of invasive species (Elith and Leathwick 2009, Vaclavik and Meetemeyer 

2009, Gallien et al. 2010, Jones et al. 2010, Jarnevich and Reynolds 2011, Gallien et al. 

2012, 2015). Understanding the factors that govern biological invasions is critical for 
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informing methods of developing species distribution models (SDMs). Catford et al. 

(2009) distilled the factors governing biological invasions into three broad groupings: 1) 

the number of invaders arriving and dispersing in an exotic range (propagule pressure); 2) 

invader physiological tolerance to abiotic conditions; and 3) invader gain or loss of biotic 

interactions in an exotic range. The intersection of these three major groupings defines 

the conditions that constrain invader distributions in an exotic range (Soberon 2007, 

Catford et al. 2009). Invader traits (e.g., tolerance to cold, feeding adaptations), or traits 

of taxa present in invaded communities, can mediate the abiotic and biotic factors that 

constrain the invader’s exotic distributions (Lamouroux et al. 2002, Leps et al. 2006, 

McGill et al. 2006, Webb et al. 2010, Verberk et al. 2013). Predictions of invader exotic 

distributions may thus be informed by integrating the traits of the invader or taxa in the 

invaded community. 

Organism traits are not commonly integrated into SDM methods, much less SDM 

methods applied to biological invasions. Focusing on systems where invaders form a 

limited number of obligate associations with hosts or resources may benefit the initial 

development of trait-based SDM methods. This is because invader establishment and 

persistence is directly linked to invader ability to form associations with hosts or 

resources in newly-invaded communities that act as surrogates for interactions in the 

invader’s native range. A limited number of obligate interactions between invader and 

hosts or resources may subsequently aid in identifying specific suites of traits that govern 

invader associations, and constrain invader distributions, in exotic ranges.  

The South American cactus moth, Cactoblastis cactorum, is an invasive consumer 

whose larvae are dependent on their host plants, prickly pear cacti (Opuntia spp.). 
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Collections of C. cactorum made in Argentina in early 1926 were successfully introduced 

into Australia as a means of biological control for pest prickly-pear. Subsequent 

introductions of C. cactorum to South Africa (Pettey 1948) and the Caribbean 

(Simmonds and Bennett 1966) to control additional pest Opuntia species ultimately led to 

its unintentional introduction into the Florida Keys (Habeck and Bennett 1990, Dickel 

1991). Field surveys have since determined C. cactorum has spread north to Charleston, 

South Carolina (Hight et al. 2002) and west to parishes west of New Orleans, Louisiana 

(Rose 2009, Rose et al. 2011).   

Host Opuntia identity and availability appear to play important roles in 

conserving C. cactorum host preferences, driving novel associations, and governing C. 

cactorum occurrence in North America (Dodd 1940, Marsico et al. 2011, Brooks et al. 

2012, Sauby et al. 2012). It is estimated that approximately 30 Opuntia taxa occur in the 

United States (Anderson 2001, Rebman and Pinkava 2001, Stuppy 2002, Hunt 2006). 

The potential for most North American Opuntia taxa to be used as hosts by C. cactorum 

is not well understood (but see Jezorek et al. 2010), especially in regards to Opuntia taxa 

found in the southwestern US. Infestation of Opuntia by C. cactorum was found to be 

correlated with both the tissue macronutrient content of Opuntia tissues (Chapter Two). 

Yet, additional work is needed to identify C. cactorum traits that interact with Opuntia 

tissue macronutrient traits so as to develop a mechanistic understanding of C. cactorum-

Opuntia associations.  

This research focuses on developing a SDM method that predicts the North 

American distribution of C. cactorum. This method differs from the method described in 

Chapter Three in that habitat suitability for C. cactorum is estimated relative to the 
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availability of trait-based Opuntia clusters and additional biological complexity is 

incorporated when simulating C. cactorum dispersal. It was hypothesized that predictions 

generated via the trait-based SDM method described here would differ from predictions 

generated by Maxent and a previously described SDM method (Chapter Three). Trait-

based SDM predictions were expected to be more constrained than all (PAB and Maxent) 

predictions generated in Chapter Three. The hypothesis and prediction of this research is 

addressed by quantifying the degree of similarity (or in other terms, overlap) among trait-

based SDM, PAB, and Maxent predictions. The relative importance and contribution of 

abiotic suitability and dispersal in generating overlap among trait-based SDM predictions 

is also quantified. Trait-based SDM predictions of the North American distribution of C. 

cactorum were considerably more constrained than PAB predictions generated in Chapter 

Three. Yet, trait-based SDM predictions including 3 or 4 dispersal events did not differ 

from Maxent-generated predictions. The number of dispersal events included in the 

modeling process was the most important factor influencing the overlap among trait-

based SDM predictions. Results from this investigation indicate trait-based SDM 

methods can generate predictions of invader exotic distributions that are consistent with 

predictions generated by methods that consider invader distributions to be constrained 

solely by environmental conditions. The importance of the number of dispersal events as 

a modeling constraint for this trait-based SDM method highlights a need for accurate 

information regarding invader dispersal in exotic ranges.  
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Materials and Methods 

Study area and cladode sampling procedures 

Collections of Opuntia cladodes were made between spring 2012 to summer 2014 

at 78 geographically distinct sites across the southern and southwestern United States, 

particularly an area spanning from Arizona to South Carolina (Figure 4.1). This 

geographic area includes the existing North American range of C. cactorum, as well as 

the ranges of multiple North American Opuntia taxa (Anderson 2001, Rebman and 

Pinkava 2001, Stuppy 2002, Hunt 2006, Majure et al. 2012a, 2012b). Sites were visited 

from August-October, November-February, and March-May in order to 1) capture 

spatiotemporal variation in C. cactorum infestation, 2) sample Opuntia taxa that persist 

throughout South Carolina and Florida, and 3) collect Opuntia cladodes exposed to 

heterogeneous environmental conditions that may influence tissue macronutrient content.  

All sites were visited, and all cladodes collected, in the morning or mid-afternoon. 

A time-constrained search of 1 person-hour was conducted at the start of each visit to a 

site in order to detect cactus moth infestation. During a search, cladodes with suspected 

cactus moth infestation were removed from the plant and set aside for further inspection. 

Cladodes with suspected cactus moth infestation were dissected after the time-

constrained search to confirm infestation status and moth identity. Any C. cactorum 

found were collected and preserved in 90% ethanol. Uninfested cladodes were collected 

from both infested and uninfested plants after the time-constrained search and cladode 

dissection. No more than 3 terminal cladodes were collected from any individual Opuntia 

plant, but the total number of cladodes collected per site varied relative to the number of 

plants present. The GPS location for each cladode collection was recorded along with 
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information on host Opuntia height and growth form. All cladodes were collected during 

early morning to mid-afternoon hours.  

A total of 721 cladodes were collected from 364 plants across all sampling sites. 

Six of these cladodes were excluded from this investigation because they had begun to rot 

prior to returning to the authors’ lab. Pictures were taken of each cladode collection at a 

resolution of no less than 3264 x 2448 pixels. Powell and Weedin (2004) and Powell et 

al. (2008) were used to identify Opuntia from Arizona, New Mexico, and Texas based on 

plant morphology. Majure and Ervin (2007) and Majure et al. (2012b) were used to 

identify Opuntia from South Carolina and Florida. 

Quantifying Opuntia morphological and tissue macronutrient traits 

A total of 715 cladodes were utilized in this study (Table 4.1). Both 

morphological and tissue macronutrient traits of host plants were quantified for 21 of 

these 715 cladodes. A total of 7 of these 21 cladodes were collected from Opuntia hosts 

infested with C. cactorum. Solely morphological traits were quantified for a total of 640 

cladodes of which 22 cladodes were collected from Opuntia plants infested with C. 

cactorum. Solely tissue macronutrient traits were quantified for a total of 54 cladodes of 

which 3 cladodes were collected from Opuntia plants infested with C. cactorum.   

All data on cladode morphology were collected in a laboratory setting (Table 4.2). 

Morphological traits included; spines per areole, spine color, cladode shape, plant growth 

form, plant height, spine shape, spine persistence, spine pattern, mean number of spines 

per areole, mean length of up to 10 spines, median length of up to 10 spines, and length 

of the longest spine. Measurements of spine length were made from digital photographs 

using ImageJ (Rasband 1997). Measurements in ImageJ were calibrated using the known 
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length of a whiteboard included in each photograph. Morphological traits were chosen for 

their ease of measurement and because previous studies suggest their importance to C. 

cactorum (Myers et al. 1981, Robertson 1987, Jezorek et al. 2010, Sauby et al. 2012). 

Yet, it is possible that the morphological traits used here may not be the specific traits 

that female C. cactorum utilize to identify Opuntia hosts on which they can successfully 

oviposit and their larvae infest. 

Proximate analysis was used to quantify the macronutrient (i.e., crude fiber, lipid, 

and crude protein) content of a total of 75 cladodes (54 with just tissue macronutrient 

traits, 21 with both morphological and tissue macronutrient traits) collected from 73 

plants (Figure C.1). The internal tissue (chlorenchyma, vascular tissue and medullar 

parenchyma) of each cladode was removed, frozen at -80oC, and then freeze-dried at -

45oC and 133 x 10-3 mbar Torr until sample mass was constant. Procedural guidelines 

from the Association of Official Analytic Chemists (AOAC; AOAC, 2012) were 

followed to quantify the crude fiber, lipid, and crude protein content of these freeze-dried 

tissues. Crude fiber was measured by H2SO4 and NaOH extraction (AOAC Official 

Method 962.09), % lipid was measured by petroleum ether extraction (AOAC Official 

Method 920.39), and % crude protein was measured via nitrogen analysis (AOAC 

Official Method 984.13).  

Generating trait-based Opuntia clusters 

Hierarchical agglomerative clustering methods were used to determine clusters of 

Opuntia traits related to the likelihood of C. cactorum infestation. Clustering was 

determined using only the 21 cladodes for which both morphological and macronutrient 

data were available (n = 15 traits [12 morphological, 3 tissue macronutrient]) because 



 

58 

data on tissue macronutrients were not available for many of the cladodes. All data 

analyses were performed in the R statistical language, version 3.2.3 (R Development 

Core Team 2016).  

Bootstrapping was used to generate 100 dendograms representing the 

relationships between the morphological and tissue macronutrient traits of these 21 

cladodes (Figure C.2; package ClustofVar; Chavent et al. 2012). These 100 dendrograms 

were then split into scenarios of 2 to n-1 partitions. A mean adjusted Rand criterion 

(Rand 1971) was used to evaluate agreements and disagreements in cladode assignment 

to partition across all 100 dendrograms in each scenario of 2 to n-1 partitions. Values of 

the mean adjusted Rand criterion range from 0 (indicating complete disagreement across 

dendrograms in cladode assignment to partitions) to 1 (indicating complete agreement 

across dendrograms in cladode assignment to partitions; Meila 2005, 2007). 

Transformations of the distributions of the mean adjusted Rand criterion in scenarios of 2 

to n-1 partitions to meet parametric test assumptions of normality were unsuccessful. A 

Kruskal-Wallis test with a post-hoc Dunn correction for multiple comparisons (Dunn 

1964, package PMCMR; Pohlert 2014) was used to evaluate statistical differences 

between the mean adjusted Rand criterion of our 2 to n-1 partitions. The mean adjusted 

Rand criterion values for scenarios of 5 to 12 partitions were not statistically different (P 

> 0.05), but were significantly greater (P < 0.05) than Rand criterion values in scenarios 

of 2 to 4 or 13 and 14 partitions. Cladode observations were thus split into groupings 

(hereafter referred to as clusters) using scenarios of 5 to 12 partitions. 

Traits of the 21 samples with both morphological and tissue macronutrient data 

were used to calculate centroids for each trait relative to the number of partitions (5 to 12) 
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being considered. The Euclidean distance between each cladode sample’s value of a 

specific trait and the 5 to 12 centroids generated for each trait was calculated (package 

analogue; Simpson et al. 2015). Distances of each cladode sample’s individual traits to 

each trait centroid were summed across the 15 traits considered. This summed Euclidean 

distance was then standardized by the number of traits associated with each sample (n = 

15) because Euclidean distance increases with the number of variables or dimensions 

considered. The minimum standardized Euclidean distance of each cladode sample was 

used to assign each of the 21 cladodes to a cluster in scenarios of 5 to 12 partitions. This 

process was then repeated with the 54 cladodes associated with just tissue macronutrient 

traits and 640 cladodes associated with just morphological traits. The summed Euclidean 

distances of these 54 and 640 cladode samples were also standardized relative to the 

number of traits associated with these cladodes (3 and 12, respectively). The minimum 

standardized Euclidean distance of each cladode sample was then used to assign the 54 

tissue macronutrient and 640 morphological cladode samples to clusters in scenarios of 5 

to 12 partitions. 

Cluster structure in each number of partitions scenario was assessed by first 

generating dissimilarity matrices of the Euclidean distances between cladodes and then 

calculating internal (within-cluster sum of squares) and external (entropy) validation 

criterion (package fpc; Hennig 2010). A small within-cluster sum of squares value 

indicates clusters are more compact and have low variation among observations 

contained within clusters. Entropy also evaluates the amount of disorder (i.e., variation) 

inherent among observations within clusters. An entropy value of 0 indicates no disorder, 

so lower values indicate less variation among observations and thus stronger cluster 
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definition. Permutational multivariate analysis of variance (PERMANOVA, package 

vegan; Oksanen et al. 2007) was used to partition variance between clusters (McArdle 

and Anderson 2001) and evaluate if cladode assignment to cluster predicted dissimilarity 

between cladode observations.  

The contribution of individual morphological and nutritional Opuntia traits to 

assigning samples to clusters was evaluated by considering the fit of several nested 

GLMs. Models containing all traits, only morphological, and only tissue macronutrient 

traits were fit for each possible number of partitions. Likelihood ratio tests and ANOVA 

were used to compare model fit between competing models. To test whether trait-based 

clusters were predictive of infestation, GLMs were generated where the proportion of 

hosts within each cluster served as the binomial response and the identity of clusters was 

used as a predictor. Models of best fit were then analyzed via ANOVA to determine if 

particular clusters were correlated with cactus moth infestation. For all GLMs, Akaike’s 

Information Criterion (AIC; Burnham and Anderson 2004) was used to evaluate model fit 

relative to the number of clusters used as a predictor variable. Models within 2 AIC 

values of each other were considered equally valid solutions.  

Generating Maxent predictions and assessing prediction performance 

The R statistical language (Appendix C, R Development Core Team 2016) was 

used to generate Maxent (Phillips et al. 2006) predictions of the distributions of each 

trait-based Opuntia cluster relative to abiotic conditions (package “dismo”; Hijmans et al. 

2013). The WorldClim database (http://www.worldclim.org, Hijmans et al. 2005) was 

used to obtain 19 BIOCLIM layers at 30 arc-second (~1 km2) resolution to act as 

http://www.worldclim.org/
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predictive environmental variables. All BIOCLIM layers were utilized when generating 

Maxent predictions.  

The occurrence records for all cladodes in each trait-based Opuntia cluster were 

partitioned into 5 groups via k-fold partitioning (package dismo; Hijmans 2013). A total 

of 10,000 background points were then randomly selected from within the geographic 

boundary of the states included in the study region. The Opuntia occurrence records and 

randomly selected background points were used to train and test Maxent predictions of 

the range of each trait-based Opuntia cluster. Only Maxent’s logistic output was used in 

this investigation, and Maxent predictions for each trait-based Opuntia cluster were 

projected across the extent of the study region at a resolution of 30 arc-seconds. A 

Maxent prediction of the North American distribution of C. cactorum was also generated 

by following similar methods (Chapter Three).  

Maxent’s ability to accurately predict abiotic suitability for each trait-based 

Opuntia cluster modeled was evaluated using metrics that are either dependent on 

thresholds that enable Maxent to discern suitable from unsuitable habitat (threshold-

dependent) or independent of these thresholds (threshold-independent). Threshold-

dependent metrics were informed by the threshold value that maximized Maxent 

sensitivity and specificity while modeling each trait-based Opuntia cluster. This threshold 

value was used because it balances Maxent’s ability to predict instances of a species’ 

presence and absence (Liu et al. 2005, 2013). The threshold-dependent performance 

metrics used here included: model omission rate (proportion of true occurrences 

misidentified by the defined threshold), sensitivity (proportion of actual positives 

identified as such), specificity (proportion of actual negatives identified as such), 
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proportion of presence and absence points correctly identified, Cohen’s kappa (Cohen 

1960), and the true skill statistic (TSS; Allouche et al. 2006). Both Cohen’s kappa and the 

TSS normalize overall model accuracy (the number of cells correctly classified as present 

or absent) by model accuracy that might have occurred due to chance. Values of Cohen’s 

kappa and the TSS can range from -1 to 1; a value of 1 indicates perfect agreement 

between model accuracy and accuracy expected due to chance whereas negative values 

indicate that the model’s predictions are no better than random chance (Cohen 1960, 

Allouche et al. 2006). The threshold-independent metric used was the area under receiver 

operator curve (AUC). 

Integrating abiotic suitability and trait-based understanding 

Environmental conditions may influence host Opuntia availability to C. cactorum. 

Larval C. cactorum are dependent on their Opuntia hosts for survival, so habitat 

suitability for C. cactorum may be reasonably estimated by considering environmental 

suitability relative to what Opuntia taxa are available to C. cactorum. The correlation 

coefficient between trait-based Opuntia clusters and C. cactorum infestation was used to 

weight all cell values in each Opuntia cluster’s Maxent prediction. The weighted Maxent 

predictions of each trait-based Opuntia cluster were then stacked. Three different 

estimates of habitat suitability were then calculated based on the mean, median, or 

maximum value of each raster cell across all weighted and stacked Opuntia cluster 

predictions. Each habitat suitability map for C. cactorum was projected across the extent 

of the study region at a resolution of 30 arc-seconds. 
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Incorporating C. cactorum dispersal 

The 233 C. cactorum occurrence records compiled for this investigation were 

examined to determine if each record was associated with BIOCLIM data. Some C. 

cactorum occurrence records were either not associated with, or were only partially 

associated with, BIOCLIM data. It appears the proximity of some occurrence records to 

water, especially in instances where C. cactorum occurrence records were located on 

small land masses (e.g., barrier islands along the Gulf Coast), influenced if BIOCLIM 

data were available or missing. Occurrence records not associated with all BIOCLIM 

data layers were excluded from further analyses.  

A total of 187 occurrence records associated with all BIOCLIM data were used as 

starting, parental locations in all simulations of C. cactorum dispersal. Explicit 

consideration was given to the effect of temperature on immature C. cactorum survival, 

and thus the number of C. cactorum dispersing from a parental location, in all 

simulations. A spline curve was fit to life table data on immature C. cactorum survival as 

a function of rearing temperature (Legaspi and Legaspi 2007). The mean annual 

temperature (BIOCLIM layer 1) at each parental location was extracted and used in 

conjunction with the fitted spline curve to determine percent survival of immature C. 

cactorum to adulthood at each parental location. One eggstick, containing n number of 

eggs randomly drawn from a Poisson distribution with a mean of 63 eggs (Stephens et al. 

2012), was generated at each parental C. cactorum location. The number of individuals 

dispersing from each parental C. cactorum location was calculated as the product of the 

number of eggs in each eggstick and percent survival to adulthood at each parental 

location. All dispersing individuals were assumed to be female.  
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 Each individual dispersed from its parental location at a randomly chosen angle 𝛳 

and randomly selected distance (up to 24km) drawn from an exponential distribution. The 

total number of individuals dispersing was used to randomly draw the same number of 

values from a standard uniform distribution (minimum and maximum values of 0 and 1, 

respectively). Both habitat suitability values and the randomly chosen values from a 

uniform distribution were used to determine if dispersing individuals established a new 

parental location. Individuals dispersing to new raster cells successfully established if the 

habitat suitability value of the raster cell was greater than the corresponding randomly 

selected value.  

A dispersal event entailed the entire process of simulating eggsticks, extracting 

mean annual temperature, determining the number of C. cactorum surviving to adulthood 

from each eggstick, and dispersal of individuals at all parental C. cactorum locations. 

Simulations of C. cactorum dispersal included between 1 to 4 dispersal events. A total of 

50 replicate simulations were generated for each combination of habitat suitability map 

and number of dispersal events. 

Evaluation of trait-based SDM, PAB, and Maxent predictions 

There were two goals associated with this research. The first goal was to compare 

the degree of similarity (or overlap) among trait-based SDM, PAB, and Maxent 

predictions. The second goal was to evaluate the relative contribution of habitat 

suitability and number of C. cactorum dispersal events in generating overlap among trait-

based SDM predictions. Comparing the degree of overlap among all predictions 

necessitated that all predictions were on the same value scale. Trait-based SDM 

predictions were re-scaled by classifying all raster cells in each replicate prediction as 
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occupied (value of 1) or unoccupied (value of 0) by C. cactorum. Replicates generated 

for each model scenario (i.e., habitat suitability values and number of dispersal events) 

were then stacked and averaged. Raster cell values in final trait-based SDM predictions 

of the North American distribution of C. cactorum ranged from 0 to 1 and represented the 

proportion of replicates in which any particular cell as occupied by C. cactorum at the 

end of 1 to 4 dispersal events.   

Schoener’s D (Schoener 1968) was used to compare the degree of similarity (or 

overlap) among trait-based SDM, PAB, and Maxent predictions of the North American 

distribution of C. cactorum (package ENMeval; Muscarella et al. 2014). Values of 

Schoener’s D range from 0, indicating predictions that are greatly divergent, to 1, which 

indicates predictions that are exactly similar. A Kruskal-Wallis analysis of variance was 

used to evaluate variation in Schoener’s D values among all predictions relative to 

modeling constraints of habitat suitability, whether Opuntia traits were included in the 

modeling process, host Opuntia availability, methods of modeling C. cactorum dispersal, 

and the number of dispersal steps or events included in the simulation process. A Dunn’s 

test (Dunn 1964) for multiple comparisons (package dunn.test; Dinno 2014) with a 

Bonferroni correction was also used to compare pairs of predictions relative to specific 

modeling constraints of interest.    

Schoener’s D values were also used to evaluate the relative contribution of habitat 

suitability and C. cactorum dispersal in generating variation in overlap among trait-based 

SDM predictions. Discrete probability distributions were fit to all Schoener’s D values 

for trait-based SDM predictions. Akaike’s Information Criterion (AIC; Burnham and 

Anderson 2004) was used to assess distribution fit. The Schoener’s D values of the trait-
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based SDM predictions were best fit by a beta distribution. Nested beta regression models 

(package betareg; Cribari-Neto and Zeileis 2010) were then fit to assess variation in 

Schoener’s D relative to the modeling constraints of habitat suitability and number of 

dispersal events. The full beta regression model included both habitat suitability and 

number of dispersal events as predictors, but models including each factor individually 

were also generated. Schoener’s D values were used as the response variable in all beta 

regression models. Likelihood ratio tests were used to assess the fit of each beta 

regression model, and a coefficient test was used to evaluate predictor significance in 

each beta regression model (package lmtest; Zeileis and Hothorn 2002). 

Results 

Tissue macronutrient traits were more influential than morphological traits in 

assigning cladode samples to clusters (Table 4.3), but the best model for explaining 

cladode assignment to cluster included all morphological and tissue macronutrient traits. 

Across all of the possible number of clusters, models including solely Opuntia tissue 

macronutrient traits had higher log-likelihood values and generated less residual deviance 

in model fit than did models including solely Opuntia morphological traits.  

Further analysis focused on the 75 cladodes associated with measurements of 

tissue macronutrient content because Opuntia morphological traits were poor predictors 

of C. cactorum infestation (Chapter Two) and were less influential than tissue 

macronutrient traits in determining the number of trait-based clusters generated. Clusters 

generated using cladodes associated with Opuntia tissue macronutrient traits are hereafter 

referred to as tissue macronutrient-based clusters. The within-cluster sum of squares was 

lower when cladodes were partitioned into scenarios of 5 to 8 clusters (Figure 4.2). The 
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disorder within clusters, as measured by entropy, increased monotonically with the 

number of clusters (Figure 4.2). Taken together, a scenario of 5 clusters minimized both 

sums of squares within clusters and disorder among samples, as well as best explained C. 

cactorum infestation (Table 4.4). Infestation by C. cactorum was weakly correlated with 

Cluster 4 (Z= -1.975, P = 0.048; Table 4.4) in a 5-cluster scenario. Occurrence records 

associated with cladodes in each of the 5 tissue macronutrient-based Opuntia clusters 

(Figure 4.3) were used to generate Maxent predictions. 

Maxent predictions were generated for each tissue macronutrient-based Opuntia 

cluster, yielding a total of 5 predictions (Table 4.5, Figures C.3-C.7). The AUC values for 

Maxent predictions of tissue macronutrient-based Opuntia clusters ranged from 0.864 to 

0.978. The threshold that maximized Maxent sensitivity and specificity in generating 

predictions ranged from 0.19 to 0.61. Model omission rates did not exceed 17%. Cohen’s 

kappa ranged from 0.017 to 0.370 whereas values of the TSS ranged from 0.729 to 0.955. 

Both the threshold-independent and threshold-dependent metrics indicate Maxent 

performed well in generating predictions for each tissue macronutrient-based Opuntia 

cluster.  

The Maxent predictions for each tissue macronutrient-based Opuntia cluster were 

weighted and used to generate maps of habitat suitability for C. cactorum. Habitat 

suitability for C. cactorum varied considerably relative to its method of calculation. 

Suitability values ranged from 5.66 x 10-9 to 0.79, 0.0012 to 0.682, and 0.005 to 0.989 for 

scenarios considering the median, mean, and maximum values in each raster cell across 

all Maxent predictions of tissue macronutrient-based Opuntia cluster ranges (Figure 4.4).  
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Considerable variation in Schoener’s D values was observed when evaluating 

predictions relative to the modeling constraints imposed during the modeling process 

(Figure 4.5). A Kruskal-Wallis analysis of variance revealed substantial variation in 

Schoener’s D values among predictions (Figure 4.5) relative to constraints of habitat 

suitability (χ2 = 10645, df = 6,p-value = <0.001), the use of Opuntia traits in the modeling 

process (χ2 = 5821.9, df = 2,p-value = <0.001), host Opuntia availability (χ2 = 7483.3, df 

= 3,p-value = <0.001), method of modeling C. cactorum dispersal (χ2 = 5929, df = 4,p-

value = <0.001), and number of dispersal steps or events included in the modeling 

process (χ2 = 6145.4, df = 5,p-value = <0.001). In general, trait-based SDM predictions 

had less median overlap than PAB or Maxent predictions. A Dunn’s test for multiple 

pairwise comparisons revealed substantial differences in Schoener’s D values for nearly 

every pairwise comparison of predictions (Table 4.6). Schoener’s D values for trait-based 

SDM predictions generated using 3 or 4 dispersal events were similar, and these trait-

based SDM predictions were also similar to Schoener’s D values of the Maxent-

generated prediction (Table 4.7, Figure 4.6).  

Likelihood ratio tests of nested beta regression models were used to explore the 

relative contribution of habitat suitability and number of dispersal events in generating 

variation in Schoener’s D values among trait-based SDM predictions (Table 4.8). 

Variation in Schoener’s D values was best explained by a full beta regression model that 

contained both abiotic suitability and number of dispersal events as predictor variables. 

Number of dispersal events explained more variation in Schoener’s D values than did 

habitat suitability (Table 4.8). 
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Discussion 

Invaders often form novel biotic interactions with taxa present in invaded 

communities (Sakai et al. 2000, Mitchell et al. 2006), but these associations are an 

obligate requirement for the successful establishment of some invaders. Identifying the 

traits that mediate local-scale invader interactions in exotic ranges may inform risk 

analyses (Stohlgren and Schnase 2006, Kumschick and Richardson 2013), efforts to 

mitigate invader ecological impacts (Yokomizo et al. 2009, Baxter and Possingham 2011, 

Giljohann et al. 2011, Guisan et al. 2013, Guillera-Arroita et al. 2015), and predictions of 

invader exotic distributions. In this research, trait-based understanding of patterns of host 

use by an invasive consumer was used to develop a trait-based SDM method. The 

hypothesis of this work was generally supported in that trait-based SDM predictions 

differed from PAB and Maxent predictions (Chapter Three). The expectation that trait-

based SDM predictions would be more constrained than both PAB and Maxent 

predictions was partially upheld. Some trait-based SDM predictions were considerably 

more constrained than PAB and Maxent predictions, but some trait-based SDM 

predictions were similar in overlap with a Maxent-generated prediction. The number of 

dispersal events included in the modeling process was the most important constraint 

influencing overlap among trait-based SDM predictions. The results presented here 

indicate that a trait-based SDM method can generate predictions of invader exotic 

distributions that are generally more constrained than predictions generated by other 

SDM methods, but similar in overlap with predictions generated by methods that 

consider invader occurrence relative to just environmental conditions. The importance of 

the number of dispersal events in generating overlap among trait-based SDM predictions 
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also highlights the need for increased understanding of invader dispersal abilities in 

exotic ranges.  

The trait-based SDM method described in this dissertation chapter generated 

estimates of habitat suitability for C. cactorum by integrating trait-based understanding of 

C. cactorum-Opuntia associations with Maxent predictions of abiotic suitability for tissue 

macronutrient-based Opuntia clusters.  This method of estimating habitat suitability for 

C. cactorum is likely reasonable because biotic interactions can exclude species from 

environmentally suitable areas, and thus determine habitat suitability, at scales consistent 

with broad-scale environmental conditions (Peterson et al. 2011, Fraterrigo et al. 2014, 

Godsoe et al. 2015, Lee-Yaw et al. 2016). A potential concern was that the quality of the 

Maxent predictions for each tissue macronutrient-based Opuntia cluster may have been 

affected by either the small number of cladodes in each cluster or geographical bias in the 

location of these cladodes. In general, Maxent can perform well with small sample sizes 

(< 7; Pearson et al. 2007), but AUC values can become artificially inflated if a small 

presence-only data set is used relative to a large number of background locations (Merow 

et al. 2013). All AUC values, as well as all threshold-dependent performance metrics, 

indicated Maxent performed well in generating predictions of the ranges of the tissue 

macronutrient-based Opuntia clusters. Yet, geographical bias in cladode locations may 

have affected estimates of abiotic suitability for each tissue macronutrient-based Opuntia 

cluster. More specifically, the lack of cladode occurrence records in areas where C. 

cactorum is known to occur (Florida and the Gulf Coast) likely led to underestimates of 

habitat suitability for C. cactorum in these areas. Future work could simultaneously 

address concerns with data set size and geographical bias by quantifying the tissue 
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macronutrient contents of cladodes collected in areas where cladode sampling effort was 

small and C. cactorum currently occurs. Additional information on Opuntia tissue 

macronutrient content could be used to generate new tissue macronutrient-based Opuntia 

clusters and Maxent predictions of Opuntia cluster ranges, and thus ultimately improve 

estimates of habitat suitability for C. cactorum.  

It is uncommon for SDM methods to include information about traits that may 

mediate invader interactions with taxa in invaded communities. Implementing trait-based 

understanding into SDM methods will undoubtedly affect ensuing predictions of invader 

distributions. Yet, the limitations of implementing trait-based understanding, as well as 

how and to what extent SDM predictions are affected, are not immediately clear. Trait-

based understanding of C. cactorum-Opuntia associations was used to estimate habitat 

suitability for C. cactorum, but this approach was predicated on accurately depicting how 

C. cactorum perceives habitat suitability. One feasible scenario is that invaders perceive 

habitat suitability relative to the presence of taxa that possess specific suites of traits. 

Previous work suggests that particular Opuntia taxa are important for influencing C. 

cactorum occurrence (Dodd 1940, Marsico et al. 2011, Brooks et al. 2012, Sauby et al. 

2012), so regions where these important Opuntia taxa occur may also be good habitat for 

C. cactorum. If the presence of Opuntia taxa that possess specific suites of traits dictates 

habitat suitability for C. cactorum, then the maximum value of each raster cell may best 

estimate habitat suitability for C. cactorum. An alternative scenario is that an invader 

may perceive habitat suitability relative to the entire assemblage of taxa, and thus the 

entire assemblage of traits, present in an invaded community. In this case, habitat 

suitability for an invader may be more appropriately estimated by aggregate measures 
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(i.e., mean or median) of habitat suitability that are weighted based on consideration 

given to all taxa and traits available to the invader. If Opuntia community composition, 

and thus Opuntia traits present in the community, influences C. cactorum perception of 

habitat suitability, then areas of greater Opuntia diversity may affect the future spread 

and North American distribution of C. cactorum. This scenario may be especially true if 

multiple tissue macronutrient-based Opuntia clusters that are positively correlated with 

C. cactorum infestation co-occur. Yet, the converse is also feasible; C. cactorum 

westward spread may be impeded in regions where tissue macronutrient-based Opuntia 

clusters that are negatively correlated with C. cactorum infestation co-occur. 

The number of dispersal events included in the modeling process was more 

important than habitat suitability for influencing overlap among trait-based SDM 

predictions. In general, invader ability to capitalize on resource availability (Davis et al. 

2000) or reach unoccupied, but suitable, habitat (Lonsdale 1999, Williamson 1999) is 

influenced by the invader’s dispersal abilities. Invader dispersal in an exotic range can be 

influenced by both the number and dispersal abilities of dispersing propagules, and 

several key assumptions were made about these aspects of C. cactorum dispersal. The 

first assumption was that the mean annual temperature across the study region fell within 

the range of rearing temperatures utilized by Legaspi and Legaspi (2007). However, 

extrapolating this trait-based SDM method beyond the range of rearing temperatures used 

by Legaspi and Legaspi (2007) may have generated considerable error in model 

predictions. Secondly, it was assumed that the maximum distance a dispersing individual 

could move from a parental location was 24km (Dodd 1940). While some laboratory 

studies have quantified distances flown by C. cactorum (Sarvary et al. 2008a, 2008b), 
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overestimation of C. cactorum dispersal abilities in North America under field conditions 

likely generated overestimated predictions of the North American distribution of C. 

cactorum. Conversely, C. cactorum dispersal abilities may have been conservatively 

estimated because factors such as human-mediated dispersal (Wilson et al. 2009) or 

inclement weather (Andraca-Gomez et al. 2015) could increase C. cactorum dispersal 

distances and rate of spread. In either case, additional research on quantifying the long-

distance dispersal abilities of C. cactorum under field conditions is needed. Lastly, it was 

assumed that all dispersing individuals were female. This assumption likely inflated the 

number of parental locations at the beginning of each dispersal event and may have 

resulted in overestimates of C. cactorum ranges, particularly in scenarios where habitat 

suitability was greatest (i.e., maximum habitat suitability). Regardless, field surveys 

throughout the predicted range of C. cactorum could be used to verify all trait-based 

SDM predictions. 

The SDM method generated in this investigation represents an initial step towards 

integrating trait-based understanding of invader interactions into SDM methods. More 

specifically, the SDM method developed here used Opuntia tissue macronutrient traits 

that were important for influencing patterns of C. cactorum infestation to integrate trait-

based understanding of C. cactorum-Opuntia associations. It is worth noting that Opuntia 

tissue macronutrient traits may not mechanistically influence C. cactorum-Opuntia 

associations. However, the explicit consideration and inclusion of Opuntia tissue 

macronutrient traits in this trait-based SDM method resulted in predictions that were 

considerably more constrained than predictions generated by Maxent and other SDM 

methods (Chapter 3). The extent to which Opuntia traits constrained predictions 
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generated by this trait-based SDM method thereby illustrate the importance of identifying 

specific Opuntia traits that mechanistically affect the outcome of C. cactorum-Opuntia 

interactions. Yet, a lack of understanding about the specific Opuntia traits mediating C. 

cactorum-Opuntia associations may complicate identifying important traits of C. 

cactorum that mediate its associations with host Opuntia. Future research focused on 

identifying specific traits of C. cactorum that affect female moth detection of or 

oviposition on Opuntia hosts and larval traits that affect larval development and survival 

within Opuntia hosts may be particularly fruitful. Yet, experimental studies, preferably 

conducted in field-based settings, will be necessary to explicitly test hypotheses 

associated with these suites of C. cactorum traits. Regardless, increased trait-based 

understanding of C. cactorum-Opuntia associations may aid in identifying novel host 

Opuntia important to future spread of C. cactorum, as well as how Opuntia hosts 

influence C. cactorum distributions and persistence. 

  



 

75 

Table 4.1 List of Opuntia taxa included in this study.  

Opuntia taxa N Morpho. Tissue 
Macro. Both Total 

Infested 
O. humifusa var. ammophila 18 12 (1) 5 (2) 1 (1) 4 

O. atrispina 23 17 6   

O. basilaris 1 1    

O. camanchica 22 22    

O. diplopurpurea 2 2    

O. dulcis 5 5    

O. engelmannii var. engelmannii 19 13 6   

O. ficus-indica 6 6    

O. humifusa var. humifusa 176 159 (19) 12 5 (5) 24 

O. engelmannii var. lindheimeri 196 180 8 8  

O. engelmannii var. linguiformis 16 16    

O. mackensenii 8 8    

O. macrocentra 6 6    

O. macrorhiza 78 70 6 2  

O. parva 2 2    

O. phaeacantha var. phaeacantha 11 11    

O. pottsii 30 30    

O. pusilla 23 18 5   

O. stricta 49 40 (2) 6 (1) 3 (1) 4 

O. strigil 8 8    

Unknown1 2 2    

Unknown2 10 8  2  

Unknown3 4 4    

 715 640 (22) 54 (3) 21 (7) 32 
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Table 4.2 Opuntia morphological traits. 

Trait Type of 
Variable 

Number of 
trait states Trait states/units of measurement 

Spines per 
areole Categorical 19 

0, 0 or 1, 0 to 2, 0 to 3, 0 to 4, 0 to 5, 1, 1 or 2, 
1 to 3,1 to 4, 1 to 5, 1 to 6, 2, 2 or 3, 

2 to 3, 2 to 4, 2 to 5, 3 to 5, 3 to 6 

Spine 
color Categorical 17 

black to white tip, black to yellow tip, brown, 
brown-yellow, grey, grey and red, grey-
yellow, none, purple, purple to white tip,  

red and white bands, red to white tip,  
red to yellow tip, white, yellow, yellow-white 

Cladode 
shape Categorical 4 elliptic, lanceolate, obovate, orbicular 

Plant 
growth 
form 

Categorical 2 erect, sprawling 

Plant 
height Categorical 2 < 1m, > 1m 

Spine 
shape Categorical 3 curved, none, straight 

Spine 
persistence Categorical 2 none, persistent 

Spine 
pattern Categorical 3 birds-foot, none, other 

Mean 
spines per 

areole 
Numerical Discrete # spines per areole 

Mean 
length of 
up to 10 
spines 

Numerical Continuous cm 

Median 
length of 
up to 10 
spines 

Numerical Continuous cm 

Length of 
longest 
spine 

Numerical Continuous cm 
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Table 4.3 Likelihood ratio tests and PERMANOVA of GLMs evaluating cladode 
assignment to clusters. 

   Likelihood ratio test  ANOVA 

# cluster Model  df LL Chisq P  df 
Resid. 
Dev. Δ Dev. P  

5 
Full  16 -7.86    6 2.60   

Macro.  5 -22.50 29.27 0.0021  17 10.48 -7.88 0.077 
Morpho.  13 -22.86 0.72 0.99  9 10.84 -0.36  

6 
Full  16 -4.54    6 1.89   

Macro.  5 -20.39 31.71 0.00085  17 8.57 -6.68 0.032 
Morpho.  13 -25.63 10.48 0.23  9 14.12 -5.55  

7 
Full  16 -12.32    6 3.98   

Macro.  5 -22.79 20.93 0.034  17 10.77 -6.79 0.51 
Morpho.  13 -32.79 20.01 0.01  9 27.93 -17.16  

8 
Full  16 -19.33    6 7.75   

Macro.  5 -26.77 14.88 0.19  17 15.74 -7.99 0.86 
Morpho.  13 -37.87 22.21 0.0045  9 45.31 -29.58  

9 
Full  16 -18.00    6 6.83   

Macro.  5 -26.62 17.23 0.1  17 15.51 -8.68 0.75 
Morpho.  13 -38.43 23.62 0.0027  9 47.78 -32.26  

10 
Full  16 -20.11    6 8.35   

Macro.  5 -27.35 14.48 0.21  17 16.64 -8.29 0.88 
Morpho.  13 -38.78 22.84 0.0036  9 49.38 -32.74  

11 
Full  16 -11.84    6 3.80   

Macro.  5 -29.09 34.51 0.0003  17 19.63 -15.83 0.009 
Morpho.  13 -39.26 20.34 0.0091  9 51.72 -32.08  

12 
Full  16 -26.63    6 15.52   

Macro.  5 -33.31 13.38 0.27  17 29.35 -13.83 0.91 
Morpho.  13 -40.68 14.73 0.065  9 59.19 -29.84  
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Table 4.4 GLMs evaluating if trait-based clusters predict C. cactorum infestation.  

Cactus moth 
species 

# of 
clusters 
(AIC) 

Cluster 
Identity 

Infested 
cladodes 

Uninfested 
cladodes Z  

Pr 
(>|z|) 

Cactoblastis 
cactorum 

5 (17.71) 

1 4 4 0 1 
2 0 13 0 0.99 
3 5 15 -1.26 0.21 
4 1 12 -1.975 0.048 
5 0 21 0 0.99 

6 (17.92) 

1 4 4 0 1 
2 0 8 0 1 
3 6 15 -1.07 0.29 
4 0 12 0 1 
5 0 4 0 1 
6 0 22 0 1 

 

Table 4.5 List of tissue macronutrient-based Opuntia clusters modeled.  

Cluster #  Thresh AUC Omis. Sens. Spec. Prop. 
correct K TSS 

Cluster 1 8 0.41 0.916 0.167 0.833 0.998 0.998 0.37 0.831 
Cluster 2 13 0.61 0.978 0 1 0.955 0.955 0.045 0.955 
Cluster 3 20 0.19 0.952 0 1 0.904 0.904 0.017 0.904 
Cluster 4 13 0.51 0.864 0.091 0.91 0.819 0.819 0.009 0.729 
Cluster 5 21 0.56 0.942 0.071 0.929 0.956 0.956 0.054 0.885 
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Table 4.6 Dunn test for multiple comparisons between trait-based SDM, PAB, and 
Maxent predictions.  

Scenario Comparisons Z value P 

Traits included in 
modeling 

Maxent - No traits -15.246 < 2.2E-16 
Maxent - Traits included 6.522 1.04E-10 
No traits - Traits included 74.931 < 2.2E-16 

Biotic interactions 

All hosts - Trait-based clusters 68.611 < 2.2E-16 
All hosts - Eastern hosts -40.76 < 2.2E-16 

Trait-based clusters - Eastern hosts -83.106 < 2.2E-16 
All hosts - Maxent 13.571 < 2.2E-16 

Trait-based clusters - Maxent -6.522 2.07E-10 
Eastern hosts - Maxent 18.512 < 2.2E-16 

Habitat suitability 

Cluster max - Cluster mean 7.066 1.67E-11 
Cluster max - Cluster median 12.219 < 2.2E-16 
Cluster mean - Cluster median 5.153 2.69E-06 

Cluster max - Max -38.504 < 2.2E-16 
Cluster mean - Max -48.302 < 2.2E-16 

Cluster median - Max -55.448 < 2.2E-16 
Cluster max - Maxent -2.006 0.471 
Cluster mean - Maxent -6.475 9.93E-10 

Cluster median - Maxent -9.735 < 2.2E-16 
Max - Maxent 17.305 < 2.2E-16 

Cluster max - Mean -41.053 < 2.2E-16 
Cluster mean - Mean -50.852 < 2.2E-16 

Cluster median - Mean -57.997 < 2.2E-16 
Max - Mean -9.178 < 2.2E-16 

Maxent - Mean -18.598 < 2.2E-16 
Cluster max - Median -23.484 < 2.2E-16 
Cluster mean - Median -33.282 < 2.2E-16 

Cluster median - Median -40.428 < 2.2E-16 
Max - Median 54.071 < 2.2E-16 

Maxent - Median -9.684 < 2.2E-16 
Mean  - Median 63.249 < 2.2E-16 

Maximum 
dispersal distance 

12km - 24km 2.905 0.0584 
12km - Local 10.253 < 2.2E-16 

12km - Maxent 15.681 < 2.2E-16 
24km - Local 7.881 1.63E-14 

24km - Maxent 15.307 < 2.2E-16 
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Table 4.6 (continued) 

 

Local - Maxent 14.006 < 2.2E-16 
12km - Diffusion 74.421 < 2.2E-16 
24km - Diffusion 73.18 < 2.2E-16 
Local - Diffusion -66.111 < 2.2E-16 

Maxent - Diffusion -6.522 3.46E-10 

LDD Probability 

Local - 0.1% 0.412 1 
Local - 1% -18.546 < 2.2E-16 

Local - Maxent 14.006 < 2.2E-16 
0.1% - 1% -23.218 < 2.2E-16 

0.1% - Maxent 13.999 < 2.2E-16 
1% - Maxent 16.989 < 2.2E-16 

Local - Diffusion 66.111 < 2.2E-16 
0.1% - Diffusion 68.843 < 2.2E-16 
1% - Diffusion 78.758 < 2.2E-16 

Diffusion - Maxent -6.522 < 2.2E-16 

Dispersal events 

1 to 2 -7.688 1.12E-13 
1 to 3 -14.209 < 2.2E-16 
1 to 4 -16.287 < 2.2E-16 

1-Final -51.453 < 2.2E-16 
1-Maxent -12.63 < 2.2E-16 

2 to 3 -6.521 5.25E-10 
2 to 4 -8.599 < 2.2E-16 

2-Final -40.634 < 2.2E-16 
2-Maxent -7.193 4.76E-12 

3 to 4 -2.078 0.283 
3-Final -31.458 < 2.2E-16 

3-Maxent -2.582 0.0737 
4-Final -28.533 < 2.2E-16 

4-Maxent -1.113 1 
Final-Maxent 15.246 < 2.2E-16 

Reported P values are exact P values calculated by the Dunn test. 
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Table 4.7 Results of likelihood ratio test comparing nested beta regression models.  

Model df LogLik Chisq Pr (>Chisq) 
Suitability + Dispersal event 5 4312.8   
Dispersal event 3 3667.4 1620.7 < 0.001 
Suitability   4 2857.1 2911.5 < 0.001 

Nest beta regression models were generated to evaluate the contribution of habitat 
suitability and the number of dispersal events to Schoener’s D values for all trait-based 
SDM predictions. 

 

Figure 4.1 Map of the southern United States indicating where Opuntia cladodes 
collection sites.  
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Figure 4.2 Internal (filled black circles) and external (open circles) validation criteria 
for all number of partition scenarios. 

 



 

83 

 

Figure 4.3 Map of the study region where 75 cladode samples were collected.  
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Figure 4.4 Mosaics of habitat suitability for C. cactorum.  
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Figure 4.5 Boxplots comparing Schoener’s D values associated with trait-based SDM, 
PAB, and Maxent predictions. 

 

 

Figure 4.6 Boxplots comparing Schoener’s D values associated with trait-based SDM, 
PAB, and Maxent predictions. 
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DISSERTATION SUMMARY 

Understanding the sources of variation in the relationship between ecological 

process and pattern is crucial for extending our knowledge of ecological invasions across 

spatial and temporal scales. The invasion of North America by C. cactorum is an 

excellent context for exploring these relationships. The data show that tissue 

macronutrient concentrations in Opuntia tissues are predictive of patterns of C. cactorum 

host use in its exotic range (Chapter Two). Incorporating biotic interactions and dispersal 

into species distribution models greatly affects our predictive ability whether the model is 

based on host taxon (Chapter Three) or on clusters of host traits (Chapter Four).  

This dissertation has primarily focused on applying trait-based approaches to a 

scenario of biological invasion. Results indicate predictions of an invader’s exotic 

distribution can be constrained by utilizing trait-based understanding of the invader’s 

biotic interactions. Similar methods could be applied when modeling the distributions of 

non-invasive species. Most methods for modeling species distributions consider a 

species’ biophysical constraints relative to environmental conditions (Kearney and Porter 

2009, Buckley et al. 2010, Martínez et al. 2015), but efforts to incorporate biotic 

interactions are uncommon and typically individual-based (Dormann et al. 2012, Meineri 

et al. 2015). Successfully including biotic interactions into methods for modeling species 
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distributions is predicated on careful consideration of the biotic interactions that directly 

influence the occurrence of the species of interest. 

Assessing the ecological fit (Janzen 1985, Agosta 2006) between the traits of 

interacting organisms may increase researcher ability to predict an organism’s occurrence 

and distributions. One possible scenario is that suboptimal fit between organism traits 

affects how and if associations between organisms are maintained (Agosta and Klemens 

2008, Gillespie and Wratten 2011). Interactions between consumers and resources whose 

traits are not exact ecological fits may lead to suboptimal interactions that restrict 

consumer dietary breadth and preferences (Forister et al. 2012). This may in turn restrict 

where the organism occurs. Alternatively, strong ecological fit among organism traits 

may play a role in the formation of novel interactions between species (Forister and 

Wilson 2013). For instance, larval C. cactorum survival is an outcome of the interaction 

of larval C. cactorum and host Opuntia traits. Larval C. cactorum survival on novel 

Opuntia hosts may thereby generate new biotic associations that influence where C. 

cactorum occurs and persists. It follows that trait-based understanding of instances of 

strong ecological fit between organism traits may inform predictions of an organism’s 

distributions. In addition, understanding of the degree of ecological fit associated with 

biotic interactions may be useful for identifying suites of organism traits that are critical 

to maintaining function and structure in native communities (Wootton 1994, Brooks et al. 

2006, Ackerly and Cornwell 2007, Agosta and Klemens 2008).  

If species distribution modeling methods integrate trait-based understanding of 

the constraints and interactions that affect organism occurrence, then ensuing predictions 

of the organism’s distribution should project both process and pattern across larger spatial 
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scales. An important question then arises: to what extent do predictions of a species’ 

distribution generated via trait-based modeling methods coincide with the species’ niches 

(Sexton et al. 2009, Peterson et al. 2011, Lee-Yaw et al. 2016)? Predictions of species 

distributions generally appear to closely correspond to their niches, but only when these 

predictions are generated in the species’ native range (Lee-Yaw et al. 2016). Using 

conditions from an invader’s native range can result in a failure to predict the invader’s 

exotic distribution (Brooks et al. 2012). It should therefore become common practice to 

incorporate abiotic, biotic, and dispersal constraints that are specific to the region where 

the prediction will be generated and projected.  

In summary, the methods used in this dissertation to predict the distribution of an 

invasive species may be used as a guide to predict the distribution of any species of 

interest.  Several important points should be considered prior to developing predictions. 

First, obligate associations that require strong ecological fit between organism traits be 

used to constrain model predictions. This is because instances of strong ecological fit are 

likely to influence the occurrence and persistence of the species of interest. Instances of 

strong ecological fit also present opportunities to estimate habitat suitability for the 

species of interest relative to what hosts, resources, or traits are available. This approach 

could be generally applicable to any species of interest but may be especially fruitful 

when the focal species is invasive. Second, multiple scenarios of propagule pressure and 

dispersal should be included in a modeling method because of uncertainty about 

organism dispersal capabilities. Multiple scenarios of dispersal also allow researchers to 

evaluate the sensitivity of the modeling method to the dispersal constraints being 

imposed. Third, modeling methods should simultaneously implement the three major 
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factors (propagule pressure, abiotic suitability, and biotic interactions) constraining 

species distributions in order to assess the relative importance of each factor. Methods 

similar to the ones used in this dissertation could thereby facilitate additional hypothesis 

testing about specific mechanisms that affect or constrain the distribution of a focal 

species. Lastly, the quality of the information included in the modeling process should be 

assessed.  Evaluating the information included in species distribution modeling methods 

will ensure that the pieces of information being assembled are of as maximum of quality 

as possible. Taken together, the aforementioned points will ensure that methods for 

predicting species distributions are carefully constructed and generally applicable to a 

wide variety of species. This will, in turn, provide an excellent step forward in researcher 

ability to develop modeling methods that address, and potentially overcome, ecology’s 

fundamental problem.  
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R CODE 
 
Evaluating if Opuntia tissue macronutrient traits predict cactus moth infestation 

 
The following code was used to evaluate if Opuntia tissue macronutrient traits 

predict infestation by M. prodenialis or C. cactorum.  

#LOAD APPROPRIATE PACKAGES 
library(glmulti) #Version 1.0.7  
library(MuMIn) #Version 1.15.6  
 
#IMPORT DATA 
setwd('working directory') 
proximate=read.csv("working file",header=T) 
attach(proximate) 
head(proximate) 
 
#EXAMINE TISSUE MACRONUTRIENT RELATIVE TO M. PRODENIALIS 
meprall=glmulti(MePR~protein*fiber*fat,family='binomial',data=proximate, 
 method='h') 
meprtable=weightable(meprall) 
ofinterest=meprtable[meprtable$aic <= min(meprtable$aic)+2,] 
mepr1=glm(MePR ~ 1 + protein,data=proximate) 
mepr2=glm(MePR ~ 1,data=proximate) 
mepr3=glm(MePR ~ 1 + fiber:protein,data=proximate) 
mepr4=glm(MePR ~ 1 + protein + fiber:protein,data=proximate) 
mepr5=glm(MePR ~ 1 + protein + fat:protein,data=proximate) 
mepr6=glm(MePR ~ 1 + protein + fiber,data=proximate) 
mepr7=glm(MePR ~ 1 + fiber:protein + fat:fiber,data=proximate) 
mepr8=glm(MePR ~ 1 + fiber,data=proximate)   
mepr9=glm(MePR ~ 1 + fat:protein,data=proximate) 
mepr10=glm(MePR ~ 1 + protein + fat,data=proximate) 
mepr11=glm(MePR ~ 1 + protein + fat:fiber,data=proximate) 
meprfinal=model.avg(mepr1,mepr2,mepr3,mepr4,mepr5,mepr6,mepr7,mepr8, 
 mepr9,mepr10,mepr11) 
meprgood=meprfinal$formula 
meprgood=glm(MePR ~ fat + fiber + protein + fat:fiber + fat:protein +  
               fiber:protein) 
meprpredict=predict(meprgood,newdata=nutrients,type='response') 
meprobserved=MePR 
difference=meprobserved-meprpredict 
meprMSS=sum(difference^2) 
meprTSS=sum((meprobserved-mean(MePR))^2) 
meprrsquared=meprMSS/meprTSS 
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#EXAMINE TISSUE MACRONUTRIENT TRAITS RELATIVE TO C.   
  CACTORUM 

ccall=glmulti(CC~protein*fiber*fat,family='binomial',data=proximate, 
 method='h') 
cctable=weightable(ccall) 
ofinterestcc=cctable[cctable$aic <= min(cctable$aic)+2,] 
cc1=glm(CC ~ 1 + fiber + fat:protein,data=proximate) 
cc2=glm(CC ~ 1 + fiber:protein + fat:fiber,data=proximate) 
cc3=glm(CC ~ 1 + fiber + fat,data=proximate) 
cc4=glm(CC ~ 1 + fat + fiber:protein,data=proximate) 
cc5=glm(CC ~ 1 + fiber + fat:fiber,data=proximate) 
cc6=glm(CC ~ 1 + fiber:protein,data=proximate) 
cc7=glm(CC ~ 1 + protein + fat + fiber:protein,data=proximate) 
cc8=glm(CC ~ 1 + fiber + fat + fiber:protein,data=proximate) 
cc9=glm(CC ~ 1 + fat:fiber,data=proximate) 
cc10=glm(CC ~ 1 + fat + fiber:protein + fat:protein,data=proximate) 
cc11=glm(CC ~ 1 + protein + fiber + fat,data=proximate) 
cc12=glm(CC ~ 1 + protein + fiber:protein,data=proximate) 
cc13=glm(CC ~ 1 + protein + fiber:protein + fat:protein,data=proximate) 
cc14=glm(CC ~ 1 + protein + fiber:protein + fat:fiber,data=proximate) 
cc15=glm(CC ~ 1 + fiber,data=proximate) 
cc16=glm(CC ~ 1 + fiber + fat + fat:protein,data=proximate) 
cc17=glm(CC ~ 1 + fiber + fiber:protein + fat:fiber,data=proximate) 
cc18=glm(CC ~ 1 + fiber:protein + fat:protein,data=proximate) 
cc19=glm(CC ~ 1 + fiber + fiber:protein + fat:protein,data=proximate) 
cc20=glm(CC ~ 1 + fiber + fat:protein + fat:fiber,data=proximate) 
cc21=glm(CC ~ 1 + protein + fiber + fat:protein,data=proximate) 
ccfinal=model.avg(cc1,cc2,cc3,cc4,cc5,cc6,cc7,cc8,cc9,cc10,cc11,cc12,cc13,cc14 

  ,cc15,cc16,cc17,cc18,cc19,cc20,cc21) 
goodcc=ccfinal$formula 
goodcc=glm(CC ~ fat + fiber + protein + fat:fiber + fat:protein + fiber:protein) 
ccpredict=predict(goodcc,newdata=nutrients,type='response') 
ccobserved=CC 
ccdifference=ccpredict-ccobserved 
ccMSS=sum((ccdifference^2)) 
ccTSS=sum((ccobserved-mean(CC))^2) 
ccrsquared=ccMSS/ccTSS 
 

Evaluating if Opuntia morphological traits predict cactus moth infestation 

The following code was used to evaluate if Opuntia morphological traits predict 

infestation by M. prodenialis or C. cactorum.  
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#LOAD APPROPRIATE PACKAGES 
library(glmulti) #Version 1.0.7 
 
#IMPORT DATA 
setwd('working directory') 
morpho=read.csv("working file",header=T) 
attach(morpho) 
 
#EXAMINE MORPHOLOGICAL TRAITS RELATIVE TO M. PRODENIALIS 
#REMEMBER TO USE “EXCLUDE” ARGUMENT TO REMOVE   

  CORRELATED VARIABLES 
bestmepr=glmulti("Melitara",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
 data=morpho,family='binomial',method='g') 
bestmepr1=glmulti("Melitara",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
 ,data=morpho,family='binomial',method='g') 
bestmepr2=glmulti("Melitara",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
 ,data=morpho,family='binomial',method='g') 
bestmepr3=glmulti("Melitara",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
             data=morpho,family='binomial',method='g') 
bestmepr4=glmulti("Melitara",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
,data=morpho,family='binomial',method='g') 
 
#ARRIVE AT CONSENSUS BEST MODEL 
listmepr<-list(bestmepr,bestmepr1,bestmepr2,bestmepr3,bestmepr4) 
meprconsensus=consensus(listmepr) 
 
#EXAMINE MORPHOLOGICAL TRAITS RELATIVE TO C. CACTORUM 
# REMEMBER TO USE “EXCLUDE” ARGUMENT TO REMOVE   

  CORRELATED VARIABLES 
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bestcacto=glmulti("Cacto",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
 data=morpho,family='binomial',method='g') 
bestcacto1=glmulti("Cacto",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'), 
             data=morpho,family='binomial',method='g') 
bestcacto2=glmulti("Cacto",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'),   

  data=morpho,family='binomial',method='g') 
bestcacto3=glmulti("Cacto",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'),   

  data=morpho,family='binomial',method='g') 
bestcacto4=glmulti("Cacto",xr=c('Mean.spines.per.areole','Median.length', 
 'Mean.length.of.10.spines','Longest.Spine.Length','Spine.Color', 
 'Spines.per.areole','Spine.Pattern','Cladode.Color','Cladode.Shape', 
 'Plant.Height','Spine.Shape','Growth.Form','Spine.Persistence'),   

  data=morpho,family='binomial',method='g') 
 
# ARRIVE AT CONSENSUS BEST MODEL 
listcacto<-list(bestcacto,bestcacto1,bestcacto2,bestcacto3,bestcacto4) 
5cactoconsensus=consensus(listcacto) 
#EVALUATE CONSENSUS BEST MODEL 
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R CODE 
 
Generating Maxent predictions for each taxa 

The following code was used to generate Maxent predictions for each taxa 

modeled in this dissertation chapter. This example code was used to predict the 

distribution of O. humifusa var. ammophila. 

#LOAD LIBRARIES 
library(dismo) #Version 1.1.1 
library(rgdal) # for readOGR(...), Version 1.1-10 
library(SDMTools) #Version 1.1-221 
 
# IMPORT REGION SHAPEFILE 
setwd("working directory") 
states=readOGR(dsn='states.shp',layer='states') 
region=states[c(37,41:46,48,49),] 
region <- spTransform(region,CRS('+proj=longlat +datum=WGS84')) 
 
# IMPORT OCCURRENCE DATA FOR TAXA OF INTEREST 
setwd("working directory") 
stuff=read.csv('working file',header=T) 
attach(stuff) 
coords=stuff[,2:3] 
 
#IMPORT ENVIRONMENTAL PREDICTORS (BIOCLIM) AND EXTRACT  

  RELEVANT INFORMATION 
files<list.files(path='working directory',pattern='grd', 
 full.names=TRUE) 
bio=stack(files) 
predictors<-extract(bio,coords) 
head(predictors) 
ofinterest=predictors 
everything=cbind(stuff[1:6],ofinterest) 
#PREP OCCURRENCE AND ENVIRONMENTAL DATA FOR MODELING 
goodtogo=cbind(coords,ofinterest) 
set.seed(2000) 
backgr=spsample(region,10000,type='random') 
backgrcoords=coordinates(backgr) 
 
#GENERATE MAXENT PREDICTION 
modelaccuracy=c(rep(1,nrow(coords)),rep(0,nrow(backgrcoords))) 



 

114 

colnames(backgrcoords)<-c('ln','lat') 
allpoints=data.frame(cbind(modelaccuracy,rbind(coords,backgrcoords))) 
group_p = kfold(coords, 5)  
group_a = kfold(backgrcoords, 5)  
test = 3 
train_p = coords[group_p!=test, c("ln","lat")] 
train_a = backgrcoords[group_a!=test, c("ln","lat")] 
test_p = coords[group_p==test, c("ln","lat")] 
test_a = backgrcoords[group_a==test, c("ln","lat")] 
xm <-maxent(bio,p=train_p,a=train_a) 
plot(xm) 
 
#EVALUATE MAXENT PREDICTION AND SAVE 
e1<-evaluate(test_p,test_a,xm,bio) 
e1 
tr1=threshold(e1,'spec_sens') 
px<-predict(bio,xm,ext=region,progress='') 
px=mask(px,region) 
plot(px,main='Maxent,raw values') 
plot(region,add=TRUE,border='dark grey') 
plot(px > tr1, main='presence/absence') 
plot(region,add=TRUE,border='dark grey') 
points(coords,pch='+') 
points(backgrcoords,pch="x") 
things=allpoints[,2:3] 
modelvalues1=extract(px,things) 
try2=cbind(modelaccuracy,modelvalues1) 
try2=na.omit(try2) 
modelaccuracy=try2[,1] 
modelvalues1=try2[,2] 
measure=accuracy(modelaccuracy,modelvalues1,threshold=tr1) 
thresh=optim.thresh(modelaccuracy,modelvalues1,threshold=101) 
measure1=accuracy(modelaccuracy,modelvalues1, 
 threshold=thresh$`max.sensitivity+specificity`) 
setwd("working directory") 
writeRaster(px,"file name",bandorder='BIL',overwrite=T) 
 

Generating mosaics of habitat suitability for C. cactorum  

The following code was used to generate mosaics of habitat suitability for C. 

cactorum by integrating abiotic suitability and biotic interactions. 
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#LOAD LIBRARIES 
library(dismo) #Version 1.1.1 
library(rgdal) # for readOGR(...),Version 1.1-10 
require(SDMTools) #Version 1.1-221 
 
#IMPORT ALL RELEVANT DATA (MAXENT PREDICTIONS TO BE   

  COMIBINED BY HOST AVAILABILITY SCENARIO) 
setwd("working data") 
files<-list.files(path='working directory',pattern='grd',full.names=TRUE) 
preferred=stack(files[1],files[3],files[7],files[8],files[9],files[10],files[13],files[17] 

  ,files[19]) 
all=stack(files[1],files[2],files[3],files[4],files[5],files[6],files[7],files[8],files[9], 
 files[10],files[11],files[12],files[13],files[14],files[15],files[16],files[17], 
 files[18],files[19],files[20],files[21]) 
 
#GENERATE MOSAICS AND WRITE TO DATA STORAGE 
prefmean=mosaic(preferred$layer.1,preferred$layer.2,preferred$layer.3, 
 preferred$layer.4,preferred$layer.5,preferred$layer.6,preferred$layer.7, 
 preferred$layer.8,preferred$layer.9,fun=mean) 
writeRaster(prefmean,"MaxEnt_Preferred_Mean.grd",bandorder='BIL', 
 overwrite=T) 
prefmaximum=mosaic(preferred$layer.1,preferred$layer.2,preferred$layer.3, 
 preferred$layer.4,preferred$layer.5,preferred$layer.6,preferred$layer.7, 
 preferred$layer.8,preferred$layer.9,fun=max) 
writeRaster(prefmaximum,"MaxEnt_Preferred_Max.grd",bandorder='BIL', 
 overwrite=T) 
predmedian=mosaic(preferred$layer.1,preferred$layer.2,preferred$layer.3, 
 preferred$layer.4,preferred$layer.5,preferred$layer.6,preferred$layer.7, 
 preferred$layer.8,preferred$layer.9,fun=median) 
writeRaster(prefmedian,'MaxEnt_Preferred_Median.grd',bandorder='BIL', 
 overwrite=T) 
 
allmean=mosaic(all$layer.1,all$layer.2,all$layer.3,all$layer.4,all$layer.5, 
 all$layer.6,all$layer.7,all$layer.8,all$layer.9,all$layer.10,all$layer.11, 
 all$layer.12,all$layer.13,all$layer.14,all$layer.15,all$layer.16,all$layer.17,

  all$layer.18,all$layer.19,all$layer.20,all$layer.21,fun=mean) 
writeRaster(allmean,'MaxEnt_All_Mean.grd',bandorder='BIL',overwrite=T) 
allmaximum=mosaic(all$layer.1,all$layer.2,all$layer.3,all$layer.4,all$layer.5, 
 all$layer.6,all$layer.7,all$layer.8,all$layer.9,all$layer.10,all$layer.11, 
 all$layer.12,all$layer.13,all$layer.14,all$layer.15,all$layer.16,all$layer.17,

  all$layer.18,all$layer.19,all$layer.20,all$layer.21,fun=max) 
writeRaster(allmaximum,'MaxEnt_All_Max.grd',bandorder='BIL',overwrite=T) 
allmedian=mosaic(all$layer.1,all$layer.2,all$layer.3,all$layer.4,all$layer.5, 
 all$layer.6,all$layer.7,all$layer.8,all$layer.9,all$layer.10,all$layer.11, 
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 all$layer.12,all$layer.13,all$layer.14,all$layer.15,all$layer.16,all$layer.17,
  all$layer.18,all$layer.19,all$layer.20,all$layer.21,fun=median) 

writeRaster(allmedian,'MaxEnt_All_Median.grd',bandorder='BIL',overwrite=T) 
 

Generating PAB predictions 

The following code was used to generate PAB predictions. Parameters can be 

varied relative to the constraints being imposed. 

#LOAD LIBRARIES 
library(dismo) #Version 1.1.1 
library(rgdal) # for readOGR(...),Version 1.1-10 
require(SDMTools) #Version 1.1-221 
 
#IMPORT C. CACTORUM POINTS  
setwd("working directory") 
cacto=read.csv('working file',header=T) 
attach(cacto) 
coordinates=cacto[,2:3] 
 
#IMPORT REGION SHAPEFILE 
setwd("working directory") 
states=readOGR(dsn='states.shp',layer='states') 
region=states[c(37,41:46,48,49),] 
region <- spTransform(region,CRS('+proj=longlat +datum=WGS84')) 
 
#PREP C. CACTORUM OCCURRENCE POINTS 
prespoints=rep.int(1,nrow(coordinates)) 
preslocation=cbind(coordinates,prespoints) 
colnames(preslocation)<-c('ln','lat','presabs') 
pseudos=spsample(region,500,type='random') 
pseudocoords=coordinates(pseudos) 
abpoints=rep.int(0,nrow(pseudocoords)) 
ablocation=cbind(pseudocoords,abpoints) 
colnames(ablocation)<-c('ln','lat','presabs') 
allcactopoints=rbind(preslocation,ablocation) 
colnames(coordinates)<-c('ln','lat') 
colnames(pseudocoords)<-c('ln','lat') 
cactocoords=allcactopoints[,1:2] 
cactocoords=na.omit(cactocoords) 
values=allcactopoints[,3] 
readycacto=SpatialPoints(list(cactocoords[,1],cactocoords[,2])) 
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#EXTRACT HABITAT SUITABILITY VALUES FOR ALL C. CACTORUM  
  OCCURRENCE RECORDS 

setwd("working directory") 
files<-list.files(path='working directory',pattern='grd',full.names=TRUE) 
preferredmean=raster(files[5]) 
preferredmax=raster(files[4]) 
preferredmedian=raster(files[6]) 
allmean=raster(files[2]) 
allmax=raster(files[1]) 
allmedian=raster(files[3]) 
cacto_pref_mean=rasterize(readycacto, preferredmean, values, fun='first',   

  background=0, mask=F,update=F,updateValue='all',na.rm=T) 
cacto_pref_max=rasterize(readycacto, preferredmax, values, fun='first',   

  background=0, mask=F,update=F,updateValue='all',na.rm=T) 
cacto_pref_median=rasterize(readycacto,preferredmedian,values,fun='first',  

  background=0, mask=F,update=F,updateValue='all',na.rm=T) 
cacto_all_mean=rasterize(readycacto, allmean, values, fun='first', background=0,  

  mask=F,update=F,updateValue='all',na.rm=T) 
cacto_all_max=rasterize(readycacto, allmax, values, fun='first', background=0,  

  mask=F,update=F,updateValue='all',na.rm=T) 
cacto_all_median=rasterize(readycacto,allmedian,values,fun='first',   

  background=0, mask=F,update=F,updateValue='all',na.rm=T) 
cacto_pref_mean=writeRaster(cacto_pref_mean,'cacto_pref_mean1', 
 format='GTiff',overwrite=T)           
cacto_pref_max=writeRaster(cacto_pref_max,'cacto_pref_max1', 
 format='GTiff',overwrite=T)           
cacto_pref_median=writeRaster(cacto_pref_median,'cacto_pref_median1', 
 format='GTiff',overwrite=T) 
cacto_all_mean=writeRaster(cacto_all_mean,'cacto_all_mean1', 
 format='GTiff',overwrite=T)           
cacto_all_max=writeRaster(cacto_all_max,'cacto_all_max1', 
 format='GTiff',overwrite=T)           
cacto_all_median=writeRaster(cacto_all_median,'cacto_all_median1', 
 format='GTiff',overwrite=T) 
 
#GENERATE DISPERSAL KERNELS 
setwd("working directory") 
rates=seq(0.01,1,0.1) 
one=NULL 
two=NULL 
three=NULL 
four=NULL 
five=NULL 
for (i in 1:10){ 
  one[i]=sum(dexp(1:5,rate=rates[i])) 
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  two[i]=sum(dexp(2:5,rate=rates[i])) 
  three[i]=sum(dexp(3:5,rate=rates[i])) 
  four[i]=sum(dexp(4:5,rate=rates[i])) 
  five[i]=sum(dexp(5:5,rate=rates[i])) 
} 
all=cbind(one,two,three,four,five) 
firstcorr=1/sum(all[1,]) 
secondcorr=1/sum(all[2,]) 
thirdcorr=1/sum(all[3,]) 
fourthcorr=1/sum(all[4,]) 
fifthcorr=1/sum(all[5,]) 
sixthcorr=1/sum(all[6,]) 
seventhcorr=1/sum(all[7,]) 
eigthcorr=1/sum(all[8,]) 
ninthcorr=1/sum(all[9,]) 
tenthcorr=1/sum(all[10,]) 
first=all[1,]*firstcorr 
second=all[2,]*secondcorr 
third=all[3,]*thirdcorr 
fourth=all[4,]*fourthcorr 
fifth=all[5,]*fifthcorr 
sixth=all[6,]*sixthcorr 
seventh=all[7,]*seventhcorr 
eigth=all[8,]*eigthcorr 
ninth=all[9,]*ninthcorr 
tenth=all[10,]*tenthcorr 
rescaled=rbind(first,second,third,fourth,fifth,sixth,seventh,eigth,ninth,tenth) 
 
#RUNNING MIGCLIM DISPERSAL SIMULATIONS 
#THIS IS WHERE DISPERSAL CONSTRAINT PARAMETERS CAN BE  

  CHANGED 
require(MigClim) #Version 1.6 
setwd("working directory") 
nsim=10 
prefix<-'ScaledKernels_AllMedian_NoLDD' 
suffix<-seq(1:nsim) 
sim_name=paste(prefix,suffix,sep='') 
for (i in 1:10){  

 MigClim.migrate(iniDist='cacto_all_median1',hsMap='AllMedian',rcThreshold=0 
 ,envChgSteps=1,dispSteps=300,dispKernel=rescaled[i,],iniMatAge=1, 
 overWrite=T,simulName=sim_name[i],replicateNb=25) 
 } 
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Rescaling PAB predictions 

The following code was used to rescale PAB predictions for comparison to 

Maxent predictions. 

#RE-WRITE ALL .ASC FILES TO .TIF  
library(raster) #Version 2.5-8 
setwd("working directory") 
folderslist=list.files(path='working directory',full.names=TRUE) 
allfiles<-list(NULL) 
for (i in 1:length(folderslist)){ 
  allfiles=list.files(folderslist[i],pattern='.tif',full.names=TRUE) 
 }   
  for (i in 1:length(allfiles)){ 
    layer=raster(allfiles[i]) 
    layer[values(layer) %in% -101:0]<-0 
    layer[values(layer) %in% 30000]<-0 
    layer[values(layer) %in% 1:29999]<-1 
    prefix=allfiles[i] 
    middle<-"Occupied" 
    filetype<-'.grd' 
    sim_name=paste(prefix,middle,filetype) 
   } 
 
#TAKE.TIF FILES, STACK THEM, CALCULATE MEAN OF SIMULATIONS 
library(raster) #Version 2.5-8 
setwd("working directory") 
folderslist=list.files(path='working directory',full.names=TRUE) 
for (i in 1:length(folderslist)){ 
  everything=list.files(folderslist[i],pattern='.tif',full.names=TRUE) 
  layers<-list(NULL)  
  for (i in 1:length(everything)){ 
    layers[i]=raster(everything[i]) 
    mess=stack(layers) 
    messing=calc(mess,fun=mean)   
    prefix=folderslist[i] 
    middle='Occupied' 
    sim_name=paste(prefix,middle) 
    writeRaster(messing,filename=sim_name,format='GTiff',overwrite=TRUE) 
  } 
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Analyzing Schoener’s D overlap among predictions 

The following code was used to analyze Schoener’s D overlap among all 

predictions generated in this dissertation chapter. 

#LOAD APPROPRIATE PACKAGES 
library(dunn.test) #Version 1.3.2   
 
#IMPORT APPROPRIATE DATA 
setwd('working data') 
comparisons=read.csv('working file',header=T) 
attach(comparisons) 
scores=Score 
 
###DUNN’S TEST FOR MULTIPLE COMPARISONS 
host=dunn.test(Score,Host,method='bonferroni') 
hostinterest=cbind(host$comparisons,host$Z,host$P.adjusted) 
write.csv(hostinterest,"hostComparison.csv") 
 
suit=dunn.test(Score,Suit,method='bonferroni') 
suitinterest=cbind(suit$comparisons,suit$Z,suit$P.adjusted) 
write.csv(suitinterest,"SuitComparison.csv") 
 
disp=dunn.test(Score,Disp,method='bonferroni') 
dispinterest=cbind(disp$comparisons,disp$Z,disp$P.adjusted) 
write.csv(dispinterest,"dispComparison.csv") 
 
prob=dunn.test(Score,LDD.Prob,method='bonferroni') 
probinterest=cbind(prob$comparisons,prob$Z,prob$P.adjusted) 
write.csv(probinterest,"probComparison.csv") 

Analyzing relative importance of modeling constraints 

The following code was used to analyze the relative importance of the modeling 

constraints used to generate predictions in this dissertation chapter. 

#IMPORT SCHOENER’S COMPARISONS 
setwd('working directory') 
newstuff=read.csv('working file',header=T) 
attach(newstuff)  
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#LOAD LIBRARY 
library(betareg) #Version 3.0-5  

#FIT BETA REGRESSIONS, RUN LIKELIHOOD TEST 
try1=betareg(Score~Host+Suit+Kernel+LDD.Prob+Disp,newstuff) 
try2=betareg(Score~Host) 
try3=betareg(Score~Suit) 
try4=betareg(Score~Kernel) 
try5=betareg(Score~LDD.Prob) 
try6=betareg(Score~Disp) 
lrtest(try1,try2,try3,try4,try5,try6) 

 

Figure B.1 Maxent prediction for O. humifusa var. ammophila. 
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Figure B.2 Maxent prediction for O. atrispina. 

 

 

Figure B.3 Maxent prediction for O. austrina. 
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Figure B.4 Maxent prediction for O. basilaris. 

 

 

Figure B.5 Maxent prediction for O. camanchica. 
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Figure B.6 Maxent prediction for O. ellisiana. 

 

 

Figure B.7 Maxent prediction for O. engelmannii var. engelmannii. 
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Figure B.8 Maxent prediction for O. ficus-indica. 

 

 

Figure B.9 Maxent prediction for O. humifusa var. humifusa. 
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Figure B.10 Maxent prediction for O. engelmannii var. lindheimeri. 

 

 

Figure B.11 Maxent prediction for O. engelmannii var. linguiformis. 
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Figure B.12 Maxent prediction for O. macrocentra. 

 

 

Figure B.13 Maxent prediction for O. macrorhiza. 
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Figure B.14 Maxent prediction for O. microdasys. 

 

 

Figure B.15 Maxent prediction for O. phaeacantha. 
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Figure B.16 Maxent prediction for O. pottsii. 

 

 

Figure B.17 Maxent prediction for O. pusilla. 
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Figure B.18 Maxent prediction for O. santa-rita. 

 

 

Figure B.19 Maxent prediction for O. stricta. 
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Figure B.20 Maxent prediction for O. strigil. 

 

 

Figure B.21 Maxent prediction for O. undulata. 
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CHAPTER 4 SUPPLEMENTARY INFORMATION 
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R CODE 

Determining the number of trait-based clusters 

The following code was used to determine the centroid location for each Opuntia 

morphological and tissue macronutrient trait relative to the numer of clusters being 

considered. 

#LOAD APPROPRIATE PACKAGES 
 library(ClustOfVar) #Version 0.8  
  
 #IMPORT DATA 
 setwd('working directory') 
 everything=read.csv('working file’,header=T) 
 attach(everything) 
 
 #GENERATE DENDROGRAM 
 traits=everything[,c(11:26)] 
 goodtraits=traits[c(1:9,11:16)] 
 quantitative=traits[,c(1:4,14:16)] 
 qualitative=traits[,c(5:9,11:13)] 
 tree <- hclustvar(quantitative,qualitative) 
  

#EVALUATE DENDROGRAM STABILITY RELATIVE TO NUMBER OF  
  CLUSTERS 
 stable=stability(tree,B=25,graph=TRUE) 
 meanscores=stable$meanCR 
 interest=stable$matCR 
 means=colMeans(interest) 
 
 #EVALUATE DIFFERENCES BETWEEN RAND SCORES 
 library(PMCMR) #Version 4.1 
 posthoc.kruskal.dunn.test(means,cluster,p.adjust.method="none") 
 
Determining centroid location for Opuntia morphological and tissue macronutrient 

traits 

The following code was used to determine the centroid location for each Opuntia 

morphological and tissue macronutrient trait relative to the numer of clusters being 

considered. 
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#LOAD PACKAGES 
library(ClustOfVar) #Version 0.8 
 
#IMPORT DATA ON OPUNTIA TRAITS 
setwd("working directory") 
messing=read.csv('working file',header=T) 
attach(messing) 
 
#START CLUSTERING PROCESS 
traits=messing[,c(10:25)] 
goodtraits=traits[c(1:9,11:16)] 
quantitative=traits[,c(1:4,14:16)] 
qualitative=traits[,c(5:13)] 
qualitative=qualitative[,c(1:5,7:9)] 
tree <- hclustvar(quantitative,qualitative) 
morpho=goodtraits[,c(1:12)] 
quanti_morpho=morpho[,c(1:4)] 
quali_morpho=morpho[,c(5:12)] 
nutrients=goodtraits[,c(13:15)] 
 
#GENERATE CENTROIDS FOR TRAITS FROM 21 CLADODES 
clust.centroid = function(i, dat, clusters) { 
  ind = (clusters == i) 
  colMeans(dat[ind,]) 
} 
 
#GENERATE CENTROIDS FOR TISSUE MACRONUTRIENT TRAITS  

  RELATIVE TO SCENARIOS OF 5  TO 12 CLUSTERS 
nut_clusters=cutree(hclust(dist(nutrients)), k=5) 
nutrient_centroids=sapply(unique(nut_clusters), clust.centroid,  
 nutrients, nut_clusters) 
 
#GENERATE CENTROIDS FOR QUANTITATIVE MORPHOLOGICAL   

  TRAITS 
quanti_clusters=cutree(hclust(dist(quanti_morpho)),k=5) 
quantitative_centroids=sapply(unique(quanti_clusters),clust.centroid, 
 quanti_morpho,quanti_clusters) 
 
#GENERATE CENTROIDS FOR QUALITATIVE MORPHOLOGICAL   

  TRAITS 
chr2num=function(x){ 
  key=cbind(unique(x),as.numeric(as.factor(unique(x)))) 
  x=as.numeric(as.factor(x)) 
  return(list(data=x,key=key))} 



 

135 

spines_per=chr2num(quali_morpho[,1]) 
spine_shape=chr2num(quali_morpho[,2]) 
spine_color=chr2num(quali_morpho[,3]) 
spine_persist=chr2num(quali_morpho[,4]) 
spine_pattern=chr2num(quali_morpho[,5]) 
cladode_shape=chr2num(quali_morpho[,6]) 
plant_height=chr2num(quali_morpho[,7]) 
growth_form=chr2num(quali_morpho[,8]) 
new_quali=cbind(spines_per$data,spine_shape$data,spine_color$data, 
 spine_persist$data,spine_pattern$data,cladode_shape$data, 
 plant_height$data,growth_form$data)        
quali_clusters=cutree(hclust(dist(new_quali)),k=5) 
qualitative_centroids=as.data.frame(sapply(unique(quali_clusters),clust.centroid, 
 new_quali,quali_clusters)) 
row.names(qualitative_centroids)<-c('spines_per','spine_shape','spine_color',  

  'spine_persist','spine_pattern','cladode_shape','plant_height','growth_form')                                                   
final_centroids=rbind(nutrient_centroids,quantitative_centroids, 
 qualitative_centroids)                                     
 

Determine contribution of Opuntia morphological and tissue macronutrient traits in 
assigning cladode to cluster 

 
The following code was used to evaluate the importance of Opuntia traits in 

assigning cladodes to cluster. 

#LOAD APPROPRIATE PACKAGES 
library(lmtest) #Version 0.9-34 
 
#IMPORT DATA 

 setwd('working directory') 
 five=read.csv('StandarizedFiveClusters.csv',header=T) 
 six=read.csv('StandardizedSixClusters.csv',header=T) 
 seven=read.csv('StandardizedSevenClusters.csv',header=T) 
 eight=read.csv('StandardizedEightClusters.csv',header=T) 
 nine=read.csv('StandardizedNineClusters.csv',header=T) 
 ten=read.csv('StandardizedTenClusters.csv',header=T) 
 eleven=read.csv('StandardizedElevenClusters.csv',header=T) 
 twelve=read.csv('StandardizedTwelveClusters.csv',header=T) 

#EVALUATE CONTRIBUTION OF TRAITS FOR EACH NUMBER OF  
  CLUSTERS SCENARIO 

#5 cluster scenario 
attach(five) 
five=as.matrix(t(five)) 
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five=five[2:22,] 
clustermembership5=as.vector(apply(five,1,which.min)) 
attempt1=glm(clustermembership5~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern+ 
 cladode_shape+plant_height+growth_form,family=gaussian)       
attempt2=glm(clustermembership5~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership5~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern+cladode_shape+ 
 plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#6 cluster scenario 
attach(six) 
six=as.matrix(t(six)) 
six=six[2:22,] 
clustermembership6=as.vector(apply(six,1,which.min)) 
attempt1=glm(clustermembership6~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern+ 
 cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership6~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership6~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#7 cluster scenario 
attach(seven) 
seven=as.matrix(t(seven)) 
seven=seven[2:22,] 
clustermembership7=as.vector(apply(seven,1,which.min)) 
attempt1=glm(clustermembership7~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership7~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership7~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
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try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#8 cluster scenario 
attach(eight) 
eight=as.matrix(t(eight)) 
eight=eight[2:22,] 
clustermembership8=as.vector(apply(eight,1,which.min)) 
attempt1=glm(clustermembership8~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership8~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership8~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#9 cluster scenario 
attach(nine) 
nine=as.matrix(t(nine)) 
nine=nine[2:22,] 
clustermembership9=as.vector(apply(nine,1,which.min)) 
attempt1=glm(clustermembership9~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership9~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership9~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#10 cluster scenario 
attach(ten) 
ten=as.matrix(t(ten)) 
ten=ten[2:22,] 
clustermembership10=as.vector(apply(ten,1,which.min)) 
attempt1=glm(clustermembership10~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
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             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership10~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership10~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#11 cluster scenario 
attach(eleven) 
eleven=as.matrix(t(eleven)) 
eleven=eleven[2:22,] 
clustermembership11=as.vector(apply(eleven,1,which.min)) 
attempt1=glm(clustermembership11~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership11~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership11~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 
 
#12 cluster scenario 
attach(twelve) 
twelve=as.matrix(t(twelve)) 
twelve=twelve[2:22,] 
clustermembership12=as.vector(apply(twelve,1,which.min)) 
attempt1=glm(clustermembership12~Protein+Fiber+Fat+Mean.spines.per.areole+ 
 Median.length+Mean.length.of.10.spines+Longest.Spine.Length+ 
 spines_per+spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
attempt2=glm(clustermembership12~Protein+Fiber+Fat,family=gaussian) 
attempt3=glm(clustermembership12~Mean.spines.per.areole+Median.length+ 
 Mean.length.of.10.spines+Longest.Spine.Length+spines_per+ 
 spine_shape+spine_color+spine_persist+spine_pattern 
             +cladode_shape+plant_height+growth_form,family=gaussian) 
try1=anova(attempt1,attempt2,attempt3,test='Chisq') 
lrtest(attempt1,attempt2,attempt3) 



 

139 

Generating Maxent predictions for each tissue macronutrient-based cluster 

Maxent predictions for each tissue macronutrient-based cluster were generated 

using code that is very similar to the code used to generate Maxent predictions for each 

taxa modeled in Chapter 3 (Appendix B).  

Generating mosaics of habitat suitability for C. cactorum  

Mosaics of habitat suitability for C. cactorum were generated using the Maxent 

predictions for each trait-based Opuntia cluster. These mosaics of habitat suitability were 

generated using code that is very similar to the code used to generate mosaics of habitat 

suitability in Chapter 3 (Appendix B). 

Simulating C. cactorum dispersal across mosaic of habitat suitability 

The following code was used to simulate C. cactorum dispersal across mosaics of 

habitat suitability. 

#LOAD PACKAGES 
library(dismo) #Version 1.1.1 
library(rgdal) # for readOGR(...),Version 1.1-10 
require(SDMTools) #Version 1.1-221 
 
#IMPORT C. CACTORUM OCCURRENCE POINTS 
setwd("working directory") 
cacto=read.csv('working file',header=T) 
attach(cacto) 
coordinates=cacto[,2:3] 
 
#IMPORT ENVIRONMENTAL PREDICTORS 
files<list.files(path='working directory',pattern='grd', 
 full.names=TRUE) 
bio=stack(files) 
predictors<-extract(bio,coordinates) 
 
#CONVERT TEMPERATURE PREDICTORS TO CELSIUS 
temp=(predictors[,1])/10 
ofinterest=cbind(coordinates,temp) 
cactopointstouse=na.omit(ofinterest) 
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#IMPORT REGION SHAPEFILE 
setwd("working directory") 
states=readOGR(dsn='states.shp',layer='states') 
region=states[c(37,41:46,48,49),] 
region <- spTransform(region,CRS('+proj=longlat +datum=WGS84')) 
 
#USE LEGASPI AND LEGASPI (2007) TO GENERATE NUMBER   

  INDIVIDUALS HATCHING FROM EGGSTICKS 
setwd("working directory") 
legaspi=read.csv('working file',header=T) 
attach(legaspi) 
temperature=c(18,22,26,30,34) 
egg_female=c(33.96,41.73,31.80,30.39,10.84) 
 
#USE STEPHENS ET AL. (2012) TO SIMULATE MEAN NUMBER OF EGGS 

  PER EGGSTICK 
sticksize=abs(round(rpois(nrow(cactopointstouse),63))) 
step1=cbind(cactopointstouse,sticksize) 
 
#FIT CURVES TO TEMPERATURE DATA, CALCULATE FEMALE   

  SURVIVAL 
plot(temperature,egg_female) 
femalesurvival1=smooth.spline(temperature,egg_female) 
first_femalesurv=(predict(femalesurvival1,step1$temp)$y)/100 
 
#COMPILE INITIAL DATA 
perstick_female=round(step1$sticksize*first_femalesurv) 
everything=cbind(step1,perstick_female) 
 
#IMPORT TRAIT-BASED CLUSTER SUITABILITIES AND CROP 
setwd("working directory") 
files<-list.files(path='working directory',pattern='grd',full.names=TRUE) 
clusterfiles<-list(NULL) 
for (i in 1:length(files)){ 
  clusterfiles[i]=raster(files[i]) 
} 
names(clusterfiles)<-c('All Cluster Max', 'All Cluster Mean', 'All Cluster Median') 
cluster_stack=stack(clusterfiles) 
clusterbio=crop(bio,cluster_stack) 
final_clusterstack=stack(cluster_stack,clusterbio) 
 
#FUNCTION FOR GENERATING OFFSPRING LOCATIONS 
offspring.xy<-function(parent_x,parent_y,x_females,y_females,dispdist){ 
  parent_xloc=rep(parent_x,x_females) 
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  parent_yloc=rep(parent_y,y_females) 
  angle=runif(sum(x_females),min=0,max=2*pi) 
  dist=rexp(sum(x_females),1/dispdist)  
  offspring_lat=parent_xloc++cos(angle)*dist 
  offspring_ln=parent_yloc++sin(angle)*dist   
  return(cbind(offspring_ln,offspring_lat)) 
} 
 
#GENERATE DISPERSING INDIVIDUALS, EXTRACT ENVIRONMENTAL  

  INFO AT NEW LOCATION 
dispersers<function(parent_x,parent_y,x_females,y_females,dispdist 
 ,final_clusterstack){ 
  pointstostart=offspring.xy(parent_x,parent_y,x_females,y_females,dispdist) 
  Vgood=extract(final_clusterstack,pointstostart) 
  return(cbind(par_y,par_x,pointstostart,Vgood)) 
} 
 
#ENSURE ALL DISPERSERS LAND IN LOCATION WITH    

  ENVIRONMENTAL DATA 
dispcheck<-function(offspring){ 
  while(sum(is.na(offspring))){ 
    good=offspring[complete.cases(offspring),] 
    bad=offspring[!complete.cases(offspring),] 
    parent_coords=bad[,1:2] 
    repeats=1 
    newlocs<offspring.xy(parent_coords[,2],parent_coords[,1],repeats, 
 repeats,dispdist)  
    preds2=extract(final_clusterstack,newlocs) 
    badpos=cbind(bad[,1:2],newlocs,preds2) 
    offspring=rbind(good,badpos) 
  } 
  return(offspring) 
} 
 
#DETERMINE DISPERSER PROBABILITY OF ESTABLISHMENT 
probestab=function(good.offspring){ 
  loc_ofinterest=good.offspring[,3:4] 
  scenario_probs=good.offspring[,5:16] 
  prob_estabs=runif(nrow(scenario_probs),0,1) 
  scenario_probs[scenario_probs <= prob_estabs] <-NA 
  return(scenario_probs) 
} 
 
#REMOVE DISPERSERS IF PROB. ESTAB > SUITABILITY 
#MODIFY CODE RELATIVE TO SUITABILITY SCENARIO 
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removedispersers=function(good.offspring,disp.estab) { 
  offspringloc=good.offspring[,3:4] 
  allmean=cbind(offspringloc,disp.estab[,2]) 
  all_mean=allmean[complete.cases(allmean),] 
  return(all_mean) 
} 
 
#REMOVE DISPERSERS WITH "NA" 
all_max=allmax[complete.cases(allmax),] 
all_mean=allmean[complete.cases(allmean),] 
all_median=allmedian[complete.cases(allmedian),] 
 
#SET UP DISPERSAL OF SUBSEQUENT  GENERATIONS 
nextgen_info=function(next.gen){ 
  newcoords=next.gen[,1:2] 
  newinfo=extract(bio,newcoords) 
  temp_good=((newinfo[,1])/10) 
  sticksize=abs(round(rpois(nrow(newinfo),63))) 
  step1=cbind(newcoords,temp_good,sticksize) 
  femalesurv=(predict(femalesurvival1,step1[,3])$y)/100 
  female_per_stick=round(step1[,4]*femalesurv) 
  nextgen_good=cbind(step1,female_per_stick) 
  return(nextgen_good) 
} 
 
#FUNCTION TO RASTERIZE DISPERSER POINTS, CONVERT TO   

  OCCUPIED/UNOCCUPIED 
rasterize.points=function(everything,final_clusterstack){ 
  setwd('working directory') 
  new_coords=everything[,1:2] 
  new_info=rasterize(new_coords,bio,background=0) 
  new_info[values(new_info) %in% 1:50000000]<-1 
  writeRaster(new_info,'nsim[i]',overwrite=T)   
} 
 
#USE ALL FUNCTIONS TO RUN SIMULATION 
#VARY INITIAL PARAMETERS RELATIVE TO NUMBER OF DISPERSAL  

  EVENTS DESIRED 
nsim=2 
steps=4 
for (i in 1:steps){ 
  parent_x=everything[,2] 
  parent_y=everything[,1] 
  x_females=everything[,5] 
  y_females=everything[,5] 
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  par_x=rep(parent_x,x_females) 
  par_y=rep(parent_y,y_females) 
  dispdist=.3 
  

offspring=dispersers(parent_x,parent_y,x_females,y_females,dispdist,final_clusterstack) 
  good.offspring=dispcheck(offspring) 
  disp.estab=probestab(good.offspring) 
  next.gen=removedispersers(good.offspring,disp.estab) 
  everything=nextgen_info(next.gen) 
} 

Analyzing Schoener’s D overlap among predictions 

The following code was used to analyze Schoener’s D overlap among all 

predictions generated in this dissertation chapter. 

#LOAD PACKAGES 
library(dunn.test) #Version 1.3.2 
 
#IMPORT APPROPRIATE DATA 
setwd('working data') 
comparisons=read.csv('working file',header=T) 
attach(comparisons) 
 
###Kruskal-Wallis tests for multiple comparisons 
traits=dunn.test(Score,Traits,method='bonferroni') 
traitsinterest=cbind(traits$comparisons,traits$Z,traits$P.adjusted) 
write.csv(traitsinterest,"TraitComparison.csv") 
 
step=dunn.test(Score,Step,method='bonferroni') 
stepinterest=cbind(step$comparisons,step$Z,step$P.adjusted) 
write.csv(stepinterest,"StepComparison.csv") 
 
host=dunn.test(Score,Host,method='bonferroni') 
hostinterest=cbind(host$comparisons,host$Z,host$P.adjusted) 
write.csv(hostinterest,"hostComparison.csv") 
 
suit=dunn.test(Score,Suit,method='bonferroni') 
suitinterest=cbind(suit$comparisons,suit$Z,suit$P.adjusted) 
write.csv(suitinterest,"SuitComparison.csv") 
 
disp=dunn.test(Score,Disp,method='bonferroni') 
dispinterest=cbind(disp$comparisons,disp$Z,disp$P.adjusted) 
write.csv(dispinterest,"dispComparison.csv") 
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prob=dunn.test(Score,LDD.Prob,method='bonferroni') 
probinterest=cbind(prob$comparisons,prob$Z,prob$P.adjusted) 
write.csv(probinterest,"probComparison.csv") 
 

Analyzing relative importance of modeling constraints 

The following code was used to analyze the relative importance of the modeling 

constraints used to generate predictions in this dissertation chapter. 

 
#LOAD LIBRARY 
library(betareg) #Version 3.0-5 
library(lmtest) #Version 0.9-34 

#IMPORT SCHOENER’S COMPARISONS 
setwd('working directory') 
newstuff=read.csv('working file',header=T) 
attach(newstuff)  
 
#FIT BETA REGRESSIONS, RUN LIKELIHOOD TEST 
try1=betareg(Score~Suitability+Dispersal event,newstuff) 
try2=betareg(Score~Suitabilty) 
try3=betareg(Score~Dispersal event) 
lrtest(try1,try2,try3) 
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Figure C.1 Boxplot comparing tissue macronutrient content of Opuntia tissues across 8 
Opuntia taxa.  

 

Taxa 
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Figure C.2 Dendogram depicting the relationships between Opuntia morphological 
and tissue macronutrient traits. 
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Figure C.3 Maxent prediction for the first tissue macronutrient-based Opuntia cluster. 

 

 

Figure C.4 Maxent prediction for the second tissue macronutrient-based Opuntia 
cluster.  
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Figure C.5 Maxent prediction for the third tissue macronutrient-based Opuntia cluster.  

 

 

Figure C.6 Maxent prediction for the fourth tissue macronutrient-based Opuntia 
cluster. 
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Figure C.7 Maxent prediction for the fifth tissue macronutrient-based Opuntia cluster. 
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