
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

1-1-2012 

Feature-Based Uncertainty Visualization Feature-Based Uncertainty Visualization 

Keqin Wu 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Wu, Keqin, "Feature-Based Uncertainty Visualization" (2012). Theses and Dissertations. 2261. 
https://scholarsjunction.msstate.edu/td/2261 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2261?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


 

 

 

Template Created By: James Nail 2010 

Feature-based uncertainty visualization 

By 

Keqin Wu 

A Thesis 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in Computer Engineering 
in the Department of Electrical and Computer Engineering  

Mississippi State, Mississippi 

August 2012 



 

Template Created By: James Nail 2010 

Copyright 2012 

By 

Keqin Wu 



 
 
 

 
 

 

 
 

 
 
 

 

 
  

 
 

 
  

Template Created By: James Nail 2010 

_________________________________ _________________________________ 

_________________________________ _________________________________ 

_________________________________ _________________________________ 

FEATURE-BASED UNCERTAINTY VISUALIZATION 

By 

Keqin Wu 

Approved: 

Robert J. Moorhead Song Zhang 
Professor of Electrical and Computer Assistant Professor of Computer  
Engineering Science and Engineering 
(Major Professor) (Director of Dissertation) 

J. Edward Swan II Philip Amburn 
Professor of Computer Science and Research Associate Professor of 
Engineering Electrical and Computer Engineering 
(Committee Member) (Committee Member) 

James E. Fowler Sarah A. Rajala 
Professor of Electrical and Computer Professor and Dean of the Bagley 
Engineering College of Engineering 
(Graduate Program Director) 



 
 

 
 

 

 

 

 
 

 

 

 

Template Created By: James Nail 2010 

Name: Keqin Wu 

Date of Degree: August 11, 2012 

Institution: Mississippi State University 

Major Field: Computer Engineering 

Major Professor: Robert Moorhead 

Director of Dissertation: Song Zhang 

Title of Study:  Feature-based uncertainty visualization 

Pages in Study: 105 

Candidate for Degree of Doctor of Philosophy 

While uncertainty in scientific data attracts an increasing research interest in the 

visualization community, two critical issues remain insufficiently studied: (1) visualizing 

the impact of the uncertainty of a data set on its features and (2) interactively exploring 

3D or large 2D data sets with uncertainties. In this study, a suite of feature-based 

techniques is developed to address these issues.  

First, a framework of feature-level uncertainty visualization is presented to study 

the uncertainty of the features in scalar and vector data. The uncertainty in the number 

and locations of features such as sinks or sources of vector fields are referred to as 

feature-level uncertainty while the uncertainty in the numerical values of the data is 

referred to as data-level uncertainty. The features of different ensemble members are 

indentified and correlated. The feature-level uncertainties are expressed as the transitions 

between corresponding features through new elliptical glyphs. Second, an interactive 

visualization tool for exploring scalar data with data-level and two types of feature-level 

uncertainties — contour-level and topology-level uncertainties  — is developed. To 

avoid visual cluttering and occlusion, the uncertainty information is attached to a contour 
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tree instead of being integrated with the visualization of the data. An efficient contour 

tree-based interface is designed to reduce users’ workload in viewing and analyzing 

complicated data with uncertainties and to facilitate a quick and accurate selection of 

prominent contours. This thesis advances the current uncertainty studies with an in-depth 

investigation of the feature-level uncertainties and an exploration of topology tools for 

effective and interactive uncertainty visualizations. With quantified representation and 

interactive capability, feature-based visualization helps people gain new insights into the 

uncertainties of their data, especially the uncertainties of extracted features which 

otherwise would remain unknown with the visualization of only data-level uncertainties. 



 

 

 

ACKNOWLEDGEMENTS 

I would like to start by thanking my advisors, Dr. Song Zhang and Dr. Robert 

Moorhead. Both went far beyond their duty as advisors and have inspired much more 

than just my research. 

I would like to thank Dr. Edward Swan II and Dr. Philip Amburn, my committee 

members, and Derek Irby, my fellow researcher, who in one way or another helped me to 

complete this thesis.  

I would like to acknowledge Dr. Jibonananda Sanyal, my former fellow graduate 

student, for providing the simulated weather data and constructive suggestions.  

This work has been supported in part by the Northern Gulf Institute, a NOAA 

Cooperative Institute and NSF, Award No. NSF111787. 

ii 



 

 

 

 

 

 

  

 

 

   

   

   

  

   

   

   

  

   

   

   

   

   

  

   

   

   

   

   

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS................................................................................................ ii 

LIST OF TABLES............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

1.1 The gap between data-level uncertainty and feature-level 
uncertainty..............................................................................................2 

1.2 Challenges of visualizing uncertainty....................................................4 
1.3 Feature-based visualization....................................................................6 
1.4 Objective ................................................................................................6 

II. LITERATURE REVIEW ..................................................................................8 

2.1 Uncertainty Visualization ......................................................................8 
2.2 Feature-Based Visualization ................................................................13 
2.3 Glyph-Based Techniques .....................................................................16 

III. TOPOLOGY BACKGROUND.......................................................................17 

3.1 Scalar field topology............................................................................17 
3.1.1 Morse function and critical points .................................................17 
3.1.2 Morse-Smale complex ...................................................................19 
3.1.3 Contour tree ...................................................................................20 

3.2 Vector field topology ...........................................................................22 

IV. FEATURE-LEVEL UNCERTAINTY VISUALIZATION ............................25 

4.1 A case study of modeling scattered oceanic data .................................26 
4.1.1 A real-world scenario.....................................................................27 
4.1.2 Scattered data interpolation............................................................28 
4.1.3 Error estimation .............................................................................29 
4.1.4 Experiment results and discussion .................................................30 

iii 



 

   

    

   

   

   

   

   

   

   

   

   

   

   

 
 

    

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

   

   

   

   

   

   

4.2 A framework for feature-level uncertainty visualization .....................34 
4.2.1 Method overview ...........................................................................34 
4.2.2 Feature extraction...........................................................................35 
4.2.3 Feature mapping.............................................................................36 

4.2.3.1 Feature flow field construction ..........................................37 
4.2.3.2 Feature-level uncertainty measurement .............................38 

4.2.4 Uncertainty glyph design ...............................................................39 
4.2.4.1 Graduated circular glyph....................................................39 
4.2.4.2 Elliptical glyph ...................................................................39 
4.2.4.3 2D graduated elliptical glyph.............................................40 
4.2.4.4 3D graduated elliptical glyph.............................................42 

4.2.5 Results and discussion ...................................................................43 
4.3 Conclusion ...........................................................................................46 

V. AN INTERACTIVE CONTOUR TREE BASED VISUALIZATION 
FOR EXPLORING DATA WITH UNCERTAINTY .....................................47 

5.1 Method overview .................................................................................47 
5.2 Contour tree simplification ..................................................................49 

5.2.1 Contour tree simplification criteria and de-strangulation ..............50 
5.2.1.1 Contour tree simplification criteria ....................................50 
5.2.1.2 De-strangulation.................................................................52 

5.2.2 Top-down contour tree simplification ...........................................54 
5.2.2.1 Reversed simplification sequence and branches................54 
5.2.2.2 Algorithm implementation .................................................57 
5.2.2.3 Algorithm analysis .............................................................63 

5.3 Contour tree layout and tree view graph design ..................................64 
5.3.1 Removable sub-trees ......................................................................65 
5.3.2 2D contour tree layout ...................................................................66 
5.3.3 Tree view graph interaction design................................................71 

5.4 Contour tree-based uncertainty visualization .......................................73 
5.4.1 Data-level uncertainty....................................................................74 
5.4.2 Contour-level uncertainty ..............................................................77 

5.4.2.1 Contour correspondence and difference ............................78 
5.4.2.2 Contour-level uncertainty metrics and visualization .........79 

5.4.3 Topology-level uncertainty............................................................81 
5.4.3.1 Contour region of a branch ................................................81 
5.4.3.2 Branch correspondence......................................................83 
5.4.3.3 Topology-level uncertainty visualization via 

contour tree mapping .........................................................84 
5.5 User interface design............................................................................87 

5.5.1 Interface components and layouts..................................................87 
5.5.2 Contour tree simplification ............................................................88 
5.5.3 Contour selection ...........................................................................88 

5.6 Applications and results.......................................................................89 
5.7 Conclusion ...........................................................................................95 

iv 



 

  

 

VI. CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS .......................97 

REFERENCES ..................................................................................................................99 

v 



 

    

   

   

   

 

LIST OF TABLES 

TABLE Page 

4.1 Interpolation Error of Multiquadric Method ......................................................31

 4.2 Interpolation Error of MQS Method ..................................................................31

 4.3 Comparison between Multiquadric Method and MQS Method .........................33

 5.1 The Order of the Tree Traversal and the Information Stored.............................60 

vi 



 

 

   

 

 

   

 

 

 

 

 

 

 

 

   

LIST OF FIGURES 

FIGURE Page 

1.1 An uncertain vector field and its uncertain feature locations. ..............................3

 1.2 Volume rendering water-vapor mixing ratio data with uncertainty 
information represented by circular glyphs and point cloud. ...............................5

 2.1 Samples of uncertainty visualization techniques for 2D datasets [12]. ................9

 2.2 Samples of uncertainty visualizations using blurry or fuzzy effects.  (a) 
Visualizing scalar volumetric data with uncertainty [14]: low 
uncertainty data have low opacity while high uncertainty data have high 
opacity; low uncertainty data with low values are mapped to green while 
low uncertainty data with high values are mapped to red; the rest of the 
values are mapped to yellow, blue, and light blue. (b) Point-based 
probabilistic surfaces [15]: underlying polygonal model is shown with 
displaced points at each location on the surface according to the 
uncertainty value at the location. (c) Procedural annotation of uncertain 
information: uncertainty information is encoded in the lines of the grid 
which overlays the data [19]. .............................................................................11

 2.3 Samples of uncertainty visualizations using quantitative glyphs.  (a) 
Graduated glyphs [13] showing uncertainty along the perturbation 
pressure contour of the ensemble mean along with a spaghetti plot . (b) 
Box glyphs [16] scaled by a factor proportional to the uncertainty in 
each corresponding dimension and showing positional uncertainty on an 
underwater surface [19]. .....................................................................................12

 2.4 Samples of feature-based visualization methods.  (a) Flow in the 
Atlantic Ocean with streamlines and ellipses indicating vortices [24]. (b) 
Height ridges [25] indicated by yellow lines. (c) Volume rendering of 
the vortices above a delta wing [26]. (d) Separation and attachment lines 
of the shear flow on the wing surface [26]. ........................................................13

 3.1 Classification of vertices based on relative height of vertices in its link. 
The lower link is marked black. .........................................................................19

 3.2 A function (left) and corresponding MS complex (right) [56]. ..........................20 

vii 



 

 

 

   

 

 

   

 

 

 

 

 

 

   

 

 

 

  

 

 

 

 

   

 3.3 The contour tree and contours of a 3D scalar field. Each horizontal line 
cuts exactly an edge of the tree for every contour at the corresponding 
iso-value. Color is used to indicate the correspondence between a line 
and its corresponding contours...........................................................................22

 3.4 Critical point classification. ................................................................................23

 3.5 The topology of a 2D flow field. Separatrices are in blue and other 
streamlines are in light red. ................................................................................24

 3.6 The topology of a 3D flow field [58]. ................................................................24

 4.1 1998 field investigation data set of the South China Sea. The test sample 
locations are extracted from the layer at a depth of 150 meters. ........................31

 4.2 Vertical comparison: compare original scalar fields with reconstructed 
scalar fields. The function values are mapped onto a rainbow colormap, 
where each function value is mapped to a color value interpolated 
between blue and red. The black points indicate critical points. ........................32

 4.3 Lateral comparison: compare two temperature fields reconstructed by 
MQS method and Multiquadric method. ............................................................33

 4.4 The pipeline for feature-level uncertainty visualization.....................................35

 4.5 Topology extracted from the gradient field of a temperature field.(a) 
Color-mapped temperature. (b) Gradient field represented with arrows. 
(c) Gradient field with extracted vector topology. .............................................36

 4.6 Feature-level uncertainty measurement. (a) Feature deviations detected 
by tracing critical points within FFF between a data member V1  and the 

mean field V0 . (b) Feature-level uncertainty measured by the deviations 

(indicated by arrows) of features (indicated by dots) in all the data 
members V n(  1,..., k) from the features in the mean data field V . ...............38n 0

 4.7 Feature-level uncertainty glyph design.  (a) Ellipse. (b) Arrows. (c) 
Graduated circular glyph. (d) Graduated ellipse ................................................41

 4.8 Graduated ellipses with varying orientation, saturation distribution, size, 
and axis length ratio B / A . 8 data members are used. ......................................42

 4.9 3D graduated elliptical glyphs............................................................................43 

viii 



 

 

 

 

   

 

 

 

 

 

 

 

 

 

 
  

   

 

 

   

 4.10 Feature-level uncertainty of a hurricane wind field. (a) Feature tracking 
within FFF of two vector fields V1 and V2 . (b) Feature deviations 

(indicated by arrows) between two vector fields. Overlapped topology 
of V1  (black) and V2  (gray) are shown as well. (c) Uncertain location of 

hurricane eye and vortices in a hurricane wind field (5 ensemble 
members). ...........................................................................................................45

 4.11 3D WRF water vapor data  and uncertainty glyphs. ..........................................46

 5.1 2D (left) and 3D scalar (middle) fields and their corresponding contour 
tree (right) with virtual minima.  Contours are shown in light blue. .................51

 5.2 Strangulation and de-strangulation. (a) MS-complex strangulation case. 
(d) Contour tree strangulation case. (b) and (e) Removing strangulation 
pair s  and u  leaves no way for v  to be reconnected to the nearby 
saddle. (c) and (f) Solving strangulation by removing the pair s  and v . ..........53

 5.3 Pair cancelation order for a case involving strangulation. Left: a sub-tree 
with strangulation. Middle: removing pair ( s2 , u3 ) to solve the 

strangulation. Right: removing the once strangulated pair ( s2 , u2 ). ..................53

 5.4 Definitions related to branches. (a) A contour tree. (b) A parent branch 
(1,10) with two upward child branches (6,9) and (4, 8) and one 
downward child branch (3,2). Branch (1,10) is longer than its child 
branches. (c) A parent branch (4,8) with one upward child branch (5, 7). 
Branch (4,8) is longer than branch (5, 7). (d) The sub-tree of branch 
(4,8). The nodes are numbered by their function values. ...................................55

 5.5 Simplified contour tree CTi . u  is virtual minimum and v  is highest 

maximum that is researched through a monotone path from u . (a) w  is 
a maximum. (b) w  is a minimum. ......................................................................56

 5.6 Transform a contour tree (left) into a binary tree (right). ...................................58

 5.7 Top-down simplification compared with bottom-up simplification.  (a) 
Bottom-up simplification by pruning off the shortest branch on the 
current contour trees. (b) Top-down simplification. (c) The 
simplification based on a branch decomposition result [39]. (d) The 
hierarchy built from the sequence produced by the simplification based 
on branch decomposition in (c). (e) The hierarchy built from the 
reversed simplification sequence in (b). .............................................................62

 5.8 A sub-tree with a virtual minimum ....................................................................66 

ix 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5.9 Strategies to reduce self-intersections.  (a) An unguided placement of 
child branches with multiple branch crossings. (b) Placing upward child 
branches and downward child branches on the different sides. (c) 
Placing upward child branches and downward child branches on the 
different sides only in the mixed branch zone. (d) The rectangular 2D 
layout of a contour tree with each branch assigned in nested vertical 
slots. Boxes indicate vertical slots assigned to some branches. An 
unavoidable self-intersection is shown in the red box. (e) A 2D layout of 
a contour tree with 5 strangulations. (f) The rectangular display of the 
contour tree in e. .................................................................................................70

 5.10 Tree view interaction.(a) An original contour tree and its corresponding 
2D scalar field with contours selected for every branch of it. (b) An 
interactively simplified contour tree after a user has clicked on several 
nodes and contours have been selected for every branch of it. ..........................72

 5.11 Data-level uncertainty representation based on contour tree. (a) 
Graduated circular uncertainty glyphs on an uncertain scalar field.  (b) 
A fully augmented contour tree. The red, green, and blue dots indicate 
critical points while the black dots indicate regular vertices.  (c) A 
contour tree with circular graduated uncertainty glyphs. (d) A segment 
of a graduated ribbon on a branch (black) constructed by overlaying 
thinner ribbons successively. (e) Contour tree attached with average 
data-level uncertainty along each contour and four sets of corresponding 
contours are shown after clicking on four locations (indicated by 
colored line segments) in the contour tree. ........................................................76

 5.12 Contour difference measured by non-overlapped areas. (a) Three 
contours (in blue, gray, and brown) in ensemble member i share a 
domain with contour C (in red) in the ensemble mean. (b), (c), and (d) 

Non-overlapped areas (filled with gray) of different contours...........................79

 5.13 Contour-level uncertainty visualization based on contour tree. The 
uncertainty ribbons attached to the contour tree (left) indicate the 
uncertainty of corresponding contours in the data (right). Three sets of 
corresponding contours are shown after clicking on three locations 
(indicated by arrows) in the contour tree. ..........................................................80

 5.14 A side-by-side display of two ensemble members. (a) and (b) show two 
scalar fields with their contour trees. The lengths and vertical positions 
of the thick branches represent the iso-value range of the region inside 
the purple contour. The short branch in the lower right corner of (b) is 
an uncertain branch whose corresponding contours are missing in (a). .............82 

x 



 

 

 

 

 

    

 

 

 

 

 

 5.15 Branch correspondence indicated by contour region overlaps. The nodes 
and contours are numbered by their iso-values. (a) and (c) show contour 
trees of two data fields and the corresponding contour regions of the tree 
branches. .............................................................................................................84

 5.16 Topology-level uncertainty visualization. Three sets of contours are 
shown after clicking on three locations (indicated by arrows) in the 
contour tree. ........................................................................................................86

 5.17 The user interface. ..............................................................................................88

 5.18 Weather data application. (a) Original contour tree. (b) Manually 
simplified contour tree with tree-view glyph interaction. (c) Left to 
right: data-level uncertainty, contour-level uncertainty, and topology-
level uncertainty shown in the simplified contour tree. (d) Volume 
rendering with uncertainty glyphs. (e) A set of contours with high data-
level uncertainty indicated by the large graduated circle. (f) A set of 
contours with high contour-level uncertainty indicated by the large 
glyph for contour-level uncertainty. ...................................................................91

 5.19 Brain data with uncertainty. (a) Volume rendering with circular 
uncertainty glyphs. (b) Corresponding contours of the same iso-value in 
different brain data. (c) Left to right: data-level uncertainty, contour-
level uncertainty, and topology-level uncertainty shown in a simplified 
contour tree. ........................................................................................................94 

xi 



 

 

 

CHAPTER I 

INTRODUCTION 

Uncertainty is a common and crucial issue in scientific data. The goal of 

uncertainty visualization is to provide users with visualizations that incorporate 

uncertainty information to aid data analysis and decision making; however, it is 

challenging to quantify uncertainties appropriately and to visualize uncertainties 

effectively without affecting the visualization effect of the underlying data information. 

Uncertainty in scientific data can be broadly defined as statistical variations, 

spread, errors, differences, and minimum maximum range values, etc. [1] This broad 

definition covers most, if not all, of the possible types and sources of uncertainty related 

to numerical values of the data. We are particularly interested in the uncertain positional 

deviations of the features (e.g. extrema, sinks, sources, contours, and contour trees) in the 

data. In this thesis, these feature-related uncertainties are referred to as feature-level 

uncertainty while the uncertainties related to the uncertain numerical values of the data 

such as statistical variation, spread, errors, differences, and range, are referred to as data-

level uncertainty. Most current uncertainty visualizations focus on encoding data-level 

uncertainty information into different graphics primitives such as color, glyph, and 

texture, which are attached to surfaces or embedded in volumes [1]. Those methods, in 

essence, give global insight into the data by differentiating the area of high uncertainty 

from that of low uncertainty; however, the impact of the uncertainty on the important 

features of the data is hard to assess in such visualizations.  
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1.1 The gap between data-level uncertainty and feature-level uncertainty 

Knowing the uncertainty concerning features is important for decision making. 

Many uncertainty visualizations based on statistical metrics merely measure uncertainty 

on the data-level — the uncertainty concerning the numerical values of the data and 

introduced in data acquisition and processing. While these techniques achieved decent 

visualization results, they do not provide users an insight into how much uncertainty 

exists for the features in the data. 

In scientific data, the difference between a known correct datum and an estimate 

is among the uncertainties most frequently investigated. To compare data-level 

uncertainty and feature-level uncertainty, we investigate two data sets. The first data set 

is a slice of a simulated hurricane Lili wind field (Figure 1.1a). The second data set is 

created by adding random noise to the first dataset (Figure 1.1 b). For a wind vector, its 

data-level uncertainty is represented as both angular difference and magnitude difference 

between vectors of the two fields. Figure 1.1c shows the arrow glyphs [2] for visualizing 

the uncertainty of vector fields with the angular uncertainty presented as the span of each 

arrow glyph and magnitude uncertainty as the two winglets around an arrow head. For 

details about designing arrow glyphs for vector field uncertainty, please refer to 

Wittenbrink et al.’s paper [2]. 

As shown in Figure 1.1c, with the uncertainty glyphs, users may notice that the 

area around the hurricane eye (the major vertex in the middle of Figure 1.1c) exhibits 

high data-level uncertainty which raises a question: does it affect the location of 

hurricane eye? Only an explicit comparison between the hurricane eyes in the two fields 

will answer this question. We therefore extract topologies of the two fields as shown in 

Figure 1.1d. The sink point (in black) inside the hurricane eye noticeably shifts northwest 
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(indicated by a red arrow) from the original vector field to the new one (in gray). Another 

question is, is there anything hidden in the relatively low uncertainty area indicated by 

the small arrow glyphs? A quick look at the Figure 1.1d reveals that the upper corner 

vortex significantly shifts its position (indicated by a red arrow) though it is located at the 

region with relatively low data-level uncertainty. 

            (a) A hurricane wind field               (b) A hurricane wind added with error  

(c) Uncertainty glyphs [2]                        (d) Feature deviations    

Figure 1.1 An uncertain vector field and its uncertain feature locations. 
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This example illustrates that merely investigating the data-level uncertainty may 

not tell the whole story about the data and that the feature-level uncertainty is an 

indispensable part of uncertainty that cannot be neglected. Besides, visualizing 

uncertainty of features, instead of that of the data, may provide a succinct and meaningful 

representation of the uncertainty and thus give a better interpretation of the data. 

1.2 Challenges of visualizing uncertainty 

Representation of uncertainty in 3D or large 2D data sets could encounter severe 

issues such as cluttered displays, information overload, and occlusions. Some uncertainty 

visualizations place glyphs that encode uncertainty within the visualization of the data. 

For instance, Sanyal et al. [4] visualized data-level uncertainties via circular or ribbon-

like glyphs over a color-mapped image of the data. Due to the overlaps between the data 

and uncertainty glyphs, the number of the glyphs has to be limited and information loss 

for both the data and uncertainty is unavoidable. Other techniques which overlay or 

embed uncertainty representation in the data visualization face similar issues. For 

example, Figure 1.2 shows volume rendering data with uncertainty represented by 

circular glyphs and point clouds. In Figure 1.2a, the sizes of the glyphs vary according to 

the magnitude of the uncertainty. In Figure 1.2b, the more crowded the point cloud is, the 

higher the uncertainty is. As shown in Figure 1.2, with uncertainty representation 

embedded within the volumetric data, the details of the data are noticeably blocked by the 

crowed glyphs or points while the glyphs or points are overlapped with each other and 

appear to be blurred or buried in a 3D scene. 

Meanwhile, interaction with the visualization of 3D or large 2D data sets could 

encounter issues such as geometry bandwidth bottleneck, depth perception, occlusion, 
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and inefficiency in 3D object selection. These issues are inherent in interactive 3D 

graphics applications, and may be intensified in the integrated visualization of a 3D 

dataset and its uncertainty because there is more information to show in such 

visualizations. 

(a) Circular glyphs (b) Point cloud 

Figure 1.2 Volume rendering water-vapor mixing ratio data with uncertainty 
information represented by circular glyphs and point cloud. 
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1.3 Feature-based visualization 

The challenge of understanding large and intricate data has made feature-based 

visualization attractive [3]. The feature-based methods both emphasize features and avoid 

visual clutter in the resulting visualizations. The abstract representation of features may 

provide a key to alleviate the perception and interaction issues when exploring 3D and 

large 2D data sets with uncertainties. 

Several features such as maxima, minima, sinks, sources, contours, and contour 

hierarchies which are represented through contour trees, interest us the most. Contours, 

including iso-lines in 2D scalar data or iso-surfaces in 3D scalar data, are among features 

mostly used for exploring a scalar field and its uncertainty. Critical points such as sinks, 

sources, maxima, and minima are representative of topological features that carry 

significant physical meaning of the data. A contour tree stores the nesting relationships of 

the contours of a scalar field. It is a popular visualization tool for revealing the topology 

of contours [4], generating seed set for accelerated contour extraction [5], and providing 

users an interface to select individual contours [6].  

1.4 Objective 

The objectives of this thesis are (1) to bring awareness to the existence of feature-

level uncertainties and (2) to design an interactive tool for exploring 3D and large 2D 

data sets with uncertainty. Particularly, this thesis presents (1) a comprehensive 

framework for feature-level uncertainty visualization, (2) quantified representations of 

feature-level uncertainties, and (3) an interactive contour tree-based interface for 

exploratory visualization of 2D and 3D data with uncertainty information.                                   

In this thesis, we propose to investigate the uncertainty information on the data-

level and the feature-level to provide users a more comprehensive view of the 
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uncertainties in their data. We do not assume a specific distribution in our data. While our 

uncertainty representation can be adapted to different uncertainty models, in this thesis, 

we measure the uncertainty according to the differences between the data values, critical 

points, contours, or contour trees of different ensemble members. 
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CHAPTER II 

LITERATURE REVIEW 

This literature review covers uncertainty visualization, feature-based 

visualization, and glyph-based techniques. 

2.1 Uncertainty Visualization 

A number of representation methods have been proposed for visualizing 

uncertainties. Pang et al. [1] roughly classified the techniques into adding glyphs, adding 

geometry, modifying geometry, modifying attributes, animation, sonification, and 

psycho-visual approaches. 

Several efforts have been made to identify potential visual attributes for 

uncertainty visualization. MacEachren [7] suggested the use of hue, saturation, and 

intensity for representing uncertainty on maps. Ehlschlaeger et al. [8] showed how 

animation could be used to depict uncertainty of elevation data. Hengl and Toomanian [9] 

showed how color mixing and pixel mixing can be used to visualize uncertainty in soil 

science applications. Davis and Keller [10] suggested value, color, and texture for 

representing uncertainty on static maps. Djurcilov et al. [11] used opacity deviations and 

noise effects to provide qualitative measures for the uncertainty in volume rendering. 

Sanyal et al. [12] conducted a user study to compare the effectiveness of four uncertainty 

representations: traditional error bars, scaled size of glyphs, color-mapping on glyphs, 

and color-mapping of uncertainty on the data surface. In their experiments, scaled sphere 

and color mapped sphere perform better than traditional error bars and color-mapped 
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surfaces. Later, they proposed graduated glyphs and ribbons to encode uncertainty 

information of weather simulations [13]. Figure 2.1 is borrowed from Sanyal et al. [12]  

and shows the four uncertainty visualization techniques in their user study. 

(a) Scaling the size of glyphs (b) Altering the color attribute of glyphs 

(c) Color-mapping on surface  (d) Using error bars 

Figure 2.1 Samples of uncertainty visualization techniques for 2D datasets [12].  

While the uncertainty visualization is application-dependent in many cases, two 

visualization schemes are widely used: using intuitive metaphors, such as blurry and 

fuzzy effects [11], [14], [15], which naturally implies the existence of uncertainty; and 

using quantitative glyphs [13], [16], which shows quantified uncertainty information 
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explicitly. Both schemes have their own tradeoffs. In quantitative glyphs the uncertainty 

information has to be shown in a discrete way. By  using uncertainty metaphors, people 

get less quantified information about uncertainty since they cannot tell levels of blur or 

fuzziness apart accurately [17]. To reveal uncertainty accurately, uncertainty glyph is 

preferred to uncertainty metaphors. Figure 2.2 shows examples of uncertainty 

visualizations using blurry or fuzzy effects. Figure 2.3 shows examples of uncertainty 

visualizations using quantitative glyphs.  
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 (a) 

(b) (c) 

Figure 2.2 Samples of uncertainty visualizations using blurry or fuzzy effects.  (a) 
Visualizing scalar volumetric data with uncertainty [14]: low uncertainty 
data have low opacity while high uncertainty data have high opacity; low 
uncertainty data with low values are mapped to green while low uncertainty 
data with high values are mapped to red; the rest of the values are mapped 
to yellow, blue, and light blue. (b) Point-based probabilistic surfaces [15]: 
underlying polygonal model is shown with displaced points at each 
location on the surface according to the uncertainty value at the location. 
(c) Procedural annotation of uncertain information: uncertainty information 
is encoded in the lines of the grid which overlays the data [19].  
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(a) (b) 

Figure 2.3 Samples of uncertainty visualizations using quantitative glyphs.  (a) 
Graduated glyphs [13] showing uncertainty along the perturbation pressure 
contour of the ensemble mean along with a spaghetti plot . (b) Box glyphs 
[16] scaled by a factor proportional to the uncertainty in each 
corresponding dimension and showing positional uncertainty on an 
underwater surface [19]. 

Several methods have been developed to address the uncertainty of the size, 

position, and shape of contours [15], [18], [19]. Pang et al. [1] presented fat surfaces that 

use two surfaces to enclose the volume in which the true but unknown surface lies. Pauly 

et al. [20] quantified and visualized the uncertainty introduced in the reconstructions of 

surfaces from point cloud data. Pfaffelmoser et al. [19] presented a method for 

visualizing the positional variability around a mean iso-surface using direct volume 

rendering. A method to compute and visualize the positional uncertainty of contours in 

uncertain input data has been suggested by Pöthkow and Hege [21]. Assuming certain 

probability density functions, they modeled a discretely sampled uncertain scalar field by 

a discrete random field. Pöthkow et al. [22] extended their model to correlated random 

fields.  
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Among uncertainty methods, only a few are proposed to address the topological 

features. Otto et al. [23] studied the uncertain topological segmentation of a vector field 

by introducing the probability density that a particle starting from a given location will 

converge to a considered source or sink. The uncertainty related to the topology structure 

of a scalar field, is barely studied. 

2.2 Feature-Based Visualization 

(a) (b) 

(c) (d) 

Figure 2.4 Samples of feature-based visualization methods.  (a) Flow in the Atlantic 
Ocean with streamlines and ellipses indicating vortices [24]. (b) Height 
ridges [25] indicated by yellow lines. (c) Volume rendering of the vortices 
above a delta wing [26]. (d) Separation and attachment lines of the shear 
flow on the wing surface [26]. 
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Feature-based visualization methods generate images that depict features of 

particular interest in complex data with a limited set of points, lines, and volumes for the 

considered application [26]. Features are defined in various ways. There are application-

dependent features, such as height ridges, vortices, separation and attachment lines, and 

more general features, such as contours and topological features. This work  focuses on 

the latter in seeking a general solution for feature-based visualization. The concise 

representation generated by topological methods has become a popular tool for 

visualization. Figure 2.4 shows examples of feature-based visualizations. 

Flow topology characterizes a flow in that the relatively uniform flow behavior in 

each topological region can be deduced from its boundary [27], [28]. After taking the 

gradient derivative of a scalar field, one may visualize the scalar field via the topology of 

the resulting vector field [29]. In addition, topology simplification [28], [30] provides an 

even more compact way to depict data. 

As for scalar fields, two structures for storing topological information are Contour 

Tree (CT) and Morse-Smale (MS) complex. A contour tree [4] is a loop free case of a 

Reeb graph [31] which describes the hierarchical relationship of contours. A MS-

complex decomposes a scalar field into quadrangular cells with uniform gradient flow 

behavior [32], [33]. In this thesis, we used a contour tree rather than a MS complex 

because people are more interested in contours than the partition of gradient flow. In 

latter sections, we will specifically discuss the uncertainty of contours and contour trees.  

The contour tree is a powerful visualization tool for abstract data representations 

[34], contour extractions [35], [36], transfer function design [37], etc. A number of 

algorithms have been used to compute contour trees [36], [38], [4]. Several contour tree 

based topology simplifications were proposed to either remove noise or extract important 
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contours hierarchically. Usually, a simplification method removes paired critical points 

with increasing importance which is measured by persistence or other geometric 

measures [39], [40]. We adopt the usual bottom-up contour tree simplification by 

removing pairs with ascending persistence. The computation of the geometric properties, 

such as length, surface area, or volume of individual contours is discussed in [6], [41], 

[42]. The overlapped volume or area between contours is often used to compare or map 

contours of different scalar fields [41], [42]. Utilizing a contour tree as an interface to 

explore data was first suggested by Bajaj et al. [6]. They introduced the “contour 

spectrum” to facilitate iso-value selection based on iso-surface properties such as iso-line 

length and iso-surface area. Carr et al. [40], [5] proposed “path seeds” to facilitate a 

selection of distinct contours and “flexible iso-surface” with different levels of 

simplification to highlight the fundamental structure of data. These methods 

demonstrated a powerful paradigm of using a simplified contour tree for contour 

selection. To present a contour tree graph that is large in size and cluttered due to self-

intersections, Pascucci et al. [39] proposed a 3D orrery-like layout based on a novel 

branch decomposition scheme. However, although there is no intersection between 

branches in a 3D sense, there is still notable overlapping among branches in a side view 

of their contour tree layout. In addition, a planar display allows for easier selection of an 

object and therefore is more desirable for an interface design. Heine et al. [43] compared 

several planar contour tree layouts and identified a orthogonal layout as one of the most 

effective layouts in terms of representing branch hierarchy, minimizing self-intersections, 

and associating ancillary information such as geometric properties of contours.  

Feature tracking is a way to investigate the feature evolutions of time-varying 

data. Some feature-tracking methods correlate features by measuring their positional 
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distance or overlapped area while others utilize an intermediate data field derived from 

two neighboring time slices and trace paths along critical points within it [28], [44], [45]. 

Theisel’s Feature Flow Field (FFF) method [44] is especially interesting to us because it 

provides a generic approach to feature tracking. Independent of underlying grids, the FFF 

method captures the temporal evolution of a feature using stream object integration in a 

derived Feature Flow Field. The concept of FFF has been successfully applied to tracking 

critical points [46], extracting Galilean invariant vortex core lines [47], topology 

simplification [48], and topology comparison [49].  

2.3 Glyph-Based Techniques 

Glyphs, also referred to as icons, encode meaningful information into illustrative 

symbols. Because glyphs are generally not placed in dense packings, the free space 

between them allows the visualization of additional information.  

Many glyphs are employed in data and uncertainty visualization.  Glyphs used for 

uncertainty representation are error bars, spheres, graduated glyphs, etc. One important 

consequence of this process is a vast data reduction. The original data field is replaced by 

a usually small number of attribute sets, visualized by simple geometric objects.  

The effectiveness of a glyph design is usually validated by user studies. For 

instance, Sanyal et al. [12] conducted a user study to compare effectiveness of 

uncertainty representations, and conclude that compact glyphs, scaled spheres, and color 

mapped spheres perform better than traditional error bars and color mapped surfaces. 

Figure 2.1 show the uncertainty representations in their user study. Meanwhile, 

perceptual and cognitive theories [50],  [51], [52] provide valuable guidelines for glyph 

design. 
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CHAPTER III 

TOPOLOGY BACKGROUND 

This chapter discusses the necessary mathematical concepts and definitions in 

topology, which will be used throughout this thesis. Section 3.1 mainly deals with scalar 

field topology, Section 3.2 with vector field topology.  

3.1 Scalar field topology 

The Contour Tree (CT) and the Morse–Smale (MS) complex are two important 

data structures for storing topological information of a scalar field. Both types of 

structures have been extensively used for hierarchical representation and feature 

extraction of scalar fields [30], [53].  

3.1.1 Morse function and critical points 

Consider a smooth function f : M  R  defined on a manifold M . 

Definition (Morse Function) f  is a Morse function if all critical points are non-

degenerate and have distinct function values. 

One usually deals with piecewise linear functions given at the vertices of a 

triangulation or tetrahedralization. Within each simplex of M , the function f  is the 

linear interpolation of its values at the vertices. As stated in [4], defining f  as a linear 

interpolation over a simplicial mesh with unique data values at vertices ensures that f  is 

a Morse function. (Note that one may need to perturb the actual data to guarantee 

uniqueness.) 
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Definition (Scalar Field Critical Point) A point v M  is a critical point when its 

gradient  f v( )   0 . 

Qualitative information about the behavior of the gradient field near a critical 

point is obtained by analysis of the Hessian matrix H f( ) of f . 

2D Hessian matrix: 

 2 f 2 f  
 x2  x y    H f( )   

2 2   f  f
 2  y x y   (3.1) 

3D Hessian matrix: 

2 2 2  f  f  f  
 2 x  x y   x z  

2 2 2  f  f  fH f( )    2   (3.2)
yx y  y z  
 2 2 2  f  f  f 

2 
 

   z x  z y  z  

The eigenvalues and eigenvectors of the above matrix determine the behavior of 

the gradient field; hence the scalar field near the critical point is much the same as for the 

behavior of a general vector field. 

Definition (Degenerate) A critical point v  of a function f : M  R  is called non-

degenerate if the Hessian matrix of f at v is non singular det H f( )  0 ; it is called 

degenerate otherwise. 

A critical point is characterized by its index that is equal to the number of 

negative eigen-values of the Hessian of f . In a 2D case, minima, saddle, and maxima 

have indices 0, 1, and 2, respectively. The minima, 1-saddles, 2-saddles, and maxima in a 
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3D case have indices equal to 0, 1, 2, and 3, respectively. For a piecewise linear function, 

criticality of a vertex is classified via its link graph [54]. 

Given a triangulation K of 2-manifold M , the star of an interior vertex v  consists 

of all simplices (vertices, edges, and triangles) that contain v  and the link of v consists 

of all faces of simplices in the star that are disjointed from v . The link of every vertex is 

a circle (Figure 3.1). The lower link contains all simplices in the link whose endpoints are 

lower than v , while the upper link contains that with endpoints higher than v . 

The lower link is used to classify a vertex as regular or critical. As illustrated in 

Figure 3.1, the lower link of v  consists of 1 1 connected pieces, each being an arc ork   

a single vertex. In k  1 case, v  is an extremum. The lower link of maximum is full 

while that of a minimum is empty. In all other cases, the vertex v  is regular if k  0 , and 

a k-fold saddle if k 1. As illustrated in Figure 3.1, for k  2 , a k-fold saddle can be split 

into k  simple or 1-fold saddles. 

Figure 3.1 Classification of vertices based on relative height of vertices in its link. The 
lower link is marked black. 

3.1.2 Morse-Smale complex 

Definition (Stable/Unstable Manifold) Given a Morse function f : M  R , the 

S x  ( )  x  stable manifold ( )  of a critical point x is defined as: S x  { }  {y M | y  im , . 
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dest( )  x}. Symmetrically, the unstable manifold U x( )  of x is defined as: 

U x( )   { }x {y  M | y  im , org( )  x} 

Definition (Morse-Smale Complex) The descending manifold D( v ) of a critical 

point v is the union of v and all integral lines ending at v in the gradient field of f . 

Symmetrically, the ascending manifold A( v ) of v is the union of v and all integral lines 

that start at v . If no integral line both starts and ends at a saddle, one can superimpose the 

descending and ascending manifolds of all critical points to obtain the MS complex of f 

(see Figure 3.2 for an example). Within a MS complex cell, all integral lines start at the 

same minimum and end at the same maximum and f  is monotonic [55].  

Figure 3.2 A function (left) and corresponding MS complex (right) [56].  

3.1.3 Contour tree 

Consider a smooth function f : M  R  defined on a manifold M . 

Definition (Level Set) For a given value h, the level set of f at h is the subset L(h) 

= {x ∈ M| f (x) = h}1. 

Definition (Contour) Each connected component of the level set L(h) is a contour. 

As h increases in the level set of L(h), contours appear at local minima, join or 

split at saddles, and disappear at local maxima of f. 
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Definition (Contour Tree) The contour tree for a Morse function is a graph that 

tracks the evolution of contours. Each leaf node corresponds with the creation or deletion 

of a component at a local extremum; each interior node represents the joining and/or 

splitting of components at a saddle; each arc represents a component in the level sets for 

all values between the values of the arc’s ends. 

As stated by Takahashi et al [57], for a contour tree with virtual minimum, if 

critical points are non-degenerate and k-fold saddles are unfolded into simple ones, a 

contour tree has the following properties: 

(1) A maximum has only one arc whose opposite endpoint is a saddle or 

minimum lower than it. 

(2) A minimum has only one arc whose opposite endpoint is a saddle or 

maximum higher than it.  

(3) A saddle has three incident arcs, one is lower than it and the other two are 

higher than it, or one is higher and the other two are lower than it. 

There is a one-to-one mapping from a point in the tree to a contour of the scalar 

field, that is, each contour can be represented uniquely by a single point in the contour 

tree. A contour tree example is shown in Figure 3.3. 
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Figure 3.3 The contour tree and contours of a 3D scalar field. Each horizontal line cuts 
exactly an edge of the tree for every contour at the corresponding iso-value. 
Color is used to indicate the correspondence between a line and its 
corresponding contours. 

Definition (Fully Augmented Contour Tree) A fully augmented contour tree is the 

contour tree augmented by all vertices in the mesh.  

In this thesis, the term contour tree refers to un-augmented contour tree whose 

nodes are merely critical points.  

3.2 Vector field topology 

Definition (Vector Field Critical Point) A critical point in a vector field is a 

singularity in the field such that v(x) = 0. 

Critical points are classified by eigenvalues of the Jacobian matrix, J, of the 

vector function at their positions. 

2D Jacobian matrix: 

 (3.3)

3D Jacobian matrix: 
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(3.4)

If J  has full rank, the critical point is called linear or first-order. 

Definition (Vector Field Topology) Topology consists of critical points, periodic 

orbits, and separatrices [28]. 

Figure 3.4 shows critical point classifications [27], [58]. Figure 3.5 and Figure 3.6 

show examples of 2D and 3D topologies which consist of critical points connected with 

separatrices. 

           (a) 2D critical points [27] 

(b) 3D critical points [58] 

Figure 3.4 Critical point classification.  
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Figure 3.5 The topology of a 2D flow field. Separatrices are in blue and other 
streamlines are in light red. 

Figure 3.6 The topology of a 3D flow field [58]. 
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CHAPTER IV 

FEATURE-LEVEL UNCERTAINTY VISUALIZATION 

Visualizing data uncertainties facilitates scientific studies in different areas. 

Though many current methods visualize uncertainty as errors that arise from different 

measurements, calculations, and numerical models, we study the uncertainty of features 

within the data.  

The uncertain deviations of a feature, e. g. a minimum, a maximum, or any user 

defined features, are referred to as feature-level uncertainty, while the uncertainties 

related to the uncertain numerical values of the data, such as statistical variation, spread, 

errors, differences, and range, are referred to as data-level uncertainty. Visualizing 

feature-level uncertainty reveals the potentially significant impacts of the data-level 

uncertainty, which in turn helps people gain new insight into data-level uncertainty itself. 

For example, the uncertainty of the ocean temperature data may result in the uncertain 

deviation of the center of an important warm eddy. The uncertainty of the hurricane wind 

data may cause the uncertain location of a hurricane eye (see example in Section 1.1). 

This kind of uncertainty is neglected by most current methods but needs to be quantified 

so viewers are aware of the uncertainty.   

In this chapter, we first conduct a case study showing that the uncertainty of a 

data set may result in remarkable positional deviations of its features; therefore, there is a 

clear need to visualize the feature-level uncertainty. Then we present a method to 

visualize feature-level uncertainties.    
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This chapter is organized as follows. Section 4.1 describes a case study of 

modeling scattered oceanic data to explore the gap between the data-level uncertainty and 

feature-level uncertainty. Section 4.2 describes a framework of the feature-level 

uncertainty visualization. 

4.1 A case study of modeling scattered oceanic data 

Modeling scattered field data [59] is a specific interpolation problem which  

reconstructs an unknown function from a collection of scattered data points. It addresses 

the essential problem of modeling unevenly distributed sample data onto a uniform grid 

so that it can be rendered using conventional grid-based visualization techniques. This 

section describes a case study of scattered oceanic data modeling which identifies the 

existence of feature-level uncertainties. 

It is often not possible to establish a ground truth to estimate uncertainty. 

Similarly, the lack of ground truth is often a problem found in measuring the modeling 

precision of scattered data. Scientists therefore estimate the errors between standard 

functions and their reconstructed fields [59]. It is not possible to investigate all kinds of 

features as well. Among various features, critical points have been long recognized as 

important features for data analysis and for being closely related to physical features. 

 Usually, the precision of a modeling method is estimated by testing Root-Mean-

Squared (RMS) error between certain standard test functions that exhibit a variety of 

behaviors with different number of critical points and their reconstructed functions from a 

set of scattered data [59]. There is no previous precision estimation method addressing 

the feature-level precision — the difference between the features in the known correct 

datum and an estimate. We choose to study the uncertainty related to critical points in the 
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reconstructed field. Through this case study, we launch a probe into the uncertainty 

related to features, which is often a missing part in uncertainty visualizations.  

4.1.1 A real-world scenario 

Consider the following scenario: we have a set of scattered values of ocean 

temperature and need to reconstruct a continuous scalar field from it. We could never 

know the exact reconstruction error—the difference between the reconstructed 

temperature field and the actual temperature field other than at the sample locations. 

However, there are two ways to estimate such uncertainties when a comparison to a 

ground truth is impossible. (1) We can test the modeling precision through standard 

functions. Given a sample point p  in scattered data set, assign it a value from the 

standard function f ( )p . Then, we use an interpolation method to rebuild a continuous 

field from it. The reconstruction precision can be estimated as the difference between the 

reconstructed field and the standard function. We call this the vertical comparison 

method. (2) We can calculate the difference among the reconstructed data from different 

modeling methods. We call this the lateral comparison method. In our study, two 

interpolation methods, Modified Quadratic Shepard’s method (MQS) [60] and 

Multiquadratic method [59], are used to reconstruct a continuous data field from scattered 

data sets. The reconstruction precision can be estimated as the difference between the two 

reconstructed fields from these two methods. Commonly, RMS (Root-Mean-Squared) 

error is computed as modeling precision. We use it as data-level errors. The feature-level 

errors are estimated by the difference in the number and position of the critical points 

between the original field and rebuilt field before we introduce a more sophisticated 

measure of feature-level difference in section 4.2.  
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This section briefly discusses the interpolation methods and studies the 

reconstruction precision in both data-level and feature-level.  

4.1.2 Scattered data interpolation 

Let   denote a continuous 2D domain,   {P  ( , ) |   ,c  y d  x y  a  x b   }. 

P  (x y  i, )(  1,..., n)  are discrete sampling points distributed over   with associatedi i i 

F P  

( )   ( , )  f (1   i  n) . 

scalar values fi . A continuous function ( )   F x y( , )  is constructed such that 

F P  F x y  i i i i 

(1) Multiquadric Method [59]: Due to its high precision and easy implementation, 

the multiquadric method is a preferred choice for a scattered data set with less than 500 
n 

samples. The form of modeling function is  ( )   ai  R2  ||  P  Pi ||2  whereF P    
i1 

|| P P || (x  x )2  (y y )2 . The typical value of R is 0.1. The coefficients  i i i 

( R2  ||   2a a, ,..., a are given by the solution of the following equation: P P ||  )  1 2 n i j 

(a a, ,..., a )T  ( f , f ,..., f )T (1  i j,  n) .1 2 n 1 2 n 

(2) Modified Quadratic Shepard’s (MQS) Method  [60]: MQS Method is a major 

interpolation method for a scattered data set with a size larger than 500 that has relatively 

high precision. The form of modeling function is  


n

( , )  ( ,W x y Q  x y) 
1

k k
k ( ,  )F x y  where k 

i ( ,  )  
( ,  )   Q x y is a quadratic polynomial, a local 


n

W x y  
i1 

( ,  )  Q x y  W x y  
 (Rw  dk ) 

2 

( ,  )   fk k k kestimate of f at x y  with ; k ( ,  )     with 
R d w k   

R  d d, (   R ) 
w(Rw  dk ) 



0, ( 

w

dk  
k 

Rw

k 

) 
w , d x yk ( ,  )   (x  xk )2  (y y k )2 ， and R  is radius of 

xk yk )influence of ( ,  . 
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4.1.3 Error estimation 

(1) Data-level error: RMS error is used to compute the modeling precision. 

Nielson provided several standard functions [59] to test RMS error. A set of scattered 

sample values are computed by the standard functions. The interpolation error is                     
Ni Nj i j i j [ ( ,  )   F ' ( ,  )]2F 

N N N Ni1 j1 i j i j 'RMS   where F is a test function, and F  is the 
N Ni j 

interpolation function. Assume Ni  N j 100 , they give the resolution of the evenly re-

sampled data across the original and rebuilt continuous data fields. F  and F '  could be 

two interpolation functions if one intends to compare between two interpolation 

functions. 

(2) Feature-level error: In this section, feature-level errors are estimated by the 

difference between the topological features, namely, the number and position difference 

between the critical points of the original and rebuilt fields. Let F  be a test function and 

F ' be the interpolation function. The critical points of F  and F '  are C {c , c ,...,c }0 1 n 

' ' ' 'and C {c ,c ,...,c } , respectively. The difference in critical point numbers is | n m  | .0 1 m 

Similar to the concept of Earth Mover’s Distance (EMD) [61], which estimates 

the amount of work necessary for transforming one object into the other, the position 

differences of the critical points are defined as:  

 n 

 distance( ,c C ' ) ,  n  m 
'  i0 

k 

Distance( ,C C )    (4.1) 
 m 

( ,' C),   distance ck m n 
 i0 

distance( ,ci C)  is the shortest Euclidean distance found between a critical point ci 

to a critical point in C. The length and width of the data field are normalized to [0,1]. 
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4.1.4 Experiment results and discussion 

We use a layer of temperature data from a 1998 ocean field investigation data set. 

The samples are taken along a ship. We implement two methods for interpolating 

scattered samples. We would like to know the modeling error of the reconstructions by 

using vertical comparison and lateral comparison.  

(1) Vertical Comparison Method: Vertical comparison compares the standard 

functions with reconstructed data. The experiment is conducted on 5 standard functions 

[59] listed below. The sample locations are provided by one layer of a field investigation 

data (Figure 4.1). The number of sample points is 86. The data-level error and feature-

level error are shown in the table 4.1 and 4.2. 

1( , )  0.75exp(((9x  2)2  (9 2F x y  y  2) ) / 4) 

0.75exp((9x 1)2 / 49  (9y 1) /10)
 (4.2)

2 20.50exp(((9x  7)  (9y  3) ) / 4) 

0.20exp((9x  4)2  (9 y  7) )2 

3 ( , )  (1.25  cos(5.4y)) / (6  6(3x 1) )2F x y  (4.3) 

2 2F x y5 ( , )  exp(20.25((x  0.5)  (y  0.5) )) / 3  (4.4) 

7 ( , )  2cos(10x)sin(10y)  sin(10x)F x y  (4.5) 

F9  ((20 / 3)3 exp((10  20x) / 3) exp((10  20x) / 3))2 

*((1/ (1 exp((10  20x) / 3)))(1/ (1 exp((10  20 y) / 3))))5

 (4.6)
*(exp((10  20x) / 3)  2 / (1 exp((10  20x) / 3))) 

*(exp((10  20x) / 3)  2 / (1 exp((10  20 y) / 3))) 

30 

https://cos(5.4y


 

  

      

 
 

 

 

 

      

 
 

 
 

 

 

 

 

  

Table 4.1 Interpolation Error of Multiquadric Method 

Test functions F1 F3 F5 F7 F9
Mean 

RMS 0.0132 0.0083 0.0017 0.0156 0.0051 0.0088 
n 4 3 1 23 5 
m 8 8 1 22 14 

| n m  | 4 5 0 1 9 5 
'( ,Distance C C ) 0.1933 0.1530 0.0081 0.1207 0.1367 0.1216 

* n  is the number of critical points in a test function F ; m  is the number of critical 
points in the interpolation function F ' ; C  and C '  are the sets of critical points of F  and 
F ' , respectively. 

Table 4.2 Interpolation Error of MQS Method 

Test functions F1 F3 F5 F7 F9 
Mean 

RMS 0.0162 0.0141 0.0029 0.0176 0.0089 0.0119 
n 4 2 1 23 5 
m 25 15 35 51 30 

| n m  | 21 13 34 28 25 26.2 
'( ,Distance C C ) 0.1629 0.1718 0.1744 0.1601 0.1657 0.1669 

Figure 4.1 1998 field investigation data set of the South China Sea. The test sample 
locations are extracted from the layer at a depth of 150 meters. 

31 



 

 

 

 

Original field 

                                                        Reconstruction field 

   

 

       Function 1  Function 3 Function 5 Function 7 Function 9 

Figure 4.2 Vertical comparison: compare original scalar fields with reconstructed 
scalar fields. The function values are mapped onto a rainbow colormap, 
where each function value is mapped to a color value interpolated between 
blue and red. The black points indicate critical points.  

(2) Lateral Comparison Method: Lateral comparison estimates the difference 

between reconstructed fields by different interpolation methods. Given a set of sample 

data (Figure 4.1) from field study, one does not know the ground truth but only estimates 

it from reconstructed fields using different interpolation methods. In this case, the 5 

standard functions are not needed. The data-level error and feature-level error are shown 

in Table 4.3. 
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Multiquadric reconstructed field  MQS Reconstructed Field 

Figure 4.3 Lateral comparison: compare two temperature fields reconstructed by MQS 
method and Multiquadric method. 

Table 4.3 Comparison between Multiquadric Method and MQS Method 

RMS m1 m2 | m m |1 2 Dis tan ( ,ce C C )1 2 

0.023 46 40 6 0.073 
* m1  is the number of critical points in field F1 (reconstructed by Multiquadric method); 

m2  is the number of critical points in field F2 (reconstructed by MQS method); C1  and 

C2  are the sets of critical points of F1  and F2 , respectively. 

As indicated in Figures 4.2 and 4.3 and Tables 4.1 and 4.2, no matter what kind of 

comparison, vertical comparison or lateral comparison, is used, the amount and position 

deviation of the critical points (the black points in the figures) are considerable though 

the RMS error appears to be fairly low. The average position deviations between critical 

points are as high as 0.1669. The feature-level errors show that the locations of critical 

points are uncertain, depending on which interpolation methods are used.  
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This case study reveals that the feature-level errors could be significant and that 

they need to be revealed to users.       

4.2 A framework for feature-level uncertainty visualization 

In many cases, locations of features matter more than the data-level uncertainty. 

For instance, the locations of warm eddies are important in ocean fishery, and the 

locations of hurricane eyes or the peaks in pressure field are important in weather 

analysis. The case study in section 4.1 reveals that significant deviations of the features 

may exist in the data with seemingly low data-level uncertainty, and thus indicates a 

pressing need to measure the feature-level uncertainty.  

It is believed that the feature-based technique is desirable when the size and 

complexity of the data increases [3]. Visualizing the feature-level uncertainty instead of 

the data-level uncertainty of the whole data may provide a solution to the uncertainty 

visualization of the large scale data. Feature tracking methods are proposed to map the 

evolving features over time. Two features are considered the same feature at different 

time slices if they share the same tracking path [28], [44] or the biggest similarity [42]. 

This inspires us to evaluate the uncertainty related to features by comparing the deviation 

of those feature pairs in different data sets. 

4.2.1 Method overview 

The impact of uncertainty on the features is quantified as feature-level uncertainty 

which is measured by feature deviation. The feature deviation is obtained through a three-

step procedure — feature identification, feature mapping, and uncertainty representation. 

Given a set of data members, e. g. multiple simulation runs, this method first identifies 

the features within all the data members and the mean field given by averaging all the 
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members. Second, feature tracking is implemented to map the features of each data 

member to that of the mean field. The mapped features are then assumed to have the 

same feature with slight position deviation in each of the individual data members. 

Finally, the feature-level uncertainties are expressed as the deviations of the features.  

Figure 4.4 The pipeline for feature-level uncertainty visualization.  

The features that we currently study are vector field critical points. They are 

intuitive features closely related to physical features [3]. Scalar fields can be analyzed 

through their gradient fields. 

Section 4.2.2, 4.2.3, and 4.3.4 discuss feature extraction, feature mapping, and 

uncertainty glyph design respectively; Section 4.2.5 demonstrates results; Section 4.2.6 

concludes this chapter with possible improvements. 

4.2.2 Feature extraction 

The computation of critical points in a vector field can be found in [27]. 

For a scalar field, its gradient field can be used to extract critical points so that the 

features of scalar fields and vector fields are analyzed in the same way. A vector field V 

can be constructed out of scalar field f  using the gradient operator 

:V f ( f / x, f / y)         . The maxima of f  appear as sinks and minima appear as 
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sources in its gradient field V . Figure 4.5 illustrates an example of the critical points 

extracted from the gradient field of a temperature field.   

(a) (b) (c) 

Figure 4.5 Topology extracted from the gradient field of a temperature field.(a) Color-
mapped temperature. (b) Gradient field represented with arrows. (c) 
Gradient field with extracted vector topology.  

4.2.3 Feature mapping 

Feature tracking is a way to investigate feature evolution of time-varying data. 

Some feature-tracking methods correlate features by measuring their positional distance 

or overlapped area while others utilize an intermediate data field derived from two 

neighboring time slices and trace paths along critical points within it [28], [44], [45]. 

Theisel’s Feature Flow Field (FFF) method [44] is especially interesting to us because it 

provides a generic approach to feature tracking. Independent of underlying grids, the FFF 

method captures the temporal evolution of a feature using stream object integration in a 

derived Feature Flow Field. The concept of FFF has been successfully applied to tracking 

critical points [46], extracting Galilean invariant vortex core lines [47], simplification 

[48], and comparison [49]. 
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Feature Flow Field (FFF) [44] is adopted to couple critical points of different 

fields by tracing streamlines within it. It is used to identify the same feature that appears 

in different data members at different positions. The uncertainty of this feature is then 

expressed as the deviation between all of its counterparts in different data members.  

4.2.3.1 Feature flow field construction 

The main idea of the FFF approach is to introduce an appropriate vector field f 

in space-time, such that a feature tracking in a 2D time-dependent vector field V 

corresponds to a streamline integration in f . Consider tracking critical points in a 2D 

( ,  , )u x y t  
time-dependent vector field, which is given as V x y t( ,  , )     . V can be 

 ( ,  , )  v x y t  

constructed by applying a linear interpolation of V1  and V2 : 

( ,  , )    t V  x y) 1( , )  tV2 x y  V x y t  (1  ( , ) . 

To get FFF f , one searches in space-time for the direction in which both 

components of V  locally remain constant. This direction is perpendicular to the gradients 

of the two components of V . This leads to 
 u   v det(v v, ) y tx x      

( ,  , )   grad u  g ( )   uy  vy  det(  ,  x f x y t ( ) rad v v v ) . Figure 4.6a illustrates that a       t 

      det(v v, )   tut   v x y  

feature is tracked by integrating a streamline within a Feature Flow Field. Let two vector 

fields, V0  and Vi , be two slices of a time-varying flow. A streamline which starts from 

one feature a  in vector field V  reaches another feature a in vector field V . a  and a0 0 i i 0 i 

are therefore recognized as one feature that evolves over time between V0  and Vi 
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4.2.3.2 Feature-level uncertainty measurement 

Given k  data members  V i, (  1,..., k) , a mean field V  is first computed as the i 0 

average of them. V0  is then paired with each data member Vi . Feature mapping is 

implemented for each data pair V0  and Vi . With the FFF method, features of different 

vector fields could be correlated.  

(a) (b) 

Figure 4.6 Feature-level uncertainty measurement. (a) Feature deviations detected by 
tracing critical points within FFF between a data member V1  and the mean 

field V0 . (b) Feature-level uncertainty measured by the deviations 

(indicated by arrows) of features (indicated by dots) in all the data 
members V n(  1,..., k) from the features in the mean data field V .n 0 

Figure 4.6 demonstrates how to measure feature-level uncertainty related to a 

feature. For a data member V1  and the mean field V0 , we trace a streamline from a 

critical point a0  in V0  until it reaches a critical point a1  in V1 . After tracing critical points 

between all the pairs, the feature-level uncertainty is measured by the distances between 

a i(  1,..., k)  and a . Figure 4.6 illustrates the feature mapping between a pair of data. i 0 

Figure 4.6b shows a straightforward representation of the uncertainties related to 

individual features by arrows. Given a data member Vn (1  n k) , it is possible that the 

streamline starting from a0 reaches the boundary of the FFF or ends at V0 instead of 
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reaching a critical point in Vn . In these cases, we assume that the mapped critical point 

an for a0  in this data member exists outside the domain. Therefore, we set its distance 

from a0  a large value — the maximum distance found between a0 and all the mapped 

critical points ai . 

4.2.4 Uncertainty glyph design 

Glyph design addresses the central problem of how uncertainty information is 

processed into knowledge. For the detected deviations of a critical point, a quantitative 

glyph is designed to indicate uncertainty level related to the critical point. The new 

uncertainty glyph is inspired by both graduated circular glyph [13] and elliptical glyph 

[62]. 

4.2.4.1 Graduated circular glyph 

Sanyal et al. [12] identified that glyphs altered by size are effective in depicting 

uncertainty in 2D datasets. They introduced a graduated circular glyph that encodes the 

deviation of each ensemble member from the ensemble mean. A glyph that has a dense 

core with a faint periphery indicates that ensemble members have a few outliers and 

mostly agree. A mostly dark glyph indicates that large differences exist among individual 

members. The size of a glyph indicates the variability of a location with respect to other 

locations on the grid. Consequently, graduated glyphs provide a straightforward way to 

visualize uncertainty locally and globally. For more details on graduated glyphs, we refer 

the reader to [13]. 

4.2.4.2 Elliptical glyph  

A glyph that can be used at different levels is the elliptical glyph [62]. It depicts 

the covariance between multiple real-valued random variables Xi . In probability theory 
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and statistics, covariance measures how much two variables change together. The 

covariance matrix ∑ generalizes the notion of variance to multiple dimensions. 

i j, Cov Xi j i i j j ))]  where E Xi ) is the expected value of    ( ,  X )  E[(X  E(X ))(X  E(X ( 

Xi , and the ellipse axis length is   eig() . Ellipse axis directions are given by 

d eigvec( ) . An elliptical glyph can be applied to visualize tensors, but can also show  

a simplified representation of the spatial distribution of a set of 2D or 3D data [24].  

4.2.4.3 2D graduated elliptical glyph 

Before using the graduated ellipse, we considered using arrows to indicate the 

uncertainty by showing directions and distances of individual deviations. Nevertheless, it 

is found that arrows, though showing the deviations in an authentic way, could cause 

severe information overload when the number of ensemble runs increases. Contrarily, the 

graduated ellipse possesses the elliptical glyph’s ability to depict the overall deviation of 

a feature and the graduated glyph’s intuitive way to depict inner deviation of individual 

ensemble members. 

a0 ( ,x0 y0 )Let  be a critical point in the mean data field V0 . Its counter-parts in 

Vi ai ( ,xi yi )data members  are (i 1,..., k) . A graduated elliptical glyph consists of k 

nested ellipses and is placed at the location of a0 . The nested ellipses share the same 

orientation and axis ratio.  The detail of rendering each nested ellipse is as follows: 

First, sort ai  according to its distance from a0 , d  (x  x )2  (y  y )2 , ini i 0 i 0 

descending order. Next, assign the outmost ellipse E with axes A  and B  computed 

according to the relative locations of towards a0 , (x  x y,  y ) . Let variable X  beai i 0 i 0 

xi  x0 , and Y  be yi  y0 . The lengths and directions of A  and B  are given by 

( (X ,Y ))  and eigvec , , respectively. ( (  ))  is the Covariance Matrix eig ( ( X Y ))   X ,Y 
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of X and Y . Then, the rest of nested ellipses are produced by fitting them into ellipse E . 

Let the biggest distance among di be D . Each nested ellipse is given axis lengths 

| |   /  and | B | d D . Finally, in a way similar to producing a graduated circular A d D  /i i 

glyph [13], assign saturation level si  for the i th glyph as si  (i 1) / (k 1)  and overlay 

the ellipse so that the smaller one is over the larger one. The graduated elliptical glyph 

shows the overall deviation of a feature and the inner distribution among the feature 

deviations of individual data members. When placed across an image, the overall size and 

orientation of the glyphs indicate the variability of features while the very shape of and 

color distribution within an individual glyph give a quick statistical summary of uncertain 

deviations of a feature. 

(a) (b) (c) (d) 

Figure 4.7 Feature-level uncertainty glyph design.  (a) Ellipse. (b) Arrows. (c) 
Graduated circular glyph. (d) Graduated ellipse 

Figure 4.7 gives a comparison between using a simple ellipse, arrows, graduated 

circular glyph, and graduated elliptical glyph for feature-level uncertainty. The individual 

features a i, (  1,..., k)  (which are not displayed in a final visualization) are shown as i 

well to better illustrate the design concept of each glyph. The simple ellipse (Figure 4.7a) 

only characterizes the overall deviation of a feature. Arrows (Figure 4.7b) indicate the 
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exact locations of all the deviated features while inviting visual clutters when k 

increases. The graduated circular glyph (Figure 4.7c) shows the individual deviation of a 

feature but no direction information is revealed. However, the graduated elliptical glyph 

(Figure 4.7d) summarizes overall and individual distribution of a feature in a succinct 

way. Figure 4.8 shows a set of graduated ellipse with varying color distributions, sizes, 

axis length ratios, and orientations. 

Figure 4.8 Graduated ellipses with varying orientation, saturation distribution, size, 
and axis length ratio B / A . 8 data members are used.  

4.2.4.4 3D graduated elliptical glyph 

A 3D elliptical glyph consists of k nested ellipsoids and is placed at the location 

of a0 . The nested ellipsoids share the same orientation and axis ratio.  To show the 

distribution among data members, a wedge is clipped out of it. Assign the outmost 

ellipsoid E  with axes A , B , and C computed according to the relative locations of ai 

42 



 

 

 

 

 

 

 

  

towards a0 , (x  x y,  y , z  z ) . Let variable X  be  x , Y  be  y , and Z  bei 0 i 0 i 0 xi 0 yi 0 

zi  z0 . The lengths and directions of A , B  and C  are given by eig( (X ,Y , Z ))  and 

( (X ,Y , Z ))  , respectively, where (X ,Y Z,eigvec  )  is the Covariance Matrix of X , Y , 

and Z . Then, similar to the manner of producing a 2D graduate elliptical glyph, the rest 

of the nested ellipsoids are produced by fitting them into ellipsoid E  and are rendered in 

blue with different saturation levels. The ellipsoids are opaque because we found in the 

experiment that transparency adds confusion and blur into the images, and is not effective 

in conveying depth information.  Figure 4.9 shows 3D graduated elliptical glyphs in 

different sizes and orientations. 

Figure 4.9 3D graduated elliptical glyphs. 

4.2.5 Results and discussion 

The method is applied to a 2D vector dataset and 3D scalar dataset. The first 

dataset includes 5 simulated hurricane wind fields (Figure 4.10). The second dataset 

contains water vapor data (Figure 4.11) from 8 WRF (Weather Research and Forecast 

Environmental Modeling System) simulation runs. The uncertainty glyphs are placed in 
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critical point locations. The results demonstrate how much features are affected by the 

uncertainty within the data. Through mapping and comparing the critical points between 

different ensemble members, the shifts between critical points become perceivable. The 

graduated elliptical glyphs effectively indicate the magnitude and overall orientation of 

the uncertain deviations of vortices. Especially in the hurricane wind data (Figure 4.10), 

the uncertain position of the hurricane eye reflects the impact of the uncertainty directly. 

A side-by-side display of different component data or the visualization of the data-level 

uncertainty may not give viewers such insight.  

44 



 

    

 

                                     

 

 

 

(a) (b) 

(c) 

Figure 4.10 Feature-level uncertainty of a hurricane wind field. (a) Feature tracking 
within FFF of two vector fields V1 and V2 . (b) Feature deviations (indicated 

by arrows) between two vector fields. Overlapped topology of V1  (black) 

and V2  (gray) are shown as well. (c) Uncertain location of hurricane eye 

and vortices in a hurricane wind field (5 ensemble members).   
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Figure 4.11 3D WRF water vapor data and uncertainty glyphs. 

4.3 Conclusion 

We presented a framework of feature-level uncertainty for both scalar and vector 

data, which is composed of feature extraction, feature deviation computation, and 

uncertainty representation. An elliptical glyph is designed to represent feature level 

uncertainty. The compactness of the feature-level uncertainty representation may provide 

a way to ease the perception issue of 3D visualization. The presented framework has 

potential for broader applications which include different types of features. Hopefully, 

this work will bring awareness to the existence of feature-level uncertainty. 

Although the result of this feature-level uncertainty visualization is positive, there 

are a few limitations and areas that need further study. Most notably, more features could 

be considered in the future. Second, other feature-mapping methods may be included 

depending on the feature type since the current feature-mapping method, FFF, mainly 

tracks topological features. 
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CHAPTER V 

AN INTERACTIVE CONTOUR TREE BASED VISUALIZATION FOR EXPLORING 

DATA WITH UNCERTAINTY 

This chapter presents an interactive visualization tool based on contour trees for 

exploring 2D and 3D data with intuitive and quantitative uncertainty representations. 

Section 5.1 summarizes the background, main idea, and contributions of the 

proposed method. Section 5.2 discusses contour tree simplification. Section 5.3 describes 

the contour tree layout and tree view graph design based on contour tree simplification. 

The visualization of three levels of uncertainties is discussed in section 5.4. Section 5.5 

discusses the interface design. Section 5.6 demonstrates experimental results. Section 5.7 

draws some conclusions and discusses possible areas of improvement.    

5.1 Method overview 

Many current uncertainty visualizations focus on encoding uncertainty 

information into different graphics primitives, such as color, glyph, and texture, which 

are attached to surfaces or embedded in 3D volumes [1]. These techniques may be 

subject to cluttered display, occlusion, or information overload due to the large amount of 

information and interference between the data and its uncertainty (as shown in Figure 

1.2). We believe that one promising direction to cope with this challenge is to allow users 

to explore data interactively and to provide informative clues about where to look. 

Contours, including iso-lines and iso-surfaces, are features frequently investigated 

for exploring data with uncertainty [13], [15]. For instance, uncertainty in climate 
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modeling is often represented by ensembles that contain multiple results for the simulated 

quantities. Rendering contours from all ensembles in a single image, known as spaghetti 

plots [63], is a conventional technique used by meteorologists for observing uncertainty 

in their simulations. Users are often interested in the uncertainty of the contours, e. g. 

how different are the contours of different ensemble members? This chapter focuses on 

new methods for visualizing the uncertainties in scalar fields. Though many uncertainty 

visualization techniques have been developed for scalar fields, the uncertainty related to 

global features, e. g. the topological structure of the scalar data, is barely studied. We 

classify uncertainty information into three categories: data-level uncertainty that indicates 

the uncertainty of the data, contour-level uncertainty that represents the positional 

variation of the contours, and topology-level uncertainty that reveals the uncertainty of 

the topology in the data.  

The contour tree has been exploited as an efficient data structure to guide 

exploratory visualization. Although it has rarely been used for uncertainty visualization 

before, we identify it as a desirable tool for an interactive visualization of data with 

uncertainty. First, a compact and clutter-free uncertainty visualization is achieved by 

attaching uncertainty glyphs to simplified contour trees. This provides an effective 

solution to the long-standing perception issues such as clutter and occlusion in many 

uncertainty visualizations in 3D or large 2D scenes. Secondly, a contour tree stores the 

information related to the geometry of individual contours, which can be utilized to 

compute the contour-level uncertainty. Thirdly, investigating the unstable structure of the 

contour tree reveals the uncertain topology of the data. Further, a contour tree provides a 

flexible interface that allows users to interactively select contours that interest them, e. g. 

those with high or low uncertainty. Moreover, contour tree simplification facilitates a 
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high level overview of a scalar field along with its uncertainty. Particularly, a simplified 

contour tree attached with uncertainty glyphs reduces the workload in viewing and 

analyzing 3D data or complicated 2D data with uncertainty.  

The core of this method is the use of contour trees as a tool to represent 

uncertainty and to select contours accordingly. First, a new contour tree simplification 

with efficient top-down sub-tree decomposition is proposed as an alternative to the 

traditional bottom-up simplification with branch pruning. Second, based on the new 

contour tree simplification, an easy-to-use contour tree-based interface takes the form of 

a tree view graph which is constructed by a new balanced planar hierarchical contour tree 

layout. The new contour tree layout emphasizes height information with few self-

intersections. The new contour tree display allows a user to quickly navigate through the 

level of details of the data. Further, attaching uncertainty information to the planar layout 

of a simplified contour tree is a key to avoiding the visual cluttering and occlusion of 

viewing uncertainty within volume data or complicated 2D data.  

The main contributions include (1) a planar contour tree layout which suppresses 

the branch crossing and integrates with tree view interaction for a flexible navigation 

between levels of detail for contours of 3D or large 2D data sets and (2) a new paradigm 

of investigating and visualizing uncertainty based on a contour tree that integrates the 

uncertainty representations on the data-level, the contour-level, and the topology-level.   

5.2 Contour tree simplification 

Simplification is introduced to deal with the contour trees that are too large or 

complicated to be studied or displayed directly [39], [40]. This applies to the data with 

uncertainty. Moreover, contour tree simplification facilitates a high level overview of a 
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scalar field along with its uncertainty. Particularly, a simplified contour tree attached with 

uncertainty glyphs reduces the workload in viewing and analyzing 3D data or 

complicated 2D data with uncertainty. 

This section first discusses issues of contour tree simplification in section 5.2.1; 

then introduces a new top-down simplification in section 5.2.2 as a competitive 

alternative to the usual bottom-up simplifications.  

5.2.1 Contour tree simplification criteria and de-strangulation 

Usually, a contour tree simplification is conducted in a bottom-up manner by 

successively removing branches that have a leaf node (extremum) and an inner node 

(saddle). Takahashi et al. [64] identified similar candidates in 3D data (maximum—2-

saddle, minimum—1-saddle, and 1-saddle—2-saddle) to be removed. There exist several 

criteria for contour tree simplification such as topology integrity [15], importance ranking 

[40], and strangulation avoidance. 

5.2.1.1 Contour tree simplification criteria 

Topology integrity ensures that the simplified topology is consistent with the 

original one. Takahashi et al. [57] stated that the critical points must maintain topological 

integrity by satisfying the Euler formula. They suggested connecting all the boundary 

vertices to a virtual minimum with value  . Figure 5.1 shows 2D and 3D examples of 

contour tree with virtual minimum. A 2-manifold M added with virtual minimum is a 

topological 2D sphere [57] whose Euler formula states that the number of critical points 

of a 2D sphere satisfies #{maxima}  #{saddles}+#{minima}=2. By adding a virtual 

minimum to the volume function, a volume dataset becomes a topological 3D sphere [64] 

whose Euler formula satisfies #{maxima}   #{2-saddles} + #{1-saddles}   # 
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{minima}= 0.  It is easy to prove that, for a given contour tree that satisfies the Euler 

equation, a simplified contour tree through cancellation of saddle-extremum pairs 

(saddle-maximum or saddle-minimum pairs in 2D cases and 2-saddle-maximum or 1-

saddle minimum pairs in 3D cases) satisfies the Euler equation as well. 

Figure 5.1 2D (left) and 3D scalar (middle) fields and their corresponding contour tree  
(right) with virtual minima.  Contours are shown in light blue.               

Importance Ranking is used to decide which pair should be removed before 

others. A frequently used importance measure is persistence — the absolute difference in 

function value spanned by a feature which is usually a pair of saddle and extremum [40]. 

Optionally, other measures, such as enclosed area or volume [40], can be adopted as 

importance measures. Bremer [56] referred to persistence as topological error norm to 

measure the error introduced in simplification.  

Strangulation is avoided in MS-complex simplification [30] so that any other 

critical points are unaffected after a pair cancellation. In an MS-complex, strangulation 

happens when a saddle is incident to an extremum twice. Figure 5.2a shows a 

strangulation where saddle s  is connected to u  twice. There are similar strangulation 

cases in a contour tree when an extremum u  appears to be the only upper or lower node 

incident to a saddle s  in the contour tree. We give the following statement and a short 

proof of it. 
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Statement 1. The case that an extremum u  is the only upper or lower node 

incident to a saddle s  in a contour tree indicates a strangulation in a MS-complex, where 

s is connected to u  twice. 

Proof. (by contradiction): Without loss of generality, assume u  be a maximum. It 

is the only upper node incident to s  in the contour tree. Assume to the contrary that there 

is another node v  higher than s and incident to s  in the MS-complex. Let the monotone 

ascending integral line connecting s  and u be path ( s , u ), and the monotone ascending 

integral line connecting s  and v  be path ( s , v ). Let the union of all the contours 

crossing path ( s , u ) be Cs
u . Let the union of all the contours crossing path ( s , v ) be Cs

v . 

u v s vC  C  and s C  C , thus different contour components merge at s . Therefore, thes s u s 

upper node v is incident to s  in the contour tree, contradicting the fact that u  is the only 

upper node incident to s  in the contour tree. 

5.2.1.2 De-strangulation 

Though usual contour tree simplification methods do not address strangulation 

cases, we found handling it unavoidable in practice. Removing a strangulation pair ( s , u 

) results in the dilemma of finding a local node to connect the nearby minimum v , as 

illustrated in Figure 5.2b and e. The isolated node v  cannot be reconnected to the local 

saddle w  since it is higher than w . One way to avoid this dilemma is to remove its 

closest neighbor, pair( s , v ), first as demonstrated in Figure 5.2c and f. Removing pair( s , 

v ) successfully solves the strangulation while the other parts of the topology are 

unaffected. 
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 (a) (b) (c) 

(d) (e) (f) 

Figure 5.2 Strangulation and de-strangulation. (a) MS-complex strangulation case. (d) 
Contour tree strangulation case. (b) and (e) Removing strangulation pair s 
and u  leaves no way for v  to be reconnected to the nearby saddle. (c) and 
(f) Solving strangulation by removing the pair s  and v . 

Figure 5.3 Pair cancelation order for a case involving strangulation. Left: a sub-tree 
with strangulation. Middle: removing pair ( s2 , u3 ) to solve the 

strangulation. Right: removing the once strangulated pair ( s2 , u2 ). 

In a neighborhood containing strangulations, pairs cannot be removed in an order 

strictly according to the importance ranking. Figure 5.3 shows an exception, where the 

pair with the lowest persistence, pair ( s2 , u2 ), happens to be in a strangulation. 
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Persistence is used to measure importance in this example. The importance rankings 

among the pairs are pair ( s2 , u3 )>pair ( s1 , u1 )> pair ( s2 , u2 ). However, in order to solve 

strangulation, we remove pair ( s2 , u3 ) before we remove pair ( s2 , u2 ). Therefore, we 

first de-strangulate the pair ( s2 , u2 ) by removing its neighboring pair ( s2 , u3 ). In this 

example, the pair cancelation order is pair ( s2 ,u3 )   pair ( s2 ,u2 )   pair ( s1 , u1 ). 

5.2.2 Top-down contour tree simplification 

Section 5.2.2.1 gives a few definitions and lemmas. Section 5.2.2.2 gives a 

detailed implementation of the algorithm. Section 5.2.2.3 analyzes the algorithm. 

5.2.2.1 Reversed simplification sequence and branches 

Given a contour tree, with traditional bottom-up simplification [40], one 

simplifies it by cancelling saddle-extremum pairs with increasing persistence. After 

cancellations of a sequence S  of pairs C1 , …, Cn , the simplified contour trees after each 

cancellation are CT1 , …, CTn , respectively. The original contour tree is CT0 . The last 

cancelled pair Cn  is a minimum and maximum pair. The key to constructing a top-down 

simplification is finding the reversed sequence S ' for S . 

We define a branch as a monotone path in a contour tree graph that starts from a 

given node and traverses a sequence of nodes with a non-decreasing (or non-increasing) 

value of f until it reaches the highest node (or lowest node) in the path. Pascucci et al. 

[39] and Weber et al. [34] showed that a contour tree can be decomposed into branches 

and rebuilt by assembling the branches afterward. Each branch rooted at an interior node, 

other than the two ends of the branch, is a child branch. The interior node is therefore 

called the root of the child branch. A branch which has child branches is called the parent 

branch of its child branches. A child branch is called upward if its root is lower than its 
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opposite end or downward if its root is higher than its opposite end in value of f . The 

sub-tree which consists of all the edges and nodes along a branch and its descendants is 

called the sub-tree of the branch. Moreover, we define the length of a branch as the 

persistence of its two ends — the absolute difference of the two ends in iso-value. Figure 

5.4 gives examples of these definitions. In this thesis, we make the term branch and pair 

interchangeable since for any pair P s( ,u) , in the simplification sequence, there is a i 

branch ( s , u ) in CTi1 . 

(a) (b) (c) (d) 

Figure 5.4 Definitions related to branches. (a) A contour tree. (b) A parent branch 
(1,10) with two upward child branches (6,9) and (4, 8) and one downward 
child branch (3,2). Branch (1,10) is longer than its child branches. (c) A 
parent branch (4,8) with one upward child branch (5, 7). Branch (4,8) is 
longer than branch (5, 7). (d) The sub-tree of branch (4,8). The nodes are 
numbered by their function values.    

We introduce two lemmas for constructing the top-down simplification as 

follows.  

Lemma 1 The last cancelled pair Cn in a bottom-up simplification is the pair of 

virtual minimum u  and the farthest maximum v  that is reached through a monotone 

ascending path of contour tree from u . 

Proof. (1) The virtual minimum u  has value  ; therefore, any pair connected to 

it has to be cancelled after other pairs.  
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(2) Proof that the maximum v  has to be removed after cancellation of any pair Ci 

i n  : In any i n(  1,...,1) CT (i  1,...,1) , let the saddle connected to v  be si . Let another 

branch connected to s  be ( s , w). There are two possible cases for w . First, w  is a 

maximum (Figure 5. 5a). w  cannot be higher than v  since v  is the highest node 

searchable from u . Even when the branch ( s , w ) contains strangulation child branches, 

pair ( s , v ) has to be removed after branch ( s , w) since w the strangulation branch has to 

be canceled before branch ( s , w ). Second, w  is a minimum (Figure 5. 5b). Pair ( s , u ) 

is therefore a strangulation pair and cannot be removed before branch ( s , w). 

Therefore, both u and v  are left after all the other nodes are removed through 

simplification. The lemma follows. 

(a) (b) 

uFigure 5.5 Simplified contour tree CTi .  is virtual minimum and v  is highest 

maximum that is researched through a monotone path from u . (a) w  is a 
maximum. (b) w  is a minimum. 

Lemma 2. Pair C i(  i n 1,...,1)  is the pair with the highest persistence among all 

the child branches of current branches in a simplified contour tree, CTi1 . 

Proof. Let Ci  be pair( s , w), without loss of generality, assume w  is a maximum. 

A simplified contour tree, CT  , consists of corresponding branches P , …, P  of C  ,i 1 i 1 n i 1 
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…, Cn . Let any other child branches in branches Pi1 , …, Pn  be Bj ( j  1,..., m) 

Bj ( j  1,..., m) . Let the sub-tree of branch Ci be ST and any branches of branch Ci  be 

D k(  1,..., q) .k 

(1) Bj  must be cancelled before Ci  since it has lower persistence than Ci . 

(2) Proof that Dk  must be cancelled before Ci : Let the closest saddle to w  in Ci 

be s0 . Assume that, at any simplification phase, another branch to s0  is branch ( s0 , v ). If 

v  is a maximum, it is lower than w  since Ci  is the one with higher persistence. So pair ( 

s0 , v ) has to be cancelled before Ci . If v  is a minimum, due to the strangulation 

constraint, pair ( s0 , v ) has to be cancelled before Ci . s  is cancelled after other saddles in 

branch ( s , w) since pair ( s , w ) could be considered as a removable pair only after all the 

child branches of branch( s , w) are cancelled. Therefore, Ci  remains after any Dk  is 

cancelled. Therefore, the lemma follows. 

The following statement is concluded based on lemmas 1 and 2.  

Remark 1. Starting from the last cancelled pair with the virtual minimum u  and 

its highest reachable maximum v , a contour tree can be fully reconstructed from the child 

branches with highest persistence repeatedly found from the current contour tree.  

This underlines the idea of our top-down contour tree simplification — growing a 

contour tree by repeatedly attaching the branches found in reversed simplification 

sequence. 

5.2.2.2 Algorithm implementation 

First, a function is needed to find pairs Cn , …, C1  in the reversed simplification 

sequence S ' and their persistence efficiently. This is achieved with a single pass traversal 

of the contour tree, beginning with the virtual minimum.  
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According to the contour tree properties which we discussed in Chapter 3, a node 

in a contour tree has at most three incident arcs. This means, a contour tree can be 

considered as a binary tree if we assume that an arbitrary leaf is its root. Figure 5.6 shows 

an example of viewing a contour tree as a binary tree. The virtual minimum is assigned 

the root of the tree. 

Figure 5.6 Transform a contour tree (left) into a binary tree (right). 

Let the contour tree be CT. Let the virtual minimum be CT ’s root. Given a node 

u , let the farthest reachable nodes through a monotone path from u  in its two sub-trees 

be v1  and v2 , respectively. Branch ( u , v1 ) and branch ( u , v2 ) are the longest branches 

with end point u in the two sub-trees, respectively. Always assume that branch ( u , v2 ) 

is longer than branch ( u , v1 ) (persistence ( u , v1 )<persistence ( u , v2 )). We perform a 

depth-first traversal of the tree and record the corresponding v1 and v2  for each node u 

and child branches of the branches ( u , v1 ) and ( u , v2 ). 
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Function Traversal (CT, u ) 

{ 

If ( u  is a leaf) 

u . v1 = u . v2 = u ; 

branch ( u , u . v1 ).childbranches = branch ( u , u . v2 ).childbranches =  ; 
 else if ( u is the virtual minimum)

 Traversal (CT, u.child ); 

u . v2= u .child.v2 ; 

branch( u , u .child. v2 ).childbranches=  

branch( u .child, u .child.v2 ).childbranches;       

else 

Let the left child of u . be ul  and the right child of u . be ur ; 

Traversal (CT, ul ); 

Traversal (CT, ur ); 

If (persistence ( u , ul . v2 ) < persistence ( u ,ur . v2 )) 

u . v1 =ul . v2 and u . v2 =ur . v2 ; 

branch( u , u . v2 ).childbranches =  

branch( ur , u . v2 ).childbranches branch( u , u . v1 );

 Else 

u . v1 = ur . v2 and u . v2 =ul . v2 ; 

branch( u , u . v2 ).childbranches =  

branch(ul , u . v2 ).childbranches branch( u , u . v1 ); 

} 

Through this tree traversal, the farthest reachable node of the virtual minimum is 

found. According to Lemma 1, the pair of virtual minimum and its farthest reachable 

maximum form the last cancelation pair Cn . According to Lemma 2, pair Cn1 is found as 
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the longest among the child branches of Cn . Recursively, Ci is found among the child 

branches of Cn ,...,Ci1 . Along with the last pair Cn  = pair (virtual minimum, virtual 

minimum . v2 ), the child branches recorded cover all the branches in the cancellation 

sequence Cn ,...,C1 . The order of the tree traversal and information stored for the contour 

tree in Figure 5.6 are shown as follows. 

Table 5.1 The Order of the Tree Traversal and the Information Stored 

N N N Children of branch ( u , v2 

2 2 2 --

8 8 8 --

7 7 7 --

9 9 9 --

10 1 1 --

5 7 8 (5 7) 

6 9 1 (6 9) 

4 8 1 (6 9) (4 8) 

3 2 1 (6 9) (4 8) (3 2) 

1 -- 1 (6 9) (4 8) (3 2) 
* u  is the current visited node. * v1  and v2  are the farthest reachable nodes through a 

monotone path from u  in its two sub-trees.  

The following top-down simplification algorithm is constructed according to 

Remark 1. It gives the order of the recorded child branches in the cancellation sequence 

after the tree traversal. A priority queue storing the branches with decreasing lengths is 

employed. 
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Algorithm Top-down Simplification  

Input: a contour tree CT and an empty priority queue Q  

Output: A sequence S '  of pairs Cn , …, C1 

u  = virtual minimum; 

Traversal (CT, u ); 

Push (Q, branch( u ,u v. 2 )); 

n = the number of extrema in CT; 

While (Q is not empty)    

{ 

branch( u , v ) = Pop(Q); 

For every branch Di  in branch( u , v ).childbranches

 Push (Q, Di ) ; 

Cn =branch( u , v ); 

n   ; 

} 

The output of the above algorithm for the contour tree in figure 5.6 is a top-down 

simplification sequence S ' : C5 =pair (1,10), C4 =pair (4,8), C3 = pair(6,9), C2 = pair (5,7), 

and C1 = pair (3,2). 

Figure 5.7 illustrates the relation between branch hierarchies and simplification 

sequences. Figure 5.7a shows a bottom-up simplification [40] by repeatedly pruning off 

the shortest branch on a current contour tree. As shown in Figure 5.7b, the top-down 

simplification exactly reverses the simplification sequence of the bottom-up 

simplification. Figure 5.7e shows the contour tree hierarchy built according to its 

simplification sequence. The black numbers 0, 1, ..., 4, indicate the order of assembling 

the branches. It corresponds to the reversed simplification sequence. As shown in this 

example, the reversed simplification sequence suggests a balanced hierarchy, the shorter 
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branches are found at lower hierarchies and higher branches are located at higher 

hierarchies so that the more simplified contour tree always catches the more significant 

features. 

Figure 5.7c and d are reproduced from the example in [39]. It shows the hierarchy 

built according to the branch decomposition order. It provides a less balanced branch 

hierarchy: the longest branch (1,10) is missed, the shorter branch (1,7) is instead placed at 

the highest hierarchy. Therefore, we choose to conduct the top-down simplification 

instead of the branch decomposition [39] to build the contour tree hierarchy.     

(a) 

Figure 5.7 Top-down simplification compared with bottom-up simplification.  (a) 
Bottom-up simplification by pruning off the shortest branch on the current 
contour trees. (b) Top-down simplification. (c) The simplification based on 
a branch decomposition result [39]. (d) The hierarchy built from the 
sequence produced by the simplification based on branch decomposition in 
(c). (e) The hierarchy built from the reversed simplification sequence in (b). 
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 (b) 

(c) 

(d) (e) 

Figure 5.7 (continued) 

5.2.2.3 Algorithm analysis 

The cost of the traversal of contour tree is (O N ) , where N is the size of contour 

tree (the number of nodes on contour tree). The main cost of this algorithm is from 
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running the priority queue Q , which depends on the dynamic size of Q . The number of 

branches n of a contour tree is about the number of its extremum, hence n N  / 2 . The 

size of Q starts from 1 with pair Cn  and grows as the child branches of 

i ( n 1,...,  a) CTi (i CT i    increases, until, roughly, the child branches on a,...,1)  reach a 

number less than the number of branches on CTi . The size of Q  has an upper bound n . 

In practice, its biggest size may be much lower than n . 

The cost of running the priority queue maintained by persistence for a bottom-up 

simplification is analyzed for comparison purposes. The size of the priority queue starts 

from n and decreases as each pair is cancelled by one until the last pair is left. A brief 

analysis of the branch decomposition [39] method shows that their priority queue also 

starts with a size of about n  and decreases by one with the “peeling off” each branch. 

The time complexity of maintaining such a priority queue is O n( log n) . 

Therefore, theoretically, the costs of top-down simplification, bottom-up 

simplification, and branch decomposition are almost the same. However, in practice, we 

often deal with large contour trees with thousands of branches. In this case, our method is  

much more efficient. For example, given a contour tree with n 1000 , a simplified 

contour tree with 100 nodes is desired. Our top-down simplification only has to work 

with a priority Qwhose maximum size is around100 while other methods have to work 

with a priority Q whose size starts from 1000 and drops by number one after each pair 

cancellation until the simplified tree with 100 nodes is obtained.   

5.3 Contour tree layout and tree view graph design 

We visualize uncertainty information through contour trees. The layout of a 

contour tree becomes an issue when the size and complexity of the contour tree increase 
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[43]. It is most intuitive to use the y-axis to encode the scalar value of a function in a 

planar display [6]. Heine et al. [43] suggested minimizing edge crossings as one of their 

planar contour tree drawing criteria. However, as pointed out in previous literatures [39], 

[5], self-intersections and visual saturation are unavoidable in such a display. Radial tree 

graph display [65] is a possible alternative, but it is hard to encode the height information 

meaningfully. A 3D tree layout is likely to be less interactive than a planar layout. To 

explore data with uncertainty efficiently, a preferred contour tree layout is the one that is 

two-dimensional, shows hierarchy and height information intuitively, suppresses branch 

self-intersections, allows for a fast navigation through different levels of simplification, 

and allows displaying uncertainty information. To meet these requirements, we design a 

rectangular contour tree layout which is integrated with the tree view graph interaction.  

The property of critical points within a sub-tree on a branch is first investigated in 

section 5.3.1; then, the detailed implementation of the contour tree layout and tree view 

graph design is discussed in section 5.3.2 and 5.3.3. 

5.3.1 Removable sub-trees 

Lemma 3. The number of the critical points in each sub-trees of a saddle-

extremum branch satisfies #{maxima}-#{1-saddle}+#{ minima}=0 for 2D case and 

#(maxima) - #(2-saddle) + #(1-saddle) - # (minima) =0 for 3D case.    

Proof. (by induction). Let the root of the sub-tree be s and the edge incident to s 

be e. Let an arbitrary contour crossing the edge e be c. Without loss of generality, assume 

the sub-tree ST is higher than s (see an example in Figure 5.8). 

(1) For a 2D case, the contour c surrounds all the critical point of the sub-tree 

except for s. When considering the sphere with the virtual minimum connected to the 
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boundary of the domain, the total number of critical points satisfies: #{maxima}-#{1-

saddle}+#{minima + virtual minimum}=2. Therefore, the number of critical points 

within the contour is #{maxima}-#{1-saddle}+#{ minima}-# (virtual minimum) =1. Plus 

s, as a whole, the sub-tree satisfies the Eular Formula=0. 

(2) For a 3D case, without loss of generality, assume s is 2-saddle, and the sub-

tree R’ is higher than s. When considering the 3D sphere with the virtual minimum added 

to the boundary of the domain, the Eular Formula = 0; therefore, the number of critical 

points within the 3D contour is #(maxima) - #(2-saddle) + #(1-saddle) - # (minima)= -1. 

Plus s, the Eular Formula = 0 for the critical points on the sub-tree. 

Figure 5.8 A sub-tree with a virtual minimum 

We include the following Remark according to lemma 3.  

Remark 2. Any sub-tree along a saddle-extremum branch could be removed from 

a contour tree with the resulted Euler equation unchanged for the rest of contour tree 

since the Eular Formula for the sub-tree has a result of 0. 

5.3.2 2D contour tree layout 

Our planar contour tree layout is proposed to show intuitive branch hierarchy and 

vertex height information with minimized branch crossings. Vertices are positioned on 

the y-axis according to their values to reflect the height information. It can be integrated 
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with the tree view graph interaction to facilitate a fast navigation through different levels 

of simplification (discussed in section 5.3.3). Branches can be attached with uncertainty 

glyphs (discussed in section 5.4). We discuss our strategies to emphasize branch 

hierarchy and to control self-intersections as follows.    

The key to prevent unnecessary self-intersections is to hierarchically locate sub-

trees in nested regions in which each of the smaller sub-trees shares a smaller bounded 

region. An example is shown in Figure 5.9d. The rectangular layout is created by 

recursively assigning a vertical slot to a branch so that its child branches are contained 

entirely within the slot. To be more specific, a branch B  is assigned a vertical slot R , and 

each child branch bi  of B  is assigned a disjoint portion of R — a smaller vertical slot Ri 

within R . Each slot is positioned according to the heights of its two ends.  

To emphasize the hierarchy, a branch is first rendered in the middle, and its child 

branches are spread out to the both left and right sides of it. The long branch which spans 

the last cancelation pair Pn  is drawn as a vertical straight line segment in the middle of 

the display. All the other branches have L shapes that connect extremum to their paired 

saddles to prevent branches from crossing the slots of their siblings.  

We further make a few special arrangements to avoid space conflicts between 

different branches. The slots assigned for upward child branches and downward child 

branches need to be carefully differentiated. Otherwise, the upward branches and 

downward branches may unnecessarily run into each other (Figure 5.9a). An easy way to 

avoid such intersections is to put all the upward branches on the one side and put all the 

downward branches on the other side of their parent branch. In addition, a higher upward 

branch is assigned a slot closer to its parent branch than the lower upward branches so 

that they do not intersect with each others. Symmetrically, a lower downward branch is 
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assigned a slot closer to its parent branch than the higher downward branches. As shown 

in Figure 5.9b, this strategy effectively prevents all the intersection between the child 

branches. However, it is not a space-saving solution. An improved solution is given in 

Figure 5.9c which takes less horizontal space than the tree layout in Figure 5.9b. For a 

given parent branch, we separated it into three parts vertically: from high to low, upward 

branch zone where all the child branches are upward; mixed branch zone where child 

branches are either upward or downward; downward branch zone where all the child 

branches are downward. In the mixed branch zone, the upward branches take one side 

while the downward branch takes the other. In the upward branch or downward branch 

zone, the child branches stretch outward from the parent branch on both left and right 

sides without overlapping each other. In order to prevent a child branch from intersecting 

with its parent branch, one needs to decide which side of the parent branch for it to take. 

Without loss of generality, we assume that the parent branch is an upward branch located 

at the right side of its parent as shown in Figure 5.9. In this case, only downward child 

branches may intersect with the parent when it is on the left side of the parent and the 

lower end of it is lower than that of the parent, as the green branch in Figure 5.9. If this 

happens, we switch such child branch to the right side. If the child branch is located in 

mixed zoon, we place all the other downward child branches on the right side of the 

parent branch while the upward child branches on the left. As shown in Figure 5.9c, the 

red and green branches are placed on the right side so that they do not intersect with the 

parent branch. This strategy prevents all the intersections between the child branches and 

its parent. 

This new contour tree layout shows the height and hierarchy information 

effectively and prevents all the self-intersections among siblings and between parent and 
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child branches. Some self-intersections are unavoidable due to the strangulation cases 

where a downward branch appears as a child of an upward branch, or vice versa. As 

shown in Figure 5.9d, a strangulation branch (indicated in the red box) is long and 

reaches the branches outside its parent branch (indicated in the green box). This happens 

infrequently. As shown in Figure 5.9e, there is always at least one self-intersection in the 

contour tree. However, in Figure 5.9f, the rectangular display of the same tree reduces the 

number of crossings from three to one since our layout design rules out the case where a 

child branch intersects with its parent or siblings. 
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 (a) (b) (c) 

(d) (e) (f) 

Figure 5.9 Strategies to reduce self-intersections.  (a) An unguided placement of child 
branches with multiple branch crossings. (b) Placing upward child branches 
and downward child branches on the different sides. (c) Placing upward 
child branches and downward child branches on the different sides only in 
the mixed branch zone. (d) The rectangular 2D layout of a contour tree 
with each branch assigned in nested vertical slots. Boxes indicate vertical 
slots assigned to some branches. An unavoidable self-intersection is shown 
in the red box. (e) A 2D layout of a contour tree with 5 strangulations. (f) 
The rectangular display of the contour tree in e. 

We notice that our layout appears to be similar to the orthogonal layout recently 

developed by Heine et al. [43] which shows L shape edges with values mapped to heights 

and branches grouped hierarchically. They adopted a delicate but time consuming four-

phrase procedure to obtain a layout: grouping branches, minimizing crossings between 

branch groups, ordering, and positioning branches. The second phase which uses a 

random walk combined with simulated annealing to minimize the crossing costs is 
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nondeterministic and takes most of the runtime. As stated in [43], computing the layout 

for a contour tree with 2,000 critical points could take up to 10 minutes with a certain 

number of crossings. Our method utilizes the contour tree hierarchy to avoid the time 

consuming minimization process. It only takes linear time to travel through each branch 

of the contour tree hierarchically but prevents all the branch intersections except for the 

rare cases where strangulation branches are too long to be contained in the vertical slots 

of their parents. Our method usually takes less than half a second for a contour tree with 

around 2,000 critical points. For example, for the weather simulation dataset with 1724 

critical points in Figure 5.18, it takes 312 microseconds and produces no branch crossing; 

for the brain dataset with 2142 critical points in Figure 5.19, 343 microseconds, no 

branch crossing. 

5.3.3 Tree view graph interaction design 

A typical tree view graph displays a hierarchy of items by indenting child items 

beneath their parents [66]. In tree view representations, the interactions are directly 

embedded: the user can collapse (or expand) a particular sub-tree to hide (or show) the 

items in that sub-tree.  

Our planar contour tree layouts based on the nested sub-trees can be directly 

integrated with a tree view interaction. As stated in Remark 2, any sub-tree of a saddle-

extremum branch could be collapsed with the resulted Euler equation unchanged and the 

topological integrity of the contour tree unaffected.  
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(a) (b) 

Figure 5.10 Tree view interaction.(a) An original contour tree and its corresponding 2D 
scalar field with contours selected for every branch of it. (b) An 
interactively simplified contour tree after a user has clicked on several 
nodes and contours have been selected for every branch of it. 

An example of data exploration through tree view intersection is given in Figure 

5.10. The data is a vorticity magnitude field of a simulated flow with vortices. A click on 

an inner node of the original contour tree (Figure 5.10a bottom) results in hiding or 

showing the sub-tree rooted at the node. The persistence, indicated as the vertical length 

of a branch, serves as an importance indicator for users to select contours. An 

interactively simplified contour tree is shown in Figure 5.10b. The roots of the collapsed 

sub-trees are marked with “plus mark” icons. To show how the simplification of a 

contour tree links to the data visualization, for each branch ( ,P s u) of a contour tree, a 

single contour with iso-value fiso  tf s( )   ) ( ), (0 t(1 t f u   1)  is extracted. The 
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horizontal line segments shown on the contour trees indicate the one-to-one mappings 

between the nodes in a contour tree and the contours in the scalar field. The same color is 

used for a contour and its corresponding location in the tree. The selected contours are the 

representative contours that give an overview of the whole scalar field. The more a 

contour tree is simplified, the higher level overview is obtained.    

5.4 Contour tree-based uncertainty visualization 

 This section discusses three uncertainty metrics and their visualization 

representations. The uncertainty of the data is explored through data-level uncertainty, 

contour-level uncertainty, and topology-level uncertainty. The uncertainty information is 

attached to the new planar contour tree display to give a high-level overview of 

uncertainties and to allow a quick and accurate selection of contours with different levels 

of uncertainty. 

We call the scalar field obtained by averaging the values from all the ensemble 

members at each grid point the ensemble mean and the contour tree of the ensemble 

mean the mean contour tree. In this thesis, we show the data level uncertainty by 

displaying the difference between each ensemble member and the ensemble mean at each 

grid point or along a contour. For contour-level uncertainty, given a contour in the 

ensemble mean, we compute the mean and variance of the differences between this 

contour in the mean field and its corresponding contours in all the ensemble members. 

For topology-level uncertainty, we map the contour trees of all the ensemble members to 

the mean contour tree and use their discrepancy to indicate uncertainty.       
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Our method is not limited by the uncertainty definitions we use in this thesis. 

Different uncertainty measurements can be shown through the contour tree via the use of 

different uncertainty metrics and corresponding glyph designs.  

5.4.1 Data-level uncertainty 

The data-level uncertainty measures how uncertain the numerical values of the 

data are. Uncertainty measures, such as standard deviation, inter-quartile range, and the 

confidence intervals, fall into this category. Sanyal et al. [13] visualized data-level 

uncertainties via circular or ribbon-like glyphs over a color-mapped image of the data. 

Due to the overlap between the data and uncertainty glyphs, the number of the glyphs has 

to be limited and information loss for both the data and uncertainty is unavoidable. Other 

techniques which overlay or embed uncertainty representation in the underlining data 

visualization face similar issues. We propose an alternative visualization that attaches 

uncertainty glyphs to a contour tree rather than integrating them with data visualization 

directly. 

We adapted Sanyal et al.’s graduated glyphs to visualize data-level uncertainty. 

They proposed circular graduated glyph and ribbon-like graduated glyph. A circular 

glyph encodes the deviation of all ensemble members from the ensemble mean at a grid 

point. Let the differences for ensemble members be d1 , d2 , … , dk . These difference 

values are then scaled according to the glyph-spacing and sorted in decreasing order to 

generate a new array D1 , D2 , … , Dk . Starting with Dk , we render successively smaller 

glyphs with decreasing sizes, D1 , D2 , …, Dk  and increasing saturation levels, 

1/ k, 2 / k,...,1. A graduated ribbon is constructed by interpolating between circular 

glyphs placed along an iso-line in the data image.  
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We use the circular graduated glyph to show uncertainty at each grid point. Figure 

5.11 shows a 2D 9×9 uncertain scalar dataset which is a down-sampled sub-region of the 

data in Figure 5.10. In Figure 5.11a, the average field of eight members is color-mapped 

and overlaid with uncertainty glyphs at each grid point. Likewise, the glyph of a grid 

point is attached to its corresponding vertex in the fully augmented contour tree as shown 

in Figure 5.11c. 

Optionally, graduated ribbons are attached to branches to show the average data-

level uncertainty along individual contours. We resample the varying data-level 

uncertainty along each branch using a fixed step size and use linear interpolation to 

produce a ribbon-like uncertainty glyph along the branch. For a given location v of a 

branch, let its corresponding contour be C , the evenly spaced samples along C be p j ( 

j  0,..., l ). Let the difference between ensemble member i  and the ensemble mean at 

p j be dij . The average difference from ensemble member i to the ensemble mean along 
l 

C be w d / l . To order to produce a ribbon along the branch, w w  ,..., w  are scaledi  ij  1, 2 3 
j1 

according to the branch spacing and sorted in increasing order to generate a new array D1 

, D2 , … , Dk  which give the radii of ribbons 1, 2,..., k  at location v. A graduated ribbon is 

produced by overlapping ribbons 1, 2,..., k with increasing saturation levels, 

1/ k, 2 / k,...,1. Figure 5.11d illustrates a segment of a graduated ribbon along a branch.  
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 (a) (b) (c) 

(d) (e) 

Figure 5.11 Data-level uncertainty representation based on contour tree. (a) Graduated 
circular uncertainty glyphs on an uncertain scalar field.  (b) A fully 
augmented contour tree. The red, green, and blue dots indicate critical 
points while the black dots indicate regular vertices.  (c) A contour tree 
with circular graduated uncertainty glyphs. (d) A segment of a graduated 
ribbon on a branch (black) constructed by overlaying thinner ribbons 
successively. (e) Contour tree attached with average data-level uncertainty 
along each contour and four sets of corresponding contours are shown after 
clicking on four locations (indicated by colored line segments) in the 
contour tree. 

As shown in Figure 5.11 c and e, while a graduated circle illustrates the data-level 

uncertainty at a grid point, the graduated ribbon provides continuous uncertainty 

representation along individual contours with less clutter. Therefore, we use ribbon-like 
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glyphs for representing data-level uncertainty along contours in our implementation. It 

provides a straightforward way to visualize data-level uncertainty along contours in the 

contour tree. A ribbon that has a dense and saturated core with a faint periphery indicates 

that ensemble members mostly agree and have a few outliers while a mostly dark glyph 

indicates large differences among individual members. 

5.4.2 Contour-level uncertainty  

Contour-level uncertainty measures the uncertainty in the position of a contour. In 

a spaghetti plot [13], the most unstable contours and the places where the contours are 

extremely diverse among individual ensemble members are interesting to users. 

However, the users’ estimates tend to be inaccurate due to the randomness of the contour 

size, shape and length. Additionally, it is hard to look into such uncertainty in a large data 

set. Therefore, precise and automatic contour–level uncertainty measurement is needed to 

assist the exploration of the large uncertain data. A contour-level uncertainty which 

quantifies how uncertain a contour is within multiple ensemble members is developed to 

address this need. 

To measure the uncertainty of a contour, we first identify corresponding contours 

in different ensemble members. Then, we calculate the differences between them and use 

the mean and variance of the differences to represent the contour-level uncertainty. Our 

method is different from previous methods of studying uncertain contours which 

visualize probability field through color-mapping or volume rendering around a contour 

[19], [21], [22] since it is visualized through contour trees and measures the uncertainty 

as contour deviations in different ensemble members directly.  
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5.4.2.1 Contour correspondence and difference 

For a contour in one ensemble member, there may be more than one contour in 

another ensemble member with the same iso-value with it, or it may be missing in some 

ensemble members. Spatial overlap [41], [42] is frequently used as a similarity measure 

to match features in different data sets. For instance, the correspondence between two 

contours can be measured by the degree of contour overlap as discussed by Sohn and 

Bajajin [42] when they computed correspondence information of contours in time-

varying scalar fields. Given a contour C in the ensemble mean, we search in ensemble 

member i for the contour Ci (i  1,..., k)  who shares the same iso-value with C and has 

the best correspondence with C . The best matched contours, if found, are considered the 

same contours which appear in different ensemble members.  

Figure 5.12a shows three contours (in blue, gray, and brown) in ensemble i with 

different correspondence degrees with contour C (in red). With the largest overlap 

degree with C , the blue contour is identified as the corresponding contour of C in 

ensemble member i . It is possible that no contour in Ci fulfils the correspondence criteria 

discussed in [42]. For example, in ensemble member i , no contour with the same iso-

value of C  exists or all the contours of the iso-value are apart from C . In these cases, 

we consider no matched contour found for C in ensemble member i . 

Accordingly, the non-overlapped area ( , i )  between the two correspondingA C C  

contours C and Ci decides the difference between the two contours. Figure 5.12 b, c and 

d illustrate the non-overlapping area in different cases. The non-overlapping area is 

computed by using B-spline function  [6], [42] for each simplice of a scalar field defined 

on a simplicial mesh. To reduce bias towards long or short contours, larger or smaller iso-

surfaces, we normalize the non-overlapping area with the contour length (or iso-surface 
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area in 3D case) of C : difference(C,Ci )  A C( ,Ci ) / size(C) , where size C( )  is the 

contour length (or iso-surface area in 3D case) of C . 

(a) (b) (c) (d) 

Figure 5.12 Contour difference measured by non-overlapped areas. (a) Three contours 
(in blue, gray, and brown) in ensemble member i share a domain with 
contour C (in red) in the ensemble mean. (b), (c), and (d) Non-overlapped 

areas (filled with gray) of different contours.   

5.4.2.2 Contour-level uncertainty metrics and visualization 

To help a user select contours according to the quantified contour-level 

uncertainty information, we calculate the mean and variance of the differences to the 

mean. Given a contour C in the ensemble mean, let its corresponding contours of k 

individual ensemble members be Ci ( i 1,..., k) . Ci  is the contour with the same iso-

value that is matched with C . The average difference among the corresponding contours 

is: mean ( ,  i ) /  k . The variance of difference among contours is: difference C C 

 (difference(C,Ci )  mean)2 

va  . Each ensemble member is supposed to have its 
k 1 

contribution to the above equations. If an ensemble member does not have a matched 

contour for C , its contribution is set to a large value,  the maximum non-overlapping 

area found between C and all the matched contours Ci . 

The contour-level uncertainty along a contour can be shown at the corresponding 

location on the contour tree. Figure 5.13 illustrates the glyph design to encode the 
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contour-level uncertainty. Before visualization, both uncertainty statistics are normalized 

to a range between 0 and a unit width. Since ribbon-like glyph is preferred over circular 

glyph to prevent visual cluttering as discussed in section 5.4.1, we resample the varying 

contour-level uncertainty along each branch and use linear interpolation to produce a 

ribbon-like uncertainty representation along each branch. For each branch, two ribbons 

are attached. The blue one is for the mean difference, while the green one is for the 

variance. The varying width of each ribbon indicates the varying magnitude of each 

uncertainty measurement for the contours along the branch.  

Figure 5.13 Contour-level uncertainty visualization based on contour tree. The 
uncertainty ribbons attached to the contour tree (left) indicate the 
uncertainty of corresponding contours in the data (right). Three sets of 
corresponding contours are shown after clicking on three locations 
(indicated by arrows) in the contour tree. 

One can click on a location in the contour tree to display a bunch of 

corresponding contours (spaghetti plots [13]) with certain uncertainty levels in a data 

image. This saves users time and effort searching the whole image for a contour with a 

specified level of uncertainty. An example is shown in Figure 5.13. Uncertainty ribbons 
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are attached to a contour tree. Three sets of contours with different levels of uncertainty 

are shown after clicking on three locations in the tree.   

5.4.3 Topology-level uncertainty 

The uncertainty within the data impact not only the values or the contour 

positions locally, but also the global pattern of the data which is described by the 

topology of the data. Visualizing the uncertainty concerning the topology among the 

ensemble members provides new perspective on the global impact of uncertainty. We 

propose a topology-level uncertainty visualization based on contour trees.  

In this thesis, the topology-level uncertainty is defined as the variation in the 

height and number of branches in the contour tree of an uncertain scalar field. The idea is 

to map the branches between the contour tree of different ensemble members and the 

contour tree of the ensemble mean and to overlay the mapped branches. A set of matched 

branches are assigned with a same x-axis value but keep their original y-axis values so 

that an overlap of the branches on x-axis indicates their correspondence while the 

disagreements between the branches on y-axis indicate their discrepancy in iso-value. A 

branch of mean contour tree may not find a matched branch in the some ensemble 

members. The number of matched branches is encoded with the width of the branch. A 

thicker branch is more certain than a thinner one. 

5.4.3.1 Contour region of a branch 

We define a contour region of a branch as the region covered by all the contours 

within the sub-tree of the branch. Figure 5.14 shows two ensemble members of an 

uncertain scalar field. A comparison of their contour trees reveals that their iso-value 

ranges in different contour regions are different since their branches have different 
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lengths and heights on y-axis. The contour regions for the purple branches are the regions 

inside the purple contours. In Figure 5.14 a and b, the iso-value ranges of the contour 

regions are different. The latter is higher and larger. This is clearly reflected in the 

different y-axis locations and lengths of their corresponding branches. An extra branch is 

found in the lower right corner of Figure 5.14 b. It indicates an uncertain contour region 

(inside the orange contour) which does not exist in the ensemble member in Figure 5.14 

a. 

(a) (b) 

Figure 5.14 A side-by-side display of two ensemble members. (a) and (b) show two 
scalar fields with their contour trees. The lengths and vertical positions of 
the thick branches represent the iso-value range of the region inside the 
purple contour. The short branch in the lower right corner of (b) is an 
uncertain branch whose corresponding contours are missing in (a). 

The contour region of a child branch is included in the contour region of its parent 

branch. Figure 5.15a shows tree branches and their corresponding contour regions. The 

nodes and contours are numbered by their iso-values. The contour region of a branch is 

bounded by the contour of its root and with all the nodes of its sub-tree inside. For 

instance, the contour region of branch (5, 7) is the area inside the contour 5. The contour 

region of branch (4, 8) is the region inside the contour 4 (including the region of branch 

(5, 7)). 
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5.4.3.2 Branch correspondence 

Spatial overlap is the most common similarity measure between features [41], 

[42]. We measure the correspondence degree between two branches as the spatial overlap 

between their contour regions. 

Given a branch B in the mean contour tree, we search in ensemble member i for 

its best matched branch. The best matched branches, if found, are considered the same 

branches which appear in different ensemble members. We do not need to search all the 

branches of the contour tree in ensemble member i for the branch with largest overlap 

with B . The contour tree hierarchy and branch orientation help us limit the number of 

branches to compare. (1) The matched branch must be found among the child branches of 

the matched branch of its parent due to the nesting relationship between child and parent 

branches. (2) A downward branch does not match an upward branch, or vice versa. An 

upward branch is related to a contour region enclosing its upper end (a maximum) while 

the downward branch indicates a region enclosing its lower end (a minimum). They are 

two topological features which need to be differentiated.  

Figure 5.15 illustrates the branch correspondences detected according to the 

spatial overlaps of contour regions. Figure 5.15a and b show contours and contour trees 

of two scalar fields sharing a same spatial domain. In Figure 5.15a, the sub-tree of the 

middle branch (1, 10) is the whole contour tree. The sub-tree of branch (0.5, 10.5) is the 

whole contour tree in Figure 5.15b. Both branches share the whole data domain and 

hence are the best matched branches of each other. For the rest branches, the 

correspondence indicated by overlaps between their contour regions: branch (2, 3) → 

branch (1.8, 3.3), branch (6, 9) → branch (6.5, 9.6), branch (4, 8) → branch(4.2, 8.3), 

and branch(5, 7) → branch(5.4, 7.1). For example, branch (4, 8) matches branch (4.2, 
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8.3) since they have the largest overlaps. Branch (5.4, 7.1) matches branch (5, 7) even 

when branch (4, 8) has larger overlap with it since branch (4, 8) is mapped to its parent 

branch (4.2, 8.3). Figure 5.15 c shows the matched branch in the same x-axis location.  

(a) (b) (c) 

Figure 5.15 Branch correspondence indicated by contour region overlaps. The nodes 
and contours are numbered by their iso-values. (a) and (c) show contour 
trees of two data fields and the corresponding contour regions of the tree 
branches. 

5.4.3.3 Topology-level uncertainty visualization via contour tree mapping 

We map the contour tree of each ensemble member to the mean contour tree 

hierarchically. Let CT  be the contour tree of the ensemble mean, CTi be a contour tree 

of ensemble member i . Let the branch number in CT be n and the branch number in 

CTi be m . Starting from the last branch in the reversed bottom-up simplification 

84 



 

   

 

 

   

 

  

 

   

    

         

  

             

 

 

            

  

                        

sequence {Ci j, , j  m,...,1} of CTi , we search the best matched branch C ' i j, in CT for 

branch C .i j, 

First, the last branch C ,  in the reversed simplification sequence of CTi isi m  

matched with the last branch of the mean contour tree, Cn , since they share the same data 

domain. For each branch Ci j,  in CTi , we first check whether its parent branch has a 

matched branch CT . If its parent has no matched branch, neither does it. Mark Ci j,  as an 

unmatched branch. Otherwise, let its parent branch be PCi j, , and the best matched 

branch of PCi j,  in CT  be PC ' 
i j, . Assume without loss of generality that Ci j, is an 

upward branch. Check all the upward child branches of PC ' 
i j,  which are unmatched 

currently. The best matched branch C ' i j,  for Ci j,  is the one with the largest overlapping 

region. Mark Ci j,  and C ' i j,  as matched branches. If all child branches of PC ' 
i j,  are 

matched already, mark Ci j,  as an unmatched branch. 

The algorithm outline of the matching process for CT and CTi  is given below. 

Mark C ,  and Cn  matched branches; i m  

For j in (m1,...,1)

 Find Ci j, ’s parent branch PCi j, 

If ( PCi j, has its best matched branch PC ' 
i j,  in CT ) 

                (Assume Ci j, is an upward branch) 

If ( no unmatched upward child branch overlapping Ci j,

 is found on PC ' 
i j, )

 Mark C as an unmatched branch i j, 

else Mark the child branch of PC ' 
i j, with the largest 

overlap with Ci j, as its matched branch C ' i j, . 
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In the resulting visualization, the contour trees of different ensemble members are 

rendered beneath the mean contour tree in different colors. The x-axis locations of the 

matched branches are aligned. The number of unmatched branches for a branch in the 

mean contour tree is encoded as the width of the branch.  

Figure 5.16 Topology-level uncertainty visualization. Three sets of contours are shown 
after clicking on three locations (indicated by arrows) in the contour tree. 

As shown in Figure 5.16, the mapped contour trees indicate how uncertain the 

iso-value ranges of individual branches are and how uncertain the number of branches is. 

The places where branches of the contour trees disagree with each other indicate the 

uncertain iso-value ranges of different contour regions segmented by branches. The 

overall blurring or clearness of the display indicates the overall high or low uncertainty. 

The thickness of a branch indicates the number of matched branches found in the 

ensemble members. For example, a thin branch (indicated by the green arrow) is found in 

the lower right corner of the tree. It represents an uncertain contour region (or minimum) 

which only appear in a few ensemble members. As shown in Figure 5.16, only two 

contours (in blue and green) from ensemble members 4 and 7 are shown after clicking on 

the branch. On the contrary, the two sets of contours selected from the middle locations 
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of two thick branches (indicated by red and blue arrows) include corresponding contours 

from all the ensemble members. Accordingly, the topology-level uncertainty provides 

users a quick and high level overview of how much uncertainty there is in the topology of 

contours. 

5.5 User interface design 

We use an open source version of Qt 4.5 to build our interface and VTK 5.8 to 

implement iso-surfacing and volume rendering of the data.  

5.5.1 Interface components and layouts 

Figure 5.17 shows the interface designed to enable efficient browsing, 

manipulation, and quantitative analysis of uncertain scalar data fields. It consists of five 

display areas. The top-left area shows a 2D or 3D visualization of a data set, including 

iso-lines and color-mapped image for 2D data, or iso-surfaces and volume rendering for 

3D data. It provides interactions such as rotation and zooming. The top-right area shows a 

2D display of the contour tree of the average data field. It allows interactive contour tree 

simplification, contour selection. The three bottom areas show the three levels of 

uncertainty of the data. They allow similar interactions as the top-right contour tree 

display area. All five areas can be hidden, resized, or switched with other areas. 

Once a data set is imported with the pre-computed uncertainty information, the 

tool shows the color-mapped data (volume rendered for 3D data) in the data display area. 

The contours (iso-lines or iso-surfaces) are also rendered in the data display area and 

updated accordingly as a user clicks on one contour tree or changes the iso-value by 

sliding on the vertical bar in the top-right contour tree display area. 

87 



 

 

 

   

  

Figure 5.17 The user interface.  

5.5.2 Contour tree simplification 

Users may simplify the contour tree in two ways. (1) Use a horizontal bar under 

the contour tree display. It controls the current number of branches in the contour tree. As 

a user drags the slider from right to left, branches are removed from the contour tree 

according to the order shored in the pre-computed simplification sequence. (2) Directly 

right-click on the inner nodes of the contour tree to prune or extend sub-trees. In practice, 

a user may first slide through the horizontal bar to get a certain simplification level; then, 

work through the tree view graph to show or hide sub-trees according to the uncertainty 

information attached.  

5.5.3 Contour selection 

Users may select contours to display in two ways. (1) Display a set of 

corresponding contours (spaghetti plots) with the same iso-value in different ensemble 

members in the data display area by clicking on a location in the contour tree. For 3D 

data, users may choose to show overlapped iso-surfaces with or without transparency. 

The corresponding data-level and contour-level uncertainties for the selected contour are 
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shown with circular uncertainty glyphs after each click. (2) Display a set of 

corresponding contours with the same iso-value in different ensemble members by 

sliding on the vertical bar on the right of the contour tree display. The value of the slider 

corresponds to the selected iso-value. The contours are chosen at the vertices on the 

current contour tree branches with the selected iso-value. 

5.6 Applications and results 

In this section, we demonstrate the effectiveness of the new uncertainty 

visualization by applying it to a WRF weather data set (135×135×30) and a medical 

volumetric data set (128×128×71). The contour trees, branch hierarchies, and uncertainty 

information are pre-computed before an interaction starts. 

The first experiment demonstrates an effective application of the new uncertainty 

visualization on the simulated data from Weather Research and Forecast Environmental 

Modeling System (WRF) ensemble runs. The members of numerical weather prediction 

ensembles are individual simulations with either slightly perturbed initial conditions or 

different model parameterizations. Scientists use the average ensemble output as a 

forecast and utilize spaghetti plots to analyze the spread of the ensemble members. In our 

application, eight simulation runs of the 1993 “Super storm” are used. Figure 5.18 a 

shows the original contour tree (1734 critical points and 867 branches) and all the 

contours with the iso-value indicated by the red horizontal line connecting the slider of 

the vertical bar. Figure 5.18 b shows a manually simplified contour tree (66 critical points 

and 33 branches) and a few contours which corresponds to the vertices on the current 

branches crossed by the red line. Three levels of uncertainty are shown in the simplified 

contour tree in Figure 5.18c. The right contour tree in Figure 5.18c shows the topology-
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level uncertainty based on the contour tree. A few branches with high disagreement on 

heights appear in the upper region of the contour tree indicating the contour regions with 

higher value variation. A few thin branches appear at its bottom region indicating the 

uncertain contour region (or minima) in the data. Figure 5.18d shows the integrated 

visualization of both data and uncertainty glyphs. Figure 5.18e shows a set of 

corresponding contours with high data-level uncertainty while Figure 5.18f shows a set of 

corresponding contours with high contour-level uncertainty. Circular uncertainty glyphs 

indicating the magnitude of their data-level and contour-level uncertainties are shown at 

the bottom. The gray rectangle indicates the maximum size for each glyph. The color bar 

on the right indicates the correspondence between the iso-surfaces and simulation runs.  

The second application is to visualize a non-weighted diffusion imaging dataset of 

human brains. We apply our method to study the difference between five brain images 

aligned after affine registration. The results are shown in Figure 5.19. The between-

subject variation in brain anatomy is a type of uncertainty that is important to doctors 

[67]. The average data field contains 2143 critical points and 1071 branches in the 

original contour tree. Figure 5.19a shows the volume rendering of the average data with 

circular uncertainty glyphs whose sizes vary according to the level of data-level 

uncertainty. Three levels of uncertainty are shown in the simplified contour tree in Figure 

5.19c. A set of corresponding contours (Figure 5.19b ) in different brain data were 

generated after a user clicks on a node at the bottom part of the middle branch of the right 

contour tree in Figure 5.19 c. The high diversities among the selected contours reflect the 

high variations in iso-value of the branch. The contours of different ensemble members 

are shown in different colors. 
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 (a) 

(b) 

Figure 5.18 Weather data application. (a) Original contour tree. (b) Manually simplified 
contour tree with tree-view glyph interaction. (c) Left to right: data-level 
uncertainty, contour-level uncertainty, and topology-level uncertainty 
shown in the simplified contour tree. (d) Volume rendering with 
uncertainty glyphs. (e) A set of contours with high data-level uncertainty 
indicated by the large graduated circle. (f) A set of contours with high 
contour-level uncertainty indicated by the large glyph for contour-level 
uncertainty. 
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(c) 

(d) 

Figure 5.18 (continued) 
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 (e) (f) 

Figure 5.18 (continued) 
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 (a) (b) 

(c) 

Figure 5.19 Brain data with uncertainty.  (a) Volume rendering with circular 
uncertainty glyphs. (b) Corresponding contours of the same iso-value in 
different brain data. (c) Left to right: data-level uncertainty, contour-level 
uncertainty, and topology-level uncertainty shown in a simplified contour 
tree. 

As shown in the above applications, the new contour tree based visualization 

provides a combined exploration of both the data and the uncertainty. Users are allowed 

to look into three levels of uncertainty in the data. With the contour tree displays, the 

workload in viewing and analyzing 3D data or complicated 2D data with uncertainty is 

significantly reduced. In addition, explicitly showing the three levels of uncertainty in a 

planar contour tree layout helps users investigate the contours with high or low 
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uncertainty more precisely. Volume rendering with circular uncertainty glyphs (Figure 

Figure 5.18d and 5.19a) are provided for a comparison purpose. With 3D glyphs placed 

within the volumetric data, the details of the data are noticeably blocked by the glyphs 

while the glyphs are overlapped with each other or appear to be blurred or buried in a 3D 

scene. Accordingly, our new visualization method provides an alternative which shows 

both data and uncertainty clearly. 

5.7 Conclusion 

We present a contour-tree-based visualization for exploring data with uncertainty. 

One contribution of the chapter is the novel usage of a topology tool — the contour tree. 

Free of occlusions, the new visualization provides a promising alternative to the standard 

spatial layout of both data and uncertainty. Another unique contribution of this chapter is 

a full exploration of uncertainties in scientific data with the concepts of the data-level 

uncertainty, contour-level uncertainty, and topology-level uncertainty based on the 

contour tree. This information provides new insight into how the uncertainty exists with 

and affects the underlying data. With quantified uncertainty information attached to the 

contour trees, users can precisely select contour with specific uncertainty to display. The 

interaction design based on the contour tree is applicable to other applications. The 

experimental results demonstrate its effective applications in exploring uncertainties in 

weather forecasting and medical imaging. In addition, the rectangular contour tree layout 

with tree view interaction is another contribution which assists the implementation of our 

interactive uncertainty visualization 

As for future plans, we would like to investigate more metrics to measure each 

level of uncertainty and apply our methods to address different types of uncertainty 
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models. In contour tree simplification methods [39], [40], [64], [56], error is introduced 

in the simplified version of a contour tree. The persistence which is used as the 

importance measure can be used as the topological error norm [56]. However, this error 

norm does not reflect the uncertainty information related to the simplified branches. One 

solution is to use the integral of the uncertainty magnitude over the contour region of a 

branch as a new error norm to guide a simplification. The contour tree is an abstract 

description of a scalar field, so the use of our visualization tools may require some 

specific training. Our interactive visualization tool may be further improved based on 

user feedback. 
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CHAPTER VI 

CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS 

This thesis has conducted an in-depth investigation of feature-level uncertainties 

and developed effective uncertainty visualizations by exploiting topology tools.  

First, a framework of feature-level uncertainty visualization is presented to study 

the uncertainty of the topological features in Chapter 4. This framework works for both 

scalar and vector data in both 2D and 3D. It quantified feature-level uncertainties as 

feature deviations, solved the mapping between features by adopting tracking method 

based on Feature Flow Fields, and visualized the uncertainties with intuitive graduated 

elliptical glyphs. The 2D and 3D elliptical glyphs reveal the uncertain numbers and 

locations of the features effectively. As a result, we offered a feasible solution to 

visualizing feature-level uncertainties.    

In Chapter 5, based on contour trees, we tackled the interaction and perception 

issue of uncertainties in 3D and large 2D scalar data with a new interactive. The 

experimental results demonstrate its potential for effectively exploring uncertainties in 

weather forecasting and medical imaging. The new techniques could significantly reduce 

a user’s workload in viewing and analyzing data with uncertainty information and helps 

show a quick and accurate selection of prominent contours with high uncertainty. 

Attaching the uncertainty glyphs on contour trees solve the inherent perception issues, 

such as occlusion and clutter, of the integrated visualization with both data and 

uncertainty. Further, we conducted a full exploration of uncertainties in scientific data 
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 with the concepts of the data-level uncertainty and two feature-level uncertainties — 

contour-level uncertainty and topology-level uncertainty — based on contour trees. 

Additionally, the rectangular contour tree layout with tree view interaction provides a 

flexible interaction tool that assists users to explore their data. With quantified 

uncertainty information attached to the branches of the contour tree layout, users can 

precisely select contours with specific uncertainty to display. Therefore, the new 

visualization provides a promising alternative to the standard spatial layout of both data 

and uncertainty. 

In conclusion, this thesis innovatively explores the feature-level uncertainties and 

suggested promising directions of future uncertainty studies in exploiting topology tools. 

The presented feature-based techniques alleviate the inherent perception issues such as 

clutter and occlusion in uncertainty visualizations in 3D or large 2D scenes. The 

incorporation of the feature-level uncertainties into visualization provides fundamental 

insights into the reliability of the extracted features which otherwise would remain 

unknown with the visualization of only data-level uncertainty.  Particularly, the novel use 

of contour trees provides an effective solution for interacting with 3D or large 2D data 

sets with uncertainty.   

There are many possible directions in which one could extend this work: (1) 

Apply the developed framework of feature-level uncertainty to study uncertain data of 

various fields. (2) Test and improve the interactive uncertainty visualization through a 

domain expert evaluation.  (3) The possibilities inherent in topology tools are not 

exhausted yet. For example, the possibility of using Morse-Small complex for uncertainty 

study has not been investigated yet. Therefore, we will continue our current work in 

utilizing topology tools to study uncertainty. 
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