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Channel catfish (Ictalurus punctatus) have a broad distribution from Canada to
Mexico, suggesting that different strains may have different thermal tolerances. In
aquaculture, daily temperature maximums up to 36-40°C and fluctuations of 3-6°C occur,
and may be exacerbated by future climate change. To quantify differences in thermal
tolerance amongst geographically-distinct channel catfish strains and corresponding
hybrid catfish (1. punctatus x [blue catfish] I. furcatus): acute critical thermal maximum
(CTmax), and the effects of chronic thermal regimes on growth, survival and differential
gene expression were examined. Southern channel catfish had higher CTmax than
northern, and channel catfish had higher CTmax than hybrid catfish. Under chronic
thermal stress, hybrid catfish had the greatest survival and most consistent growth.
Further, northern channel catfish had the greatest magnitude and largest amount of
upregulated gene transcripts in response to high temperatures, indicating greater thermal

stress. Therefore, catfish thermal tolerance varies by geographic region and species.
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CHAPTER I

INTRODUCTION

Global climate is changing more expeditiously than previously recorded (Ficke et
al. 2007). Natural changes in climate have been exacerbated by greenhouse gas emissions
generated by fossil fuels used to create energy for humans (Mann et al 1998). Post-
industrial anthropogenic impacts have been quantified by the use of paleoclimatic data
obtained from sediment cores, coral, trees and glacial ice cores (Melack et al. 1997;
Spray & McGlothlin 2002). This data shows that greenhouse gases: carbon dioxide
(CO»), ozone (03), nitrogen dioxide (NO2), and methane (CHs) are vastly increasing after
remaining relatively stable for tens of thousands of years (Hansen & Lacis 1990; Ficke et
al. 2007). Higher concentrations of these gases alter the global energy balance thus
trapping infrared radiation which heats the earth's surface and lowers protection from the
harmful ultraviolet rays produced by the sun known as the greenhouse effect (Solomon et
al. 2007). Effects of the energy imbalance are expressed by increased solar radiation and
atmospheric warming, eutrophication, more pronounced stratification of inland water,
reduced precipitation, increased evaporation, decreased water pH, and extreme weather
events (Brander 2007) .

In temperate zones, the direct impacts of climate change result in temperatures
exceeding normal ranges, which also may exceed optimal ranges for cultured organisms.

Climate change is particularly consequential to fish as poikilotherms, because
1



temperature directly affects habitat selection and physiological processes of metabolism,
energy expenditure, growth, and reproductive migration (Crawshaw & Hammel 1974;
Hutchinson & Maness 1979; Gunter ef al. 2007). In aquaculture, such changes can have
undesirable consequences, such as: earlier spawning (Brander 1994; Barange & Perry
2009) which can lead to logistical and environmental complications in production,
decreased production, or render species no longer suitable for previously ideal culture
regions. With changing climate, traditional aquaculture species might need to be moved
to cooler water to maintain production or be replaced with more tolerant species
(Clemmensen ef al. 2007). Further, there are detrimental indirect impacts of climate
change to the aquaculture industry, including: limitation of fishmeal and fish oil for feed
production, increased prevalence of pathogens, and decreased biodiversity (Handisyde et
al. 2006; De Silva & Soto 2009).

Rapid changes in water temperature are a concern of climate change for fish
production because they lead to thermal shock and may also affect thermoregulatory
behavior. In fishes, preferred and avoided temperature ranges may be modified due to
damage to the central peripherial receptors or preoptic region (Crawshaw 1975; Prosser
& Nelson 1981). If the thermal shock is below lethal levels, it may allow fish to alter
their physiology to a point at which alternative habitats can be utilized (Bevelhimer &
Bennett 2000; Browse & Xin 2001; Portner 2002). In catfish production ponds there is no
alternative habitat for fish to utilize during times of thermal stress, therefore, the fish

must acclimate or die.



Temperature dynamics in pond aquaculture systems

Pond aquaculture systems are extremely prevalent in the US catfish industry with
over 95% of channel catfish grown in ponds, due to low capital cost, and relatively
reliable fish production (Brune et al. 2004; Tucker et al. 2004). Although the capital costs
are low, these systems will only be profitable if used in regions with temperature regimes
that approach optimal temperature ranges for a species, since water temperatures in a
pond setting cannot be controlled. Most ponds have a depth of less than 1.5 meters for
ease of seining, minimizing electric and maintenance costs and most importantly
maximizing photosynthesis and net primary productivity which in exchange oxygenates
the pond and provides additional nutrition to the fish (Boyd 2004; Tucker & Hargreaves
2004). Water temperatures in these systems are susceptible to fluctuations facilitated by
the shallow design under direct sunlight. Temperatures in aquaculture ponds in the
Southeastern US experience fluctuations of 3-6°C from morning to afternoon (Wax et al.
1987; Arnold et al. 2013) with daily maximums up to 36-40°C for short durations of time
during the summer (Liu ez al. 2013). Global climate change may exacerbate these
temperature fluctuations and increase maximum daily temperatures.

Channel catfish Ictalurus punctatus have a natural geographic distribution from
southern Canada to northern Mexico which encompasses a thermal range from 5-35°C
(Scott & Crossman 1973; Bennett et al. 1998; Tavares-Dias & Moraes 2007). Channel
catfish are found in a vast range of environmental conditions (i.e. temperature, salinity
and turbidity) (Jackson 2004). This resilience is one of the factors that make channel
catfish an ideal aquaculture species. Channel catfish account for over 60% of all
aquaculture production in the United States (US) with 82% of catfish production taking

3



place in Mississippi, making it an economically important species (Mott & Brunson
1995; Currie et al. 1998; Jiang et al. 2011). In 2012, the US catfish industry made $341
million with Mississippi, Alabama, Arkansas and Texas accounting for 95% of the total
sales (NASS 2013). US catfish production is environmentally sustainable, has low impact
on wild populations, minimal effluent discharge from earthen ponds and uses low levels

of fishmeal (Simmons et al. 2006; Liu et al. 2008).

Strain Selection

Currently there are numerous strains of channel catfish in the US with
geographically separated populations. Extensive breeding programs dating back to 1890
have led to difference in growth rate, resistance to infection and/or disease, time of
spawning, dress-out percentage, feed conversion efficiency, tolerance to low oxygen, and
ability to escape seining between strains (Leary 1910; Andrews & Stickney 1972; Li et
al. 2001). Previous research on growth rates in geographically distinct populations of fish
has found that warmwater species grow faster in the warm part of their range (Lagler et
al. 1977). This is why catfish production has flourished thus far in the Southeastern US.
With climate change causing increases of temperature outside of the optimal range of
catfish, production in this area may decline. McCauley & Beitinger (1992) predict that
the zone of primary catfish production will move 240 km north in the central part of the
US with each 1°C increase of annual temperature. If current atmospheric models hold
true and mean global temperature increases of 1-7°C occur (Ficke et al. 2007), then this
could be detrimental to the Southeastern US catfish industry.

Hybridization of catfish species can improve production by selecting ideal traits

from the parents to pass on to offspring. Although there are different species of catfish,
4



the only catfish hybridization that produces favorable commercial application is a cross
between I. punctatus and blue catfish 1. furcatus. Breeding programs for channel and blue
catfish were established over 25 years ago (Wolters & Tiersch 2004). The best cross is
with an I. punctatus female and an /. furcatus male, the reciprocal cross does not have the
same heterosis (Dunham & Smitherman 1983). These crosses tend to have higher dress-
out percentages, faster growth, easier harvest by seining and angling, more uniform size
at harvest, greater resistance to enteric septicemia, and greater tolerance of low oxygen
levels and crowding in pond systems (Giudice 1966; Yant et al. 1976; Dunham ef al.
1983; Smitherman ef al. 1983; Li et al. 2004; Ligeon ef al. 2004; Dunham & Argue
2011; Kumar & Engle 2011). Blue catfish have a slightly more southern overall
distribution ranging from the Mississippi River basin and coastal drainages along the
northern Gulf of Mexico Coast through Mexico and into Guatemala and Belize (Graham

1999).

Heat Tolerance

Catfish have optimal temperature ranges at which best physiological performance
occurs. Knowledge of the optimal temperature is essential to maximizing aquaculture
yield because it indicates where maximum growth occurs and physiological functions are
optimal (McCauley & Casselman 1981; Kellog & Gift 1983). This fundamental step has
already been completed by previous studies, which have demonstrated superior weight
gain at temperatures ranging from 26.6-32°C for channel catfish (Shrable et al. 1969;
Kilambi et al. 1971; Andrews & Stickney 1972; Hariyadi et al. 1994; Buentello et al.

20005 Li et al. 2008; Arnold et al. 2013).



To determine the thermal tolerance of fish, research can examine acute thermal
tolerance, chronic thermal tolerance or both. For both types of thermal tolerance, fish
must display acclimation. Heat tolerance acclimation can be defined with regard to the
interrelationships between magnitude of final acclimation temperature, direction of
temperature change and absolute changes in thermal level. Acclimation allows an
organism to tolerate new environmental conditions by going through reversible
physiological changes (Rickleffs 1990). Since the 1920s research has been ongoing to
determine temperature tolerance of various fish species. Acute heat tolerance has been
detected using two methods. The first method is to quantify static temperatures with
incipient upper lethal temperature (IULT). The second technique assesses dynamic
temperatures with critical thermal maxima (CTM). With the static method IULT is
determined when 50% of the fish being sampled die after being exposed to an abrupt
thermal change from acclimated temperatures. The IULT method requires a large sample
size and provides more physiologically relevant view rather than ecological (Currie et al.
1998).

Cowles & Bogert (1944) first introduced and defined the CTM method which has
been modified and standardized by Lowe & Vance (1955), Hutchinson (1961) and Cox
(1974) to be defined as: the collective maximum thermal points at which locomotory
activity becomes disorganized and the fish loses its ability to escape conditions that will
quickly lead to its death. Further, this arithmetic mean of thermal points is reached after a
constant, progressive temperature increase from a previous acclimation temperature
without a significant lag time (Becker & Genoway 1979). The main difference between
CTM and IULT methods is that CTM requires a progressive change of temperature until

6



a physical disorganized response occurs, where IULT requires an abrupt change until a
lethal response occurs (Becker & Genoway 1979). Hutchinson (1976) had categorized
this physical disorganized response as a ‘loss of muscular coordination’ whereas Fry
(1967) called it ‘locomotory disorganization collapse.” The CTM provides a more
relevant point of reference than static methods and is ecologically valuable because it
identifies the first signs of stress (Paladino et al. 1980; Diaz & Biickle 1999). The CTM is
an estimate of thermal tolerance defined as the mean temperature fish can reach at a
nonlethal, yet near lethal, end point if water temperature exposure is slow and constant
(Cox 1974). CTM can be calculated with a high level of certainty for acclimation levels
between 10-35°C for any duration until complete acclimation with the multiple-
regression model proposed by Bennett et al. (1998). The same equation can be
reorganized to instead determine the number of days required to reach a particular
acclimation level (Bennett ef al. 1998).

In natural environments fish may encounter temperatures outside of their
tolerance range, but typically only for brief periods, due to acute fluctuations. Examining
the effects of such situations provided guidelines for best culture management practices
(Brett 1956; Hutchinson 1976). The advantages of the CTM technique are speed,
effectiveness using a small sample size, and ability to evaluate thermal stress without

inducing handling stress (Currie et al. 1998).

Effects of Temperature on Growth

In addition to short-term, acute effects of temperature, chronic high thermal
ranges are of great importance due to their effect on growth of catfish. Andrews &

Stickney (1972) studied interactions of feeding rates and environmental temperature on
7



growth of channel catfish. In their study, fish were subjected to three different feeding
rates and divided up into five temperature treatments (18, 22, 26, 30, and 34°C) for 12
weeks. The 30°C treatment had the maximum weight gain at all feeding rates. The
environmental temperature increased the lipid level of the fish as temperatures continued
to rise. Fish at 34 °C had 43.6% lipid compared to fish at 30 °C with 38.8%, yet the fish
at 30 ° C gained more than those at 34 ° C. High percentages of lipids can be an issue with
commercial production because fatty fish have lower dress-out percentages, lipids hold
off-flavoring and overall are a less desirable product for the consumer. Therefore, in
order to maximize production and product quality, they recommended rearing at 30° C.
In similar studies on channel catfish, Shrable et al. (1969) found that temperatures from
26.6-29.4° C allow the most rapid rate of digestion. Buentello ez al. (2000) reported
maximum weight gain at 27.1°C and Kilambi et al. (1971) demonstrated that 32°C is the

optimum condition for growth.

Objectives

To examine thermal tolerance in channel and hybrid catfish, this research was
divided into three studies; acute thermal tolerance, chronic thermal tolerance and gene
expression. The main objectives were:

1. to quantify acute thermal tolerance differences in two geographically distinct

strains of channel catfish and the corresponding hybrid from these strains with

a cross to an industry standard blue catfish strain,



2. to quantify chronic thermal tolerance differences and growth rates of two
geographically distinct strains of channel catfish and the corresponding hybrid
from these strains with a cross to an industry standard blue catfish strain, and

3. to explore differential gene expression under chronic optimal and upper
thermal regimes of two geographically distinct strains of channel catfish and
the corresponding hybrid from one these strains with a cross to an industry

standard blue catfish strain.

These studies are different than those previously performed because clearly
defined breeding lines were chosen and the fish were subjected to all the same conditions
to allow direct comparison. These objectives will examine whether geographical strain of
channel catfish or the more southern range of blue catfish may increase thermal tolerance.
To get a bigger picture of thermal tolerance, both acute and chronic effects were
explored. Acute tolerance studies will quantify temperature at which loss of equilibrium
occurs and survival following thermal stress. For chronic tolerance, temperature effects
on growth, and survival will be quantified. Further, RNA will be extracted from liver
tissue of catfish in the chronic study to examine differentially expressed gene transcripts
between catfish types. These studies will assist with future selection of broodstock catfish
for warm water aquaculture and identify expression biomarkers related to thermal

tolerance in channel and hybrid catfish.
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CHAPTER 1II
CRITICAL THERMAL MAXIMA OF TWO GEOGRAPHIC STRAINS OF CHANNEL

AND HYBRID CATFISH

Abstract

Critical thermal maxima have been used extensively to provide physiologically
and ecologically valuable reference points that identify early signs of thermal stress. In
catfish pond culture, daily temperature maximums up to 36°C and fluctuations up to 6°C
are observed. These extreme conditions are likely to be exacerbated by the effects of
global climate change. Channel catfish (Ictalurus punctatus) have a broad natural
distribution from southern Canada to northern Mexico. It was hypothesized that regional
genetic differences would cause strains with a southern distribution to have greater
thermal tolerance than strains with a northern distribution, and consequently a greater
critical thermal maximum. Hybrid catfish (1. punctatus x [blue catfish] 1. furcatus) strains
were expected to have greater critical thermal maxima than their respective channel
catfish strains due to the more southern distribution of blue catfish. To examine this, we
quantified acute thermal tolerance differences of two geographically distinct strains of
channel catfish and their hybrid cross with an industry standard strain of blue catfish.
Catfish were subjected to water temperature increase at a rate of 2.0+0.1°C hour! until
loss of equilibrium occurred. Standard length ranged from 162-320 mm. Length had a

significant effect on survival with greater survival in larger fish. Critical thermal
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maximum ranged from 38.6-40.3 °C. Southern channel catfish were able to tolerate
higher temperatures than northern, and channel catfish tolerated higher temperatures than
hybrid catfish. This study indicates that geographically distinct catfish strains differ in
acute thermal tolerance, and suggests heritability for this trait as evidenced by similar

responses in channel catfish and their corresponding hybrid cross with blue catfish.

Introduction

Environmental conditions such as temperature affect aquaculture productivity by
altering fish growth, reproductive capacity, physiology, behavior, immune system
function, and mortality (Brett 1956; Brett 1979; McCauley & Beitinger 1992; Brandt
1993; Le Morvan et al. 1998; Lang ef al. 2003; Brander 2007; Ficke et al. 2007). Since
the 1920s, research has been ongoing to determine temperature tolerance of various fish
species (Hathaway 1927) to cold and heat. For heat tolerance, there are two primary
methods; incipient upper lethal temperature (IULT) (Fry 1947; Allen & Strawn 1968) and
critical thermal maximum (CTmax) (Becker & Genoway 1979; Diaz & Biickle 1999).
CTmax provides a more ecologically relevant point of reference, identifying early signs
of stress (Paladino et al. 1980; Diaz & Biickle 1999). Since its introduction, critical
thermal methodology has been modified and standardized to be defined as: the mean
maximum thermal point a fish can reach over a slow and constant exposure; at which
locomotive activity becomes disorganized and the fish loses its ability to maintain dorso-
ventral orientation (Cowles & Bogert 1944; Cox 1974; Becker & Genoway 1979; Currie
et al. 1998). In natural environments fish typically encounter temperatures outside of

their tolerance range for brief periods, known as acute fluctuations. Examining thermal
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sensitivity to acute fluctuations using CTmax can provide guidelines for best culture
management practices (Brett 1956; Hutchison 1976).

Pond aquaculture systems are extremely prevalent in the US catfish industry with
over 95% of channel catfish grown in ponds (Brune et al. 2004; Jackson 2004). Water
temperatures in ponds cannot be controlled, and due to shallow depths (<1.5 m), may
have large daily fluctuations (i.e. 3-6°C) and reach high daily maximums up to 36-40°C
(Wax et al. 1987; Arnold et al. 2013; Liu et al. 2013).

Catfish aquaculture utilizes channel catfish Ictalurus punctatus and the hybrid
between female channel catfish and male blue catfish 7. furcatus, with both species
occupying broad geographic ranges. The natural geographic distribution of channel
catfish ranges from southern Canada to northern Mexico which encompasses a natural
thermal range of 5-35°C (McCauley & Beitinger 1992; Bennett ef al. 1998; Tavares-Dias
& Moraes 2007). Female channel catfish are frequently hybridized with male blue catfish
to produce offspring with faster growth, better feed conversion efficiency, more uniform
size at harvest, greater tolerance of low oxygen levels and crowding in pond systems, and
greater resistance to enteric septicemia (Andrews & Stickney 1972; Wolters & Johnson
1994; Bosworth et al. 1998; Li et al. 2001). The natural distribution of blue catfish
extends further south than channel catfish, ranging from the Mississippi River basin and
Gulf of Mexico Coast through Mexico and into Guatemala and Belize (Graham 1999).
Because fish are poikilotherms, an understanding of their thermal capacity is crucial for
research on habitat selection, metabolism, growth rates and reproductive migration

(Crawshaw & Hammel 1974).
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Previous studies fail to find any acute thermal tolerance differences between
channel catfish strains (Hart 1952; Allen & Strawn 1968; Cheetham et al. 1976; Reutter
& Herdendorf 1976; Bennett e al. 1998). However, these studies either did not directly
compare strains, used different heating rates, varied in methodology or were limited in
inference by small sample sizes. Therefore, in order to address geographic influences on
CTmax in catfish, research is needed that utilizes strains that have clearly defined
breeding lines, are raised in an aquaculture setting, and subjected to uniform conditions
(e.g. acclimation temperature), to allow for direct comparison. Although it would be
highly beneficial to the aquaculture industry, little is known about CTmax values of
hybrid catfish and whether thermal tolerance traits are heritable.

The objective of this study was to quantify acute thermal tolerance differences in
two geographically distinct strains of channel catfish and their hybrid cross with blue
catfish using rates of temperature increase that mimic pond conditions. It was
hypothesized that regional genetic differences would cause strains with an originally
southern natural range (Delta Select channel catfish and Delta Select x D&B blue catfish)
to have greater thermal tolerance relative to strains with a natural northern range (Red
River channel catfish and Red River x D&B blue catfish), and consequently a greater
CTmax. The hybrid catfish strains were also expected to have a higher CTmax than their
respective channel catfish strains since blue catfish have a more southern distribution

than channel catfish.

20



Methods
Fish Source and Acclimation

Two strains of channel catfish were used: Delta Select (from the Mississippi
Delta, Mississippi) and Red River (from the Red River, North Dakota). These strains
were used due to their disparate geographic distributions. The Delta Select (southern
channel) is a commercial strain developed at the Thad Cochran National Warmwater
Aquaculture Center (NWAC) in Stoneville, Mississippi. It is a first generation composite
of families collected from 80-100 random spawns from 10 commercial catfish farms in
the Mississippi Delta. The Red River (northern channel) was originally collected in 1988
from the Red River, North Dakota, USA (Hudson Bay drainage basin) where it does not
regularly experience the same high temperatures, and is not a typical strain utilized in the
catfish industry (Li et al. 1998). In addition, two hybrid strains, which are a cross
between D&B blue catfish and each of the previously mentioned channel catfish strains,
were used. The D&B blue catfish strain is commonly used in aquaculture to produce
hybrids for the catfish industry (Xu et al. 2012). The D&B broodstock catfish used in this
experiment were from the USDA Catfish Genetics Research Unit and were originally
obtained from Dycus Farms, Arkansas (Xu ef al. 2012). Similarly, the southern channel x
D&B blue (southern hybrid) is representative of commonly used strains in southeastern
US commercial catfish production.

Broodfish were strip spawned at NWAC in early May 2012 following protocols
described by Bosworth et al. (2005). The same six southern channel and five northern
channel females were used for both channel and hybrid strains to minimize individual

differences. Fingerlings were transported in late June to the Mississippi State University
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South Farm Aquaculture Facility (South Farm) after they were eating a formulated diet,
approximately 30 days after hatching.

At the South Farm, the fingerlings underwent eight months of acclimation at
30+1°C in four cylinder tanks (430 L) divided by strain. The water supplying the tanks
was non-chlorinated, aerated well water maintained in a recirculating system. A sample
of 10 fingerlings from each strain was measured and weighed to obtain a baseline wet
weight to calculate 2% body weight feeding rate. Food was withheld 24 hours before
trials to ensure a post-absorptive state and reduce stress during handling (Barton et al.

1988; Morkere et al. 2008).

System Design

Acute thermal trial experimental set up consisted of three primary components: a
sump tank, a header tank and an insulated fiberglass tank holding the experimental
aquaria (Figure 1). The sump was a 149x100x60 centimeter (cm) oval tank with two
heaters inside; one 4000 Watt, 200-250 Volt heater and one 1700 Watt, 100-140 Volt
heater (SmartOne, Process Technology, Mentor, OH). Two inline pumps (model 3 utility
pump, Aquatic Eco-systems Inc, Apopka, FL) were used to pump heated water to the
header tank and a third pump to circulate water around the heaters for consistent thermal
regulation. The sump tank was connected to the header tank by inflow polyvinyl chloride
(pve) tubing with an additional overflow outlet that returned to the sump tank via pvc
tubing. All junctions were fitted with uniseals to prevent leaks. The header tank was a
35.5x84x61 cm rectangular tank (PT-564, Polytank Inc, Litchfield, MN) covered in thick
insulation. Inside the header tank, three airstones aerated the well water prior to the

experimental aquaria. Tubing covered with insulation was used to supply the heated,
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oxygenated water from header tank to the experimental aquaria. Water flow was
regulated with needle valves. Within the insulated fiberglass tank (212x61x56 cm; model
MT-700 min-o-cool, Frigid Units Inc, Toledo, OH) there were nine 9.5-liter aquaria
(30.5x15.25x20 cm), each covered with reflective bubble insulation, and each with an
external standpipe that maintained a water depth of 17 cm. The external standpipe
allowed the aquaria to be submerged in a water bath to further insulate internal
temperatures. Water from the insulated fiberglass tank drained into the sump tank by a
pvc pipe, where it was reheated and oxygenated.

Acute thermal trials were conducted on 30 fish per strain over 14 trials, for a total
of 120 fish. Only 3 strains were tested per day, with 3 replicates of each to minimize
daily fluctuations, and tested strains were alternated to ensure equal trials for all 4 strains.
Fish were placed in the trial set up at 30+0.03 ° C for 30-40 minutes to adjust to the new
setting before acute thermal trials began following the acclimation methodology of Diaz
& Biickle (1999). During the summer months of 2009, data from 6 different catfish
aquaculture ponds found water temperatures to increase 1-2° C each hour (E. L. Torrans,
United States Department of Agriculture Agricultural Research Service, unpublished data
from 2010). Based on these data, a heating rate of 2 °C per hour was determined to give
an accurate estimation of CTmax. Water temperature was increased at a rate of
2.0£0.1°C hour™! until loss of equilibrium (LOE) occurred, to achieve an
environmentally realistic rate of temperature increase (Pérez-Casanova et al. 2008). LOE
was defined as the failure of a fish to retain dorso-ventral orientation for one minute
(Bennett & Beitinger 1997). CTmax for each individual fish was recorded as the water

temperature at which LOE was observed. Behavioral responses to increasing temperature
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were monitored and recorded throughout the trial. Typical observations were erratic
swimming, surfacing, aquatic surface respiration as evidenced by bubbles, rapid
ventilation rate, irregular opercular movement, splashing and muscular spasms.
Dissolved oxygen levels were monitored every 30 minutes and remained close to
saturation (mean 100+0.96%, 7.144+0.09 mg/L; always >93%) in all tanks throughout the
trial. Temperature was recorded with digital hand-held thermometers to the nearest 0.1°C
every 30 minutes throughout the trial. After CTmax was reached, fish were removed,
measured (standard length 0.1 mm) and weighed (£0.5 g), and then directly returned to
their original acclimation temperature (30+1 °C) to allow recovery (Table 1). Fish were
placed in different recovery tanks to distinguish strains and individuals, then monitored
the next 24 hours for survival (Currie et al. 1998). Mortalities were recorded and removed

and mortality rates were determined.

Statistical Analysis

An analysis of covariance (ANCOV A) using the proc glm procedure in SAS
(version 9.2, SAS Institute Inc., Cary, NC) was used to examine effects of geographic
range (north or south), catfish type (channel or hybrid), and the interaction between all
main effects on CTmax with a covariate of standard length. Weight and length are highly
correlated so only length was used to measure size. A general linear model using the proc
logistic procedure in SAS was used to determine significance of range, catfish type and
length variables on survival following acute thermal trials. The forward selection
technique was used to remove non-significant variables from the model. A logistic
regression predictive model was then generated from the significant factors. A two-way

analysis of variance (ANOVA) was used to determine effects of geographic range, catfish
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type and the interaction of these variables on length. The Shapiro-Wilk and Kolmogorov-
Smirnov tests were implemented to confirm normality. A Tukey’s post-hoc test was used

to compare means. Statistical significance will be determined against an o of 0.05.

Results

Significant differences in length of fish used in the experiment between
geographic range (p=0.01) and catfish type (p<0.01) were observed, however, no
significant differences were observed in geographic range X catfish type interaction
(p=0.24). Northern catfish were smaller (295 mm) in length than southern (305 mm).
Hybrid catfish were smaller (282.5 mm) in length than their respective channel catfish
(317.5 mm). Notably, length had no significant effect on CTmax (p=0.36). Significant
effects of geographic range (p<0.01) and catfish type (p<0.01) on CTmax were found but
not the geographic range X catfish type interaction (p=0.36). Other non-significant
interactions were length X catfish type, length X range and length X catfish type X range
(p>0.34). Northern catfish had lower CTmax values (39.08°C) than southern catfish
(39.25°C) (Figure 2A). Hybrid catfish had lower CTmax values (39.07°C) than their
respective channel catfish (39.26°C) (Figure 2B).

Length had a significant effect on survival (p=0.02) with survival increasing as
the fish increased in size (Figure 3). An apparent regional effect on survival was observed
with survival being higher in southern catfish but this was not statistically significant
(p=0.08). During acute trials fish exhibited erratic swimming and irregular opercular
movement as observed in the study by Hlohowskyj & Wissing (1985). Some fish never
lost equilibrium and instead stopped breathing, with death as the endpoint similar to

Bettoli et al. (1985). These fish (n=11) were not attributed to a specific treatment group
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and had a slightly higher thermal endpoint, therefore they were removed from statistical

analyses.

Discussion

Regional differences in CTmax were observed, supporting the hypothesis that
geographic distribution would affect thermal tolerance. As predicted, catfish with a
southern distribution had a greater CTmax than catfish with a northern distribution. These
geographic differences in thermal tolerance were also observed in the hybrid catfish,
suggesting a genetic component for this trait.

CTmax values are often characterized by low variability and small changes

between environmental conditions (reviewed by Beitinger et al. 2000), suggesting tight
control of thermal tolerance. The low variability in CTmax values suggests tight control
over upper lethal temperature tolerance. For example, standard deviations (SD) in CTmax
values for a group of fish subjected to a similar acclimation temperature are often small,
(Currie et al. 1998, Beitinger et al. 2000), such as in this study (SD: 0.2-0.4°C).
However, even small changes in environmental temperature, such as 2.5-6°C as predicted
by global climate models (Karl et al. 2009), can have large consequences for susceptible
freshwater fish species (Magnuson et al. 1979; Regier et al. 1990; Morgan ef al. 2001).
Thus, in this study, although the CTmax differences between channel catfish strains and
between channel and hybrid catfish were small (0.4°C), the biological importance may be
large, considering that current pond temperatures reach near lethal limits (Arnold et al.
2013; Liu et al. 2013) and are likely to increase under the influence of climate change.

The only known previous study on geographic differences in acute thermal

tolerance in catfish by Hart (1952) found little to no geographic variation in IULT of
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channel catfish from Florida and Ohio. However, the study was limited by small sample
sizes (ranging from 4 to 9 fish per site), the use of wild caught fish held for brief periods
in the laboratory (i.e., 4-5 days), and greater variation in body size (51.9-436.5 g) and
age. Wild caught fish may be stressed by transfer and the environment of tank settings
(Clearwater & Pankhurst 1997), which can make interpretation of data more difficult. In
comparison, this study used two strains maintained separately in aquaculture settings to
retain their genetically distinct heritage and ensure similar rearing environments,
presumably minimizing stress and allowing for clearer application to aquaculture
conditions.

Few studies have examined strain or population differences in CTmax. In three
strains of brook trout Salvelinus fontinalis originating from different geographic locations
but held for multiple generations in a common hatchery environment, thermal tolerance
reflected historic geographic origin (McDermid et al. 2012). Specifically strains with a
more southern origin had higher acute thermal tolerance than those with a more northern
origin. Similarly, barramundi Lates calcarifer, originating from different geographic
locations and subsequently held in hatchery environments have been found to have
different acute thermal tolerance, with tropical populations having higher tolerance than
sub-tropical populations (Newton et al. 2010). Further, Meffe et al. (1995) found that in
eastern mosquitofish traits for improved thermal tolerance were genetically heritable. In
this study, the differences in CTmax values observed between the channel catfish strains
(i.e., southern having a greater CTmax than northern) were similarly observed in the

hybrid cross for both strains, suggesting heritability of acute thermal tolerance. The
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genetic underpinnings and the strength for selection for this trait are unknown, but
suggest that further research on genetic control and expression are needed.

Contrary to the original hypothesis, hybrid catfish had lower CTmax compared to
channel catfish. Because blue catfish have a natural distribution that extends further south
than channel catfish, presumably exposing them to higher temperatures, it was
hypothesized that they would demonstrate a greater thermal tolerance or CTmax.
However, verified knowledge about the species' thermal tolerance is limited. Possible
explanations for the results include: the relative exposure of these species to thermal
variability, reduced temperature tolerance in blue catfish, or epistasis (Burke & Arnold
2001). In terms of thermal variability, blue catfish occur in sub-tropical to tropical areas,
where water temperatures are less variable in seasonal fluctuation compared to temperate
areas where channel catfish occur (Ficke et al. 2007). This thermoplasticity in channel
catfish would be beneficial for tolerating predicted seasonal temperature fluctuation
increases (Regier et al. 1990). It is also possible that blue catfish have a lower CTMax
than channel catfish, although this has not been tested. A third possibility is due to
epistatic effects, which may occur in hybridized organisms and can lead to asymmetrical
hybrid fitness (Rhode & Cruzan 2005).

Although length did not have an effect on CTmax, it did have an effect on
survival following thermal trials. Similarly, Bennett ez a/. (1998) found no relationship
between length and CTmax in channel catfish of the same age range. In contrast, Recsetar
et al. (2012) found no effect of length on survival of channel catfish, possibly due to the
smaller size of fish examined (62-264 mm). Barrionuevo & Fernandes (1995) found that

body size will affect critical thermal minimum (CTmin) but not CTmax in Prochilodus
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scrofa; whereas Cox (1974) found that body size has an effect on CTmax in bluegill
(Lepomis macrochirus) and Cook et al. (2006) found an inverse relationship between
CTmax and body size in striped bass (Morone saxatiliis). In terms of the effect of body
size on survival or recovery, there is limited data. Similar to this study, Meffe et al.
(1995) observed improved thermal recovery with increasing body size in eastern
mosquitofish. A possible explanation could be related to energy storage or a
length:weight body ratio suggested by Ospina & Mora (2004). Therefore, recovery
following high temperature exposure may rely more on the immune system and body
reserves, thus larger fish may have an advantage.

A heating rate of 2°C hour’!, comparable to Pérez-Casanova et al. (2008), was
used in this study because it was representative of the rates observed in channel catfish
aquaculture ponds. In a previous study on channel catfish, Currie et al. (1998) used a
heating rate of 0.3°C min™! which is more standard for the literature but does not
replicate environmental conditions. CTM may be affected by slower rates of temperature
change, possibility allowing low levels of acclimation. Interestingly, the CTmax range for
both channel catfish strains in this study overlapped with those found for channel catfish
(40.3°C) by Currie et al. (1998). These results are consistent with the literature
suggesting that CTmax for the acclimation temperature of 29.5+0.5 °C would be around
40° C (Cheetham et al. 1976; Bennett et al. 1998). Although Becker & Genoway (1979)
recommended standardization criteria, a universally adopted heating rate for determining
CTmax has not been established. For example, the rates used by Cheetham et al. (1976),
Watenpaugh et al. (1985), Bennett ef al. (1998) and Kita et al. (1996) were 1°C min’!,

0.3°C min™' and 0.15°C min™!, 5°C hour respectively. Beitinger et al. (2000) stated that
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a correct heating rate needs to be slow enough that the core temperature of the fish being
studied does not lag behind the water temperature, yet not too fast that the fish do not
have time to thermally reacclimate during the trial. According to Jobling (1981), using
different heating rates can lead to substantial variations in values of CTmax. However the
combined results of this study and the Currie et al. (1998) study do not support this
generalization for channel and hybrid catfish.

Rapid changes in water temperatures can lead to thermal shock which may affect
thermoregulatory physiology and behavior. As ectotherms, catfish rely on environmental
temperatures for metabolic rate and physiological needs (Morgan et al. 2001). Preferred
and avoided temperature ranges may be modified due to temperature-induced damage to
the central peripheral receptors or preoptic region (Crawshaw & Hammel 1974; Prosser
& Nelson 1981). If the thermal shock is below lethal levels, it may allow fish to alter
their physiology to a point at which alternative habitats can be utilized (Bevelhimer &
Bennett 2000, Browse & Xin 2001, Portner 2002). CTmax is biologically important,
because at this temperature fish are unable to escape conditions that will quickly lead to
their death (Beitinger ef al. 2000). Climate change is a concern for biota of all
ecosystems, however, freshwater fish are more vulnerable to increasing temperatures due
to limited thermal refuge (Morgan et al. 2001). In catfish production ponds there is no
alternative habitat for fish to utilize during times of thermal stress, therefore, the fish
must acclimate or die.

In conclusion, this study indicates that catfish geographic strains (i.e. northern vs.
southern origin) and types (i.e. channel catfish vs. hybrid catfish) differ in short-term
thermal tolerance. Thermal recovery also improved with increasing body size. To obtain
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a clearer, and broader representation of long-term temperature effects on survival and
growth in and amongst various strains of channel and hybrid catfish, chronic elevated
thermal effects should be examined (Jobling 1981). Finally, given the results of this study
which imply genetic control of temperature tolerance, genetic evaluation of thermal

resistance in channel and hybrid catfish strains should be further explored.
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Table 2.1  Catfish weight and length differences.

Strain Mipimum Ma.ximum Mean weight ~ Minimum Maximum IIZIne ;t?l
weight (g)  weight (g) (2) length (mm)  length (mm) (mm)
Southern Channel 60 241.9 162.8+7.7 200 320 275.2+4.9
Southern Hybrid 34.1 235.6 120.3+£8.9 162 290 235.846.1
Northern Channel 59.6 258.2 137.3£10.9 198 315 251.5+6.8
Northern Hybrid 50 246.8 105.3£7.5 167 275 224.0+4.8

Catfish type body size differences depicted by minimum, maximum and mean (£
standard error) weight in grams and minimum, maximum and mean (+ standard error)
length in millimeters. Each strain used in the experiment had a sample size of 30
individuals.
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Figure 2.1  Acute thermal trial experimental set-up.

Top view diagram of the setup used to test critical thermal maxima.

32



>

40.0 -
%)
.
E
E 39.5
= b
(1] a
E T
™
E 300
Lot
L~
|_
w©
o
=
S |
South
Range
B
40.0 -
%)
L
E
3 395 4 a
E
e b
E I
W 39.0 4
E
|
€
£~
|_
E 385
el
T
U J
U‘.U’ - T
Channel Hybrid
Catfish Type

Figure 2.2  Effects of (A) range and (B) catfish type on critical thermal maximum
(CTmax).

Mean (+standard error) critical thermal maximum (CTmax) by (A) geographic range
(northern and southern) and (B) type (channel catfish (Ictalurus punctatus) and hybrid
catfish (I punctatus X I. furcatus)) of catfish. Different letters indicate significant
differences between strains or types (analysis of covariance (ANCOVA), Tukey’s HSD
post-hoc test, p<0.05).
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Figure 2.3  Probability of survival relative to fish length.

Probability of survival relative to fish length of (A) geographically distinct catfish strains
(northern and southern) and (B) all catfish 24 hours following acute trials. A significant
effect of length on survival (p=0.02) was observed with large fish having increased
survival. A trend (p=0.08) of southern catfish having increased survival over northern
catfish was also observed. A general linear model using the proc logistic procedure in
SAS was run to determine the effect length and geographic range on survival. A logistic
regression predictive model was then generated for probability of survival using the
equations pN=1/(1+exp(logitN)) where logitN=11.5804-0.0335*length+0.9609 and
pS=1/(1+exp(logitS)) where logitS=11.5804-0.0335*1ength. (Tukey’s HSD post-hoc test,
p<0.05).
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CHAPTER III
EFFECTS OF CHRONIC UPPER TEMPERATURE REGIMES ON GROWTH OF

TWO GEOGRAPHIC STRAINS OF CHANNEL AND HYBRID CATFISH

Abstract

Climate change is a growing concern for pond culture of catfish, due to possible
exacerbation of temperature fluctuations and increased maximum daily temperatures.
Because channel catfish (Ictalurus punctatus) have a broad natural distribution from
Canada to Mexico, it was hypothesized that natural differences in thermal tolerance and
seasonal growth may be attributed to different geographic strains. Further, it was
hypothesized that these differences would be observed in hybrid catfish (1. punctatus x
[blue catfish] Z. furcatus). Chronic thermal tolerance and growth rate were quantified in
two geographically distinct strains of channel catfish and a corresponding hybrid catfish
from one of these strains with a cross to an industry standard blue catfish strain. In a six-
week growth experiment, catfish were subjected to daily cycling temperatures of either
27-31°C or 32-36°C, mimicking pond fluctuations. Hybrid catfish had the highest
survival at both temperatures and both strains of channel catfish had greater growth in
weight or length at 27-31°C than at 32-36°C. Therefore, these results indicate that
physiological performance, in terms of growth, decreases in channel catfish at
temperatures greater than 27-31°C regardless of geographic origin of strain, whereas

hybrid catfish did not show a decrease in weight under the same temperature conditions.
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Introduction

Channel catfish Ictalurus punctatus have a natural geographic distribution from
southern Canada to northern Mexico which encompasses a thermal range from 5-35°C
(McCauley & Beitinger 1992; Bennett ef al. 1998; Tavares-Dias & Moraes 2007).
Channel catfish are found in a wide range of environmental conditions (i.e. temperature,
salinity and turbidity) (Jackson 2004). This resilience is one of the factors that make
channel catfish suitable for aquaculture. In 2012, the majority of the United States (US)
catfish production took place in Mississippi, with a total sales value of $341 million,
making it an economically important species (USDA 2013). Male blue catfish /. furcatus
are frequently hybridized with female channel catfish in aquaculture to produce offspring
with higher dress-out percentages, faster growth, easier harvest by seining and angling,
more uniform size at harvest, greater resistance to enteric septicemia, and greater
tolerance of low oxygen levels and crowding in pond systems (Giudice 1966; Yant et al.
1976; Dunham ef al. 1983; Smitherman et al. 1983; Li et al. 2004; Ligeon et al. 2004;
Dunham & Argue 2011; Kumar & Engle 2011). Blue catfish also have a natural
distribution that extends further south than channel catfish, ranging from the Mississippi
River basin and Gulf Coast through Mexico and into Guatemala and Belize (Graham
1999).

Catfish are poikilotherms, thus their physiology is influenced by environmental
temperature, with best growth performance occurring within an optimal temperature
range (Hutchison & Maness 1979). Knowledge of the optimal temperature of a species is
essential to maximizing aquaculture yield (McCauley & Casselman 1981; Kellog & Gift
1983). Previous studies have demonstrated superior weight gain at temperatures ranging
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from 26.6-32°C for channel catfish (Shrable ef al. 1969; Kilambi et al.1971; Andrews &
Stickney 1972; Buentello, Gatlin & Neill 2000; Li ef al.2008; Arnold et al. 2013). Diaz &
Biickle (1999) found that channel catfish preferred a temperature of 29°C when allowed
to move between temperatures of 10-40°C.

The majority of catfish production in the US occurs in the southeast (92%), where
some of the warmest conditions are found (Mott & Brunson 1995). Temperatures in
aquaculture ponds in the Southeastern US may reach daily maximums up to 34-36°C
with daily fluctuations averaging 4°C in May-August (Arnold et al. 2013). Average
temperatures in the Mississippi alluvial plain (Mississippi Delta) US have risen 3°C from
1970 to 2010 (NOAA 2013) and the US Global Change Research Program predicts that
temperatures will continue to rise country wide by either 2.5°C in a lower emission
scenario or by 5°C with an increase of 6°C in summer months in a higher emission
scenario by 2080 (Karl ez al. 2009). Global climate change may exacerbate pond
temperature fluctuations and increase maximum daily water temperatures due to air
temperature, solar radiation and humidity (Hansen et a/. 2006; De Silva & Soto 2009).

Although fish can acclimate to temperatures higher than their optimal range,
prolonged (chronic) high temperatures can cause physiological stress. Chronic thermal
ranges (31-35°C) characteristic of pond conditions have been shown to decrease growth
in catfish (Arnold et al. 2013), which can be an indicator of stress. Physiological stress
can affect metabolism, fecundity and susceptibility of fish to disease or toxicants, which
can result in population-level effects (Bevelhimer & Bennett 2000; De Silva & Soto

2009).
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Fish species may have different chronic upper temperature tolerance or sensitivity
based on their geographic distribution (Pulgar ef al. 2005). With aquaculture species such
as channel catfish, fish are unable to migrate and in some cases acclimation is hindered as
well, leaving inherited genetic resilience as the main biological option to resist
temperature effects (Ficke et al. 2007). Genetic traits may be related to a fish's ability to
acclimate to temperature change, with acclimation defined as the short term adjustment
of preexisting biochemical systems to temperature (Hochachka & Somero 2002).
Therefore, realistic temperatures that approximate conditions fish experience, such as
daily and seasonal chronic thermal fluctuations are needed.

The objectives of this study were to quantify chronic upper temperature tolerances
and growth rates of two geographically distinct strains of channel catfish and one
corresponding hybrid with a cross to an industry standard blue catfish strain. It was
hypothesized that strains of channel catfish would have different upper temperature
tolerance ranges relative to their natural geographic distribution and that this would be
reflected in differences in growth and survival. Thus, strains with an originally southern
natural range would have greater upper temperature tolerance relative to strains with a
natural northern range and consequently greater growth and higher survival rates (Mayo
1999). Based on previous studies, it was expected that fish at temperatures above 32°C
would grow at a slower rate and have decreased survival. Additionally, it was
hypothesized that the hybrid catfish would outperform their relative channel strains in
growth and survival since blue catfish have a more southern natural distribution and thus

inhabit typically warmer climates.
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Material and methods
Fish Source and Acclimation

In this study chronic upper temperature tolerance and growth rate of two
geographically distinct strains of channel catfish and the corresponding hybrid catfish
from these strains (with a cross to an industry standard blue catfish strain) were
quantified. The strains of channel catfish used were: Delta Select (from the Mississippi
Delta, Mississippi) and Red River (from the Red River, North Dakota). These two strains
were selected based on their disparate geographic distributions.

The Delta Select (southern channel) strain is a commercially representative strain
developed at the Thad Cochran National Warmwater Aquaculture Center (NWAC) in
Stoneville, Mississippi. It is a first generation composite of families collected from 80-
100 random spawns from 10 commercial catfish farms in the Mississippi Delta.
Broodstock at these farms were derived from natural sources in Mississippi and Arkansas
and have been domesticated for a minimum of five generations. The Red River (northern
channel) strain was originally collected in 1988 from the Red River, North Dakota, USA
(Hudson Bay drainage) but has since been domesticated (L1 et al. 1998). In addition, two
strains of hybrid catfish, a cross between D&B blue catfish and each of the previously
mentioned pure channel catfish strains, were used. The D&B blue catfish strain is
commonly used in aquaculture to produce hybrids in the catfish industry (Xu et al. 2012).
The D&B broodstock catfish used in this experiment were from the USDA Catfish
Genetics Research Unit, and were originally obtained from Dycus Farms, Arkansas (Xu
et al. 2012), again derived from natural sources in Arkansas and domesticated for a

minimum of five generations. Similarly, the Delta Select x D&B hybrid (Delta Select

45



hybrid) is representative of commonly used strains in southeastern US commercial catfish
production. The northern channel catfish strain does not regularly experience the same
high temperatures as southern channel catfish, and is not a typical strain utilized in the
catfish industry. Therefore, the northern channel and northern hybrid catfish were not
expected to perform as well in terms of growth rate and survival.

Six male blue catfish and six female channel catfish of each strain were strip
spawned at NWAC in early May 2012 to produce the catfish used in this study (Dunham
et al. 2000; Bosworth et al. 2005). The same Delta Select females were used for both
channel and hybrid production to minimize individual differences. Fingerlings were
transported in late June to the Mississippi State University South Farm Aquaculture
Facility (South Farm) after they were eating a formulated diet, approximately 30 days
after hatching.

At the South Farm, the fingerlings were separated by strain and acclimated for
two weeks to 29°C in 430-1 circular tanks with a flow rate of 578-L/hr. The water
supplying the tanks was non-chlorinated, aerated well water maintained in a recirculating
system. A random sample of 10 fingerlings from each strain per tank was measured and

weighed to obtain initial total length and wet weight (Table 1).

System Design and Temperature Regulation

Chronic temperature trials were conducted for 6 weeks, during which fish were
exposed to daily cycling temperatures of either optimal temperatures for best food
conversion and greatest growth at 27-31°C or upper-range thermal temperatures of 32-
36°C following Arnold ef al. (2013). Cycling temperature regimes mimicked natural

pond daily temperature fluctuations. Each day starting at 0900, water temperature was
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increased from baseline temperatures of 27°C or 32°C to peak temperatures of 31°C or
36°C. Peak temperatures were reached by 1730, after which temperatures were slowly
decreased to 27°C and 32°C for optimal and high thermal treatments respectively (Fig.
1).

At each of the two temperature regimes, there were three catfish types (southern
channel, northern channel and southern hybrid) with 3 replicate 430-L tanks per
temperature and treatment, and 60 fingerling (average 80.5 mm long) catfish per tank, for
a total of 18 tanks. Due to space limitations, the northern hybrid catfish were limited to
only one tank per temperature treatment, and were included for comparison purposes but
not analyzed statistically. All tanks in each temperature treatment were connected to a
large recirculating system that consisted of a sump tank (125 L), an insulated reservoir
tank (1900 L), a large heat pump (HP-7, Aqualogic Inc, San Diego, CA), mechanical and
biological filters and ultraviolet sterilization. Each of the recirculating systems was
supplemented with new well-water which maintained high water quality and acted to
slowly reduce water temperature after the daily peak period. The system was backflushed
twice weekly to remove biological waste.

Fish were held under a simulated natural photoperiod (12 hours and 29 minutes
L:11 hours and 31 minutes D — 12 hours and 49 minutes L:11 hours and 11 minutes D for
latitude, longitude: 33 27.4°N, 88 49.3°W) which was adjusted weekly. All tanks were
aerated by air stones and covered with mesh covers. All mortalities were removed
immediately, recorded and taken to the Mississippi State University College of
Veterinary Medicine Fish Diagnostic Laboratory for necropsy. At the end of the six week
chronic trial period, each fish was anesthetized, measured and weighed after 24 hours of
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fasting to determine growth according to Mississippi State University Animal Use

Protocol #12-035.

Feeding Regime

Fish were fed ad libitum twice daily with a formulated 1.6 mm pelleted diet of
449% protein (Rangen Inc., Buhl, ID), based on feeding protocols used at Thad Cochran
NWAC. Fish were fed diets with higher protein than typically used in production so not
to stunt growth. Following one hour of allotted feeding time, if all food was consumed,
additional pellets were provided and the fish were given an additional 15 minutes to feed.
This process continued until there was a substantial amount of pellets remaining (>50
pellets). At this point all uneaten pellets were netted out of the tanks and waste was

siphoned daily following feeding.

Water Quality

Total ammonia nitrogen (TAN), nitrite (NOy"), alkalinity and hardness of water
were measured twice weekly using a commercial kit (AQ-3, LaMotte Company,
Chestertown, MD). Dissolved oxygen (DO) concentrations and pH were measured three
times a week using a DO meter (Y55, YSI Inc., Yellow Springs, OH) and a pH meter
(pH10N, YSI Inc., Yellow Springs, OH). Temperature was monitored once daily using a
digital thermometer (Traceable, VWR, Atlanta, GA) and every 15 minutes throughout the
experiment using data loggers (HOBO U22 Water Temp Pro v2 data loggers, Onset
Corporation, Bourne, MA). Unionized ammonia was calculated using TAN, temperature,
and pH levels. Water quality conditions were maintained within guidelines presented by

Tucker & Robinson (1990) for optimal growth of channel catfish: ammonia 0.1-1.0
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mg/L, unionized ammonia <0.05 ppm, nitrite <0.1 mg/L, nitrate <50 mg/L, alkalinity 20-

400 ppm, hardness 20-400 ppm, dissolved oxygen >5 mg/L, and pH 6.5-8.0 (Table 2).

Measuring Growth

To quantify effects of temperature on growth, fish were weighed to the nearest
0.01 g and measured to the nearest 1 mm at the beginning and end of the experiment. In a
pilot study it was found that individual measurements caused post-measurement
mortality. Therefore, for the growth study, group weights of ten fish were taken in five
batches per tank, then individual weights and lengths were measured on the ten fish in the
sixth batch for initial weigh outs. For the final weigh out, individual weights and lengths

were recorded on all surviving fish.

Measuring Survival

In a pilot study, catfish were found to be susceptible to bacterial pathogens in both
temperature treatments. Therefore, prior to the growth study, fish were treated for
bacterial pathogens using oxolinic acid medicated feed at a rate of 24 mg/kg body weight
for 6 days, a one-time 2 mg/L potassium permanganate bath for 30 minutes and several
30-minute NaCl (solar salt) baths at 3 ppt over a one week period. After this period, all
fish appeared healthy and a constant salinity of 1 ppt was maintained thereafter to
minimize future bacterial infections. All fish showing signs of disease were evaluated by

a fish pathologist at Mississippi State University College of Veterinary Medicine.

Statistical Analysis

All statistical analyses were conducted using R software (R Core Team). Akaike's

information criterion (AIC) (Burnham & Anderson 2002) was used to measure relative
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goodness of fit of statistical models. We inspected the residuals and used a Shapiro-Wilk
test to check for heteroscedasticity. A two-way analysis of variance (ANOVA) was
conducted on initial weights and lengths using factors of temperature and strain. There
were no significant differences between initial lengths of fish between strains,
temperature or the interaction of strain and temperature. There was a significant
relationship between initial weight and strain, although the actual difference in initial
weight was only 0.9 g (Table 1). Because initial weights were significantly different
between strains, weight gain was analyzed instead of final weight. A two-way analysis of
covariance (ANCOVA) was run with a covariate of initial weight to account for
differences in initial weight, and a Tukey’s post-hoc test was used to compare means of
change in weight between strains and temperature ranges.

A two-way ANOVA was run on change in length with factors of temperature and
strain. Mortality data was logio transformed to meet normality and then a two-way
ANOVA was run with factors of temperature and strain. A Holm-Sidak test was used to
compare means.

A two-way ANOVA was run on dissolved oxygen levels and percent with factors
of temperature and strain. Differences among means were declared significant using an o

of 0.05.

Results
Growth

Growth, in terms of weight gain or length gain was lower at the 32-36°C than 27-
31°C temperature range for both northern and southern channel catfish. A significant

difference (F=6.35, P=0.01, df=2) of weight gain was found in the interaction between
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strain and temperature. Differences were found between northern channel catfish at the
32-36°C temperature range and northern channel catfish at the 27-31°C temperature
range (P<0.01) as well as between northern channel catfish at the 32-36°C temperature
range compared to southern channel catfish at the 27-31°C temperature range (P=0.04)
(Fig. 2). Southern hybrid catfish showed no difference in growth between the temperature
treatments.

In terms of length, the interaction between strain and temperature was not
significant (F=1.77, P=0.22, df=2) nor the main effect of strain (F=3.25, P=0.07, df=2).
The main effects of temperature (F=7.97, P<0.01, df=1) was significant. Length gain was

greater at the 27-31°C than the 32-36°C temperature range (Fig. 3).

Survival

There was no significant effect of the interaction between temperature and strain
on mortality. There was a significant effect of strain (F=10.98, P<0.01, df=2) and
temperature (F=10.21, P<0.01, df=1) on mortality. Southern hybrid catfish had
significantly greater survival than southern channel catfish (£<0.01) or northern channel
catfish (P<0.01) (Fig. 4a). However there was no significant difference in mortality
observed between southern and northern channel catfish. Greater mortality was observed
at 27-31°C than at 32-36°C (Fig. 4b). Columnaris disease (Flavobacterium columnare)
was the primary cause of mortality for both southern and northern channel catfish during
the study, with mortality rates of 11% and 7% in southern and northern channel catfish

respectively. Southern and northern hybrid catfish had mortality rates of 0.5%.
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Dissolved Oxygen

Temperature had a significant effect on dissolved oxygen levels (F=179.74,
P<0.01, df=1). Dissolved oxygen levels were not different between strains. All dissolved
oxygen levels were maintained above growth-limiting levels of 70% (Buentello et al.

2000) or common management conditions of 5 mg/L (Small 2006) (Table 2).

Discussion
Growth

The findings of this study indicate that small temperature increases over current
summer conditions can have detrimental impacts on growth of channel catfish. Further,
this effect was observed in both geographic strains (northern or southern origin) in terms
of either weight or length. In contrast, hybrid catfish did not decrease in growth with
increased temperature, and had lower mortality in both temperature treatments than the
channel catfish. Although it is possible that tank density differences caused by greater
mortality rates of catfish at the 27-31°C temperature range may have contributed to
greater growth, densities were relatively low, density differences were small (<11%), and
feed was provided in excess to all treatments. Thus, hybrid catfish may offer greater
potential for the catfish industry in the future in the face of increasing climatic change.

This study demonstrated a decrease in growth of northern channel catfish reared
at a temperature range of 32-36°C compared to an optimal temperature range of 27-31°C.
Suja et al. (2009) reared stocker channel catfish averaging 111.4+1.7 g (mean+SE) at two
constant temperatures of 27°C and 32°C in a recirculating system, and found that channel
catfish raised at the 32°C temperature were smaller than those raised at the 27°C

temperature, supporting the findings of this study. Similarly, McCauley et al. (1992)
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found that growth rate of channel catfish increases with temperature until the thermal
range of 27-30°C, after that point growth decreases rapidly. Arnold et al. (2013)
compared growth rates of channel catfish at the 27-31°C temperature range as well as 23-
27°C and 31-35°C. Channel catfish at the 27-31°C range grew larger than those at the
temperature range above or below. Chronic upper temperature effects examined in this
study represent realistic settings and application because in their natural environment fish
experience daily and seasonal thermal fluctuations, being able to actively regulate their
physiology (Ju et al. 2002).

Little information is known about temperature effects on hybrid or blue catfish in
relation to growth. However southern populations of blue catfish have demonstrated
improved growth in comparison to northern populations (Graham 1999), a difference
believed to be due to southern populations becoming sexually mature sooner than
northern populations (Hale & Timmons 1989), extended growing season and greater food
diversity (Graham 1999). The results of this study indicate that growth in hybrid catfish is
not reduced at the same high temperatures that affect growth in channel catfish. Thus,
thermal tolerance of hybrid catfish may be greater than channel catfish. Hybrid catfish
have demonstrated poor growth in tank systems (Small 2006), which is presumably why
they did not grow as well as channel catfish at the 27-31°C temperature range. Dunham e¢
al. (1990) found that hybrid catfish grew faster than channel catfish in ponds, however
the opposite was true for rearing in cages. When grown in ponds from fingerling to
market size, hybrid catfish significantly outperformed channel catfish at all densities
(Dunham et al. 1987). Thus, in this experiment, hybrid catfish may have performed better
relative to channel catfish if they had been grown in ponds. Notably, the conditions were
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the same for hybrid catfish at both temperature treatments, therefore, the effects of
temperature on hybrid catfish are comparable.

Differences in growth were seen between strains of channel catfish with
geographically distinct populations, indicating that temperature effects on growth of
channel catfish may be widespread geographically. It is also possible that be differences
in growth may have been influenced by differences in length of domestication of strains.
Channel catfish strains have been found to have varying body composition indices (Small
2006). Length and weight differences between strains was not due to lack of protein or fat
content nor limitation of food because both strains were fed the same feed to satiation.
Carlander (1977) observed faster growing channel catfish in the southern portion of the
range, although he stated that there is little evidence of regional differences in growth.
Modde & Scalet (1985) found largemouth bass (Micropterus salmoides) from a
geographic distribution of North Dakota to Texas had increased growth rate and
maximum size in the southern range. Growth, a measure of thermal sensitivity, has been
influenced by geographic distribution and temperature in muskellunge (Esox
masquinongy) as well (Wolter ef al. 2011) with populations originating from low
latitudes demonstrating maximum growth under higher thermal regimes (Wolter 2012).
These differences in growth over a wide latitudinal distribution are believed to be due to
temperature since it affects energy reserves via alterations in metabolism and food
consumption (von Bertalanfty 1960; Lagler et al. 1977; Kassahn et al. 2007; Vergauwen
et al. 2010). The fish used in this study were all raised at the same latitude, at the same
temperature ranges and under the same conditions which implies that growth and survival
may be genetically heritable traits.
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Survival

Contrary to the original hypothesis, no significant difference in mortality between
southern and northern strains was found. Results indicated that hybrid catfish have better
survival than channel catfish at high temperatures. Although not tested statistically due to
a lack of replicates, the northern hybrids also had low mortality. Similarly, hybrid catfish
grown for two seasons in earthen ponds had a higher survival rate than channel catfish
under the same conditions (Dunham et al. 1987). Given the good water quality (Table 2),
daily cleaning regimen, well-fed state of fish and minimal amount of human contact with
fish; mortalities were presumably related to thermal stress. Unexpectedly, fish in this
study, at the temperature range of 27-31°C had higher mortality than those at 32-36°C
which was witnessed by Suja et al. (2009) with a 4% higher survival in fish reared at
32°C compared to fish reared at 27°C.

Water temperature can increase the susceptibility of infectious disease in catfish
by affecting both immunocompetence and assisting pathogens. Diseases exacerbated by
high temperatures are channel catfish virus disease (CCVD), enteric septicemia of catfish
(ESC) and branchiomycosis (“gill rot””) followed by secondary bacterial infections such
as Aeromonas hydrophila or Flavobacterium columnare (Plumb 1978; Francis-Floyd et
al. 1987; Plumb & Shoemaker 1995; Hawke & Khoo 2004). In this study the primary
pathogen found was Flavobacterium columnare which mostly commonly affects channel
catfish at temperatures ranging from 25-32°C (Durborow ef al. 1998). Therefore, disease
could have been a contributing factor to the increased mortality rates in fish at the 27-

31°C range.
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Conclusion

McCauley et al. (1992) predict that the zone of primary catfish production will
move 240 km north in the central part of the US with each 1°C increase of annual
temperature. If current atmospheric models hold true and mean global temperature
increases of 1-7°C occur (Ficke et al. 2007), then this could be detrimental to the
Southeastern US catfish industry. Although this study maintained high dissolved oxygen
levels, water temperature and dissolved oxygen availability are closely intertwined. With
increasing temperatures dissolved oxygen levels drop and metabolism increases.
Dissolved oxygen is necessary to sustain energy demands and thus if it is limited growth
may be affected (Buentello ef al. 2000). Therefore, the potential effects of climate change
on the culture of channel catfish need to be considered in future management practices.
Further inspection should be conducted with market sized catfish because only fingerling
catfish were examined in this study. Also, northern hybrids should be examined because
the necessary number of replicates were unable to be included in this study due to facility
size constraints. Dunham et al. (1987) found there is an effect of strain or family line on
growth when producing hybrid catfish. The present study relies on six male blue catfish
and six female channel catfish of each strain, thus additional studies should be run on
other families to compare channel and hybrid catfish performance. Use of hybrid catfish
could be one potential solution to the impact of climate change on the catfish industry,
although future research on genetic responses to temperature in both hybrid and channel
catfish and temperature tolerance of hybrid catfish are needed. With knowledge of
potentially heritable genes related to differences in physiological performance at high
temperature and thermally tolerant genes, breeding programs may be developed to further
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optimize growth with increasing temperatures. Hybridization of southern channel catfish

strain with high performing blue catfish strains may enhance catfish production and yield.
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Table 3.1  Initial lengths and weights of catfish.

Initial Mean

Strain Weight () Initial Mean Length (mm)
Northern Channel 4.95+0.09 79.50+0.72
Southern Channel 4.14+0.05 82.23+1.24

Southern Hybrid 4.05+0.05 79.92+1.04
Northern Hybrid 4.16 76.55

Mean (+ standard error) initial lengths and weights of channel (Ictalurus punctatus) and
hybrid (1. punctatus X I. furcatus) catfish by strain.
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Figure 3.2  Effect of temperature on weight gain of catfish.

Mean (+standard error) weight gain of geographically distinct channel catfish (Ictalurus
punctatus) strains and hybrid catfish (1. punctatus X I. furcatus) at optimal (27-31°C) and
upper thermal ranges (32-36°C). Different letters indicate significant differences between

treatments (two-way ANCOVA, covariate = initial weight, Tukey’s HSD post-hoc test,
P<0.05).
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Figure 3.3  Effect of temperature of length gain of catfish.

Mean (+standard error) length gain by temperature in geographically distinct channel
catfish (Ictalurus punctatus) strains and hybrid catfish (1. punctatus X I. furcatus).
Different letters indicate significant differences between treatments (two-way ANOVA,
Tukey’s HSD post-hoc test, P<0.05).
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Figure 3.4  Effect of (A) strain and (B) temperature on mortality.

Mean (+standard error) percent mortality by (A) strain and (B) temperature in
geographically distinct channel catfish (I/ctalurus punctatus) and hybrid catfish (7.
punctatus X 1. furcatus). Temperature (P<0.01) and strain (P<0.01) had significant
effects on mortality. Different letters indicate significant differences between treatments
(two-way ANOVA, Tukey’s HSD post-hoc test, P<0.05).
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CHAPTER IV
COMPARATIVE TRANSCRIPTOMICS OF CHRONIC HIGH TEMPERATURE
EFFECTS ON GEOGRAPHIC STRAINS OF CHANNEL AND

HYBRID CATFISHES

Abstract

Ectotherms are highly vulnerable to changes in temperature, thus global climate
change is a growing concern. This study examined differentially expressed (DE) gene
transcripts of and regulated pathways of two geographically distinct channel catfish
(Ictalurus punctatus) strains and one hybrid catfish (/. punctatus x [blue catfish] L.
furcatus) strain following a six-week growth experiment, where fish were subjected to
daily cycling temperatures of either 27-31°C or 32-36°C, mimicking pond fluctuations.
We sequenced 18 cDNA libraries of liver samples to obtain 61 million reads per library.
There were 5,443 DE transcripts and 41,689 regulated pathways. Northern channel
catfish had the highest amount of DE transcripts (48.6%), 5 times that of southern
channel catfish, and the greatest amount of transcripts with fold changes > 2. The overall
amount of temperature-induced DE transcripts between southern hybrid and southern
channel catfish was fairly comparable in relation to that of northern channel catfish,
however, there were more transcripts up- or downregulated with > 2 fold changes in
channel catfish strains compared to the southern hybrid catfish. Results from this study

strongly suggest genetic differences between geographic catfish types affect
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physiological responses to thermal stress. Furthermore, a number of genes were linked to
thermal stress tolerance, which may be beneficial for understanding geographic
differences in thermal stress tolerance in ectotherms and for strain development of

catfish.

Introduction

Physiological processes in ectotherms are directly influenced by environmental
temperature with optimal performance occurring within a limited temperature range
(Hutchison & Maness 1979). This characteristic makes ectotherms highly vulnerable to
altered weather patterns such as prolonged warming periods and climate variability
(Portner 2002; Brander 2007; Ficke et al. 2007). Thus, predicted increases in
temperatures of 1-7°C, under climate change models (Ficke et al. 2007) may impose
limits on the normal adaptive capacity of ectotherms (Brander 2007). Therefore, studies
of thermal adaptive capacity in ectotherms are important for understanding impacts of
temperature on physiological processes such as: metabolism, growth, energy expenditure,
and reproduction (Crawshaw & Hammel 1974; Hutchinson & Maness 1979; Gunter ef al.
2007).

Comparative transcriptomics, a method of gene expression profiling, has proven
effective for revealing transcriptional responses contributing to adaptation to
environmental changes (Cossins et al. 2006; Gracey 2008; Prunet et al. 2008). This
technique is a valuable tool for examining the molecular basis of physiological plasticity,
and has been widely used in fishes. Previous transcriptomic research on fishes has

focused on the ability of species to survive in environments with volatile conditions:
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particularly oxygen availability, salinity and temperature (Gracey et al. 2001; Podrabsky
& Somero 2004; Buckley et al. 2006; Fangue et al. 2006; Logan & Somero 2010).

Transcriptomics can be used to detect temperature-induced stress responses
(Prunet et al. 2008, Tomanek 2010, Vergauwen et al. 2010, Liu et al. 2013). The main
transcripts observed in ectotherms under high temperature stress are related to cell cycle
and apoptosis such as CDKN1B and SGK1; cytoskeleton organization and biogenesis,
such as dynein and cyclin G1 genes; protein folding and translation regulation such as
ribosomal proteins, ubiquitin and heat shock proteins (HSP) (Truebano et al. 2010; Logan
& Somero 2011); and cellular repair and immune function such as DnaJB11 and
elastase? (Kassahn ef al. 2007). Of these genes, HSPs are well described for their
cytoprotective properties: improving the capability to recover and survive thermal stress
by repairing denatured proteins and stabilizing DNA (Bukau & Horwich 1998; Kregel
2002; Portner 2002; Pockley 2003; Roberts ef al. 2010; Dalvi et al. 2012). HSPs are also
involved in fish immune responses, apoptosis and the inflammatory process with
apoptosis occurring if the stressor is too severe (Ellis 2001; Pirkkala et al. 2001). Long-
term HSP expression occurs at the expense of other protein synthesis (Tomanek &
Somero 2000). A number of comparative gene expression studies have been conducted in
aquaculture environments.

In aquaculture, warming temperatures can have undesirable consequences on
culture species, such as altering: growth (Brett 1979; McCauley & Beitinger 1992;
Brandt 1993), reproductive capacity (Lang et al. 2003), spawning timing (Brander 1994;
Barange & Perry 2009), physiology (Brett 1956), behavior, immune system function and
mortality (Le Morvan et al. 1998; Ficke ef al. 2007). In addition, climate change can
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potentially affect the productivity of aquaculture by creating logistical and environmental
complications in production, limiting fishmeal and fish oil for feed production, increasing
prevalence of pathogens (De Silva & Soto 2009; Handisyde et al. 2006) and decreasing
oxygen availability in summer months (Brander 2007). Species may be rendered
unsuitable for previously ideal culture regions, forcing production to move to cooler
regions or necessitating replacement with more tolerant species (McCauley & Beitinger
1992; Clemmensen et al. 2007).

Fish species may have different chronic thermal tolerance or sensitivity based on
their geographic distribution (Pulgar ef al. 2005), which may be manifested by
temperature-induced differences in growth and survival. Increased thermal tolerance is
particularly important to the US catfish industry with the threat of climate change. The
geographic range of channel catfish (Ictalurus punctatus) encompasses southern Canada
to northern Mexico (McCauley & Beitinger 1992) and subsequently a vast range of
environmental conditions, such as temperatures from 5-35°C (Bennett et al. 1998; Clark
& Burns 2008; Tavares-Dias & Moraes 2007). Despite the broad thermal distribution of
channel catfish, shifts in temperature can be detrimental. Energy put towards acclimation
is taken away from other physiological processes. Temperatures outside of optimal range
may impact growth and survival (Stewart et al in review). Since 2001, blue catfish (1.
furcatus) have been frequently crossed with channel catfish to produce hybrid catfish for
the catfish aquaculture industry (Chatakondi 2012). Blue catfish have a more tropical
geographic range than channel catfish, occupying the central United States to Mexico,
northern Guatemala and Belize (Graham 1999), which may indicate a greater thermal

tolerance than channel catfish. Southern populations of blue catfish have demonstrated
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improved growth in comparison to northern (Graham 1999); this difference is believed to
be due to southern populations experiencing earlier sexual maturity (Hale & Timmons
1989), extended growing seasons and greater food diversity (Graham 1999).
Hybridization produces offspring with higher dress-out percentages, faster growth, more
uniform size at harvest, greater resistance to disease, and greater tolerance of low oxygen
levels and crowding in pond systems (Giudice 1966; Yant et al. 1976; Smitherman et al.
1983; Dunham et al. 1983; Li et al. 2004; Ligeon et al. 2004; Dunham & Argue 2011;
Kumar & Engle 2011). Hybrid catfish have demonstrated increased survival and more
consistent growth in comparison to channel catfish between temperature ranges of 27-
31°C and 32-36°C (Stewart et al., in review).

Catfish aquaculture is the largest aquaculture industry in the US (Goldburg ef al.
2001). The shallow design of catfish ponds (most are only 1.5 meters deep) makes them
susceptible to changes in environmental conditions (Tidwell 2012). Water temperature
fluctuations of 3-6°C from morning to afternoon have been observed (Wax et al. 1987;
Arnold ef al. 2013) with daily maximums up to 36-40°C for short durations during the
summer (Liu et al. 2013). Therefore, an understanding of how high temperatures and
changing climate are going to affect channel and hybrid catfish populations is needed.
Breeding programs and population selection for heightened performance can lead to
overall improvement of catfish strains if adaptive mechanisms for tolerating thermal
stress and related genes are identified.

This study examined differential gene expression of two geographically distinct
channel catfish strains and one hybrid catfish strain under simulated natural thermal

regimes. Based off of previous research on acute heat stress, which found southern
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channel catfish to have greater heat tolerance than northern (Stewart & Allen in press), it
was hypothesized that northern channel catfish would have greater heat stress than
southern channel catfish following prolonged upper range temperature exposure. It was
predicted that large amounts of differentially expressed (DE) gene transcripts,
representing heat stress, would be greater in northern channel catfish than southern
channel catfish. Since hybrid catfish had more consistent growth and low mortality at
upper range temperatures, while channel catfish had decreased growth (Stewart ef al. in
review), it was hypothesized that there would be lower amounts of DE gene transcripts in

hybrid catfish compared to channel catfish of the same strain.

Methods
Strains

Two geographically distinct strains of channel catfish and the corresponding
hybrid catfish from one of these strains (with a cross to an industry standard blue catfish
strain) were used in this study. The strains of channel catfish used were: Delta Select
(from the Mississippi Delta, Mississippi) described as southern and Red River (from the
Red River, North Dakota) described as northern. These two strains were selected based
on their disparate geographic distributions. Broodstock were obtained and maintained as

previously described (Stewart et al in review).

System Design and Temperature Regulation

Chronic temperature trials were conducted for 6 weeks, during which fish were
exposed to daily cycling temperatures of either optimal temperatures for best food

conversion and greatest growth at 27-31°C or upper-range thermal temperatures of 32-
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36°C following Arnold ef al. (2013). Cycling temperature regimes mimicked natural
pond daily temperature fluctuations. Each day starting at 0900, water temperature was
increased from baseline temperatures of 27° C or 32 °C to peak temperatures of 31°C or
36°C. Peak temperatures were reached by 1730, after which temperatures were slowly
decreased to 27°C and 32 ° C for optimal and high thermal treatments respectively
(Stewart et al. in review).

At each of the two temperature regimes, there were three types of catfish
(southern channel, northern channel, and southern hybrid) with 3 replicate 430-1 tanks per
temperature and strain treatment, and 60 fingerlings (average 80.5 mm long) per tank, for
a total of 18 tanks. All tanks in each temperature treatment were covered by mesh covers
and connected to a large recirculating system that included mechanical and biological
filtration, ultraviolet sterilization and aeration. Each of the recirculating systems was
supplemented by a continuous, slow flow of new well-water, which maintained high
water quality and acted to slowly reduce water temperature after the daily peak
temperature period.

Fish were held under a simulated natural photoperiod (12 hours and 29 minutes
L:11 hours and 31 minutes D — 12 hours and 49 minutes L:11 hours and 11 minutes D for
latitude, longitude: 33 27.4°N, 88 49.3°W) which was adjusted weekly. Mortalities were
removed immediately, recorded and taken to the Mississippi State University College of
Veterinary Medicine Fish Diagnostic Laboratory for necropsy. At the end of the 6 week
chronic trial period, each fish was anesthetized, measured and weighed after 24 hours of
fasting to determine growth according to Mississippi State University Animal Use

Protocol #12-035.
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Feeding Regime

Fish were fed ad libitum twice daily with a formulated 1.6 mm pelleted diet of
449% protein (Rangen Inc., Buhl, ID), based on feeding protocols used at Thad Cochran
National Warmwater Aquaculture Center (NWAC) as described by Stewart et al. (in

review).

Water Quality

Water quality was monitored as described by Stewart et al. (in review), with
acceptable water conditions maintained: ammonia 0.1-1.0 mg/L, unionized ammonia
<0.05 ppm, nitrite <0.1 mg/L, nitrate <50 mg/L, alkalinity 20-400 ppm, hardness 20-400

ppm, dissolved oxygen >5 mg/L and pH 6.5-8.0 (Jensen 1988, Tucker et al 1990).

Sampling and RNA isolation

At the end of the 6 week chronic thermal trial, liver tissue was collected from fish
euthanized with tricaine methanesulfonate (MS 222) (Argent Chemical Laboratories Inc.,
Redmond, WA) at 500 mg/L. Six fish from each tank were randomly chosen to extract
samples. Two tissue samples (~50 mg each) were excised in a sterile setting using a
sterile #24 stainless steel blade and each immediately placed in a polypropylene sterile 2
ml round bottom cryogenic vial (VWR, Atlanta, GA) containing 500 uL of TRI-reagent
(Zymo Research, Irvine, CA), and flash frozen in liquid nitrogen. All samples were
stored at -80 ° C until analysis.

For RNA extraction, one vial of liver tissue from each fish was allowed to thaw
and was then homogenized in TRI-reagent using a TissueLyser (Qiagen, Germantown,

MD). Liver was chosen for RNA extraction because of its metabolic and physiological
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importance with stress response and high rates of protein turnover (Podrabsky & Somero
2004; Logan & Somero 2011; Liu et al. 2013). The Direct-zol RNA mini prep kit (Zymo
Research) was used following homogenization according to manufacturer’s
recommendations. To prevent degradation, only four to six samples were run at a time
and kept on ice until transfer to a zymo-spin IIC column and collection tube (Zymo
research). Samples were eluted twice for more complete RNA extraction.
Spectrophotometry (NanoDrop, Thermo Scientific, Wilmington, DE) was run on
extracted RNA samples to determine purity and concentration. Bioanalysis was
performed with a 2200 TapeStation System (Agilent, Santa Clara, CA) at the Warmwater
Aquaculture Research Unit in Stoneville, Mississippi to determine RNA quality. RNA
samples that had the best RNA integrity numbers (RIN, ranging 8.2-9.9) were pooled
from 3 fish per tank for a total of 18 samples to reduce the effects of individual genetic

variation.

INlumina Sequencing, Mapping and Differential Expression

RNAseq libraries were prepared with the Tru-seq RNA Sample Preparation Kit
V2 Illumina (catalog #RS-122-2001) at Global Biologics (Columbia, Missouri). DNA
libraries were sequenced (50 bp, single-end reads) on an Illlumina HiSeq 2000 using
[llumina v3 chemistry and OLB1.9.4 software for base calling by the Institute for
Genomics, Biocomputing & Biotechnology at Mississippi State University. [llumina was
chosen due to being relatively cost-effective and technically efficient (Liu et al. 2011).
Reads, a DNA sequence generated from a sequencer, were mapped to the Liu et al.
(2013) transcriptome using Bowtie2 version 2.1.0 default parameters, which return the

best mapping result for each read (Langmead & Salzberg 2012; Liu et al. 2013). The
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number of reads that map to each transcript were counted and used in the DE expression.
DE was calculated using the DESeq package for the R programming language (Anders &
Huber 2010), by comparing the high and low temperature treatment of each fish strain.
DE genes were characterized by a p-adjusted value equal to or less than 0.05 after
adjustment for multiple testing with the Benjamini-Hochberg procedure (Benjamini &

Hochberg 1995) using a false discovery rate of 10%.

Annotations

The National Center for Biotechnology Information (NCBI) nonredundant protein
(nr) and UniProtKB uniprot_sprot (UniProt) databases were downloaded 6/10/2013 and
8/25/2013 respectively (NCBI Resource Coordinators, The UniProt Consortium). The
highest scoring BLASTX alignment (Blastall 2.2.20) for each Liu et al. (2013) transcript
was reported for each database (Altschul et al 1990). Open Reading Frames (ORFs) for
each Liu ef al. (2013) transcript were predicted with with OrfPredictor using BLASTX
alignments to nr database using an E-value cutoff of 1e-10 (Min et al. 2005 a). ORF
coverage was determined using the Targetid/annotator (Min et al. 2005 b). Functional
annotation of the translated predicted ORFs was conducted with WebMGA using
HMMER3 (hmmscan 3.0) against the Pfam (PFAM 24.0) database using the parameter e-
value cutoff for prediction 0.001 (Eddy 1998, Finn et al. 2008, Wu et al. 2011) and Batch
CD-search of the NCBI Conserved Domains CD database (CDD — 44354 PSSMs) using
the parameters ‘Search mode = Automatic, Expected Value threshold = 0.01, Maximum
number of hits = 500” (Marchler-Bauer et al 2011). Pathway annotation of the translated
predicted ORFs was conducted with WebMGA using BLASTP (blastall 2.2.15)

alignments to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (KEGG
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2/12/2012) using the parameter e-value cutoff for prediction 0.001 (Ogata et al. 1999).
Signal peptide and transmembrane proteins were predicted in the translated predicted Lui
et al. (2013) ORFs using SignalP (signal 4.0) (Petersen et al. 2011). DE transcripts were
annotated using GOanna on the Agbase (Agbase Version 2.0) web server (McCarthy
2006; McCarthy 2011). A one to one reciprocal blast (BLASTX-TBLASTN, minimal bit
score of 60) was conducted with the Liu ef al. (2013) transcriptome and the zebrafish
protein sequences in Genbank (downloaded 8/14/13) (Benson 2013). BLASTX results
were analyzed two ways. The first way, they were narrowed down to significant DE
(P<0.05) and divided into five primary biological function groups: protein folding,
protein biosynthesis, proteolysis, metabolism and stress response (Table 3) from which
counts of number of transcripts upregulated or downregulated could be summed. Some
transcripts were involved in multiple processes and thus could not be easily categorized.
Results were also evaluated by narrowing down transcripts to significant DE (P<0.05),
dividing them into two categories: upregulation and downregulation for each type of
catfish and then filtering by > 2-fold change, a accepted standard of transcript profiling
studies (Gracey et al. 2001; Podrabsky & Somero 2004; van der Meer et al. 2005;
Buckley ef al. 2006). Channel catfish have been found to have enough phylogenetic
similarity to zebrafish Danio rerio to be comparable (Steinke ef al. 2006), and it is
believed that genetic predictions can be made by using zebrafish as a model (Jiang et al.
2011) which is why we performed a one to one reciprocal BLAST to compare pathways.
The pathways associated with the zebrafish proteins were obtained from the wiki

pathways, reactome and KEGG orthology (KO) databases (Croft 2011; Kelder 2012).
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Results
Illumina Sequencing, Mapping and Differential Expression

The sequencing resulted in an average of 61 million reads per library with 100
million and 48 million representing the maximum and minimum values (Table 1).
Between 36 and 76 million reads from each library were mapped to the Liu et al. (2013)
transcriptome (Table 1). There were 136,463 transcripts found unique to the database. A
total of 5,443 significant DE transcripts were found amongst the southern and northern
channel catfish and the southern hybrid catfish, of which 608 (11.2%) were found DE in
all. The northern channel catfish had the highest amount of DE transcripts at 2,644
(48.6%) compared to the 544 (9.9%) in southern channel catfish and 600 (11%) in

southern hybrid (Figure 1).

Annotations

Of the Liu ef al. (2013) transcripts, 43% and 34% had a BLASTX hit with a bit
score above 60 against the NCBI nr and UniProt databases (Table 2). OrfPredictor
translated 59,101 transcripts into the peptide sequence 27,266 were full length (Table 2).
Of the predicted protein sequences 18,276 and 11,846 were assigned annotation based on
the Pfam profiling and Batch CD-search, respectively (Table 2). KEGG pathway analysis
resulted in the association of 7,927 different pathways to 41,689 transcripts (Table 2).
Signal peptides were identified in 3,872 predicted protein sequences with the SignalP
software. Of the predicted protein sequences with signal peptides 3,608 were not
predicted to have a transmembrane domain (Table 2). GOanna produced 4,893 GO term

annotations for 3,446 DE transcripts (Table 2). The zebrafish one to one reciprocal blast
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resulted in 14,224 homologs being identified in which 627 were associated zebrafish
pathways reported in Wikipathways, Reactome, and KO.

There was far more transcriptional upregulation than downregulation for all
catfish types (Tables 3 and 4). For proteolysis, protease was only slightly more
downregulated than upregulated. Northern channel catfish had triple the amount of
downregulated protease related transcripts compared to southern channel catfish and
twice the amount of hybrid catfish. Glycosidase was upregulated in northern and southern
channel catfish but downregulated in southern hybrid catfish. Northern channel catfish
had about twice the amount of transcripts being upregulated as southern channel catfish
(Table 3).

For stress response, the adaptive immune system was upregulated primarily with
northern channel catfish having twice the amount of transcripts as southern channel and
three times the amount of southern hybrid catfish. The innate immune system was
upregulated primarily with northern channel catfish having four times the amount of
transcripts as southern channel (equal amount of transcripts up- and downregulated) and
twice the amount of southern hybrid catfish. Apoptosis was primarily upregulated with
the amount of upregulated transcripts being over twice as high in northern channel catfish
compared to southern channel and slightly under twice as many in southern hybrid
catfish. Angiogenesis was primarily upregulated in all catfish types with northern channel
catfish having four times the amount of transcripts as southern channel and 1.5 times the
amount of southern hybrid catfish. Cell development and growth was mainly upregulated
with northern channel catfish having about 1.5 times the amount of transcripts as

southern hybrid catfish and 3 times the amount of southern channel catfish. Ubiquitin was
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mostly upregulated with the largest amounts of transcripts upregulated in southern and
northern catfish. Ubiquitin was mainly upregulated with northern channel catfish having
1.5 times the amount of transcripts of southern channel and 2.5 times the amount of
southern hybrid catfish. Significant upregulation of HSPs 1, 4, 8, 40, 47, 60, 70, 71 and
90 were observed with the greatest amount of transcripts upregulated in HSP 70 (northern
channel 59, southern channel 34, southern hybrid 37) and HSP 90 (northern channel 56,
southern channel 51, southern hybrid 51), followed by HSP 40 and the least amount of
transcripts upregulated in HSP 8 (northern channel 2, southern channel 1, southern hybrid
0) (Table 3). Northern channel catfish generally had higher upregulation of all HSP
transcripts than southern channel catfish and southern hybrid catfish (Table 3). Northern
channel catfish had the largest amount of upregulated heat response transcripts, over
three times the amount of southern channel or hybrid catfish. HSP 70 had the greatest
fold change in all catfish types, with the largest being in northern channel catfish (8.9-
9.4), followed by southern hybrid (8.0-8.8) and southern channel catfish (7.2-7.4) (Table
4).

For metabolism; amino acid metabolism was primarily downregulated with about
equal amounts in northern and southern channel catfish, twice the amount found in
southern hybrid catfish. Carbohydrate metabolism was equally upregulated and
downregulated in northern channel catfish, mostly downregulated in southern channel
catfish and in southern hybrid catfish there was twice the number of transcripts being
upregulated as downregulated. Overall, lipid metabolism was primarily downregulated,
with the greatest amounts in northern channel catfish, followed by southern hybrid and

then southern channel catfish; although upregulation was present as well. Southern
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channel catfish had no nucleotide metabolic activity, while northern channel catfish had
five times the amount of transcripts being downregulated compared to southern hybrid
catfish. Protein metabolic activity was again low in southern channel catfish, with
northern channel catfish having about twice the amount of downregulated transcripts as
southern hybrid catfish. Cytochrome P450 transcripts were equally upregulated and
downregulated in northern channel catfish, while mostly downregulated in southern
channel catfish and mostly upregulated in southern hybrid catfish (Table 3).

For protein folding; tubulin was relatively consistent amongst catfish types, with
only upregulation of transcripts. Protein folding, however, was extremely varied between
catfish types. Northern channel catfish had over twice the amount of transcripts
upregulated as southern hybrid and 12 times the amount of southern channel catfish
(Table 3). Dynein transcripts were among the top upregulated fold changes in all catfish
types with 5.2-5.6 in northern channel, 4.5-6.7 in southern channel and 5.7-6.8 in
southern hybrid catfish (Table 4). DnaJ homolog subfamily A was present in the greatest
upregulation fold changes of all catfish types. Again, northern channel had the greatest
fold change (6.2-6.7), followed by southern hybrid (5.2-6.3) and southern channel catfish
(4.5-5.3) (Table 4).

For protein biosynthesis; northern channel catfish expressed over twice the
amount of upregulated transcripts for glycosyltransferase than southern hybrid catfish and
more than three times the amount of southern channel catfish. Northern channel catfish
also had a large amount of transcripts downregulated which neither of the other two types
of catfish had. Southern hybrid catfish had over double the amount of downregulated
fatty acid biosynthesis transcripts compared to northern channel catfish and southern
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channel catfish had no DE transcripts with this function. Dihydropyrimidinase was also
downregulated in all catfish types with southern channel catfish having twice the amount
of transcripts downregulated as southern hybrid and northern channel catfish having three
times the amount of southern hybrid catfish. Southern hybrid catfish was the only catfish
type to have any transcripts regarding the mevalonate pathway which was entirely
downregulated (Table 3).

Northern channel catfish had the greatest amount of classified transcripts with
significant fold changes (256), followed by southern channel catfish (182) and southern
hybrid catfish (150). Of the northern channel catfish transcripts, 47% were shared with
the other two catfish types; compared to 64% shared in southern channel and 70% shared
in southern hybrid catfish. About half (48%) of the remaining northern channel catfish
transcripts were unique to that catfish type and 44% were shared with southern channel
catfish alone. For southern channel catfish, over 58% of the remaining transcripts were
shared with northern channel catfish and 25% were unique to southern channel catfish.
Southern hybrid catfish had equal amounts of transcripts shared between southern and
northern channel catfish. Of the remaining transcripts, over 55% were unique to southern

hybrid catfish.

Discussion

Northern channel catfish clearly showed greater temperature-induced stress than
southern channel catfish or southern hybrid catfish, as revealed by transcriptional
expression. In response to chronic high temperature regimes, northern channel catfish had
greater numbers of DE transcripts and greater magnitudes of change in upregulated DE

transcripts. Comparing channel catfish with hybrid catfish, there were more transcripts
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that experienced large fold changes (> 2) in both the southern (219) and northern (311)
channel catfish strains compared to the southern hybrid (163) catfish. However, the
overall number of DE transcripts between southern hybrid (600) and southern channel
catfish (544) was fairly comparable in relation to that of northern channel catfish (2644).
Thus, from an overall measure of transcriptional regulation change, these results do not
indicate differences in stress between southern channel and hybrid catfish. In contrast,
whole-body measures of growth indicate that southern channel catfish may have greater
impacts of temperature on physiological performance than hybrid catfish (Stewart et al.
in review).

To create a better understanding of function, transcripts were divided into five
primary categories for analysis: proteolysis, stress response, metabolism, protein folding
and protein biosynthesis, following similar techniques used by Liu et al. (2013) and
Logan & Somero (2010).

Proteolysis between the studies had no direct overlap of DE transcripts. The
closest relationship was that ubiquitin-conjugating enzyme E2 G2 and ubiquitin-
conjugating enzyme E2 L3 were present under acute thermal stress and ubiquitin-
conjugating enzyme E2 C was present under chronic thermal stress. Northern channel
catfish had the greatest amount and magnitude of upregulated DE transcripts for
ubiquitin, followed by southern hybrid catfish. Ubiquitin was one of the transcripts that
overlapped pathways, however transcripts were only counted once to avoid over
representation.

Stress response can be indicated by upregulation of HSP 70, ubiquitin, and

apoptosis. In this study, although the number of upregulated transcripts were relatively
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constant between southern channel and hybrid catfish for HSP 70, ubiquitin and
apoptosis; northern channel catfish had about double the amount. The magnitude of fold
change indicates that HSP 70 had the greatest upregulation, followed by ubiquitin, and
apoptosis did not have fold changes >2. Logan & Somero (2011) argue that there is a
correlation between severity of stress and expression of different categories of genes. In
Gillichthys mirabilis, under an environmentally realistic heating rate of (4°C/h), they
observed upregulation of HSP 70 with mild temperature stress, upregulation of ubiquitin
at high temperature stress, and upregulation of apoptosis only with extreme temperature
stress. Thus, based on Logan & Somero's (2011) and Stewart & Allen (in press)
observations, these fish were under high but not extreme stress.

As found by Kassahn et al. (2007), one of the main transcripts seen in relation to
high temperature stress was cytoskeleton organization. Dynein was among the greatest
magnitude fold change in all catfish types with the greatest being found in southern
hybrid catfish. Transcripts relating to angiogenesis and neurogenesis also had large
amounts of upregulation with northern channel having 4-5 times the amount of southern
channel catfish. Whereas Kassahn etz a/. (2007) found DnalJB11 to be associated with
stress in reef fish; catfish demonstrated the greatest magnitude fold change of DnaJA(1,4)
with thermal stress, greatest in northern channel catfish. Ribosomal transcripts also had
large magnitude fold changes with upregulation, greatest being in northern channel
catfish. Ribosomal protein genes have been found previously with heat stress (Buckley et
al. 2006; Buckley & Somero 2009; Truebano et al. 2010) and it is believed that the
upregulation of ribosomal protein genes indicates the presence of DNA repair and
transcription (Lindstrém 2009).
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Cellular effects of stress were indicated by the upregulation of HSPs across all
catfish types. Northern channel catfish had both the greatest amount of HSP 70
transcripts upregulated and the largest fold changes in HSP 70, providing further
evidence that this catfish type was under the greatest thermal stress. Similarly, Podrabsky
& Somero (2004) observed upregulation of HSP 70 and HSP 90 at chronic high
temperatures. Southern hybrid catfish had the second greatest amount of HSP 70
transcripts upregulated and second largest magnitude of fold changes in HSP 70 and HSP
90, which was unexpected, considering that these same temperature regimes did not
result in a decrease in growth or an increase in mortality (Stewart et al. in review). HSP
70 is generally the most responsive heat-shock protein (Kurtz et al. 1986; Locke 1997)
and an important product of protein synthesis in cells under thermal stress in channel
catfish (Luft ef al. 1996). It promotes the proper re-folding and re-assembly of denatured
proteins that can be caused by environmental stress and is believed to play a fundamental
role in cellular functions as well as responses to stress because it is evolutionarily highly
conserved (Luft ef al. 1996). Since HSP 70 can also be expressed under other types of
stress (i.e., oxidative stress; Roberts et al. 2010), it is important that there was triple the
amount of upregulated heat response transcripts found in northern channel catfish,
indicating that northern strains of catfish have lower thermal tolerance than southern
(Morimoto 1998). HSPs not only play a role in refolding and maintaining proteins, they
also have immunogenic properties (Schmitt et al. 2007).

Also related to stress response is immunity. Gene transcripts associated with the
innate immune system have been found to be highly upregulated during chronic thermal
stress in annual killifish (Austrofundulus limnaeus) (Podradsky & Somero 2004).
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Although the innate immune response could be self-harming in the long term causing
tissue damage (Roitt et al. 1993), high levels of upregulated transcripts encoding for the
complement system continue to be expressed with chronic high cycling temperatures
(Podradsky & Somero 2004). In northern channel catfish and southern hybrid catfish the
innate immune system was primarily upregulated with northern channel catfish having
twice the expression of southern hybrids and four times the expression of southern
channel catfish. The adaptive immune system, which provides long lasting protection
from potentially harmful antigens (Ostberg et al. 2007), was also primarily upregulated
with northern channel catfish having over twice the expression of southern channel or
hybrid catfish.

In terms of metabolism-related transcripts, inositol-3-phosphate synthase 1-A was
DE under the chronic thermal conditions of this study and the acute conditions of Liu et
al. (2013). Liu et al. (2013) observed cytochrome ¢ oxidase subunit II and cytochrome ¢
oxidase subunit VIla 2 transcripts with DE under acute thermal stress, however they were
not seen under chronic thermal stress, instead cytochrome b-c1 complex subunit 6 was
observed. The majority of transcripts listed in the Liu et al. (2013) study were not
observed under chronic thermal stress. Differences in molecular effects on metabolism
were expected to be greatly varied under chronic versus acute stress because alternative
processes are required to maintain homeostasis. During acute thermal stress, genes
involved in lipid metabolism are the first to be upregulated to allow for ATP production,
supplying energy to escape rapidly changing temperatures (Sargent et al. 1989; Hazel
1995; Hochachka & Somero 2002). With chronic stress, genes involved with protein
metabolism were upregulated more (Tseng & Hwang 2008). Northern channel catfish had
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the greatest amount and magnitude of upregulated DE transcripts related to protease,
followed by southern hybrid catfish. This may indicate that the northern channel catfish
were in greater need for an immediate fuel source, as found in amino acids.

Protein folding related gene transcripts found by Liu et al (2013) under acute
thermal exposure, and also found in this study under chronic thermal exposure were:
Dnal homolog subfamily A member 1, DnaJ homolog subfamily A member 4,
endoplasmin, stress-induced-phosphoprotein 1, cysteine and histidine-rich domain-
containing protein 1, peptidyl-prolyl cis-trans isomerase FKBP4, and protein disulfide-
isomerase family A member 6. The primary difference in presence of DE transcripts
between acute and chronic thermal stress was lack of calreticulin, calnexin, calumenin-B
precursor and T-complex protein 1 subunit delta in this chronic trial. In this study,
northern channel catfish had the greatest amount and magnitude of upregulated DE
transcripts related to protein folding, followed by southern hybrid catfish. For
categorization purposes, HSPs were included in the stress response, even though they are
known to have important roles in protein folding.

Protein biosynthesis-related transcripts found by Liu ef al. (2013) under acute
thermal stress had no clear relationship to those found in this study under chronic thermal
stress. The most closely related transcripts found between these studies were 40S
ribosomal protein S27 compared to 40S ribosomal protein S15, 40S ribosomal protein
S15a and 40S ribosomal protein S23 found under acute thermal stress. Different proteins
are synthesized under acute thermal stress compared to chronic thermal stress because
with acute stress energy is partitioned to immediate recovery. Thus the principle proteins

being synthesized are heat shock proteins. Under chronic thermal stress there is some
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acclimation which allows for energy to be allocated to longer-term survival strategies
(Vergauwen et al. 2010).

In addition to evaluating gene transcript expression changes by categories, overall
differences in expression in catfish types revealed differences in responses to high
temperatures. Southern hybrid catfish had a greater number of upregulated DE transcripts
than expected, although still comparable to southern channel catfish, for several possible
reasons. First, instead of hybrid catfish exhibiting hybrid vigor or thermal tolerance
expected from a blue catfish parent; thermal tolerance may be an epistatic trait and thus
hybridization is breaking up the associated gene complexes (Burke & Arnold 2001).
Second, blue catfish may not have as high of a thermal tolerance as predicted, which may
have decreased the thermal tolerance in hybrid catfish. Limited research has been
conducted on blue catfish so their relative thermal tolerance is unknown. In support,
Stewart & Allen (in press) found that hybrid catfish had lower thermal tolerance in
comparison to channel catfish. Third, blue catfish occur in sub-tropical to tropical areas,
where water temperatures are less variable in seasonal fluctuation compared to temperate
areas where channel catfish are found (Ficke et al. 2007), thus channel catfish may have
greater thermoplasticity. Fourth, the blue catfish broodstock originated from the same
general region as the channel catfish broodstock so heat related traits hypothesized to be
passed on might not have been. Results may have been different if blue catfish
broodstock were obtained from a more southern distribution, within their natural range.

Differences observed between catfish from different geographic ranges were as
expected, with northern channel catfish having both the greatest number of DE transcripts

as well as the greater magnitudes of change in upregulated DE transcripts. A potential
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explanation, is that northern channel catfish may have already been at the edge of their
limits of thermoplasticity or perhaps they have lost more of their upper thermal tolerance
over generations due to selection processes, making it more difficult to acclimate to high
thermal temperatures than southern channel catfish.

Previous transcriptome studies have observed an effect of thermal extremes
decreasing growth rates and expression of growth-related gene transcripts of ectotherms
(Logan & Somero 2010; Pankhurst & King 2010; Vergauwen et al. 2010; Quinn et al.
2011). Under thermal stress, there is a decrease in expression of cell growth and
proliferation related genes (Gracey et al. 2001; Gracey et al. 2008). Following their
observation that gene ontology associated with metabolism remained upregulated
following prolonged heat stress in coral reef fish (Pomacentrus moluccensis), Kassahn et
al. (2007) suggest that thermal stress causes sustained reallocation of energy reserves.
Vergauwen et al. (2010) observed a depletion in energy reserves and a decrease of
condition factor in zebrafish (Danio rerio) near their upper thermal tolerance. Similarly,
growth rates of channel catfish were observed to decrease under chronic thermal stress,
with northern channel catfish strains having lesser weight gain in comparison to southern
channel catfish strains (Stewart et al. in review). Chronic thermal trials in tanks also
found hybrid southern catfish had the highest survival and most consistent growth
between temperature ranges (Stewart et al. in review). Under acute thermal stress,
southern channel and southern hybrid catfish had no difference in survival while southern
strains of channel catfish had higher survival than northern strains. Similar trends in acute
thermal tolerance were observed in channel catfish strains and the hybrid cross for each

(i.e. southern channel and southern hybrid following the same pattern) suggesting
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heritability (Stewart et al. in review), which the results of this study further support.
Some of the shared magnitude fold change DE transcripts between southern channel and
hybrid catfish were: collectin-12, complement receptor type 1, heat shock 70 kDa protein
4 and microfibril-associated glycoprotein 4.

While many transcriptomic studies have been conducted examining acute thermal
stress in fishes (Buckley ef al. 2006; Kassahn et al. 2007; Logan & Somero 2010; Dalvi
et al. 2012; Liu et al. 2013), only a few have been conducted on chronic thermal stress,
and very few on environmentally realistic temperature regimes. Many of the molecular
processes that occur under chronic thermal stress are first switched on under acute
thermal stress (Horowitz 2002). Thus, comparisons between the Liu et al. (2013) acute
upper temperature study on hybrid catfish were made, however many differences were
found that are likely due to the duration of the thermal stress. Logan & Somero (2010)
found that multiple classes of stress-related proteins, such as HSP, were upregulated
during acute heat stress but were no longer present under long term acclimation;
indicating that current studies on acute thermal trials may not detect many of the
physiological processes occurring under long-term thermal stress. In Gadus morhua,
increases in temperature (1°C/5 days) that mimicked seasonal water temperature changes
upregulated immune-related genes (Pérez-Casanova et al. 2008). Similarly, Kassahn et
al. (2007) found that prolonged heat exposure challenged the immune system of coral
reef fish. Both of these studies concur with the temperature-induced upregulation of
immune-related genes in this study, described above, and emphasize the importance of

examining environmentally realistic temperature regimes.
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Results from this study strongly suggest genetic differences between catfish types
affect physiological responses to thermal stress. The amount of DE transcripts was
consistently similar between southern channel and southern hybrid catfish compared to
northern channel catfish (Table 3). Further, the number of overall DE transcripts with
large fold changes was closer between northern and southern channel catfish than
southern hybrid catfish. Therefore, future breeding programs should take this information
into consideration to provide stronger and more selective strains for the catfish industry.
Genes identified in this study, may be beneficial for the development of strains of catfish
with greater thermal tolerance. Studies on channel and hybrid catfish gene expression
will continue to make great strides in comprehending cellular effects of thermal stress by
identifying genetic pathways controlling traits and genetic variation (Liu et al. 2008).
Using catfish as a model, the same concept can be applied to other species for increased

aquaculture productivity or conservation.
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Table 4.1  Number of reads and mapping results.

Treatment Reads Percent Mapped

Red River 27-31°C 48,220,749 75.159
Red River 27-31°C 52,770,631 75.262

Red River 27-31°C 54,419,520 74.773

Red River 32-36°C 62,857,772 75.356
Red River 32-36°C 65,720,616 75.021
Red River 32-36°C 50,925,243 75.699
Delta Select 27-31°C 64,224,524 74.842
Delta Select 27-31°C 63,123,693 75.138
Delta Select 27-31°C 59,619,074 74.447
Delta Select 32-36°C 100,849,111 75.505
Delta Select 32-36°C 65,438,804 75.005
Delta Select 32-36°C 60,697,855 75.844
Delta Select hybrid 27-31°C 50,148,185 75.139
Delta Select hybrid 27-31°C 61,918,937 74.408
Delta Select hybrid 27-31°C 48,732,371 74.851
Delta Select hybrid 32-36°C 62,630,052 75.293
Delta Select hybrid 32-36°C 52,993,798 75.381
Delta Select hybrid 32-36°C 65,770,666 75.207

Each sample was made by pooling the three RNA samples with the top RNA integrity
numbers (RIN value) from that tank. Treatment of each sample, number of reads
generated for each RNAseq library and the percent successfully mapped to the Liu et al
(2013) transcriptome with Bowtie2
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Table 4.2  Number of transcripts with annotation.

Number of Liu  Percent Liu Number of DE  Percent DE

Analysis Transcripts Transcripts Transcripts Transcripts
Blastx
INCBI nr 62,655 43.29 2,813 51.68
UniProt 48,509 33.51 2,470 45.38
ORFpredictor
Predicted Proteins 59,101 40.83 2,705 49.70
Full Length 27,266 18.84 1,305 23.98
Functional Analysis
Pfam 18,276 12.63 1,010 18.56
Batch CD-search 11,846 8.18 546 10.03
Goanna NA NA 3,446 63.31
Signal Peptide 3,872 2.68 237 4.35
Signal Peptide —no TM 3,608 2.49 220 4.04
Pathway analysis
KEGG 41,689 28.80 2,203 40.47
Reciprocal Blast Danio rerio
Homologs 14,224 9.83 825 15.16
Pathways 627 0.43 30 0.55
No Annotations

80,710 55.76 1,640 30.13
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Figure 4.1  Venn diagram of differentially expressed transcripts in liver of catfish
under sustained 27-31°C and 32-36°C cycling temperature regimes.

Venn diagram of differentially expressed transcripts in liver of two strains of channel
catfish (Southern and Northern) and one hybrid strain (Southern). For each pair of
numbers, the top number indicates the number of transcripts mapped to the Liu et al
(2013) database. The bottom number represents the number of differentially expressed
transcripts. The number of transcripts in the Liu et al (2013) database not observed in this
experiment is listed in the bottom right hand corner.
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CHAPTER V

SUMMARY AND CONCLUSION

Channel catfish (Ictalurus punctatus) have demonstrated the ability to acclimate
to a wide array of environmental conditions and temperatures (Allen & Strawn 1971,
Kent ef al. 1988, Seddon & Prosser 1997, Urrutia & Tomasso 2007). Acclimatory
processes are directed by gene expression, varying in accordance with the severity and
duration of the stressor (Logan & Somero 2011). Cellular stress responses are activated
first with acute thermal stress causing rapid changes to gene expression to repair damage
(Kiiltz 2005). If the acute thermal stress is prolonged as a chronic stress, then cells,
tissues and organs begin to remodel (Gracey 2008). The processes of: acute stress,
chronic stress and alternations in gene expression must be understood to comprehend the
full thermal effects on ectotherms.

Although channel catfish have a large geographic range (Scott & Crossman
1973), these studies show that there are differences in thermal tolerance between fish
from greatly separated latitudes. Acute thermal tolerance results indicated that southern
channel catfish have higher thermal tolerance than northern, based on CTM results. In
addition, gene expression analyses reveal that northern strains of channel catfish had
greater differential gene expression (DE) at high temperatures in comparison to optimal
growth temperatures, indicating higher stress levels. Northern strains of channel catfish

had five times greater overall differential gene expression than southern and 1.5 times the
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amount of upregulated DE gene transcripts with magnitude fold changes in response to
high temperatures.

Hybridization of channel catfish with blue catfish (. punctatus x 1. furcatus) has
been used in the catfish aquaculture industry since 2001 (Chatakondi 2012) due to their
improved feed conversion (Li et al. 2004), faster growth (Giudice 1966) and disease
resistance (Bosworth et al. 1998) which make them more economical to produce (Ligeon
et al. 2004); thus it is important to examine how hybrid catfish tolerate thermal stress in
comparison to channel catfish. Acute thermal trials found that channel catfish had a
higher critical thermal maxima (CTmax) than hybrid catfish and there was no difference
in survival following acute thermal stress. However in chronic thermal trials hybrid
catfish had greater survival and more consistent growth between temperature ranges than
either channel catfish strain. During chronic high temperature trials, temperatures reached
a maximum of 36°C with a heating rate of 0.5 ° C per hour, whereas during acute trials
maximum temperatures reached 40.3°C with the heating rate of 2 ° C per hour, which
could explain the difference seen in survival. Without a follow up study, it cannot be
determined whether the rate of heating or the maximum temperature had a stronger
influence on survival. Since hybrid catfish have the blue catfish parent with a distribution
range spanning from the southern United States to Mexico, Guatemala and Belize
(Graham 1999), which is more of a tropical climate than that of the channel catfish, this
could indicate that hybrid catfish would be better adapted to high temperatures. Hybrid
catfish had the least amount of DE up- or downregulated transcripts with significant fold
changes compared to the two channel catfish strains in genetic analyses, indicating lower

stress response and possibly higher thermal tolerance.
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In addition to geographic location and hybridization, this study found two other
primary factors that affect survival of fishes. The first factor that affected survival was
length; during acute thermal trials, probability of survival increased with fish of greater
length, however length had no affect on CTmax. Thus length was not a factor for the
temperature at which loss of equilibrium occurred but was a factor for recovery
immediately following loss of equilibrium. As suggested by Ospina & Mora (2004) this
could be due to energy storage or a length:weight body ratio. Larger fish have greater
body reserves, which can be metabolized to provide energy necessary for recovery. The
new energy can be used to: synthesize proteins such as heat shock proteins, support the
immune system, replace cells lysed under stress; giving an advantage to fish allow to do
so following high temperature exposure. A possible explanation for why CTmax was not
affected by length could be that thermal stress was too rapid, affecting the central nervous
system and not allowing enough time for the fish to acclimate (White 1983, Hernandez
Rodriguez et al. 1996). Following the acute thermal stress, fish were kept within optimal
temperatures, enabling the body to recover. The second factor was water temperature
increasing the susceptibility of disease. Under chronic thermal stress, the greatest
mortalities occurred in the 27-31°C temperature regime despite it being the optimal
temperature range for growth of juvenile channel catfish (Arnold et al. 2013).
Flavobacterium columnare, which commonly affects channel catfish at temperatures
ranging from 25-32°C (Durborow et al. 1998), was the primary pathogen found in
deceased fish of the chronic thermal trial.

In order for global fisheries production to be sustainable, reliance upon

aquaculture must increase. This is because an estimated 70% of the world capture
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fisheries are fully exploited or overexploited (Brander 2007). Ensuring stable aquaculture
production depends on environmental conditions, such as climate. Therefore, climate
change can alter growth, reproductive capacity, physiology, behavior, immune system
function, natural distribution patterns or structure of the ecosystem and mortality
(Brander 2007, Brandt 1993, Ficke et al. 2007, McCauley & Beitinger 1992, Brett 1979,
Lang et al. 2003, Le Morvan et al. 1998). This research sought to explore the impacts of
high temperature and potentially climate change on channel and hybrid catfish.
Temperatures above optimal for catfish are occurring in ponds and will continue to do so.
In terms of application to the catfish industry, understanding how these high temperatures
will affect fingerlings is important for greatest production (Barange & Perry 2009). These
studies demonstrate lower impact of high temperatures on hybrid catfish, suggesting use
of such fish in regions experiencing high temperatures. Only thermal stress impacts on
fingerling catfish were explored in these studies, however, optimum growth temperature
and temperature tolerance has been observed to decrease as fishes grow, so implications
can still be made about food-sized catfish (Buentello ez al. 2000, Cook et al. 2006,
Fowler et al. 2009). In addition, Lang et al. (2003) observed an impact of high

temperatures (i.e., 36°C) on broodstock, suggesting susceptibility at multiple life stages.
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