
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-8-2009

Using random projections for dimensionality reduction in Using random projections for dimensionality reduction in

identifying rogue applications identifying rogue applications

Travis Levestis Atkison

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Atkison, Travis Levestis, "Using random projections for dimensionality reduction in identifying rogue
applications" (2009). Theses and Dissertations. 4904.
https://scholarsjunction.msstate.edu/td/4904

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4904?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

USING RANDOM PROJECTIONS FOR DIMENSIONALITY REDUCTION

IN IDENTIFYING ROGUE APPLICATIONS

By

Travis Levestis Atkison, Jr.

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2009

Copyright by

Travis Levestis Atkison, Jr.

2009

USING RANDOM PROJECTIONS FOR DIMENSIONALITY REDUCTION

IN IDENTIFYING ROGUE APPLICATIONS

By

Travis Levestis Atkison, Jr.

Approved:

Rayford B. Vaughn, Jr.
Professor of Computer Science and
Engineering
(Major Professor)

David A. Dampier
Associate Professor of Computer Science
and Engineering
(Committee Member)

Mahalingam Ramkumar
Assistant Professor of Computer Science
and Engineering
(Committee Member)

Yoginder Dandass
Assistant Professor of Computer Science
and Engineering
(Committee Member)

Kirk Arnett
Professor of Management and
Information Sciences
(Committee Member)

Edward B. Allen
Associate Professor and Graduate
Coordinator of Computer Science and
Engineering

Sarah A. Rajala
Dean of Bagley College of Engineering

Name: Travis Levestis Atkison, Jr.

Date of Degree: August 8, 2009

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Rayford B. Vaughn, Jr.

Title of Study: USING RANDOM PROJECTIONS FOR DIMENSIONALITY RE-
DUCTION IN IDENTIFYING ROGUE APPLICATIONS

Pages in Study: 124

Candidate for Degree of Doctor of Philosophy

In general, the consumer must depend on others to provide their software solutions.

However, this outsourcing of software development has caused it to become more and

more abstract as to where the software is actually being developed and by whom, and it

poses a potentially large security problem for the consumer as it opens up the possibility for

rogue functionality to be injected into an application without the consumer’s knowledge

or consent. This begs the question of ‘How do we know that the software we use can

be trusted?’ or ‘How can we have assurance that the software we use is doing only the

tasks that we ask it to do?’ Traditional methods for thwarting such activities, such as

virus detection engines, are far too antiquated for today’s adversary. More sophisticated

research needs to be conducted in this area to combat these more technically advanced

enemies.

To combat the ever increasing problem of rogue applications, this dissertation has

successfully applied and extended the information retrieval techniques of n-gram analysis

and document similarity and the data mining techniques of dimensionality reduction and

attribute extraction. This combination of techniques has generated a more effective Trojan

horse, rogue application detection capability tool suite that can detect not only standalone

rogue applications but also those that are embedded within other applications. This re-

search provides several major contributions to the field including a unique combination

of techniques that have provided a new tool for the administrator’s multi-pronged defense

to combat the infestation of rogue applications. Another contribution involves a unique

method of slicing the potential rogue applications that has proven to provide a more robust

rogue application classifier. Through experimental research this effort has shown that a

viable and worthy rogue application detection tool suite can be developed. Experimental

results have shown that in some cases as much as a 28% increase in overall accuracy can

be achieved when comparing the accepted feature selection practice of mutual information

with the feature extraction method presented in this effort called randomized projection.

Key words: rogue application detection, information retrieval, data mining, n-gram analy-

sis, clustering, dimensionality reduction, randomized projection

DEDICATION

I would like to dedicate this dissertation to my beautiful wife, Rebekah, and my

wonderful children, Anthony and Zachary, whose unending love and support have helped

make this a reality.

ii

ACKNOWLEDGMENTS

My first acknowledgment, without question, must be to thank my Lord and Savior,

Jesus Christ, for without Him we would not be here. Philippians 4:13 says that “I can do

everything through Him who gives me strength.” Without Him constantly and continually

providing me my daily strength, this would not have been possible.

The LORD is my strength and my song; He has become my salvation. He is
my God, and I will praise him, my father’s God, and I will exalt him.

–Exodus 15:2

He put a new song in my mouth, a hymn of praise to our God. Many will
see and fear and put their trust in the LORD. . . But may all who seek you
rejoice and be glad in you; may those who love your salvation always say,
“The LORD be exalted!”

–Psalms 40:3, 16

I would like to express my sincerest appreciation to my advisor Dr. Rayford Vaughn.

The research opportunities and generous financial support he has provided have allowed

me to pursue my and my family’s dreams. The kindness and sincerity that he and the en-

tire faculty have shown us could never be repaid. That sincerity, first shown when we met

Dr. Vaughn and Dr. David Dampier during our campus visit in April 2005, was one of the

main factors in our decision to choose Mississippi State University to pursue this degree.

I would also like to thank Dr. Julia Hodges for the wonderful teaching opportunities that

she has provided. It affirmed my chosen career path and gave me tremendous confidence

iii

that I can continue to be a successful teacher. Furthermore, I would like to thank my

entire committee for their time, patience, and thought provoking discussions throughout

this process. I would also like to thank the National Science Foundation who partially

supported this work under grant SCI0430354 04090852.

On a personal note, I must pay the utmost respect to my many friends and family

members whose support throughout this endeavor has been limitless. They will never

truly understand the gratitude and love that I have for them. In particular there are two

dear friends and their families I want to give special thanks. The first is Dr. Randy Smith,

his wife Jennifer and their two terrific boys Benjamin and Maxwell. For the last 15 plus

years Randy and his family have been there for me and my family in the highest of highs

and lowest of lows. Their willingness to be there for us over the years, whether in helping

us move or in wise counsel, can never be thanked enough. Randy is like a brother to me,

and his family is an integral part of our family. The second is Dr. Chad Steed, his wife

Jessica and their two wonderful children, Julia and Blake. The last four years have been a

true blessing having Chad and his family in our lives. The ability to be there and lean on

each other while going through this Ph.D. process was tremendous and absolutely one of

the main reasons that we have been successful in this pursuit. Their constant lovingness

and faith has been an inspiration for me and my family. Friends like Randy and Chad are

hard to come by, and I treasure and know that God has placed them in our lives. I am truly

thankful for both of them.

To my parents, there are no words I can use to do justice in describing what I want

to say. No matter what the circumstance, you both have been there for me to provide

iv

endless and unconditional support, guidance and love. Your sacrifices have been immea-

surable. You showed me, through your words and actions, that with hard work I can

accomplish my goals. You laid the groundwork that has allowed me to reach this point.

To say thank you is not nearly enough.

Finally, I must say a special thanks to my beautiful wife Rebekah, who truly is the

light of my life. We began our journey twelve years ago, and from the beginning you have

been my rock. Thank you for putting up with my orneriness over these past few years.

Without your undying love and support I would not have made it through. To my two

fantastic boys, Anthony and Zachary, you have been a true blessing in my life. Thank

you for always being there and giving me loving hugs and kisses when I needed them the

most. I praise the LORD everyday that he has placed us together and blessed us with His

eternal love.

v

TABLE OF CONTENTS

DEDICATION.. ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation ... 3
1.2 Statement of Hypothesis ... 6
1.3 Contributions ... 7
1.4 Organization .. 8

2. LITERATURE REVIEW ... 9

2.1 Static Analysis.. 10
2.1.1 General ... 10
2.1.2 Information Retrieval Related .. 11
2.1.3 Data Mining Related .. 14
2.1.4 Combination of Information Retrieval and Data Mining 18

2.2 Dynamic Analysis ... 23
2.3 Comparison of Static and Dynamic Methodologies........................... 27
2.4 Dimensionality Reduction using Randomized Projection 29
2.5 Summary... 32

3. RESEARCH EXPERIMENT PLAN AND APPROACH........................... 34

3.1 Technique and Method Introduction .. 34
3.1.1 Feature Definition.. 35
3.1.2 Feature Weightings .. 35
3.1.3 Dimensionality Reduction ... 37

vi

3.1.4 Prediction Methods .. 38
3.1.4.1 Cosine Similarity .. 38

3.2 Experimental Plan ... 40
3.2.1 Prediction Method ... 43

3.3 Validation .. 43

4. RESEARCH RESULTS... 47

4.1 Preliminary Results ... 47
4.2 Experimental Results ... 50

4.2.1 Data Set .. 51
4.2.2 Presentation of Results ... 52

4.2.2.1 How to Read Graphs .. 53
4.2.2.2 Data Set Instantiation ... 55
4.2.2.3 n-gram Variation ... 61
4.2.2.4 Dimensionality Reduction Variation 67
4.2.2.5 Hypotheses Answered .. 72

4.3 Summary... 77

5. CONCLUSION AND FUTURE PLANS ... 80

5.1 Conclusion .. 80
5.2 Future Work... 80

5.2.1 Continual Improvement .. 81
5.2.2 Diverse Applications .. 82

5.3 Publication Plan.. 82
5.4 Candidate Journals .. 83
5.5 Candidate Conferences ... 84

REFERENCES ... 85

APPENDIX

A. ADLEMAN’S THEOREM FOR DETECTING VIRUSES 91

B. EXPERIMENTAL RESULTS GRAPHS ... 94

vii

LIST OF TABLES

2.1 Cumulative Results from Schultz [59]... 18

2.2 Cumulative Results from Kolter [37] .. 21

3.1 Definition of Truth Table ... 45

4.1 Descriptions of Rogue Applications ... 48

4.2 Performance Values Comparing Reduction Methods for Threshold of 0.55 49

4.3 Performance Values Comparing Reduction Methods for Threshold of 0.60 50

4.4 Performance Values Comparing Reduction Methods for Threshold of 0.65 50

viii

LIST OF FIGURES

4.1 3-gram, Data portion data set, 1000-features .. 54

4.2 4-gram, Whole portion data set, 1500-features .. 57

4.3 4-gram, Data portion data set, 1500-features .. 58

4.4 4-gram, Code portion data set, 1500-features.. 59

4.5 4-gram, Combination portion data set, 1500-features 60

4.6 3-gram, Code portion data set, 1000-features.. 64

4.7 4-gram, Code portion data set, 1000-features.. 65

4.8 5-gram, Code portion data set, 1000-features.. 66

4.9 5-gram, Combination portion data set, 500-features 69

4.10 5-gram, Combination portion data set, 1000-features 70

4.11 5-gram, Combination portion data set, 1500-features 71

4.12 6-gram, Code portion data set, 1000-features.. 73

4.13 7-gram, Data portion data set, 1500-features .. 76

B.1 3-gram, Whole portion data set, 500-features ... 95

B.2 3-gram, Data portion data set, 500-features .. 95

B.3 3-gram, Code portion data set, 500-features ... 96

B.4 3-gram, Combination portion data set, 500-features 96

B.5 3-gram, Whole portion data set, 1000-features .. 97

ix

B.6 3-gram, Data portion data set, 1000-features .. 97

B.7 3-gram, Code portion data set, 1000-features.. 98

B.8 3-gram, Combination portion data set, 1000-features 98

B.9 3-gram, Whole portion data set, 1500-features .. 99

B.10 3-gram, Data portion data set, 1500-features .. 99

B.11 3-gram, Code portion data set, 1500-features.. 100

B.12 3-gram, Combination portion data set, 1500-features 100

B.13 4-gram, Whole portion data set, 500-features ... 101

B.14 4-gram, Data portion data set, 500-features .. 101

B.15 4-gram, Code portion data set, 500-features ... 102

B.16 4-gram, Combination portion data set, 500-features 102

B.17 4-gram, Whole portion data set, 1000-features .. 103

B.18 4-gram, Data portion data set, 1000-features .. 103

B.19 4-gram, Code portion data set, 1000-features.. 104

B.20 4-gram, Combination portion data set, 1000-features 104

B.21 4-gram, Whole portion data set, 1500-features .. 105

B.22 4-gram, Data portion data set, 1500-features .. 105

B.23 4-gram, Code portion data set, 1500-features.. 106

B.24 4-gram, Combination portion data set, 1500-features 106

B.25 5-gram, Whole portion data set, 500-features ... 107

B.26 5-gram, Data portion data set, 500-features .. 107

B.27 5-gram, Code portion data set, 500-features ... 108

x

B.28 5-gram, Combination portion data set, 500-features 108

B.29 5-gram, Whole portion data set, 1000-features .. 109

B.30 5-gram, Data portion data set, 1000-features .. 109

B.31 5-gram, Code portion data set, 1000-features.. 110

B.32 5-gram, Combination portion data set, 1000-features 110

B.33 5-gram, Whole portion data set, 1500-features .. 111

B.34 5-gram, Data portion data set, 1500-features .. 111

B.35 5-gram, Code portion data set, 1500-features.. 112

B.36 5-gram, Combination portion data set, 1500-features 112

B.37 6-gram, Whole portion data set, 500-features ... 113

B.38 6-gram, Data portion data set, 500-features .. 113

B.39 6-gram, Code portion data set, 500-features ... 114

B.40 6-gram, Combination portion data set, 500-features 114

B.41 6-gram, Whole portion data set, 1000-features .. 115

B.42 6-gram, Data portion data set, 1000-features .. 115

B.43 6-gram, Code portion data set, 1000-features.. 116

B.44 6-gram, Combination portion data set, 1000-features 116

B.45 6-gram, Whole portion data set, 1500-features .. 117

B.46 6-gram, Data portion data set, 1500-features .. 117

B.47 6-gram, Code portion data set, 1500-features.. 118

B.48 6-gram, Combination portion data set, 1500-features 118

B.49 7-gram, Whole portion data set, 500-features ... 119

xi

B.50 7-gram, Data portion data set, 500-features .. 119

B.51 7-gram, Code portion data set, 500-features ... 120

B.52 7-gram, Combination portion data set, 500-features 120

B.53 7-gram, Whole portion data set, 1000-features .. 121

B.54 7-gram, Data portion data set, 1000-features .. 121

B.55 7-gram, Code portion data set, 1000-features.. 122

B.56 7-gram, Combination portion data set, 1000-features 122

B.57 7-gram, Whole portion data set, 1500-features .. 123

B.58 7-gram, Data portion data set, 1500-features .. 123

B.59 7-gram, Code portion data set, 1500-features.. 124

B.60 7-gram, Combination portion data set, 1500-features 124

xii

CHAPTER 1

INTRODUCTION

In general, a consumer, whether corporate or private, must depend on some other

entity to deliver their software needs. This software can come from several different

sources ranging from software development firms to downloading freeware from the In-

ternet. These software needs include, but are not limited to, the operating system, virus

detection engines, firewall systems, or the latest database software to hold consumer mu-

sic files. Even specialized applications for corporate business needs are often purchased

rather than developed “in-house.” The outsourcing of application development coupled

with the globalization of the software development market means that where software

is being developed and by whom is becoming more and more abstract. This scenario

presents a large security problem for the consumer in that the developers of these com-

puting applications may not have the same philosophies or views as the users of these

applications. An example scenario might be as follows: a virus detection developer pro-

vides a consumer with a detection engine that is programmed to ignore certain viruses and

labels the machine as “clean” or free of viruses. Another example could involve a fire-

wall software developer manipulating the consumer’s firewall application to report to an

outside entity information regarding network traffic data that passes through the firewall,

1

without the consumer’s knowledge or consent. This information could be as benign as the

website that the consumer is visiting all the way to actions such as what database queries

the users are making and their results. The latter example is known as an “information

leakage vulnerability attack.”

Information leakage can be defined as when “non-public” information is released

(or leaked) without the information owner’s knowledge or consent. This type of vulner-

ability can be introduced within an application at design time through malicious intent or

through poor programming practices. It can also be introduced by a rogue attacker after

deployment by being bundled with, or concealed within, a non-threatening application.

Symantec reported in their bi-annual threat report for the first half of 2005 that “six of the

top ten spyware (information leakage) programs were delivered to their victim by being

bundled with some other program.” [65]

I label these vulnerabilities, whether with or without malicious intent, as rogue

functionalities and the executables that contain rogue functionality as rogue applications.

Whether the applications have malicious intent or not, rogue applications are “defined to

be programs that perform a malicious function, such as compromising a system’s security,

damaging a system or obtaining sensitive information without the owner’s informed con-

sent.” [2,59] The concept of rogue applications that have rogue functionalities is not a new

idea. The first accounts of the existence of rogue applications can be dated back to 1949

when John von Neumann postulated that a computer program could replicate itself. [71]

However, the problem of accurately and effectively detecting and eradicating these rogue

applications is still a difficult research problem.

2

1.1 Motivation

Traditionally, rogue applications are categorized into the following three groups

based primarily on their delivery mechanisms: viruses, worms and Trojan horses. A virus

cannot propagate throughout the network to reach its victims on its own; some action

is required by the user to activate the virus, for example execution of an application on

the target system. On the other hand a worm is self-contained and can transport itself

over the network to its victims usually through some known vulnerability in the victim’s

computer that has yet to be dealt with through updating or patching. Lastly, a Trojan

horse takes on the appearance of a benign application but underneath actually performs

some rogue functionality, for example information leakage. [44] Although they arrive at

the final destination in different manners, all three variations exist to do harm to a user’s

computer or disrupt the user’s activities.

To combat these attacks on a system, industry as well as the home consumer has

turned to anti-virus software which contain virus detection engines. “A large percentage

of the security software industry is built on the practice of looking for the digital patterns

(signatures) that identify known threats.” [51] According to the 2007 Computer Secu-

rity Institute (CSI) Computer Crime and Security Survey, anti-virus software, which is a

signature based solution, accounted for 54.3 percent of the total budget for industry soft-

ware security in 2005. [51] Though very good at what they do, virus detection engines

rely on a database of signatures to detect known rogue applications. These signatures

are “case-specific features extracted from viruses in order to detect those same instances

in the future” [26] and must be updated each time a new and previously unknown rogue

3

application surfaces. The signatures attempt to capture the syntactic characteristics and

therefore are vulnerable to obfuscation techniques. [48] The creation of these signatures

is a manual and time consuming activity. Each potential rogue application must be first

gathered, which is difficult in and of itself, then analyzed and dissected to determine if

it in fact has a malicious intent. If a malicious intent is found, the analyst must find an

identifying signature that can be used by the detection engine for detecting it in the wild.

These solutions are far too antiquated for today’s adversary. According to CSI “criminals

have pushed the state of [rogue software] to a point where signature detection is less and

less effective.” [51] It also has to be noted that adversaries have access to all of the modern

anti-virus tools and can easily modify their rogue application to overt detection.

Signature based systems inherently limit the detection of new and previously un-

known types of rogue attacks. To make this method more difficult, rogue application

writers are getting much better at disguising or obfuscating their applications. Obfusca-

tion is the act of hiding the meaning of something from view. In the case of application

code, obfuscation is done to prevent reverse engineering of the application. Obfuscation

is such a powerful technique that Christodorescu noted in his comparison of three popular

commercial virus detection engines that they “could be subverted by very simple obfusca-

tion transformations.” [15] With the introduction of rogue application writing kits freely

available on the Internet anyone can download these and become a rogue application writer

instantly. This easy access exponentially increases the amount of rogue applications that

are in the wild for signature writers to analyze. To try to combat this limitation, some of

the more modern anti-virus software systems employ heuristics based detection. Heuris-

4

tic detection tries to identify a rogue application by partially running the beginning of the

application. If no rogue functionality has been detected during the partial run, control of

the application is turned over to the system. Even though these systems claim they can

detect new and previously unknown attacks, these methods still have their limitations. For

example, “both Network Associates’ McAfee VirusScan and Symantec’s Norton Antivirus

missed the Melissa virus completely with their heuristics scanners.” [62]

The purpose of this research was to help answer the important software assurance

question of ‘How do we know that the software we are using is doing what we asked it

to do and more importantly nothing more?’ The main focus of this research effort has

been to design and develop a process that aids in the detection of rogue applications by

combining techniques from the information retrieval and data mining fields. Particular

concentration has been given to Trojan horses as described above.

Previous attempts [26, 36, 37, 50] to use methodologies and techniques from in-

formation retrieval and data mining have had some success but all have come against the

‘curse of dimensionality.’ The ‘curse of dimensionality,’ first referred to by Bellman [10],

generally describes the computational issues related to performing mathematical opera-

tions within an extremely high dimensional space. These dimensions can number in the

108 and higher range. Therefore, a capability to reduce the number of features to a more

manageable number is very useful in countering this problem. Making any decisions

based on this high-dimensional data will require the construction of a low-dimensional

embedding that preserves the underlying “structure” hidden in the data. For this research

I used a technique called randomized projection [40, 42] to create the low-dimensional

5

embeddings. This work has shown that these randomized projection algorithms can guar-

antee that the distances between points in the original data set remain almost invariant in

the projected data set, which usually has a dramatic reduction in the number of dimensions.

It is my belief that a multi-pronged defense approach where there are several

weapons in the administrator’s toolbox is needed to attack this problem. Developing a

more effective rogue application detection tool through the use of information retrieval and

data mining methodologies, as well as dimensionality reduction through randomized pro-

jections will provide one more weapon in the consumer’s toolbox to attack this problem.

No one is immune from these malicious attacks; from the corporation to the unsuspecting

home user, everyone is at risk. Therefore, an entire range of consumers can benefit from

this research effort.

1.2 Statement of Hypothesis

In this dissertation research I have applied and extended the information retrieval

techniques of n-gram analysis and document similarity and the data mining techniques of

dimensionality reduction and attribute selection. The overall hypothesis of this research

was that rogue application detection could be accomplished by cleverly combining infor-

mation retrieval and data mining techniques. The specific components of this hypothesis

that I have tested are:

1. By applying and extending the information retrieval technique of n-gram analysis
and the data mining technique of attribute extraction, a Trojan horse, rogue appli-
cation detection capability tool can be developed that will provide a true positive
rate above 98% and false positive rate below 3%.

2. By combining information retrieval and data mining techniques in concert with
the dimensionality reduction technique of randomized projection, a more accurate

6

solution in detecting rogue attacks can be developed when compared to seminal
efforts currently used in research today. A more accurate solution is defined in
terms of a 3% increase in overall accuracy when comparing this method to that of
the mutual information dimensionality reduction method.

In summary, this research has focused on obtaining predictive features from ap-

plications using n-grams, performing feature extraction using the technique of random-

ized projection and creating a prediction capability using cosine similarity techniques and

methodologies. This research has shown that by using the power of randomized projec-

tions to create an accurate low-dimensional embedding of the original data, an ability to

better use the power of the prediction algorithms will be gained. With the results of this

research effort, which I will present below, I claim that this technique provides a rogue ap-

plication detection capability that is “better” than the current popular mutual information

technique by comparing my results to those of Kolter’s. For this research “better” has

been defined in terms of performance, measured using standard validation performance

factors.

1.3 Contributions

With the successful completion of this research I have produced a unique detection

capability that has positively augmented the current capabilities to provide for greater cov-

erage in the fight against rogue applications. Specifically the main practical contributions

of this research are:

• Extension of rogue application detection capabilities that enable greater protection
of consumer systems

• Development of a rogue detection capability that successfully uses aspects of in-
formation retrieval and data mining

7

• Successful validation of the usefulness of the combination of data mining and in-
formation retrieval techniques as applied to the rogue application detection prob-
lem

• New to rogue application detection literature, an approach that extracts the code
and data sections from an application and thereby produces a higher accuracy de-
tection tool

• Most importantly, the development of a unique method for selecting attribute sets
using the dimensionality reduction technique of randomized projection from target
data for greater success rate in detecting rogue applications

1.4 Organization

The remainder of this proposal is organized as follows. Chapter 2 provides an

overview of the current literature on this research topic. Chapter 3 provides the experi-

mental plan that was conducted for this research, including short descriptions of the re-

search components for the rogue application detection capability. Chapter 4 provides the

experimental results and analysis of both the preliminary proof of concept and the full

experiment using a large data set. Chapter 5 concludes this dissertation with future work

and both completed and expected publications.

8

CHAPTER 2

LITERATURE REVIEW

It has been proven that distinguishing between an application that has rogue code

embedded in it and an application that does not is intractable in the general case. [5] See

Appendix A for the formal proof provided by Adleman. Adleman’s proof shows that to

detect all possible viruses in a given application reduces to the halting problem. However,

this does not discount the idea that generic decisions for detecting broad classes of rogue

functionality can be made.

This research used the generic decision basis to explore and evaluate the effective-

ness of using a combination of information retrieval and data mining techniques, with the

concentration on dimensionality reduction, as a solution to part of the rogue application

detection problem. As described in the motivation section of the introduction, the iden-

tification and detection of rogue applications was the tract of this research effort. There

are two high-level major pathways of exploratory research into solving the rogue appli-

cation detection problem. These are static analysis and dynamic analysis. I delineate

these two methods in the following manner. A dynamic analysis technique involves the

actual execution of the potential rogue application to detect if in fact rogue functionality is

taking place within the executable. On the other hand I define static analysis techniques

9

as making the rogue functionality determination without having to execute the application.

These two camps can not solve this problem alone but only in concert can the total solution

be derived.

This research effort was not the first to try to solve the important topic of detecting

and classifying new or previously unknown rogue applications. Presented in the remain-

der of this chapter is a survey of the most significant research that is related to the efforts

discussed in this paper.

2.1 Static Analysis

The advantage of static analysis in the detection of rogue software applications is

that detection is made without having to execute the application and risk harm or contam-

ination to the network from any potential rogue functionality embedded within it. Below

are descriptions of the major research efforts that have used various methods of static

analysis to solve this detection problem.

2.1.1 General

In an early work Lo et al. [41] described their tool known as the Malicious Code

Filter (MCF). They developed a “novel approach to distinguish malicious code from be-

nign programs” using what they identify as “tell-tale signs.” According to Lo, “a tell-tale

sign is a program property that allows us to determine whether or not a program is ma-

licious without requiring a programmer to provide a formal specification.” [41] Some of

these “tell-tale” signs that their filter looks for include: file reading and writing, program

10

execution, anomalous data flow and authentication. [41] In identifying a Trojan login ap-

plication they stated that it was “detectable with the ‘Authentication’ tell-tale sign.” [41]

It has to be noted that Lo et al. does not identify which Trojan horse application their

tool was able to detect or provide any experimental results to validate their claims. They

simply state that their tool is successful on the small data set that they were using.

Though not claiming to use information retrieval methodologies, Christodorescu et

al. [16] do similar work using ‘templates’ which contain ‘instruction sequences’ of rogue

functionalities. Their work, then, is to analyze a target application and determine the simi-

larity of segments of the target application to their templates. The similarity is determined

“if there exists an assignment to variables from the template node expression that unifies

it with the program node expression.” [16]

2.1.2 Information Retrieval Related

Information retrieval, traditionally, is the “part of computer science which studies

the retrieval of information (not data) from a collection of written documents.” [8] These

retrieved documents’ aim is to “satisfy a user’s information need.” [8] One of the more

notable uses of information retrieval has been in the field of document authorship. Here

the “information need” is to determine whether or not a particular person(s) authored a par-

ticular document or collection of documents. There are several popular examples in this

area including determining if William Shakespeare actually authored the works attributed

to him [27], did Hamilton or Madison write the 12 disputed Federalist papers [13, 24] or

did Paul write all the books of the Christian New Testament Bible attributed to him [53].

11

These techniques have been used more recently in the area of software forensics to deter-

mine application authorship [21, 25, 54, 64] as well as determining programming plagia-

rism [14, 70]. The idea of using clues from one item to make a determination on another

or fulfill an “information need” is not a foreign concept. Therefore making the leap of

using this methodology to determine whether or not a particular application has rogue

functionality is not foreign.

As with any of the techniques in either information retrieval or data mining below,

feature selection is pivotal to the detection/prediction success of the method. There have

been several efforts [3, 4, 32, 36, 37, 43, 50, 74] that look at using the information retrieval

concept of n-grams as a potential technique for feature selection. An n-gram is “any

substring of length n.” [8] In most of these efforts the gram (which will be the composite

of the substring) is a byte in hexadecimal form.

Abou-Assaleh et al. used the Common N-Gram (CNG) analysis method [33]

which has been used in authorship attribution and text clustering to detect rogue appli-

cations. [3, 4] “The CNG classification method relies on profiles for class representa-

tion.” [3, 4] The most frequent n-grams represent a class profile with a parameterized

length. [3, 4] To overcome the computational complexity that goes with the large num-

ber of n-grams produced from a data set, Abou-Assaleh et al. “limited” the number of

n-grams to those that had the highest frequencies. [3] Once they had their feature vectors,

they used the traditional information retrieval method k-nearest neighbors, with k = 1, for

their classification. Although the authors never mention the size of their data set in terms

of number of executables, they do note that it consists of Windows binary executables

12

that contain worms and viruses. They experimented with several variables including the

length of the n-grams, the maximum number of n-grams to consider as well as the size of

the CNG profiles with a reported highest detection rate of 94%. [3] Although this sounds

like a good number, there are other factors that need to be considered. One of these factors

that the authors do not mention is the false positive rates for the experiments. This is very

important because if their false positive rate was 50%, meaning that their solution identi-

fied 1 out of 2 applications as rogue, then a 94% detection rate is meaningless. Another

factor to consider is that the authors state that the 94% detection rate experiment had some

of the training data mixed in with the testing data. [3] Unfortunately, this biasing of the

testing data cast some doubt on these results. Though issues exist with their experimental

results the methodology is sound and can be built upon.

Marceau [43] puts an interesting twist on the problem of using n-grams as features

by having “multiple-length” grams instead of the traditional single n-length gram. To

accomplish this he first creates a suffix tree of the n-grams where n is ‘large enough’ and

then “compacts the suffix tree to a directed acyclic graph (DAG) by merging ‘equivalent’

subtrees.” [43] By doing this Marceau has a set of grams with varying lengths that is

“equivalent to the original set of n-grams.” [43] From this suffix tree the authors create

a Finite State Machine (FSM) for their “two-finger algorithm” which is their classifier.

This algorithm is very similar to a sliding window algorithm. Here each “move of a

finger” will correspond to a branch in the suffix tree or a state on the FSM. The authors

presented results of their algorithm on three different data sets (the lpr and inetd data from

the University of New Mexico and data from the CORBA Immune System) as compared

13

to the sliding window work of Forrest. [23] The results of the comparison were very

similar but the advantage went to the “two-finger algorithm” because of the far less space

needed to store the feature sets. Although these results are promising, the authors note

that they are preliminary. [43] Additional work needs to be done to see if the additional

computational complexity trade-off for computing the suffix tree and corresponding FSM

is worth the gains in space reduction.

Zhang et al. [74] propose a new method of reducing the feature set dimension by

using rough set theory. They narrow their work by focusing exclusively on n-grams of

size 2 bytes. Once the 2-byte grams have been extracted the authors select their features

based on mutual information. This is the same method that Kolter [36, 37] (see Section

2.1.4) uses. However, Zhang et al. further reduce the feature set dimension by using

Rough Set Theory. [74] They look at the fundamental concepts of “reducts and cores.”

Because of the computation overhead associated with calculating the relative core, the

authors developed “an efficient implementation based on positive region definition.” [74]

This allows them to quickly reduce redundant attributes. Though the authors present some

preliminary results on a small Windows PE data set using a clustering algorithm, the main

focus of their research was to present a novel feature reduction methodology using Rough

Set Theory.

2.1.3 Data Mining Related

Along the same timeframe as Lo’s et al. work described above there was an effort

ongoing at IBM’s T. J. Watson Research Center by Kephart et al. [32] to use “biologically

14

inspired anti-virus algorithm” methods to detect and defend against rogue applications.

This work concentrated on boot sector viruses using both single-layer and “hand-crafted”

multi-layer neural networks. The key element in this work, as with any of these ap-

proaches, is the feature selection. Kephart et al. “extracted a set of 3-byte strings or

‘trigrams’ that appeared frequently in boot sectors of viruses but infrequently in legiti-

mate ones.” [32] These ‘trigrams’ were all hand created after human examination of boot

sectors in their data set, which was about 150 boot sectors. Their work resulted in a

neural network that had a detection rate of approximately 85% on their test data set. [32]

The result is good and not surprising considering the amount of pairing of features to fit

within the parameters of their neural network. This pairing was done purely by popula-

tion density of the particular ‘trigram’ with respect to the infected and benign test sets. An

improvement on this technique was made by Tesauro et al. and incorporated into IBM’s

Anti-Virus software. [66] This work was able to improve the previous effort [32] and gain

100% accuracy rate of the benign boot sectors but still in the neighborhood of 80% to

85% on the target rogue boot sectors. [66] One of the possible shortcomings with this ap-

proach is the resource requirements, which the authors state are “considerable obstacles”

in deployment in large commercial efforts. [66]

In one of the first ‘major’ efforts to use data mining techniques to detect and iden-

tify rogue applications, Schultz et al. moved away from boot sector viruses and used Naı̈ve

Bayes learners for detection. [59] For this effort Schultz and his group gathered approxi-

mately 4500 applications from various FTP sites and used McAfee’s virus scanner to label

them as benign or rogue. [59] This produced a data set of approximately 3400 rogue ap-

15

plications and 1100 benign applications. Around 5% of their data were Trojan horses and

the remaining 95% were viruses. [59] A subset of these applications was in the Windows

Portable Executable (PE) format.

Schultz used a combination of three different feature extraction techniques: binary

behavior profiling, string sequences and a binary transformation program hexdump, and

three different learning algorithms: an inductive rule-based learner, a probabilistic method

and a multiple classifier combiner system. [59]

For the first feature extraction technique they only used the subset of data that

contained the Windows PE formatted binary files. They extracted three types of features

using GNU’s Bin-Utils tool suite. These were a list of Dynamic Linked Libraries (DLL’s)

used by the binary, a list of DLL function calls made by the binary and the number of dif-

ferent function calls made within each DLL. [59] Each one of these methods is composed

of features that are combined into feature vectors of various lengths. The first method

contained about 30 binary features, where the value of the feature was a 1 if present and

a 0 if not present, and the second method contained approximately 2200 binary features,

defined the same way as the first. The third method produced about 30 integer values

that corresponded to the count of the number of times a particular function call was made

within the application. [59]

The second and third feature extraction techniques looked at the entire data set. In

the second feature extraction technique Schultz used the GNU Strings program to extract

all sequences that contain printable characters from any location in the target applica-

tions. [59] Though these strings can be changed easily, they created binary feature vectors

16

that identified whether a particular string was present in the application or not. In the third

and probably most robust feature extraction method the authors use, they create features

of two-byte byte-sequences that were extracted from the applications using the hexdump

tool. The thought process of using these techniques is that there will be similar sequences

in rogue applications that are different than the similar sequences in the benign applica-

tions.

For their first feature set, Schultz et al. used an inductive rule learner called RIP-

PER [17, 18]. RIPPER “builds a set of rules that identify the classes while minimizing

the amount of error.” [59] Their rule set consisted of four rules for defining a rogue bi-

nary and “if it is inconsistent with all of the rogue binary hypotheses” [59] it is labeled

benign. For the remaining two feature sets they used Naı̈ve Bayes (used with the string

features) and Multi-Naı̈ve Bayes (used with the hexdump features) algorithms. They state

that the Naı̈ve Bayes rules were more complicated than the RIPPER rules which were

just a “collection of the rules generated by each of the component Naı̈ve Bayes classi-

fiers.” [59] Therefore the “prediction of the Multi-Naı̈ve Bayes algorithm was the product

of the predictions of the underlying Naı̈ve Bayes classifiers.” [59] Through their experi-

ments Schultz concluded that the Multi-Naı̈ve Bayes had the best detection rate but that

for overall accuracy (factoring in false positive rate) that Naı̈ve Bayes was best. Table 2.1

presents the cumulative results of their experiments.

Although these experiments show positive results, even the authors admit that they

are far from perfect. One of the deficiencies is that the RIPPER algorithm was trained

on a far smaller data set that the other algorithms. Therefore a true comparison between

17

the algorithms can not be made. Also, Schultz did not present an experimental result that

combined the features from the three feature vector sets together into another feature set.

Another potential shortcoming with these feature sets is their dependence on the strings,

function names and DLL names extracted staying consistent over time. [59]

Table 2.1

Cumulative Results from Schultz [59]

Detection False Positive Overall
Profile Type Rate (%) Rate (%) Accuracy (%)
Signature Method - Bytes (hexdump) 33.75 0 49.28
RIPPER - DLLs used 57.89 9.22 83.62
RIPPER - DLL function calls 71.05 7.77 89.36
RIPPER - DLL counted function calls 52.63 5.34 89.07
Naı̈ve Bayes - strings 97.43 3.80 97.11
Naı̈ve Bayes - Bytes (hexdump) 97.76 6.01 96.88

2.1.4 Combination of Information Retrieval and Data Mining

One of the first and few works to combine the methodologies and techniques

of information retrieval and data mining was by Kolter et al. [36, 37]. They extracted n-

grams from their target dataset to create feature vectors for various data mining algorithms.

Their data set had approximately 3800 applications gathered from various locations in-

cluding applications from folders on Windows XP and 2000 operating systems, as well

as downloaded from various websites such as download.com (www.download.com) and

SourceForge (sourceforge.net). [36,37] About 2000 of these applications were benign and

the remaining applications, gathered from VX Heavens (vx.netlux.org) contained various

18

viruses, worms and Trojan horses. [36,37] Unlike Schultz’s work, all of these applications

were in the Window’s PE format.

Although the authors mention several methods for feature types, they concentrate

on only n-grams, and more specifically n-grams that are four bytes in length. These

four-byte sequences were extracted from their applications after the hexdump conversion

tool had been applied converting each application into hexadecimal format. [36, 37] For

each n-gram extracted from all applications Kolter created a long feature vector containing

binary values of true if the particular n-gram was present in the application or false is it

was not. [36,37] To pair down the overwhelming number of features they had, the authors

“selected the most relevant attributes (i.e., n-grams) by computing the mutual information

(MI).” [36,37] They used the following modified formula from Yang et al. [73] for mutual

information:

MI(t) = ∑
v j∈{0,1}

∑
Ci

P(v j,Ci)log
P(v j,Ci)

P(v j)P(Ci)
(2.1)

Kolter defines each of the variables in their mutual information function as follows:

Ci is the ith class, v j is the value of the jth attribute, P(v j,Ci) is the proportion
that the jth attribute has the value v j in the class Ci, P(v j) is the proportion
that the jth n-gram takes the value v j in the training data, and P(Ci) is the
proportion of the training data belonging to the class Ci. [36, 37]

Kolter choose the top 500 n-grams produced by their mutual information algo-

rithm as the optimum size of the feature vector. Then they applied the following data

mining/machine learning algorithms: Instance-based learner, TFIDF (Term Frequency -

19

Inverse Document Frequency), Naı̈ve Bayes, Support Vector Machines, Decision Trees

and a Classifier Combining Algorithm. [36, 37]

Instance-based learners predict by finding an “example in the collection most sim-

ilar to the unknown and return the example’s class label as its prediction for that un-

known.” [36, 37] Kolter used a variant of this method that returned the k most similar

making this algorithm just like k-nearest neighbor. [36, 37] The TFIDF is a traditional

information retrieval vector space weighting model. To classify an unknown example,

this weighting scheme, in conjunction with an information retrieval algorithm, computes

a similarity of the unknown feature vector with each feature vector in the data set. “The

method takes a weighted majority vote of the executable labels, and returns the class with

the least weight as the prediction.” [36] Naı̈ve Bayes is a probabilistic method and Sup-

port Vector Machines is a linear classifier. [36, 37] Decision trees are a classical data

mining technique where a tree is built by selecting attributes that produce the best splits in

the training data set with exterior nodes defined as a class. [36, 37] Classifier combining

is a majority vote of multiple decision trees that have been built with slightly different

parameters. [36, 37]

Table 2.2 presents their predicted (P) versus actual (A) detection rate results for

all the algorithms. The predicted rates are from tests performed on their entire data set,

meaning that they used the entire data set to create the predictors. The actual detection

rates are the results of applying these predictors to a smaller data set that has not been

touched throughout the process. This was called their “real-world” data set. Kolter stated

that even though the “Naı̈ve Bayes performed much better” the “boosted decision tree

20

achieved the best overall performance in terms of best actual performance and matching

the predicted performance.” [37]

Table 2.2

Cumulative Results from Kolter [37]

Desired False Positive Rate (%)
Method 1 5 10

P (%) A (%) P (%) A (%) P (%) A (%)
Boosted Decision Tree 94 86 99 98 100 100
Support Vector Machine 82 41 98 90 99 93
Boosted SVM 86 56 98 89 99 92
Instance-based, k = 5 90 67 99 81 100 99
Boosted Naı̈ve Bayes 79 55 94 93 98 98
Decision Tree 20 34 97 94 98 95
Naı̈ve Bayes 48 28 57 72 81 83

Though some of the results are interesting, there is room for improvement. The

authors only look at n-grams for their feature set. They could have improved this work

by combining n-grams and other features which should produce more robust predictions.

Also, even the authors admit that their methods have “high computational overhead.” [37]

This is a detriment to any deployable solution but can be overcome with addition research

and experimentation.

A typical use of n-grams as features can be seen in [26] where Henchiri et al. scan

through every file for every n-gram, record their frequency and create a feature set. This

obviously would create a list of features that is far too long and would make the compu-

tational complexity too high for any viable solution. To overcome this Henchiri imposed

a “hierarchical feature selection process.” [26] In addition to feature selection, they have

21

a feature elimination step in the hierarchy. In feature selection they specify an “intra-

family support threshold of features within each virus family.” [26] This “intra-family

support threshold” means that if a particular n-gram is above this pre-defined threshold,

the sequence is “retained as a candidate feature.” A second threshold is placed in the

feature elimination step. This threshold is for “inter-family support.” The authors state

that “this ensures that only those features that appear with a high enough inter-family sup-

port are retained.” [26] This step might pose a problem in that it would get rid of certain

features that are unique to a particular virus family. Results from using their feature ex-

traction method with several machine learning algorithms were positive as compared to

other more traditional methods. The authors admit the false positive rates are a little high

but still manageable.

Reddy et al. [50] develop their own unique n-gram feature selection measure called

‘class-wise document frequency.’ This ‘class-wise document frequency’ is a variant on

the traditional information retrieval concept of document frequency. Here the authors are

looking at the number of applications in a particular pre-defined class that contain a cer-

tain n-gram. [50] This provides for a further refinement as well as lowering the number

of features that exist for a particular class. Reddy also defines another concept called ‘rel-

evant n-grams.’ The ‘relevant n-grams’ for a particular class of applications is the top k

number of n-grams sorted on their frequency in the class. [50] Though they present a new

method of feature selection the novel idea here is the further dissection of document fre-

quency into a particular class frequency. To show that their feature selection method has

merit Reddy used multiple machine learning/data mining classifiers (SVM, decision tree

22

and IBK) and combined them using the Dempster-Shafer Theory of Evidence. Again the

novelty here is their method of combining the classifiers. The Dempster-Shafer Theory of

Evidence “is an alternative to traditional probabilistic theory for the mathematical repre-

sentation of uncertainty.” [50,60] It is a method for combining information from multiple

sources and dealing with discrepancies. [50] They compare their work with that of Kolter

and show slightly better results. The authors could improve this work by determining if

their methods can be extracted to other rogue application classes.

2.2 Dynamic Analysis

Traditionally dynamic analysis of rogue software applications is done by running

the potentially rogue application in a controlled/restricted environment, most times a vir-

tual environment. Willems et al. define two different approaches to dynamic analysis of

rogue applications:

• taking an image of the complete system state before rogue application execution
and comparing it to the complete system state after execution

• monitoring the rogue application’s actions during execution with the help of a
specialized tool, such as a debugger [72]

Here an analyst would manually step through the application using a debugger or actively

observe the results of the execution. As with static analysis above, this can be an ex-

tremely manual task and as noted there are far more rogue applications being created than

can be examined.

Most tools that are currently in use only look at one execution path [9, 68]. The

single execution path is the one that is executed in their virtual environment. Salois et

23

al. [55] compared several single path Commercial Off The Shelf (COTS) software tools,

including PC-cillin and eSafe Protect Desktop, for dynamically detecting rogue applica-

tions, in particular a time bomb. A time bomb is a rogue application “that is triggered in

a program when a specific logical condition relating to time is met.” [55]

Bayer et al. developed a tool called TTAnalyze that “dynamically analyzes the

behavior of Windows executables.” [9] Though the authors developed TTAnalyze on top

of a software emulator to reduce the footprint detectable by rogue applications it does not

completely remove it; therefore, rogue code can detect that they are not being executed

on the actual system. One way that Bayer admits this can happen is through “speed of

execution” differences between the real system and their emulated one. [9] Once a rogue

application can detect it is not being executed on a real system then potentially many of the

analysis results are void. The analysis process of TTAnalyze is similar to other dynamic

analysis techniques in that it executes the target application and collects all of the operating

system and function calls made by the target application. The interesting research result

is the authors accomplish this without ‘hooking’ the system or function calls. Instead they

use ‘page-directory base register’ which “contains the physical address of the base of the

page directory for the current process.” [9] Though there were potentially positive results

presented from TTAnalyze, it still is a single execution path tool and will potentially be

susceptible to detection by the target rogue application.

Another single execution path method is presented by Vasudevan et al. [68] named

Cobra. Cobra, which is actually a framework, is “facilitated by a technique that we call

stealth localized-executions.” [68] Basically, the authors state that the idea is to break

24

down the target application into ‘blocks,’ insert some ‘invisible’ Cobra specific code con-

structs and then execute the blocks. [68] Although the authors claim these inserted in-

structions go un-noticed by the rogue application, they did not publish any experiments

that proved this is the case. The point of this effort was to show that the framework is

efficient at the task of dynamically analyzing rogue applications and not its comparative

performance to other potential solutions.

By only looking at a single execution path, a system does not take into account

the existence of rogue functionality that has ties to a particular event, for example a date

or a file condition. Moser et al. [46] proposes an effort to look at multiple execution

paths at the same time. This effort will have a higher expectancy of finding the rogue

functionality because the authors try to dissect all of the potential execution paths. To do

this their analysis technique is “driven by the input that the program processes.” [46] More

precisely they check for places in the target application where a condition, for example

branch, is determined based on some input and then take snapshots of the current state.

Moser lists the following as input prospects: “reading the current time from the operating

system, reading the content of a file or the result of a check for Internet connectivity.” [46]

If the target application performs one of these actions and then suddenly exits, the authors

can back up to the previous snapshot, provide the action, and allow the target application

to continue executing. [46] This seems to be a better method than just pursuing a single

path but there are still issues that must be solved, namely the overhead associated with

state saving and, as the author states, the problems created by ‘external effects’ such as

“sending data over the network.” [46] This work is still in its early stages and further

25

investigation is needed, noted by the fact that in their test data set their analysis did not

follow multiple paths.

Moffie et al. [45] presented an effort that was geared directly toward detecting Tro-

jan Horses called the Harrier Application Security Monitor. Moffie’s approach attempts

to stop the rogue application after it is on the victim’s computer and started but before it

is executed. This is a different pathway than above because instead of a dedicated anal-

ysis system the Harrier Application Security Monitor works in concert with the existing

anti-virus software on the user’s computer.

Others have suggested a solution that involves having a formal program specifi-

cation for an application that spells out every intended behavior. [35] This in theory is a

good idea but in practice is probably unrealizable on a large scale. By requiring written

documentation that describes the behavior of an application the authors are introducing a

complex and difficult to get accurate process. For the most part these techniques are look-

ing at using system calls to detect the presence of rogue functionality when comparing the

system audit logs to the formal specifications.

Yet another method of dynamic analysis involves running the target application

and then analyzing the resulting audit logs for detection of rogue functionality. Rawat et

al. [49] and Florez-Larrahondo et al. [22] provide examples of this type of detection

method in their respective research efforts. Rawat applies a modified information re-

trieval method called a ‘binary weighted cosine metric’ as the similarity measurement for

a standard k-nearest neighbor classifier to make a determination of rogue functionality.

This ‘binary weighted cosine metric’ is an amalgam of the traditional cosine similarity

26

measure and a binary similarity measure that produces a similarity measure between two

applications “using a metric that considers two factors; occurrence of system calls and the

frequency of all system calls in the processes.” [49] Though the results show promise,

improvement can be obtained by further investigation using a data set that more closely

matches current attack methodologies.

Florez-Larrahondo et al. looked at the problem of rogue application detection on

distributed high-performance systems. Their solution called for a system of ‘intelligent

anomaly detection agents’ to monitor both function and system call interfaces and feed

this information to a neural network and a discrete Hidden Markov Model. [22] What is

more interesting with this example versus Rawat is that the authors are using current data

over a real system instead of simulated data. The authors note “the system may suffer

from a large number of false positives because of difficulty collecting an adequate set of

samples to train the models.” [22] This is an issue with any potential solution in this realm

not just this solution. Those not withstanding, the results presented are positive and show

value in the research methodology.

2.3 Comparison of Static and Dynamic Methodologies

As can be seen, there have been several efforts using both static and dynamic

approaches to solve this important research problem. There are also advantages and

disadvantages to each method. When using a dynamic analysis methodology, whether

analyzing audit logs or system calls, you are actually executing the potentially rogue ap-

plication to make a prediction on intent. Because of the potential dangers involved, most

27

researchers will execute these potentially rogue applications in virtual environments, such

as VMWare. However, many rogue application writers have designed in checks that can

detect whether or not the rogue application is being executed inside of a virtual environ-

ment. If one is detected, the rogue code will skip over the harmful parts of the appli-

cation, therefore, going unnoticed to the detection system. Also, recently Tom Liston

and Ed Skoudis of Intelguardians, at the request of the Department of Homeland Security,

have shown that a virtual environment can easily be circumvented and access to the host

machine gained. This negates any ‘security’ a researcher had by using the virtual environ-

ment for rogue detection. Even with the potential pitfalls, dynamic analysis does provide

real-time run-time analysis capabilities that static analysis can not provide.

Static analysis provides many advantages when attacking a problem as diverse and

difficult as rogue application detection. Since the potential rogue applications are not

executed there is no chance for accidental infestation as is the case with dynamic anal-

ysis. Though this is a positive, due to undecidability it is “impossible to certify stati-

cally that certain properties hold.” [11] That aside, static analysis of potential rogue ap-

plications can be accomplished without the run-time overhead associated with dynamic

analysis techniques. Using static analysis an analyst can discover all possible execution

paths. Because of the ability to analyze applications without the need to execute them,

this research has attacked the rogue application detection problem using static analysis

techniques. This was done with the understanding that the solutions created here were

only one piece of the larger solution that would include dynamic analysis.

28

2.4 Dimensionality Reduction using Randomized Projection

As can be seen from several of the potential solutions presented above, rogue ap-

plication detection suffers from the problem that the data, once processed, is encoded in ex-

tremely high dimensions. This high-dimensional data, on the order of 108 or higher, limits

the kind and amount of analysis that can be performed. Traditionally, there have been two

categories of methods for dealing with the reduction of this type of high-dimensional data.

These are feature selection and feature extraction. Though both have the net effect of

reducing the dimensions of a given data set, I delineate these two methods in the following

manner. Feature selection is merely a selection of a subset of the original feature set to

produce the reduced dimension. Several examples of this type of dimensionality reduction

can be seen in [36,37,59,74]. The most notable example is Kolter’s [37] mutual informa-

tion. On the other hand feature extraction transforms, either linearly or non-linearly, the

original feature set into a reduced set that retains the most important predictive informa-

tion. Examples of this type include principle component analysis, latent semantic analysis

and randomized projection.

There have been some efforts [12, 42, 47] that look at using randomized projec-

tion techniques for dimensionality reduction. “Randomized projection refers to the tech-

nique of projecting a set of points from a high-dimensional space to a randomly chosen

low-dimensional subspace or embedding.” [69] Minnila et al. [42] are using random pro-

jection techniques to map sequences of events and find similarities between them. Their

specific application is in the telecommunication field looking at how to better handle net-

work alarms. Their goal is to “show the human analyst previous situations that resemble

29

the current one” [42] so that a more informed decision about the current situation can be

made. Though their proposed solution is not perfect, it does show the promise of using

randomized projections in a similarity based application.

Arriaga et al. [6], in the field of concept learning, are using randomized projections

to learn concept classes while maintaining a desired level of robustness in their thresh-

olds. Their implementation is based on a neural network, which they call a neuronal,

that allows for the robustness parameter not to be known in advance. Hristescu et al. [28]

use the Smith-Waterman distance function in their randomized projection approach, called

SparseMap, to perform efficient similarity searches of protein databases. Cowen et al. [19]

are applying randomized projections in a pattern recognition problem where they are,

among other methods, clustering Positron Emission Tomography scan brain volumes. In-

dyk et al. [29] as well as Kleinberg [34] were both able to show positive results using

randomized projection in nearest neighbor searches.

Research that is more applicable to this dissertation work can be found in [12].

Bingham et al. apply randomized projections to an image and text retrieval problem. In

comparison to this research problem their dimensions are not as large, 2500 for images

and 5000 for text, but the results are still significant. The purpose of their work was to

show that, compared to other more traditional dimensionality reduction techniques, such

as principle component analysis or singular value decomposition, randomized projections

offered a greater detail of accuracy. The authors were also able to show that there was sig-

nificant computation saving by using randomized projections over other feature extraction

techniques, such as principle component analysis.

30

In another text retrieval application, Kaski [31] successfully applied randomized

projections in his text retrieval application that used WEBSOM, a graphical self-organizing

map. Again Kaski turned to randomized projection as a method to overcome the compu-

tation expense that made other dimensionality reduction techniques infeasible when han-

dling high-dimensional data sets. After incorporating randomized projection into their

tool, the authors gained an additional 5% increase in classification and topic separation

than in previous methods used. [31]

The following efforts [38, 39, 47] use randomized projection in conjunction with

latent semantic indexing. Papadimitriou et al. [47] looking at another information retrieval

technique shows positive results in using randomized projections as a pre-processor to the

computationally expensive Latent Semantic Indexing. By simply applying randomized

projection to their data before computing the Latent Semantic Indexing, their asymptotic

running time for the overall system improved from O(mnc) to O(m(log2n+clogn)), where

m and n are the matrix size, c is the average number of terms per document. [47]

Kurimo [38] again showed the promise of using randomized projections as a pre-

processor to Latent Semantic Processing. By using the randomized projection techniques

the authors were able to “quickly generate approximately orthogonal vectors” [38] of their

features, in this case words. Because of the randomized projection method as their ap-

proximation, it allowed them to “feasibly use a very large vocabulary.” [38] Kurimo’s

results showed that using the randomized projection technique was “much faster and there

were much less complexity problems as the corpus increased.” [38]

31

2.5 Summary

The currently published research efforts into detecting rogue applications have

promise. This promise comes in the form of providing higher detection rates than current

accepted commercial solutions but as with most any method there are shortcomings to

their effectiveness.

Current research into rogue application detection has involved using both static

and dynamic techniques. The major efforts using static techniques that also use method-

ologies from information retrieval and data mining attack the ‘curse of dimensionality’ by

use of feature selection techniques for dimensionality reduction. Though somewhat suc-

cessful, there is still room for improvement. Feature selection reduces the dimension of

the original data set by selecting a subset of the original features mostly based on mutual

information algorithms similar to that used by Kolter [37].

There have been no major published efforts that are looking at the concepts of fea-

ture extraction for dimensionality reduction when applying methodologies and techniques

from information retrieval and data mining. Feature extraction transforms, either linearly

or non-linearly, the original feature set into a reduced set that retains the most important

predictive information. Feature extraction takes into account predictive information from

all of the original features in the data set, not a subset of the features as feature selection

does.

The method that has been developed and is presented in this dissertation helps to

fill this gap by applying the methods and techniques of randomized projection as a feature

extraction technique to my data set. This extraction provides a reduced data set that allows

32

my prediction algorithms to have more predictive power when compared to the data sets

produced by feature selection techniques of mutual information.

33

CHAPTER 3

RESEARCH EXPERIMENT PLAN AND APPROACH

In this dissertation, I have developed a research effort that applies and extends

the information retrieval techniques of n-gram analysis and document similarity and the

data mining techniques of dimensionality reduction and attribute extraction. This unique

combination of techniques, as shown through experimentation, generates a more effective

Trojan horse, rogue application detection capability tool suite, whether the application is

standalone or embedded within other applications. It will be shown in Chapter 4 that

this new tool suite is more effective than current feature selection methods. This suite

includes methods for feature/attribute extraction from target applications, sophisticated

feature set reduction from the data mining community, and classification capabilities using

document similarity from the information retrieval community. The remainder of this

chapter provides an introduction and overview of the techniques and methods that were

used in my research effort and a description of how the overall experimental plan for the

software suite was conducted.

3.1 Technique and Method Introduction

This research effort has developed a unique combination of techniques and meth-

ods that have not been presented in this manner before to attach the rogue application

34

detection problem. Presented below are details regarding all aspect of the tool suite com-

ponents and functionality.

3.1.1 Feature Definition

In this portion of the research I have chosen a vector space model to represent

the data (applications). More specifically, the data is represented as a vector with each

dimension being defined as a feature which may or may not have a weight associated with

it. [57] Each of the features becomes “an independent dimension in a very high dimen-

sional space.” [61] To create these feature vectors, first a definition of what the features

contain is needed. For this research effort I used n-grams for the features. An n-gram is

“any substring of length n.” [8] Here the gram, which is the composite of the substring, is

a hexadecimal byte in the ASCII format. The n-grams were obtained by first converting

each target application in the data set into hexadecimal bytes and then concatenating each

set of n hexadecimal bytes. These sets of n hexadecimal bytes, or features, are defined by

a window of size n that slides across the converted target application.

3.1.2 Feature Weightings

I experimented with two different types of feature weighting models in this re-

search. First, I used one of the most common vector space weighting models called term-

frequency inverse-document-frequency (TFIDF). [63] The TFIDF vector space weighting

model “is composed of the product of a term frequency and the inverse document fre-

35

quency for each term that appears in the document.” [58] The following are the formulas

for TFIDF.

t f id fi, j = t fi, j× id fi (3.1)

t fi, j =
ni, j

∑k nk, j
(3.2)

id fi = log
|D|

|{d j : ti ∈ d j}|
(3.3)

In the term frequency formula above (3.2), ni, j is the number of occurrences of the feature

in question in application d j and the denominator is the sum of the number of occurrences

of all terms in the application d j. In the inverse document frequency formula above (3.3),

the numerator is the total number of applications in the data set and the denominator is the

number of applications where a particular feature ti appears.

Term frequency, as the name suggests, is the number of times a particular term

appears in a document, or in this case, the number of times a particular n-gram appears in

an application. This can be noted as a measure of importance that the particular n-gram

has in the application. [58] The inverse document frequency is used to normalize the more

common terms. It is defined as the number of documents in which the term appears or

in this case the number of applications where the n-gram appears. [58] Therefore the

product of these two values will provide the “measure of the importance of the n-gram in

the application and the corpus as a whole.” [58] The second feature weighting model that

36

I used in the research experimentation was a binary model where I assigned a 1 for each

n-gram feature that is in the application or a 0 for each feature that is not in the application.

This method provides the simplest of weighting methods but is surprisingly powerful.

3.1.3 Dimensionality Reduction

Clearly, using the total number of unique n-grams extracted from all of the applica-

tions in the data set to create the feature vectors will present a high-dimensional data prob-

lem. To combat this problem, the detection module concentrated on the feature extraction,

dimensionality reduction technique of randomized projection. In randomized projection,

“the original high-dimensional data is projected onto a lower-dimensional subspace using

a random matrix whose columns have unit lengths.” [12] This type of projection attempts

to retain the maximum amount of information embedded in the original feature set while

substantially reducing the number of features required. This feature reduction allows for

greater amounts of analysis to be performed. The core concept has been developed out of

the Johnson-Lindenstrauss lemma [30] which states that any set of n points in a Euclidean

space can be mapped to Rt where t = O(logn
ε2) with distortion ≤ 1 + ε in the distances.

Such a mapping may be found in random polynomial time. A proof of this lemma can

be found in [20]. As a comparison approach I used a feature selection method of mu-

tual information as described in Section 2.1.4. Note that this feature selection method for

dimensionality reduction is only defined using a binary feature weighting method.

37

3.1.4 Prediction Methods

The last major step in this research process involves using the vectors that have

been created to produce a viable prediction model. For this research the prediction method

that I chose was cosine similarity which comes from the information retrieval community.

3.1.4.1 Cosine Similarity

To determine the relevance value between a particular document and a query,

measurements are taken of the similarity coefficient between the two vectors. For this

research the document was any vector that was in the data set and the query was a particular

vector of interest in the data set. This similarity coefficient measure “reflects the degree

of similarity in the corresponding terms and term weights” [57] and can be defined as

the angle between the two vectors or the dot product between the two vectors as well as

others. [61] For this research the cosine similarity function has been used.

Cosine similarity determines the similarity between two data vectors by measuring

the angular distance between them. “Cosine has the nice property that it is 1.0 for identical

vectors and 0.0 for orthogonal vectors.” [61] The following is the formula that was used

in this research for computing cosine similarity:

CosineSimilarity(Q,D) =
∑i wQ,iwD,i√

∑i w2
Q,i

√
∑i w2

D,i

(3.4)

This formula computes the similarity between a query Q and a document D. It does so by

summing all of the features of the two entities defined in the formula as w. Since I defined

38

the features of this research to be n-grams, wQ,i is the weight of the ith n-gram in the query

and wD,i is the weight of the ith n-gram in the document.

By following a standard information retrieval methodology, applications, in ma-

chine readable format, are regarded as documents in the corpus. These “documents”

may or may not have a known rogue functionality. The query is an application, again

in machine readable format, which may or may not contain a certain type of rogue func-

tionality. This methodology provides an ability to search the corpus with a query and

retrieve/identify/predict potentially new rogue applications. This also provides an ability

to discover instances of other applications that contain the same type or family of intent,

for example one key-logging Trojan used to find another. Below is a small example of

how this detection will work.

Corpus

Document 1: 54 68 69 73 20 69 73 20 61 20 74 65 73 74
Document 2: 54 68 69 73 20 69 73 20 61 20 74 72 61 69 6E
Document 3: 54 68 61 74 20 69 73 20 61 20 67 72 65 61 74 20

69 64 65 61

Query

54 68 69 73 20 69 73 20 6F 6E 6C 79 20 61 20 74 65 73 74

Using an n-gram size of 4 the similarity values between the query and the three documents

are 0.90, 0.58 and 0.08 respectively. For further detail, look at the similarity calculation

between the second document in the corpus and the query. Of the total number of n-grams

extracted, there were six that were in common between these two documents; 54687973,

68697320, 69732069, 73206973, 20697320 and 20612074. Since the numera-

39

tor of the equation (3.4) looks at the common features between the two documents and the

population values of each of these are 1, the resulting numerator value is 6. The denom-

inator looks at all of the features of the two documents and in this case is equal to 10.38.

These values give the final similarity calculation of 6/10.38 = 0.58.

3.2 Experimental Plan

In this dissertation research I have applied and extended the information retrieval

techniques of n-gram analysis and document similarity and the data mining techniques of

dimensionality reduction and attribute extraction. The overall hypothesis of this research

was that rogue application detection can be accomplished by cleverly combining informa-

tion retrieval and data mining techniques. The following is the experimental plan that was

used for my rogue application detection tool suite. The experiments were divided based

on their applicability to my hypotheses defined in Section 1.2 above. The hypotheses are

restated here for convenience.

Hypothesis 1:

By applying and extending the information retrieval technique of n-gram
analysis and the data mining technique of attribute extraction, a Trojan horse,
rogue application detection capability tool can be developed that will provide
a true positive rate above 98% and false positive rate below 3%.

Hypothesis 1 Experimentation:

Feature Definition

Following the introduction above, Section 3.1.1, I used a vector space model and

represented the features as n-grams. To determine the most appropriate values of n I

performed the following experiments:
40

1. n-grams size of 3

2. n-grams size of 4

3. n-grams size of 5

4. n-grams size of 6

5. n-grams size of 7

In each of the above experiments the input was the raw software applications that

were in the data set, converted to hexadecimal form. The results, or output, contained the

raw feature vectors that were then further processed by the tool suite.

For example, if my application contained the following sequence 43 57 FE DB

7A C3 and the n value was 4, then the ‘sliding window’ would produce the following

n-grams 4357FEDB, 57FEDB7A and FEDB7AC3.

Feature Weighting

For this portion of the research I performed experiments with the following differ-

ent feature weighting models:

1. Term-frequency inverse-document-frequency (TFIDF)

2. Binary weighting - 1 for each n-gram feature that was in the application or a 0 for
each feature that was not in the application

For the feature weighting aspect of these experiments the inputs consisted of the

feature vectors that were created in the feature definition portion of the experiment. The

results of this section further refined my data set providing for a more accurate rogue

application prediction.

Hypothesis 2:

By combining information retrieval and data mining techniques in concert
with the dimensionality reduction technique of randomized projection, a more

41

accurate solution in detecting rogue attacks can be developed when com-
pared to seminal efforts currently used in research today. A more accurate
solution is defined in terms of a 3% increase in overall accuracy when com-
paring this method to that of the mutual information dimensionality reduction
method.

Hypothesis 2 Experimentation:

Dimensionality Reduction

To combat the high-dimensional data problem this research performed investiga-

tions using two different methods of randomized projection.

1. Creating a specially defined random matrix and projecting it upon the original
high-dimensional data set. This method involved the population of a random
matrix which was accomplished in the following two ways:

a. By selecting vectors that were normally distributed, random variables with a
mean of 0.0 and a standard deviation of 1.0.

b. By selecting the values of 0, +1 or -1 following a probability distribution of
2/3, 1/6 and 1/6 respectively [12].

2. Using a randomly selected number of feature sets and projecting them onto my
data set. This method involved experimenting with the following selection of
random sets:

a. Random set size selection of 500.
b. Random set size selection of 1000.
c. Random set size selection of 1500.

The inputs for this portion of experiments were the results of the feature definition

and feature weighting section. Those high-dimensional feature vectors were reduced to a

low-dimensional embedding by my randomized projection algorithms. The goal was to

test whether, for my particular data set type, the random matrix or the random set imple-

mentation provided a better solution for my rogue application detection capability. The

results of these low-dimensional embeddings were the input to my prediction algorithms

which determined if a particular application had rogue capability.
42

3.2.1 Prediction Method

To determine the applicability and correctness of the two hypotheses of this disser-

tation, this research applied the information retrieval prediction methods of cosine similar-

ity to the low-dimensional embedded feature space. By applying this prediction method

consistently across all of the random projection methods introduced above as well as the

control method of mutual information, I was able to make a valid and accurate comparison

and show that the hypotheses were valid.

Cosine Similarity

I applied the cosine similarity equation (Eq. 3.4) to each query-document feature

vector pair in the data set. To determine the correctness I evaluated the results by setting

the prediction threshold to 21 separate values starting at 0.0 and continuing in increments

of 0.05 until a value of 1.0 was reached.

3.3 Validation

As with any new method, technique or technology that is introduced, a system for

determining its accuracy or validity must also be presented. Validation is a key compo-

nent to providing feasible confidence that any new method is effective at reaching a viable

solution, in this case a viable solution to the rogue application detection problem. Valida-

tion is not only comparing the results to what the expected result should be, but it is also

comparing the results of my techniques and methodologies to other published methods.

The first line of validation used with this research effort was to compare the re-

sults/predictions of the rogue applications analysis and detection software suite to the ex-

43

pected results. The expected results in these experiments were known because the data

set was a labeled data set. The second line of validation was to compare these results

to those of other published research. To that end, several performance values were used

to measure and compare the performance of the experiments conducted in this research

effort to those of others published in the literature. These values include true positive

rate (TPR), false positive rate (FPR), accuracy and precision. TPR, also known as recall,

“is the proportion of relevant applications retrieved, measured by the ratio of the number

of relevant retrieved applications to the total number of relevant applications in the data

set.” [56] In other words TPR is the ratio of actual positive instances that were correctly

identified. FPR is the ratio of negative instances that were incorrectly identified. Accu-

racy is the ratio of the number of positive instances, either true positive or false positive,

that were correct. “Precision is the proportion of retrieved applications that are relevant,

measured by the ratio of the number of relevant retrieved applications to the total number

of retrieved applications,” [56] or the ratio of predicted true positive instances that were

identified correctly. All of these values are derived from information provided from the

truth table. A truth table, also known as a confusion matrix, provides the actual and pre-

dicted classifications from the predictor. The following are the mathematical definitions

of the performance formulas as well as the truth table (Table 3.1) where a (true positive) is

the number of rogue applications in the data set that were classified as rogue applications,

b (false positive) is the number of benign applications in the data set that were classified

as rogue applications, c (false negative) is the number of rogue applications in the data set

44

that were classified as benign applications, and d (true negative) is the number of benign

applications in the data set that were classified as benign applications. [59]

Table 3.1

Definition of Truth Table

Actual
Positive Negative

Predicted Positive A B
Negative C D

Below are the formulas for the four performance calculations that were used in this

research effort for validation of the predicted results.

T PR =
a

a+ c
(3.5)

FPR =
b

b+d
(3.6)

Accuracy =
a+d

a+b+ c+d
(3.7)

Precision =
a

a+b
(3.8)

Using these calculated performance values I can validate this work as compared to previ-

ously published work. For this I concentrated on published performance value informa-

tion from Kolter’s mutual information. Through these comparisons I was able to substan-

45

tiate the claim that the methods and techniques described in this research for providing

a rogue application detection capability performed “better” than current published meth-

ods. Better is defined in terms of absolute comparison of the validation methods presented

above.

46

CHAPTER 4

RESEARCH RESULTS

Using the methods and techniques that were described in Chapter 3 above, I cre-

ated a functional rogue application detection software tool suite. This tool suite was

written in the C programming language with some administrative scripts that were written

in Perl. The preliminary experiments were performed on a server class machine running

a Linux operating system. All of the experiments using the completed tool suite were

performed on commodity Gateway PC’s running a Fedora Linux operating system. A

proof-of-concept of this tool suite was used to produce the results presented in Section 4.1

Preliminary Results. The completed robust version of the tool suite was used for the

results presented in Section 4.2.

4.1 Preliminary Results

These preliminary results were obtained from the proof-of-concept rogue applica-

tion detection software tool suite. The data used for this preliminary experiment consisted

of 267 Windows formatted binary executable files that were obtained from a Windows XP

operating system. These files ranged in size from 50KB to 500KB. Integrated within

the corpus were 24 files that had been infected with rogue code using the F.B.I. (Finding,

Binding and Infecting) binder and six standalone rogue applications for a total of 30 rogue

47

applications. The Windows applications infected for this experiment were Microsoft Cal-

culator, MS-DOS Command Prompt, Microsoft Notepad and Microsoft 3D Pinball for

Windows. The rogue applications used were the CDKey Harvester v0.9, Fearless KeySpy

v2.0, LttLogger v2.0, HermanAgent v1.0, ProAgent v2.0 and Recon v2.0. Each docile

application was infected with each of the rogue applications using the F.B.I. binder to

create 24 infected files. The binder and all rogue applications are freely available for

download from the following website, http://www.trojanfrance.com. Table 4.1 contains

short descriptions of the rogue applications used in this experiment.

Table 4.1

Descriptions of Rogue Applications

CDKey Harvester v0.9 Searches victim’s registry for Online Game CD
Keys and sends them to the attacker through
email

Fearless KeySpy v2.0 keystroke logger
LttLogger v2.0 keystroke logger that can completely remove it-

self at a specified time or after a specific amount
of collection

HermanAgent v1.0 password stealer where information is passed
back to the attacker through email

ProAgent v2.0 monitoring and surveillance tool that captures
data from webcams, screenshots and micro-
phone usage

Recon v2.0 keystroke logger that can disable anti-virus and
firewall software

For this proof of concept, I limited the size of the n-grams to a 4-byte window.

This provided a boundary of the potential size of a given feature vector. Using the prede-

fined n-gram size of 4 there are approximately 4×109 number of total possible n-grams.

48

The data set described above contained 6,997,927 unique n-grams. For the dimensionality

reduction stage I used a random matrix and projected it upon the original high-dimensional

data set to produce a new low-dimensional embedding that contained 500 features. The

random matrix for the projection was created by randomly selecting values to populate the

vectors of the matrix that were normally distributed random variables with a mean of 0.0

and a standard deviation of 1.0. As a comparison and validation for the randomized pro-

jection approach I implemented the feature selection mutual information approach similar

to the one described in [37]. This separate data set contains 500 features identified by the

mutual information algorithm of the original data set. I applied the cosine similarity algo-

rithm to these two data sets with the following positive results presented in Tables 4.2, 4.3

and 4.4.

Table 4.2

Performance Values Comparing Reduction Methods for Threshold of 0.55

Performance Metric Random Projection Mutual Information
TPR 0.8 0.67
FPR 0.05 0
Accuracy 0.93 0.96
Precision 0.6 1

In each case it can be seen that the randomized projection method provided a higher

TPR than the comparison Mutual Information method. This means that in each of the

above cases the mutual information method was mis-identifying a larger amount of rogue

applications as being benign than the randomized projection method. These results are

49

Table 4.3

Performance Values Comparing Reduction Methods for Threshold of 0.60

Performance Metric Random Projection Mutual Information
TPR 0.8 0.73
FPR 0 0
Accuracy 0.98 0.97
Precision 1 1

Table 4.4

Performance Values Comparing Reduction Methods for Threshold of 0.65

Performance Metric Random Projection Mutual Information
TPR 0.63 0.6
FPR 0 0
Accuracy 0.96 0.95
Precision 1 1

significant suggesting that this technique can maintain a high precision without sacrificing

accuracy or TPR. The methods used in previous research, mentioned in Chapter 2, report

accuracy ratings ranging from 93% to 98%, so the results presented here were comparable

and in some cases outperformed other methods.

4.2 Experimental Results

For the full version of the experiments, I used the completed rogue application

detection tool suite. As stated above, all of these experiments were run on commodity

hardware running the Fedora Linux operating system. It is significant that I was able to

complete all of these experiments on commodity hardware. It shows that large specialized

50

machines are not needed to perform rogue application detection and that this work can be

broadly applied across almost any level of architecture that researchers/developers may

have and still gain the significantly positive results that were obtained and are discussed

below. In addition, this software and the methods that it supports can easily take advantage

of commodity cluster hardware for substantial gains in performance.

4.2.1 Data Set

The data set that was compiled together for the experiments described in this sec-

tion consisted of 1544 Windows formatted binary executable files. None of the files in the

data set were larger than 950KB. Of these files 303 were extracted from a fresh installation

of the Windows XP operating system. Another 406 were extracted from a fresh installa-

tion of Windows Vista operating system. Both of these sets were obtained by installing

the respective operating system in a virtual environment that was installed on a commodity

PC. These virtual environments were not connected to the Internet and therefore provided

a safe location. This ensured that it would allow for application extraction without the

worry of rogue infiltration during the gathering phase of the research effort. This process

provided a total of 709 files that were in the data set and that were considered benign.

The remaining 835 files for the data set were rogue Trojan horse applications that were

downloaded from various websites on the Internet including http://www.trojanfrance.com

and http://vx.netlux.org.

51

4.2.2 Presentation of Results

The outcome of these experiments has produced a cadre of significant results that

not only show success when compared to the research hypotheses but will also benefit the

rogue application detection community. This successful research provides an additional

pathway for attacking and effectively detecting rogue applications using static methods.

As stated in Section 2.3 above static methods offer many advantages over their dynamic

method counterparts, including but not limited to the ability to perform accurate rogue ap-

plication detection without the danger of actually executing the potential rogue application

and risking infecting more machines.

For the remainder of this chapter I will present a selected subset of the results that

were obtained using the data set described in Section 4.2.1 above and following the exper-

imental plan presented in Section 3.2. The entire set of results can be found in graphical

form in Appendix B of this document. Each graph in Appendix B represents the validation

calculations, described in Section 3.3, for each combination of n-gram value, dimension-

ality reduction value and data set instantiation (described below in Section 4.2.2.1). For

each graph I present the validation values for each cosine similarity prediction threshold

for all seven methods that were examined during the course of this research effort. As

a reminder, those methods are the control method of mutual information with the binary

feature weightings, the randomized matrix projection using the normally distributed ran-

dom variables with both the TFIDF and binary feature weightings, the randomized matrix

projection using the probability-based random variables with both the TFIDF and binary

52

feature weightings and the random set projection with both the TFIDF and binary feature

weightings.

4.2.2.1 How to Read Graphs

To completely understand how to read these graphs the following example expla-

nation of results for an n-gram selection of 3, the data set instantiation of the data portion

and a feature reduction of 1000, refers to Figure 4.1 below. The upper left quadrant con-

tains the validation accuracy calculation results for the range of cosine similarity threshold

values. For this graph we are looking for the highest peak which will equate to the high-

est accuracy value for this configuration. In Figure 4.1 we can see that for the control,

which is mutual information and is the red line on the graph, the highest accuracy value

is 0.93 or 93% accuracy at a threshold value of 0.8. We can also see that each of the

random matrix projection methods outperformed this value with the randomized matrix

projection using the normally distributed random variables and binary feature weightings,

the green line, performing the best at 0.98 or 98% at a threshold value of 0.35. Using

these same two methods (mutual information and random matrix projection using nor-

mally distributed random variables and binary feature weighting) and respective threshold

values (0.8 and 0.35) we can look at the lower left quadrant, true positive rate (TPR), and

note that those methods performed identically with a TPR of 0.98 or 98%. Turning our

attention to the upper right quadrant, which is the false positive rate (FPR), we see that

the randomized projection method (green line) again outperformed the mutual informa-

tion method (red line) with values of 0.03 or 3% and 0.13 or 13% respectively. Finally,

53

looking at the lower right quadrant we see that the precision values for the randomized

projection method is at 0.97 or 97% and the mutual information method is 0.89 or 89%.

Following this same process, all of the results graphs in Appendix B can be interpreted to

gain insight into the performance of all of the methods used in this research experiment.

Figure 4.1

3-gram, Data portion data set, 1000-features

We can see that for this particular n-gram, feature set size and data set instantiation

there is a significant decrease in precision when comparing the mutual information method

with the random matrix projection method. This reduction can be attributed to the large

difference in the FPR rate. In laymen’s terms, both of the example methods we are looking

54

at provide the analyst with an excellent number of accurately detected rogue applications

but the randomized projection method does this with far less incorrectly identified benign

applications. This allows the analyst to complete his job much quicker and provides the

analyst with additional confidence that the methods are producing precise results.

4.2.2.2 Data Set Instantiation

To assist in obtaining a more accurate answer to the questions posed in the hy-

potheses, I created multiple instantiations of the data set. The first instantiation involved

using the entire or whole application itself. This instantiation of the data is the one that is

used by all of the researchers that are mentioned in the literature survey described in Chap-

ter 2. The remaining three were created through extracting and combining well-known

defined sections from the whole application. The second and third instantiations were cre-

ated by extracting the code and data sections from each application using the PE Explorer

tool from Heaventools. [1] To confirm the accuracy of this tool I hand dissected several

of the applications in the data set, compared my results to the results provided by PE Ex-

plorer, and found the tool to be very accurate. To create the fourth instantiation of the

data set I combined the data and code sections together. These additional instantiations

were done to determine if extracted sections of each application could prove more fruitful

in detection than by just using the entire application. The thought process behind creat-

ing these multiple instantiations was as follows. Since all of the applications in the data

set were valid Windows format executables, there would have to be an inherent similarity

in all of them. This comes from both structure and header contents which may hamper

55

attempts to produce valid and viable rogue application detection. By extracting the data

and code sections I was able to remove this inherent similarity and allow the detection

methods to concentrate on the true differences in the applications. It must be noted that

with the combined data and code data set instantiation a ‘false set’ of features is created

at the point of fusion. This set is an extremely small set, at most for these experiments it

will be 7, when compared to the entire set of features that are extracted and therefore will

not hamper any detection capabilities of the tool suite.

When the results are examined from a data set instantiation viewpoint holding the

remaining variables of n-gram size and dimensionality reduction size constant, it is clear

that using the extracted data set instantiations provided a considerable increase in accuracy

when compared to using the entire or whole application. It can be further derived that the

code instantiation provides better results than the data instantiation. Even better results

can be obtained by the combination of the data and the code instantiations. An example

of this increase in accuracy can be seen in Figures 4.2, 4.3, 4.4 and 4.5. These figures

are for the 4-gram experiments where the dimensionality was reduced to 1500 features.

For the whole instantiation of the data set (Figure 4.2) at a threshold of 0.9 the mutual

information method obtains an accuracy of 0.90 or 90% and at a threshold of 0.2 the

random matrix method with a normalized-based matrix and the binary feature weighting

obtains an accuracy of 0.97 or 97% accuracy. Compare this to the code instantiation of

the data set (Figure 4.4) that has an accuracy of 0.93 or 93% for the mutual information

and 0.997 or 99.7% for the random matrix projection. Similar results can be seen in both

56

the data instantiation (Figure 4.3) and the combination of the data and code instantiation

(Figure 4.5).

Figure 4.2

4-gram, Whole portion data set, 1500-features

57

Figure 4.3

4-gram, Data portion data set, 1500-features

58

Figure 4.4

4-gram, Code portion data set, 1500-features

59

Figure 4.5

4-gram, Combination portion data set, 1500-features

60

This important result of the extracted instantiations outperforming the whole ap-

plication can be seen throughout the experiment. This is a positive significant step in that

this type of slicing of applications to make a rogue application detection determination has

not been published before at this level. By extracting these sections from an application,

this makes the data search space much smaller and therefore allows for a faster detection

time and a more accurate detection because of the ability to include more applications in

the detection corpus.

Again, it can be determined throughout the experiment that by looking at all of

the results, choosing the combination of the data and code instantiations performs at the

highest level. Staying with the same example as above the combination instantiation

outperformed the whole by 5% accuracy, by 1.5% TPR, by 7.4% precision and by 9.4%

FPR.

4.2.2.3 n-gram Variation

When the accuracy results are examined from an n-gram variation viewpoint, hold-

ing the remaining variables of data set instantiation and dimensionality reduction size con-

stant, it was not as clear cut as with the data set instantiation but a few significant items

surfaced. First, it could be seen that the control method of mutual information performed

best at n-gram values of 4 and 5. The n-gram value of 4 is the value that has been pub-

lished in the literature as the best expected value for mutual information. It must be noted

that there were some anomalies to this statement but for the majority of the experiments

the n-gram values of 4 and 5 performed the best for the control method of mutual informa-

61

tion. As for the random projection methods, the best results in terms of highest accuracy

values were achieved at the same n-gram values of 4 and 5. Using an n-gram value of

3 produced significant results as well; however, the results using the n-gram values of 4

and 5 were better in most cases. The n-gram values of 6 and 7 produced good results for

the random projection methods, but in some cases produced poor results for the mutual

information method. As for the speed, a smaller choice for the n-gram size produced a

data search space that was much smaller and therefore allowed for a much faster calcula-

tion of the low-dimensional embeddings. Even though there was no clear cut winner on

n-gram size, there were significant results that can be noted and used in future research

experiments.

For an example of these performance differences refer to Figures 4.6, 4.7 and 4.8.

In this example, I have held the dimensionality reduction feature size to 1000 and the

data set instantiation to the code instantiation. Observing the accuracy values, upper left

quadrant, for each of these three graphs it can be seen that for mutual information the best

value is recorded in Figure 4.8, 5-gram, with an accuracy of 0.92 or 92% at a threshold

of 0.9 with 4-gram next at an accuracy value of 0.88 or 88%. Both of these values are

higher that the 3-gram (Figure 4.6) accuracy value of 0.87 or 87%. With respect to the

random matrix method with a normalized-based matrix and the binary feature weighting,

it obtained the best accuracy value of 0.997 or 99.7% accuracy for the n-gram value of 4

(Figure 4.7). An almost identical value of 0.996 or 99.6% was obtained when the n-gram

value was changed to 5. Both of these values were obtained at a threshold value of 0.15.

For this example even the 3-gram accuracy value is significant at 0.994 or 99.4% but still

62

lower than both the 4 and 5 gram values. It must be noted that the values obtained for the

randomized matrix projection are at least 7% higher than those for mutual information,

with a maximum increase of 12%. The remaining three quadrants report similar increases

in performance. For TPR, lower left quadrant, the randomized matrix projection showed

at least a 4% increase over mutual information, with a maximum increase of 20%. At least

an 8% increase in precision, lower right quadrant, was shown with a maximum increase of

11%, and for FPR, upper right quadrant, a 9% decrease over mutual information again with

a maximum decrease of 13%. These are important results comparing these methods at

their best n-gram size determined through the experiments. Note that similar results were

obtained throughout the experiments and that these are presented here as a representation.

63

Figure 4.6

3-gram, Code portion data set, 1000-features

64

Figure 4.7

4-gram, Code portion data set, 1000-features

65

Figure 4.8

5-gram, Code portion data set, 1000-features

66

4.2.2.4 Dimensionality Reduction Variation

When the results are examined from a dimensionality reduction variation view-

point holding the remaining variables of data set instantiation and n-gram size constant,

some positive results were noticed. Of particular note another confirmation of my im-

plementation of the mutual information method was achieved. Logic would say that the

higher dimensionality reduction size of 1500 would outperform the other two sizes used in

this experiment; however, as the background literature on the mutual information method

noted, that was not the case. My experimental results, as well as those presented in the

literature, showed that a dimensionality reduction size of 500 performed the best for the

mutual information method. The one exception to that was using an n-gram size of seven.

In this case, the performance across all methods increased as the dimensionality reduction

size increased. As for the randomized projection methods, they produced very similar

results between the 1000 and 1500 size reductions and a slight decrease in performance

for the 500 size reduction. In all of the cases, even at the 500 reduction size, compar-

ing the results of the mutual information method to the randomized projection methods

showed that the randomized projection method had a better performance in all categories

of performance measurements that were used in this experiment.

An example of the change in performance with respect to dimensionality reduction

size can be seen in Figures 4.9, 4.10 and 4.11. For these examples the data set instantiation

is set to the combination of the data and code instantiations and the n-gram size is held

constant at a size of 5. The mutual information method has a decrease of 3% from 0.98

or 98% at a feature reduction size of 500 to 0.95 or 95% at a size of 1500. The random

67

matrix method with a normalized-based matrix and the binary feature weighting has an

increase of 1% to 0.99 or 99% when moving from a feature reduction size of 500 to 1500.

Similar performance degradations can be seen in the remaining performance measures

for the mutual information method: decrease in TPR by 2%, increase in FPR by 4% and

decrease in precision by 3%. As for the random matrix projection, similar performance

gains can be seen in both FPR, 2% decrease, and precision, 2% increase. The TPR value

stayed constant through the dimensionality reduction changes. Again, as in all of the

above variations, the randomized projection methods outperformed the mutual information

method. This again shows the significance of this method when compared to the standard

accepted method of mutual information.

68

Figure 4.9

5-gram, Combination portion data set, 500-features

69

Figure 4.10

5-gram, Combination portion data set, 1000-features

70

Figure 4.11

5-gram, Combination portion data set, 1500-features

71

4.2.2.5 Hypotheses Answered

The results provided with this research effort show that it is possible to create a vi-

able rogue application detection capability using the concepts of randomized projections.

As can be seen in the last several subsections, applying my randomized projection meth-

ods as a dimensionality reduction technique has provided several significant and positive

results. This can be noted with any of the three dissections that were presented. In this

section, I will provide additional examples that were obtained from this effort to show

as proof that the hypotheses defined for this research have been answered in the affirma-

tive. Before presenting these results I will restate each of the hypotheses for the reader’s

convenience.

Hypothesis 1:

By applying and extending the information retrieval technique of n-gram
analysis and the data mining technique of attribute extraction, a Trojan horse,
rogue application detection capability tool can be developed that will provide
a true positive rate above 98% and false positive rate below 3%.

To answer Hypothesis 1 I was able to show conclusively that a true positive rate

greater then 98% and a false positive rate less than 3% can be obtained. One of the many

examples of this can be seen in Figure 4.12. In this particular example I have restricted

the data set instantiation to the code instantiation, the n-gram size is restricted to 6 and the

dimensionality reduction size is restricted to 1000 features. For each of the randomized

matrix projection methods in this example I obtained greater than a 98% true positive rate

performance value and a less than 3% false positive rate. In fact, for the entire set of

research experiments which consisted of 60 separate experiments for each of the seven

72

dimensionality reduction methods, the random matrix method with a normalized-based

matrix and the binary feature weighting reached this goal 52 times. The random matrix

method with a probability-based matrix and the binary feature weighting also produced a

result of 52 times reaching or surpassing the goal. The random matrix projection using

the TFIDF feature weighting did not fair as well but still had an overall average of 0.97 or

97% for both the probability-based and the normalized-based random matrices. Note that

all of the random matrix TPR performance averages were between 2% - 4% higher than

the mutual information results. Again, this is significant showing the viability of these

methods.

Figure 4.12

6-gram, Code portion data set, 1000-features

73

With regards to the FPR rate and the entire set of research experiments, these were

not as impressive but still very positive. The random matrix method with a normalized-

based matrix and the binary feature weighting reached this goal 33 times. More impor-

tantly for the code instantiation of the data set this method reached the goal of 3% or less

FPR on all 15 experiments. The random matrix method with a probability-based matrix

and the binary feature weighting also produced a result of 31 times reaching or surpass-

ing the goal. Here again for the code instantiation of the data set the method performed

extremely well reaching or surpassing the goal 14 of the 15 experiments. As for the TPR

results the TFIDF weighting experiments did not perform as well as the binary weighting

experiments; however, in a good number of cases, they outperformed the mutual informa-

tion experiments, in some cases by as much as 8%.

These research results are significant proving that a rogue application detection

capability tool can be developed within strict performance bounds using information re-

trieval and data mining techniques. These TPR and FPR results show that the feature ex-

traction method of randomized projection using cosine similarity as a prediction method

also outperforms the accepted feature selection method of mutual information at almost

every instance of the experiment and at some instances by a great margin. For example

using the whole portion of the data set, an n-gram size of 4 and a dimensionality reduction

size of 1000 features, the random matrix method with a normalized-based matrix and the

binary feature weighting had a 45% higher TPR value than the mutual information method

using the binary feature weighting. In another example, this time using the code instan-

tiation of the data set, an n-gram size of 6 and a dimensionality size of 1500 features, the

74

random matrix method with a normalized-based matrix and the binary feature weighting

had a 22% lower FPR value than the mutual information method using the binary feature

weighting. Again these are just a few examples of the entire experimental set but they

show the viability and value of using the random projection method in developing a rogue

application detection tool suite.

Hypothesis 2:

By combining information retrieval and data mining techniques in concert
with the dimensionality reduction technique of randomized projection, a more
accurate solution in detecting rogue attacks can be developed when com-
pared to seminal efforts currently used in research today. A more accurate
solution is defined in terms of a 3% increase in overall accuracy when com-
paring this method to that of the mutual information dimensionality reduction
method.

To answer Hypothesis 2, I was able to show conclusively that when compared to

the control method of mutual information an overall accuracy gain of 3% can be obtained.

One of the many examples of this can be seen in Figure 4.13. In this particular example I

have restricted the data set instantiation to the data section of the applications, the n-gram

size is restricted to 7 and the dimensionality reduction size is restricted to 1500 features.

For each of the randomized matrix projection methods in this example I obtained an in-

crease of greater than 3% in the overall accuracy performance value when compared to

the control method of mutual information. In fact, for the entire set of research exper-

iments which consisted of 60 separate experiments for each of the seven dimensionality

reduction methods, the random matrix method with a normalized-based matrix and the

binary feature weighting reached this goal 42 times. The random matrix method with a

probability-based matrix and the binary feature weighting produced a result of 39 times
75

reaching or surpassing the goal. The random matrix projection using the TFIDF feature

weighting did not fair as well, but still had an overall average that produced an accuracy

rate that was greater than the mutual information method for both the probability-based

and the normalized-based random matrices. On average, the randomized matrix projec-

tion method when using the binary feature weighting produced an overall difference of

over a 5% higher accuracy value compared with that of the mutual information method.

This is again significant, showing the viability of these methods.

Figure 4.13

7-gram, Data portion data set, 1500-features

76

As with the TPR and FPR results described above for Hypothesis 1, these research

results are significant proving that by using randomized projection as a feature extraction

method a rogue application detection capability tool can be developed that out-performs

feature selection methods. These accuracy results again show that the feature extraction

method of randomized projection outperforms the accepted feature selection method of

mutual information in an overwhelming majority of instances of the experiments and at

some instances by a great margin. For example using the whole portion of the data set, an

n-gram size of 4 and a dimensionality reduction size of 1000 features, the random matrix

method with a normalized-based matrix and the binary feature weighting had an overall

accuracy performance value difference of over 28% higher than the mutual information

method using the binary feature weighting. In another example, this time using the data

instantiation of the data set, an n-gram size of 7 and a dimensionality size of 1000 features,

the random matrix method with a normalized-based matrix and the binary feature weight-

ing had an overall difference of almost 13% higher than the mutual information method

using the binary feature weighting. As with the TPR and FPR values, these are just a few

examples of the entire experimental set, but they show the viability and value of using the

random projection method in developing a rogue application detection tool suite.

4.3 Summary

Although I have presented results that clearly show that the hypothesized method

for rogue application detection is viable, not every method performed as well as expected.

As can be seen in most every graph in Appendix B, the random set method did not perform

77

well. I have had good results in the past with this method [7] but for this particular set of

experiments this method greatly underperformed. It is my belief that this method may not

be suitable to such a high dimension and therefore should only be used when the original

feature space is not as large as the one that is presented in these experiments. Another

potential reason that the random set feature extraction method did not perform as well as

expected could have been because of the prediction method that was used. With another

prediction method such as nearest neighbor, this method might have performed just as well

as its random matrix projection counterpart. Further experimentation with this method

will be something I will continue to look at in the future to determine a better bounds on

its applicability.

Another aspect that did not perform as expected was the TFIDF vector space fea-

ture weighting method. In almost every experiment the TFIDF method was out-performed

by its binary feature weighting counterpart. In contrast to the random set projection

discussed above, the prediction algorithm of cosine similarity is traditionally used when

TFIDF feature weighting is applied. Therefore, additional prediction algorithms tested,

at least on the surface, do not seem to be appropriate. However, I plan to do further

experimentations in the future. For now, the conclusion from this research effort is that

with this type of non-traditional data TFIDF is not applicable, even though in traditional

information retrieval this method has had great success.

These two items aside, the results of this research effort have provided the rogue

application detection community with a powerful tool for their toolbox. As stated in the

motivation section of this dissertation, it is my belief that a multi-pronged defense ap-

78

proach where there are several weapons in the administrator’s toolbox is needed to attack

this problem. By developing a more effective rogue application detection tool through

the use of information retrieval and data mining methodologies, as well as dimensionality

reduction through randomized projections, I have provided one more weapon in the con-

sumer’s toolbox to attack this problem. No one is immune from these malicious attacks;

from the corporation to the unsuspecting home user, everyone is at risk. Therefore, an en-

tire range of consumers can benefit from the promising results of this important research

effort.

79

CHAPTER 5

CONCLUSION AND FUTURE PLANS

5.1 Conclusion

The results presented above provided through actual experimentation both support

and validate each of the hypotheses stated in Chapter 1 that applying the dimensionality

reduction technique of randomized projection before using the cosine similarity algorithm

has merit in determining if an application may contain rogue functionality. There is no

claim that this is a complete solution, rather a tool designed to fit into the security admin-

istrator’s toolbox as a data point or first pass to help reduce the number of applications

needing review. This potential reduction in number of applications to sort through can

provide an administrator or analyst with valuable time saving by not having to analyze

applications that clearly do not contain rogue functionality. With more and more appli-

cations not being developed “in-house” this is a positive result for those responsible for

providing secure solutions.

5.2 Future Work

This section includes ideas of future topics to concentrate on and directions to take

the rogue application detection tool suite on now that this portion of the research effort has

80

been completed. Future work with this research will follow two major pathways: first,

continual improvement of the tool suite to include additional manipulations of the data set

and expansion of prediction methods, and second not to be limited to the general task at

hand of developing a rogue application detection capability but also using the underling

methods and techniques by applying them to a diverse set of fields.

5.2.1 Continual Improvement

In the future I am interested in integrating additional prediction algorithms into

the tool suite, such as a decision tree, neural network and k nearest neighbor algorithms.

Furthermore, with this research using multiple prediction methods there is also an experi-

mental track that involves how to cleverly combine the results of the methods to produce

one result that has the potential of being more accurate than any of the individual mod-

els by themselves. This will involve applying a voting method where each model will

get a vote and the majority vote becomes the prediction. Another method introduced by

Todorovski et al. [67] is called Meta Decision Tree (MDT). The leaf nodes of an MDT

provide the prediction model to use and the internal decisions are made “based on the class

probability distributions for the given [query].” [67] This may provide the mechanism to

extend the method of random set projection. Another potential improvement to the tool

suite will be to add the capability to start the sliding window outside of the traditional byte

boundaries. This type of ‘bit-shifting’ may allow for a higher granularity in the tool suites

detection capability.

81

5.2.2 Diverse Applications

There are several potential applications and further enhancements of this research

that I am interested in exploring. Some of these include computer forensics, code cloning

and application authorship detection. This tool suite could easily be used by a computer

forensics examiner to look at an entire hard drive that contains applications of unknown

capabilities or an individual application. Code cloning is another interesting application of

this research that is outside of the realm of computer security. Code cloning is a software

engineering application that involves determining if a given application exists in multiple

locations. Knowing this information is very helpful for software development firms as

they try to update their software repositories. This tool again could easily be used to troll

through a corpus of applications to determine if there exist similar applications to the one

in question. These are just a few of the pathways that this method could be used for in the

future.

5.3 Publication Plan

The following publications related to this research have been published:

• Travis Atkison, “Applying Randomized Projection to aid Prediction Algorithms in
Detecting High-Dimensional Rogue Applications,” Proceedings of the 47th ACM
Southeast Conference, Clemson, SC, March 2009.

• Travis Atkison, “Using an Information Retrieval Technique to Discover Malicious
Software,” Proceedings of the 5th Symposium on Risk Management and Cyber-
Informatics, Orlando, Florida, June 2008, International Institute of Informatics
and Systemics, pp. 284 - 289.

The following publications related to this research are currently in review:

82

• Travis Atkison, “Randomized Projection versus Mutual Information: A Compari-
son Study on Rogue Application Detection,” International Journal of Information
Technology & Decision Making.

• Travis Atkison, “Using a Static Analysis Method in Detecting High-Dimensional
Rogue Applications,” the 16th International Static Analysis Symposium to be held
in Los Angeles, CA, August 2009.

The following publications related to this research are planned:

• “Using Application Section Extraction and Randomized Projection to Improve
Rogue Application Detection”

• “Randomized Projection Versus Principle Component Analysis: A Comparison
Study on Rogue Application Detection”

• “Comparing Randomized Projection and Mutual Information Using Application
Section Extraction to Improve Rogue Application Detection”

• “Comparing Randomized Matrix Creation Methods in a Rogue Application De-
tection Environment”

5.4 Candidate Journals

The following list of journals represents candidate outlets for future publication of

this research.

1. ACM Transactions on Information and System Security - This journal is interested
in security technologies including virus and Trojan horse detection which is the
main thrust of this effort.

2. Computers and Security - This is one of the leading sources for applied research
in computer security which is a direct fit with this research.

3. ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing - This research effort is an excellent example of direct application of data min-
ing techniques and methodologies.

4. Journal of Machine Learning - The scope of this journal includes accounts of ap-
plications as well as experimental studies into the use of machine learning and data
mining.

5. Journal of Information Assurance and Security - This research effort fits nicely
within this journal regarding topics of detection of viruses and Trojan horses.

6. Journal of Information Assurance, Security and Protection - This journal’s main
focus is on information-based security. Our efforts fall directly in that realm.

83

7. IEEE Transactions on Information Forensics and Security - A direct application of
this work lies in the forensics world which would be a good fit for this journal.

8. International Journal on Information Security - This journal has interest in direct
applications of information security methods including virus and Trojan horse de-
tection.

9. Information Retrieval - This journal is interested in application of information re-
trieval techniques to real-world problems such as our effort in rogue application
detection.

10. Journal of Computer Security - This journal has interest in research related to
protection against unauthorized disclosure or modification of information which
fits nicely into the areas of this research effort.

11. IEEE Security and Privacy - This journal has a broad interest in computer security,
including methods for detecting and securing infrastructure and the enterprise.

5.5 Candidate Conferences

The following list of conferences represents candidate outlets for future publica-

tion of this research.

1. IEEE Symposium on Security and Privacy - This conference interests include
rogue application detection involving detection of viruses and Trojan horses.

2. USENIX Security Symposium - This conference has interest in many topics of
security including the areas contained within this research effort.

3. SIAM International Conference on Data Mining - This conference has interest in
applications of data mining techniques and methods.

4. ACM Symposium on Information, Computer and Communications Security - This
effort has direct application to this conference in the area of rogue application
detection.

5. Computer Security Applications Conference - As the name suggests, this confer-
ence has interest in direct application of computer security techniques and meth-
ods.

6. ACM SIGIR Information Retrieval Conference - This conference has interest in
application of information retrieval techniques to real-world problems such as our
effort in rogue application detection.

7. Computer Security Conference - This conference has interest in managing security
risk which this research has direct applications to.

84

REFERENCES

[1] “Heaventools PE Explorer,” http://www.heaventools.net (current 14 March 2009).

[2] “Malware,” http://en.wikipedia.org/wiki/Malware (current 19 December 2007).

[3] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “Detection of New Mali-
cious Code Using N-grams Signatures,” Proceedings of the 2nd Annual Conference
on Privacy, Security and Trust, New Brunswick, Canada, 2004, pp. 193–196.

[4] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-based Detection
of New Malicious Code,” Proceedings of the 28th Annual International Computer
Software and Applications Conference, COMPSAC, 2004, vol. 2.

[5] L. M. Adleman, “An Abstract Theory of Computer Viruses,” Proceedings of the 8th
Annual International Cryptology Conference on Advances in Cryptology, 1988, pp.
354–374.

[6] R. I. Arriaga and S. Vempala, “An algorithmic theory of learning: Robust concepts
and random projection,” Machine Learning, vol. 63, no. 2, 2006, pp. 161–182.

[7] T. Atkison, Dimensionality Reduction Using a Randomized Projection Algorithm:
Preliminary Results, Tech. Rep. TR-CS-01-11, University of Maryland Baltimore
County, 2001.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison Wes-
ley, Harlow, England, 1999.

[9] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic Analysis of Malicious
Code,” Journal in Computer Virology, vol. 2, 2006, pp. 67 – 77.

[10] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press,
1961.

[11] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, N. Tawbi, and
M. Erhioui, “Static Detection of Malicious Code in Executable Programs,” Sympo-
sium on Requirements Engineering for Information Security, Indianapolis, IN, 2001.

[12] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: appli-
cations to image and text data,” Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001, pp. 245–250.

85

[13] R. A. Bosch and J. A. Smith, “Separating Hyperplanes and the Authorship of the
Disputed Federalist Papers,” The American Mathematical Monthly, vol. 105, no. 7,
1998, pp. 601–608.

[14] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared information and
program plagiarism detection,” IEEE Transactions on Information Theory, vol. 50,
no. 7, 2004, pp. 1545–1551.

[15] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious
patterns,” Proceedings of the 12th Conference on USENIX Security Symposium-
Volume 12, 2003, p. 12.

[16] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-
Aware Malware Detection,” 2005 IEEE Symposium on Security and Privacy, 2005,
pp. 32–46.

[17] W. W. Cohen, “Learning Trees and Rules with Set-Valued Features,” AAAI/IAAI,
vol. 1, 1996, pp. 709–716.

[18] W. W. Cohen, A. Prieditis, and S. Russell, “Fast Effective Rule Induction,” Proceed-
ings of the 12th International Conference on Machine Learning, 1995, pp. 115–123.

[19] L. J. Cowen and C. E. Priebe, “Randomized non-linear projections uncover high-
dimensional structure,” Advances in Applied Math, vol. 19, 1997, pp. 319–331.

[20] S. Dasgupta and A. Gupta, An elementary proof of the Johnson-Lindenstrauss
Lemma, Tech. Rep. TR-99-006, International Computer Science Institute, Berkley,
CA, 1999.

[21] O. de Vel, A. Anderson, M. Corney, and G. Mohay, “Mining e-mail content for
author identification forensics,” ACM SIGMOD Record, vol. 30, no. 4, 2001, pp.
55–64.

[22] G. Florez-Larrahondo, Z. Liu, Y. S. Dandass, S. Bridges, and R. Vaughn, “Integrating
Intelligent Anomaly Detection Agents into Distributed Monitoring Systems,” Jour-
nal of Information Assurance and Security, vol. 1, 2006, pp. 59–77.

[23] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of Self for
Unix Processes,” Proceedings of the 1996 IEEE Symposium on Research in Security
and Privacy, 1996, pp. 120–128.

[24] G. Fung, “The disputed federalist papers: SVM feature selection via concave min-
imization,” Proceedings of the 2003 Conference on Diversity in Computing, 2003,
pp. 42–46.

[25] A. R. Gray, P. J. Sallis, S. G. MacDonell, and S. University of Otago Dept. of Infor-
mation, Software Forensics: Extending Authorship Analysis Techniques to Computer
Programs, Dept. of Information Science, University of Otago, 1997.

86

[26] O. Henchiri and N. Japkowicz, “A Feature Selection and Evaluation Scheme
for Computer Virus Detection,” 6th International Conference on Data Mining,
ICDM’06, 2006, pp. 891–895.

[27] D. I. Holmes, “The Analysis of Literary Style,” Journal of the Royal Statistical
Society. Series A, vol. 148, no. 4, 1985, pp. 328–341.

[28] G. Hristescu and M. Farach-Colton, Cluster-preserving embedding of proteins, Tech.
Rep. TR 99-50, Rutgers University Center for Discrete Mathematics and Computer
Science (DIMACS), 1999.

[29] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the
curse of dimensionality,” Proceedings of the 13th Annual ACM Symposium on The-
ory of Computing, 1998, pp. 604–613.

[30] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a Hilbert
space,” Contemporary Mathematics, vol. 26, 1984, pp. 189–206.

[31] S. Kaski, “Dimensionality Reduction by Random Mapping: Fast Similarity Com-
putation for Clustering,” The 1998 IEEE International Joint Conference on Neural
Networks. IEEE World Congress on Computational Intelligence, vol. 1, 1998.

[32] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J. Tesauro, and S. R.
White, “Biologically inspired defenses against computer viruses,” Proceedings of
the 14th International Joint Conference on Artificial Intellgence, San Francisco, CA,
1995, pp. 985–996.

[33] V. Keselj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based Author Profiles for
Authorship Attribution,” Proceedings of the Conference Pacific Association for Com-
putational Linguistics, Dalhousie University, Halifax, Nova Scotia, Canada, 2003,
pp. 255–264.

[34] J. M. Kleinberg, “Two algorithms for nearest-neighbor search in high dimensions,”
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp.
599–608.

[35] C. Ko, G. Fink, and K. Levitt, “Automated detection of vulnerabilities in privileged
programs by execution monitoring,” Proceedings of the 10th Annual Computer Se-
curity Applications Conference, 1994, pp. 134–144.

[36] J. Z. Kolter and M. A. Maloof, “Learning to Detect Malicious Executables in the
Wild,” Proceedings of the 10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Seattle, WA, 22-25 August 2004, pp. 470–478,
ACM Press.

[37] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify Malicious Exe-
cutables in the Wild,” The Journal of Machine Learning Research, vol. 7, 2006, pp.
2721–2744.

87

[38] M. Kurimo, “Indexing Audio Documents by using Latent Semantic Analysis and
SOM,” Kohonen Maps, 1999, pp. 363–374.

[39] J. Lin and D. Gunopulos, “Dimensionality reduction by random projection and latent
semantic indexing,” Proceedings of the Text Mining Workshop, at the 3rd SIAM
International Conference on Data Mining, 2003.

[40] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its
algorithmic applications,” Combinatorica, vol. 15, no. 2, 1995, pp. 215–245.

[41] R. W. Lo, K. N. Levitt, and R. A. Olsson, “MCF: a malicious code filter,” Computers
& Security, vol. 14, no. 6, 1995, pp. 541–566.

[42] H. Mannila and J. K. Seppänen, “Finding similar situations in sequences of events,”
First SIAM International Conference on Data Mining, 2001.

[43] C. Marceau, “Characterizing the Behavior of a Program Using Multiple-Length N-
grams,” Proceedings of the 2000 Workshop on New Security Paradigms, Ballycotton,
County Cork, Ireland, 2000, ACM.

[44] G. McGraw and G. Morrisett, “Attacking malicious code: a report to the Infosec
Research Council,” IEEE Software, vol. 17, no. 5, 2000, pp. 33–41.

[45] M. Moffie, W. Cheng, D. Kaeli, and Q. Zhao, “Hunting Trojan Horses,” Proceedings
of the 1st Workshop on Architectural and System Support for Improving Software
Dependability, San Jose, CA, 21 October 2006, pp. 12–17, ACM Press.

[46] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for Mal-
ware Analysis,” IEEE Symposium on Security and Privacy, SP’07, 2007, pp. 231–
245.

[47] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent Semantic
Indexing: A Probabilistic Analysis,” Journal of Computer and System Sciences, vol.
61, no. 2, 2000, pp. 217–235.

[48] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A Semantics-Based Ap-
proach to Malware Detection,” Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Nice, France, 17-19
January 2007, pp. 377–388, ACM Press.

[49] S. Rawat, V. P. Gulati, A. K. Pujari, and V. R. Vemuri, “Intrusion Detection using
Text Processing Techniques with a Binary-Weighted Cosine Metric,” Journal of
Information Assurance and Security, vol. 1, no. 1, 2006, pp. 43–50.

[50] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer virus detection,”
Journal in Computer Virology, vol. 2, no. 3, 2006, pp. 231–239.

88

[51] R. Richardson, 2007 CSI Computer Crime and Security Survey, Tech. Rep., Com-
puter Security Institute, 2007.

[52] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-
Hill, 1967.

[53] M. Sabordo, S. Y. Chai, M. J. Berryman, and D. Abbott, “”Who wrote the ’Letter to
the Hebrews’?”: data mining for detection of text authorship,” Proceedings of SPIE,
2005, vol. 5649, p. 513.

[54] P. Sallis, A. Aakjaer, and S. MacDonell, “Software Forensics: Old Methods for a
New Science,” Proceedings of SE: E&P’96 (Software Engineering: Education and
Practice), 1996, pp. 367–371.

[55] M. Salois and R. Charpentier, “Dynamic Detection of Malicious Code in COTS
Software,” Commercial Off-the-Shelf Products in Defense Applications “The Ruth-
less Pursuit of COTS”, vol. 1, 2000.

[56] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information Processing and Management: an International Journal, vol. 24, no. 5,
1988, pp. 513–523.

[57] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, vol. 18, no. 11, 1975, pp. 613–620.

[58] T. Sandeep and M. P. Jignesh, “Estimating the Selectivity of tf-idf based Cosine
Similarity Predicates,” ACM SIGMOD Record, vol. 36, no. 2, 2007, pp. 7–12.

[59] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo, “Data Mining Methods for Detection
of New Malicious Executables,” Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, 14-16 May 2001, pp. 38–49, IEEE.

[60] G. Shafer, “A Mathematical Theory of Evidence,” Princeton, NJ, 1976.

[61] A. Singhal, “Modern Information Retrieval: A Brief Overview,” Bulletin of the
Technical Committee on Data Engineering, vol. 24, no. 4, 2001, pp. 35–43.

[62] S. M. Sladaritz Sr, “About Heuristics,” SANS Information Security Reading Room,
March 2002.

[63] P. Soucy and G. Mineau, “Beyond TFIDF Weighting for Text Categorization in the
Vector Space Model,” 19th International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, 30 July - 5 August 2005, pp. 1130–1135.

[64] E. H. Spafford and S. A. Weeber, “Software Forensics: Can We Track Code to its
Authors?,” Computers & Security, vol. 12, 1993, pp. 585–595.

89

[65] Symantec, Symantec Internet Security Threat Report: Trends for January 05 - June
05, Tech. Rep., Symantec, September 2005.

[66] G. J. Tesauro, J. O. Kephart, and G. B. Sorkin, “Neural networks for computer virus
recognition,” IEEE Intelligent Systems and Their Applications, vol. 11, no. 4, 1996,
pp. 5–6.

[67] L. Todorovski and S. Dzeroski, “Combining multiple models with meta decision
trees,” Proceedings of the 4th European Conference on Principles of Data Mining
and Knowledge Discovery, 2000, p. 5464.

[68] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained Malware Analysis using
Stealth Localized-Executions,” IEEE Symposium on Security and Privacy, 2006.

[69] S. S. Vempala, The Random Projection Method, American Mathematical Society,
2004.

[70] K. L. Verco and M. J. Wise, “Software for detecting suspected plagiarism: Compar-
ing structure and attribute-counting systems,” Proceedings of 1st Australian Confer-
ence on Computer Science Education, Sydney, July 1996.

[71] J. von Neumann, “Theory of Self-Reproducing Automata,” Part 1: Transcripts of
lectures given at the University of Illinois, December 1949, A. W. Burks, ed., 1966.

[72] C. Willems, T. Holz, and F. Freiling, “Toward Automated Dynamic Malware Analy-
sis Using CWSandbox,” IEEE Security & Privacy Magazine, vol. 5, no. 2, 2007, pp.
32–39.

[73] Y. Yang and J. O. Pedersen, “A Comparative Study on Feature Selection in Text Cate-
gorization,” Proceedings of the 14th International Conference on Machine Learning,
1997, pp. 412–420.

[74] B. Zhang, J. Yin, J. Hao, S. Wang, D. Zhang, and W. Tang, “New Malicious Code
Detection Based on N-gram Analysis and Rough Set Theory,” International Confer-
ence on Computational Intelligence and Security, 2006, vol. 2.

90

APPENDIX A

ADLEMAN’S THEOREM FOR DETECTING VIRUSES

91

For all Gödel numberings of the partial recursive functions {φi}

V = {i|φi is a virus} is Π2− complete

Proof

Let T = {i|φi is a total}. It is well known (§13 and §14 in [52]) that T is Π2− complete.

To establish that T ≤1 V , let j ∈V (for example let j be an index for the identity function)
and consider the function g : N → N such that for i,y ∈ N:

g(i,y) =
{

φ j(y) i f φi(y) ↓
↑ otherwise

Then g is a partial recursive function. Let k be an index for g, and let f : N → N, be such
that:

(∀i ∈ N)[f (i) = s(k,1, i)]

where s is as in the s−m−n theorem [52].

Then f is a total recursive function and:

(∀i,y ∈ N)
[

φ f (i)(y) = φs(k,1,i)(y) = φk(i,y) = g(i,y) =
{

φ j(y) i f φi(y) ↓
↑ otherwise

]
It follows that:

i ∈ T ⇔ f (i) ∈V

Thus T ≤m V . It follows, as in §7.2 in [52], that T ≤1 V as desired.

To establish that V ∈Π2, consider the following formula for V which arises directly from
the definition of virus:

92

(∀ j)(∃k, t) [H(i, j,k, t)]
&
(∀< d, p >) [(∀ j1,k1, t1)

[H(i, j1,k1, t1)⇒
(∀< e,q >, t2)[¬H(k1,< d, p >,< e, p >, t2)]]
or
(∀ j1,k1, t1, j2,k2, t2)
[[H(i, j1,k1, t1) & H(i, j2,k2, t2)]⇒
(∃< e,q >, t3, t4)
[H(k1,< d, p >,< e,q >, t3) &
H(k2,< d, p >,< e,q >, t4)]]
or
(∀ j1,k1, t1,< e,q >, t2)
[[H(i, j1,k1, t1) & H(j1,< d, p >,< e,q >, t2)]⇒
(∃< e′,q′ >, t3, t4)
[H(k1,< d, p >,< e′,q′ >, t3) &
L(i,< e,q >,< e′,q′ >, t4)]
&
H(i, j1,k1, t1) & H(k1,< d, p >,< e,q >, t2)]⇒
(∃< e′,q′ >, t3, t4)
[H(j,< d, p >,< e′,q′ >, t3) &
L(i,< e′,q′ >,< e,q >, t4)]]]

Where H is a ‘step counting’ predicate for {φi} such that:

(∀i, j,k)
i f φi(j) = k then (∃t)[H(i, j,k, t)]
i f φi(j) 6= k then (∀t)[¬H(i, j,k, t)]

And where L is a predicate for {φi} such that:

(∀i,< e,q >,< e′,q′ >, t)
i f < e,q >∼φi< e′,q′ > then (∃t)[L(i,< e,q >,< e′,q′ >, t)]
i f < e,q >�φi< e′,q′ > then (∀t)[¬L(i,< e,q >,< e′,q′ >, t)]

Since for all acceptable Gödel numberings of the partial recursive functions {φi} it is eas-
ily seen that there exist recursive predicates H and L as above, it follows that V ∈Π2.

93

APPENDIX B

EXPERIMENTAL RESULTS GRAPHS

94

Figure B.1

3-gram, Whole portion data set, 500-features

Figure B.2

3-gram, Data portion data set, 500-features

95

Figure B.3

3-gram, Code portion data set, 500-features

Figure B.4

3-gram, Combination portion data set, 500-features

96

Figure B.5

3-gram, Whole portion data set, 1000-features

Figure B.6

3-gram, Data portion data set, 1000-features

97

Figure B.7

3-gram, Code portion data set, 1000-features

Figure B.8

3-gram, Combination portion data set, 1000-features

98

Figure B.9

3-gram, Whole portion data set, 1500-features

Figure B.10

3-gram, Data portion data set, 1500-features

99

Figure B.11

3-gram, Code portion data set, 1500-features

Figure B.12

3-gram, Combination portion data set, 1500-features

100

Figure B.13

4-gram, Whole portion data set, 500-features

Figure B.14

4-gram, Data portion data set, 500-features

101

Figure B.15

4-gram, Code portion data set, 500-features

Figure B.16

4-gram, Combination portion data set, 500-features

102

Figure B.17

4-gram, Whole portion data set, 1000-features

Figure B.18

4-gram, Data portion data set, 1000-features

103

Figure B.19

4-gram, Code portion data set, 1000-features

Figure B.20

4-gram, Combination portion data set, 1000-features

104

Figure B.21

4-gram, Whole portion data set, 1500-features

Figure B.22

4-gram, Data portion data set, 1500-features

105

Figure B.23

4-gram, Code portion data set, 1500-features

Figure B.24

4-gram, Combination portion data set, 1500-features

106

Figure B.25

5-gram, Whole portion data set, 500-features

Figure B.26

5-gram, Data portion data set, 500-features

107

Figure B.27

5-gram, Code portion data set, 500-features

Figure B.28

5-gram, Combination portion data set, 500-features

108

Figure B.29

5-gram, Whole portion data set, 1000-features

Figure B.30

5-gram, Data portion data set, 1000-features

109

Figure B.31

5-gram, Code portion data set, 1000-features

Figure B.32

5-gram, Combination portion data set, 1000-features

110

Figure B.33

5-gram, Whole portion data set, 1500-features

Figure B.34

5-gram, Data portion data set, 1500-features

111

Figure B.35

5-gram, Code portion data set, 1500-features

Figure B.36

5-gram, Combination portion data set, 1500-features

112

Figure B.37

6-gram, Whole portion data set, 500-features

Figure B.38

6-gram, Data portion data set, 500-features

113

Figure B.39

6-gram, Code portion data set, 500-features

Figure B.40

6-gram, Combination portion data set, 500-features

114

Figure B.41

6-gram, Whole portion data set, 1000-features

Figure B.42

6-gram, Data portion data set, 1000-features

115

Figure B.43

6-gram, Code portion data set, 1000-features

Figure B.44

6-gram, Combination portion data set, 1000-features

116

Figure B.45

6-gram, Whole portion data set, 1500-features

Figure B.46

6-gram, Data portion data set, 1500-features

117

Figure B.47

6-gram, Code portion data set, 1500-features

Figure B.48

6-gram, Combination portion data set, 1500-features

118

Figure B.49

7-gram, Whole portion data set, 500-features

Figure B.50

7-gram, Data portion data set, 500-features

119

Figure B.51

7-gram, Code portion data set, 500-features

Figure B.52

7-gram, Combination portion data set, 500-features

120

Figure B.53

7-gram, Whole portion data set, 1000-features

Figure B.54

7-gram, Data portion data set, 1000-features

121

Figure B.55

7-gram, Code portion data set, 1000-features

Figure B.56

7-gram, Combination portion data set, 1000-features

122

Figure B.57

7-gram, Whole portion data set, 1500-features

Figure B.58

7-gram, Data portion data set, 1500-features

123

Figure B.59

7-gram, Code portion data set, 1500-features

Figure B.60

7-gram, Combination portion data set, 1500-features

124

	Using random projections for dimensionality reduction in identifying rogue applications
	Recommended Citation

	tmp.1625165283.pdf.paLFI

