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We present the results from a user study looking at the ability of observers to mentally

integrate wind direction and magnitude over a vector field. The data set chosen for the

study is an MM5 (PSU/NCAR Mesoscale Model) simulation of Hurricane Lili over the

Gulf of Mexico as it approaches the southeastern United States. Nine observers partici-

pated in the study. This study investigates the effect of layering on the observer’s ability

to determine the magnitude and direction of a vector field. Wefound a tendency for ob-

servers to underestimate the magnitude of the vectors and a counter-clockwise bias when

determining the average direction of a vector field. We completed an additional study with

two observers to try to uncover the source of the counter-clockwise bias. These results

have direct implications to atmospheric scientists, but may also be able to be applied to

other fields that use 2D vector fields.
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CHAPTER 1

INTRODUCTION

In this paper, we report the design and results of a user studythat investigated the

current visualization methods used in the weather modelingcommunity and determined

their efficacy. The study used model output simulating Hurricane Lili (2002). This study

concentrated on the ability of observers to integrate both the magnitude and the direction

of vector fields over an area and to determine the effects of layering in a 2D vector field.

Much of the work described herein was published in [8].
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CHAPTER 2

BACKGROUND

Hurricane Lili began forming on the west coast of Africa on September 16, 2002 and

became a hurricane on September 30 over Cayman Brac and Little Cayman Islands. As

Lili approached the southeastern United States, it intensified, reaching a maximum wind

speed of 125 knots (category four). However, the storm unexpectedly weakened in the

13 hours before landfall, becoming a category two hurricane. Lili made landfall in the

United States on October 3 near Intracoastal City, LA with a maximum wind speed of 80

knots [7]. Lili’s path as it approached the U.S. can be seen inFigure 2.1.

Figure 2.1

Hurricane Lili’s track in Google Earth. Track data is from the National Hurricane
Center [7]. Image credit: Mahnas Jean Mohammadi-Aragh.
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The Hurricane Lili data used in this study were generated by Zhang et al. [12] using

the Fifth-Generation NCAR / Penn State Mesoscale Model (MM5). They attribute the

rapid weakening of Hurricane Lili to a dry air infusion that can be seen in the MM5 model

when output from theAqua Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite is included in the model run. To study their simulation results, these domain

experts created imagery using Read/Interpolate/Plot Version 4 (RIP) [10], a visual analysis

package that is a de facto standard in that community. RIP uses a domain-specific glyph

to visualize flow.

The past two decades have seen a wide variety of new visualization techniques. Texture-

based methods [6] are able to produce high-resolution and visually pleasing results. How-

ever, geometry-based techniques such as streamlines and hedgehogs remain the most com-

mon visualization techniques used to investigate real-world flow phenomena [11]. For the

most part, there is only anecdotal or assumptive understanding of the effectiveness of these

techniques. The visualization research community is beginning to accept that the efficacy

of most visualization techniques needs to be verified by userstudies [4].

Some flow visualization user studies have been reported. Laidlaw et al. [5] dealt with

detecting and identifying critical points. They also studied an advection task in which

the observer estimated where a particle in a flow field would move. This was done using

several common flow visualization techniques including arrow glyphs and line-integral

convolution (LIC). They found that arrows on a regular grid were generally less effective

than the other techniques they tested. Andrysco [1] only dealt with the advection of a

particle, but included streamlines and pathlines. Also, the observers were asked to advect
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a particle back to its origin. Unfortunately, Andrysco was unable to find statistical signif-

icance, which was contributed to the test methodology and observers that did not take the

tasks seriously.

This weather and flow visualization study is focused on domain-specific 2D glyphs,

a simple and intuitive technique still in widespread use. While some weather researchers

have started to consider 3D visualization approaches, manycontinue to rely on 2D meth-

ods. In this study, we are interested in investigating the overall performance of these glyphs

coupled with one or more layers of scalar data. This will pavethe way for future work on

other flow visualization techniques.
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CHAPTER 3

EXPERIMENTAL TASK AND SETTING

To encourage weather researchers to start using visualization methods that we felt had

greater efficacy, we designed a user study to test some potential improvements to their

approach. We were particularly interested in how image layering affected an observer’s

performance. For this study, we defined layering as the number of different techniques

(contours, color map, state boundaries) that are added to a base image. Our hypothesis

was that as more layers are added, the observer’s ability to interpret the base image will be

degraded. Additionally, we were interested in an observer’s ability to mentally compute

the average direction of vectors over an area.

3.1 Experimental Design and Procedure

The prevailing wind magnitude and direction is an importantaspect of weather un-

derstanding and forecasting. In this experiment, we presented observers with vector fields

denoted by glyphs (Figure 3.1) that indicated both wind magnitude and wind direction.

While not common in the visualization community, we used thevector glyphs that were

used in [12] and are common in the weather modeling community(e.g., of the nine arti-

cles in the January 2008 issue of Monthly Weather Reviewthat contained glyphs for wind,

seven of them used the glyph style shown in Figure 3.1) [9]. All of the data sets we used
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showed the Gulf of Mexico region during the 24 hours prior to the landfall of Hurricane

Lili, hence all of the data sets contained a spiral wind field and eye structure (e.g., Fig-

ure 3.1). Note this is the period when Lili rapidly weakened from a category four to a

category one hurricane on the Saffir-Simpson Scale. We examined observer performance

on two different sub-tasks:

• Magnitude Estimation: We asked observers to estimate the wind speed at either a
point (Figure 3.1) or over a rectangular area (Figure 3.2). The glyphs encoded the
wind speed by the number and type of extensions drawn on the right-hand side of the
glyph; observers always saw this encoding given in the legend shown in Figure 3.3.
In the point case, the observer’s task was to estimate the magnitude at the specified
location using the glyphs immediately surrounding the marker. In the area case, the
observer’s task was to average the wind speed of all of the glyphs contained within
the selection area.

• Direction Estimation: We asked observers to estimate the wind direction at either
a point (Figure 3.1) or over a rectangular area (Figure 3.2).The glyphs encoded
the wind direction using a weather-vane metaphor: we imagine that we mount the
tip of the glyph on a rigidly-fixed, rotating point; the wind catches the ‘flags’ along
the back of the glyph and rotates the glyph to point along withwind direction (Fig-
ure 3.3). As with all low pressure systems in the northern hemisphere (hurricanes
included), the wind field rotates in a counter-clockwise direction. This can also be
seen in Figure 3.3. In the point case, the observer’s task wasto estimate the wind
direction at the specified point using the surrounding glyphs. In the area case, the
observer’s task was to visually integrate the directions ofall of the glyphs contained
in the selection area and report the average direction. Notethat two glyphs of equal
magnitude that point in opposite directions cancel each other out.

The motivation behind these tasks is that it is important foratmospheric scientists to

understand the magnitude and direction of wind, both at discrete points, as well as over

extended areas. This is different from the tasks presented by Laidlaw et al. and Andrysco

because they tested the observer’s ability to determine where a single particle would go

rather than determining the observer’s understanding overan area [1, 5]. While in the

most general case atmospheric scientists might be interested in various shapes of extended
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Figure 3.1

Point selection circle that the observer would see. The selected point is at the center of
the red/white circle.

Figure 3.2

Area selection box that the observer would see. The selectedarea is the area included in
the black/white box.

7



Figure 3.3

The user study GUI in training mode. Note the correct answer on the right side of the
screen. This was removed once the test began.

areas, for tractability in this experiment we only examinedrectangular areas of certain

sizes. Imagery for this study was created using Read/Interpolate/Plot Version 4 (RIP) [10]

and was based off the images included in [12].

During the training and test, observers were in a conferenceroom with only the test

administrator(s). The observer was asked to sign a consent form and answer a general

questionnaire, as well as given an incentive for completingthe study ($10). The observer

was also asked to turn off their cell phone or set it to silent.

The test was administered on an Apple PowerBook laptop with a15.2 inch screen

running at the screen’s native resolution of 1280x854. Observers were free to move the

laptop to a comfortable position. Most observers placed thelaptop within an arm’s length,
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but no specific measurements were taken of this. A Logitech V270 Bluetooth mouse was

placed beside the computer. The touchpad was still active for observers that wanted to

use it. As many potential distractions were removed from thescreen as possible (e.g., the

screen saver was turned off, icons removed, etc.).

Observers were given training on the testing software basedon a bulleted training

script. There were 15 specific points that the administratorcovered with the observer

during training. The test administrator walked the observer through four training images

(two point and two area). These locations and images were randomly selected at the same

time the images for the trials were selected. The observer was taught the meaning of the

glyphs, instructed on the use of the two sliders (magnitude and direction), and instructed

to only use the glyphs in determining their answers (i.e. they were not to use contours,

color map or state lines to answer the questions). Observerswere given opportunities to

ask questions before beginning the test.

The observer then began the test. The test administrator watched the observers closely

during the first few questions to see if their answers were reasonable. Some continued to

ask questions leading to response time outliers, but magnitude and direction were generally

unaffected by this. Had an observer’s responses been significantly different than expected,

a new training file could have been generated and the test restarted. This, however, was

never necessary.

The observer was given an opportunity for a break after every10 questions. There was

no set length for these breaks and the observer could continue at any point. The magnitude

and direction the observer entered for each task was recorded, along with the time it took
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to complete each subtask. The test administrator recorded notes about events that might

affect results (e.g. interruptions or additional questions). Each observer completed 80

tasks, where one task was answering the magnitude and direction for one image.

3.2 GUI and Software

To implement the study, several scripts and a GUI were written. The scripts were

written in Perl; the GUI is a Cocoa application. The hurricane images presented to the

observer were 607x607 pixels. The full GUI occupies 1269x716 pixels.

To generate the list of tests an observer would encounter, a script randomly selects a

data set, time step, and region of interest. The region selected is restricted so that it is not

within 100 pixels of the edge of the data (in screen-space). The test conditions (point/area,

color map, state lines, pressure contours) are randomly ordered, but balanced so that there

is an equal number of each test condition for each observer. Asecond script determines

the ground truth for each selected location by examining theinput data for the imagery.

During a test, the GUI (Figure 3.3) displays the pre-determined tests to the observer. It

records the magnitude and direction that the observer selects, along with the time it takes

the observer to make their decisions. The output is cleaned and formatted before inputting

it into the statistics packages Minitab, SPSS, and R. Minitab was used for publication-

quality graphics and statistical tests, SPSS for statistical tests, and R for exploratory and

preliminary analysis graphics.
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3.3 Independent Variables

3.3.1 Layers

All of the images contained wind glyphs. Additionally, the images contained zero to

three additional layers which we hypothesized would reducethe observer’s ability to de-

termine the magnitude and direction of the glyphs. The layers were pressure contour lines,

state boundary lines, and a color map of relative humidity, for a total of eight different

layer combinations. Figure 3.4 shows the four base images.

3.3.2 Selection

The selection for each question was either a point or an area (Figures 3.1 and 3.2).

For a point, we told observers to use the four vectors surrounding the designated point

to determine its value. For an area, we told observers to mentally integrate all of the

vectors surrounded by the box. For black and white images, a red/white indicator was

used; for color images, a black/white indicator was used. These can also be seen in fig-

ures 3.1 and 3.2. These colors were picked because they provided good contrast when they

were applied to the image.

3.3.3 Shapes

For area selections, three shapes were chosen: square, horizontal rectangle, and verti-

cal rectangle. Two sizes of each shape were presented to the observer (sizes are in screen-

pixels):
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Figure 3.4

Each of the four basic types of images. Combinations of thesefour formed the eight
image types used in the study. The Images are: (top left) glyphs only (top right) glyphs +

state lines (bottom left) glyphs + pressure contours (bottom right) glyphs + color map.
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• Square: 100x100 and 175x175

• Vertical rectangle: 50x150 and 100x200

• Horizontal rectangle: 150x50 200x100

3.4 Dependent Variables

There were two main measured quantities: wind magnitude (velocity in knots) and

wind direction (in degrees). For each, we have a ground truthmeasurement and the ob-

server’s measurement, as well as the observer’s response time. From these, we calculated

four dependent measures: (1) magnitude error, (2) magnitude error response time, (3)

direction error, and (4) direction error response time.

3.4.1 Magnitude Error

The magnitude error is computed as the difference in the ground-truth-magnitude

and the observer-magnitude. A magnitude error of 0 means theobserver has chosen the

ground truth wind speed. A positive magnitude error means the observer has overestimated

the ground truth wind speed, while a negative magnitude error means the observer has

underestimated the ground truth wind speed.

3.4.2 Direction Error

The direction is collected in degrees; 0◦ / 360◦ is due north; degrees are left-handed,

meaning they increase clockwise. For processing purposes,the direction is converted to

–180◦ ≤ direction≤ +180◦, where 0◦ is still north. The direction error is the difference

in the ground-truth direction and the observer-direction.A direction error of 0◦ means the

13



observer has chosen the correct ground truth direction. A positive direction error means the

observer has overestimated the ground truth direction in a positive left-handed sense; i.e.

the observer’s direction is clockwise from the ground truthdirection. A negative direction

error means the observer has underestimated the ground truth direction in a negative left-

handed sense; i.e. the observer’s direction is counter-clockwise from the ground truth

direction.

3.4.3 Response Time

Response time is defined as the number of microseconds from the time the observer

is shown the question until the observer presses the ‘next task’ button. Separate values are

collected for both magnitude and direction.

3.5 Observers

Initially, we had planned to recruit observers who were Mississippi State University

students and faculty in the Broadcast and Operational Meteorology programs. However, as

the study design progressed, we determined that a strong background in weather sciences

was not necessary to complete the study. Researchers from various fields commonly look

at vector visualizations and should be capable of answeringthe questions we were asking.

As a result, the observers recruited for this study include students and faculty with weather,

visualization, or computational fluid dynamics backgrounds. Nine observers participated

in the main study, comprising six males and three females. Inaddition, as described in

Chapter 4 (Results and Discussion), we recruited two additional male observers to study

14



reversed glyphs. Thus a total of eleven observers participated, but unless otherwise speci-

fied, all of the results are based on the first nine observers. None of the observers reported

color blindness in the questionnaire. Since observers werenot interpreting the colors in

the images, we did not perform tests to verify their responses.
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CHAPTER 4

RESULTS AND DISCUSSION

Each of the nine observers who participated in the main studycompleted 80 trials, for

a total of 720 completed trials. Each trial produced a value for magnitude error, magnitude

response time, directional error, and directional response time. We analyzed the data using

standard error plots and univariate analysis of variance (ANOVA). For the ANOVA, we

modeled our experiment as a repeated-measures design that considersobserver a random

variable and all other independent variables as fixed. The distributions on which ANOVA

analysis is based assume that, for each tested effect, the data is normally distributed and

the variance is homogenous. Howell says that for repeated-measures designs such as the

ones we report here, these two assumptions are usually violated. Therefore, following the

recommendations of Howell (p. 486) [3], for each tested effect we applied the Huynh and

Feldt correctionǫ; when theF -test is conducted, the degrees of freedom are multiplied by

ǫ. This results in a more conservative test that corrects for the degree to which the ANOVA

assumptions are violated. For our analysis, we applied the Huynh and Feldt correction

whenever the data was completely balanced (and thus it was possible to calculateǫ using

SPSS). However, some of ourF -tests were over unbalanced data, and thus we were not

able to calculate this correction for everyF -test. Therefore, we do not report Huynh and

Feldt-correctedF -tests in this section. However, whenever we were able to calculate the
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more conservative Huynh and Feldt correction we did so, and we did not find any cases

where the Huynh and Feldt correction changed the outcome of an F -test from significant

to non-significant.

We processed outliers in the data with the procedure described by Barnett and Lewis [2].

We determined outliers by examining histograms that summarized each dependent mea-

sure; for magnitude error and directional error the histograms showed symmetric normal

distributions, while for response times the histograms showed skewed normal distribu-

tions. We determined outliers on a case-by-case basis, by examining the tails of the dis-

tributions and noting values that appeared after conspicuous gaps in the histogram. Each

outlier was replaced by the median of the remaining values inthe experimental cell. Given

that outliers are considered mistaken values, this procedure improves the calculation of

means, standard errors, and the sums-of-squares terms usedin ANOVA, which would oth-

erwise be inappropriately influenced by the outlying values.

4.1 Wind Magnitude

In the wind magnitude data, there were 31 outliers that needed to be processed. This

is 31 of 720 responses (4.3% of the values). While this is quite a few outliers, it reflects the

difficulty of determining the magnitude, particularly overareas. There is negative bias as

all observers tended to underestimate wind speed by an average of 4.0 knots; this underes-

timation is significantly different from zero(F (1, 8) = 2629, p < .000). Figure 4.1 shows

the magnitude error results for each observer. All observers underestimated the magnitude,

from an average of 1.8 knots for observer 2 to an average of 5.7knots for observer 5.
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Figure 4.1

Magnitude Error vs. Observers.

Figure 4.2 shows the main results for magnitude error. In theresults, we encodedlayers

as a three-digit binary number where the digits indicate, from left to right, the presence

or absence of contour lines, color map, and state lines (“1” indicates presence and “0”

indicates absence).

Observers were considerably more accurate with points thanwith areas(F (1, 8) =

151.2, p < .000). This is expected because integrating over areas should be more difficult

than determining the magnitude at a single point. It also shows that the overall under-

estimation trend comes mostly from area tasks. Because the standard error bars overlap

within both area and point questions, there is no evidence that the number of layers make

a systematic difference in observers’ ability to determinethe magnitude; analysis showed

no effect of layers(F (7, 56) = .392, p = .903), nor any interaction with question type

(F (7, 56) = .894, p = .518). For us, these are somewhat negative results, as they do not
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support our initial hypothesis that increasing the number of layers in the imagery would

make the task more difficult. It is possible that the specific portion of the data set queried,

and perhaps the queried value itself, make a much larger difference than the number of

layers.
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Figure 4.2

Magnitude Error vs. Question Type, Layers.

Figure 4.3 shows that the task gets harder as the size of the selection area increases

(F (2, 16) = 84.5, p < .000). Observers increasingly underestimate the magnitude for

larger squares or rectangles. We did not find any effect of selection area shape; observers

gave equivalent results for squares, horizontal rectangles, and vertical rectangles.

We also recoded and analyzed response times for each magnitude trial. Figure 4.4

shows that the average response time for areas was greater than the time for points(F (1, 8) =

26.8, p = .001), which is further evidence that the area questions were harder than the
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Figure 4.3

Magnitude Error vs. Selection Area Size.

point questions. We found an overall main effect of layer(F (7, 56) = 2.12, p = .057),

which is further analyzed below. We found a trend towards an interaction between layer

and question type(F (7, 56) = 1.9, p = .090). Figure 4.5 shows that observers took longer

to answer with larger areas(F (2, 16) = 25.4, p < .000), which is further evidence that

larger areas were more difficult. We found no response time differences for different area

shapes.

Figure 4.4 suggests a layer effect for areas, but not for points. Indeed, there was a

main effect of layers for the area trials(F (7, 56) = 2.75, p = .016). Figure 4.6 shows the

response times for the absence (“0”) and presence (“1”) of each layer for the 360 area trials.

We found main effects for the presence or absence of contour lines(F (1, 8) = 12.3, p =

.008), color maps(F (1, 8) = 4.74, p = .061), and state lines(F (1, 8) = 18.1, p = .003),

but no interaction effects. Contrary to our hypothesis, observers werefaster in the presence
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Figure 4.4

Magnitude Response Time vs. Question Type, Layers.
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Figure 4.5

Magnitude Response Time vs. Selection Area Size.
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of contour lines. We conjecture that the contour lines helped observers estimate the wind

speed because they frame the wind fields (Figure 3.4). As we expected, observers were

slower when color maps and especially state lines were present, which indicates that these

layers made the task more difficult. Interestingly, although color maps are much more

visually salient than the state lines (Figure 3.4), the magnitude of the effect for color maps

(1.33 seconds) was much smaller than for state lines (3.11 seconds). This may occur

because the relative humidity shown by the color maps also follows the wind field, while

the state lines are completely arbitrary with respect to thewind field. In addition, note that

these results are only for response time — the lack of magnitude error results indicates

that observers’ accuracy was not effected by the layers.
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Figure 4.6

Magnitude Response Time vs. Contour Lines, Color Map, StateLines for the area
questions (360 trials).
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4.2 Wind Direction

The second dependent measure in this study was wind direction. Out of 720 wind

direction responses, 27 (2.9%) outliers were removed. The directional error shows a

negative (counter-clockwise) bias of−6.1◦, which is significantly different from zero

(F (1, 8) = 41.8, p < .000). Figure 4.7 shows the directional error results for each ob-

server; observers 10 and 11 saw “flipped” glyphs and are discussed in more detail later.

All observers showed a negative bias, which ranged from an average of−3.41◦ for ob-

server 2 to an average of−10.84◦ for observer 8.
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Figure 4.7

Directional Error vs. Observers (880 trials). Observers 10and 11 saw reversed glyphs
(Figure 4.9).
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Figure 4.8 shows that the magnitude of the negative bias increased as the size of the

shape increased(F (2, 16) = 16.9, p < .000). We did not find any effects of area shape on

directional error.
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Figure 4.8

Directional Error vs. Selection Area Size.

We also analyzed the response time for directional error. Our only response time find-

ing was that it took observers longer to enter the direction for area questions (11.3 seconds)

than for point questions (10.0 seconds)(F (1, 8) = 6.08, p = .039).

4.3 Directional Error Study

Considering that these glyphs are commonly used by the weather science community,

it is interesting that observers consistently (1) underestimated the wind magnitude shown

by the glyphs, and (2) showed a consistent counter-clockwise bias when estimating wind

24



direction. We hypothesized that the counter-clockwise bias was likely due to the glyphs’

asymmetric visual design, where the wind-speed flags are always on the left (Figure 4.9).

To quickly test this hypothesis, we flipped the glyph orientation (Figure 4.9), and ran two

additional observers through exactly the same protocol. Weexpected that this would give

us a clockwise bias with a similar magnitude as the RIP’s regular glyphs did. Figures 4.7

and 4.10 show the results. Contrary to our hypothesis, our two observers still displayed a

counter-clockwise bias with the flipped glyphs, and the magnitude of the bias is compara-

ble to what we found with our first nine observers. The difference between the groups is

not significant(F (1, 878) = 1.41, p = .235). Further study will be required to determine

what, if any, role glyph shape plays in this directional bias.

Figure 4.9

The glyph that is produced by RIP is shown on the left. In orderto prove that the
counter-clockwise bias is caused by the shape of the glyph, we implemented a small

study (2 observers) where the glyph shape is flipped, as shownon the right.
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Figure 4.10

Directional Error vs. Glyph Orientation (880 trials).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Our experiment has empirically verified some expected results, as well as revealed

some surprising and unexpected results. Among the expectedresults is that determining

the magnitude and direction of wind speed over an area is a harder task than at a point.

Another unsurprising result is that the larger the area thatneeds to be mentally integrated,

the harder the task and the longer it takes.

This experiment revealed three surprising findings. First,although some data layers

(state lines) increased the response time for wind speed estimation over areas by as much

as 3.11 seconds, overall we did not find that additional data layers made the glyphs more

difficult to read. Second, observers underestimated wind speed by an average 4.0 knots;

and their underestimation became worse as the area over which they were estimating in-

creased. Third, observers showed an average counter-clockwise bias of –6.1◦ in wind

direction, and this bias also became worse as the area over which they were estimating

increased. The wind direction bias cannot be entirely explained by the asymmetric nature

of the glyph shape.

As discussed in the introduction, the glyphs studied here are widely used in the weather

science community. Our unexpected positive finding is that these glyphs can be reliably

read in the presence of additional data layers. However, ourunexpected negative find-
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ing is that observers reliably underestimated wind speed and showed a bias in estimating

wind direction. Because understanding wind speed and direction are fundamental tasks in

weather data analysis, this is a potentially serious finding.

5.1 Future Work

It is well-known in the visualization field that the design space for any glyph-based

vector field visualization technique is very large. A fruitful goal for future work would be

to study related glyph techniques to see if they exhibit the same sorts of biases we found

here. Another fruitful goal would be to tweak the parametersof the current glyphs, which

are widely used, to see if they can be improved. For example, perhaps the wind speed

underestimation could be reduced if the flags that denote wind speed were made larger

(Figure 3.3).

Finally, while a strength of the current study is that it usedreal-world data, it is pos-

sible that the nature of the dataset influenced the results. In particular, we suspect that

the directional bias might have arisen because every dataset showed a counter-clockwise

circular wind field around a northern hemisphere tropical cyclone. We would like to repeat

the study with a southern hemisphere tropical cyclone data set, where the wind field would

rotate in a clockwise direction.
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