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A seven-element Modified Embedded Atom Method (MEAM) potential 

comprising Fe, Mn, Si, C, Al, Zn, and O is developed by employing a hierarchical 

multiscale modeling paradigm to simulate low-alloy steels, inhibition layer, and 

galvanized coatings. Experimental information alongside first-principles calculations 

based on Density Functional Theory served as calibration data to upscale and develop the 

MEAM potential. For calibrating the single element potentials, the cohesive energy, 

lattice parameters, elastic constants, and vacancy and interstitial formation energies are 

used as target data. The heat of formation and elastic constants of binary compounds 

along with substitutional and interstitial formation energies serve as binary potential 

calibration data, while substitutional and interstitial pair binding energies aid in 

developing the ternary potential. Molecular dynamics simulations employing the 

developed potentials predict the thermal expansion coefficient, heat capacity, self-

diffusion coefficients, thermomechanical stress-strain behavior, and solid-solution 

strengthening mechanisms for steel alloys comparable to those reported in the literature. 



 

 

Interfacial energies between the steel substrate and inhibition layer shed light on the 

interfacial nanostructures observed in the galvanizing process. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

Galvanized steel is extensively used in the automotive industry, the largest 

business market in the world, and the initiative to reduce vehicular weight comes at a cost 

of reducing steel sheet thickness. The steel industry is developing the third generation 

(3G) of advanced high strength steels (AHSSs) which are vitally important for better fuel 

efficiency and is directly associated with the weight of vehicles. Weight reduction can be 

achieved by employing steel components with improved strength and good ductility 

[1,2]. New generation AHSSs contain higher concentration of alloying elements, for 

example, silicon (Si) and manganese (Mn) to increase AHSS’s strength. However, the 

addition of Si and Mn in the steel introduces oxides that reduce corrosion resistance [3]. 

One of the primary concerns for continuous galvanizing lines (CGLs) is the selective 

oxidation of Si and Mn on steel surfaces during annealing prior to zinc dipping. 

Oxidation may occur both at the external surface and internal subsurface depending upon 

partial pressure of oxygen in the annealing furnace [4–7]. How these oxides affect 

galvanizing of AHSSs has been the subject of extensive discussions [4–11]. By 

electronics principle and atomistic modeling, coupled with nanoscale materials 

characterization, we will determine the thermodynamics, kinetics, and thermomechanical 
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behavior for steel, along with atomistically model the interfacial features of selective 

oxides and inhibition layer formation during galvanization.  

1.2 Multiscale Experiments 

The properties observed at the structural length scale are governed by 

phenomenon occurring at the lower length scales. Therefore, exploring the lower length 

scale is a necessity to fully comprehend the structure-property relationships of a material, 

as depicted in Figure 1.1. As such, understanding the physics behind any unknown 

phenomenon requires exploratory experiments to be conducted. Using these experiments, 

we not only investigate the phenomenon but acquire pertinent information that can serve 

as a blueprint to setup a computational, physics-based model. Once the model has been 

developed, calibration experiments are conducted where we tune our model to realistic 

results. Once we are confident about the model calibration, we can make predictions and 

experimentally validate our model. 
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Figure 1.1 Multiscale experiment design concept employed to explore, calibrate, and 

validate physically observed phenomenon at each length scale.  

Exploratory experiments are conducted to garner information on the nature of the 

phenomenon being captured. Calibration experiments are conducted to provide modeling 

data. Validation experiments are conducted to ensure the calibrated model can make a 

prediction. 

1.3 Hierarchical Multiscale Modeling 

Integrated Computational Materials Engineering (ICME) is a computational-

based design paradigm that employs hierarchical multiscale modeling to capture 

continuum scale phenomenon. Therefore, ICME was invoked to study the meso to macro 

length scale phenomena and determine the structure-property relationships in galvanized 

steels. In particular, a ‘vertical’ ICME methodology was used, which provided a unique 

opportunity to ascertain the material behavior at different length scales.  

The first step in employing ICME entails downscaling the engineering problem, 

followed by upscaling the pertinent information at each length scale to resolve the 
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engineering problem. Capturing the interfacial structures observed at the micro/meso-

scale in galvanized steels serves as our downscaling driver, as illustrated in Figure 1.2. 

The interfacial structures can be modeled as a continuum using phase-field modeling, 

which requires thermodynamic and kinetics information as calibration inputs. In order to 

obtain the thermodynamic and kinetics information, we downscale to the atomistic length 

scale to garner interfacial energies and diffusion coefficients. However, accurate 

representation of atomistic behavior can only be acquired by a force-field that has been 

specifically calibrated to capture the nanoscale features of galvanized steels. The 

atomistic calibration data can be obtained by further downscaling to the quantum length 

scale.  

Once the downscaling requirements are clarified, the upscaling parameters are 

setup to lay the foundation of a path to follow. At the lowest length scale, Density 

Functional Theory (DFT) will be employed to garner energy-volume curves, heat of 

formation, elastic constants, vacancy formation and dilute solution energies to upscale as 

calibration data for the atomistic potential. In addition, heat of formation and dilute 

solution energies will also be upscaled to the mesoscale phase-field model. The Modified 

Embedded Atom Method (MEAM) will be the force-field calibrated at the atomistic 

length scale using experimental and DFT data.  Once the MEAM potential is fully 

calibrated, thermodynamic and kinetics data of interfacial energies, grain boundary 

energies, and diffusion coefficients will be evaluated and upscaled to the mesoscale 

phase-field model.  

Employing the ICME methodology entailed in this section will ensure that the 

model developed is rooted in physics, rather than an empirical-based model. Therefore, 
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developing robust computational models can lead to a diminished dependence on 

experiments that are traditionally expensive to conduct. Consequently, this work will lead 

to designing new coatings for advanced high strength steels for automotive industry, and 

conversely, designing steel alloys that are compatible with standard Zn coatings.  

 

Figure 1.2 A hierarchical multiscale modeling schematic to design new coatings for 

advanced high-strength steels for automotive applications.  

Calculations will be performed from the electronics scale using DFT to determine 

interatomic potentials. The information will be upscaled to the atomistics length scale 

where MEAM will be used to develop potentials for Fe-Mn-Si-Al-Zn-C-O system. The 

results will then be upscaled to the microscale where phase-field modeling will be used to 

capture oxidation and formation of intermetallics. 
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1.4 Dissertation Structure 

Chapter I initiates the motivation behind the study conducted in this dissertation, 

along with defining the multiscale aspect of experiments, and providing a detailed 

understanding of ICME paradigm that has been invoked in the forthcoming modeling 

efforts. Chapter II details the exploratory experiments conducted to examine the 

interfacial structures at high resolution and delineate the modeling requirements. Chapter 

III presents the MEAM potential for Fe, Mn, Si, and C. The single element, binary, and 

ternary interactions of the four elements, along with validation testing was used to garner 

thermodynamics, kinetics, and thermomechanical data of low-alloy steels. Chapter IV 

develops a MEAM potential for Fe, Mn, Si, C, Al, Zn, and O to fully capture the 

elements involved in the interfacial structures observed in galvanized steels. Preliminary 

validation testing is conducted to ensure the applicability of the developed MEAM 

potentials. Chapter V discusses the sensitivity and uncertainty associated with calibrated 

properties of the iron – silicon binary pair. The methodology used to determine sensitivity 

and uncertainty is a one-factor-at-a-time perturbation method. Finally, Chapters VI and 

VII will conclude the dissertation with a summary of results in this study and 

recommendations for future works.  
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CHAPTER II 

TRANSMISSION ELECTRON MICROSCOPE CHARACTERIZATION ON THE 

INTERFACIAL STRUCTURE OF GALVANIZED DUAL-PHASE STEEL1  

 

2.1 Introduction 

In continuous hot-dip galvanizing of automotive steels, a strip is submerged into a 

molten zinc (Zn) bath which contains a small amount of aluminum (Al) (<0.2% 

depending upon the nature of processing). Metallurgical reactions occur instantly at the 

solid-liquid interface. Because the affinity between iron (Fe) and Al is much higher than 

that between Zn and Fe, a thin layer of Fe-Al intermetallic (Fe2Al5 or Fe2Al5-xZnx) [13] is 

developed on the steel substrate surface. The thickness of this interface region falls in the 

range of ~100 nm [14]. The formation of the Fe-Al intermetallic delays or inhibits the 

formation of brittle Fe-Zn intermetallics and enables good adhesion between the Zn-

coating and the steel [15]. 

The interest in improved fuel efficiency of vehicles has stimulated the 

development of the third generation (3G) of advanced high strength steels (AHSSs) 

which are vital for weight reduction. Mass reduction and the resultant better fuel 

efficiency can be achieved when the strength of steels is increased [1,2]. New generation 

                                                 
1 Previously published by Imran et al. [12] 
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AHSSs contain higher concentration of alloying elements, for example, silicon (Si) and 

manganese (Mn) that are key players for higher strength. However, the addition of these 

alloying elements with higher concentrations poses a challenge to the galvanizability that 

is crucial for enhanced corrosion resistance of the AHSSs [3]. One of the primary 

concerns for continuous galvanizing lines (CGLs) is selective oxidation of Si and Mn on 

steel surfaces during annealing. The Si and Mn oxides are difficult to be reduced by 

hydrogen [8–11] and these oxides remain on the surfaces before hot dipping. Oxidation 

may occur both externally and internally depending upon the oxidizing potential inside 

the annealing furnace [4–7]. Thus, understanding the structure of the interface of 

galvanized high strength steels is crucially important. How these oxides affect 

galvanizing of AHSSs has been the subject of extensive discussions [4–11] most recently.  

Due to the complexity and the fine scale of the metallurgical reactions at the 

interface, characterizing the interfacial structure with clarity is rather challenging. The 

interface of galvanized steels has been studied extensively and primarily by scanning 

electron microscopy (SEM), glow discharge optical emission spectroscopy (GDEOS) 

which allows characterization across the Fe-Zn interface by sputtering through its 

thickness [16], energy dispersive spectroscopy (EDS) or x-ray photoelectron 

spectroscopy (XPS) [6,17]. A number of transmission electron microscopy (TEM) studies 

have been conducted on the interface of galvanized steels only after focused ion beam 

(FIB) was available [14,18–26] since conventional TEM specimen preparation 

approaches are unable to locate the interface. These previous studies have shown very 

promising results in resolving the fine interface. 
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As part of the ongoing research on how processing parameters such as dew point 

affect oxidation and the subsequent coating processes of high strength steels, in this 

work, we employed TEM, high resolution TEM (HRTEM) and scanning TEM (STEM) 

and performed bright field (BF) and dark field (DF) imaging to characterize the 

interfacial structures of a galvanized dual phase (DP) steel. The results shed new insight 

on the galvanizing of high strength steels and the growth of the inhibition layer. 

2.2 Experimental Method 

The material used in this work is a galvanized dual phase (DP) steel supplied by 

POSCO. The chemical composition of such DP steel is shown in Table 1. The 

composition of Mn and Si are 1.75 wt% and 0.19 wt%, respectively. The steel strip was 

annealed at a well-controlled dew point. The peak annealing temperature before the Zn 

bath was 780 °C and the composition of the annealing gas was 95% N2 and 5% H2 with a 

dewpoint of −40 °C. The bath temperature of the Zn bath was 460 °C. The 1.0 mm thick 

steel strip was hot-dipped with a galvanizing bath with a dissolved Al concentration 

between 0.14 – 0.2% so that a full inhibition layer can be expected. 

Table 2.1 Chemical composition of the DP steel 

C Mn Si Al Nb Cr Ca 

0.0971 1.7500 0.1923 0.0408 0.0164 0.3304 0.0008 

 

To prepare TEM specimens, first, the galvanized specimen was mechanically 

polished on the cross-section through the thickness. The polishing was carefully 

performed to minimize the mechanical damage to the interface region between the steel 
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substrate and the coating. After polishing, the Zn coating was well revealed. Afterwards, 

focus ion beam was used on a TESCAN Lyra to fabricate specimens for TEM analysis. A 

thin slice approximately 1.0 µm thick was first fabricated by digging trenches around the 

slice (Figure 1a). During milling, EDS mapping was performed on the slice to ensure that 

the slice contains both the substrate and the coating. Before the FIB fabrication, a 1.0 µm 

thin layer of platinum was deposited on the area of interest such that the area of interest 

was protected from rapid sputtering and gallium implantation by the ion beam. The 

regions adjacent to the area of interest were sputtered away (Figures 1a and 1b). Once 

these trenches were created, the specimen was severed off from the bottom such that the 

specimen was only connected with the bulk at one side, i.e., the specimen was a dangling 

cantilever. A tungsten needle was then carefully inserted to make a gentle contact with 

the thin specimen. Then platinum was deposited to weld the needle to the specimen. This 

was followed by severing the last connection between the thin specimen and the steel 

substrate. The thin slice was then transferred and welded onto the top of a TEM copper 

grid via platinum deposition on the points of contact, as illustrated in Figure 1c. The 

tungsten needle was then cut off from the specimen and retracted. A final thinning of the 

specimen was performed to reduce the thickness to the level of electron transparency. A 

FEI TECNAI F-20 transmission electron microscope (TEM), with an operating voltage of 

200 keV, was used to examine the sample at higher resolution. The final specimen was 

also characterized for elemental mapping using a JEOL 7000 FE scanning electron 

microscope (SEM) in STEM mode. The SEM-STEM scanning yields higher X-Ray 

intensities, enabling shorter scanning times and large scanned areas. 



 

11 

 

Figure 2.1 Fabrication of a galvanized dual-phase sample using focused ion beam 

(FIB). 

a) Digging trenches around the specimen. During sputtering, EDS was performed to 

ensure that the interface region (indicated by the dashed line) was contained in the 

specimen. b) Lift-out of a 1μm thin specimen by welding it to the tip of a tungsten needle. 

c) Cold welding the thin specimen to a copper grid by depositing platinum.  

2.3 Results 

The results from the SEM-STEM mapping are presented in Figure 2. A 

rectangular area that contains the Zn coating, interfacial layer, and the substrate was 

scanned (Figure 2a). In the mapped area, Zn is shown in blue and iron in red. In between, 
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an Al-rich region can be observed, which is shown in green. The color codes of 

individual elements were superimposed in Figure 2a to show the structure of the interface 

at a relatively low magnification. The Al-rich layer, commonly referred to as the 

inhibition layer, has a stoichiometry of Fe2Al5 or Fe2Al5-xZnx when some Al atoms are 

replaced by Zn. The inhibition layer appears to be continuous in nature over the interface. 

Another elemental mapping was performed in a thin section that encompasses the 

interface region to determine the distribution of alloying elements, e.g. Mn and Si. Figure 

2b shows the distribution of Mn near the interface. A bright line along the interface can 

be resolved, indicating that the intensity of Mn is much higher at the interface than in 

other regions. Figure 2c shows the distribution of Si near the interface. In contrast to Mn, 

no observable intensity peak of Si can be seen. 
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Figure 2.2 SEM EDS (Energy Dispersive Spectroscopy) elemental map across the 

interface of the Dual-Phase Galvanized steel. 

a) Red corresponds to iron, blue to zinc and green to aluminum. b) A segregation of 

manganese can be found at the surface of the steel substrate. c) No segregation of silicon 

was found at the steel surface. 
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Figure 2.3 The inhibition layer is captured in TEM using STEM mode with a High 

Angle Annular Dark Field (HAADF) detector. 

a) A low magnification image that encompasses the entire inhibition layer present in the 

fabricated specimen. b) A higher resolution image detailing the morphology of the 

inhibition layer, present in between the steel substrate and the zinc coating. The inhibition 

layer is approximately 93 nm in thickness. 



 

15 

The specimen was then examined under TEM at higher magnifications and 

resolution. High angle annular dark field (HAADF) imaging was performed at STEM 

mode to achieve better image contrast from the compositional difference of the phases 

(Figure 3a). In between the zinc coating and the steel substrate is the interface region 

which comprises the continuous inhibition layer (the dark region indicated by the 

arrows). Figure 3b shows the image of the inhibition layer at a higher magnification. The 

thickness of the inhibition layer was measured at ten different locations by averaging the 

variation in the gray scale of the image. The average thickness of the inhibition layer is 

about 93±26 nm. 

In the sub-surface region of the steel substrate adjacent to the inhibition layer, fine 

particles with sizes about a few tens of nanometers can be observed (Figure 4a). These 

particles are internal oxides. The internal oxide particles are distributed in a region about 

150 nm below the surface. The internal oxides were observed previously in high strength 

steels [4–8]. At a higher magnification, right between the inhibition layer and the surface 

of the steel substrate is another thin layer, which is evident by the different contrast, as 

shown in Figure 4b (indicated by the pairs of arrows). This thin layer is the external oxide 

layer. In the HAADF imaging, the external oxides layer appears to be continuous in 

nature. This is consistent with the EDS mapping shown in Figure 2b. 
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Figure 2.4 TEM images in Scanning TEM (STEM) mode. 

a) Internal oxides, indicated by the region in between the red dashed line and the external 

oxide layer, are present at the subsurface of the steel substrate. b) External oxides, 

pointed out by the red arrow markers, are present in between the steel substrate and the 

inhibition layer. 
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The phases that are present at the interface region and the structure of the 

interface in the galvanized DP steel are schematically summarized in Figure 5. 

 

Figure 2.5 A schematic of the phases and the structure of the interfacial region of the 

galvanized DP steel. 

 

To determine the chemical composition of this thin layer, an EDS line scan was 

performed starting from the zinc coating to the steel substrate. Figure 6 shows the result 

of the scan. The intensity of Zn is high at the start but it begins to decrease as the scan 

progresses into the inhibition layer, whereas the intensity of Al and Fe increases and 

levels out inside the inhibition layer. A certain amount of Zn was detected in the 

inhibition layer as well. This could be an indication of solid solution of Zn in Fe2Al5, or 

the detection of Zn in the coating due to the large excitation volume of the nano electron 

beam. Notably, following the sharp decrease of both Al and Fe as the scanning 
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approaches the substrate, an increase in Mn and O is registered between the inhibition 

layer and the substrate. Clearly, the presence of the intensity peaks of Mn and O indicates 

that Mn oxides was formed on the surface of the substrate during processing. Using the 

similar measuring technique, the thickness of the Mn oxides layer was determined to be 

about 20±6 nm. 

 

Figure 2.6 EDS Line Scan result across the interface of Dual-Phase Galvanized Steel 

in STEM mode. 

Scan starts at the zinc coating and ends at the steel substrate region. The intensity for iron 

and aluminum stay constant across the inhibition layer. A spike in manganese and oxygen 

is observed as the inhibition layer ends, as evident by a drop in the intensity of aluminum. 

 

To further resolve the structure of the interface, bright field imaging was also 

performed. Figure 7a shows both the internal oxide particles and the continuous external 
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oxide film on the surface of the steel substrate. At a higher magnification (Figure 7b), 

grain boundaries can be observed inside the inhibition layer. These grains (or sub-grains) 

have an average grain size of approximately 5-10 nm. HRTEM was also performed and 

the lattice fringes observed are shown figure 7c. Clearly, grain boundaries or sub-grain 

boundaries can be seen and the lattice fringes present different orientations. 

 

Figure 2.7 High resolution bright field (BF) TEM images of the interface between 

internal oxides, external oxides, and the inhibition layer. 

a) An interface illustrating the external and internal oxides. The external oxides are 

interconnected. b) An interface of the inhibition layer and the external oxides. The 

inhibition layer comprises nanocrystalline grains. 
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Figure 2.7 (continued) 

c) A high resolution Bright Field (BF) TEM image illustrating the nanocrystalline 

inhibition layer, external oxides and the oxide/inhibition layer boundary. The inhibition 

layer contains multiple lattice fringes at different orientation that represents a 

nanocrystalline structure. The interface between the oxides and inhibition layer is pointed 

out by the arrows. 
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Figure 2.8 a) A high resolution TEM image; b) A diffraction pattern obtained by using 

FFT; c) An indexed diffraction pattern for manganese (II) oxides. 

a) A high resolution TEM image which includes a manganese oxide particle present 

adjacent to the Fe2Al5Znx inhibition layer. A square box is drawn on the oxide which 

contains lattice fringes to create a diffraction pattern using Fast Fourier Transform (FFT) 

algorithm b) A diffraction pattern obtained by using FFT of the manganese oxide region. 

Due to poor clarity of spots, further processing was performed. c) An indexed diffraction 

pattern providing evidence of manganese (II) oxides present at the surface of the steel 

substrate as external oxides. 
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Furthermore, the external manganese oxide is also crystalline as seen from the 

lattice fringes across the oxides. In order to determine the structure of the manganese 

oxide, diffraction patterns were obtained and indexed. A high resolution image is selected 

such that the lattice fringes across the manganese oxide layer are clearly visible, as 

illustrated in Figure 8a. A square box is drawn over our region of interest to create a 

diffraction pattern using Fast Fourier Transform (FFT) algorithm. The diffraction pattern 

obtained from FFT is shown in Figure 8b. The diffraction pattern was further processed 

in Digital Micrograph. The processed image, displayed in Figure 8c, is then indexed to 

reveal that the oxide is indeed manganese (II) oxide, which has a cubic structure. Similar 

observations were reported by Gong et al. [27,28]. In transformation induced plasticity 

(TRIP) steels, oxides at the surface of the substrate were reported to be rich in MnO and 

crystalline in nature. 

2.4 Discussion 

Our TEM work clearly revealed an almost continuous external MnO oxide film 

(~20 nm thick) on the surface of the DP steel, a layer of internal MnO oxide particles 

located about 100 nm below the surface, and a fully developed inhibition layer right on 

top of the external oxide film. The transition from external to internal oxidation is 

dependent upon the dew point which is a function of the partial pressure of water vapor in 

the H2+N2 mixture, i.e. the annealing atmosphere. Increase in dew point results in an 

increased diffusion of oxygen into steel, causing the formation of internal oxides [6,7]. 

On the other hand, lower hydrogen content in the annealing atmosphere leads to a higher 

oxidation potential due to an increase in pH2O/pH2 (i.e. partial pressure of water vapor to 
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partial pressure of hydrogen) ratio, thus yielding a transition of oxidation from external to 

internal [8,9].  

Although the presence of oxides on the steel surface could be detrimental to 

reactive wetting [13,29,30], the TEM micrographs (Figures 3,4, and 6) indicate that a 

fully developed inhibition layer can still grow on the oxide film. Prabhudev et al. [4] 

reported that nano-islands of oxides present on the surface of the steel do not hinder the 

formation of the inhibition layer due to the ability of Fe-Al interface layer to grow over 

the oxides. Parazanovic and Spiegel [11] suggested that, oxides nucleate and grow as 

islands, instead of continuous layers, and do not deplete away completely in the reducing 

annealing atmosphere. If the oxides nucleate as nano-islands on the substrate grains that 

have different orientations, it is conceivable that the crystalline oxide grains will have 

different orientations as well. Hence, when the oxide grains grow and meet, grain 

boundaries or sub-grain boundaries will be produced. These grain boundaries act as 

short-circuit paths for Fe to diffuse through the oxide film. Also, Mn oxides such as MnO 

and Mn2SiO4 have been reported to be porous and have globular morphology [16,18] and 

this nature may not significantly degrade the wettability of Zn. However, the 

phenomenon of overgrowth of the inhibition layer over the oxide islands results in 

slowing down the reaction process. The study by Frenznick et al. [31] reported that at 

same coverage of oxides over the substrate, the smaller oxide islands had less detrimental 

effect to the reaction kinetics than the larger oxide islands. This is because the inhibition 

layer grows over the smaller islands faster than the larger ones.  

Another possibility is that the seemingly continuous oxide film is actually 

discontinuous, as suggested by Sagl et al. [32]. As a result, surface areas free of oxides 
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may be in direct contact with the liquid Zn, leading to the localized nucleation of the 

inhibition layer in these areas. The inhibition layer continue to grow over the oxide film. 

This seems against the TEM observations in this work. The growth of the inhibition layer 

appears to be rather uniform and local penetration of the inhibition layer through the 

oxide-free areas were hardly observed. 

Aluminothermic reduction of Mn oxides by Al, proposed by Khondker et al. [8], 

is considered as the major reason for the formation of well-developed inhibition layer 

(Fe2Al5-xZnx) over MnO film [8,11,13,32]. Aluminothermic reduction helps the formation 

of inhibition layer. The Al in Zn bath attacks the oxides and dissolves some of the Mn 

into the zinc bath. The reduction of Mn oxides expose a larger surface area for Al to react 

with Fe [16,32,33]. Then the Fe in the substrate diffuses outwardly to come into reaction 

with the Al. A favorable location for the outwards diffusion of Fe could be the regions 

where the external oxide grains meet, i.e. grain boundaries of the oxide film. 

2.5 Conclusions 

FIB was used to prepare site-specific TEM specimens that contains the interface 

between the steel substrate and the Zn coating of a galvanized DP steel. TEM, STEM, 

and HRTEM were performed to characterize the interfacial structure. The morphology of 

the oxides and the inhibition layer were very well resolved. The following conclusions 

can be reached: 



 

25 

1. External MnO oxide film was captured on the surface of the steel 

substrate. The oxide film appears to be continuous, and has a thickness 

about 20 nm. Internal oxide particles were observed as well, and the 

particles are about few tens of nanometers and are located in a sub-surface 

layer about 100 nm thick. However, no Si oxides were observed in this 

region. HRTEM results shows that the oxide grains are crystalline. 

2. The Fe2Al5 or Fe2Al5-xZnx inhibition layer was observed right on top of the 

external oxide film. The inhibition layer appears to be continuous in 

nature. Sub-structures inside the inhibition layer were resolved by 

HRTEM, which shows that grain boundaries or sub-grain boundaries were 

present. 

3. The fully developed inhibition layer, despite the presence of a continuous 

Mn oxide film on the surface of the steel substrate, may be attributed to 

diffusion of Fe through the porous MnO film, the short-circuit diffusion 

paths between the oxide grains, or the aluminothermic reduction of Mn 

oxides. 

2.6 Acknowledgments 

IA, BL, and HJR gratefully thank the support from the International Zinc 

Association under the contract ZCO-64, Center for Advanced Vehicular Systems, 

Mississippi State University, U.S. National Science Foundation under the grants 

(#1506944 and #1506878) and Central Analytical Facility at University of Alabama. The 

authors also thank POSCO for supplying steel specimens for this research. 



 

26 

CHAPTER III 

THERMODYNAMICS, KINETICS, AND THERMO-MECHANICAL BEHAVIOR OF  

LOW-ALLOY STEELS: AN ATOMIC LEVEL STUDY USING AN FE-MN-SI-C 

MODIFIED EMBEDDED ATOM METHOD (MEAM) POTENTIAL  

 

3.1 Introduction 

The desire for increased fuel efficiency and reduced emissions without sacrificing 

safety is as much of a concern with automotive industries as it ever has been [34–36]. 

One of the approaches to achieving these goals is to improve the strengths of materials 

while reducing their weight, especially in steel alloys, so that lightweighting could be 

attained. Despite desirable material characteristics, high strength steels have limited 

fabrication capability due to deformation resistance that causes tooling wear [37]. 

Therefore, the challenge lies to perform compositional design of high strength alloys in a 

manner that decreases the weight, retains workability, but generates the required strength 

after fabrication [38]. Recently, the concept of third generation high strength steels, also 

known as 3G advanced high strength steels or 3G AHSSs, has attracted a lot of attention 

[39–42]. The 3G AHSSs possess greater strengths than the first generation high strength 

steels, but avoid the high costs of second generation high strength steels [43]. Thus, 

superior properties combined with affordability in the automotive industry has been the 

primary consideration of developing 3G AHSSs. One of the promising strategies to 
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design and make 3G AHSSs is a quenching and partitioning method [44] in which 

austenite is stabilized through diffusion of carbon from supersaturated martensite to 

austenite, and thus formation of brittle carbides is suppressed. 

To facilitate the development of 3G AHSSs, multiscale hierarchical simulation 

and modeling has been used to investigate the processing-microstructure-property 

relationship of these materials [45], which is critical to enable progress in the design of 

new AHSSs. One of the key challenges in multiscale modeling is to bridge individual 

length scales through proper transfer of information between electronic, atomistic, 

microscale, mesoscale, and macroscales. Most AHSSs are multicomponent systems. It is 

necessary then to develop interatomic potentials that allow experimentally-tethered 

computer simulations to capture the time-scale and length-scale physics of 3GAHSS such 

that the lower length-scale mechanisms can be better understood and their influence in 

higher length scale models can be incorporated to design fast, inexpensive processing 

routes resulting in the desired microstructure [46]. 

Atomistic simulations at the lower length scales can bridge the gap in 

comprehending and quantifying the structure-property relationships. Accurate 

representation of atoms at the lower length scales can be provided by first-principle 

calculations but at the cost of either large simulation times or requiring extensive 

computational resources. In order to conduct any realistic simulation of alloy systems, a 

large number of atoms are imperative to consider and therefore, leave quantum methods 

impractical to use. However, semi-empirical interatomic potentials enabling accurate 

atomistic simulations present themselves as an alternative solution that can handle large 

alloy systems within a reasonable computational expense. 
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Daw and Baskes [47] developed the Embedded Atom Method (EAM), which has 

been used extensively as a semi-empirical atomistic potential for studying metals, 

covalent materials, and impurities [48–50]. The EAM formulation was later modified 

(MEAM) [51] to integrate angular dependencies of electron density and a number of 

single element and alloy potentials were generated using the updated formalism. 

Exploring the silicon-nickel alloys and interfaces [52], and tensile debonding of an 

aluminum-silicon interface [53] are among the few examples of the updated potentials 

applicability. Later, Lee and Baskes [54] improved the MEAM potential to account for 

the second nearest-neighbor (2NN MEAM) interactions. The 2NN MEAM formalism has 

been applied to capture Body Centered Cubic (BCC) metals (Fe, Cr, Mo, W, V, Nb, Ta) 

[55–57], Face Centered Cubic (FCC) metals (Cu, Ag, Au, Ni, Pd, Pt, Al, Pb) [58,59], 

Hexagonal Close Packed (HCP) metals (Mg, Ti, Zr, Zn) [60–64], metals with complex 

structures (Mn) [65], and covalently bonded elements (H, C, Si, Ge, N) [66–70]. In 

addition, binary systems have been used to study lattice defects (Fe-H) [69], structure-

property relationships [71], interstitial interactions with vacancies and dislocations (Fe-C, 

Fe-N) [70,72], and mechanical and deformation properties (Fe-Mn) [65]. 

Ternary potentials pose a much greater challenge than binary potentials simply 

due to a lack of robust experimental data and fewer calibration parameters. Some of the 

recent examples of ternary applications include garnering average diffusivities of ternary 

alloys (Fe-Cr-Ni) [73], atomistic mechanisms for tensile fracture (Ti-Al-N) [74], 

nucleation kinetics of carbides and nitride (Fe-Ti-C, Fe-Ti-N) [75], modeling of a wide 

class of Mg alloys containing Zn (Mg-Al-Zn) [62], and structural properties of gold-silica 

interfaces (Au-Si-O) [76]. The greatest challenge for any interatomic potential is the 
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multi-component system containing more than three elements. Of the two reported higher 

order potentials in the NIST repository [77], only the one by Jelinek et al. [78] has been 

generated using the MEAM potential. 

The current study will focus on developing a quaternary element MEAM potential 

for low-alloy steels with constituent elements of Fe, Mn, Si, and C. The calibration will 

be performed to produce single, binary, and ternary element data garnered from first-

principles calculations and experiments. For binary calibrations, all possible binary 

interactions will be considered whereas only the imperative ternary interactions will be 

evaluated. Validation testing to elucidate the applicability of the potential to capture 

thermodynamic, kinetic, thermomechanical, and strengthening mechanisms of low-alloy 

steels will conclude the present study. 

3.2 Single Element Interatomic Potential Development 

The atomistic potential development for Fe alloys will follow a multiscale 

hierarchical modeling paradigm defined by Integrated Computational Materials 

Engineering (ICME) [79]. Since an accurate representation of the kinetics, 

thermodynamics, and thermomechanical response is required to capture the low-alloy 

steels, we calibrate the MEAM potential that can reproduce the fundamental properties of 

the elements. The calibration data for the interatomic potential will first rely on 

experimentally observed values and additional information will be collected from the 

lower length scale ab-initio calculations that can provide reliable measure of the forces 

on individual atoms. 
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3.2.1 First-Principle Calculations 

The ground state energies for Fe, Mn, Si, and C are evaluated using first-principle 

calculations based on the Density Functional Theory (DFT). Vienna Ab-initio Simulation 

Package (VASP) code is employed to perform the calculations using the Projector 

Augmented-Wave (PAW) pseudo-potential and the exchange-correlation effects are 

treated by the Generalized Gradient Approximation (GGA) as parameterized by Perdew 

et al. [80]. To ensure energy convergence, the cut-off energy for the planewave basis of 

500 eV and the gamma centered Monkhorst-Pack [81] k-point grid of 16 × 16 × 16 are 

used. In addition, all calculations consider spin polarization to account for magnetism. 

For each element, the energy-volume curves of the most stable (lowest energy) structure 

is determined, and in addition, at least two more crystal structures are probed. 

3.2.2 MEAM Potential Parameters (Energy Versus Lattice Spacing) 

In order to simulate the dynamics of a large number of atoms and molecules 

within a reasonable timeframe to reveal macroscopic material properties, we need a 

transition from the quantum to the atomic length scale. As such, a 2NN MEAM [54] 

potential that incorporates angular dependence of the electron density into the EAM 

potential and considers second nearest-neighbor interactions is used for the present study, 

and the full-description of the formulation can be found in the appendix [78]. Finally, the 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is employed for 

the atomistic simulations, which is used with the MEAM parameter calibration tool 

[82,83] for parameter calibration. 

The MEAM potential parameters for Fe, Mn, Si, and C are listed in Table 3.1 

with BCC, FCC, Diamond Cubic (DC), and DC as the reference structures, respectively. 
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These parameters are also available in the NIST interatomic potentials repository [77]. 

The first step towards the parameter calibration is to compare the relative stability of the 

energy-volume curves produced by the MEAM potential with the DFT results. Figure 3.1 

illustrates the energy versus lattice spacing of at least three crystal structures for Fe, Mn, 

Si, and C. The new MEAM potential parameters correctly capture the most stable 

structures for Fe (BCC), Mn (α-Mn), Si (DC), and C (DC), and the relative stability of 

supplemental structures. The c/a ratio used in hcp packing is 1.633 for secondary or 

tertiary HCP structures of Fe and Mn. As recorded in Table 3.2, the cohesive energies 

and lattice parameters of the lowest energy structures are very similar to the experimental 

results. Since MEAM potential requires a reference structure to describe the pair-

potential, the lowest energy crystalline structures for Fe, Si, and C are also used to 

prescribe their reference structures. The stable, low temperature structure for Mn (α-Mn) 

is described by a 58 atom complex configuration that cannot easily specify the pair 

interaction for Mn. Therefore, FCC is chosen as the reference structure for Mn, and the 

MEAM parameters are adjusted such that α-Mn is the most stable structure. 

Table 3.1 MEAM potential parameters for Fe, Mn, Si, and C. Ec and alat have units of 

eV and Å. 

 Ec alat α Asub β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax Attrac Repuls 

Fe 4.28 2.867 5.1 0.41 3.8 1.45 1.29 2.85 -5.118 9.12 -4 0.483 2.203 0 0.012 

Mn 2.855 3.693 6.154 0.92 4.3 2.227 4.155 7.452 24 29.36 -4.897 2.4 0.19 0 0.032 

Si 4.63 5.43 4.882 1 3.9 7 8.78 4.8 3.01 5.61 -0.6 2 2.8 0.12 0 

C 7.346 3.567 4.382 1.2 2.55 2.2 1.0 3 3.246 7.496 -2.8 2 2.8 0.12 0 
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Figure 3.1 Relative energy versus lattice distance curves for a) Fe, b) Mn, c) Si, d) C. 

At least two crystalline structures are probed in addition to the ground 

states of body centered cubic (Fe), α-Mn (Mn), and diamond cubic (Si and 

C) for each element using DFT and captured by the present MEAM 

potential. 
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Table 3.2 Lattice parameter and cohesive energy of stable crystal structures of Fe, 

Mn, Si, and C. Results produced by the MEAM potential match the 

experimental observations by construction. 

Elements 
Crystal 

Structure 

Lattice Parameters (Å) Cohesive Energy (eV/atom) 

MEAM Exp. DFT MEAM Exp. DFT 

Fe BCC 2.867 2.867a 2.835 4.28 4.28a 4.98 

Mn 

α 8.911 8.914b 8.54 2.92 2.92a 3.876 

β 6.32 6.315b 6.3 0.065* - 0.062* 

Si DC 5.43 5.43a 5.473 4.63 4.63a 4.605 

C DC 3.567 3.567c 3.573 7.346 7.346d 7.85 

* Energy relative to cohesive energy of α-Mn. 
a [84] 
b [85] 
c Reference 21 as reported by [86] 
d [87] 

3.2.3 Vacancy Formation Energy 

The energy cost required for the formation of a single vacancy (𝐸𝑓
𝑉𝑎𝑐) in the bulk 

of the lowest energy structure of each element is defined using the following equation: 

 𝐸𝑓
𝑉𝑎𝑐 = 𝐸𝑇𝑜𝑡𝑎𝑙 − 𝐸𝐵𝑢𝑙𝑘 (

𝑁−1

𝑁
) (3.1) 

where N is defined as the total number of atoms comprising the perfect bulk, 𝐸𝑇𝑜𝑡𝑎𝑙 is the 

total relaxed energy of the bulk with a single vacancy (containing N – 1 total number of 

atoms), and 𝐸𝐵𝑢𝑙𝑘 is the total relaxed energy of a perfect bulk system. The box 

dimensions are identical for the bulk with and without the defect. For the ab-initio 

calculations, the bulk dimensions used for the BCC and DC systems is a 4 × 4 × 4 

primitive cell, 3 × 3 × 3 for the FCC system, but 1 × 1 × 1 for α-Mn due to the fact that 
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the primitive cell contains 58 atoms and is fairly representative of the bulk. The bulk size 

incorporated in MEAM is a 5 × 5 × 5 primitive cell for BCC and DC, 4 × 4 × 4 for FCC, 

and 2 × 2 × 2 for α-Mn. 

Table 3.3 compares the formation energies of a single vacancy using the MEAM 

potential for Fe (BCC), Mn (α-Mn), Si (DC), and C (DC) with experiment and DFT 

calculations. The interatomic potentials for Fe, Si, and C accurately reflect experimental 

observed energies and DFT results. A maximum deviation of 43% from the DFT results 

is observed for vacancy formation in Mn but is lower for the other elements (Note that 

there is a difference between the DFT results and experiments as well!). Vacancy 

formation for α-Mn was calculated using DFT and the MEAM potential by creating a 

vacancy in each one of the four crystallographically inequivalent sites and averaging the 

results. Since the t1 MEAM parameter directly controls vacancy formation energy, a 

compromise was achieved where the MEAM parameter was not abnormally large (>50), 

and the formation energy was positive for all four sites. 

 

 

 

 

 

 

 

 



 

35 

Table 3.3 Formation energy of a single vacancy predicted by MEAM parameters for 

Fe, Mn, Si, and C compared to experiment, DFT, and literature values. 

Difference is between MEAM and experiment (when known) or DFT. 

 Vacancy Formation Energy (eV)  

Elements MEAM Experimental DFT Literature % Diff. 

Fe 1.53 1.53a 2.2 1.65c 0 

Si 3.62 3.6b 3.63 3.56d, 3.67e 0.6 

C 6.63 - 6.63 3.35f 0 

Mn 
FCC 2.88 - 2.38 - 21 

α-Mn 1.34 - 2.33 0.9 – 1.2g 43 

a [88] 
b [89] 
c MEAM value by Jelinek et al. [78] 
d MEAM results by Timonova et al. [90] 
e MEAM results by Ryu et al. [91] 
f MEAM value by Lee et al. [66] 
g MEAM results by Kim et al. [65], Semi-empirical model [92,93] 

3.2.4 Self-Interstitial Formation Energy 

The self-interstitial is another type of point defect and the formation energy for a 

single self-interstitial defect, 𝐸𝑓
𝐼𝑛𝑡, is evaluated by the following equation: 

 𝐸𝑓
𝐼𝑛𝑡 = 𝐸𝑇𝑜𝑡𝑎𝑙 − 𝐸𝐵𝑢𝑙𝑘 (

𝑁+1

𝑁
) (3.2) 

where N represents the total number of atoms in a defect-free bulk, 𝐸𝑇𝑜𝑡𝑎𝑙 is the total 

relaxed energy of the bulk with an extra atom of the same element placed at an interstitial 

location, and 𝐸𝐵𝑢𝑙𝑘 is the total relaxed energy of the bulk with a perfect crystalline lattice 

structure. Because we are most interested in Fe-based alloys, five distinct interstitial 

positions are investigated for BCC Fe: tetrahedral, octahedral, [100] split, [110] split, and 

the [111] split. Only the [110] split is evaluated for the diamond cubic structures of Si 
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and C. Since α-Mn has a complex crystal structure, simulating an interstitial in the stable 

bulk is more complicated and is not presented here. The bulk structures’ dimensions for 

BCC and DC are the same as in the previous section. 

The results for the self-interstitial formation energy captured by the MEAM 

potential in comparison to DFT are listed in Table 3.4. DFT results indicate that the [110] 

split is the most stable interstitial configuration for BCC Fe, and the potential accurately 

captures the relative stability of the five interstitials considered. In general, the MEAM 

potential results are within 10% of the DFT or literature results. The MEAM parameters 

are specifically adjusted to ensure that of the two types of point defects, vacancies have a 

lower formation energy than interstitials in the bulk of the element. 

 

Table 3.4 Interstitial formation energy for Fe, Si, and C determined by MEAM 

potential in comparison with DFT and literature values. Various interstitial 

positions are inspected for Fe, and the MEAM potential accurately predicts 

[110] split as the most stable interstitial. 

  Interstitial Formation Energy (eV)  

Elements 
Interstitial 

Positions 
MEAM DFT Literature % Diff.* 

Fe 

Octahedral 4.94 4.9 5.0a 0.8 

Tetrahedral 4.35 4.0 4.2a 8.8 

[100] Split 4.91 - 4.8a 2.3 

[111] Split 4.37 - 4.9a 10.8 

[110] Split 3.61 3.6 3.9a 0.3 

Si [110] Split 3.88 3.65 3.7a 6.3 

C [110] Split 14.1 13.6 12.7b 3.7 

* Percent difference calculated w.r.t. DFT (when known) or literature results.  
a MEAM values obtained from Jelinek et al. [78] 
b MEAM results by Lee [66] 
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3.2.5 Elastic Constants 

By independently distorting the lattice in six different directions and using the 

force response, a stress-strain relationship is evaluated to provide the elastic constants of 

the material. Table 3.5 details the results of the MEAM calibration in comparison to the 

experimental and DFT values. For Fe, Si, and C, the MEAM potential and experimental 

elastic constants agree exactly by construction. However, due to a lack of robust 

experimental data available for Mn, certain assumptions were made. Initially, the MEAM 

potential elastic constants for FCC Mn were calibrated to replicate the DFT results but 

the resultant elastic constants for α-Mn, especially the bulk modulus, was twice as high as 

the experimental observations. To rectify the situation, we employed a technique similar 

to Kim et al. [65] where the calibration target was set to half the FCC elastic constants. 

Consequently, the bulk modulus of α-Mn was captured to be within the experimental 

range and specifically, the more recent observations. 
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Table 3.5 Elastic constants calculated for Fe, Mn, Si, and C. Difference between 

MEAM potential and experimental observations are given except when 

otherwise noted. 

Elements 
Elastic 

Constants 
MEAM Experimental DFT Literature % Diff. 

Fe 

B (GPa) 168 168a 161 166e 0 

Cʹ (GPa) 48 48a 56.5 43.5e 0 

C44 (GPa) 117 117a 68 125e 0 

α-Mn 

B (GPa) 150 60 – 158b - 134f 0 

Cʹ (GPa) 86 - - 68.5f 25* 

C44 (GPa) 45 - - 44f 2.3* 

Mn 

(FCC) 

B (GPa) 202 - 277 - 27ʯ 

Cʹ (GPa) 128 - 79 - 62ʯ 

C44 (GPa) 123 - 158 - 22ʯ 

Si 

B (GPa) 98 98c 100 98e 0 

Cʹ (GPa) 51 51c 49 49e 0 

C44 (GPa) 79 79c 77 76e 0 

C 

B (GPa) 442 442d 490 422g 0 

Cʹ (GPa) 476 476d 485 296g 0 

C44 (GPa) 577 577d 619 489g 0 

B = (C11 + 2C12)/3 ; Cʹ = (C11 – C12)/2 

* Percent difference calculated w.r.t. literature results. 
ʯ Percent different calculated w.r.t. DFT results divided by half (see text for more 

information) 
a [84] 
b [94–97] 
c [98] 
d [99] 
e Calculated using parameters by Jelinek et al. [78] 
f MEAM results from Kim et al. [65] 
g Values reported using MEAM-BO calibration by Mun et al. [100] 
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3.3 Binary and Ternary Element Interatomic Potential Development 

Similar to single element potential development, a binary and ternary interatomic 

potential will use DFT results to garner pertinent information that can be upscaled to the 

atomistic length scale as calibration data for the MEAM potentials. Experimental values 

will take precedence as the calibration targets while ab-initio results will provide 

information that is not found from experiments. The final MEAM parameters obtained 

for the binary pairs, X – Y, are listed in Table 3.6. For the ternary potentials, the 

screening parameters involving all three atoms are the only six parameters available for 

calibration and are recorded in Table 3.7. The notation used to describe the screening 

parameters, 𝐶𝑋−𝑌−𝑍
𝑚𝑎𝑥  and 𝐶𝑋−𝑌−𝑍

𝑚𝑖𝑛 , is consistent with LAMMPS where X-Y-Z denotes atom 

Z screening atoms X and Y. 
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Table 3.6 MEAM potential parameters for the binary pair (X – Y). 

 Element Pair (X – Y) 

Parameters Fe – Mn Fe – Si Fe – C Mn – Si Mn – C Si – C 

lattice (X,Y) L12(X3Y) B1 B1 L12(X3Y) L12(X3Y) dia(B3) 

Re (X,Y) 2.79 2.37 1.995 4.654 2.393 1.888 

Ec (X,Y) 3.002 4.22 5.285 0.34 3.382 0.34 

Alpha (X,Y) 9.33 5.7 5.45 6.8 7.2 4.54 

CX−X−Y
max  2.82 1.98 2.7 2.8 2.5 2.8 

CX−X−Y
min  2.05 1 1.6 2 1 2 

CY−Y−X
max  2.8 2.8 2.8 2.8 2.8 2.8 

CY−Y−X
min  2 2 0.7 2 0 2 

CX−Y−X
max  2.8 2.8 2.8 2.8 2.8 2.8 

CX−Y−X
min  2 2 2 2 2 2 

CX−Y−Y
max  2.8 2.8 2.8 2.8 2.8 2.8 

CX−Y−Y
min  2 2 2 2 2 2 

attrac (X,Y) 0 0 0 0 0 0 

repuls (X,Y) 0 0.5 0.008 0 0.04 0 

rho0 (X) 1 1 1 0.6 0.6 1.4 

rho0 (Y) 0.6 1.4 4.4 1.4 4.4 4.4 

 

Table 3.7 MEAM potential parameters for the X – Y – Z ternary element interactions. 

 Ternary Interactions (X – Y – Z) 

Parameters Fe – Mn – Si Fe – Mn – C Fe – Si – C 

CX−Y−Z
max  2.8 1.2 2.8 

CX−Y−Z
min  2.0 0.29 2.0 

CX−Z−Y
max  2.8 2.8 2.8 

CX−Z−Y
min  2.0 2.0 2.0 

CY−Z−X
max  2.8 2.8 2.8 

CY−Z−X
min  2.0 2.0 2.0 
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3.3.1 Heat (Enthalpy) of Formation 

The first step towards binary potential development entails obtaining the energy-

volume curve for all the binary combinations using at least four crystalline structures: B1 

(rock salt), B2 (BCC equivalent), B3 (DC equivalent), and L12 (FCC equivalent). The 

importance of evaluating the aforementioned structures stems from the fact that any of 

the four can be used as a reference structure to describe the pair potential, ϕ(Rij), during 

binary potential development and thereby, provide a robust calibration. In addition, the 

equilibrium energy and lattice parameters of experimentally observed binary phases are 

simulated using DFT. 

Once the equilibrium energy for the various crystal structures are calculated, we 

evaluated the likelihood of the formation of each phase at 0K using the following formula 

for heat of formation: 

 ∆𝐻 =
𝐸𝐸𝑞𝑢𝑖𝑙−𝑁𝑋𝐸𝑋

𝐶𝑜ℎ−𝑁𝑌𝐸𝑌
𝐶𝑜ℎ

𝑁𝑋+𝑁𝑌
 (3.3) 

where 𝐸𝐸𝑞𝑢𝑖𝑙 represents the total equilibrium energy of a binary compound with elements 

X and Y, 𝐸𝑋
𝐶𝑜ℎ and 𝐸𝑌

𝐶𝑜ℎ are the cohesive energies of elements X and Y, respectively, in 

their stable bulk structures, and 𝑁𝑋 and 𝑁𝑌 denotes the number of atoms of element X 

and Y in a binary structure. For a particular stochiometric ratio, the formation of the most 

stable phase is associated with the lowest heat of formation. A positive value for enthalpy 

of formation indicates that the reaction is endothermic while a negative value exhibits an 

exothermic reaction. 

Table 3.8 and Table 3.9 detail the results of the heat of formation and equilibrium 

volume, respectively, evaluated by the binary MEAM potentials. Figure A.1 and Figure 
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A.2 in Appendix A can help visualize the relative order of the heats of formation for the 

element pair X – Y as a function of atomic percentage of element Y. Priority is given to 

accurately capture the heat of formation and equilibrium volume of the experimentally 

observed structures. The next step is to ensure, where applicable, that the experimentally 

observed structures are the most stable structures for their specific stochiometric ratio. 

Finally, effort is expended to maintain the relative order of formation of the hypothetical 

structures. As illustrated in Table 3.8, the maximum deviation of the heat of formation for 

the majority of experimentally observed structures is below 40%. The D03 structure of Fe 

– Si system is an exception, but the experimental compounds exhibit the correct order of 

formation. In addition, Table 3.9 indicates that most of the equilibrium volumes 

calculated by the MEAM potential are within 25% of the experimental or DFT observed 

values, with the exception of a Fe – Mn binary and a few other outliers. Since Mn does 

not form any experimental structures with Fe but rather tends to mix in the Fe bulk as a 

solid solution, the accuracy to capture the heat of formation and equilibrium volume was 

leveraged for substitutional formation energies. The heat of formation and equilibrium 

volume of the Mn – Si and Si – C binary compounds were not calibration objectives, and 

therefore, the Mn – Si and Si – C binary parameters are used as variables for calibrating 

the ternary. 

 

 

 

 



 

43 

Table 3.8 Heat of formation for binary compounds evaluated by MEAM potential in 

comparison to experimental and DFT results. The difference is w.r.t. 

experiment when available, otherwise DFT. 

  Heat of Formation, ΔH (eV/atom)  

Binary 

System 
Alloy Phase MEAM Exp. DFT % Diff.* 

Fe – Mn 

B1 1.8 - 0.88 105 

B2 1.6 - 0.36 344 

B3 3.1 - 1.26 146 

L12 (Fe3Mn) 0.94 - 0.12 683 

Fe – Si 

B1 0.24 - 0.25 4 

B2 -0.16 - -0.48  67 

B3 -0.31 - 0.71 143 

B20 -0.40 -0.41a -0.50 2.4 

L12 (Fe3Si) 0.47 - -0.27 274 

D03 (Fe3Si) 0.06 -0.21a -0.32 129 

Fe – C 

B1 0.53 - 0.53 0 

B2 1.53 - 0.83 84 

B3 0.37 - 0.42 12 

Cementite 0.0485 0.0489b 0.01 0.8 

L12 (Fe3C) 1.25 - 0.72 74 

Mn – C 

B1 0.51 - 0.36 42 

B2 0.83 - 0.68 22 

B3 3.95 - 0.38 939 

Mn12C4 -0.079 -0.103c -0.107 22 

Mn23C6 -0.11 -0.111c -0.11 0.9 

Mn7C3 -0.07 -0.111c -0.107 38 

L12 (Mn3C) 0.70 - 0.64 9.4 

* Absolute value listed for % Difference 
a Reference 41 as cited by [101] 
b [102] 
c Reference 10 as reported by [103] 
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Table 3.9 Equilibrium volume for binary compounds calculated using MEAM 

parameters in comparison to experimental and DFT values. The difference 

is w.r.t. experiment when available, otherwise DFT. 

  Equilibrium Volume, V (Å3)  

Binary 

System 
Alloy Phase MEAM Exp. DFT % Diff. 

Fe – Mn 

B1 172 - 93.5 84 

B2 33.8 - 21.2 59 

B3 223.6 - 116.2 92 

L12 (Fe3Mn) 61.4 - 41.4 48 

Fe – Si 

B1 106.5 - 104.5 1.9 

B2 22.8 - 21.1 8 

B3 137.4 - 140.6 2.3 

B20 90.1 89.9a 88.3 0.2 

L12 (Fe3Si) 47 - 45.9 2.4 

D03 (Fe3Si) 183.2 180.3a 182.2 1.6 

Fe – C 

B1 63.5 - 63.6 0.2 

B2 14.9 - 14.9 0 

B3 78.1 - 77.1 1.3 

Cementite 154 154.3b 151.6 0.2 

L12 (Fe3C) 37.5 - 39.2 4.3 

Mn – C 

B1 79.1 - 65.0 22 

B2 16.9 - 15.2 11 

B3 144.9 - 82.3 76 

Mn12C4 162.2 157.4c 148.9 3.1 

Mn23C6 1272 1189d 1118 7.0 

Mn7C3 418.8 378.3d 354.7 11 

L12 (Mn3C) 39.1 - 38.8 0.8 

a [104] 
b [105] 
c [106] 
d [107] 

3.3.2 Elastic Constants for the Binary Structures 

The MEAM potential parameters are adjusted to ensure that the binary 

compounds, especially those experimentally observed, are mechanically stable using the 

elastic moduli. The alpha (X,Y) MEAM parameter was primarily used to calibrate the 
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bulk modulus. For non-cubic orthogonal structures such as cementite, Mn12C4, and 

Mn7C3, the bulk (B) and shear moduli (𝐶′ and 𝐶44
∗ ) are evaluated as following: 

 𝐵 =
𝐶11+𝐶22+𝐶33+2(𝐶12+𝐶13+𝐶23)

9
 (3.4) 

 𝐶′ =
𝐶11+𝐶22+𝐶33−𝐶12−𝐶13−𝐶23

6
 (3.5) 

 𝐶44
∗ =

𝐶44+𝐶55+𝐶66

3
 (3.6) 

where 𝐶44
∗  is the average of the three shear components C44, C55, and C66. 

Table 3.10 lists the results of the elastic constants obtained for experimental and 

hypothetical phases. As indicated, the maximum deviation of the elastic moduli predicted 

by MEAM potential is within 80% of the experimental or DFT results. 

Table 3.10 Elastic constants for binary compounds. Results calculated using MEAM 

potential are compared to experimental or literature results. 

  Elastic Constants (GPa)  

  B Cʹ C44
∗   

Binary 

System 

Alloy 

Phase 
MEAM 

Exp. 

(DFT) 
MEAM 

Exp. 

(DFT) 
MEAM 

Exp. 

(DFT) 
% Diff. 

Fe – Mn B2 289.8 (271) 24.6 (63) 269.9 (174) 41 

Fe – Si 
B20 78.7 

110a 

(210)b 
22.3 

 

(150)b 
57.7 

 

(180)b 
60 

D03 266 168c 103 38c 124.7 137c 79 

Fe – C Cementite 201.7 (351)d 99.4 (161)d 76 (94)d 33 

Mn – C 

Mn12C4 369.6 (311)e 202.5 (138)e 247.1 (132)e 51 

Mn23C6 334.9 (314)e 306.7 (133)e 233 (139)e 68 

Mn7C3 324.4 (323)e 314.7 (116)e 112.1 (105)e 59 

% Difference calculated by averaging the percentage difference of B, Cʹ, and C44 w.r.t. 

experimental or literature results.  
a [108] as cited by [101] 
b [109] 
c Kӧtter et al. as cited by [110] 
d DFT results by Jiang et al. [111] 
e First-principles evaluation by Chong et al. [112] 
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3.3.3 Substitutional and Interstitial Formation Energy 

The formation energy of a substitutional point defect, 𝐸𝑓
𝑆𝑢𝑏, of type-Y atom in the 

bulk of type-X atoms is defined using the following formula: 

 𝐸𝑓
𝑆𝑢𝑏 = 𝐸𝑇𝑜𝑡𝑎𝑙 − 𝐸𝐵𝑢𝑙𝑘 (

𝑁−1

𝑁
) − 𝐸𝑌

𝐶𝑜ℎ (3.7) 

where N is the total number of atoms in the bulk of type-X atoms, 𝐸𝐵𝑢𝑙𝑘 is the total bulk 

energy for the most stable structure of type-X atom with N number of atoms, 𝐸𝑇𝑜𝑡𝑎𝑙 is the 

total energy evaluated of one type-Y atom substituted in the bulk of type-X atoms, and 

𝐸𝑦
𝐶𝑜ℎ is the cohesive energy of the most stable structure for element Y. The bulk 

dimensions the of 5 × 5 × 5 and 3 × 3 × 3 primitive cells of BCC Fe are used in MEAM 

and DFT, respectively. Table 3.11 details the substitutional formation energies comparing 

the MEAM potential calibration to DFT results that are depicted within parentheses. 

Since the MEAM potential for low-alloy steels is being developed, replicating the 

substitutional point defect energies of the alloying elements Mn and Si in the Fe bulk is 

imperative. Additionally, the results indicate that a majority of the substitutional energies 

are in good agreement and reproduced the same sign as the DFT results. The Mn – Si and 

Si – C MEAM parameters were used for ternary calibration and consequently resulted in 

large substitutional energies. Fe in Mn bulk was also at least an order of magnitude larger 

than the DFT results. 

 

 

 



 

47 

Table 3.11 The formation energies of substitutional point defects for Fe, Mn, Si and C. 

Results obtained using DFT are presented in parenthesis while the MEAM 

potential values are reported without parenthesis. 

 Substitutional ‘Atom’ Energy (eV) 

Host Atom Fe Mn Si C 

Fe  
0.057a 

(0.057)b 

-1.286 

(-1.28) 

1.02 

(2.95) 

Mn* 
10.4 

(0.25) 
 

22.6 

(-0.98) 

2.03 

(2.54) 

Si 
2.80 

(1.92) 

10.8 

(2.67) 
 

12.7 

(1.4) 

C 
8.64 

(6.03) 

5.25 

(7.26) 

17.1 

(4.0) 
 

a Results produced by MEAM potential. 
b DFT results in parenthesis.  

* FCC used as bulk crystalline structure. 

Having a much smaller atomic radius, carbon tends to alloy as an interstitial in Fe. 

Therefore, the formation energy of a carbon interstitial in an Fe bulk,  𝐸𝑓
𝐼𝑛𝑡, is evaluated 

using the following equation: 

 𝐸𝑓
𝐼𝑛𝑡 = 𝐸𝑇𝑜𝑡𝑎𝑙 − 𝐸𝐵𝑢𝑙𝑘 − 𝐸𝐶

𝐶𝑜ℎ (3.8) 

where 𝐸𝐵𝑢𝑙𝑘 is the total bulk energy for BCC Fe atoms, 𝐸𝑇𝑜𝑡𝑎𝑙 is the total energy 

evaluated of one carbon atom located at an octahedral interstitial location in the bulk of 

Fe atoms, and 𝐸𝐶
𝐶𝑜ℎ is the cohesive energy of the most stable structure for carbon. VASP 

calculations, employing the same aforementioned bulk dimensions, predict the interstitial 

formation energy to be 0.36 eV versus the substitutional formation energy of 2.95 eV. 

The lower formation energy indicates that carbon is more stable as an interstitial than a 

substitution in Fe. The MEAM parameters also demonstrate the correct order of 
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formation with the dilute interstitial solution energy as -1.62 eV whereas the dilute 

substitutional formation energy is 1.02 eV. Although MEAM potential predicted a 

negative interstitial formation energy for carbon in Fe, the difference of each type of 

point defect calculated by the MEAM potential with respect to VASP calculations 

remained consistent. The behavior that needs to be captured correctly, however, is the 

interaction of C with Mn and Si in the Fe bulk. 

3.3.4 Ternary Substitutional and Interstitial Binding Energy 

To calibrate the ternary potentials, the energy difference between having atoms of 

element Y and Z close together in the bulk of the most stable structure of element X 

versus having them far away is defined as the binding energy, 𝐸𝑠𝑢𝑏
𝐵𝐸 , and is evaluated as 

the following: 

 𝐸𝑠𝑢𝑏
𝐵𝐸 = 𝐸𝑇𝑜𝑡𝑎𝑙

𝑌 + 𝐸𝑇𝑜𝑡𝑎𝑙
𝑍 − 𝐸𝐵𝑢𝑙𝑘

𝑋 − 𝐸𝑇𝑜𝑡𝑎𝑙
𝑌−𝑍  (3.9) 

where 𝐸𝑇𝑜𝑡𝑎𝑙
𝑌−𝑍 , 𝐸𝑇𝑜𝑡𝑎𝑙

𝑌 , and 𝐸𝑇𝑜𝑡𝑎𝑙
𝑍  denote the total relaxed energy of Y and Z atoms, single 

Y atom, and single Z atom, respectively, in the bulk of element X. 𝐸𝐵𝑢𝑙𝑘
𝑋  represents the 

total energy of a defect free element-X bulk. The binding energy will only be evaluated 

for Fe as the host atom while the pairs, Y – Z, will be located at the first (1NN) and 

second (2NN) nearest neighbor distances. Similar to the previous section, the bulk 

dimensions used for MEAM potential and DFT are consistent. Additionally, the binding 

energy of a substitutional pair will only be presented for Mn – Si whereas the energy of a 

substitution-interstitial pairs will be evaluated for Mn – C and Si – C. A schematic of the 

1NN and 2NN substitutional only and substitutional-interstitial pair is depicted in Figure 

3.2. A substituted atom represented with a red (dotted outline) and blue (dashed outline) 
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are located at the 1NN and 2NN locations with respect to the substitutional (gray) atom 

or the smaller (green) interstitial atom at the octahedral location. 

 

Figure 3.2 A schematic of the substituted atoms located 1NN (red, dotted) and 2NN 

(dashed, blue) with respect to another substituted atom (gray) or octahedral 

interstitial atom (blue). 

 

Table 3.12 lists the binding energies predicted by the MEAM parameters in 

comparison to the DFT values for the host Fe. Positive values of the binding energy 

denote a ‘binding’ or ‘attractive’ behavior whereas a negative number represents a 

‘repulsive’ trend. Results indicate that the MEAM potential values are in good agreement 
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with the DFT values. Accurately capturing the interaction of the multicomponent system 

is a primary objective. We achieve this objective by constraining the formation of Mn – 

Si and Si – C binary compounds, and instead use the Mn – Si and Si – C binary 

interaction as an input variable to calibrate the ternary interaction. Furthermore, since Fe 

– Mn do not form any experimentally observed binary compounds, the pair potential is 

also calibrated such that it can capture both the binary substitutional formation energy 

and ternary binding energies. 

Table 3.12 Ternary binding energies for substitutional pair of Mn-Si and substitution-

interstitial pairs of Mn-C and Si-C in Fe bulk. The interaction of impurity 

pairs are evaluated at 1NN and 2NN. Results evaluated using DFT are 

represented in parenthesis whereas MEAM potential values are listed 

without parenthesis. 

  Binding Energy (eV) 

  
Substitutional 

Pair 
Substitution – Interstitial Pair 

Host Atom Pair Location Mn – Si Mn – C Si – C 

Fe 

1NN 
-0.14a 

(-0.14)b 

-2.55 

(-0.47) 

-0.37 

(-1.01) 

2NN 
-0.67 

(-0.17) 

-0.17 

(-0.60) 

-0.88 

(-1.25) 

a Results produced by MEAM potential. 
b DFT results in parenthesis. 

3.4 Potential Validation Testing 

The final step is to determine the applicability of the MEAM potential. A number 

of simulations were performed at finite temperatures to encapsulate the thermodynamic 

and kinetic properties of Fe and low-alloy steels. First, the coefficient of linear thermal 
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expansion is evaluated for pure Fe using a 2000 atom system with periodic boundaries. 

The box was initially equilibrated using an NPT ensemble for 0.1 ns to achieve the 

correct zero pressure volume at a given temperature. A final equilibration was conducted 

for an interval of 1 ns, and the lattice dimensions were averaged over the time interval to 

calculate the linear thermal expansion coefficient. The same set of simulations was also 

used to evaluate the heat capacity of pure and alloyed iron. Table 3.13 and Table 3.14 

compares the results of the coefficient of linear thermal expansion and heat capacity of 

iron of the MEAM potential results to the experimental results. At 300K, the linear 

thermal expansion and heat capacity for pure iron were within 4% of the experimentally 

observed values. Both the physical properties of the Fe alloys increased when doped with 

Mn and Si, demonstrating that the trend moved in the right direction but not as large as 

measured. Finally, the specific heat capacity and thermal expansion of a multicomponent 

low-alloy steel was evaluated, and the results indicated that the MEAM potential results 

were within 2.3% of experimental observations. 
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Table 3.13 Coefficient of linear thermal expansion evaluated for Fe at 300K using 

present MEAM potential and compared to experimental results. 

 𝛼𝑙 at 300K (10-6 K-1)  

 MEAM Experiment % Difference 

Fe 11.15 11.6a 3.9 

Fe – 2% Mn 11.73 12.7a,b 7.6 

Fe – 1% Si 11.48 12.2a 5.9 

Fe – 1.25% Mn, 

0.6% Si, 0.25% C 
11.83 12.0c 1.4 

a [113] 
b Experimental value for Fe – 2.8% Mn. 
c 1522 low-alloy steel [114] 

 

Table 3.14 Heat capacity calculated for pure Fe and alloys at 300K. Results calculated 

using MEAM potential are compared to experimental observations. 

 Cp at 300K (J g-1 K-1)  

 MEAM Experiment % Difference 

Fe 0.467 0.4676a 0.12 

Fe – 2% Mn 0.4709 0.5016a 6.12 

Fe – 1% Si 0.4732 - - 

Fe – 1.25% Mn, 

0.6% Si, 0.25% C 
0.475 0.486b 2.3 

a [115]  
b 1522 low-alloy steel [114] 

In addition, the self-diffusion coefficients were also evaluated for Fe using a 

single crystal comprising 16,000 atoms. The system was equilibrated using the NPT 

ensemble for 0.2 ns followed by an introduction of a small number of random vacancies. 

Finally, a canonical (NVT) ensemble was simulated for 1 ns where the atom positions 

were recorded every 500 fs. The atom position vectors are used to calculate the self-
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diffusion coefficients using Einstein’s formulation [116] relating mean square 

displacement as a function of observed time with the following equation: 

 𝐷 =
1

2𝑑
lim
𝑡→∞

〈[𝑟(𝑡0+𝑡)−𝑟(𝑡0)]2〉

𝑡
 (3.10) 

where d is the dimensionality of the system and the angled brackets signify that an 

ensemble average over all molecules and time origins must be considered. In order to 

observe diffusivity of atoms within a reasonable timeframe, an excess number of vacancy 

concentrations, 𝐶𝑣
𝑒𝑥, are introduced in the simulation environment. This requires the 

simulated diffusivity, 𝐷𝑠𝑖𝑚, to be adjusted for the equilibrium vacancy concentration, 

𝐶𝑣
𝑒𝑞

. The actual diffusivity,  𝐷𝑟𝑒𝑎𝑙, of the system is then evaluated using the following 

equation: 

 𝐷𝑟𝑒𝑎𝑙 =
𝐶𝑣

𝑒𝑞

𝐶𝑣
𝑒𝑥 𝐷𝑠𝑖𝑚 (3.11) 

where the equilibrium vacancy concentration, 𝐶𝑣
𝑒𝑞

, is obtained using: 

 𝐶𝑣
𝑒𝑞 = exp [−

𝐻𝑓
𝑣−𝑇𝑆𝑓

𝑣

𝑘𝐵𝑇
] (3.12) 

where 𝐻𝑓
𝑣 is the vacancy formation enthalpy, 𝑆𝑓

𝑣 is the vacancy formation entropy, and 𝑘𝐵 

is the Boltzmann constant. The vacancy formation entropy was taken from literature 

[117] as 2.20𝑘𝐵. 

To evaluate uncertainty, each simulation is conducted three times with different 

seed numbers for the porosity and temperature, and 95 percent confidence intervals were 

employed for both temperature and the self-diffusion coefficients. Figure 3.3 shows that 

the MEAM potential calculated self-diffusion coefficients for pure Fe compared well 

with the experimental results [118]. 
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Figure 3.3 An Arrhenius plot of self-diffusion coefficients as a function of 

temperature. Results obtained by MEAM potential are in overall agreement 

with experimental values. 

 

Since dislocation motion across a slip plane and in the slip direction is one of the 

possible mechanisms of plasticity in BCC Fe, we evaluate the change in energy as the 

stacking sequence of a perfect bulk single crystal is changed at 0K. Figure 3.4a details the 

Generalized Stacking Fault Energy (GSFE) as a function of the normalized displacement 

in the [111] slip direction. A comparison of the GSFE curve evaluated using the present 

MEAM potential against DFT data produced by Jelinek et al. [78] indicates similar 

behavior. In fact, the present MEAM potential predicts a higher peak stacking fault 

energy than the MEAM potential in [78]. Additionally, the effect of alloying elements on 

the stacking fault energy is evaluated for Mn, Si, C, and a multicomponent system, as 

depicted in Figure 3.4b. The addition of Mn and C increased the stacking fault energy 
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with respect to pure Fe while the addition of Si caused the stacking fault energy to remain 

approximately the same as pure Fe. A multicomponent system exhibited a decrease in 

peak stacking fault energy as well. 

 

Figure 3.4 Generalized Stacking Fault Energy (GSFE) evaluated as a function of 

normalized displacement in the slip direction of [111]. a) GSFE obtained 

from the present MEAM potential is compared against DFT and literature 

MEAM calibration of Fe. b) Effect of alloying element on the GSFE is 

evaluated and compared against the GSFE of pure Fe. 
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The potentials are also tested to observe the thermomechanical response of bulk 

single crystal bulk Fe under a tensile loading condition. A 62,500 atom system with 

lattice dimensions of 50 × 25 × 25 is used for the bulk mesh with a free surface only in 

the z-direction. An initial equilibration at temperature using a NPT ensemble was 

conducted for 50 ps, which was followed by box deformation in the x-direction at a strain 

rate of 108/s in tandem with an NPT zero-pressure barostat in the y-direction. To 

ascertain the temperature dependence on the mechanical response, simulations were 

conducted over a temperature range from 100K to 600K. Figure 3.5 illustrates the true 

stress-true strain behavior for Fe where the failure criterion is defined as reduction from 

peak stress by 20%. Three simulations were conducted at each temperature that yielded 

error bars for failure elongation with a 95% confidence interval. Table 3.15 provides the 

modulus, tensile strength, and failure elongation garnered from the stress-strain curves as 

a function of temperature. The mechanical response follows an Arrhenius trend dictated 

for general materials whereby an increase in temperature results in strength reduction and 

improved ductility. 

Table 3.15 Variation in modulus, tensile strength, and failure elongation of Fe bulk as 

temperature increases. 

Temperature (K) Modulus (GPa) Tensile Strength (GPa) Failure Elongation (%) 

100 134.8 8.66 9.58 ± 0.13 

300 123.4 7.49 10.46 ± 0.30 

450 108.9 6.65 11.03 ± 0.23 

600 101.8 5.94 11.62 ± 0.13 
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Figure 3.5 The mechanical response of Fe bulk under uniaxial tensile loading 

conditions illustrating the experimental expected trend that as the 

temperature increases the work hardening rate decreases. We also note that 

as the temperature increases, the elongation to failure increases. 

 

Finally, the solid solution strengthening effect of alloying elements in iron is 

explored. A solute atom, depending upon the substitutional or interstitial nature, imposes 

a tensile or compressive strain on the host atoms. Similarly, an extra half-plane of atoms 

in an edge dislocation results in a compressive and tensile lattice strain on the atoms 

surrounding the dislocation line. During mechanical loading, the solute atoms diffuse 

around a dislocation core and tend to position themselves at locations such that the 

overall strain is reduced, thereby requiring a greater stress, in comparison to the pure 

element, to initiate dislocation mobility and cause plastic deformation. A simulation box 

with cell dimensions of 69.5 × 100 × 6, with all periodic boundaries, is setup and contains 

62,250 atoms. An edge dislocation having line direction perpendicular to the z-direction 

situated in the center of the simulation box is used to determine the relaxed binding 
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energy of alloying elements as a function of atom position in the vicinity of the 

dislocation core. A positive binding energy indicates a thermodynamically favorable 

location in comparison to an impurity-free dislocation, and a negative binding energy 

indicates a thermodynamically unfavorable location in comparison to an impurity-free 

dislocation. For ease of obtaining results, the simulations were conducted at 0K. 

Figure 3.6a, Figure 3.6b, and Figure 3.6c depicts the binding energy plot of Mn, 

Si, and C atoms, respectively, near an edge dislocation core. Mn, having a larger atomic 

radius than Fe, will introduce a compressive lattice strain on the host atom as a 

substitutional point defect. Therefore, Mn will ideally be situated on the tensile side of an 

edge dislocation in BCC Fe. Figure 3.6a for Mn indicates that the binding energy is lower 

on the tensile side of the dislocation, which is below the horizontal dashed black line. 

Conversely, Figure 3.6b depicts that Si is favored to be located on the compressive side 

of the dislocation core since Si has a smaller atomic radius than Fe. Finally, C atoms, 

being much smaller than Fe, are thermodynamically favorable to be alloyed as interstitial 

point defects than as a substitution. However, a carbon atom is still larger than the space 

available at the octahedral interstitial position and, therefore, imposes compressive lattice 

strains on the surrounding Fe atoms. Consequently, C atoms will ideally be located at the 

tensile side of the dislocation line as portrayed in Figure 3.6c. 
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Figure 3.6 Binding energy of one substitutional atom: a) Mn, b) Si, and c) interstitial 

carbon in Fe as a function of position in the vicinity of a dislocation core. 
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We also examined the effect of alloying elements on the dislocation velocity as a 

function of applied shear stress. The simulation box size is identical as before except for 

periodic boundaries in both x and z to allow for an infinitely long dislocation that can 

move across the boundary in the x-direction. An initial equilibration at 300K using NVE 

ensemble for 10 ps is conducted. Application of a shear stress is achieved by applying an 

instantaneous force in the x-direction to approximately 10% of rigid atoms from the 

bottom schematically illustrated in Figure 3.7. 

 

Figure 3.7 Schematic of an edge dislocation in BCC Fe. Periodic boundary conditions 

are applied in the x and z-direction. 

 

Initially, the critical shear stress for a dislocation to move in pure Fe was 

evaluated, and the results indicated that an approximate shear stress of 10 MPa was 

required to mobilize the dislocation continuously through the periodic boundary in the x 

direction. To assess the impact of individual alloying elements on the critical shear stress 
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required for a dislocation to move, two atoms of an alloying element were placed 

randomly around the preferred location of the dislocation core. The applied shear stress 

increased until the dislocation moved through the periodic boundary in the x-direction. 

For Mn, Si, and C, the critical shear stresses were 95 MPa, 98 MPa, and 92 MPa, 

respectively. As predicted, the doping pure Fe with alloying elements in small quantities 

adds resistance to slip, which results in pinning the dislocation core. Consequently, a 

higher global stress is required to initiate plastic deformation via dislocation motion. 

3.5 Conclusions 

A quaternary element MEAM potential involving Fe, Mn, Si, and C was 

developed to simulate low-alloy steels using a hierarchical multiscale modeling 

paradigm. First, single element interatomic potentials were calibrated using experimental 

observations and first-principle calculations of the cohesive energy, lattice parameters, 

elastic constants, and point defect formation energies of vacancies and interstitials. Then, 

the calibration of binary element pairs was performed. This calibration entailed using the 

heat of formation, equilibrium volume, and elastic constants of binary compounds along 

with substitutional and interstitial formation energies as calibration targets. Finally, 

ternary interactions of Mn, Si, and C in Fe bulk were considered using substitutional and 

interstitial binding energies that were compared to ab-initio calculations. 

A vital aspect of this atomistic study was to discern if the newly developed 

interatomic potentials could be applied to garner thermodynamic, kinetic, and mechanical 

data. Simulation results of the linear thermal expansion, heat capacity, and self-diffusion 

coefficients showed a great comparison to the experimental data found in the literature 

for Fe and its alloys. In addition, solid-solution strengthening mechanisms due to Mn, Si, 
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and C in Fe were successfully verified by this potential, thereby extending confidence in 

the current MEAM potential to capture a wide array of atomistic phenomenon in a low-

alloy steel. 
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CHAPTER IV 

AN FE-MN-SI-C-AL-ZN-O MODIFIED EMBEDDED ATOM METHOD (MEAM) 

POTENTIAL TO STUDY THE INTERFACIAL STRUCTURES OF THE  

INHIBITION LAYER, STEEL SUBSTRATE, AND OXIDES  

IN GALVANIZING STEEL ALLOYS 

 

4.1 Introduction 

New generation advanced high strength steels (AHSSs) are the most affordable 

mass reduction solution for lightweight vehicles, according to the National Highway 

Traffic Safety Administration (NHTSA) report, “Mass Reduction for Light-Duty 

Vehicles for Model Years 2017-2025” published in December 2012, and are key enablers 

in allowing such vehicles to achieve US Environmental Protection Agency fuel economy 

and emissions goals for 2025. AHSSs are the fastest-growing structural materials in US-

produced vehicles on a mass fraction basis, because of their ability to satisfy weight 

reduction and safety demands, while offering low cost and recyclability. As the thickness 

of these high strength steels is reduced to less than 1.0 mm, the provision of corrosion 

protection for the expected life of the vehicle is becoming increasingly critical. Metallic 

zinc (Zn) protective coatings are able to provide the required barrier and galvanic 

corrosion protection [15,119]. 
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For automotive applications, hot-dip galvanizing and galvannealing are the most 

common industrial practices. In galvanizing, a pre-heated steel strip is submerged into a 

Zn bath. A series of complex reactions take place at the interface between the steel 

substrate and the liquid Zn, including wetting of liquid Zn on the solid substrate, 

dissolution of iron (Fe) in the bath liquid, formation of intermetallic compounds by 

solidification, diffusion-controlled phase transformations, and solidification of Zn 

[15,119]. These interface reactions take place rapidly, and the interface structures 

determine the success or failure of forming, welding and corrosion protection capabilities 

of the steels and, therefore, the use of steels in vehicles. Kinetics dominates these 

reactions and thermodynamic equilibrium may not be reached.  

To prevent formation of brittle Fe-Zn intermetallic compounds, a small amount of 

aluminum (Al) is usually added to the Zn bath [15,119,120]. Because Al has a much 

greater affinity for Fe than Zn, a thin film or discontinuous inhibition layer (Fe2Al5 or 

Fe2Al5-xZnx) forms first (with a thickness typically less than 100 nm), and subsequent 

growth of intermetallic phases and Zn overlay follows. The interfaces between the steel 

substrate, the inhibition layer, and the intermetallic phases are crucially important in 

determining the structure and properties of the coating. Galvanizing process strongly 

depends on the chemistry of the Zn bath (i.e., the effective Al concentration), the 

chemistry of subsurface alloying elements, microsegregation at grain boundaries, and the 

characteristics of oxides [15,119,120]. Previous studies have shown that the morphology 

of the interfacial layers and the type of the inhibition layer changes with variations in Al 

concentration in the Zn bath [121–123]. 
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Higher concentrations of the alloying elements are needed to improve the ductility 

and strength of new AHSSs. Particularly, manganese (Mn) and silicon (Si) concentrations 

are increased. However, as these multiphase, highly alloyed steels enter the market, the 

ability to predict and, therefore, control the interfaces formed between the Zn coating and 

steel becomes increasingly complex. For instance, selective high-temperature oxidation 

of Mn and Si takes place on the surface of these steel grades when they are prepared for 

Zn coating. The type and morphology of these oxides, i.e. granular or film-like, binary, 

ternary or higher order, change with processing conditions. Mn and Si oxides cannot 

easily be reduced by hydrogen and these oxides remain on the surfaces. Not only external 

oxidation, but also internal oxidation occurs in the subsurface regions of the steel strip. 

Recent studies have shown that the type and morphology of the oxides on the strip 

surface change as the dew point decreases [22]. Specifically, the morphology of the 

oxides changes from relatively loose granules to dense and smooth films with a decrease 

in the dew point. How these oxides affect the subsequent galvanizing process remains a 

concern. The dew point also affects the formation of the inhibition layer. As the dew 

point decreases, the morphology of the inhibition layer becomes increasingly 

discontinuous [22]. These changes may affect subsequent coating development in terms 

of the formation of inhibition layer and coating growth. Moreover, the nature of the 

underlying multiphase steel substrate changes with processing, including phase 

(austenite, ferrite, and martensite), grain size, and grain orientation variations as well as 

surface composition changes, such as local decarburization. These changes affect the 

reaction of the Zn coating, which always contains a dilute amount of Al, and the interface 

layer that is produced. The initially formed Fe2Al5 interface layer is confined in a 
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boundary with a thickness of a few tens of nanometers, whereas the subsequent Zn 

coating is on the order of 10 microns [120]. Such a fine scale morphology poses a 

challenge to experimental studies of interface reactivity. Previous studies have employed 

scanning electron microscopy (SEM) and/or energy-dispersive X-ray spectroscopy 

(EDS), among other techniques, to investigate the morphology and chemical composition 

of the oxides and the inhibition layer [5].  

On the other hand, physics-based, multiscale modeling of galvanizing of AHSSs 

has not been attempted, despite the long history of experimental studies on the same 

subject. We propose to combine the cutting-edge analytical techniques and multiscale 

modeling to study oxidation and interface reactivity of galvanizing and galvannealing of 

AHSSs. The length scales span from electronic up to meso-scale. The physical properties 

of interfacial phases and structures will be calculated and simulated at the electronic and 

atomic scale. The data obtained from these lower length scale simulations will be used as 

inputs for phase-field models of oxides, intermetallic phases and Zn overlay. The 

numerical models will be calibrated and validated by experimental results. As we are 

approaching the limits of our understanding of how these interfaces are formed as a 

function of metallurgical process variables through conventional methods, cutting-edge 

characterizing techniques and cross-length scale modeling may advance our current 

knowledge to a new level.  

The goal of this research is to calibrate a seven-element MEAM potential to study 

the interfacial microstructures and properties in galvanized low-alloy steels. Cutting-edge 

experimental techniques will guide multiscale modeling and simulations to better 

understand the interfacial reactions and their various effects on the interface properties, 
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and to develop physics-based models to predict the kinetics of interfacial interactions and 

structures during galvanizing of low-alloy steels under different manufacturing 

conditions. 

4.2 Single Element MEAM Potentials 

The atomistic potentials for Al and Zn followed the potential development 

procedure described in section (add section cross-reference). Table 4.1 lists the MEAM 

potential parameters for Al, Zn, and O with FCC, HCP, and ‘dim’ (dimer) as the 

reference structures, respectively, and are available in the NIST potentials repository.  

Table 4.1 MEAM potential parameters for Al, Zn, and O. Ec and alat have units of eV 

and Å. 

 Ec alat α Asub β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax Attrac Repuls 

Al 3.39 4.05 4.674 1.06 1.967 4.6 5.84 1 5.61 -2.35 8.4 2.746 0.79 0.117 0.125 

Zn 1.3224 2.7814 7.06 0.7 1.8 1 5.3 7.11 22.471 -17.3 57 2.7 1.32 0.1 0.155 

O 2.558 1.21 4.59 0 0.31 1 1 1 10.09 10.1 1.5 2.8 2.0 0 0 

 

The MEAM potential for O was initially obtained from Gao et al. [124] but the 

functional form of the background electron density was modified to be consistent with 

the potentials developed in this study. A detailed description of the evaluated properties 

of Al and Zn are presented in the following subsections. 

4.2.2 Aluminum MEAM Potential 

The energy versus lattice spacing curves, elastic constants, vacancy formation 

energy, and self-interstitial formation energies for Al were evaluated using the MEAM 

potential and compared against the experimental observations or DFT calculations, when 

applicable. Table 4.2 details the results from the MEAM potential calibration in 
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comparison to experimental, DFT, and literature results, and Figure 4.1 illustrates the 

energy versus lattice distance curves for FCC, BCC, and HCP structures of Al. The 

MEAM potential accurately predicted FCC as the most stable crystalline structure and 

correctly captured the relative stability of supplemental BCC and HCP structures. An 

ideal c/a ratio of 1.633 was used for simulating the HCP structure. Additionally, the 

cohesive energy and lattice parameter of FCC Al were calibrated to match the 

experimental observations, as recorded in Table 4.2.  
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Table 4.2 Cohesive energy, lattice parameter, elastic constants, vacancy formation 

energy, and self-interstitial formation energies for FCC Al. The results 

obtained by the MEAM potential are in good agreement with the 

experimental observations (when available) or DFT results. Three distinct 

self-interstitial configurations were probed and the MEAM potential 

accurately predicted the relative stability of the point defects. 

Aluminum 

Properties MEAM Exp. DFT Literature % Diff. 

Cohesive Energy 

(eV/atom) 
3.39 3.39a 3.74 3.353e 0 

Lattice Parameter 

(Å) 
4.05 4.05b 4.04 4.05e 0 

B (GPa) 79.4 79.4c 77.9 78.9f 0 

Cʹ (GPa) 26.2 26.2c 8.0 26f 0 

C44 (GPa) 31.6 31.6c 22.6 45.4f 0 

Vacancy Formation 

(eV) 
0.67 0.67d 0.656 0.68g 0 

Interstitial 

Formation 

(eV) 

100 

Split 
3.01 - 3.22 2.77e 6.5 

Tetra-

hedral 
3.60 - 3.74 3.32e 3.7 

Octa-

hedral 
3.48 - 3.44 3.26e 1.2 

a [84] 
b Reference 28 [125] as cited in [126] 
c [127] 
d [128] 
e MEAM results by Jelinek et al. [78] 
f MEAM results by Pascuet and Fernandez [129] 
g MEAM value by Lee et al. [58] 
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Figure 4.1 The relative energy versus lattice distance for FCC, HCP, and BCC 

crystalline lattices of Al evaluated by DFT and the MEAM potential. The 

relative stability of the three structures was accurately predicted by the 

MEAM potential.   

 

Adding to the robustness of the interatomic potential, the elastic constants for 

FCC Al were calibrated to exactly reproduce the experimental values by construction, as 

listed in Table 4.2. Furthermore, point defect formation energies of vacancy and self-

interstitial were evaluated for FCC Al. For ab-initio and MEAM potential calibration 

calculations of vacancy formation energy, the bulk dimensions used for FCC Al is 3 × 3 

× 3 primitive cell and 4 × 4 × 4 primitive cell, respectively. As illustrated in Table 4.2, 

the calibrated Al MEAM potential replicated the experimental values of vacancy 

formation energy. The calculations for self-interstitial energies employed the same bulk 

size as vacancy formation energy and probed three distinct interstitial configurations of 

tetrahedral, octahedral, and [100] split. DFT results indicated that the [100] split was the 
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most stable configuration, and the MEAM potential correctly captured the relative 

stability of the self-interstitials with a maximum deviation of 6.5% from the DFT results.  

4.2.3 Zinc MEAM potential 

Zinc has a stable crystalline structure of HCP with a c/a packing ratio that is 1.136 

times greater than the ideal packing ratio of 1.633 for HCP structures. Baskes [130] has 

proven that the MEAM formulation, in its current state, cannot simultaneously capture 

the large c/a ratio and ensure that HCP is the most stable lattice configuration. 

Furthermore, obtaining a c/a ratio greater than ideal appeared to be roughly correlated to 

the C33 elastic constant. This constraint poses a calibration challenge and resulted in a 

lack of published MEAM potential for Zn up till very recently in 2018. Jang et al. [63] 

prioritized capturing the relative stability of the HCP structure whereas Dickel [62] et al. 

sacrificed the relative stability to accurately capture the c/a ratio, lattice parameter, 

cohesive energy, and the C33 elastic constant. For the current study, we used the potential 

calibrated by Dickel et al. [62] as a starting point. The potential was recalibrated to be 

consistent with the use of ibar, the functional form used to compute the background 

electron density, as -5 in LAMMPS.  
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Table 4.3 The cohesive energy, lattice parameters, elastic constants, vacancy 

formation energy, and (0001) surface formation energy for HCP Zn. 

Results garnered by the MEAM potential are compared against 

experimental values.  

Zinc 

Properties MEAM Exp. DFT Literature % Diff. 

Cohesive Energy 

(eV/atom) 
1.35 1.35a 1.26 1.09f, 1.35g 0 

Lattice 

Parameter 

a (Å) 2.665 2.665b 2.665 2.78f, 2.668g 0 

c (Å) 4.944 4.945b 4.946 4.5f, 4.947g 0 

c/a ratio  

(relative to ideal) 
1.136 1.136b 1.137 0.992f, 1.134g 0 

C11 (GPa) 170.5 177c - 133.4f, 151.6g 3.7 

C12 (GPa) 52.6 34.8c - 47f, 46.7g 51 

C13 (GPa) 61.8 52.8c - 41.5f, 56.5g 17 

C33 (GPa) 61.4 68.5c - 122.4f, 67.8g 10 

C44 (GPa) 49.7 45.9c - 34.1f, 45.2g 8.3 

Vacancy Formation 

(eV) 
1.44 0.5d 0.43 0.44f, 1.52g 188 

(0001) Surface 

Formation (mJ/m2) 
575 575e - 448f, 524g 0 

a [84,131] 
b [132] 
c [133] 
d [134] 
e [135] 
f MEAM values by Jang et al. [63] 
g MEAM results by Dickel et al. [62] 
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Figure 4.2 The relative energies of HCP, FCC, and BCC crystal structures of Zn are 

plotted against lattice distance for DFT and the MEAM potential. FCC Zn 

was calibrated as the most stable structure with HCP and BCC as 

secondary and ternary structures. 

 

Table 4.3 details the cohesive energy, lattice parameters, elastic constants, 

vacancy formation energy, and surface formation energy calibrated by the MEAM 

potential in comparison to experimental, ab initio, and literature results. The cohesive 

energy and lattice parameters, a and c, were calibrated to replicate the experimental 

observation. In addition, the c/a ratio of HCP packing for final, relaxed structure was 

found to be independent of the initial c/a ratio. Figure 4.2 depicts the energy versus lattice 

spacing curves for HCP, FCC, and BCC structure of Zn. As mentioned above, the relative 

stability of HCP Zn was sacrificed, resulting in FCC as the most stable structure. Zn in 

the BCC configuration, however, exhibited the correct order of formation as being the 

least stable of the three crystalline structure. The elastic constants were found to 

reasonably agree with the experimental observation with a maximum discrepancy of 51% 
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occurring in capturing the C12 elastic constant. For the calculations involving vacancy 

formation energy, a bulk dimension of 4 × 2 × 2 orthogonal HCP cell and 8 × 4 × 4 

orthogonal HCP cell were used for DFT and MEAM potential. Both the vacancy and 

surface formation energies were sensitive to the t1 parameter and calibrating to the 

experimental vacancy formation energy resulted in a negative surface formation energy 

for the basal plane. Since Dickel et al. established that the Zn potential has a metastable 

HCP structure, the vacancy formation energy was omitted as a calibration target and we 

focused on capturing the surface formation energy of HCP Zn. As a result, the 

discrepancy in vacancy formation energy is 188% but the surface formation energy 

replicated the experimental observations.  

4.3 Binary Element Interatomic Potential Development 

As previously mentioned, the binary element MEAM potential calibration 

followed the methodology detailed in section 3.3. Table 4.4 and Table 4.5 list the binary 

parameters for the pairs involving the elements of Fe, Mn, Si, Al, Zn, C, and O. Since the 

binary parameters for the Fe, Mn, Si, and C are listed in the previous chapter, the binary 

parameters listed in Table 4.4 and Table 4.5 will omit interactions described before.  
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Table 4.4 MEAM potential parameters for the binary pairs (X – Y) of Fe, Mn, Si, Al, 

Zn, and C 

 Element Pair (X – Y) 

Parameters 
Fe –

Al 

Fe – 

Zn  

Al – 

Zn  

Mn – 

Al 

Mn – 

Zn 

Si – 

Al 

Si – 

Zn 

Al – 

C 

Zn – 

C 

lattice (X,Y) L12 B1 L12 B1 B2 B2 B1 B1 B1 

Re (X,Y) 2.576 2.461 2.846 2.5 2.615 2.737 2.573 2.121 2.201 

Ec (X,Y) 4.46 2.268 2.887 2.952 2.019 3.945 2.564 4.998 2.664 

Alpha (X,Y) 5.55 6.0 4.7 4.0 6.0 4.6 5.2 4.8 5.0 

CX−X−Y
max  2.006 2.8 1.8 1.2 2.8 2.8 2.5 2.4 2.8 

CX−X−Y
min  1.422 2.0 0.4 0 2.0 2.0 0.1 1.6 0.6 

CY−Y−X
max  2.998 2.8 1.2 3.0 2.95 2.8 2.8 2.35 1.7 

CY−Y−X
min  1.318 2.0 0 1.7 0.1 2.0 1.6 0.05 0.8 

CX−Y−X
max  2.8 2.8 2.8 2.8 2.8 2.8 2.8 1.1 1.5 

CX−Y−X
min  2.0 2.0 0 2.0 2.0 2.0 2.0 0 0 

CX−Y−Y
max  2.8 2.8 2.8 2.0 1.1 2.8 2.95 2.8 2.8 

CX−Y−Y
min  0.2 2.0 2.0 0 0 2.0 2.0 2.0 2.0 

attrac (X,Y) 0 0.03 0.2 0.2 0 0.1 0 0 0 

repuls (X,Y) 0 0 0 0 0 0.2 0 0 0 

rho0 (X) 1.0 1.0 0.8 0.6 0.6 1.4 1.4 0.8 0.512 

rho0 (Y) 0.8 0.512 0.512 0.8 0.512 0.8 0.512 4.4 4.4 
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Table 4.5 MEAM potential parameters for the binary elemental pairs (X – Y) of Fe, 

Mn, Si, Al, Zn, and C with O. 

 Element Pair (X – Y) 

Parameters Fe – O Mn – O Si – O Al – O Zn – O C – O 

lattice (X,Y) B1 B1 B1 B1 dia (B3) B1 

Re (X,Y) 1.77864 2.223 2.2199 2.0385 2.0 1.9885 

Ec (X,Y) 8.33 4.73 2.225 6.193 3.55 2.66 

Alpha (X,Y) 9.7 4.6 5.4274 5.0 6.0 5.0 

CX−X−Y
max  2.8 1.6 1.164 1.2 2.8 1.2 

CX−X−Y
min  2.0 0.6 0.1 0 0 0 

CY−Y−X
max  2.8 2.8 2.8 1.2 2.8 2.8 

CY−Y−X
min  2.0 2.0 2.0 0 2.0 2.0 

CX−Y−X
max  2.8 2.8 2.8 2.8 2.8 2.8 

CX−Y−X
min  2.0 2.0 2.0 2.0 2.0 2.0 

CX−Y−Y
max  2.8 2.8 2.8 2.8 2.8 2.8 

CX−Y−Y
min  2.0 2.0 2.0 2.0 2.0 2.0 

attrac (X,Y) 0 0 0 0 0 0 

repuls (X,Y) 0 0 0 0 0 0 

rho0 (X) 1.0 0.6 1.4 0.8 0.512 4.4 

rho0 (Y) 7.0 7.0 7.0 7.0 7.0 7.0 

 

4.3.2 Heat of Formation and Equilibrium Volumes 

For all binary combinations, the heat of formation of at least four crystalline 

structures of B1 (rock salt), B2 (BCC equivalent), B3 (DC equivalent), and L12 (FCC 

equivalent) were evaluated using DFT and MEAM. Table 4.6 and Table 4.7 record the 

heats of formation and Table 4.8 and Table 4.9 list the equilibrium volumes for the Fe, 

Mn, Si, Al, Zn, C, and O binary systems.  
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Table 4.6 The heats of formation of binary compounds of Fe, Mn, Si, C, Al, and Zn 

evaluated by the MEAM potential in comparison to the experimental or 

DFT results. The percent difference is calculated with respect to 

experiment when available, otherwise DFT. 

  Heat of Formation, ΔH (eV/atom)  

Binary 

System 
Alloy Phase MEAM 

Exp.  

(Lit. DFT) 
DFT % Diff.* 

Fe – Al 

B1 -0.13 - 0.37 135.1 

B2 -1.16 -0.423a -0.34 174.2 

B3 0.87 - 1.19 26.9 

Fe3Al8 -0.32 (-0.353)b -0.343 9.3 

D03 -0.33 -0.321a -0.26 2.8 

L12 (Fe3Al) -0.38 - -0.21 81.0 

Fe – Zn 

B1 0.55 - 0.55 0.0 

B2 0.12 - 0.11 9.1 

B3 2.00 - 1.29 55.0 

L12 (Fe3Zn) 0.02 - 0.01 100.0 

Al – Zn 

B1 0.76 - 0.28 171.4 

B2 0.20 - 0.12 66.7 

B3 0.99 - 0.62 59.7 

L12 (Al3Zn) -0.01 - 0.03 133.3 

Mn – Al 

B1 0.20 - 0.40 50.0 

B2 -0.26 - -0.05 420.0 

B3 1.26 - 1.26 0.0 

tP4 -0.29 (-0.255)c -0.24 13.7 

MnAl6 0.01 (-0.181)c -0.17 105.5 

L12 (Mn3Al) 0.08 - -0.01 900.0 

Mn – Zn 

B1 0.42 - 0.55 23.6 

B2 0.12 - 0.06 100.0 

B3 1.17 - 1.16 0.9 

L12 (Mn3Zn) 0.60 - 0.32 87.5 

Si – Al 

B1 0.15 - 0.28 46.4 

B2 0.07 - 0.26 73.1 

B3 1.36 - 0.41 231.7 

L12 (Si3Al) 0.41 - 0.36 13.9 

* Absolute value listed for % Difference 
a [136] 
b [137,138] 
c [139] 
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Table 4.6 (continued) 

Si – Zn 

B1 0.43 - 0.42 2.4 

B2 0.54 - 0.43 25.6 

B3 1.68 - 0.64 162.5 

L12 (Si3Zn) 0.60 - 0.46 30.4 

Al – C 

B1 0.37 - 0.42 11.9 

B2 0.45 - 1.25 64.0 

B3 0.45 - 0.56 19.6 

Al4C3 -0.15 -0.19d -0.15 21.1 

L12 (Al3C) 0.92 - 0.98 6.1 

Zn – C 

B1 1.64 - 1.58 3.8 

B2 1.83 - 1.85 1.1 

B3 2.40 - 1.62 48.1 

L12 (Zn3C) 1.22 - 1.00 22.0 

d [140] 
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Table 4.7 Enthalpies (heat) of formation of the binary oxide compounds for Mn, Si, 

Al, and Zn. Results obtained by the MEAM potential are compared with 

experimental observations or DFT values to compute percentage 

difference. 

  Heat of Formation, ΔH (eV/atom)  

Binary 

System 
Alloy Phase MEAM Exp. DFT % Diff.* 

Mn – O 

B1 -1.99 -1.99a -1.25 0.0 

B2 -0.87 - -0.27 222.2 

B3 -1.94 - -0.86 125.6 

Mn2O3 -1.31 -1.98a -1.63 33.8 

Mn3O4 -1.47 -2.05a -1.64 28.3 

L12 (Fe3O) -1.35 - 0.67 301.5 

Si – O 

B1 1.37 - -0.35 491.4 

B2 0.96 - -0.02 4900.0 

B3 -2.62 - -0.34 670.6 

α – Quartz -3.157 -3.15a, -3.2b -2.79 0.2 

β – Quartz -3.155 -3.14c -2.78 0.5 

Tridymite -3.153 - -2.81 12.2 

L12 (Al3O) 1.40 - 0.48 191.7 

Al – O 

B1 -3.22 - -1.22 163.9 

B2 -3.81 - -0.69 452.2 

B3 -3.16 - -1.71 84.8 

Al2O3 -3.21 -3.47a -3.03 7.5 

L12 (Al3O) -0.63 - 0.08 887.5 

Zn – O 

B1 -2.01 - -1.31 53.4 

B2 -2.24 - -0.74 202.7 

B3 -1.73 - -1.45 19.3 

ZnO -1.73 -1.81a -1.38 4.4 

L12 (Zn3O) -0.65 - 0.03 2266.7 

* Absolute value listed for % Difference 
a [141] 
b Experimental observations listed by Lee et al. [142] 
c [143] 
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Table 4.8 The equilibrium volume for binary compounds of Fe, Mn, Si, C, Al, and Zn 

evaluated by the MEAM potential in comparison to the experimental or 

DFT results. The percent difference is calculated with respect to 

experiment when available, otherwise DFT 

  Equilibrium Volume, V (Å3)  

Binary 

System 
Alloy Phase MEAM 

Exp.  

(Lit. DFT) 
DFT % Diff.* 

Fe – Al 

B1 117.2 - 118.4 1.0 

B2 23.8 24.5a 23.7 2.9 

B3 158.9 - 174.9 9.1 

Fe3Al8 636.1 (602.3)b 602.5 5.6 

D03 184.1 193.1a 188.1 4.7 

L12 (Fe3Al) 48.5 - 48.6 0.2 

Fe – Zn 

B1 119.2 - 119.2 0.0 

B2 23.6 - 25.4 7.1 

B3 223.9 - 170 31.7 

L12 (Fe3Zn) 49.3 - 48.7 1.2 

Al – Zn 

B1 168.3 - 150.1 12.1 

B2 34.9 - 32.7 6.7 

B3 351.5 - 201 74.9 

L12 (Al3Zn) 65.2 - 65.2 0.0 

Mn – Al 

B1 125 - 125 0.0 

B2 32.8 - 25.8 27.1 

B3 259.3 - 194 33.7 

tP4 61.7 58.6c 53.8 5.3 

MnAl6 483.7 435.6d 429 11.0 

L12 (Mn3Al) 63.4 - 49 29.4 

Mn – Zn 

B1 137.4 - 130.6 5.2 

B2 27.5 - 27.5 0.0 

B3 333.8 - 195.8 70.5 

L12 (Mn3Zn) 64.4 - 45.6 41.2 

Si – Al 

B1 149 - 142.3 4.7 

B2 31.6 - 31.6 0.0 

B3 220.8 - 189.1 16.8 

L12 (Si3Al) 81.1 - 59.5 36.3 

* Absolute value listed for % Difference 
a [125] 
b [137,138] 
c [139] 
d [144,145] 
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Table 4.8 (continued) 

Si – Zn 

B1 136.2 - 136.2 0.0 

B2 30.6 - 31.9 4.1 

B3 384 - 174.9 119.6 

L12 (Si3Zn) 68.7 - 60.5 13.6 

Al – C 

B1 76.3 - 77.8 1.9 

B2 17.5 - 19.6 10.7 

B3 97.7 - 100.9 3.2 

Al4C3 253.2 277.7e 282.6 8.8 

L12 (Al3C) 54.4 - 55.7 2.3 

Zn – C 

B1 88.2 - 85.2 3.5 

B2 18.8 - 21 10.5 

B3 251 - 103 143.7 

L12 (Zn3C) 45.5 - 51.1 11.0 

e [146] 
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Table 4.9 Equilibrium volume for the binary oxide compounds for Mn, Si, Al, and 

Zn. Results obtained by the MEAM potential are compared with 

experimental observations or DFT values to compute percentage 

difference. 

  Equilibrium Volume, V (Å3)  

Binary 

System 
Alloy Phase MEAM Exp. DFT % Diff.* 

Mn – O 

B1 87.9 87.8a 87.88 0.1 

B2 18.7 - 16.45 13.7 

B3 130.8 - 82.43 58.7 

Mn2O3 1045.7 833.5b 857.3 25.5 

Mn3O4 393.1 314.2c 319.3 25.1 

L12 (Fe3O) 44.4 - 40.64 9.3 

Si – O 

B1 87.5 - 98.42 11.1 

B2 16.7 - 22.12 24.5 

B3 84.9 - 115.79 26.7 

low – Quartz 131.5 130.6d 136 0.7 

high – Quartz 143.6 136.4e 141.2 5.3 

Tridymite 237.1 210.3b 240 12.7 

L12 (Al3O) 221.4 - 52.44 322.2 

Al – O 

B1 67.8 - 89.73 24.4 

B2 13.9 - 21.23 34.5 

B3 97.6 - 93.31 4.6 

Al2O3 321.5 294.2b 303.8 9.3 

L12 (Al3O) 49.2 - 61.10 19.5 

Zn – O 

B1 63.8 - 81.80 22.0 

B2 13.8 - 19.47 29.1 

B3 96.6 - 99.38 2.8 

ZnO 55.8 55b 59 1.5 

L12 (Zn3O) 42.6 - 53.84 20.9 

a Reference 31 as cited by [147] 
b [141] 
c [148] 
d [149] 
e [150] 

 

Capturing the thermodynamics of Fe3Al8, inhibition layer, was a primary 

objective for calibration due to a desire to capture the interfacial energy of Fe and Fe3Al8. 
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Therefore, all the binary MEAM parameters were used as input variables to ensure that 

the heat of formation and equilibrium volume of Fe3Al8 was accurately captured. Results 

indicate that the heat of formation and equilibrium volume of Fe3Al8 are within 10% of 

literature results. As Table 4.6 indicates, all the calibrated binaries accurately reflected 

the relative order of formation of binary compounds dictated by the experiment or DFT 

results. Additionally, a majority of the binary compounds, are within reasonable 

agreement of the DFT results. A few binary structures, such as the L12 and B2 of Mn – 

Al binary, exhibited a large percent difference due the calculation being sensitive to a 

small DFT value. Additionally, the equilibrium volume for all the binaries in Table 4.8 

are within 42 % of the experimental or DFT results. The B3 structures, none of which are 

the most stable structures, were the only outliers in Table 4.8.  

The Mn – O interaction was another binary pair of importance due to the 

formation of internal and external Mn oxides. Initially, the interaction of the O potential 

from Gao et al. [124] was incompatible with Fe, Mn, Si, Al, Zn, and C, calibrated in the 

present study. Therefore, the parameters for the O single element potential, in addition to 

the binary parameters of Mn – O, were used as input variables to calibrate the Mn oxides. 

The O unary MEAM parameters, once calibrated for the Mn – O pair, was compatible 

with the remaining elements in the present study. Table 4.7 and Table 4.9 compare the 

enthalpies of formation and equilibrium volumes of Mn, Si, Al, and Zn oxides with the 

experimental (when available) or DFT observations. A maximum deviation of 34% and 

26% was observed in the heat of formation and equilibrium volume, respectively, of the 

experimental oxides using the MEAM potential. Since the exploratory experiment in 

Section 2.3 revealed manganese oxides with B1 crystalline structure, the heat of 
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formation and equilibrium volume of the oxide was precisely calibrated. Although the 

experimental structure of Zn – O binary accurately reflected the enthalpy of formation 

and volume, the MEAM potential could not ensure that the structure was the most stable 

among the equal-part hypothetical structures of B1, B2, and B3. However, maintaining 

the relative order of stability for the Zn oxides was not a primary calibration target, and 

therefore, was not explored further in this study.  

4.3.3 Elastic Constants for Binary Structures 

The elastic constants were computed, as cataloged in Table 4.10, to verify 

mechanical stability of the experimentally observed binary structures. The potentials 

were calibrated to ensure that the bulk modulus calculated using the MEAM potential 

was close to the experimental results. A comparison of the elastic constants evaluated 

using the MEAM potential with experiment revealed a maximum percentage difference 

of 210%.  For the binaries that do not form experimental compounds, the elastic constants 

of the hypothetical structures were found in reasonable agreement with the DFT 

calculations. The Si – Al elastic constant exhibited a large deviation that is attributed to a 

small value of the shear modulus, C44, causing the calculation of percent difference to be 

sensitive to slight variations from the target.  
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Table 4.10 Elastic constants computed for binary compounds of Fe, Mn, Si, Al, Zn, C, 

and O. Results for the elastic moduli evaluated using MEAM are compared 

to experimental or DFT results.  

  Elastic Constants (GPa)  

  B Cʹ C44  

Binary 

System 

Alloy 

Phase 
MEAM 

Exp. 

(DFT) 
MEAM 

Exp. 

(DFT) 
MEAM 

Exp. 

(DFT) 

% 

Diff. 

Fe – Al 

B2 235.1 152a 147.4 43a 186.9 127a 115 

D03 195.4 144b 45.2 20.2b 130.2 131.7b 53.5 

Fe3Al8 132 - 65.9 - 77.2 - - 

Fe – Zn L12 130.8 (156.7) 37.2 (13) 88 (113) 74.9 

Al – Zn B2 23.4 (52.5) 9.7 (35.4) -28.3 (-24.7) 47.5 

Mn – Al 
B2 66 (140) 142.6 (-24) 82.6 (80.5) 250 

MnAl6 59 - 23.9 - -45.7 - - 

Mn – Zn B2 55 (107) 10.8 (-17.5) 34 (100) 92.1 

Si – Al B2 217 (81) -70 (-70.6) 73.4 (-0.87) 2902 

Si – Zn B1 75 (203) -168 (-34) -53 (-56) 154 

Al – C Al4C3 159.3 (170)c 296.3 (146)c 111.3 (118)c 38 

Zn – C B1 112.9 (138.7) 224.5 (58) 399 (207) 132 

Mn – O 

B1 162 159d 307 61d 50.1 55.1d 138 

Mn2O3 103.4 - 98.9 - 145.8 - - 

Mn3O4 95.7 137e 109.8 - 107.4 - 30.1 

Si – Ox low-

Quartz 
55 37.9f 208 41.4f 216 58.2f 210 

Al – Oy Al2O3 226 252f 232 184.5f 279 147.4f 41.8 

Zn – O ZnO 197 143.7f 92.6 49.9f 66.8z 42.5f,z 76.1 

% Difference calculated by averaging the percentage difference of B, Cʹ, and C44 w.r.t. 

experimental or literature results.  
a [151] 
b [152] 
c [153] 
d [154] 
e Reference 17 as cited by Darul et al. [155] 
f [141] 
x C14 = 73 from MEAM; C14 = 73 from literature [141] 
y C14 = -52.5 from MEAM; C14 = -23.4 from literature [141] 
z Value listed for C55 
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4.3.4 Substitutional and Interstitial Formation Energies 

The substitutional point defect formation energies are evaluated for Fe, Mn, Si, C, 

Al, and Zn. For the DFT calculations, the bulk dimensions were 4 × 4 × 4 primitive cell, 

3 × 3 × 3 primitive cell, 4 × 4 × 4 primitive cell, 4 × 4 × 4 primitive cell, 3 × 3 × 3 

primitive cell, and 4 × 2 × 2 orthogonal HCP cell for BCC (Fe), FCC (Mn), DC (Si), DC 

(C), FCC (Al), and HCP (Zn). Similarly, MEAM incorporated bulk dimensions of 5 × 5 × 

5 primitive cell, 4 × 4 × 4 primitive cell, 5 × 5 × 5 primitive cell, 5 × 5 × 5 primitive cell, 

4 × 4 × 4 primitive cell, and 8 × 4 × 4 orthogonal HCP cell for Fe, Mn, Si, C, Al, and Zn.  

Table 4.11 Substitutional point defect formation energies calculated for Fe, Mn, Si, C, 

Al, and Zn. Results obtained by the MEAM potential, presented without 

parentheses, are compared to DFT values are reported within parentheses. 

 Substitutional ‘Atom’ Energy (eV) 

Host Atom Fe Mn Si C Al Zn 

Fe  
0.057a 

(0.057)b 

-1.286 

(-1.28) 

1.02 

(2.95) 

-4.69 

(-0.9) 

0.14 

(0.14) 

Mn* 
10.4 

(0.25) 
 

22.6 

(-0.98) 

2.03 

(2.54) 

-0.49 

(-0.26) 

4.43 

(0.73) 

Si 
2.80 

(1.92) 

10.8 

(2.67) 
 

12.7 

(1.4) 

8.42 

(0.93) 

10.6 

(1.77) 

C 
8.64 

(6.03) 

5.25 

(7.26) 

17.1 

(4.0) 
 

27.7 

(7.39) 

41.7 

(9.6) 

Al 
-1.79 

(-0.9) 

-1.2 

(0.3) 

1.13 

(1.05) 

-2.86 

(4.47) 
 

0.81 

(0.81) 

Zn 
0.66 

(0.66) 

0.82 

(1.06) 

0.78 

(1.11) 

4.40 

(4.39) 

0.76 

(0.26) 
 

a Results produced by MEAM. 
b DFT results in parenthesis.  

* FCC used as bulk crystalline structure. 
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Table 4.11 compares the point defect formation energies of a single type-Y 

impurity atom in the bulk of type-X atoms evaluated by the MEAM potential in 

comparison to DFT results depicted within parentheses. Results indicated that a majority 

of the substitutional energies were in good agreement with the DFT results. Although the 

substitutional energy of Al in Fe bulk exhibited significant error, the point defect 

formation energy was not a primary calibration objective for the Fe – Al binary system. 

Similarly, Al and Zn in the bulks of Si and C exhibited large deviation from DFT target 

values.  

Oxygen does not form complex oxide compounds with Fe during the 

galvanization process but rather diffuses within the steel bulk. Therefore, the solubility of 

O in Fe bulk is an important calibration objective. Since oxygen is similar in size to 

carbon, the interstitial formation energy of O in Fe bulk was evaluated. DFT predicted a 

lower interstitial formation energy of -0.77 eV versus a substitutional formation energy of 

1.07 eV, indicating the affinity of oxygen to alloy as an interstitial rather than a 

substitution. The MEAM parameters of Fe – O accurately replicated the relative order of 

formation trend dictated by DFT. The interstitial formation energy was computed as -0.78 

eV whereas the substitutional formation energy was 0.98 eV.  

4.4 Preliminary Validation Testing 

As established by the exploratory experiments conducted in Chapter 2, the 

primary interfaces that form during the galvanizing process are between Fe, inhibition 

layer, and Mn oxides. Therefore, evaluating the interfacial energies of the aforementioned 

interfaces is imperative to improve our understanding of the thermodynamics involved 

during the galvanizing process.  
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The interface between Fe and Fe3Al8 was studied using molecular dynamics in 

LAMMPS. To simulate the bulk structure with an interface, a large box, with dimensions 

of 235.137Å × 395.893Å × 83.105Å, was setup to contain Fe and Fe3Al8. The interface 

was in the X – Z plane and the dimensions were chosen such that the mismatch of bulk 

lattices of Fe and Fe3Al8 was less than 0.1 Å. The length in the z – direction was 

sufficiently large to ensure that the strain caused at the interface would not affect the 

structure in the center of each bulk layer. Initially, the structure was relaxed and then 

equilibrated using the NPT ensemble for 50 ps to achieve zero-pressure volume at 723K, 

which is also the approximate formation temperature of the inhibition layer in the Zn 

bath. A final equilibration was conducted using NVT ensemble for 50 ps. During the 

equilibration, the energy of the strained system was computed by averaging the total 

energy over 40 ps. At the same time, the energy of the reference states of Fe and Fe3Al8 

was calculated. The average energies per atom for each type were evaluated in three 

regions of equal volume far from the interface, schematically illustrated in Figure 4.3. For 

the bulk representing pure Fe, the energy per atom was an average over the three regions. 

However, the energy per atom per compound of the Fe3Al8 layer, 𝐸𝐹𝑒3𝐴𝑙8
, was computed 

by the following equation 

 𝐸𝐹𝑒3𝐴𝑙8
= [3 ∗ 𝐸𝐹𝑒

∗ + 8 ∗ 𝐸𝐴𝑙
∗ ]/11 (4.1) 

where 𝐸𝐹𝑒
∗  and 𝐸𝐴𝑙

∗  denote the energy per atom of Fe and Al, respectively, in the bulk of 

Fe3Al8. Finally, the interfacial energy, 𝐸𝐼𝑛𝑡𝑓, was obtained from the following equation 

 𝐸𝐼𝑛𝑡𝑓 = [𝐸𝐹𝑒/𝐹𝑒3𝐴𝑙8
− (𝐸𝐹𝑒 ∗ 𝑁𝐹𝑒 + 𝐸𝐹𝑒3𝐴𝑙8

∗ 𝑁𝐹𝑒3𝐴𝑙8
)]/2𝐴 (4.2) 

where 𝐸𝐹𝑒/𝐹𝑒3𝐴𝑙8
 represents the total energy of the strained system with an interface 

between Fe and Fe3Al8, 𝐸𝐹𝑒 is the energy per atom of the reference structure of Fe bulk, 
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𝐴 represents the area of the interface, and 𝑁𝐹𝑒 and 𝑁𝐹𝑒3𝐴𝑙8
 are the total number of atoms 

in the bulk of Fe and inhibition layer, respectively.  

 

Figure 4.3 A schematic of the interface between two bulk structures (Fe and Fe3Al8). 

  

The interfacial energy was computed as -3200 mJ/m2 at 723 K for the interfaces 

of Fe (010) and Fe3Al8 (010). A negative sign denotes an exothermic or highly favorable 

interfacial interaction between the two phases. Figure 4.4 and Figure 4.5 illustrate a thin 

slice of the interface in the X – Y and Z – Y plane, respectively, with the initial and final 

(equilibrated) configurations. The interface, studied using OVITO [156] visualization 

software, appears with negligible degradation or phase change after the equilibration.  
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Figure 4.4 A thin slice of the Fe – Fe3Al8 interface in the X – Y plane with a) initial 

configuration and b) final configuration at 723K. 
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Figure 4.5 Screenshot of the a) initial and b) final configuration of the Fe – inhibition 

layer interface in the Y – Z plane at 723 K. 
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4.5 Conclusions 

A seven-element MEAM potential, attempted for the first time, including Fe, Mn, 

Si, Al, Zn, C, and O was developed to encapsulate the inhibition layer and oxide 

formation during galvanization of low-alloy steels. Experimental and ab-initio 

calculations of cohesive energy, lattice parameters, elastic constants, vacancy formation 

energy, interstitial formation energy, and surface formation energies were used as single 

element MEAM potential calibration objectives. Similarly, the heat of formation, elastic 

constants, substitutional formation energy, and interstitial formation energy provided data 

to calibrate binary element pairs. Accurate representation of the Fe3Al8 inhibition layer 

and Mn oxides was imperative to comprehend their interaction of low-alloy steels. 

Preliminary validation testing reveals that the interfacial energies involved between the 

Fe – Fe3Al8 is thermodynamically favorable at approximately 723K.  
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CHAPTER V 

A SENSITIVITY AND UNCERTAINTY ANALYSIS OF A BINARY MODIFIED 

EMBEDDED ATOM METHOD (MEAM) POTENTIAL: FE-SI EXAMPLE 

 

5.1 Introduction 

Uncertainties are associated with all aspects of engineering. Experimental 

uncertainty can arise due to variation in setup, error in equipment and sensors, and 

disparity in environmental effects. Similarly, there are errors inherent to the application 

of a computational model to capture a complex, multi-dimensional physical phenomenon, 

owing to various mathematical approximations and simplifications. The accuracy of an 

experiment is only as good as the uncertainty associated with the results, particularly 

when these results are used to further inform a predictive model to capture material 

response at subsequent length or time scales. If the relevant uncertainty is not captured 

and propagated, then the computational errors amassed during each intermediate 

upscaling step may be amplified to negatively impact that the fidelity of the model.  

In addition to experimental errors, computational modeling can have its own 

sources of uncertainties. Beyond the errors customarily associated with truncation and 

discretization, this study accounts for uncertainties incorporated due to bounds that must 

be enforced upon certain calibration parameters for the model to be physically 

admissible. Intuitively, the bounds of uncertainty should widen during length scale 
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propagation. However, the interplay of phenomena at adjacent length scales may lead to 

the uncertainty at a lower scale being entirely smeared out at the higher length scales. 

Such an outcome may be encountered if a certain parameter shows a high sensitivity on 

the results at a lower length scale, with the parameter sensitivity diminishing as the 

results are propagated forward. This is especially true if the phenomena controlled by the 

parameter do not have a strong bearing on the overall downscaling requirement of the 

multiscale modeling approach.  

Experimental observations provide the primary calibration objectives. 

Computational methods are validated if they lie within the bounds of experimental 

uncertainty and verified if the computational method is in agreement with other models. 

The semi-empirical MEAM potential, used in the present study, has been employed 

extensively to calibrate and model atomistic length scale phenomenon. Hughes et al. 

[157] studied the parameter sensitivities and uncertainties associated with a single 

element calibration of Al. Tschopp et al. [158] explored the sensitivity and uncertainty of 

saturated hydrocarbons based on the recently developed Modified Embedded Atom 

Method with Bond Order (MEAM – BO) [100] formulation. While sensitivity and 

uncertainty can be investigated through various methods, this study employs a one-factor-

at-a-time (OFAT) perturbation method to carry over uncertainty distributions in 

equilibrium parameters, elastic constants, and dilute solution energies of an Fe-Si binary 

system.  
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5.2 Sensitivity and Uncertainty Methodology 

The relative sensitivity analysis, 𝑆𝑅,𝑁𝑗
, of the MEAM parameters was conducted 

using a one-factor-at-a-time perturbation methodology and is described by the following 

equation 

 𝑆𝑅,𝑁𝑗
=

𝑎𝑗,0

𝑅0
[

𝑅(𝑎𝑗,0+∆𝛼𝑗)−𝑅(𝑎𝑗,0−∆𝛼𝑗)

2∆𝛼𝑗
] (5.1) 

where 𝑎𝑗,0 indicates the value of an input parameter, 𝑅0 represents the result based on the 

input parameters 𝑎𝑗,0, ∆𝛼𝑗 is the perturbation size of the input parameter, and 

𝑅(𝑎𝑗,0 ± ∆𝛼𝑗) specifies the output response to perturbations of the input variables. The 

units of 𝑆𝑅,𝑁𝑗
 are in %/%, where 𝑆𝑅,𝑁𝑗

 of 5 translates to a change in the input variable, 

𝑎𝑗,0, by 1% results in a change of the response variable, 𝑅0, by 5%. The current study will 

present the magnitude of 𝑆𝑅,𝑁𝑗
.  

Total uncertainties, 𝑈𝑓,  and uncertainty percent contributions, UPCs, due to input 

parameter are computed as follows: 

 
𝛿𝑓

𝛿𝛼𝑗
=

𝑅(𝑎𝑗,0+𝛼𝑗)−𝑅(𝑎𝑗,0−𝛼𝑗)

2∆𝛼𝑗
 (5.2) 

where the model sensitivity, 
𝛿𝑓

𝛿𝛼𝑗
, denotes the relative change in response variable, R, with 

respect to the input variable 𝛼𝑗. Ignoring the covariance terms, the total propagated 

uncertainty, 𝑈𝑓, is then simply represented by the square root of the sum of the square of 

model sensitivities for all input variables.  

 𝑈𝑓
2 = ∑ (

𝛿𝑓

𝛿𝛼𝑗
)

2

(𝑈𝛼𝑗
)

2
𝑛
𝑗=1  (5.3) 
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where 𝑈𝛼𝑗
 is the uncertainty associated with an input parameter, which was estimated to 

be within 95% of the normal distribution confidence intervals. The uncertainty 

contributed due to each input parameter, UPC, is evaluated by normalizing the model 

sensitivity due to each parameter by the total propagated uncertainty as follows 

 𝑈𝑃𝐶 =
(

𝛿𝑓

𝛿𝛼𝑗
)

2

(𝑈𝛼𝑗
)

2

𝑈𝑓
2 ∗ 100 (5.4) 

5.3 Results and Discussion 

In the current study, fourteen input binary parameters were analyzed and a 

perturbation size of 1% about the base parameter was employed for all given parameters. 

The perturbation size was chosen such that a nearly perfect linear correlation coefficient 

was obtained. In addition, since relative sensitivity requires a nonzero input parameter, 

the value of MEAM parameter ‘attrac’ was modified from the original value of 0 to 0.01. 

The sensitivities and uncertainties were garnered for twenty different material properties 

of the Fe – Si binary system: six heats of formation of B1, B2, B3, B20, L12, and D03 

binary structures; six equilibrium volumes of B1, B2, B3, B20, L12, and D03 binary 

structures; six elastic constants of B20 and D03 experimentally observed binary 

structures; two dilute solution energies. Lastly, two types were used to describe 

parameters contributing to the sensitivities and uncertainties for the material properties: 

primary and secondary. The primary parameters yielded the most to the sensitivities or 

uncertainties while secondary parameters caused relatively small changes from the ideal 

output. 



 

97 

5.3.1 Binary Heat of Formation 

Figure 5.1a and Figure 5.1b illustrates the sensitivity and uncertainty, 

respectively, for the six binary compounds. The reference structure used for the Fe – Si 

binary was B1 and based on equilibrium pair-potential defined by the Rose equation 

(Appendix Equation B.24), the cohesive energy, Ec, is the only parameter that can change 

the energy of the reference structure. As a result, Ec is the only sensitivity parameter and 

completely contributed to the uncertainty in the results for B1 heat of formation. For the 

remaining five binary heats of formation, the equilibrium distance, Re, and Ec were the 

primary sensitivity parameters whereas the exponential decay factor, alpha, and relative 

background electron density, rho0, were the secondary sensitivity parameters. In terms of 

uncertainty contribution, the parameters did not exhibit the same trend as sensitivity 

analysis. Re was the primary parameter while Ec and rho0 were the secondary parameters 

contributing to uncertainty for B2, B3, L12, and D03. B20 was the only other binary 

structure, other than B1 reference structure, whose uncertainty was primarily produced by 

Ec while Re and rho0 were secondary uncertainty percent contribution parameters. 

Although alpha was a secondary sensitivity parameter for a majority of the binary 

structures, the parameter had negligible contribution to uncertainty. B3 was the only 

binary structure that was slightly sensitive to repuls, the cubic repulsive term in the 

universal equation of state. Consequently, repuls was used as an input parameter to 

ensure that B3 was not the most stable structure among equal-part stoichiometric binary 

structures. The total MEAM uncertainty, Uf, in heat of formation for the six binary 

structures is listed in Table 5.1. 
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Figure 5.1 a) Sensitivity analysis and b) uncertainty percent contributions evaluated 

for the heat of formation of B1, B2, B3, B20, L12, and D03 structures of Fe 

– Si binary.  

The energy of the binary structures is highly sensitive to Ec and Re, and contribute the 

most towards the total uncertainty. Rho0 and alpha are secondary sensitivity parameters 

whereas only Rho0 contributes to any significant uncertainty in results.  
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Table 5.1 Total uncertainty in the heat of formation of binary Fe – Si compounds 

computed using the MEAM potential. 

Properties Exp. (DFT) MEAM % Difference MEAM Uncertainty 

B1 (eV/atom) (0.25) 0.24 4 ± 0.05 

B2 (eV/atom) (-0.48) -0.16 67 ± 0.13 

B3 (eV/atom) (0.71) -0.31 143 ± 0.25 

B20 (eV/atom) -0.41 -0.40 2.4 ± 0.07 

D03 (eV/atom) -0.21 0.06 274 ± 0.07 

L12 (eV/atom) (-0.27) 0.47 129 ± 0.17 

 

5.3.2 Equilibrium Volume 

The results for sensitivity and uncertainty percent contribution analysis of the 

binary equilibrium volumes are depicted by Figure 5.2a and Figure 5.2b, respectively. 

Dictated by the universal equation of state and behaving in a similar fashion as the 

aforementioned section, the equilibrium distance, Re, was the only parameter that 

affected the equilibrium volume of the reference structure B1. However, in stark contrast 

to the previous section, Re was the only primary sensitivity parameter and attributed the 

most to uncertainty for all binary structures. The calibration parameters of Ec, alpha, 

rho0, and repuls were secondary parameters that impacted sensitivity whereas alpha, 

rho0, and attract were secondary parameters that contributed to uncertainty. Table 5.2 

presents the overall uncertainty in equilibrium volumes for the six binary structures 

obtained using the calibrated MEAM potential. 
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Figure 5.2 Analysis of a) sensitivity and b) uncertainty contributions for the 

equilibrium volumes of B1, B2, B3, B20, L12, and D03 structures.  

The equilibrium volumes of all binary parameters are highly sensitive to Re and yield the 

most uncertainty whereas Ec, alpha, and rho0 are secondary sensitivity and uncertainty 

parameters.   
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Table 5.2 Total uncertainty in equilibrium volume of binary Fe – Si compounds using 

the calibrated MEAM potential. 

Properties Exp. (DFT) MEAM % Difference MEAM Uncertainty 

B1 (Å3) (104.5) 106.5 1.9 ± 6.7 

B2 (Å3) (21.1) 22.8 8.0 ± 1.2 

B3 (Å3) (140.6) 137.4 2.3 ± 9.2 

B20 (Å3) 89.9 90.1 0.2 ± 4.8 

D03 (Å3) 180.3 1832 1.6 ± 5.7 

L12 (Å3) (45.9) 47 2.4 ± 1.5 

 

5.3.3 Elastic Constants 

The elastic constants for B20 were affected by the most number of calibration 

parameters, as visualized in Figure 5.3a. Although the bulk modulus is directly related to 

alpha input parameter, the primary sensitivity and uncertainty contribution parameter for 

a majority of the bulk moduli was the equilibrium distance, Re, with the exception of 

shear modulus, C44, of B20 binary structure. However, alpha was a secondary sensitivity 

parameter for all elastic constants. In addition, Ec, rho0, and screening parameters, Cmin-

(1,1,2) and Cmax(1,1,2) were secondary sensitivity parameters for elastic constants for 

B20. The uncertainty contributions exhibited a slightly different trend. The screening 

term, Cmax(1,1,2) was a primary uncertainty percent contribution parameter for shear 

modulus, C44, of B20 binary structure. For the remaining elastic constants, Re produced 

the most uncertainty in results while rho0, Cmin(1,1,2), Cmax(1,1,2), and attract yielded 

less uncertainty. Table 5.3 details the maximum uncertainty in the elastic constants of 
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B20 and D03 experimentally observed binary structures. The bulk modulus for both 

structures exhibited maximum uncertainty in comparison to the shear moduli. 

Table 5.3 Estimated uncertainty in elastic moduli of B20 and D03 experimentally 

observed structures based on the MEAM potential. 

Properties (GPa) Exp. (DFT) MEAM % Difference MEAM Uncertainty 

B20 (B) 110 78.7 28.5 ± 69.5 

B20 (Cʹ) (150) 22.3 85.1 ± 14.1 

B20 (C44) (180) 57.7 67.9 ± 7.0 

D03 (B) 168 266.2 58.5 ± 35.9 

D03 (Cʹ) 38 103.4 171.1 ± 8.0 

D03 (C44) 137 124.7 9.0 ± 14.0 
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Figure 5.3 a) Sensitivity and b) Uncertainty percent contribution analysis for the 

elastic constants of B20 and D03 experimentally observed binary 

structures. 

Re is a primary sensitivity and uncertainty parameter with Ec, rho0, alpha, Cmin(1,1,2), 

and Cmax (1,1,2) as secondary sensitivity and uncertainty parameters.  
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5.3.4 Dilute Solution Energies (Substitutional Formation Energies) 

Figure 5.4a and Figure 5.4b portray the sensitivities and uncertainties, 

respectively, contributed by MEAM parameters on the substitutional formation energies. 

The primary sensitivity parameter for Si in Fe bulk was the cohesive energy of the pair 

potential, Ec, whereas the equilibrium distance, Re, and relative background density were 

secondary sensitivity parameters. The dilute solution energy of Fe in Si bulk exhibited a 

slightly different trend where Re was the primary sensitivity parameter, and Ec and rho0 

were revealed as secondary sensitivity parameters. If accurately capturing the binary 

compounds is an objective, then rho0 becomes the key parameter to accurately calibrate 

the dilute solution energy of Si in Fe, which is another primary calibration target. In 

terms of contribution to uncertainty, the parameters replicated the trend observed for 

sensitivity analysis. Lastly, both dilute solution energies exhibited minor sensitivity to the 

alpha parameter but dispensed negligible effect on the uncertainty analysis. Table 5.4 

presents the total uncertainty in the results for substitutional formation energies obtained 

using the MEAM potential.  

Table 5.4 Computed total uncertainties in the MEAM potential calibration of 

substitutional formation energies 

Properties DFT (eV) MEAM (eV) % Difference MEAM Uncertainty (eV) 

Si in Fe bulk -1.286 -1.286 0 ± 0.165 

Fe in Si bulk 1.92 2.80 45.8 ± 0.346 
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Figure 5.4 Analysis performed on substitutional formation energies of Si in Fe bulk 

and Fe in Si bulk to evaluate the a) sensitivity and b) uncertainty percent 

contributions. 

The formation energy of Si in Fe bulk is highly sensitive to Ec with rho0 and Re as 

secondary sensitivity parameters. However, Re is the primary sensitivity parameter for Fe 

in Si bulk with Ec and rho0 as secondary parameters resulting in high sensitivity. 

Uncertainty percent contribution analysis replicates the trends observed in sensitivity 

analysis.  
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5.4 Conclusions 

The sensitivity and uncertainty analysis were conducted to ascertain the effect of 

fourteen binary input parameters of the MEAM potential on twenty calibrated binary 

material properties. Results indicated that for the heats of formation, the primary 

parameters associated with sensitivity and uncertainty were the cohesive energy, Ec, and 

equilibrium distance, Re, with the exception of reference structure. However, the 

equilibrium volumes of the binary structures dictated an intuitive trend where the 

equilibrium distance, Re, had the highest impact on sensitivity and uncertainty. The 

sensitivity and uncertainty analysis on elastic moduli also exhibited unexpected results. 

Although the bulk modulus of the pair potential is directly related to the alpha parameter 

in the Rose equation, the equilibrium distance, Re, was the parameter that produced the 

highest uncertainty and yielded most to the uncertainty in results. Finally, analysis of the 

dilute solution energies revealed that the equilibrium energy of the reference structure, 

Ec, was the primary sensitivity and uncertainty parameter for Si in Fe bulk but in the 

event of multiple calibration objectives, rho0 can provide the necessary drive to calibrate 

the substitutional formation energy. 
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CHAPTER VI 

CONCLUSIONS 

A dual-phase steel, galvanized in a Zn bath with 0.2 weight percent Al, was 

provided by POSCO to be studied at the nanoscale and explore the interfacial structures. 

Focused ion beam was used to fabricate an electron transparent specimen and 

transmission electron microscope was used to resolve atomic features in galvanized 

steels. The surface and subsurface of the steel was populated with a continuous external 

oxide layer and dispersed internal oxides, respectively. External oxides, having an 

average thickness of 20 nm, were comprised of Mn with exact stoichiometric ratio of 

MnO. A continuous, fully developed Fe2Al5/Fe3Al8 inhibition layer, with an average 

thickness of 96 nm, was present on top of the Mn oxides. The formation of the inhibition 

layer can be attributed Fe diffusing through the porous MnO film and short-circuit 

diffusion paths in oxide grains or aluminothermic reduction of Mn oxides. The interfacial 

structures observed on steel protected by a Zn coating provided a blueprint for multiscale 

modeling and design of galvanized steel alloys. 

A seven-element MEAM potential involving Fe, Mn, Si, Al, Zn, C, and O was 

developed to simulate low-alloy steels, inhibition layer, and oxide formation during 

galvanization of low-alloy steels using a hierarchical multiscale modeling paradigm. The 

first step entails calibrating the single element potentials using experimental observations 

and ab-initio calculations, as primary and secondary calibration targets, respectively. 
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Calibration data included cohesive energy, lattice parameters, elastic constants, and point 

defect formation energies of vacancies and interstitials. Binary element calibration ensues 

the single element calibration where heats of formation, elastic constants, substitutional 

formation energies and interstitial formation energies were binary calibration targets. 

Finally, ternary interactions of Fe, Mn, Si, and C were considered using substitutional 

and interstitial binding energies that were compared to DFT calculations.  

Validation testing was conducted to ascertain the applicability of the newly 

developed MEAM potential to garner thermodynamic, kinetic, and mechanical data. 

Atomistic simulations of heat capacity, thermal expansion, diffusion coefficients, and 

generalized stacking fault energy of low-alloy steels demonstrated good agreement with 

experiment and literature results. Furthermore, solid-solution strengthening mechanisms 

contributed by alloying elements of Mn, Si, and C were successfully verified, which 

extended the applicability of the calibrated MEAM potential to capture multiple aspects 

of low-alloy steels. Lastly, preliminary validation testing was conducted to determine the 

interfacial energies of Fe with Fe3Al8 and MnO. Results indicated that the interface 

between Fe – Fe3Al8 is thermodynamically favorable whereas the interaction between Fe 

– MnO is unfavorable.  

Obtaining the sensitivity and uncertainty of the calibrated results was imperative. 

Therefore, the effect of 14 binary calibration input parameters on 20 calibration targets of 

the Fe – Si binary were calculated using a One-Factor-at-a-Time (OFAT) perturbation 

method. A majority of heat of formation of the binary compounds were primarily 

sensitive to equilibrium distance and cohesive energy, with the exception of the reference 

structure’s enthalpy of formation. The equilibrium volume of the binary compounds 
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demonstrated a natural trend where the equilibrium distance parameter was the primary 

sensitivity and uncertainty parameter. The elastic constants of the experimental 

compounds exposed that alpha, a MEAM parameter directly related to the bulk modulus, 

was a secondary sensitivity and uncertainty parameter. The equilibrium distance yielded 

the highest sensitivity and uncertainty for the elastic moduli. Lastly, the primarily 

sensitivity and uncertainty parameter responsible for dilute solution energy of Si in Fe 

bulk and Fe in Si bulk was the cohesive energy and equilibrium distance, respectively. 

However, the relative background electron density parameter, rho0, was a robust 

secondary calibration parameter for the substitutional formation energy. 
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CHAPTER VII 

FUTURE WORK 

The next step entails conducting simulations to validate the seven-element 

MEAM potential. In addition, thermodynamic and kinetic properties need to be evaluated 

that can be upscaled to the phase-field model. A detailed description of the process is as 

follows: 

1. Determine the binding energies of two like atoms at 1NN and 2NN locations 

in Fe: 

a. Use DFT to obtain the formation energies. 

b. Replicate the calculations using MEAM potential and compare against 

DFT results. 

2. Evaluate the vacancy migration energy for Fe using MEAM and use the 

results to recalculate the diffusivity of Fe. 

3. Determine the free energies (Gibb’s free energy) for vacancy in Fe.  

4. Evaluate the 1NN and 2NN ternary binding energies of  

a. Mn and Si substitutionals with O interstitial. 

b. C interstitial with O interstitial. 

5. Obtain diffusivities of Mn – Si – C in Fe bulk. 

6. Calculate the diffusivity of O in Fe and steel with composition of interest. 
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7. Obtain stress-strain curves for alloying element additions in steel to 

demonstrate strengthening. 

8. Evaluate the interfacial energies between steel, oxides, inhibition layer, and 

Zn coating. In addition, introduce misorientation between interfaces to 

determine which interfacial orientation is the most thermodynamically 

favorable. 

9. Perform a segregation analysis of 

a. Alloying element to the interface and how the interfacial energies 

change. 

b. O in steel alloy with a free surface to determine whether O tends to 

move to the surface. 

c. O and alloy components in the steel alloy with a free surface to 

determine if a surface oxide forms.  

d. Mn, Si, C, and O (independently) to the grain boundaries 

e. O in the vicinity of a dislocation core. 

f. (co-segregation analysis of) all alloying elements to grain boundaries 

and dislocation cores.  
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APPENDIX A 

PLOTS FOR HEAT OF FORMATION OF BINARY COMPOUNDS 
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Figure A.1 Heat of formation for the binary compounds of a) Fe–C and b) Fe–Si 

plotted as a function of atomic percentage of an alloying element. The 

experimental structure for Fe–C is cementite. 
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Figure A.2 Heat of formation for the binary compounds of a) Fe–Mn and b) Mn–C 

plotted as a function of atomic percentage of an alloying element. 

Compounds X, Y, and Z denote Mn12C4, Mn23C6, and Mn7C3, respectively. 
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APPENDIX B 

MEAM FORMULATION 
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B.1 MEAM theory 

The total energy E of a system of atoms in MEAM is approximated as the sum of 

the atomic energies 

 𝐸 = ∑ 𝐸𝑖𝑖  (B.1) 

The energy of atom I consists of the embedding energy and the pair potential terms: 

 𝐸𝑖 = 𝐹𝑖(𝜌̅𝑖) +
1

2
∑ 𝜙𝑖𝑗(𝑟𝑖𝑗)𝑗≠𝑖  (B.2) 

F is the embedding function, 𝜌̅𝑖 is the background electron density at the site of the atom 

i, and 𝜙𝑖𝑗(𝑟𝑖𝑗) is the pair potential between atoms i and j separated by a distance 𝑟𝑖𝑗. The 

embedding energy 𝐹𝑖(𝜌̅𝑖) represents the energy cost to insert atom i at a site where the 

background electron density is 𝜌̅𝑖. The embedding energy is given in the form  

 𝐹𝑖(𝜌̅𝑖) = {
𝐴𝑖𝐸𝑖

0𝜌̅𝑖 ln(𝜌̅𝑖) if 𝜌̅𝑖 ≥ 0

−𝐴𝑖𝐸𝑖
0𝜌̅𝑖 if 𝜌̅𝑖 < 0

 (B.3) 

where the sublimation energy 𝐸𝑖
0 and parameter 𝐴𝑖 depend on the element type of atom i. 

The background electron density 𝐸𝑖
0  is given by 

 𝜌̅𝑖 =
𝜌𝑖

(0)

𝜌𝑖
0 𝐺(Γ𝑖) (B.4) 

where 

 Γ𝑖 = ∑ (
𝜌𝑖

(𝑘)

𝜌
𝑖
(0))

2
3
𝑘=1  (B.5) 

and  

 𝐺(Γ) = {
√1 + Γ if Γ ≥ −1

−√|1 + Γ| if Γ < −1
 (B.6) 
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The zeroth and higher order densities 𝜌𝑖
(0)

, 𝜌𝑖
(1)

, 𝜌𝑖
(2)

, and  𝜌𝑖
(3)

are given in Equations B.9 

– B.12 . The composition-dependent electron density scaling  𝜌𝑖
(0)

 is given by  

 𝜌𝑖
0 = 𝜌𝑖0𝑍𝑖0𝐺(Γi

ref) (B.7) 

where 𝜌𝑖0 is an element-dependent density scaling, 𝑍𝑖0 is the first nearest-neighbor 

coordination of the reference system, and Γ𝑖
ref is given by 

 Γ𝑖
ref =

1

𝑍𝑖0
2 ∑ 𝑡𝑖

(𝑘)
𝑠𝑖

(𝑘)3
𝑘=1  (B.8) 

where 𝑠𝑖
(𝑘)

 is the shape factor that depends on the refence structure of the atom i.  Shape 

factors for various structures are specified in the work of Baskes [51]. The partial 

electron densities are given by 

 𝜌𝑖
(0)

= ∑ 𝜌𝑗
𝑎(0)

(𝑟𝑖𝑗)𝑆𝑖𝑗𝑗≠𝑖  (B.9) 

 (𝜌𝑖
(1)

)
2

= ∑ [∑ 𝜌𝑗
𝑎(1) 𝑟𝑖𝑗𝛼

𝑟𝑖𝑗
𝑆𝑖𝑗𝑗≠𝑖 ]

2

𝛼  (B.10) 

 (𝜌𝑖
(2)

)
2

= ∑ [∑ 𝜌𝑗
𝑎(2) 𝑟𝑖𝑗𝛼𝑟𝑖𝑗𝛽

𝑟𝑖𝑗
2 𝑆𝑖𝑗𝑗≠𝑖 ]

2

−
1

3
[∑ 𝜌𝑗

𝑎(2)
(𝑟𝑖𝑗)𝑆𝑖𝑗𝑗≠𝑖 ]

2

𝛼,𝛽  (B.11) 

 (𝜌𝑖
(3)

)
2

= ∑ [∑ 𝜌𝑗
𝑎(3) 𝑟𝑖𝑗𝛼𝑟𝑖𝑗𝛽𝑟𝑖𝑗𝛾

𝑟𝑖𝑗
3 𝑆𝑖𝑗𝑗≠𝑖 ]

2

−
3

5
∑ [∑ 𝜌𝑗

𝑎(3) 𝑟𝑖𝑗𝛼

𝑟𝑖𝑗
𝑆𝑖𝑗𝑗≠𝑖 ]

2

𝛼𝛼,𝛽,𝛾  (B.12) 

where 𝑟𝑖𝑗𝛼 is the 𝛼 component of the displacement vector from atom i to atom j. 𝑆𝑖𝑗 is the 

screening function between atoms i and j and is defined in Equations B19 – B23. The 

atomic electron densities are computed as 

 𝜌𝑖
𝑎(𝑘)

(𝑟𝑖𝑗) = 𝜌𝑖0 exp [−𝛽𝑖
(𝑘)

(
𝑟𝑖𝑗

𝑟𝑖
0 − 1)] (B.13) 
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where 𝑟𝑖
0 is the nearest neighbor distance in the single-element reference structure and 

𝛽𝑖
(𝑘)

is an element-dependent parameter. Finally, the average weighting factors are given 

by 

 𝑡𝑖
(𝑘)

=
∑ 𝑡0,𝑗

(𝑘)
𝜌𝑗

𝑎(0)
𝑆𝑖𝑗𝑗≠𝑖

∑ (𝑡0,𝑗
(𝑘)

)
2

𝜌𝑗
𝑎(0)

𝑆𝑖𝑗𝑗≠𝑖

 (B.14) 

where 𝑡0,𝑗
(𝑘)

 is an element-dependent parameter.  

The pair potential is given by 

 𝜙𝑖𝑗(𝑟𝑖𝑗) = 𝜙̅𝑖𝑗(𝑟𝑖𝑗)𝑆𝑖𝑗 (B.15) 

 𝜙𝑖𝑗(𝑟𝑖𝑗) =
1

𝑍𝑖𝑗
[2𝐸𝑖𝑗

𝑢 (𝑟𝑖𝑗) − 𝐹𝑖 (
𝑍𝑖𝑗

𝑍𝑖
𝜌𝑖

𝑎(0)
(𝑟𝑖𝑗)) − 𝐹𝑗 (

𝑍𝑖𝑗

𝑍𝑗
𝜌𝑗

𝑎(0)
(𝑟𝑖𝑗))] (B.16) 

 𝐸𝑖𝑗
𝑢 (𝑟𝑖𝑗) = −𝐸𝑖𝑗 (1 + 𝑎𝑖𝑗

∗ (𝑟𝑖𝑗)) 𝑒−𝑎𝑖𝑗
∗ (𝑟𝑖𝑗)

 (B.17) 

 𝑎𝑖𝑗
∗ = 𝛼𝑖𝑗 (

𝑟𝑖𝑗

𝑟𝑖𝑗
0 − 1) (B.18) 

where 𝐸𝑖𝑗, 𝛼𝑖𝑗, and 𝑟𝑖𝑗
0 are element-dependent parameters and 𝑍𝑖𝑗 depends upon the 

structure of the reference system. The background densities 𝜌̂𝑖(𝑟𝑖𝑗) in Equation B.16 are 

the densities for the reference structure computed with the interatomic spacing 𝑟𝑖𝑗. 

The screening function 𝑆𝑖𝑗 is designed so that 𝑆𝑖𝑗 = 1 if atoms i and j are 

unscreened and within the cutoff radius 𝑟𝑐 and 𝑆𝑖𝑗 = 0 if they are completely screened or 

outside the cutoff radius. It varies smoothly between 0 and 1 for partial screening. The 

total screening function is the product of a radial cutoff function and three body terms 

involving all other atoms in the system: 

 𝑆𝑖𝑗 = 𝑆𝑖̅𝑗𝑓𝑐 (
𝑟𝑐−𝑟𝑖𝑗

Δ𝑟
) (B.19) 
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 𝑆𝑖̅𝑗 = ∏ 𝑆𝑖𝑘𝑗𝑘≠𝑖,𝑗  (B.20) 

 𝑆𝑖𝑘𝑗 = 𝑓𝑐 (
𝐶𝑖𝑘𝑗−𝐶𝑚𝑖𝑛,𝑖𝑘𝑗

𝐶𝑚𝑎𝑥,𝑖𝑘𝑗−𝐶𝑚𝑖𝑛,𝑖𝑘𝑗
) (B.21) 

 𝐶𝑖𝑘𝑗 = 1 + 2
𝑟𝑖𝑗

2 𝑟𝑖𝑘
2 +𝑟𝑖𝑗

2 𝑟𝑗𝑘
2 −𝑟𝑖𝑗

4

𝑟𝑖𝑗
4 −(𝑟𝑖𝑘

2 −𝑟𝑗𝑘
2 )

2  (B.22) 

 𝑓𝑐(𝑥) = {
1 𝑥 ≥ 1

[1 − (1 − 𝑥)4]2 0 < 𝑥 < 1
0 𝑥 ≤ 0

 (B.23) 

Note that 𝐶𝑚𝑖𝑛  and 𝐶𝑚𝑎𝑥 can be defined separately for each 𝑖 − 𝑗 − 𝑘 triplet, 

based on their element types. The parameter ∆𝑟 controls the distance over which the 

radial cutoff is smoothed from 1 to 0 near 𝑟 = 𝑟𝑐. 

B.2 Equilibrium lattice parameter and bulk modulus 

MEAM postulates the Rose universal equation of state 

 𝐸𝑅(𝑎∗) = −𝐸𝑐 (1 + 𝑎∗ + 𝛿
𝛼𝑎∗3

𝛼+𝑎∗) 𝑒−𝑎∗
 (B.24) 

for the reference structure of each single element and for each element pair. The 𝑎∗, 

scaled distance from the equilibrium nearest neighbor position 𝑟0, is 

 𝑎∗ = 𝛼(𝑟/𝑟0 − 1) (B.25) 

Two 𝛿 parameters may be specified for each element/pair: 𝛿𝑟 for negative, and 𝛿𝑎 for 

positive 𝑎∗. Then  

 𝛿 = {
𝛿𝑟 for 𝑎∗ < 0 
𝛿𝑎 for 𝑎∗ ≥ 0

 (B.26) 

The MEAM potential parameter 𝛼 is related to the equilibrium atomic volume Ω0, the 

bulk modulus 𝐵0, and the cohesive energy of the reference structure 𝐸𝑐 as follows 

 𝛼 = √
9𝐵0Ω0

𝐸𝑐
 (B.27) 
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