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Hidden undesired functionality is an unavoidable reality in any complex hardware or

software component. Undesired functionality — deliberately introduced Trojan horses or

accidentally introduced bugs — in any component of a system can be exploited by attackers

to exert control over the system. This poses a serious security risk to systems — especially

in the ever growing number of systems based on networks of computers.

The approach adopted in this dissertation to secure systems seeks immunity from hid-

den functionality. Specifcally, if a minimal trusted computing base (TCB) for any system

can be identifed, and if we can eliminate hidden functionality in the TCB, all desired

assurances regarding the operation of the system can be guaranteed. More specifcally,

the desired assurances are guaranteed even if undesired functionality may exist in every

component of the system outside the TCB.

A broad goal of this dissertation is to characterize the TCB for various systems as a

set of functions executed by a trusted security kernel. Some constraints are deliberately



imposed on the security kernel functionality to reduce the risk of hidden functionality

inside the security kernel.

In the security model adopted in this dissertation, any system is seen as an intercon-

nection of subsystems, where each subsystem is associated with a security kernel. The

security kernel for a subsystem performs only the bare minimal tasks required to assure

the integrity of the tasks performed by the subsystem.

Even while the security kernel functionality may be different for each system/subsystem,

it is essential to identify reusable components of the functionality that are suitable for a

wide range of systems. The contribution of the research is a versatile data-structure —

Ordered Merkle Tree (OMT), which can act as the reusable component of various security

kernels. The utility of OMT is illustrated by designing security kernels for subsystems

participating in, 1) a remote fle storage system, 2) a generic content distribution system,

3) generic look-up servers, 4) mobile ad-hoc networks and 5) the Internet’s routing infras-

tructure based on the border gateway protocol (BGP).
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CHAPTER 1

INTRODUCTION

Any application/system can be seen as a network of subsystems, each with a specifc

role in the operation of the system, interacting with each other according to system-specifc

and/or role-specifc rules. For an ever increasing range of systems, some or all subsystems

take the form of a computer, or a network of computers (for example, a server with one or

more back-end servers). Undesired functionality — either deliberately introduced Trojan

horses, or accidental bugs — are an unavoidable reality in complex subsystems. Such

undesired functionality may be exploited by attackers to gain control of a subsystem for a

wide range of nefarious purposes.

It is far from practical to assure the integrity of every hardware/software component in

every component of every subsystem. One possible approach to secure systems is to man-

date that all important subsystems should be associated with an appropriate security kernel

that vouches for the integrity of (system-specifc and role-specifc) tasks performed by the

subsystem. Specifcally, all components of the subsystem are assumed to be untrustworthy;

only the security kernel is trusted.

The security kernel for a system/subsystem is also commonly referred to as the trusted

computing base (TCB) for the system/subsystem. More formally, the TCB for any system

is “a small amount of software and hardware that the security depends on, and that we
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distinguish from a much larger amount that can misbehave without affecting security”

[32]. In practice, the TCB for a subsystem could take the form of a dedicated hardware

security module, or a software module executed on a general purpose platform, with some

special protections [62] to guarantee that the security kernel will run unmolested.

A security kernel for a subsystem can also be seen as a set of functions executed inside

a read-proof and write-proof [60, 64, 25, 51, 19] module T. That the module is read-proof

implies that secrets protected by the module (for authentication of the module) cannot be

exposed; that the module is write-proof implies that the designed security kernel function-

ality of the module cannot be modifed. It is however essential that the security kernel

functionality is deliberately constrained to be simple — to permit consummate verifcation

of the functionality, and thereby, rule out the presence of undesired functionality within the

security kernel.

Some of the components of the security kernel for a subsystem will necessarily be

specifc to the subsystem whose operation is assured by the module T. For example, the

security kernel functionality for a domain name system server will be different from that

of the security kernel for an IP registry, or a Border Gateway Protocol (BGP) router, or

a device taking part in a mobile ad hoc network. Nevertheless, to simplify testing of the

security kernel functionality, it is advantageous to possess effcient reusable components of

the security kernels, with potential to be useful in a wide range of subsystems. Specifcally,

some of the important requirements of such reusable components are broad utility, and low

(storage and computational) overhead.

2



1.1 Goals and Outcomes

The contribution of this research is an authenticated data-structure (ADS), the Ordered

Merkle Tree (OMT) as an effcient and highly reusable component, suitable for security

kernels for a wide range of systems. The utility of OMT is demonstrated by designing

security kernel functionality for multiple systems like a) systems for providing generic

look-up and content-distribution services; b) a sophisticated remote fle storage system; c)

mobile ad hoc networks (MANET) adhering to distance vector based routing protocols;

and d) inter-autonomous-system routing infrastructure of the Internet, based on the border

gateway protocol (BGP).

The specifc contributions of this dissertation are

1. two variants of the Ordered Merkle Tree (OMT): the Index Ordered Merkle Tree
(IOMT) and the Range Ordered Merkle Tree (ROMT);

2. design of simple algorithms to maintain OMTs, which can be executed even in-
side severely resource limited boundaries (inside a storage and computationally con-
strained hardware module T);

3. design of generic security kernel functionality for mutual authentication of modules
associated with different subsystems; and

4. design of subsystem specifc functionality for subsystems associated with each of
the investigated systems.

1.2 Research Strategy

Central to the proposed approach is the notion that any system can be modeled as

interactions between subsystems. Each subsystem maintains a database of records 1 es-

sential to its operation in the system. As subsystems are not trusted, we cannot expect
1For example, in a fle storage system a records can correspond to a fle, and specify parameters like

fle name, author, fle hash, fle encryption secret, access control policy, etc; in the case of a mobile ad hoc
network (MANET) a record can contain information (hop count, next hop, sequence number, etc.) necessary
to reach a specifc destination .
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them to guarantee the integrity of such records and/or to transact such records (with other

subsystems) strictly according to the system specifc rules.

In the approach presented in this dissertation, a subsystem is considered to have a

consequential role if violation of rules by the subsystem is seen as a breach of security.

Every subsystem with a consequential role is associated with a trusted module T that

executes the security kernel for the subsystem. The security kernel is the enforcer for the

subsystem specifc rules. Unless the untrusted subsystem can demonstrate it’s integrity

to the security kernel module T, the subsystem cannot take part in the operation of the

system.

The security kernel functions can be broadly classifed into three categories:

1. generic operations to maintain OMTs; this is used to track the dynamic database of
(subsystem-specifc) records stored by the untrusted subsystem;

2. generic operations for mutual authentication of interactions between modules be-
longing to different subsystems; and

3. subsystem specifc security-kernel functionality that enforces subsystem specifc rules
for updating records.

Applications/systems can also be broadly classifed (based on communication hierar-

chy) as client-server or distributed models. In client-server systems, interactions can occur

only between a client subsystem and the server subsystem. In a distributed application

model, any subsystem may directly interact with any other subsystem in the network. To

illustrate the utility of OMTs in security kernels we illustrate our approach to secure two

systems in each category (four systems in total). Applications in the client-server category

include a remote fle storage system and a generic look-up server. The distributed appli-

4



cations include mobile ad hoc networks (MANET) and the inter-AS routing infrastructure

for the Internet (BGP).

In most systems based on the client-server model, misbehavior of a particular client

subsystem does not affect other clients. In such a scenario only the server is associated

with a security kernel. Client subsystems are not. The frst application investigated under

this model was a remote fle storage system, which led to a conference publication [42]

outlining a minimal TCB for a remote fle-storage system. The approach utilized an Index

Ordered Merkle Tree (IOMT) (described in Section 3.2) to represent stored records and

access control privileges for fles uploaded by users on to the centralized remote storage

server. An extended version of the approach (with support for tracking multiple versions

for each fle) was submitted as a journal article [40]. The minimal TCB for remote fle

storage system was generalized to a minimal TCB for a generic content distribution infras-

tructure in a conference article [43]. The TCB for the content distribution system (CDS)

ensured the integrity, authenticity and access control rules for distributing content (created

by publishers) to the consumers of content (subscribers).

For distributed applications security kernels corresponding to different subsystem roles

will need to be identifed. In MANETs, each mobile device is seen as a subsystem with

the same role. For BGP, subsystems may correspond to different roles like Registries,

autonomous system (AS) owners, and BGP speakers/routers.

Our work in [39], illustrated the utilization of OMTs in designing a security kernel/TCB

for various BGP subsystems like Registries, AS owners and BGP speakers/routers. A com-

plex system like BGP serves as a good illustration of the scope of the proposed approach
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and the versatility of OMTs. Several types of ROMTs and IOMTs were utilized by various

BGP subsystems. A journal article outlining this approach has been submitted [39]. Unlike

BGP where the system included different types of subsystems, in a MANET, every sub-

system (a MANET device) has the same role. In [41] we outlined simple security kernel

functionality for MANET devices that can be adapted easily to support various protocol-

specifc rules.

1.3 Overview

Chapter 2 discusses various types of application models and the current approaches

to address security issues. The core features of the proposed approach are explained in

Chapter 3. Chapter 4 and 5 outlines the approach for securing a remote fle storage system

and a more generalized version of content distribution respectively. Chapter 6 discusses

the work done towards establishing a security kernel for BGP. The TCB functionality for

securing MANET protocols is discussed in Chapter 7. Chapter 8 discusses future work in

the area and provides conclusions of the research.
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CHAPTER 2

LITERATURE REVIEW

In a client-server model, subsystems (clients) have the ability to either to create new

content or access content created by other subsystems. The central authority acts as a hub

for storage of such content and controls access based on the permissions set by the creator

of the content. Thus, subsystems always interact via the central subsystem (for example, a

fle storage server). In a fle storage server model, the server acts as the central authority

where users upload their fles and set access privileges for other users to be able to access

their content. Thus the participants is this model are primarily of two types (based on the

role they play), 1) Clients (user machine) and 2) Host (server).

In comparison, a distributed application model suggests subsystems to be peers who

create and distribute content. There is no central authority to regulate the distribution.

However, subsystems who distribute the content may not be the actual creators but just

act as relay nodes. An example of such a model is the border gateway protocol (BGP)

[53, 8], where subsystems (routers) distribute routing information to their neighbors. The

neighbors then redistribute the newly acquired information (routes) to their neighbors, and

so on, to propagate content (routing information) over the network. However, in this model

the subsystems can possess multiple roles, like router, system administrator, AS owner, AS

Registry and Registrars, IP Registry and Registrars, etc.
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A similar example of a distributed model is an ad-hoc network [48]. However in com-

parison to BGP, where there are multiple roles a subsystem can take on, each subsystem in

a Ad-Hoc network has the same role in the network. Each subsystem has the responsibility

of content creation and distribution along with assuming the role of routers in a dynamic

network. As ad-hoc networks are dynamic in nature (participants/subsystems can join or

sign out of the network on the fy), they have to accommodate frequent changes in routing

information and changes in network topology. The current routing information possessed

by neighboring nodes needs to be relayed to each new participant. Every time a subsystem

leaves the network, the routing tables have to be modifed and relayed to other subsystems

so that they have the updated topology data.

From a security perspective the system may fail to realize its full potential if any partic-

ipant fails to adhere to rules. Current approaches that attempt to secure systems include the

use of authenticated data structures (ADS) and the use of trusted platform modules (TPM)

to realize trusted platforms.

2.1 Authenticated Data Structures

In strategies that employ authenticated data structures [14, 4, 36, 26, 27] the provider

A of a set of records D employs a special data structure along with a cryptographic hash

function h() to obtain a summary d = fc(D) (where the construction algorithm fc() is a

specifc sequence of hash operations). The summary is typically signed by the provider A 

(for example, using a public key scheme). The signed summary and data D can now be

hosted by an untrusted server.
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Along with a response R (typically one or more records from D) to a query, the un-

trusted server is expected to provide a set of values in the form of a verifcation object v 

such that d = fv(v, R), where fv() is also an algorithm composed of a specifc sequence

of hash operations. The server is effectively security-transparent to the provider A and the

client, as successful verifcation of the ADS implies that the server has answered the query

in exactly the same manner as the provider would have (if the client had directly queried

the provider).

Most commonly used hash tree data structures for ADS applications include skip-lists

[26], red-black trees [4], and B-trees [14, 27], all of which (similar to the Index Ordered

Merkle Tree) provide the capability to order records in a set (based on some index). The

purpose of ordering records is to permit succinct responses to i) queries for non existing

indexes, ii) maximum/minimum value queries and iii) range queries.

ADS based approaches get around the limitations of the TCG approach (described in

the Section 2.3) as no hardware/software is trusted. Specifcally, all guarantees provided by

the ADS approach are under limited and more reasonable assumptions like the existence

of secure hash functions, and a trusted infrastructure for certifying public keys of users.

Unfortunately, some limitations of the ADS based approach render it unsuitable for

several practical services with any of the following characteristics:

a) In scenarios with multiple independent providers a record for an index X may be

provided by an entity A and the record with the next higher index Y may be provided by

an independent entity B. Clearly, neither A nor B can construct the ADS.
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b) In most ADS based applications it is assumed that whenever any record is modifed,

the new root is signed by the originator and issued to the server. In scenarios where fu-

ture modifcations are unforeseen, the originator needs to sign the roots with short enough

validity durations to ensure that the old root cannot be replayed by the server. Thus, the

originator needs to send fresh signatures for the current root periodically, even if no up-

dates were performed. In scenarios with dynamic data where the originator desires to be

involved only for purposes of providing updates, existing ADS schemes are unsuitable.

c) In many application scenarios it is desirable that servers should not provide unso-

licited information to the querier. Revealing unsolicited informations is the cause of the

well known “DNS walk” or “zone enumeration” issue associated DNSSEC [67],[33].

d) In some application scenarios the data to be conveyed to the client may be a secret.

While ADSs can ensure integrity of data stored at untrusted servers, they do not address

issues related to privacy of the data. Thus, in scenarios where service providers need to be

entrusted with secrets, conventional ADS schemes cannot be used.

2.2 Merkle Tree

A binary Merkle hash tree [38] is constructed using a cryptographic (SHA-1, Tiger,

etc) hash function h(). A tree of height L has N = 2L leaves and 2N1 nodes at l levels.

Figure 2.1 displays a Merkle tree with N = 16 leaves (height L = 4). The N nodes

v0 · · · vf at level 0 are obtained by hashing the leaf using the cryptographic hash function

h(). Two adjacent nodes in each level (a left node vl and a right node vr ) are hashed

10



together to yield a parent node h(vl k vr) one level above. The lone node at the top of the

tree is the root r, which is a commitment to all leaves.

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf 

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf 

v01 v23 v45 v67 v89 vab vcd vef 

v03 v47 v8b vcf 

v07 v8f 

r 

Figure 2.1

A Binary Merkle tree with 16 leaves. 1

Corresponding to any leaf li is a set of L complementary nodes (one in each level). For

example, the complementary nodes for l6 are v7 , v45 , v03 and v8f . The complementary

nodes for a leaf li are actually commitments for all nodes except li. More specifcally, each

complementary node is associated with a bit representing right (0) or left (1) - depending

on the position of the complementary node relative to the leaf. The L = 4 two-tuples

1Figure Notes: The complementary nodes for l6 are v7, v45, v03 and v8f .
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{(v7, 0), (v45, 1), (v03, 1), (v8f , 0)} associated with leaf l6 are the instructions for mapping

a leaf to the root. For example, following the instructions, we can compute the root starting

from v6 = h(l6) as v67 = h(v6 k v7), v47 = h(v45 k v67), v07 = h(v03 k v47), and

r = h(v07 k v8f ). Note that the bit specifes the ordering of two nodes before hashing them

together to compute the parent node.

The Merkle tree also makes it possible to update each leaf independently. For example,

if li is updated to li 
0 the root can be updated to r0 = l2r(li 0, vi) to refect the new leaf li 

0 ,

where vi represents a set of internal nodes. After the root has been updated, the old leaf li 

can no longer be demonstrated to be a part of the tree.

The primary advantage of Merkle trees is a single cumulative verifcation point for all

its data records, which makes it easier to store that one value in a secure location. The

leaves and other internal nodes can be stored in an untrusted location. A resource limited

module (T) capable of i) storing the root, ii) performing simple sequences of hash functions

to evaluate l2r(), and iii) verifying simple pre-conditions necessary for updating a leaf, can

now provide integrity assurance to a large database of indexed records stored in an insecure

location. More specifcally, an untrusted device U may store such records, and request its

T to verify the integrity of records and authenticate them to other Ts. For the T to verify

a leaf lj containing a record corresponding to some index i, the untrusted device will have

to provide a set of hashes vj for the T to verify that r = l2r(lj , vj ) is indeed the root of the

tree.

Even after this, it does not prevent a malicious entity to replay old records. The reason

for this is that there is no explicit way to ensure that the device cannot associate the record
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for index a with more than one leaf. In such a scenario, the untrusted device can update

one record for a and leave the other copy intact - which can then be replayed.

2.3 TPM Model

The Trusted Computing Group (TCG) [1] model using a Trusted Platform Module

(TPM), was created to provide some assurances about the integrity of a machine’s state of

operation and its trustworthiness. In the TCG-TPM approach to realize a trusted platform,

all software that can take control of the platform on which the machine runs is thoroughly

verifed and certifed.

The specifc goal of the TCG approach is to ensure that only pre-verifed and authorized

software can take control of the platform. The TCG-TPM approach assumes that some

”essential hardware” required for running software are trustworthy. This is required to

employ the core root of trust measurement (CRTM), to build a chain of trust [5] and to

prove the integrity of the system from startup. Starting from the time a computer is booted-

up (from the time the CPU receives the frst instruction stored at a fxed address), every

piece of code is measured before control is passed to the code (typically, the measure of a

code is the hash of the fle). The frst layer of code measures itself, measures the second

layer of code, reports measurements to a trusted module (TPM chip), and passes control

to the second layer. The second layer, loads and measures the third layer and provides the

measurement to the TPM before control is passed to the third layer, and so on. Thus the

root of trust realized is TPM→ BIOS→ Bootloader→ OS→ Application.

The TCG model relies on three roots of trust to achieve its security goals:
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• Root of trust for storage (RTS): This is provided by the hardware TPM module of
the TCG-TPM approach. The TPM (v1.2) has 24 internal memory storage spaces
called as Platform Confguration Registers (PCR). These PCRs have a secure storage
space of 160 bits to represent measured values of software. Out of these 24 PCRs,
17 [0-16] are static registers whose values cannot be changed during runtime and
the other [17-23] are dynamic registers which can be reset to zeros for storage of dy-
namic measurements. Every PCR register is initialized to NULL at the time of reboot
of a machine. This secure storage provided by the PCR for keeping measurements
is the core of RTS in the TCG model.

• Root of trust for reporting (RTR): The TPM in the TCG model is assigned secrets
(public-private keys) which are certifed by a verifcation authority. Such secrets
are unique to each TPM and is certifed to the identity of the module. The module
also contains non resettable counters. Both of these (secrets, counters) are used
by the TPM to report measurements stored in the PCRs to verifying authorities.
The authorities can then correctly associate the reported values to the identity of the
TPM it came from. Thus, measurements along with certifcation of owning secrets
and counters for a particular TPM identity provides the base for RTR.

• Root of trust for measurement (RTM): The RTM is constituted by components
outside the TPM. It relies on the entities who verify the measurements of software to
deem them trustworthy. For this purpose, the TCG model employs the infrastructure
(Is) (of verifying authorities) to verify functionality of all software that can be loaded
and executed by platforms, and disseminate validated measurements of verifed soft-
ware to entities that need to interact with the trusted platforms. This infrastructure Is 
caters to providing correct measurements for valid code that an entity requests. This
set of measurements is the RTM for TCG-TPM architecture.

Operation: An entity operating under the TCG-TPM model, uses these three roots of trust

(RTS, RTR, RTM) to gain trust with other interacting entities. Each and every software

module (data) is measured (m = h(data)) and stored to RTS using the PCRs on a TPM.

These stored values represent the state the entity’s machine is operating in. Whenever the

entity wishes to report the state of its system, certifed public keys and counters are used to

generate RTR.

This RTR is given to other interacting entities, who then get the verifed measurements

of the same software module from the verifcation authorities infrastructure Is. They then
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may choose to abandon the interaction if the reported measurements differ from expected

values (which can happen if any code with uncertifed measure was part of the chain). If

the measurements match, the entities may be assured of the trustworthiness of the state of

the machine they wish to interact with.

2.3.1 Issues with TCG-TPM model

Un-warranted trust in hardware components: The “essential hardware” compo-

nents that are trusted in the TCG approach unfortunately include several components of the

platform in addition to the TPM chip. Such additional components include the CPU, RAM,

CPU-RAM bridge, and any peripheral that may have direct access to the RAM. Other than

the TPM itself, none of the other components are verifed and certifed to be used on a

trusted platform. Our inability to provide reasonable assurances to such components is the

fundamental reason behind the well-known time-of-use-time-of-check (TOCTOU) prob-

lem [10] that plagues the TCG approach. More specifcally, the TOCTOU problem is a

result of the fact that there are a variety of ways in which a code that has been measured

and loaded, could be modifed before it is actually executed. The attack describes ways

to modify addresses or permission bits in Page Table Entries (PTE) to point to a attack

frame for a trusted application in RAM of the machine. PTE’s are used to store mapping

between virtual memory addresses and its corresponding physical address on a machine.

Consequently, the state reported by the TPM may not correspond to the actual state of the

platform.
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Verifcation Infrastructure (Is) issues: The RTM component of the TCG-TPM approach

depends on the verifcation of software and to generate measurements for such. The infras-

tructure Is needs to formally prove every component of such software. For huge softwares

such as OS and large applications it is nearly infeasible to able to prove its validity. Even

the generic OS available on user machines in the current scenario have millions of lines of

code. They themselves release security updates to plug security holes in their operation.

Keeping such a measurement in the TCB can only result in unreliable trust in its operation.

The Is also needs to keep track of every application that is run on the system which can

gain access to the hardware components (DMA, RAM) of the machine. Measuring each

and every application along with its versions of updates is far from being practical. Then

again is the question of what mandates the trust in Is? Did the verifcation authorities cor-

rectly verify the security of software and according to what specifcation. Which authority

verifes that? This leaves us with a large security question for the verifcation infrastructure

Is.

Failure of RTS: The root of trust for storage would fail in a case where the contents of the

hardware protected PCRs is compromised by an malicious entity, i.e. a static PCR value

can be changed dynamically by the attacker. In such a scenario the attacker would be able

to present any state of the machine to be a valid state for the verifer. The measurements for

the untrustworthy machine which the TPM has stored in PCRs would be replaced during

verifcation for a trusted machine and the verifer would blindly trust the machine as its

measurement reported is for a stable state. This in turn would compromise the security

aspect of the TCG approach completely at its root.
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Failure of RTR: A TPM reports measurements to a verifer using some internal secrets

(master secret, counter). These secrets are stored persistently in the TPM protected mem-

ory and should not be revealed to any outside entity (even the machine it is attached to).

If an attacker is able to break the protection of such secrets and reveal to itself, they can

be used to report any value (measurement) certifed with the TPM secrets. Even older

measurements of a stable state can be replayed by spoofng the counter value of TPM and

signing it with the compromised master secret. A verifer would have no way to detect

such an attack unless the TPM reports that it has been tampered with.

Failure of RTM: The verifcation infrastructure Iv is responsible for measuring valid ap-

plications and reporting its corresponding values to other entities. In a case where a certifer

of Iv is malicious i.e. the TPM has been compromised, any measurement can be certifed

to be a valid measurement. Other entities of the model can use such corrupt certifca-

tion to prove themselves. A verifying entity trusts the TPM of the certifer and its invalid

certifcation, thus has to extend the same trust to un-secure platforms of other entities.

2.3.2 Dynamic Root of Trust

Dynamic Root of Trust Measurement (DRTM) uses the dynamic resettable PCR [17-

24] along with some particular functionality support by the newer generation CPU such as

Intel Trusted eXecution Technology (TXT) [3] and AMD Secure Virtual Machine [SVM]

[15]. These allow for a TPM to be able to Late Launch into measuring software module

effectively removing the BIOS and legacy OS from the root of trust as with the SRTM.
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At the core of DRTM is the mechanism of providing isolation for a piece of code to

be able to execute using the TXT or the SVM features. These features enable security

sensitive code to be protected from interference from legacy OS or interrupts from other

hardware components of the machine. DRTM for such a system is the measurement of

code that is executed in the environment thus, reducing the TCB of the machine to include

just the secure code.

2.3.2.1 Realization of DRTM

To enter into a late launch environment in a system using AMD processors a special

new instruction SKINIT [15] is called (SENTER [3] on Intel systems). The input to SKINIT

is a physical address of Secure Loader Block (SLB) [15, 3]. When the CPU receives

the instruction, it disables (changes DEV) all memory interrupts (DMA) and interrupts

from previously executing code. Debugging mode is also disabled. After all this is done

the isolation needed for the code is provided and the CPU jumps to the memory address

provided by the SKINIT input.

During the execution of the SKINIT instruction the processor also resets dynamic PCR

(17-24) to all zeros. The SLB is then measured (m = h(SLB)) and extended to PCR17.

Only after this is done the SLB is loaded. The SLB contains an entry point address for the

code to be executed and its length.

Examples using the DRTM method are:

OSLO: Open Secure LOader: OSLO [30] is a small (just over 1000 lines) secure kernel

which provides an isolated environment for the applications to execute in. During initial-
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ization, OSLO resets the TPM PCR [17-24] and enables it for extend operation. It then

stops all other processor cores that are present in a multi core CPU system. After this is

done, SKINIT is executed for OLSO to take over control of the CPU using the SLB. The

applications that are supposed to be executed in the environment are measured and loaded.

These measurements can then be reported for verifcation along with the output the ap-

plication generated. Thus, OSLO removes the BIOS and bootloader completely from the

TCB for all applications.

Flicker: Flicker [37] uses the same SKINIT instruction to provide isolation but is used in

a different way. Instead of loading a completely new kernel, ficker saves the state of the

legacy OS before jumping into the Late Launch (as shown in Figure 2.2). Then it measures

and executes a Piece of Application Logic (PAL) [37] in the isolated state. PAL are parts

of the application which need to be executed in a secure environment to establish trust in

the application itself. After this is done the machine is brought back to the previous saved

state of the legacy OS and the measurements of the PAL code are provided in the PCR

registers. The entry point address and the length of execution of PAL are initialized in the

SLB core by the application developers.

The advantage of Flicker is the elimination of measurement of the OS itself along with

BIOS and bootloader. The system also helps in restoration of normal OS operation after

execution of PAL, hence the output and the measurements can be used by the applications

designed for legacy OS for providing trustworthiness.
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Figure 2.2

Flicker sequence of operation

2.3.2.2 SRTM (TCG) Vs DRTM comparison

In Static Root of Trust Measurement (SRTM) model the TCB comprises of TPM, CPU,

Memory and its controllers, peripheral devices(DMA), BIOS, bootloader, OS, applications.

In other words every software or hardware module that can take control over the system

needs to be verifed. The DRTM approach results in removal of large components such as

BIOS, bootloader, OS and other applications (shown in Figure 2.3 [37]) as a result of the

late launch environment.

Owing to large TCB in the SRTM approach the verifcation authorities need to keep

track of measurements for every component in the SRTM TCB. Different versions of BIOS,

OS and other applications along with their updates need to be measured in advance to be

certifed. Each application module loaded to the machine which can take control of the

system also needs to be measured. Verifcation of large code bases such as for legacy OS

and applications is highly complex and expensive. In the DRTM model, the verifcation

authorities need to deal with a much smaller code base owing to the minimal TCB. The

secure application (in question here for its trustworthiness) is the only reported value to
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the verifcation authorities. So they need to keep track of just the application base and its

versions. The size of the reported measurements for verifcation is a lot less for DRTM in

comparison to SRTM.

Figure 2.3

Comparision of trusted components (shaded) in SRTM and DRTM

However, the primary advantage of the DRTM approach (in comparison to the SRTM

approach) is also its key drawback. More specifcally, in order to late launch to a secure

environment (for the secure application to execute), the device needs to stop every on go-

ing operation in its operating system and give up its resources/privileges to the late launch

environment. Forcing the device operation into a standby state every time the secure ap-

plication has to execute, is an impractical approach in the current computing environment.
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2.4 Other Related Work

There have been many approaches [58, 56, 57, 2, 44, 34] towards improving trustwor-

thiness of systems by leveraging a trusted module such as a TPM [1]. Some solutions like

the TCG-TPM approach rely on having a certain amount of trust in other components of

the system such as Operating System, BIOS, CPU and possibly other peripherals which

have direct access to the RAM. The AEGIS [5] system was the precursor to the TCG-TPM

approach of building a chain of trust to prove the integrity of the system from startup. The

main pitfalls of the TCG approach include i) the time-of-check-time-of-use (TOCTOU)

[10] problem resulting from the fact that there are a variety of ways in which a code that

has been measured and loaded, could be modifed before it is actually executed; and ii) the

impracticality of thorough verifcation of functionality of complex and dynamic software

components. Strategies like NGSCB [47] and Terra [24] that partially address the second

issue attempt to remove large chunks of code from the chain of trust by employing virtual

machines such as Xen [7], Disco [11].

Merkle trees have found substantial attention as they provide a computationally eff-

cient way to verify the integrity of dynamic data stored in untrusted locations. In the Terra

application model [24] the leaves of Merkle tree represent chunks of Virtual Disk repre-

senting an application, and the root verifes the integrity of the disk. Data entities, be it a

fle in a storage server [59] or a record in a database [35, 45] can be represented as a part

of a Merkle tree to prevent replay attacks by an untrusted middle-man. Log based scheme

along with Merkle trees provide a effcient way of dealing sequential atomic updates in

Trusted Databases [35]. Refs. [59, 17, 18] use the single monotonic counter of a TPM to
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generate virtual monotonic counters for each record or entity that needs to be verifed in

the system. Various data-structures such as log based schemes and Merkle trees are used

to provide integrity verifcation of the data objects.
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CHAPTER 3

SALIENT FEATURES OF THE PROPOSED APPROACH

In the approach adopted in this dissertation, any system is seen as a set of subsystems

collaborating (communicating) over a network to achieve the overall purpose/goal of the

application/system. Each subsystem has a specifc role in the operation of the system and

interacts with other subsystems according to system-specifc and/or role-specifc rules. For

example,

1) subsystems in the domain name system (DNS) have roles like zone authorities, who

create DNS resource records (RR) pertaining to the zone; authoritative name servers, that

are chosen by the zone authority to disseminate DNS RRs for the zone; and local (or

preferred) name servers, that iteratively query authoritative name servers to resolve queries

from clients.

2) subsystems in the inter-domain routing infrastructure for the Internet — the Border

Gateway Protocol (BGP) — have different roles like autonomous system (AS) owner; AS

registry, that assigns AS numbers to AS owners; IP registry that issues (through IP regis-

trars and ISPs) chunks of IP addresses, or IP prefxes1 to AS owners; and BGP speakers

for an AS, authorized by the AS owner to originate routes for IP prefxes owned by AS.

1An IP prefx is a chunk of 2n consecutive addresses, where 32 − n MSBs of all addresses in the chunk
are the preserved.
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3) subsystems in a remote fle storage system include clients who create fles and spec-

ify access control policies for the fles, and servers that store fles, and make them available

for easy access by users.

4) subsystems in a on-line market place system include buyers, sellers, fnancial insti-

tutions, manufactures/wholesaler (who typically performs drop-shipping), etc.

Each subsystem is associated with a trusted security kernel which vouches for the tasks

performed by the subsystem. In order to distinguish functionality in each, we represent an

untrusted subsystem as U and the trusted security kernel module (associated with U) as

T. Module T is the TCB for the subsystem.

In this model of systems, each subsystem is associated with one or more dynamic

databases of subsystem-specifc records. While the dynamic databases are stored by the

untrusted subsystem U, the integrity of the records are tracked by the trusted module T. To

enable a resource limited module to track dynamic data of any size, special authenticated

data structures (ADS) are used to represent databases of records. Only the root of the ADS

(a single cryptographic hash) needs to be stored inside the module T to track the entire

database of records. The Ordered Merkle Tree (OMT) is the ADS used in this dissertation.

“Vouching” for a subsystem implies that only records recognized by T as consistent

with the OMT root (stored inside T) will be authenticated by T. Only records authenti-

cated by the trusted module of a subsystem will be entertained by trusted modules of other

subsystems.
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Security kernel functionality for tracking databases of records using OMTs, and for

transacting authenticated records between modules associated with different subsystems

can be broadly classifed into three categories:

1. OMT functionality,

2. functionality for cryptographic authentication, and

3. subsystem-specifc functionality.

In the rest of this chapter we discuss generic (system-independent) functionality. System

specifc functionality for various systems are discussed in chapters 4 to 7.

3.1 Cryptographic Authentication

While there are a wealth of options to choose from for cryptographic authentication

one over-arching goal of the proposed approach is to reduce overhead — especially over-

head for trusted modules, to the extent feasible. For this purpose we minimize the use of

asymmetric cryptographic primitives in favor of light-weight symmetric primitives.

Ultimately, in our approach all exchanges between two entities are authenticated us-

ing time stamp message authentication codes (MAC). In general, a MAC µ for a value v 

exchanged between two entities is computed as

µ = h(v k t k K) (3.1)

where t is the current time, and K is a symmetric key shared between the sender and the

receiver.

Two broad approaches for cryptographic authentication are used in this dissertation:

one for client-server systems, and the second for distributed systems. In client-server sys-
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tems one entity is a client, and the other is the security kernel module T associated with

the server. The time t is the time according to the module T.

In distributed systems both the entities are security kernel modules of different subsys-

tems. In general, as every module will consider its clock as the current time, additional

strategies are required for either synchronizing clocks between modules, or estimating the

clock-offsets. If the integrity of the clocks cannot be assured when the modules are pow-

ered off, then the modules will require to maintain a non volatile counter which is incre-

mented every time the module is powered on. For such scenarios the MAC is computed

as

µ = h(v, t, c, c0, K) (3.2)

where t is the time according to the sender of the message, c and c0 are the respective

session counters of the two entities, and K is the shared secret.

3.1.1 Shared Secret in Client Server Model

In the client-server model, module T spontaneously generates a private key RT of

some asymmetric cryptographic scheme. The corresponding public key UT is assumed to

be made known2 to all participants of the system. Module T possesses a clock-tick counter.

At any instant of time, the tick count t is interpreted by the module as the current time.

The system may possess any number of clients. Clients may join at any time. Every

client generates a key pair. The identity of a client with public key Ui is simply ui = h(Ui).

Every client can now establish a long-lived secret with the module T. Specifcally, the
2For example, the public key may be certifed by one or more trusted entities responsible for verifying

and certifying the integrity of the module T.
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long-lived secret shared between user ui (with key-pair (Ri, Ui)) and the module T with

key-pair (RT , UT ) is

K = K(Ri, UT ) = K(RT , Ui), (3.3)

where the specifcs of the function K() (which depends on the specifc nature of the asym-

metric scheme [16, 54, 20]) are not important for our purposes. Such shared secrets are

computed infrequently, as they are used only to securely convey short-lived secrets (which

are used for computing MACs).

3.1.2 Shared Secret in Distributed Model

In the distributed model we assume the existence of one or more trusted key distribu-

tion centers (KDC). Every module has a certifed public key pair. This enables a KDC to

convey a secret securely to each module. The secrets conveyed by KDCs enable modules

to compute pairwise secrets. Let κx be the secret issued to module X .

While several strategies exist for establishing shared secrets using secrets issues by

KDCs, in this dissertation we adopt the modifed Leighton-Micali scheme [50]. Any two

TMMs X and Y can using their respective KDC secrets κx and κy to compute a common

secret

Kxy = h(κx, Y ) ⊕ πxy = h(κy, X) ⊕ πyx (3.4)

where πxy and πyx are pairwise public values made available to the untrusted subsys-

tems corresponding to X and Y respectively. When the modifed Leighton Micali scheme

(MLS) [50] is used to compute the pairwise secret Kxy only one of the two subsystems re-
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quires access to a public value; the other simply employs the public value of 0 (if πxy 6= 0,

then πyx = 0; if πxy = 0 then πyx =6 0).

3.2 A Reusable Authenticated Data Structure

An ADS [14, 12, 4, 36, 26] is a strategy for obtaining a concise cryptographic com-

mitment for a set of records. Often, the commitment is the root of a hash tree. Any record

can be verifed against the commitment by performing a small number of hash operations.

An Ordered Merkle Tree (OMT) is an ADS that is derived as an extension of the better

known Merkle hash tree. Similar to a plain Merkle tree, an OMT permits a resource (com-

putation and storage) limited module to track the records in a dynamic database of any

size, maintained by untrusted components of the associated subsystem. Using an OMT

(instead of a plain Merkle tree) permits the resource limited module to additionally infer a

few other “useful holistic properties” regarding the database.

3.2.1 Ordered Merkle Tree

The Merkle hash tree [38] is a data structure constructed using repeated applications

of a a pre-image resistant hash function h() (for example, SHA-1). Figure 3.1 depicts a

tree with N = 16 leaves. In practical Merkle tree applications each leaf can be seen as a

record belonging to some database.

A tree with N leaves has a height of L = log2 N . At level 0 of the tree are N leaf-nodes,

one corresponding to each leaf, typically derived by hashing the leaf. At the next level

(level 1) are N/2 = N/21 nodes, each computed by hashing together a pair of “sibling”

nodes in level 0. Level i has N/2i nodes computed by hashing a pair of siblings in level
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i − 1, and so on, till we end up with a lone node ξ at level L — the root of the binary

tree. A tree with N = 2L nodes has 2N − 1 nodes distributed over L + 1 levels, where

L = dlog2 Ne.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 La Lb Lc Ld Le Lf 

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf 

v1 
0 v1 

1 v1 
2 v1 

3 v1 
4 v1 

5 v1 
6 v1 

7 

v2 
0 v2 

1 v2 
2 v2 

3 

v3 
0 v3 

1 

ξ 

Figure 3.1

A binary hash tree with 16 leaves. 3

Two nodes node vji 
j
iand v +i 

j
iat level j are siblings if i is even (else v −1 and vji are

siblings). Two siblings — the left sibling u and the right sibling v are hashed together to

obtain the parent node as p = h(u, v). Any node in a binary tree can be seen as a root

of a sub-tree, or a leaf-node of a subtree. Corresponding to a leaf node v in a sub-tree of

3Nodes v6, v 13 , v 21 , v 30 (flled gray) and root ξ are ancestors of leaf L6. The set of “siblings of ances-
tors,” viz., v6 = {v7, v 
complementary nodes v6 

1
2 , v 20 , v 31 The root is a commitment to all leaves. The
= {v7, v , v , v 31 

2
0 

1
2 

} are “complementary” to v6.
} are (together) commitments to all leaves except L6.
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height k with root y is a set k complementary nodes v that map the leaf node v to sub-tree

root y. The complementary nodes of v include a) the sibling of v, and b) the siblings of all

ancestors of v. The complementary nodes of a node v can collectively be seen as the set of

commitments to all other nodes (except v) in the sub-tree.

In a sub-tree of height k, let u0
0 

0
2

represent the 2k nodes at the lowest level (level· · · u k−1 

0 
i 

1 
i1 

0). The immediate parent of a node u is u at level one, where i1 = i/2 (if i is even) or

k−11(i − 1)/2 (if i is odd). In this fashion, one can readily determine the indexes u · · · ui1 ik−1 

0of all ancestors of u n n 
i , and thereby, the siblings of the ancestors (the sibling of v is vm m+1 

nif m is even, or vm−1 is m is odd).

Given the value v0 
i , the index i of the leaf node, and the set of k complementary nodes,

it is trivial to identify the sequence of k hash operations necessary to map a leaf node to

the root. We shall represent by

y = fm(vi, i, vi), (3.5)

a sequence of k hash operations to obtain the sub-tree root y from a leaf-node with value v 

and position index i.

3.2.2 Verifcation and Update Protocols

Protocols that use a binary hash tree can be seen as a two-party protocol involving a

prover and a verifer. In the proposed model, the prover is an untrusted subsystem (U),

and the verifer is a trusted module T. The prover stores all N records and 2N − 1 nodes

(cryptographic hashes) of the tree. The verifer T stores only the root of the tree.
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Corresponding to any leaf L, the prover (who maintains the entire tree) can readily

identify the set of complementary nodes v. If the prover supplies the leaf L along with the

complementary hashes, the verifer can readily compute fm(v = h(L), i, v). If the root

stored by the verifer r is the same as fm(v, i, v), the verifer is simultaneously convinced

of a) the integrity of the leaf L, and b) the integrity of the complementary hashes v.

Note that by construction of the tree it is guaranteed that r = fm(h(L), i, v). That the

hash function is pre-image resistant guarantees that the prover cannot determine L0 6= L or

v0 6= v that satisfes r = fm(h(L0), i, v) or r = fm(h(L), i, v0) (for any i).

Having demonstrated the integrity of the stored record to the module T, if the prover

can also demonstrate a legitimate need to modify the record L to L0 , the verifer simply

computes v0 = h(L0) and updates the root to r0 = fm(v0, i, v). Once the leaf has been

modifed, the old leaf can no longer be proved to be consistent with the new root. However,

all other leaves will still remain consistent with the new root (as the complementary nodes

v are the commitments for all other leaves).

Note that verifying the integrity of any record in the database, or updating a record will

require the security kernel to perform merely log2 N hash function evaluations, where N 

is the number of leaves in the tree.

3.2.3 OMT Leaves and Nodes

An Ordered Merkle Tree (OMT) is an extension of the Merkle tree with the imposition

of a special structure for the leaves of the tree. Every leaf is of the form.

L = (A, A0, ωA) (3.6)
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where the frst feld A is unique for all leaves in the tree.

Corresponding to a leaf (A, A0, ωA) is a leaf node vA, computed as

vA = HL(A, A0, ωA)⎧ ⎪⎨ 0 A = 0, 
= ⎪⎩ h(A, A0, ωA) A 6= 0. 

(3.7)

Unlike a plain Merkle tree which is intended primarily for dynamic databases with a static

number of records (leaves), OMTs are intended to be used for scenarios where leaves may

need to be inserted/deleted. For this purpose, it is advantageous to redefne the operation

of mapping two siblings u and v to their parent p as⎧ 

u if v = 0⎪⎨ 
p = HV (u, v) = v if u = 0 (3.8)

⎪⎩ h(u, v) if u 6= 0, v 6= 0 

In other words, the parent of two nodes is the hash of the two child nodes only if both

children are non-zero. If any child is zero, the parent is the same as the other child. The

parent of u = v = 0 is p = 0.

An OMT leaf with the frst feld set to zero is an empty leaf, represented as Φ. The

leaf hash corresponding to an empty leaf is 0. As introducing an empty leaf node (corre-

sponding to an empty leaf) does not affect any other node of the tree, any number of empty

leaves may be seen part of the tree.

Existence of an OMT leaf (A, A0, ωA) in a tree with root ξ can be verifed by computing

ξ0 = fm(HL(A, A0, ωA), i, v), where v is a set of complementary hashes, and comparing
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the values of ξ and ξ0 . If the leaf exists in the tree (ie., if ξ = ξ0), a verifer can conclude

that

1. the value ωA is associated with a leaf with a unique frst-feld A.

2. no leaf exists in the tree with a frst feld value that is circularly enclosed by A and
A0 .

A value C is circularly enclosed by (A, A0), if cov((A, A0), C) is true, where

cov((A, A0), C){ 

RETURN (A < C < A0) ∨ (C < A0 < A) ∨ (A0 < A < C); (3.9)

} 

For example, (1, 442) encloses all values greater than 1 and less than 442 (or cov((A, A0), x) 

is TRUE for 1 < x < 442. The pair (5, 1) (with frst value greater than the second)

circularly encloses all values greater than 5 and all values less than 1. In other words,

cov((5, 1), x) is TRUE for x < 1 and x > 5.

The existence of a leaf (A, A0 = A, ωA) indicates that it is the sole leaf of the tree.

3.2.4 OMT Types

OMTs can be seen as falling under two broad categories depending on the interpreta-

tion of the frst two values. In the frst category are index ordered MTs (IOMT), where the

frst value is interpreted as an index, the second value is the next higher index in the tree.

For the leaf corresponding to the highest index the next index is the least index.

The third value ωA in a leaf (A, A0, ωA) provides some information regarding index A.

For example, ωA could be the hash of the contents of a database record with index A. It is
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also possible that ωA is a root of another OMT, in which case A is an index of a database

(which may consist of any number of indexed records).

For range ordered MT (ROMT) the values A and A0 represent the range [A, A0) of some

quantity associated with the third value ωA. For example, a leaf like (432, 562, ω) indicates

that the quantity ω is associated with a range [432, 562) (or 432 ≤ x < 562). For example,

an ROMT may be used to represent a look up table (LUT) for some function y = f(x). In

such an ROMT each leaf indicates a range of the independent variable x, corresponding to

which the function evaluates to the dependent variable y = ω (the third value in the leaf).

3.3 OMT Properties

Some of the important properties of OMTs are as follows:

1. The leaf hash corresponding to an empty leaf Φ is zero.

2. A tree with root 0 can be seen as a tree with any number of empty leaves.

3. For a tree with a single leaf, the leaf hash is the same as the root of the tree.

4. The existence of a leaf (A, A, ωA) in an OMT indicates that the leaf is the only leaf

in the tree (in which case the root will be the same as the leaf hash HL(A, A, ωA)).

5. Existence of a leaf like (1, 3, ω1) (Figure 3.2) is proof that no leaf exists with frst

feld in-between 1 and 3. Existence of a leaf like (7, 1, ω7) is proof that no leaf exists with

frst feld less than 1 and that no leaf exists with frst feld greater than 7.
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Figure 3.2

OMT with 4 leaves as (1, 3, ω1), (3, 4, ω3), (4, 7, ω4), (7, 1, ω7)
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Swap 

Figure 3.3

Equivalent OMT by swapping of leaves (3, 4, w3) and (1, 3, w1)
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6. As leaves are ordered virtually, the actual physical ordering of leaves has no inherent

meaning. Thus, swapping leaves of an OMT (Figure 3.3) does not affect the integrity of

the database represented by the OMT. For example, both

(1, 3, ω1), (3, 4, ω3), (4, 7, ω4), (7, 1, ω7) and

(3, 4, ω3), (1, 3, ω1), (4, 7, ω4), (7, 1, ω7)

(3.10)

represent an identical database with four records — either an IOMT corresponding to four

indexes 1,3,4, and 7, or an ROMT for four ranges [1, 3), [3, 4), [4, 7) and {7, 1} representing

all values greater than or equal to seven, or less than 1).

7. For both IOMT and ROMT, a leaf with a frst feld A can be inserted only if a leaf

that circularly encloses A exists. (B,B′) is a circular enclosure for A only if

(B < A < B′) OR (B′ < B < A) OR (A < B′ < B) (3.11)

For inserting a leaf the contents of two leaves in the tree will need to be modifed; and

empty leaf Φ will be modifed to become the newly inserted leaf with frst values as (A,B′),

and the second value of the enclosing leaf will be modifed from (B,B′) to (B,A).

ξ	
  

3,	
  4,	
  w3	
   1,	
  3,	
  w1	
   4,	
  5,	
  w4	
   7,	
  1,	
  w7	
  5,	
  7,	
  0	
  

Figure 3.4

Equivalent IOMT with inserted placeholder (5, 7, 0)

37



8. A place-holder is a non-empty leaf whose insertion does not change the interpreta-

tion of the database. For an IOMT (Figure 3.4), a leaf of the form (A,A′, 0) (third value

zero) is a place holder. Introduction of a place holder for an index A does not change the

database in any way, as both existence of place holder for index A and non-existence of a

leaf for index A implies that “no record exists for index A.” Thus,

(3, 4, ω3), (1, 3, ω1), (4, 7, ω4), (7, 1, ω7) and

(3, 4, ω3), (1, 3, ω1), (4, 5, ω4), (5, 7, 0), (7, 1, ω7)

(3.12)

which correspond to before and after insertion of a place holder for an index 5, represent

identical databases.
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  3,	
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   4,	
  5,	
  w4	
   7,	
  1,	
  w7	
  5,	
  7,	
  w4	
  

Figure 3.5

Equivalent ROMT with inserted placeholder (5, 7, w4)

9. For an ROMT (Figure 3.5), a place holder is a leaf with third value the same as

the third value of the enclosing leaf. Specifcally, inserting a leaf can be seen as a process
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of splitting a leaf (for example), (4, 7, ω4) into two leaves (for example) (4, 5, ω4) and

(5, 7, ω4). Specifcally, both

(1, 3, a), (3, 4, b), (4, 7, c), (7, 1, d) and
(3.13)

(1, 3, a), (3, 4, b), (4, 5, c), (5, 7, c), (7, 1, d) 

represent identical databases. Before insertion, the leaf (4, 7, c) indicated that values 4 ≤ 

x < 7 are associated with c. Nothing has changed after the range is split into two, as values

(4 ≤ x < 5) and values (5 ≤ x < 7) are associated with the same quantity c.

10. While operations like swapping leaves in any OMT or insertion/deletion of a place

holder do not change the contents of the database, they will result in a change in the root

of the tree — say from r to r0 . Such roots are considered as equivalent roots.

3.4 OMT Functions for Security Kernels

The module T is assumed to possesses limited protected storage, and exposes well

defned interfaces to the associated untrusted subsystem. Such interfaces can be used by a

untrusted subsystem (say) U to demonstrate the integrity of databases stored by the sub-

system, and request T associated with subsystem U to attest verifed records.

For attesting records or contents of records (for verifcation by other subsystems, or

security kernels in other subsystems) every module is assumed to possess a unique identity,

and secrets used for authenticating messages. For example, the secret could be a private

component of an asymmetric key pair, which is used for signing messages. In this case,

the public key of the module is certifed by a trusted key distribution center, attesting the

integrity of the module. Alternately one or more secrets could be provided by a trusted key

39



distribution centers to each module. Only modules that have been verifed for integrity and

issued such secrets by the trusted key distribution centers will be able to use their secrets

to compute a pairwise secret with other modules attested by the KDCs. Such pairwise

secrets may be used to compute message authentication codes for attesting the integrity of

the contents of a record.

Apart from secrets provided by trusted KDCs or certifed by trusted certifcate author-

ities, every module is assumed to spontaneously generate a random self-secret χ which

is used for authenticating memoranda to itself. For example, after executing (say) z = 

fm(x, i, v) a module may issue a memoranda to itself to remind itself that it has already

verifed that “z is an ancestor of x.” As we shall see very soon, the self-memoranda in

this scenario is a value ρ = h(V 1, x, z, χ) computed as a function of the type V 1 of the

memoranda, the values x and z, and the secret χ. No entity other than the module can fake

such a memorandum. Thus, if values x, z, and ρ are provided as inputs to the module, the

module can safely conclude that “z is an ancestor of x.”

In the rest of this section we provide an algorithmic description of generic OMT func-

tions suitable for security kernels for a wide range of systems/ subsystems. OMT functions

issue different types of self-memoranda. Such self-memoranda may then be used by other

system-specifc (or role-specifc) security kernel components of the same module. As an

illustration of how such memoranda can be used by other system-specifc security kernel

components of the same module, in a later chapters we outline the use of such memoranda

in security kernels for various systems (fle storage server, content distribution infrastruc-

ture, BGP subsystems, MANET subsystems).
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3.4.1 OMT Memoranda

Five different types of memoranda are issued by OMT functions.

A certifcate of type U1 is issued by functions Fbt() and Fcat1(). The inputs to Fbt() 

include a leaf node x in a subtree, the index i of the leaf node (in the sub-tree), and com-

plementary nodes v. The root of the subtree can now be computed as y = fm(x, i, v).

The function also accepts another value x0 and computes y0 = fm(x, i, v) (using the same

complementary nodes). The certifcate of type U1 issued by this function, viz,

ρ = h(U1, x, y, x 0 , y 0, χ) (3.14)

states that “(it has been verifed by me that) y is the root of a sub-tree with leaf node x, and

if x → x0 then y → y0.” More generally, such a certifcate implies that y is an ancestor of

x, and that if x → x0, then y → y0 .

Functions Fcat1() and Fcat2() combine self memoranda to issue (in general) more com-

plex self-memoranda. Fcat1() accepts inputs necessary to verify the integrity of two type

U1 certifcates. If the second certifcate is 0, and in the frst certifcate binding x1, y, x1 
0 , y,

if x1 = x0 
1 (implying merely that y is an ancestor of x1), a certifcate of type V 1, viz.,

ρ = h(V 1, x1, y, χ) is issued.

If the child in the second certifcate x2 is the same as the parent y in the frst certifcate,

the two certifcates are combined to issue a single certifcate of type U1 binding the child

x1 in the frst certifcate to the parent z in the second certifcate. Else, Fcat1() computes

p = HV (y, z) and p0 = HV (y
0, z0) to issue a certifcate of type U2 

ρ = h(U2, x1, x2, p, x 0 1, x 0 2, p 0, χ) (3.15)
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Fbt(x, x0, i, vx) { 

y ← fm(x, i, vx); y0 ← (x = x0)? y : fm(x0, i, vx); 

0RETURN h(U1, x, y, x , y0, χ); 

} 

0 0Fcat1(x1, y, x1, y
0, ρ1, x2, z, x2, z

0, ρ2) { 

0IF (ρ1 =6 h(U1, x1, y, x1, y
0, χ)) RETURN; 

0IF ((ρ2 = 0) ∧ (x1 = x1)) RETURN h(V 1, x1, y, χ); 

0IF (ρ2 =6 h(U1, x2, z, x2, z
0, χ)) RETURN; 

0 0 0IF ((y = x2) ∧ (y = x2)) RETURN h(U1, x1, z, x1, z
0, χ); 

0p ← HV (y, z); p0 ← HV (y , z0); 

0 0RETURN h(U2, x1, x2, p, x1, x2, p
0, χ); 

} 

0 0Fcat2(x1, x2, y, x1, x2, y
0, ρ1, z, z0, ρ2) { 

0 0IF (ρ1 =6 h(U2, x1, x2, y, x1, x2, y
0, χ)) RETURN; 

0 0IF ((ρ2 = 0) ∧ (x1 = x1) ∧ (x2 = x2)) RETURN h(V 2, x1, x2, y, χ); 

0IF (ρ2 =6 h(U1, y, z, y , z0, χ)) RETURN; 

0 0RETURN h(U2, x1, x2, z, x1, x2, z
0, χ); 

} 

Figure 3.6

Verifcation and Update Memoranda.
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to the effect that “x1 and x2 are leaf nodes of a sub-tree with root p, and if x1 → x1 
0 and

x2 → x2 
0 then p → p0.” Note that if y is an ancestor of x1 and z is an ancestor of x2, then

p = HV (y, z) is simultaneously an ancestor of x1 and x2.

Function Fcat2() extends the common ancestor y of two nodes to an ancestor z of y.

In other words, Fcat2() combines a U2 certifcate with a U1 certifcate to produce a U2 

certifcate. If only a certifcate of type U2 is provided as input to Fcat2() with x1 = x1 
0 and

x2 = x0 
2, bound to y = y0 , Fcat2() issues a certifcate of type V 2 binding two nodes x1 and

x2 to a common ancestor y.

Certifcates of type U1 and U2 are useful for simultaneously verifying and updating

the root of the tree. Certifcates of type V 1 and V 2 are useful in scenarios where only

verifcation is required.

Functions Fph(), Fsw() and Fce() create certifcates that bind equivalent roots. A certif-

cate of ρ = h(EI, y, y0, χ) attests to the equivalence of IOMT roots y and y0 . A certifcate

ρ = h(ER, y, y0, χ) attests to the equivalence of ROMT roots y and y0 .

Through a certifcate of type U2, Fsw() recognizes the relationship between two roots

resulting from swapping two leaves. As swapping leaves does not affect the integrity of an

IOMT or an ROMT, the roots are equivalent for both IOMT and ROMT. Thus, depending

on the value o which identifes the type of request (o = 1 for ROMT certifcate), Fsw() 

outputs a EI or ER certifcate.

Function Fph() issues equivalence certifcates binding roots before and after deletion

of a place holder. The input o = 1 is a request to issue an ER certifcate (else, the request

is for an EI certifcate). If no certifcate is provided as input to Fph() (or ρ = 0), one root
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Fsw(x1, x2, y, y0, ρ, o) { 

IF (ρ = h(U2, x1, x2, y, x2, x1, y
0, χ)) 

IF (o = 1) RETURN h(ER, y, y0, χ); 

ELSE RETURN h(EI, y, y0, χ); 

} 

Fph(A, A0, ωA, B
0, y, y0, ρ, o) { 

IF (ρ = 0) ∧ (o = 1) RETURN h(ER, 0, HL(A, A, 0), χ) 

ELSE IF (ρ = 0) RETURN h(EI, 0, HL(A, A, 0), χ) 

x2 ← (o = 1)? HL(A
0, B0, ωA) : HL(A

0, B0 , 0); 

0 0x1 ← HL(A, A0, ωA); x1 ← HL(A, B0, ωA); x2 ← 0; 

0 0IF ((ρ = h(U2, x1, x2, y, x1, x2, y
0, χ))∨ 

0 0(ρ = h(U2, x2, x1, y, x2, x1, y
0, χ))) 

RETURN (o = 1)? h(ER, y, y0, χ) : h(EI, y, y0, χ); 

} 

Fce(i, x, y, ρ1, z, ρ2) { 

IF i 6∈ {EI, ER} RETURN; 

IF ((ρ2 = 0) ∧ (ρ1 = h(i, x, y, χ))) RETURN h(i, y, x, χ); 

IF ((ρ1 = h(i, x, y, χ)) ∧ (ρ2 = h(i, y, z, χ))) 

RETURN h(i, x, z, χ); 

} 

Figure 3.7

OMT Functions for Issuing Equivalent-Root Memoranda.
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is assumed to be the root of an empty tree, and the equivalent root is after insertion of the

frst place-holder for an index A. For both IOMT and ROMT the frst place holder will be

(A, A, 0), and the root after insertion will be HL(A, A, 0). Specifcally, 0 is equivalent to

vx = HL(x, x, 0) for all x.

If ρ 6= 0 function Fph() interprets (A, A0, ωA) (with leaf hash x1) and a place-holder

(A0, B0, ω) (with leaf hash x2) as two leaves in a tree with root y. If o = 1 (ROMT) the

place holder has ω = ωA, else (for an IOMT), ω = 0. After deletion of the place holder the

two leaves will need to be modifed to (A, B0, ωA) (leaf-hash x0 
1) and an empty leaf (leaf

hash 0) respectively. The certifcate ρ attests that modifying two leaves x1 and x2 to x0 
1 and

0 0 0x2 is equivalent to changing the root from y to y . Hence, y and y are equivalent roots. 4

The equivalent root certifcate generated by Fph() for deleting a placeholder can also

be utilized for inserting a placeholder. More specifcally, if the current root of the OMT

is y then changing it to y0 , denotes deletion of the placeholder (A0, B0 , 0) from the OMT.

However, if the current root of the OMT is y0 then the same equivalence certifcate can be

used to update it to y, implying insertion of placeholder leaf (A0, B0 , 0) into the tree. In

other words, y0 represents a state of OMT where the placeholder is absent, and y represents

existence of the placeholder, thus the equivalence certifcate can be used for both purposes

of inserting or deleting a placeholder.

Functions Fce() combines two equivalence certifcates. If x ↔ y and y ↔ z, the

module can conclude that x ↔ z.
4In the provided U2 certifcate, the ordering of the two leaf hashes in the certifcate (which can be x1, x2 

or x2, x1) depends on their respective physical positions in the tree. Hence, the leaves are compared for both
00the conditions 1) placeholder (x2) is to the left of x1, for which (ρ = h(U2, x2, x1, y, x2, x1, y 0, χ)) or 2)

00placeholder is to the right of x1, for which (ρ = h(U2, x1, x2, y, x1, x2, y 0, χ)).
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3.4.2 Sub-Trees and OMT Memoranda

Any internal node in an OMT can be seen as a root of a sub-tree. More specifcally,

the common ancestor of a set of leaves in an OMT is the root of the sub-tree the leaves

are a part of. The scenario is illustrated in Figure 3.8, where two sub-trees (Sub-tree 1 —

root v31 , Sub-tree 2 — root v32) which are a part of primary tree with root ξ (Figure 3.1) are

shown.

Taking an example leaf Lc, in sub-tree 1. A leaf verifcation certifcate of the form

0 03
1, x 3

1, χ), can be generated by fbt() by computingρ1 = h(U1, x = vc, y = v = vc, y = v 

the root v31 
1
7 

2
2}), where index i of leaf Lc in the tree is 5.= fm(vc, i = 4, v = {vd, v , v 

2
3 

2
3In comparison, for sub-tree 2 with root v , the index of the leaf Lc is i = 0 and v = 

0fm(vc, i = 0, v = {vd, v 17}). The certifcate generated is ρ2 = h(U1, x = vc, y = v23, x = 

vc, y 0 = v23, χ), suggesting Lc represented by leaf node vc is a part of tree with root v23 .

The leaf Lc can also be mapped to the primary tree root ξ by using two U1 certifcates

0 0= h(U1, x = vc, y = v31, x = v31, χ) (sub-tree 1) and ρξof the form ρ1 = vc, y = 

, y = ξ, x0 = v31, y 0 = ξ, χ) (primary tree). As the certifcates imply vh(U1, x = v31 
3
1 is

an ancestor of vc and ξ is an ancestor of v31 , a V 1 certifcate can be generated of the form

ρ = h(V 1, x1 = v6, y = ξ, χ), mapping ξ as an ancestor of v6 (leaf Lc).

In order to update a single leaf (Lc → L0 
c) in sub-tree 2, a U1 certifcate can be used of

= v32 
0
, χ), suggesting is Lc 

0 0 0 → L0 → v0 c (vcthe form ρ = h(U1, x = vc, y = v32, x ),= v , y c 

0 . To update two leafs at once, for example Lc → Lc 
0 and Le → Le 

0then v32 → v32 , a U2 

3
2 , χ)

0 0 0 0certifcate of the form ρ = h(U2, x1 = vc, x2 = ve, p = v32, x = v , x = v , p = v1 2c e 

can be used it update the root v32 → v32 
0 .
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Sub-Tree 1
Figure 3.8

Sub-Tree 2

Sub-Trees in OMT

Any two leaves in a sub-tree can be swapped (physical positioning in the tree) by in-

voking the Fsw() with a U2 certifcate . For example, in our case if leaf Lb (vb) and Le 

(ve) are to be swapped in sub-tree 1 (root v31), the U2 certifcate provided as input to Fsw() 

is ρ = h(U2, vb, ve, v 31, ve, vb, v 31 
0
, χ). The function outputs an equivalence certifcate of

the form h(ot, v 31, v 31 
0
, χ) (ot = EI/ER depending on the type of OMT - IOMT/ROMT),
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where v31 and v31 
0 are equivalent roots. Equivalent root certifcates can also be generated by

swapping of internal nodes at the same level (for example swapping of nodes v22 and v23).

The ability to swap leaves/nodes in an OMT is particularly advantageous in certain

scenarios. For example, if Lc and La are two frequently updated records of the tree, it

would be more computationally more effcient if La was swapped with any of the leaves

of sub-tree 2 (for example, Ld). This feature can be useful, for example, in a remote fle

storage system where each leaf corresponds to a fle. In such an application the fles that

are actively being edited at any time is typically substantially smaller than the total number

of fles.

The ability to swap leaves also lends to effcient delegations of credentials represented

by the leaves. For example, a subsystem may store various credentials as leaves of an OMT.

Subsets of credentials that need to be delegated can be physically ordered together, and the

root of the sub-tree can now effciently represent all delegated credentials. As we shall

see later in this dissertation, this feature is utilized by autonomous system (AS) owners to

delegate sub-sets of IP addresses they own to different BGP speakers of the AS.
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CHAPTER 4

REALIZING A SECURE FILE STORAGE SYSTEM

In an increasingly interconnected world with anywhere-anytime-access-to-anything,

remote fle storage services1 are a popular approach for storing fles for easy access, and

collaboration between users. Users of such a service may create fles for access from

numerous platforms owned by the same user, and/or for access by other users explicitly

permitted by the creator of the fle.

From a security perspective, users (client subsystems) of such a service desire some

assurances regarding the integrity, privacy, and availability of fles stored at a remote lo-

cation. Specifcally, users desire that

1. fles cannot be modifed at the server (central subsystem), except by users explicitly
authorized to do so by the owner;

2. only the latest version of the fle should be provided (if a fle has been modifed by a
legitimate user, the service will not replay older versions of the fle — unless a older
version is explicitly solicited);

3. contents of the fles should not be revealed to unauthorized parties; and

4. authorized users will not be denied access to the fle by the service.

A practical fle storage service may be composed of perhaps several computers (servers),

running complex and buggy application software, on top of bug-ridden operating systems,

1Well known real-world services include Dropbox, Google Drive, iCloud, Skydrive, etc.
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which run on inexpensive general purpose computers, constructed using untrustworthy off-

the shelf hardware. It is far from practical to rule out undesired functionality in every com-

ponent of the service. Such undesired functionality could be a result of accidental bugs or

malicious trojan-horses, and may be exploited to gain control of one or more components

of the service. Personnel who may exploit such functionality can be malicious employees

of the service, or an external attacker — who is either able to trick/bribe an employee, or

utilize a remote exploit. Ultimately, undesired functionality in any component may lead to

violation of the assurances desired by users.

4.1 File Storage Service: Desired Features and Assurances

In the proposed generic model for fle storage service, the participants/subsystems

include an untrusted service provider U, a trusted module T, and any number of users.

The provider-side components may include one or more public servers with access to

large back-end storage. The specifc components of the fle storage service U are irrelevant

from a security perspective, as such components are assumed to be untrusted.

Module T spontaneously generates a master secret χ, and a private key RT correspond-

ing to some asymmetric cryptographic scheme. The module’s public key UT is assumed to

be made known2 to all participants of the system. Module T possesses a clock-tick counter.

At any instant of time, the tick count t is interpreted by the module as the “current time.” It

is assumed that the module is read-proof and write-proof. In other words, a) secrets χ and

2For example, the public key may be certifed by one or more trusted entities responsible for verifying
and certifying the integrity of the module T.
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RT cannot be exposed, and b) the designed functionality of the module (which is described

in later sections) cannot be modifed.

The system may possess any number of users/subscribers. Users may join at any time.

Every user has a key pair. Within the system, the unique identity assigned to a user with

public key Ui is simply ui = h(Ui). Every user shares a long-lived secret with the module

T. Specifcally, the long-lived secret shared between user ui (with key-pair (Ri, Ui)) and

the module T with key-pair (RT , UT ) is

K ll 
i = K(Ri, UT ) = K(RT , Ui), (4.1)

where the specifcs of the function K() are not important for our purposes. Such shared

secrets are used to secure succinct messages exchanged between users and the module.

An (untrusted) component of U possesses an open channel for communicating with the

module T. The module can be physically located in any convenient location. As only U 

has access to the module, U serves as an untrusted middle-man in the interactions between

users and module T.

4.1.1 Files and ACLs

Any user can create a fle, assign a label, choose a secret to encrypt the fle, and upload

the encrypted fle to service U. The fle encryption secret is also conveyed to U, after

encrypting it using a secret shared between the user and the module.

A fle with label lj created by user ui is associated with an index

fij = h(ui, lj ). (4.2)
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The owner ui of the fle is also required to specify an ACL for the fle, which is also

uploaded to U. The ACL for a fle fij is of the form

{(x1, a1), (x2, a2), . . . , (xl, al)} (4.3)

where x1 · · · xl represent user identities and a1 · · · al their respective access permissions.

Associated with the ACL for fij is a succinct summary αij of the ACL. The ACL uploaded

to U is accompanied by the summary αij , duly authenticated by ui for verifcation by the

module T.

We assume three types of permissions: ai = 1 implies read-only; ai = 2 implies read-

write (such users may create newer versions of the fle); and ai = 3 implies read-write

access for the fle and the ACL (such users are allowed to modify the ACL). Once the ACL

for a fle is modifed, the older version of the ACL is expunged. An empty ACL implies

that the fle should no longer be made available to anyone (all versions of the fle fij may

then be expunged by the service U).

In the authenticated message sent from users to the module

1. users authorized to provide new version (say version q) of a fle fij convey a value
vq, which is function of several values like the fle hash and the secret used to encrypt
version q of fle fij ;

2. users authorized to modify the ACL convey a succinct summary α0 of the new ACL.

4.1.2 Desired Assurances

The desired assurances regarding the operation of the untrusted fle storage service U 

are as follows:
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[A1.] U will not alter fles; in other words, only users explicitly granted the permission

(by the owner) to modify the fle can do so.

[A2.] U will not gain access to fle-encryption secrets; only the trusted module T and

users explicitly specifed in the ACL (for a fle fij ) can gain access to the fle encryption

secret (for any version of fij );

[A3.] U cannot modify the ACL; only users explicitly granted the permission to modify

the ACL can do so;

[A4.] A user u authorized to access fle fij can easily verify if the fle is the latest

version.

[A5.] After an ACL has been modifed, the old ACL will not be used to determine

access privileges.

[A6.] When a user u in the ACL requests access to fle fij , U will not refuse to provide

access to the fle. Furthermore, no unsolicited information should need to be revealed by

the server to unauthorized users to ensure this requirement.

Assurances A1 is towards authenticity and integrity of fles; assurances A2 and A3 are

required to guarantee privacy of fle contents; assurances A4 and A5 address replay attacks

(A4 address replay attacks on fles, and A6 addresses replay attacks on ACLs).

Assurance A6 is towards authenticated denial — to prevent improper denial of service

to a subscriber for a legitimate request. When authenticated denial is mandated, the server

is not allowed to simply respond that “the fle does not exist,” or “you do not have per-

mission.” The server is expected to provide a verifable response to every query — either
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by providing the requested data, or by convincing the querier that the query cannot be

answered.

As proving existence of an object is easier than proving non-existence, typical strategies

for convincing the querier of the non-existence of an object is performed by ordering all

objects that do exist, and demonstrating the presence of two adjacent objects — say A and

C that “cover” (or span) the requested (missing) object B.

An unfortunate side effect of such a strategy is that makes it possible for attackers to

query for random objects simply to gain knowledge of the existence of two other objects

(that enclose the randomly queried object). This ability to gain unsolicited information

(regarding fles that actually exist, or users who are actually granted access to a fle) can

motivate attackers to mine data for nefarious purposes, and thereby a) unduly burden the

service provider, and b) compromise the expectations of privacy of user interactions (in-

teractions through a shared fle). To prevent such attacks it should be ensured that no

unsolicited information will need to be revealed by the server for providing authenticated

denial.

4.2 Overview of Proposed Approach

In the proposed approach requests from users to the service to create a new fle, a new

version, or modify the ACL, are accompanied by a authenticated message µ. The response

to such requests is an authenticated acknowledgement from the module that “the request

has been carried out.” In addition, the server U can request the module to send information

regarding any version of any fle to any user. However, the module will authenticate such
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information, and convey the fle-decryption secret to the user, only if the module is able to

verify that the user is authorized to receive such information (as per the current ACL for

the fle).

As long as the user receives an authenticated acknowledgement, or information regard-

ing a fle (authenticated by the module T), the user is convinced of the integrity of the

service. More specifcally, if the integrity of the service is violated in any way, the server

U will not be able to deliver specifc module-authenticated messages expected by users.

4.2.1 User-Module Secrets

The long lived secret Ki
ll is utilized to securely convey short lived secrets. A short

lived secret Ki conveyed to user ui by the module T is computed as

Ki = h(χ, h(ui, ei)) (4.4)

where χ is the master secret known only to the module T, and ei is the time at which the

secret Ki expires. The short-lived secret Ki can be used for securing all exchanges between

the user ui and the module T till time ei. The choice of the time of expiry ei (for example,

a week, or a month or a year from the time of issue) is left to the discretion of the service

provider U.

To convey a short-lived secret to a user with public key Ui the server utilizes a function

Fsl() exposed by the module:
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Fsl(Ui, ei){ 

IF ((ei < t) ∨ (ei − t > MAX)) RETURN; 

Kll = K(RT , Ui);i 

ui = h(Ui); wi = h(ui, ei); 

Ki := h(χ, wi); 

RETURN t, K̄ 
i := h(Ki

ll, ei, t) ⊕ Ki, µt = h(h(t, K̄ 
i),Ki); 

} 

Given the public key Ui of a user, along with the desired time of expiry ei, the module

verifes that the time of expiry is in the future (or ei > t), but not further than some duration

MAX (or ei − t < MAX). The short lived secret Ki = h(χ, h(ui, ei)) is encrypted using

the long lived secret Ki
ll and can be decrypted only by the user with the secret counterpart

Ri of public key Ui.

¯The server U sends values t, ei, Ki and µt to the user ui who can then compute

¯Ki := h(Ki
ll , ei, t) ⊕ Ki (4.5)

¯and verify that µt = h(h(t, Ki), Ki).

4.2.2 Module State ξ 

Apart from protecting the privacy of secrets RT and χ, the module T assures the

integrity of a single dynamic value ξ — a cryptographic hash stored inside the module.

This dynamic value ξ is a concise summary of values associated with all versions of all

fles, and the ACL corresponding to every fle. Specifcally, the cryptographic hash ξ is the
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root of a special data structure — an Index Ordered Merkle Tree (IOMT) — and can be

considered as the state of the module T.

Similar to the better known Merkle hash tree [38], an IOMT is a binary tree. A tree with

N leaves has 2N − 1 internal nodes (cryptographic hashes) distributed over L = log2 N 

levels (N 
2l 

nodes in levels l = 0 to l = L). The lone node at level L is the root of the

tree. The primary difference between a plain Merkle tree and an IOMT is that leaves of an

IOMT form a virtual circular linked list (more details in Section 3.2).

The module state ξ is the root of an IOMT with one leaf corresponding to every fij in

the system. The number of such leaves are dynamic as new fles may be added, existing

fles may be deleted. The leaf corresponding to a fle fij conveys two values (as shown in

Figure 4.2.2) — θij and αij — which are themselves roots of two IOMTs. Specifcally,

1. αij is the root of an “ACL IOMT” for fle fij , and includes one leaf corresponding to
each entry (ui, ai) in the ACL;

2. θij is the root of the “fle version IOMT,” and includes one leaf of the form (q, vq) 
corresponding to every version of the fle fij;

The untrusted server U is expected to maintain

1. the main database and the corresponding main IOMT with N leaves, with root ξ.

2. a version database and its IOMT, and an ACL database and corresponding IOMT for
every fij (2N databases and 2N IOMTs).

The module T stores and tracks only the root ξ. It is in the server’s interest to ensure

that the state ξ of the module always remains consistent with the root ξ of the main IOMT

maintained by the server. Else, the server will not be able to send authenticated acknowl-

edgements to users.
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Figure 4.1

OMT roots for Trusted File Storage. 3

The module executes simple immutable algorithms which accept user authenticated

values as inputs and modify the state ξ. Specifcally, on receipt of a valid request from a

user (to create a new fle, update a fle, or modify the ACL)

1) the server is expected to make the necessary changes to its database, due to which

the root of the IOMT maintained by the server changes from ξ to ξ′;

2) the server is then required to submit a user authenticated request µ, to modify the

state of the module T to ξ′.

3) the module executes immutable deterministic algorithms of the form F(µ) : ξ → ξ′

to change it’s state, and outputs an authenticated acknowledgement verifable by the user.

3Figure Notes: The static descriptor ξ can be seen as the super root of the tree. θij is the root of the left
sub-tree keeping track of the fle versions of fij . αij is the root of the right sub-tree which maintains the
ACL for authorized users for fij .
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Specifcally, as the server is required to invoke F to obtain an authenticated response

to the user, and as execution of the algorithm will result in the change of module state to

ξ0, the server is forced to modify its database to remain in sync with the module.

In the rest of this chapter we describe such simple deterministic algorithms F() exe-

cuted by the module, as a set of discrete functions.

4.2.3 Module T Functions

The functions exposed by the module can be broadly classifed into three categories

1. functions used to change the state ξ of the module (by providing user authenticated
inputs), and

2. functions that depend on the state ξ, but do not modify the state, and

3. state independent functions

The functions in the frst category include

1. Fin() which is invoked when a new fle is created by a user;

2. Fupd() which is invoked when a fle is updated (a new version of a fle is created);

3. Facl() which is invoked when an ACL is updated;

A function Frep() belongs to the second category. This function enables the server to

report values corresponding to a version of fle to a user (only if the values to be reported

are consistent with the state ξ of the module). The function is invoked to send parameters

of associated with a specifc version of a fle (fle hash, encryption secret, version number

etc.) to an authorized user, or to report to the user that the user has no permission to access

the fle.

The state-independent functions include
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1. function Fsl() (discussed earlier in Section 4.2.1) which is invoked to convey short-
lived secrets to users; and

2. several “certifcate generation” functions.

The certifcate generation functions (described in Section 3.2) are highly reusable, and

independent of the specifc application domain (fle storage system). Such functions verify

state-independent facts like “x is a child node of y” (in a binary hash tree), or “x is a child

of y, and if x → x0 then y → y0,”, etc., and output self-certifcates.

A self certifcate is a “memorandum issued to one-self” [13]; a self certifcate created

by T is intended for verifcation by itself at a later time. For our purposes, a self-certifcate

is a MAC computed using a symmetric secret χ known only to T. For example, a function

may verify that x is a child of y and output a self-certifcate of type V 1 (ancestor certifcate)

computed as ρvu = h(V 1, x, y, χ), to the effect that “(it has been verifed by me that) x is

a child of y.” Note that such certifcates cannot be impersonated without the knowledge

of the secret χ. Certifcate generation functions perform several OMT-specifc operations

required to infer relationships between internal nodes of the tree, and relationships between

leaves and nodes of a tree.

Apart from the OMT self-memoranda certifcates (U1, U2, V 1, V 2) (described in Sec-

tion 3.2), two additional certifcates are introduced for the purposes of this model, 1) leaf

verifcation certifcate (LV ) and 2) leaf update certifcate (LU ). A certifcate of type LV 

(leaf verifcation) states that an OMT with root y possesses a leaf with index a bound to

a value va. If va = 0 in the certifcate, the implication is that either a) no leaf exists with
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an index a, or b) a place-holder (a leaf with va = 0) exists in the tree with root y (the

distinction is not important as the two cases are equivalent).

Given a certifcate ρv1 = h(V 1, x, y, χ) and values (a, a0, va) satisfying x = HL(a, a0, va),

it can be inferred (using Flv) that a leaf for index a is associated with a value va in a sub-tree

(or full tree) with root y. On verifcation, a certifcate of type LV of the form

ρlv = h(LV, a, va, y, χ) (4.6)

is issued. Given that (a, a0, va 
0 ) is a leaf of an IOMT with root y, and a value b that is

covered by (a, a0) it can be concluded that no leaf for index b exists. In such a scenario a

LV certifcate

ρlv = h(LV, b, 0, y, χ) (4.7)

is issued.

0Flv (a, a , va, b, y, ρ){ 

x = HL(a, a0, va); 

IF (ρ 6= h(V 1, x, y, χ)) RETURN; 

IF (b = 0) 

RETURN ρlv = h(LV, a, va, y, χ); 

ELSE IF (cov((a, a0), b)) 

RETURN ρlv = h(LV, b, 0, y, χ); 

} 
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Similarly, a certifcate of type LU (leaf update) states that a leaf for index a with value

va exists in an IOMT with root y, and that updating the value va → va 
0 will require the root

to be modifed to y0 .

Given a (node update) certifcate ρu1 = h(U1, x, y, x0, y0, χ), values a, a0, va, va 
0 satis-

0 0 0 0fying x = HL(a, a , va) and x = HL(a, a , va) the function Flu() issues a certifcate

ρlu = h(LU, a, va, y, va 
0 , y 0, χ). (4.8)

0 0Flu(a, a , va, y, v , y0, ρu1){a 

0 0 0 0x = HL(a, a , va); x = HL(a, a , v );a 

IF (ρu1 6= h(U1, x, x0, y, y0, χ)) RETURN; 

0RETURN ρlu = h(LU, a, va, y, v , y0, χ);a 

} 

4.3 Application Specifc Module T Functionality

Thus far we have investigated several generic functions exposed by module T. Specif-

ically, function Fsl() for conveying short-lived secrets to users was discussed in Sec-

tion 4.2.1.

In this section we illustrate module functions specifc to remote fle storage systems.

Such functions enable the module to assure the integrity of dynamic databases stored by

an untrusted entity U — by tracking a single cryptographic hash ξ (the root of an IOMT).

Specifcally, the IOMT root ξ stored inside the module T (or the module state) is a succinct
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representation of all information regarding every version of every fle, and the ACL for

every fle.

4.3.1 IOMTs for File Storage System

Each leaf of the IOMT with root ξ corresponds to a fle with index fij (as shown in

Figure 4.2). For a fle owned by user ui with label lj , the unique fle index fij is computed

as

fij = h(ui, lj ). (4.9)

By obtaining a certifcate of the form

ρlv = h(LV, fij , vij , ξ, χ) (4.10)

the server U can demonstrate to the module T (which trusts only the state ξ) that “the

current state is consistent with the existence of a fle fij associated with a value vij .”

The value vij is of the form

vij = h(θij , αij ) (4.11)

where

1. αij is the root of an “access control IOMT” for fle fij .

2. θij is the root of another IOMT a “fle version IOMT”
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Figure 4.2

Data-Structure for File Storage. 4

The server can invoke a Fcr() at any time to modify the root ξ to any equivalent root ξ′

by producing a certifcate of type EI . Similarly, function F v
cr() can be used to change the

version tree root from θij to an equivalent root θ′ij (corresponding to which the root of the

main tree will need to be changed from ξ to ξ′).

4Figure Notes: Fij is the fle index, θ and α are the roots of version tree and access control tree
respectively.qm is the sequence number of a particular version, Vq is the hash of fle hash λq , encrypted
secret s′q and wq . wq is a hash of provider identity ul and their key expiry time el. Xk is the user identity
having access control a.
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Fcr(ξ
0, ρeq){ 

IF (ρeq = h(EI, ξ, ξ0, χ)) 

ξ := ξ0; RETURN ξ; 

} 

Fcr
v (fij , αij , ξ

0, ρlu, θij , θij 
0 , ρeq){ 

0vij = h(αij , θij ); vij = h(αij , θij 
0 ); 

IF (ρlu =6 h(LU, fij , vij , ξ, vij 
0 , ξ0, χ)) RETURN; 

IF (ρeq = h(EI, θij , θij 
0 , χ)) ξ := ξ0; 

} 

A leaf (ul, ul 
0, al) of the access control IOMT (with root αij ) corresponds to an entry in

the ACL for fle fij . Specifcally, the implications of the presence of such a leaf are

1. user ul possesses access permission al, and

2. any user u enclosed by (ul, ul 
0) has access permission 0 (or, does not have access

rights)

If a leaf for ul exists in an ACL tree with root αij , the server can obtain a certifcate

ρaclv = h(LV, ul, al, αij , χ) (4.12)

indicating the access privilege associated with a user ul in an IOMT with root αij . If no

leaf for ul exists the server will be able to obtain a certifcate of the form

ρaclv = h(LV, ul, 0, αij , χ) (4.13)

The fle version IOMT has leaves of the form (q, q0, vq). A U1 certifcate

ρu1 = h(U1, x, θij , x, θij , χ) (4.14)
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where x = HL(q, q0, vq) can be used to demonstrate to the module that

1. version q of the fle fij is associated with value vq; and

2. if q0 = q + 1, fresher versions of the fle fij exist; and

3. if q0 = 1, then q is the freshest version.

4.3.2 Reporting File Parameters

The value vq associated with version q of fle fij is a function of three values:

vq = h(λq, s̄ q, wq), (4.15)

where λq is the fle hash, s̄ q is the encrypted fle encryption secret; The value wq relates s̄ q 

to the encryption secret sq, and the fle hash λq as

sq = h(h(χ, wq), λq) ⊕ s̄ q. (4.16)

A user (say ul) may query the server for any version of any fle fij . The user may explicitly

specify the desired version q, or indicate that he/she simply requires the freshest version.

If the fle does not exist, or the user ul does not have the necessary permission, the

user still expects an authenticated response from the module (as the user does not trust

the server U). Under such scenarios function Frep() outputs a time-stamped a MAC µt 

computed as

µt = h(NACK, fij , t, Kl); (4.17)

On receipt of the MAC the user is convinced that either a) the fle does not exist, or b) that

the user does not have necessary access rights (the user does not need to know to know

which of the two possibilities is actually true).
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If the fle exists, and the user is authorized access to the fle, the values returned to the

user include

1. the fle hash λq and encryption secret sq,

2. the version number q along with the next version number q0 (which can be q + 1 or
1), and

3. the user’s access rights al.

The user expects such values to be authenticated by the module T. Furthermore, the secret

sq should also be encrypted using the secret Kl shared between the user and the module T.

In this case Frep() outputs a time-stamped MAC µt, and encrypted fle encryption secret sq 
0 

where

s 0 q = h(Kl, λq, t) ⊕ sq 

µt = h(INF O, fij, vij , q, q 0, λq, sq 
0 , al, t, Kl). 

The inputs fij , θij , αij and ρlv to Frep() enable the module to verify the consistency of

the leaf for fle fij against the root ξ.

The inputs ul and el enable the module to compute the short-lived secret it shares with

user ul as Kl = h(χ, h(ul, el)).

The inputs ul, al and ρaclv enable the module to verify the access privilege of the user ul 

against the ACL root αij .

The inputs {q, q0 , (λq, s̄ q, wq)} and ρnv enable the module to verify the integrity of the

values corresponding to version q of the fle fij and compute the fle encryption secret. The

encrypted fle encryption secret is frst decrypted to obtain sq and re-encrypted as sq 
0 .
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It should be noted that if any place-holder with index q exists in the version tree (a

place holder (q, q0, vq = 0) the contents of such a leaf can never be reported as the server

cannot provide the pre-images of vq = 0 (values satisfying h(λq, s̄ q, wq) = 0).

The function Frep() can be algorithmically described as follows:

0Frep(fij , θij , αij , ρlv, ul, al, ρ
ac
lv , q, q , {λq, s̄ q, wq}, ρu1){ 

IF (el < t) RETURN; 

Kl = h(χ, h(ul, el)); 

IF ((θij = 0) ∧ (ρlv = h(LV, fij , 0, ξ, χ))) 

RETURN t, µr := h(NACK, fij , t); 

vij := h(θij , αij ); 

IF (ρlv 6= h(LV, fij , vij , ξ, χ)) RETURN; 

IF (ρac 6= h(LV, ul, al, αij , χ)) RETURN;lv 

IF (al < 1) RETURN t, µr := h(NACK, fij , t); 

vq = h(λq, s̄ q, wq); x := HL(q, q0, vq); 

IF (ρu1 6= h(U1, x, θij , x, θij , χ)) RETURN; 

0s = h(h(χ, wq), λq) ⊕ ¯ ⊕ h(Kl, λq, t);q sq 

0RETURN t, s0 , µt = h(INF O, fij , vij , q, q0, λq, s , al, t, Kl);q q 

} 

4.3.3 User Request Driven State Changes

Function Fin() expects an authenticated request from a user ui to provide the frst

version of fle fij . In other words, user ui authenticates values lj and the value vij to be

bound to fij . Only if fij = h(ui, lj ) is the user ui recognized as the owner of the fle (and
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therefore permitted to initialize fle fij ). To compute the shared key Ki (to verify the MAC

µ provided by the user) the expiry time ei is also provided as input.

Before the fle is initialized, the module expects it’s current state ξ to be consistent with

the existence of a place-holder for fij . After the fle is initialized, as the value 0 in the place

holder should be updated to vij , the module expects as inputs the new root ξ0 and an LU 

certifcate

ρlu = h(LU, fij , 0, ξ, vij , ξ0, χ). (4.18)

This function changes module state to ξ0 and outputs an ACK message for verifcation by

the user.

0Fin(ui, lj , v , ξ0, ρlu, ei, µ){ij 

IF (ei < t) RETURN; // Expired key

fij := h(ui, lj ); Ki := h(χ, h(ui, ei)); 

IF (µ 6= h(fij , vij ,Ki)) RETURN; //Incorrect MAC

IF (ρlu 6= h(LU, fij , 0, ξ, vij , ξ
0, χ)) RETURN; //Bad Input

ξ := ξ0; //Change state

RETURN t, µt = h(ACK, fij , vij , t, Ki); 

} 

Function Facl() is used to modify the ACL for a fle. Inputs to this function are

1. fij, θij , the current ACL root αij ,

2. ul, al and an LV certifcate ρlv = h(LV, ul, al, αij , χ) to demonstrate that a user ul 
has access permission al > 2, and

3. an authenticated message from the user to convey the new ACL root αij 
0 .
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As incorporating the requested change will require the IOMT leaf for index fij (currently

associated with a value vij = h(θij , αij ) to be modifed to vij 
0 = h(θij , αij 

0 ) the module

expects additional inputs ξ0 and ρlu satisfying

ρlu = h(LU, fij , vij , ξ, vij 0 , ξ0, χ). (4.19)

Facl(fij , αij , ul, el, al, ρlv, µ, α0 , ξ0, ρlu){ij 

IF (el < t) RETURN; // Expired key

IF (al < 3) RETURN; // No authority

IF (ρuac 6= h(LV, ul, al, αij , χ)) RETURN; //Bad Input

Kl := h(χ, h(ul, el)); vij = h(θij , αij ); 

0vij = (α0 
ij = 0)?0 : h(θij , α

0 
ij ); 

//if αij 
0 = 0 user is requesting the fle to be deleted

0//Set vij = 0 converting the leaf to a place-holder

IF (µ 6= h(fij , vij , α
0 
ij ,Kl)) RETURN; //Incorrect MAC

IF (ρlu 6= h(LU, fij , vij , ξ, vij 
0 , ξ0, χ)) RETURN; //Bad Input

ξ := ξ0; //Change state

RETURN t, µt = h(ACK, fij , α
0 
ij , t, Kl); 

} 

If the new ACL root is 0, this is interpreted by the module as a request to delete the fle.

In this case, the value vij associated with the fle is set to 0 — thus changing the leaf to a

place-holder.

Function Fupd() is invoked to modify state ξ for purposes of inserting a new version of

fle fij . Inputs to this function are

70



1. fij, αij , θij ,

2. ul, al, an LV certifcate ρlv = h(LV, ul, al, αij , χ) to demonstrate that a user ul has
access permission al > 2, and

3. an authenticated message from the user to convey the version q and value vq to be
associated with fij .

Fupd(fij , θij , αij , ul, el, al, ρlv, µ, q, vq, θij 
0 , ρu1, ξ

0, ρlu){ 

IF (el < t) RETURN; // Expired key

IF (al < 2) RETURN; // No authority

IF (ρlv 6= h(LV, ul, al, αij , χ)) RETURN; //Bad Input

Kl := h(χ, h(ul, el)); 

0vij = h(θij , αij ); v = h(θij 
0 , αij );ij 

IF (µ 6= h(fij , vij , vq,Kl)) RETURN; //Incorrect MAC

IF (ρu1 6= h(U1, HL(q, 1, 0), θij , HL(q, 1, vq), θij 
0 , χ)) RETURN; 

IF (ρlu 6= h(LU, fij , vij , ξ, vij 
0 , ξ0, χ)) RETURN//Bad Input

ξ := ξ0; //Change state

RETURN t, µt = h(ACK, fij , q, vq, t, Kl); 

} 

The module expects θij to be consistent with the existence of a place-holder (q, 1, 0) 

to accommodate the new version. Specifcally, as the version tree leaf should be modifed

from (q, 1, 0) to (q, 1, vq) the module expects inputs θij 
0 and ρu1 satisfying

ρu1 = h(U1, HL(q, 1, 0), θij , HL(q, 1, vq), θij 0 , χ). (4.20)

Furthermore, as modifying θij to θij 
0 necessitates changing the value vij = h(θij , αij ) 

associated with fij to vij 
0 = h(θij 0 , αij ), the module expects inputs ξ0 and ρlu satisfying
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ρlu = h(LU, fij , vij , ξ, vij 0 , ξ0, χ).. After updating the state to ξ0 the module outputs an

authenticated ACK for the user ul.

4.4 Security Protocol

The security protocol for the remote fle storage system can be seen as the sequence of

steps to be taken by users and the fle storage server U for modifying the state for purposes

of creating a new fle, updating a fle or updating the ACL.

4.4.1 Protocol for Creating a New File

The creator (say ui) of the frst version of a fle

1. assigns a unique label lj ;

2. creates an ACL as a list of two tuples (x1, a1) · · · (xl, al) arranged in the order of
increasing user identities x1 < x2 < · · · < xl;

3. constructs an IOMT with l leaves to represent the ACL; let the root of the IOMT be
αij .

4. chooses a fle encryption secret s1, and encrypts the fle, and computes the hash λ1 
of the encrypted fle;

5. computes

s̄ 1 = h(Ki, λ1) ⊕ s1 

v1 = h(λ1, s1 
0 , w) where w = h(ui, ei) 

θij = h(1, v1, 1) 
v = h(θij , αij ) (4.21)

To instruct that a new fle should created, the user ui sends (to the service U) the following

values:

ui → U : {ui, ei, lj , λ1, s̄ 1, µ = h(fij , v, Ki)} 

+ Encrypted fle and ACL. (4.22)
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If no place-holder exists for fij the server creates a place-holder. Specifcally, only if no

leaf for index fij exists can the server obtain an equivalent certifcate binding the current

root ξ and the root ξ0 (after insertion of place-holder).

The service provider U then invokes interface Fin() to obtain an authenticated ac-

knowledgement. and send values r = {µr, t} as proof to the user ui that the fle has been

initialized.

Assurances and Rationale: On receipt of the authenticated acknowledgement the user

is assured that value vij has been bound to leaf fij . Specifcally,

1. as Ki is privy only to the user ui and the module, and h() is pre-image resistant, only
the module could have generated µr;

2. U can invoke Fin() only if a place-holder exists for fij ; this assures the user that
even if the user had accidentally requested the server to create a fle with the same
label lj (and hence the same index fij = h(ui, lj ) corresponding to an existing fle)
such a request can not be entertained by the server.

4.4.2 Creating a New Version

Before a user sends a new version of a fle, or modifes the ACL for a fle, the user

ul should request the server to provide information regarding the current state of the fle

(which the server can do by using function Frep()).
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If the user has access permission al > 1, to supply a newer version (say version q) of

the fle the user ul creates the updated version, chooses an encryption secret sq, encrypts

the fle, computes the hash λq of the encrypted fle. The user the computes

s̄ q = h(Kl, λq) ⊕ sq 

vq = h(λq, s̄ q, w) where w = h(ul, el) 

µ = h(fij , vij , q, vq, Kl) (4.23)

The user sends the encrypted fle, along with values s̄ q, ul, el and µ to the service U.

U is required to insert a place holder in the version tree with root θij before it can

invoke module function Fupd(). The output {µr, t} of Fupd() is returned as proof to the

user ul that the new version of fij has been incorporated.

Assurances and Rationale: On receipt of the authenticated acknowledgement for a

request to insert a new version the user is assured that a new version q is the highest version

number, and is bound to value vq. Specifcally,

1. as Kl is privy only to the user ul and the module, and h() is pre-image resistant, only
the module could have generated µr;

2. the value vq can be bound only to a place holder with next index 1. Unless q is the
highest version, such a place-holder (q, 1, 0) can not exist in the fle version IOMT.

The server is however free to insert any number of place-holders in the version tree. Con-

sider a scenario where when version 6 of fle is the highest version, the server inserts 2

place holders — say for versions 7 and 8. Now, when the server receives an update mes-

sage, the new version may be incorporated as version 8.

However, if the server skips versions (6 to 8) in this manner, then there would re-

main a place holder (7, 8, v7 = 0) for version 7, which can never be bound to meaningful
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values. More specifcally, the server would not be able to respond to a query for infor-

mation regarding version 7 as the function Frep requires inputs λ7, s̄ 7 and w7 satisfying

h(λ7, s̄ 7, w7) = v7 = 0. Thus, the only recourse for the server would be to remove the

place holder for version 7 which will result in version 6 pointing to version 8 as the next

version. Only then can the server create a report for version 6 indicating version 8 as the

next version (thereby demonstrating that version 7 does not exist).

4.4.3 Modifying ACL

To supply a newer ACL for a fle fij a user ul (in the ACL with al > 2)

1. creates the new ACL, computes αij 
0 ;

2. computes µ = h(fij , vij , αij 
0 , Kl);

3. submits the new ACL and MAC µ to the server.

The server employs an interface Facl() exposed by T to obtain an authenticated acknowl-

edgement from the module to the effect that “the ACL for fij has been updated.”

Assurances and Rationale: On receipt of the authenticated acknowledgement the user

is assured that the ACL root has been modifed to α0 in the leaf with index fij . Specifcally,

as Kl is privy only to the user ul and the module, and h() is pre-image resistant, only the

module could have generated µr 

Binding the current vij to the user’s request for changing the ACL or updating a fle

serves two purposes.

For purposes of updating the version, it prevents two users — say ul and uk from

providing two different next updates to the current version. For example, without this, the
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user ul may create a version q + 1 as the next version of a fle fij
q , and the user uk will end

up creating version q +2 as the next version of a fle fij
q . Furthermore, if the requests from

the two users come close together, the untrusted server will then have the ability to decide

which of the two versions should be q + 1 (and which should be version q + 2).

For purposes of updating the ACL including the current state vij in the request ensures

that the server cannot replay the user’s MAC to the function Facl. Consider a scenario

where after the request from ul resulting in an ACL root update to αl, a user uk updates

the ACL to another value αk. If vij is not included in the computation of the the MAC by

the user ul, then the MAC from ul could be replayed to set the ACL back to αl. Including

value vij prevents such a possibility, as the replayed MAC will not be consistent with the

current fle state vij .

4.4.4 Swapping IOMT Leaves

In practical fle storage services the total number of fles may be or the order of sev-

eral billions. However, out of the billions, only a small fraction (say, thousands) may be

currently under frequent modifcation. From the perspective of reducing computational

overhead it is advantageous to group such currently active fles close together in the tree.

Specifcally, a small sub-tree, and values required to map the sub-tree to the main root ξ 

could then be stored in faster cache memory to speed up operation of the server.

The equivalence feature in IOMT (described in Section 3.2) — which allows the un-

trusted server to swap leaves — can be very useful in practice to reduce the overhead for

the server. Using this feature the physical position of two leaves — a frequently used one
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and a one that has not been modifed for a long time (and thus is not expected to be used

in the near future) — can be swapped. From the perspective of the module, a swap can be

performed by providing a root equivalence certifcate.

4.5 Related Work

In the fle storage model used in [59] users create fles for access by themselves from

other locations. The goal is to ensure that that only the latest version will be provided by

the service (older versions should not be replayed). Specifcally, a user may update a fle

using her computer at work. When she later tries to retrieve the fle from her home, she

expects the latest version of the fle. The assumption here is that the user may not actually

remember the previous updates she had made, and thus may not recognize the freshness of

the version provided by the server. As the user does not trust the server, the user expects

the trusted module to attest the freshness of the fle. Specifcally, the module will only

attest the fle hash of the freshest version of any fle. No attempt is made in [59] to provide

assurances of privacy, or enforce any type of access control policy.

In [59] the trusted module stores the root of a Merkle tree, where the leaves of the

tree are virtual counters — one associated with every fle. The virtual counter associated

with a fle will be incremented by the module only when the fle is updated through an

authenticated message from the owner of the fle. The hash of the new version of the fle

is bound to the incremented virtual counter value.
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As a response to a query for a fle, users expect an authenticated response from the

module. The module will authenticate only responses that include the fle hash bound to

the current virtual counter value for the fle.

There is however a simple attack against this approach. The hole in this mechanism

[42] is that there is no way to prevent the untrusted server from creating multiple virtual

counters for the same fle. Thus, when an update is received, the server can request the

module to update one such leaf. However, the older version — bound to another leaf —

still remains legitimate from the perspective of the module, and can thus be replayed.

The use of IOMT instead of a plain Merkle tree ensures that only one leaf can exist

for a fle (as the IOMT is indexed by fle identifer fij ), and thus prevents such attacks. In

addition, the enhanced capability of the IOMT to permit verifcation of non existence can

be leveraged to enforce sophisticated access control paradigms, and cater for authenticated

denial without revealing unsolicited information.
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CHAPTER 5

A GENERIC CONTENT DISTRIBUTION SYSTEM

A content distribution system includes publishers who create content for consumption

by subscribers, and a third party distribution infrastructure as publishers themselves may

not possess the infrastructural capabilities required to distribute content. In any such con-

tent distribution system (CDS), publishers desire mechanisms to ensure that their content

is made available only to a select set of subscribers, by prescribing an access control list

(ACL) for the content. Subscribers desire mechanisms to ensure the integrity and authen-

ticity of the content.

Irrespective of the nature of the specifcs of the CDS, the users of the system — viz.,

publishers and subscribers — are expected to trust the infrastructural elements to preserve

integrity of content, and adhere to the (content specifc) ACL prescribed by the publisher.

In practice, the “infrastructure” may be composed of possibly several agencies, computers

and personnel. As malicious behavior by any infrastructural component may lead to viola-

tion of the desired assurances, and as it is impractical to rule out such behavior in complex

systems, explicit mechanisms are required to assure the operation of such infrastructural

elements.
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5.1 A Model for a Generic Content Distribution System

A content distribution system consists of a dynamic set of user subsystems U = 

{u1 · · · un} (who may be publishers, or subscribers, or both) and a dynamic set of con-

tent C = {c1 · · · cm}, where ui is a unique identity of a user, and ci is a unique label

assigned to a content. Both sets U and C may be dynamic, and posses practically unlimited

cardinality (unlimited n and m).

Associated with a content with label cj are

1) a user of the system ui identifed as the publisher/owner of the content;

2) a content encryption secret sj , and

3) an access control list Aj (created by the owner);

4) a cryptographic hash γj of the encrypted content.

As long as a mechanism exists to securely deliver the content hash γj to a user, ir-

respective of the channel over which the actual content is delivered, the user receiving

content cj can verify the integrity of the content. For example, such encrypted content

could be made available for download from a public repository or even distributed across

several peer-to-peer clients. However, to gain clear access to the content, a user u requires

the content encryption secret sj . Only privileged users specifed in the access control list

(ACL) should be able to do so.

More generally, the ACL could assign various levels of privileges; for example, some

users may be allowed only to access the content (more specifcally, to receive secret sj );

some users with a higher privilege may be allowed to modify the content; some users with
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an even higher privilege may even be allowed to modify the ACL (in other words, the ACL

may also be dynamic).

The infrastructural elements I in a CDS include mechanisms required to physically

host content and the ACL associated with the content, accept requests from users, and

deliver encrypted content and content decryption keys to privileged users.

5.1.1 Desired Assurances

Ideally, publishers (subsystems) should need to interact with the CDS infrastructure I 

(central subsystem) only for uploading their content, or for modifying the ACL. Some of

the specifc desired assurances regarding the operation of the CDS are as follows:

1. I will not alter the content; more specifcally, I will ensure that only users explicitly
granted the permission (by the owner) to modify the content can do so.

2. I will not reveal content encryption secrets to unauthorized parties;

3. I will not modify the ACL; more specifcally, I will ensure that only users explicitly
granted the permission (by the owner) to modify the ACL can do so.

4. a user u authorized (as per the most recent ACL) to receive content will receive only
most up-to-date version of the content;

5. when a user u requires access to content cj , and if u is authorized access to the
content, I will not refuse to provide access to the content.

6. when a user u requests access to content cj , and if the content cj does not exist,
the user will learn nothing about the existence of other contents that have not been
explicitly queried by the user; similarly, if u is not authorized access to the content,
the user will learn nothing about other users who have access to the content.

Broadly, the frst assurance is towards authentication and integrity of content. The second

and third assurances are necessary to guarantee privacy of the content as intended by the

creator. The fourth assurance addresses replay attacks — after a content has been modifed,
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the older version may not be replayed by the CDS infrastructure; similarly, after an ACL

has been modifed, the old ACL should not be used to distribute content.

The ffth assurance is towards authenticated denial to prevent improper denial of ser-

vice to a subscriber with a legitimate request. For this purpose, the infrastructure is ex-

pected to respond to every query. The response should either provide the requested content,

or should contain a justifcation to convince the user that the requested content cannot be

provided.

The sixth assurance is required to address some of the undesirable side effects of pro-

viding authenticated denial. In providing the proof of denial no information that was not

explicitly queried should be provided.1

5.2 Overview of Proposed Approach

In the proposed model, the infrastructure I is the untrusted participant/subsystem U,

and has access to a trusted module T which serves as the TCB for U. As every component

of U is untrusted the nature of the specifc components of U (like personnel, computers

and software) is irrelevant for our purposes. Some component of the U communicates with

the module T using fxed interfaces exposed by the module. For example, the module T 

could be plugged into a computer in U. Alternately, the module T could be housed in a

secure location and connected over a (possibly untrusted) network to a computer in U.

1Ignoring such assurances in practical applications have sometimes resulted in attacks that undermine the
utility of the protected system. For example, in DNSSEC [6], the security protocol for assuring the operation
of a domain name system (DNS) server the unsolicited DNS records obtained from querying non existent
records result in the undesirable “DNS walk” problem [33].
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The module T is assumed to be capable of computing a shared secret with any user.

A detailed description of key establishment algorithms is given in Section 3.1. For the

purposes of this model, we shall simply represent by Ki the secret common to a user ui 

and the module T. Such secrets are employed by users and the module T to authenti-

cate requests and responses using message authentication codes (MAC), and for securely

conveying content encryption secrets. The module is also assumed to be capable of exe-

cuting some simple functions Fadl(), Finc(), Fupd(), Fcac(), and Fsnd() which are described

algorithmically later in this chapter.

In the proposed approach all desired assurances enumerated in Section 5.1.1 are guar-

anteed to the extent we can trust the integrity of the module. Specifcally, that the module

is read-proof implies that only a user uj and the module have access to the secret Kj , and

thus impersonation of messages is infeasible. That the module is write-proof implies that

the functionality of the module is immutable.

5.2.1 TCB Functions

In the proposed model TCB function Finc() is used for making content available for

distribution. The inputs to Finc() are various parameters (like content hash, encryption

secret, ACL, etc.) associated with the content cj , and are authenticated by the owner oi 

of the content for verifcation by T using a MAC computed using the secret Ki. After

executing Finc() the module outputs an acknowledgment message for verifcation by oi.

The TCB function Fupd() is used to modify the content or modify the ACL associated

with the content. Inputs of the function Fupd() are authenticated by a user ua who is
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(authorized to modify the content/ACL) using the secret Ka shared with the module. The

output of the module is an authenticated acknowledgment. If the user is not authorized, the

module will respond with an acknowledgement for a message indicating failure to carry

out the request.

The input to Fsnd() is an authenticated request from a user uq for some content cj .

Only if the user is authorized to receive the content will the module convey the content

encryption secret sj and γj (to verify the integrity of the content) to user uq. If the user is

not authorized, the module will respond with an acknowledgement for a message indicating

failure to carry out the request.

In all exchanges between users and the module, U is an untrusted middle man. The

middle man U is expected to faithfully perform some tasks in order to provide additional

inputs v required for the TCB functions, and receive an authenticated acknowledgement

from the module, which can then be delivered to the user. More specifcally, if U does not

execute such tasks faithfully, then U will not be able to obtain an authenticated response

from the module to satisfy the user.

Unlike the three functions above the inputs to Fadl() and Fcac() do not include au-

thenticated requests from users. Fcac() is employed by U to request the module to verify

access control permission for a user, and generate a certifcate vouching for the same. As

this certifcate is intended for verifcation by the module (which issues the certifcate) at a

later time, the self-certifcate is simply a MAC computed using a secret known only to the

module T.
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Interface Fadl() is used by U to request the module to insert or delete a leaf in an Index

Ordered Merkle Tree (IOMT). The IOMT, (which is explained in greater depth in Section

3.2) is a simple extension of the better known (plain) Merkle hash tree [38]. The main

differences between a “plain” Merkle tree and an IOMT are a) some additional rules to be

observed in the IOMT for inserting and deleting leaves - to ensure uniqueness of indexes,

and b) the ability to effciently deal with any number of leaves - even if the number of

leaves is not a power of 2.

In the proposed approach each leaf of the IOMT corresponds to a content. Associated

with a set of m leaves (where m is the total number of content identifers) are 2m−1 hashes

which are the “internal nodes” of the tree. The number m is assumed to be dynamic — m 

grows as content with new labels are introduced into the system (a leaf is inserted into the

IOMT) for distribution and may reduce (an IOMT leaf is deleted) as their circulation is cut

off by the owner or an entity authorized by the owner. The IOMT is also used to effciently

represent the ACL associated with each content.

Untrusted U stores all m contents, 2m − 1 hashes, and some values associated with

each content (leaf). Recall that such values associated with a content cj include a) content

owner ui, b) content hash γj , c) ACL Aj for the content, and d) an encrypted version of

the content encryption secret sj .

The module T stores only2 i) a single hash - the root ξ of the IOMT; and ii) a secret χ 

(known only to the module) used for encrypting the content encryption key.

2In addition, the module may be required to store one or more secrets that enable the module to compute
pairwise secrets.
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Computationally, the module performs simple sequences of hash operations to execute

functions Fadl(), Finc(), Fupd(), Fcac(), and Fsnd(), for which the module requires tempo-

rary scratch-pad memory for a mere O(log2 m) hashes (at most a few kB).

5.2.2 Access Control List

The access control list Ai can be seen as a list of two tuples of the form (oi, ai) where oi 

is the identity of a user assigned privilege ai. We shall assume that ai = 0 implies that the

user oi is not granted access, and ai = 1 to imply that the user oi is granted access. We shall

also assume an empty access control list to imply that the content cannot be distributed.

In such a list Aj = {(o1, a1), (o2, a2), . . . , (ok, ak)} associated with some content cj ,

and ordered by ascending order of o (or o1 < o2 < · · · < ok), that a tuple for oi+1 follows

oi (in the list . . . , (oi, ai), (oi+1, ai+1), . . .) implies that no tuple exists for an identity that

falls between oi and oi+1. In such a case it is more meaningful to see the ACL as a three

tuple of the form {(o1, o2, a1), (o2, o3, a2), . . . (on−1, on, an−1), (on, o1, an)}.

For example, in a ACL

A = {(o1, o2, 1), (o2, o3, 0), (o3, o4, 1), (o4, o1, 1)} (5.1)

1) the implication of the frst tuple (o1, o2, 1) is that o1 is explicitly granted access, and

that all users o1 < x < o2 are denied access;

2) from the second tuple, o2 is explicitly denied access; all users o2 < x < o3 are

granted access;

3) o3 is explicitly granted access; all users o3 < x < o4 are denied access;
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4) o4 is explicitly granted access; as (o1 < o4), users x > o4, and users x < a1 are

denied access;

In some scenarios the privileged users may have different types of privileges. For

example, we shall assume that ai = 2 implies that the user oi is allowed to modify the

content, and ai = 3 implies that oi is permitted to modify the content, and the ACL for the

content. For example, if Aj = {(o1, o2, 0), (o2, o3, 3), (o3, o4, 1), (o4, o5, 0), (o5, o1, 2)},

1) o1 is denied access; all users o1 < x < o2 are provided regular access;

2) o2 is granted enhanced privilege to modify the ACL; all users o2 < x < o3 are denied

access;

3) o3 is provided regular access; all users o3 < x < o4 are denied access;

4) o4 is denied access; all users o4 < x < o5 are granted regular access;

5) o5 is explicitly granted privilege to modify the content; users x > o5 and x < a1 are

denied access;

In the proposed approach each tuple in an ACL is seen as a leaf of an IOMT. The root

α of such an IOMT is a succinct representation of the ACL. Specifcally, given the value

α, a set of hashes v and an IOMT leaf (ur, ur 
0 , ar) the module can verify the leaf against

the root α and infer the access control restrictions associated with user uq = ur or any user

uq covered by (ur, u
0 
r).

5.2.3 IOMT for Storing Content Leaves

An IOMT leaf (as shown in Figure 5.1) for storing values associated with a content cj 

0 0 stakes the form (cj , cj , vj) where cj is the next label and vj = h(ui, γj , sj , αj ) is a one way
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function of the owner ui, content hash γj , ssj (the encrypted version of content encryption

secret sj) and αj (the succinct representation of the ACL associated with the content cj).

The root ξ of this IOMT changes whenever a content is introduced, or deleted, or if the

ACL for a content is modifed. The dynamic root ξ of this IOMT is maintained inside the

module.

ξ	
  

αj	
  

Cj	
   Cj’	
  

L0	
   L1	
   L2	
   Ln	
  

X0	
   X1	
   Xn	
  

Content IOMT 

Access Control IOMT 

ui	
   ui’	
   ai	
  

Content Leaf 

Access Control Leaf 

Vj	
  

ui	
   ssj	
   ϒj	
  

Figure 5.1

Data-Structure for Content Distribution. 3

3Figure Notes: αj is the root of ACL tree with leaves as (ui - user, u′i - next user, ai - access type).
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0 

0Given values c , c j 
s 

j , ui, γj , sj , αj along with a set of hashes v the module T can verify

the integrity of all values associated with the content cj (by computing v = HL(cj , cj , vj = 

sh(ui, γj , sj , αj )), and then verifying that f(v, v) = ξ.

0A leaf with middle value zero, say (c , c j j , 0) is a “place-holder” for a content and can

be used to reserve a content label. After content specifc values are received for the content

from the owner, such values are bound to the leaf by appropriately setting value vj and

updating the root ξ.

Unlike the IOMT for ACL which is prepared at one go by the owner or an authorized

agent, various leaves of the content IOMT are provided by different content owners. Thus,

for maintaining such an IOMT the module needs the ability to insert and delete IOMT

leaves.

5.3 TCB Functions

The resource limited module T securely stores a secret χ, spontaneously generated

inside the module, and the root ξ of an IOMT. It is assumed that the module can compute

a secret Ki it shares with any user ui.

5.3.1 Secret χ 

This secret χ (spontaneously generated inside the module) is used by the module to

encrypt content secrets entrusted to the module. Specifcally, for a content cj associated

with a owner ui, the content encryption secret sj is conveyed by the owner ui to the module

as s0 j = h(Ki, µij ) ⊕ sj , where µij = h(cj, γj , αj , sj , Ki) is a message authentication code

(MAC) used to securely convey the content related values to the module T. The secret sj 
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sis then re-encrypted by the module as sj = h(χ, cj , γj ) ⊕ sj and handed back to untrusted

U for storage.

The secret χ is also used by the module to generate self-certifcates for verifcation by

itself at a later time. Specifcally, using the function Fcac() the module can be requested

to issue a certifcate of the form µs = h(u, a, α, χ) which states that “a user with identity

u and access control permission a is consistent with access control digest α. The function

Fcac() can be described algorithmically as follows:

Fcac((ur, ur 
0 , ar), v, uq){ 

IF (uq = ur) aq := ar; 

0ELSE IF(cov(uq , (ur, u ))) aq := (ar = 0)?1 : 0r 

ELSE RETURN; 

α = f(HL(ur, u
0 , ar), v);r 

RETURN µs := h(uq, aq, α, χ); 

} 

The inputs to Fcac() include a leaf of a ACL IOMT with root α along with the hashes

v necessary to verify the leaf against α. The function Fcac() will output a certifcate only

if uq = ur or if uq is covered by (ur, u
0 
r). The values uq, aq, α and µs satisfying µs = 

h(uq, aq, α, χ) can be provided to the module at any later time to convince the module that

“for a content with ACL digest α, a user uq has access restriction aq.”

90



5.3.2 Addition and Deletion of IOMT Leaves

In general, to add or delete an IOMT leaf two leaves need to be updated. Two leaf

hashes vl and vr can be simultaneously mapped to the root r by mapping the leaf hashes

to the common parent, and then mapping the common parent to the root. Let vp be lowest

l r l r l rcommon parent of two leaf nodes v and v , and let vp = HV (v , v ) (v and v are the leftp p p p p p 

and right child of vp), vp
l = f(vl, vl), vp

r = f(vr, vr), and r = f(vp, vp). Now,

ξ = f(HV (f(vl, vl), f(vr, vr)), vp) (5.2)

The interface Fadl() can be used to insert a leaf for an index a (if a is covered by another

leaf), or deleting a leaf with index a (if another leaf exists that points to a). Specifcally,

when a leaf is inserted the middle value is set to 0. Only leaves with middle value 0 can

be deleted. Henceforth we shall refer to an IOMT leaf of the form (a, a0 , 0) as a “place-

holder.”

The module functionality Fadl() for inserting or deleting a place holder can be algorith-

mically described as follows:
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0ξ = Fadl((l, l0, vl), (r, r , vr), i, vl, vr, vp){ 

IF (l = 0) ∧ (r = 0)//Insertion of frst leaf

hl := 0; h0 
l := HL(i, i, 0); hr := 0; h0 := 0; //r 

ELSE IF (l = 0) ∧ cov(i, (r, r0)) 

0hl := 0; hr := HL(r, r , vr); h0 := HL(i, r0 , 0); h0 := HL(r, i, vr);l r 

ELSE IF (r = 0) ∧ cov(i, (l, l0)) 

hr := 0; hl := HL(l, l0, vl); hr 
0 := HL(i, l0 , 0); h0 

l := HL(l, i, vl); 

ELSE RETURN; 

ξ1 = f(HV (f(hl, vl), f(hr, vr)), vp); //Root before insertion

ξ2 = f(HV (f(h
0 
l, vl), f(hr 

0 , vr)), vp); //Root after insertion

IF (ξ = ξ1) ξ := ξ2; // insert index i 

IF (ξ = ξ2) ξ := ξ1; //delete index i 

RETURN ξ; 

} 

U invokes this function whenever a new content is created or when distribution of an

existing content has to be stopped, or when queried for an non existent content. Specif-

cally,

1. if a new content with unique label cj is made available for distribution, a place holder
for index cj is inserted to reserve a leaf for cj (after this function Fupd() will be used
to bind the content related values to the middle value of the leaf).

2. if a query for a content cJ is made and no content exists for index cj , a place holder
for index cj is inserted; soon after the query is answered the place-holder may be
deleted.

3. The function Fuac() (to update ACL) is employed to convert a leaf to a place-holder
(by setting the middle value to 0) for halting the distribution of the content. The
place holder can be deleted if required using Fadl() 
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To insert a place holder, two leaves - an empty leaf, and a covering leaf (j, j0, vj ) 

(or cov((j, j0), i) is TRUE) are provided as inputs to Fadl(). To compute the root from

two leaves three sets of complementary hashes are provided to the module. The module

computes the roots ξ1 and ξ2 - the roots before and after insertion respectively. If the current

root ξ is either ξ1 or ξ2 it is reset to ξ2 or ξ1 respectively. Specifcally, if the current root is

ξ1, and if the leaves provided satisfy the condition for inserting index i, by setting the root

to ξ2 a leaf with index i is inserted. On the other hand, for the same inputs, if the current

root is ξ2 then by setting the root to ξ1 a leaf corresponding to index i is deleted. Thus,

even while Fadl() only verifes the pre-requisites for inserting a place-holder, Fadl() can be

used for both insertion and deletion of place holders.

5.3.3 Distribution of Content

The owner ui of the content cj performs the following steps to make the content avail-

able to users:

1) assign a unique label cj to the content;

2) choose a random content encryption secret sj and encrypt content;

3) compute hash γj of the encrypted content;

4) compute root αj of an ACL IOMT Aj ;

5) submit to U, i) the encrypted content, ii) access control list Aj , iii) γj and iv) values

µij , sj 
0 where

µij = h(cj , γj , αj , sj , Ki), sj 
0 = h(Ki, µij ) ⊕ sj , (5.3)
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and Ki is a secret shared between user ui and the module T; γ0 
j = 0 implies that this is the

frst version of the content.

On receipt of such a message from user ui, U performs the following steps:

1) reserve label cj for user ui; for this purpose U employs the interface Fadl() exposed

by the module T. At the end of this process a place holder (cj , cj , 0) consistent with the0 

0IOMT root will be available satisfyingξ f(H (c , c L j 

03) employ module interface to supply values that includeF () , α , γ u s,inc i j j 

j , 0), vj ) = ξ.

2) evaluate αj using the ACL;

j , µij , pro-

and vj associated withe the corresponding IOMT leaf.vided by the user and values cj , c 0 j 

On completion of the execution of Finc() the module will outputs an acknowledgement

MAC

0 µij = h(ACK, µij , Ki) (5.4)

The function Finc() can be described algorithmically as follows:

0 

0 

j , vj , ui, γj , αj , s 

IF f(HL(cj , cj , 0), vj ) 

0Finc(cj , c j , µij ){ 

6= ξ) RETURN; 

sj 
0= h(Ki, µij ) ⊕ sj ; 

IF (h(cj , γj , αj , sj ,Ki) 6= µij ) RETURN; 

s ssj := sj ⊕ h(χ, cj , γj ); vj := h(ui, γj , sj , αj ); 

0ξ := f(HL(cj , c j , vj ), v); 

RETURN ξ, ssj , µ 0 ij = h(ACK, µij ,Ki); 

} 

s4) store sj , and make appropriate modifcations to the parent nodes of the updated

IOMT leaf to be consistent with the new root ξ;
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5) send the acknowledgment MAC µij 
0 to the user ui.

On receipt of the acknowledgment the owner ui is assured (to the extent the owner can

trust the module T) that all the expectations of the owner with regards to distribution of

the content will be met by U. More specifcally, this trust is based on the premise that i) it

is infeasible for any entity except the module T and user ui to compute the MAC, and that

ii) the module functionality cannot modifed.

5.3.4 Updating Content and/or ACL

To update the content cj , a user ua authorized to do so encrypts the modifed content

with a new key sju and computes the hash γju of the updated content. The user then

submits

µaj = h(cj , γj , αj , γju, αju, sju, Ka), sju 
0 = h(Ka, µaj ) ⊕ sju, 

to U.

On receipt of the request to update content U employs interface Fcac() to receive a

certifcate attesting the access control permission for ua. Then, U employs interface Fupd() 

shown below to update the IOMT leaf for cj .
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0 s 0Fupd(cj , cj , ui, γj , s , αj , vj , ua, aa, γju, αju, sju, µaj , µs){j 

IF (µs 6= h(ua, aa, αj , χ)) RETURN; //Invalid certifcate

0sju = s ⊕ h(Ka, µaj );ju 

IF (µaj 6= h(cj , γj , αj , γju, αju, sju,Ka)) RETURN; //Invalid Request

svj := h(ui, γj , s , αj );j 

0IF f(HL(cj , cj , vj ), vj ) =6 ξ) RETURN; 

IF (aa < 2) ∨ ((aa < 3) ∧ (αju =6 αj )); //user not authorized

0RETURN µaj = h(ACK, µaj , 0,Ka); 

IF (αju = 0)vju := 0; 

s sELSE sju := sju ⊕ h(S, cj , γju); vju := h(ui, γju, sju, αju); 

0ξ := f(HL(cj , cj , vju), vj ); 

0RETURN ξ, ssju, µ = h(ACK, µaj ,Ka);aj 

} 

If the user is not authorized, this function returns µ0 = h(ACK, µaj , 0, Ka); if theaj 

user is authorized the function returns µaj 
0 = h(ACK, µaj , Ka) and the encrypted version

ssju of the new content encryption key sju for storage by U.

When the user ua receives the MAC µaj 
0 the user ua is convinced that the content has

been modifed and thus, from this point onwards, the old content hash γj cannot be replayed

by U.
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5.3.5 Querying Content

Any user can send a query for any content. To query a content cj a user uq (who shares

a a secret Kq with T) computes a MAC

µqj = h(cj , ν, Kq) (5.5)

where ν is a random nonce selected by the user. The user sends values uq, cj , ν and µqj to

the DC.

If the queried content does not exist, U inserts a place holder for cj . If the content exists

and the user uq is authorized access, the ACL associated with the content will possess a

0 0 0tuple of the form (uq, uq, aq > 0) or (ur, ur, ar = 0) where (ur, ur) covers uq. On the

other hand, if the user uq is not authorized, the ACL will possess a tuple (uq, u
0 
q, aq = 0) 

or (ur, ur 
0 , ar > 0) where (ur, ur 

0 ) covers uq. In either case, U can employ function Fcac() 

to obtain a certifcate µs = h(uq, aq, αj , χ) from the module.

This certifcate, along with values cj, ν and µqj sent by the user are provided to the

module using the interface Fsnd(), which can be described algorithmically as follows:
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0 sFsnd(cj , cj , ui, γj , s , αj , v, uq, aq, µs, ν, µqj ){j 

IF (µqj 6= h(cj , ν, Kq)) RETURN; 

svj := (ui = 0)? 0 : h(ui, γj , s , αj );j 

0IF f(HL(cj , cj , vj ), v) =6 ξ) RETURN; 

0IF (vj = 0) RETURN µqj := h(cj , ν, 0, 0,Kq ); //Content does not exist

IF (h(uq, aq, αj , χ) 6= µs) RETURN; 

0 0 0IF (aq > 0)RETURN µqj = h(cj , γj , sj , ν, Kq), s = h(Kq, µ ) ⊕ sj ;j qj 

0ELSE RETURN µqj = h(cj , 0, 0, ν, Kq), 0; //No access

} 

If the user is authorized access, the module returns µ0 
qj = h(cj , γj , sj , ν, Kq) and s0 j = 

h(Kq, µqj 
0 ) ⊕ sj . When such values are conveyed to the user by U, the user gains access

0 0 0to the content encryption secret sj = sj ⊕ h(Kq, µqj ) and can verify the MAC µqj . The

user may now fetch the encrypted content from untrusted components of the DC, verify its

integrity, and decrypt the content using the secret sj .

If the user is not authorized, or if the queried content does not exist, the module outputs

a MAC µ0 
qj = h(cj , ν, Kq). When U relays µ0 

qj values to the querier, the querier is assured

(to the extent the module is trusted) that the content does not exist, or the user does not

have access to the content.

5.4 Related Work

Models for content distribution and security mechanisms for such models, have at-

tracted substantial attention in the literature. Simple models that do not cater for dynamic
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content and dynamic ACL employ broadcast encryption [22, 46]. Specifcally, in such sys-

tems the ACL associated with a content is a list of users/devices that are allowed access to

the content, specifed at the time the content is made available for distribution. The content

is accompanied by a message key block consisting of various encryptions of the content

encryption key such that at least one can be decrypted by a privileged device (and none by

any revoked device).

More sophisticated models with dynamic content and ACL are generally considered

under the umbrella of publish-subscribe systems [21, 66]. In such systems the infrastruc-

ture may consist of several servers, typically classifed into servers at the provider end,

consumer end, and core servers. While several security solutions have been proposed, they

rely (to varying degrees) on the trustworthiness of servers in the infrastructure. Specifcally

in such systems the server is trusted to not replay old content, and not deny service to au-

thorized users. One of the main motivations for the proposed approach stems from the lack

of a suitable rationale for trusting complex servers employed by the CDS infrastructure.
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CHAPTER 6

SECURITY KERNELS FOR BORDER GATEWAY PROTOCOL

The Internet is an interconnection of autonomous systems (AS) [53], [52]. Each AS

owns one or more chunks of the IP address space, where the number of addresses in each

chunk is a power of 2. IP chunks are represented using the CIDR (classless inter-domain

routing) IP prefx notation. For example, the IP prefx 132.5.6.0/25 represents 232−25 IP

addresses for which the frst 25 bits are the same as the address 132.5.6.0, viz., addresses

132.5.6.0 to 132.5.6.127. An AS registry assigns AS numbers to AS owners. AS owners

may acquire ownership of IP prefxes from an IP registry (through IP registrars, or ISPs).

While each AS may follow any protocol for routing IP packets within their AS, all ASes

need to follow a uniform protocol for inter-AS routing. The current inter-AS protocol is

the border gateway protocol (BGP), where AS owners employ one or more BGP speakers

to advertise reachability information for IP prefxes owned by the AS. Specifcally, every

BGP speaker recognizes a set of neighboring BGP speakers. Neighbors may belong to the

same AS or a different AS. The main responsibility of BGP speakers are

1. originate BGP update messages for prefxes owned by the AS, and convey such orig-
inated messages to neighbors of other ASes

2. relay BGP update messages received from neighbors to other neighbors.

3. aggregate destination prefxes (that can be aggregated) for reducing the size of rout-
ing tables.
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6.1 BGP Protocol

BGP is a path vector protocol. BGP update messages communicated between BGP

speakers indicate an AS path vector for a prefx. Specifcally, a BGP update message

[Pa, (A, B, C, D),Wd] (6.1)

from a speaker Sd (belonging to AS D — the last AS in the path) indicates that prefx Pa 

owned by the frst AS A in the path. Wd is the weight of the path.

A BGP speaker may receive multiple paths for the same prefx. All such paths are

stored by the BGP speaker in the incoming routing information database (RIDB-IN). How-

ever only the best path for a prefx may be copied to the outgoing database (RIDB-OUT),

and advertised to other BGP speakers. Most often a BGP speaker is a component of a

router which uses entries in RIDB-OUT (best path for different prefxes) to forward IP

packets.

The best path is the one with the maximum weight. Several parameters are used to

compute the weight of a BGP path. For simplicity, we restrict ourselves to some of the

more important weight parameters, i) pre-path weight; ii) local preference iii) AS path

length; and iv) multi-exit descriptor (MED).

The pre-path weight is assigned at time of origination. If two paths for the same prefx

have the same pre-path weight, then the the local preference is considered (higher the

better). If both pre-path weight and local preference are the same, the AS path length

(number of ASes in the path) is considered. The longer the path, the lower the weight. If

the path lengths are also the same, then the MED weight is considered (higher the better).
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6.1.1 Local Preference and MED

Every BGP speaker recognizes a set of other BGP speakers as neighbors. Every neigh-

bor is associated with two weight parameters — a local preference, and an MED. From the

perspective of a speaker Sa 

1. Lb is the local preference of Sb implies that for all paths received from Sb the local
preference component of the weight should be reset to Lb.

2. Mb is the MED of Sb implies that for all paths advertised to Sb, the MED component
of the weight should be set to Mb.

Local preference and MED weights are assigned only to neighbors that are speakers of

foreign ASes.

6.1.2 Processing Received BGP Updates

When a BGP update message is received from a foreign speaker Sb (of AS B) the steps

to be taken by a speaker Sa (AS A) are as follows:

1. Increment hop-count;

2. Add own AS A to the path vector;

3. Change local preference to value Lb;

4. Set next hop to Sb 

5. Store path in RIDB-IN.

When a path is received from a speaker Sa 
0 belonging to the same AS, no component of

the weight is changed, and the AS number is not inserted (as it was already inserted by the

previous hop). The next hop is set to Sa 
0 .
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6.1.3 Relaying and Originating BGP Updates

For relaying a BGP message for a prefx P to a BGP speaker Sb in a foreign AS, the

steps to be taken by speaker Sa are

1. Among all paths for the same prefx, choose the path with the highest weight

2. Change the MED component of weight to Mb;

3. Advertise the path with modifed weight.

For originating a path (for owned prefxes), the pre-path weight is set, and the MED is set

to that of the foreign neighbor. Such originated paths are not sent to speakers of the same

AS (as paths to IP addresses within the AS are established using an intra-AS protocol). For

relaying a BGP update message (for a prefx owned by a foreign AS) to a speaker Sa 
0 of the

same AS, simply choose the path with the highest weight and send it without changing the

weight.

6.1.4 Policies and Preferences

The choice of BGP speakers for the AS, the prefxes for which a speaker may originate

BGP update messages (along with their pre-path weights), neighbors of each speaker, along

with their local preference and MED weights, etc., can be seen as policies and preferences

specifed by the AS owner to infuence the weights assigned to BGP paths.

6.1.5 Aggregation of IP Prefxes

One of the major benefts of CIDR prefxes come from the fact that BGP speak-

ers may aggregate prefxes. If two consecutive prefxes A and B (say 126.5.4.0/25 and

126.5.4.128/25) and can be aggregated into a single prefx C (126.5.4.0/24) if the next
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hop for prefxes A and B is the same. The speaker that performed the aggregation is the

originator for the aggregated prefx.

6.2 Security Kernels for BGP subsystems

Section 3.2 outlines generic security kernel functionality for issuing OMT certifcates.

In this section we consider other subsystem specifc security kernel functionality for vari-

ous BGP subsystems like AS and IP registries, AS owners, and BGP speakers.

For simplicity, we shall assume a single registry for both AS numbers and IP addresses.

All security kernel modules have a unique identity. Let R be the identity of the module

associated with the registry. One module is associated with every AS owner. We shall

assume the identities of an AS owner module to be the same as the AS number. Each BGP

speaker is associated with a module. We shall assume that the identity of BGP speaker

modules to be the IP address of the router/BGP speaker. We also assume the existence

of module functionality for authentication/verifcation of messages exchanged between

modules. Specifcally, we shall represent such functionality as

µ = fa(X, Y, {v1, v2, . . .}) and

{0, 1} = fv(X, Y, {v1, v2, . . .}, µ) (6.2)

the process of authentication (by module X , using fa()) and verifcation (by module Y ,

using fv()) of a message conveying values {v1, v2, . . .}, from module X to module Y .

Function fa() outputs a authentication code µ. Function fv() outputs a binary value (TRUE

if authentication µ is consistent, or FALSE).
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The identity R of the registry module is known to all AS owner modules. The registry

module R delegates AS numbers and IP prefxes to AS owner modules. AS owner modules

will only accept delegations from R. AS owner modules in turn delegate IP address ranges

they own to one or more BGP speaker modules.

Some of the specifc desired assurances regarding the operation of BGP are as follows:

1. an AS number cannot have more than one owner; an IP address cannot be owned
by one or more ASes. Such assurances should be guaranteed even if the computers
employed by the registry have been compromised by an attacker.

2. AS owners can only delegate address ranges owned by the AS to BGP speakers.

3. Notwithstanding the possibility that a router/ BGP speaker may be under the control
of an attacker, the following assurances are desired

(a) The BGP speaker will only be able to create BGP update messages for prefxes
delegated by the AS owner

(b) No BGP update message can be created by violating any of the policies / pref-
erences specifed by the AS owner (neighboring speakers, local preference and
MED, pre-path weights) or BGP rules (only the path with the best weight can
be advertised).

(c) A speaker will not accept paths which already includes its own AS (to ensure
that routing loops cannot be created).

(d) All BGP speakers will increment the hop count exactly by one.

(e) A speaker will be able to aggregate only prefxes for which the next hop is the
same speaker.

6.2.1 Mutual Authentication for BGP subsystems

The module T is assumed to possess limited protected storage, and expose well de-

fned interfaces to the associated untrusted subsystem. Such interfaces can be used by an

untrusted subsystem (say) A to demonstrate the integrity of databases stored by the sub-

system, and request TA associated with subsystem A to attest verifed records.
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For attesting records or contents of records (for verifcation by other subsystems, or

security kernels in other subsystems) every module is assumed to possess a unique identity,

and secrets used for authenticating messages. For example, the secret could be a private

component of an asymmetric key pair, which is used for signing messages. In this case,

the public key of the module is certifed by a trusted key distribution center, attesting the

integrity of the module. Alternately one or more secrets could be provided by a trusted key

distribution center to each module. Only modules that have been verifed for integrity and

issued such secrets by the trusted key distribution centers will be able to use their secrets

to compute a pairwise secret with other modules attested by the KDCs. Such pairwise

secrets may be used to compute message authentication codes for attesting the integrity of

the contents of a record.

6.2.2 OMTs Used by BGP subsystems

The registry and AS owners maintain an ROMT where each leaf indicates a range of

IP addresses, and the third value is the AS number (of the AS that owns the address range).

BGP speakers maintain one ROMT, multiple IOMTs, and a plain Merkle tree. A plain

Merkle tree is used to maintain a neighbor table with a static1 number of records. The

ROMT is used maintaining address ranges for which the speaker can originate BGP up-

dates (owned prefxes and aggregated prefxes).

An IOMT is used for maintaining the RIDB-IN database. More specifcally a nested

IOMT is used where the root corresponds to a tree with leaves whose indexes are desti-

1For scenarios involving dynamic databases where records cannot be inserted or deleted (the dynamics
come only from modifcation of records) OMT is an over-kill; a plain Merkle tree is adequate.
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nation IP prefxes. Corresponding to each prefx the value (third feld) is the hash of two

IOMT roots θ and γ. The root θ of the “path tree” has one leaf for every path for the prefx.

The root γ of the “weight tree” represents the weights of different paths, and enables the

module to readily identify the path with the highest weight. The index of leaves in the path

tree is a function of a quantity α that is itself the root of an IOMT. Specifcally, the “path

vector” IOMT with root α has a leaf corresponding to every AS in the AS path. Represent-

ing the AS path in this way makes it possible for the module to recognize that it is already

in the path, and thereby prohibit creation of routing loops.

6.3 Registry Module R and AS Owner Modules

The registry module maintains an ROMT root ξr, where each leaf indicates ranges of

IP addresses, and the AS number of the owner. Unassigned IP chunks have a leaf with

(third) value 0.

The function Fph
R () can be utilized to insert/delete any place holders in the ROMT by

providing a memoranda of type ER.

The registry employs the function Fas
R () to convert the third value of any leaf from 0 to

a non zero value.

A leaf (I, I 0, A) in the ROMT indicates that the IP addresses in the range I and I 0 − 1 

have been assigned to AS A. The leaf (I, I 0, A) can be conveyed to an AS owner module

A using interface Fdp
R ().

AS owner modules also maintain an ROMT with root ξr. The leaves indicate IP ad-

dresses owned by the AS. In the tree maintained by the owner of AS A who (for example)
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F R (x, ρ) {ph 

IF (ρ = h(ER, ξr, x, χ)) ξr ← x; 

} 

F R (I, I 0, A, ρ, ξ0 ) {as r 

IF (ρ = h(U1, HL(I, I
0 , 0), ξr, HL(I, I

0, A), ξ0 , χ) ξr ← ξ0 ;r r 

} 

F R (I, I 0, A, ρ) {dp 

IF (ρ = h(V 1, HL(I, I
0, A), ξr, χ)) RETURN fa(U, A, {x}); 

} 

F O (x, ρ) {ph 

IF (ρ = h(ER, ξr, x, χ)) ξr ← x; 

} 

F O (I, I 0, µ, ρ, ξ0 ) {ap r 

x ← HL(I, I
0 , 0); x0 ← HL(I, I

0, A); 

IF (fv(U, A, x0, µ) = 0) RETURN; 

IF (ρ = h(U1, x, ξr, x0, ξ0 , χ) ξr → ξ0 ;r r 

} 

F O (ξ0 , ρ, S, ξ0 ) {dp o n 

IF (ρ = h(V 1, ξ0 , ξr, χ) RETURN µ = fa(A, S, {ξ0 , ξ0 });o o n 

} 

Figure 6.1

Security Kernel Functionality in Registry and AS Owner Modules.
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owns two non consecutive chunks with addresses between [a, a0) and [b, b0) the ROMT

leaves will be (a, a0, A), (a0, b, 0), (b, b0, A) and (b0, a, 0).

The function Fph
o () can be used to insert/delete place-holders in the tree. Once a place

older (a, a0 , 0) exists, a delegation (a, a0, A) from the registry module R can be used to

update the place holder to a leaf (a, a0, A).

Any node in the tree with root ξr can now be sub-delegated to a BGP speaker. Depend-

ing on which prefxes need to be delegated to which BGP speaker the owner can use Fph
O () 

to subdivide owned prefxes and swap positions of prefx leaves, and choose the root of a

subtree which includes all prefxes to be delegated to the speaker.

Apart from delegating IP prefxes, the AS owner also specifes various preferences as

leaves of a hash tree (with root ξn 
0 ). The types of records in this tree include

1) Pre-path weight; a record of the form [P, o] for each owned prefx P that can be

originated by the speaker, indicating the pre-path weight o.

2) Neighbor preferences record for each neighbor. A record for neighbor F is of the

form

NF = [F, sf = 0, tf = 0, Af , Lf ,Mf , τf ] (6.3)

where Af is the AS number of the neighbor, Lf and Mf are the local preference and MED

weights, and τf is the maximum permitted duration between HELLO messages from the

neighbor N .
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The values sf and tf are set to zero by the AS owner. Such felds can be modifed only

by the module of a BGP speaker initialized using the value ξn 
0 . The value sf is the time at

which a link to F was established. Value tf is the time at which the F was last heard-from.

6.4 BGP Speakers

The security kernel of BGP speakers maintains 3 dynamic roots (see Figure 6.2)

1. the root ξo of an ROMT. This is initialized to a value ξo 
0 communicated by the AS

owner module.

2. the root ξn of a Merkle tree with a leaf corresponding to every neighbor, and a static
leaf for every owned prefx corresponding to which the BGP speaker can originate
BGP updates. This root is initialized to the value ξn 

0 conveyed by the AS owner
module.

3. the root ξd, an IOMT indexed by IP prefx — the RIDB tree. This value is initialized
to zero.

BGP speakers also maintain a static value A — initialized to the AS number represented

by the speaker.

During regular operation of the BGP speaker the RIDB root ξd is updated whenever a

BGP update message is received, or if a path is removed (for example, due to loss of link

to neighbor).

The neighbor/preferences tree root ξn is updated whenever a neighbor state is updated.

Specifcally, corresponding to each neighbor are two dynamic values: a connection identi-

fer s (which is the time at which the connection was initiated) and a time-stamp t (time of

last activity in the connection).
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Figure 6.2

OMTs Used by BGP Speakers.

The leaves of the ROMT are IP address ranges for which the speaker can originate BGP

updates. Originated updates can be for owned IP address ranges or for aggregated prefxes.

When initialized, the ROMT root ξo is a commitment to leaves corresponding to owned IP

ranges (delegated by the AS owner module by conveying a root of a sub-tree from its tree
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of owned prefxes). In all such leaves the third value a is the AS number. The ROMT root

ξo may also be updated for purposes of aggregating CIDR prefxes. Specifcally, for any

prefx in the RIDB tree the address range and the next hop in the best path to the prefx can

be added to the ROMT. Thus, for leaves corresponding to foreign IP ranges the third value

is the next hop. Two adjacent prefxes with the same next hop can now be aggregated.

More specifcally, aggregation corresponds to removing a place-holder. For example, two

leaves (I1, I2, x) and (I2, I3, x) where [I1, I2) and [I2, I3) are two ranges with the same next

hop x, can be converted to a single leaf (I1, I3, x) through an equivalence operation.

From the perspective of the BGP speaker modules, corresponding to a BGP update

message from a speaker (with IP address) X to a speaker Y is an authenticated message

from module X to module Y computed as

µ = fa(X, Y, {P, α, l, wpp, wlp, wmed]}) (6.4)

where P is the prefx for which the path is advertised, α is a one-way function of the AS

path, l is the path length, wpp, wlp and wmed are respectively the pre-path weight, local

preference, MED. The four weights are used to construct a weight represented as

W = [wpp k wlp k MAX − l k wmed]. (6.5)

Thus, for any prefx the path with the highest weight W is the best path.

Security kernel functions F S () and F S () are used to create such BGP update mes-rel orig 

sages, and F S () is used to process such messages from neighboring speakers and updateupd 

the RIDB root. More specifcally
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1) F S 
orig() is used to originate BGP updates (for own prefxes and aggregated prefxes).

Specifcally, a path for a prefx P (represented in the origin tree as a leaf with range [I1, I2) 

and third value v) can be advertised only if

1. the third value v is its own AS number, and a leaf exists in the tree with root ξn for
the prefx P , conveying the pre-path weight wpp for prefx P ; or

2. the third value v corresponds to a neighbor with a live link, and no leaf with prefx
P exists in the RIDB tree.

2) F S () is used to relay stored BGP paths in the RIDB to neighbors. F S () identifesrel rel 

the best path for a prefx, and only the best path may be advertised. Alternately, information

regarding the best path can also be added to the origination tree to aggregate a prefx.

Neighboring BGP speakers maintain a TCP connection over which BGP update mes-

sages are exchanged. To keep the connection alive, and for testing the existence of the link,

special HELLO messages are exchanged periodically. From the perspective of the security

kernel in a speaker S the link to a neighbor F is associated with the link establishment

time sf and a time-stamp tf . Once a link has been established, the module in F is expected

to confrm their continued presence by periodically sending authenticated time-stamped

messages for updating the time-stamp tf .

In the RIDB-IN, multiple paths, each with possibly different weights, may exist for

each prefx. To enable the security kernel to readily determine the path with the highest

weight, the plurality of weights for each prefx are maintained as an ordered list.

In the weight IOMT, the index of a leaf is a weight, and the value (third feld) is the

number of occurrences of the weight in the list. For example, corresponding to a list with

four weights (21, 21, 34, 42), three leaves (21, 34, 2), (34, 42, 1), (42, 21, 1) will exist in
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the weight tree (index 21 occurs twice as indicated by the value feld). As in any IOMT,

insertion of a place holder (say for index 5, which signifes “zero occurrences of value 5 in

the list” ) does not modify the list.

Within the RIDB IOMT a special IOMT is also used to represent AS paths. In the

AS path IOMT the the index of leaves are ASes. A tree corresponding to a path of

length 5 will have 5 leaves. The value feld (third feld) is the position in the path. As

an example, corresponding to a path A → D → B → E the leaves of the tree will be

(A, B, 1), (B, D, 3), (D, E, 2) and (E, A, 4) (note that the value for index D is 2 as D is

the second AS in the path).

In the RIDB IOMT the index of leaves are IP prefxes. The value feld in the IOMT is

a one way function of two IOMT roots

1. IOMT root γ — is the root of a weight-IOMT; and

2. IOMT root θ — the root of an IOMT whose leaves like (β, β0, v) characterize each
path to the prefx.

In the IOMT with root θ 

1. the index of leaves are functions of the path; more specifcally, in the index β = 
h(G, h(l, α)), G is the next hop, l is the path length, and α is the root of an AS-path
IOMT root.

2. The value v corresponding to an index β is a function of two values — the weight
W of the path, and the connection identifer of the next hop that provided the path.
If the connection identifer in a path is not the same as the identifer in the neighbor
record for that neighbor, then the path is considered as stale (and the weight is set to
0).

6.4.1 Using Security Kernel Functions in BGP Speaker Module

BGP speaker modules expose a function F S 
init() which is invoked to initialize the mod-

ule. An authenticated message from AS module A (created by using function Fdp
A () in
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Figure 6.3) is necessary for initializing the roots of the neighbor tree to ξn 
0 , and the origin

tree to ξo 
0 .

Any place holder can be added to the IOMT with root ξr or the ROMT with root ξp,

using function Fph
S (). Any place holder can also be added to the path tree or weight tree

corresponding to any prefx. This can be accomplished using function Fph
S 
2() which issues

a equivalence memoranda of type E2 identifying two roots corresponding to before and

after insertion of a place holder in a tree with root θ, or a tree with root γ, or both.

Function FS
hlo() can be invoked to create authenticated messages that can be sent to

other speakers. This function ensures that speaker S can only connect to speakers explicitly

authorized by the AS owner (by providing the initial root ξn). Such authenticated messages

can be used to create a connection (with a new value of s deemed suffciently close to the

current time t), and for updating time stamps of neighbors.

6.4.2 Processing BGP Updates

Function F S () is invoked to update the RIDB-IN tree — either due to a BGP up-upd 

date message received from a neighbor, or due to loss of link to the next hop. From the

perspective of the security kernel the link to the next hop is broken if the time-stamp in

the neighbor record is stale. If the current neighbor session identity is different from the

session identity of the next hop in the stored path, then the path is assumed to be invalid

(as the path was provided during an earlier session). If the neighbor is no longer active, or

if the path is invalid, the path weight will be set to 0.
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F S , ξ0 , µ) {init(A
0, ξo 

0 
n 

IF (fv(A
0, S, {ξ0 , ξ0 }, µ))o n 

ξn ← ξ0 ; ξo ← ξ0 ; ξd ← 0; A ← A0;n o 
} 
F S (ξ0, ρ, o) {ph 
IF (o = 1) ∧ (ρ = h(ER, ξo, ξ0, χ)) ξo ← ξ0; 
ELSE IF (o = 2) ∧ (ρ = h(EI, ξr, ξ0, χ)) ξd ← ξ0; 
ELSE IF (o = 3) ∧ (ρ = h(E2, ξr, ξ

0, χ)) ξd ← ξ0; 
} 
F S (θ, θ0, ρ1, γ, γ0, ρ2, P, P 0, ρ, ξ, ξ0) {ph2 
IF (ρ1 =6 0) ∧ (ρ1 =6 h(EI, θ, θ0, χ)) RETURN; 
IF (ρ1 =6 0) ∧ (ρ1 =6 h(EI, γ, γ0, χ)) RETURN; 
IF (ρ1 = 0) θ0 ← θ; 
IF (ρ2 = 0) γ0 ← γ; 

0vp ← HL(P, P 0, h(θ, γ)); vp ← HL(P, P 0, h(θ0, γ0)); 
IF (ρ = h(U1, vp, ξ, v0 , ξ0, χ)) RETURN h(E2, ξ, ξ0, χ);p 

} 
0F S (G, sg, tg , Ag, Lg,Mg, τg, ρ, ξ0 , s , t0 , µ, t0){hlo n g g 

v ← h(G, sg , tg, Ag, Lg,Mg, τg); 
0IF (µ = 0) ∧ (|t − t0| < δ) {s = t0, t0 = 0};g g 
0ELSE IF (µ = 0) ∧ (t0 = 0) {s = 0, t0 = 0; }g g 

0ELSE IF (µ = 0) {s = sg, t0 = tg ; }g g 
0ELSE IF (fv (G, S, {s , t0 }, µ) = 0) RETURN :g g 

0 0IF ((s < sg) ∨ ((s = sg) ∧ (t0 < tg))) RETURN :g g g 
IF (ρ = h(U1, v, ξn, h(G, s0 , t0 , Ag, Lg,Mg, τg), ξ

0 , χ))g g n 
0ξn → ξ0 ; RETURNfa(S, G, {s , t});n g 

} 

Figure 6.3

Security Kernel Functions for BGP Speakers.
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F S () is invoked to update a path for a prefx P . Recall that a prefx P is associatedupd 

with a path tree root θ and a weight tree root γ. A path in the path tree is uniquely identifed

as a function of the AS-path α, path-length l, and next hop N : the index of the path is

β = h(N, h(l, α)). The path is associated with a path weight Wc and the session identity

sn of the next hop.

Updating the path implies modifying the current weight Wc associated with the index

β to a weight W . In addition, modifcation of the weight requires the weight tree to be

modifed. Specifcally

1. if Wc = 0 and W 6= 0 (inserting a path), then the value W has to be added to the
IOMT with root γ;

2. if W = 0 and Wc 6= 0 (setting path weight to 0) then the value Wc has to be removed
from the tree with root γ.

3. if W = Wc = 0, then F S () is invoked to delete a path with zero weight. In thisupd 
case no change is necessary to the weight tree root γ.

For inserting a path F S () is invoked by submitting a received BGP update from a neighborupd 

N specifying path vector α, path length l, and weights wpp k wlp k wmed. The weight for

the inserted path is then

W = wpp k x k MAX − l k wmed (6.6)

where x = Ln or x = wlp. Specifcally, if the neighbor N providing the update belongs to

from a foreign AS, the x = Ln (the local preference of X); if N belongs to the same AS,

the local preference wlp advertised by N is retained.

For setting weight to zero F S () may be invoked without a BGP message, or a BGPupd 

message that withdraws a previously advertised path. A withdraw message from a neighbor

indicates wpp = wlp = wmed = 0.
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In general, updating a path with index β (for prefx P ) will require modifcation to the

path tree root θ and weight tree root γ (in the leaf for prefx P ). For incorporating the

change in values α and γ associated with leaf index P , the RIDB root ξd will need to be

modifed.

The inputs to F S () includeupd 

1. a neighbor record NN for N and a V 1 memoranda ρn to verify the integrity of the
record against the root ξn.

2. U1 memoranda ρt, necessary to update a leaf with index β in a tree with root θ,

3. U1 memoranda ρw, necessary to increment the counter in leaf with index W (when
a path with weight W is inserted), or decrement the counter in a leaf with index Wc 
(when the current weight Wc of the path is reset to 0), in the weight tree with root γ,

4. U1 memoranda ρd, necessary to update the RIDB-IN root ξd due to the changes to
values γ and θ associated with index P ; and

5. a received authenticated BGP update message [α, l, wpp k wlp k wmed, µ] from neigh-
bor N .

6.4.3 Advertising BGP Paths

Function F S () is invoked to identify the best path for a prefx and a) advertise theadv 

best path (create BGP update) to a neighbor, or b) add the prefx for the path (along with

the next hop and session identity of the next hop) to the origination2 tree. F S () can alsoadv 

be invoked to create a BGP update to withdraw a path with weight 0;

If W is the best weight for prefx P then a leaf (W, W 0,m) with W 0 < W and m =6 0 

should exist in the tree with root γ. This is demonstrated using a memorandum of type

V 1. There should also exist a leaf for an index β = h(G, h(l, α)) in the tree with root

2This is to enable aggregation of prefxes. Two adjacent prefxes with the same next hop and session
identity can be aggregated by removing a place-holder in the ROMT.
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F S ([P, α, l, wpp k wlp k wmed], µ, // Update regarding prefx Pupd 
ρn, NN = [N, sn, tn, An, Ln,Mn, τn], // from neighboring speaker N 
β0 , (Wc, sc), θ, θ0, ρt, // insert path in path tree
γ, W 0, m, γ0, ρw, // and weight in weight tree
P 0, ρd, ξ0 ) //and update RIDB root ξr{d 

IF (ρn 6= h(V 1, h(NN ), ξn, χ)) RETURN; 
IF (µ = 0) ∧ ((sn 6= sc) ∨ (t > ln + τn)) W ← 0; 
ELSE IF (µ = 0) ∧ (Wc = 0) W ← −1; 
ELSE IF (fv(N, S, {sn, P, αn, wpp k wlp k wmed}, µ) = 1) 

IF (A =6 An) W ← [wpp k Ln k MAX − l k wmed]; 
ELSE W ← [wpp k wlp k MAX − l k wmed]; 

v ← (sc = 0)?0 : h(Wc, sc); v0 ← (W = −1)?0 : h(W, sn); 
β = h(N, h(l, α)); v ← HL(β, β0, v); v0 ← HL(β, β0, v0); 
IF (ρt 6= h(U1, v, θ, v0, θ0, χ)) RETURN; 
IF ((W ≤ 0) ∧ (m > 0) ∧ (Wc > 0)) 

v ← HL(Wc,W 0,m); v0 ← HL(Wc,W 0,m − 1); 
ELSE IF ((Wc = 0) ∧ (W < 0)) v ← v0 ← 0; 
ELSE IF (W > 0) v ← HL(W, W 0,m); v0 ← HL(W, W 0,m + 1); 
IF (ρw 6= h(U1, v, γ, v0, γ0, χ))) RETURN; 
v → HL(P, P 0, h(α, γ)); v0 → HL(P, P 0, h(α0, γ0)); 
IF ρd = h(U1, v, ξd, v0, ξ0 , χ) ξd ← ξ0 d d; 

} 

Figure 6.4

BGP Speaker Security Kernel Functionality for Accepting BGP Updates.
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θ associated with values sg and W . For this purpose a V 1 memoranda is necessary to

demonstrate the integrity of a neighbor record for G against ξn, and another V 1 memoranda

is required to demonstrate the integrity of the leaf with index β against root θ. Finally,

another V 1 memoranda is required to demonstrate the integrity of values θ and γ associated

with index P against the RIDB root ξd.

Now that the best path (described by next hop G, AS vector α, path length l and weight

W ) has been identifed,

1. a leaf with range [x, y) corresponding to prefx P can be added to the origination tree
indicating next hop and session identity G k sg, or

2. a BGP update for prefx P can be created and sent to a neighbor F .

In the former case, updating the origination tree will require a leaf (x, y, 0) to be modifed

to (x, y, G k sg) where P ≡ [x, y). For updating the leaf of the origination tree, a U1 

memoranda is required as input to F S ().adv 

Before a BGP message for a path can be advertised to a foreign neighbor F , the path

vector and path length have to be modifed (to insert own AS number). If the path vector

root is currently α, and the length is currently l, the value l should be incremented, and a

new leaf needs to be inserted into the IOMT with root α. Specifcally, the new leaf will

have index A (AS number of the speaker) and value l +1. More specifcally, a place holder

for A needs to be inserted in a tree with root α, following which the place holder can be

updated to modify the third feld from 0 to l + 1. Thus, a memoranda of type EI (for

inserting a place holder) and a memoranda of type U1 (for updating the place-holder) are

required as inputs.
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F S (α, l, β0, W, θ, ρt,W 0, m, γ, ρw, P, P 0, ρd,adv 
ρn, NG, αi, ρi, α

0, ρas, ρf , NF , ρo, ξ
0 ){o 

IF ((F = 0) ∧ (ρn 6= h(V 1, h(NG), ξn, χ))) RETURN; 
ELSE IF (ρn 6= h(V 2, h(NF ), h(NG), ξn, χ)) RETURN; 
β ← h(G, h(l, α)); v ← HL(β, β0, h(W, sg)) 
IF (ρt 6= h(V 1, v, θ, χ)) RETURN; 
IF (ρw 6= h(V 1, HL(W, W 0,m), γ, χ)) RETURN; 
IF (m < 1) ∨ (W > W 0) RETURN ; 
IF (ρd 6= h(V 1, HL(P, P 0, h(θ, γ)), ξd, χ)) RETURN; 
IF (F = 0)//let [x, y) is the address range of prefx P 
P → [x, y); v ← (x, y, 0); v0 ← (x, y, G k sg); 
IF (ρo = (U1, v, ξo, v0, ξ0 , χ)) ξo ← ξ0 ; RETURN;o o 

IF (Af 6= A) 
IF (ρi 6= h(EI, α, αi, χ)) RETURN; 
l ← l + 1; v ← HL(A, A0 , 0); v0 ← HL(A, A0, l); 
IF (ρas 6= h(U1, v, αi, v

0, α0) RETURN ; 
ELSE (α0 ← α); 
IF (W = 0) RETURN fa(S, F, {sf , α

0, l, 0 k 0 k 0}); 
ELSE IF ((t < tf + τf ) ∧ (t < tg + τg)) 
[wpp, wlp, wlen, wmed] ← W ; 
IF (A = Af ) RETURN fa(S, F, {sf , P, α, l, wpp, wlp, wmed}) 
ELSE RETURN fa(S, F, {sf , P, α0, l, wpp k 0 k Mf }) 

} 

Figure 6.5

BGP Speaker Security Kernel Functionality for Relaying BGP Updates.
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6.4.4 Originating BGP Updates

F S () is used to advertise path information for two categories of prefxes 1) prefxesorig 

owned by the AS; and 2) aggregated prefxes. Specifcally, in leaves corresponding to

owned prefxes in the origination tree, the third value will be its own AS number A. Corre-

sponding to other leaves the third value will be a neighboring speaker G (next hop for the

prefx) and a session identity sg 
0 of G (at the time the prefx was added to the origination

tree).

F S , ρo, ρr, ρn, NF , ρf , NG, s
0 , ξ0 ){orig (P, P 0,Wp g o 

IF (Af = A) RETURN; 
0IF (G = 0) v ← A; ELSE v ← G k s ;g 

P → [x, y); v ← HL(x, y, v); 
0IF ((F = 0) ∧ (sg 6= s )) // Remove aggregated prefxg 

IF (ρn 6= h(V 1, h(NG), ξn, χ))) RETURN; 
IF (ρo = h(U1, v, ξo, HL(x, y, 0), ξ0 , χ) ξo ← ξ0 ; RETURN;o o 

IF (t > tf + τf ) RETURN ; 
IF (ρo 6= h(V 1, v, ξo, χ) RETURN; 
IF (G = 0) ∧ (ρn = h(V 2, h(P, Wp), h(NF ), ξn, χ)) 

RETURN fa(S, F, {sf , P, HL(A, A, 1), 1,Wp k 0 k Mf }) 
IF (ρn 6= h(V 2, h(NF ), h(NG), ξn, χ))) RETURN; 
IF (ρr =6 h(V 1, HL(P, P 0 , 0), ξr, χ)) RETURN; 
IF (t < tg + τg) 

RETURN fa(S, F, {sf , P, HL(A, A, 1), 1, 0 k 0 k Mf }) 
} 

Figure 6.6

BGP Speaker Security Kernel Functionality for Originating BGP Updates.

An owned range [x, y) can be converted into a prefx P and advertised to a neighbor F 

only if a record (P, wpp) exists in the neighbor/policies tree with root ξn. A certifcate of
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type V 2 is provided as input to simultaneously verify the integrity of the neighbor record

NF and record (P, wpp) in the neighbor tree.

To advertise an aggregated prefx P a V 1 memoranda attesting the integrity of the next

hop neighbor record NG is required. In addition, a V 1 certifcate is required to demonstrate

that prefx P does not exist in the RIDB-IN tree.

If the next hop F (to whom the origination message is to be sent) is set to F = 0, then

F S () interprets this as a request to delete an aggregated leaf for prefx P with third valueorig 

G k s0 g. To remove the aggregated prefx the third value G k s0 g is set to 0. For this purpose

a certifcate ρo of type U1 is required as input.

When a BGP message is originated for an owned prefx or an aggregated prefx the

MED weight is set to to value Mf (for the intended receiver F ) provided by the AS owner;

the local preference is set to 0; for owned prefxes the pre-path weight is set to the value

Wp prescribed by the AS owner, and for aggregated prefxes the pre-path-weight is set to

0.

6.5 Related Work

The current approach to secure BGP is based on the Secure BGP [31] protocol pro-

posed by Kent et. al. This approach employs public key certifcates to authenticate com-

munication between ASes (BGP updates) and delegation of AS numbers/IP prefxes. More

specifcally, a dual certifcate system (supported in the back-end by a public key infrastruc-

ture (PKI)) is used where the one certifcate binds the public key of the AS owner to the

operating address space (IP prefx) and AS number, and a second certifcate binds routers
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to an AS. Apart from such static certifcates, dynamic certifcates are also created by BGP

speakers along with every update message. Specifcally, such certifcates created by ev-

ery AS in the path seeks to assure the integrity of the AS path vector. Whenever a router

receives an update message, it verifes the dual certifcates to ascertain the validity of the

message. In order to advertise the received message it extends the path by adding itself to

the path and signing it (along with the nested signatures of the previous hops) with its own

public key. To prevent deletion attacks a speaker in AS A sending an update message to a

speaker in AS B also includes the next hop B in the signature.

While S-BGP approach is successful in its claims for identity verifcation (AS owner,

routers) and update message integrity, it fails to provide any assurances for the overall

operation of a subsystem in the protocol. For example, there are no assurances provided by

the protocol guaranteeing that a router will indeed select the best path and that it will strictly

abide by the policies and preferences prescribed by the AS owner. The security features of

S-BGP protocol does not extend to aggregated prefxes as it is impractical to create static

certifcates to validate “ownership” of aggregated prefxes. This is a severe disadvantage

of S-BGP as much of the advantages of CIDR stem from the ability to aggregate prefxes.

In the proposed approach the simple security kernel associated with BGP speakers

ensure that the speakers can only advertise the best path, that all preferences and policies

of the AS owner will be strictly adhered to. More importantly, the assurances also extend

to aggregated prefxes.
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CHAPTER 7

TRUSTED COMPUTING BASE FOR MANET DEVICES

A mobile ad hoc network (MANET) [55] is a dynamic subnet constituted of mobile

computers (or devices) with limited wireless transmission range. MANET devices rely on

each other for routing packets among themselves, and consequently, do not depend on a

dedicated routing infrastructure.

A MANET routing protocol is a set of rules which dictates the tasks to be performed

by every device in a MANET subnet to enable discovery of multi-hop paths for relaying

data packets. Such rules govern processes like discovery of neighbors (devices within

limited wireless transmission range), exchange of routing information between neighbors,

maintaining a destination table (DT) and a neighbor table (NT) at every device, using

information in the DT and NT to forward data packets, etc.

The rules that govern the actions of a MANET device are typically encoded as software

executed by the device. Unintended functionality — either deliberately hidden malicious

functionality, or accidental bugs — in any component of a mobile device could potentially

be exploited by attackers. Specifcally, they could be exploited to a) modify the function-

ality (routing software) of the device or b) modify the information stored by the device (in

DT and NT), or c) expose secrets of the device, thereby enabling the attacker to imperson-

ate the device to advertise arbitrary “routing information.” Attackers could be legitimate
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owners of a device, or entities who may have exploited some hidden functionality in the

device to acquire some extent of control over the device. Many such attackers may even

collude together to wreak havoc on the ad hoc subnet.

A practical MANET device can come in several shapes and sizes, ranging from lap-

tops to smart phones to special purpose sensors, constructed using a wide range of hard-

ware/software components. It is obviously far from practical to rule out the presence of

undesired functionality in every hardware and software component of every device that

could take part in a MANET subnet, or malicious behavior / incompetence in every entity

that has the ability to gain control of a device. It is, however, far more practical to assure

the integrity of a single component in every device. For example, every MANET device

could be required to possess a trustworthy chip/module.

In the rest of this chapter we shall refer to such a module/chip as a trusted MANET

module (TMM). It is assumed that secrets protected by TMMs cannot be exposed, and

the functionality of TMMs cannot be modifed. All other software and hardware in ev-

ery MANET device, and the user in control of the device (either through legitimate or

illegitimate means), are assumed to be untrusted/hostile. The trust in TMMs, and more

importantly, only the trust in TMMs, is leveraged to realize the assurance that “any device

that does not strictly abide by the protocol will not be able to participate in the MANET.”

7.1 Background

Any routing protocol can be seen as an extension of two basic routing strategies —

distance vector (DV) or link-state (LS) approaches. In LS protocols information regarding
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a destination D is in the form of the state of all links of D (to neighbors of D). All nodes

in the subnet possess the same information regarding D.

In DV protocols information regarding D is a destination record (DR) that indicates

the hop count to D, and the next hop in the path to D. In general, every node possesses

a different DR for destination D. Neighbors exchange DRs amongst themselves, and by

comparing DRs for a destination D obtained from all neighbors, a node can determine its

best DR for D, which is then stored in a table of DRs — the destination table (DT).

7.1.1 Distance Vector Protocols

A majority of popular MANET routing protocols are based on the DV approach in

which every node maintains a destination table (DT) and a neighbor table (NT). The DT

consists of a destination record (DR) for each possible destination. The NT consists of a

neighbor record (NR) for each neighbor.

A DR [q, x, m, n] for a destination D (mobile device with address D) indicates a se-

quence number q, the time of expiry x, hop-count m to the destination, and the next-hop

neighbor n in the path to the destination. For an unreachable destination, the hop-count is

∞ (an integer constant larger than the maximum allowable hop-count). A “neighbor” of a

device is another device to which the existence of a bidirectional path has been confrmed.

Neighbors are expected to confrm each other’s continued presence, possibly by exchang-

ing periodic HELLO messages. A neighbor who has has been silent for a long duration

may no longer be considered a neighbor.
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In all DV protocols, a DR for destination D is initiated by D, indicating a fresh se-

quence number, hop count (to itself as) m = 0, and time of expiry x. The next hop is set

to itself (or n = D). This DR may then be advertised to all its neighbors. Neighbors of D 

store the DR in their respective tables after incrementing the hop-count feld m to 1, and

setting the next hop as D. The stored DR may then be advertised to their neighbors. For

example, in a path D → C → B, device B receives a DR for D from C indicating hop

count m = 1 and next hop as n = D. Device B stores the DR with hop-count set to m = 2 

and next hop as n = C. In this fashion, any node in a connected subnet can acquire a DR

for destination D: a device r hops from D will have a DR for D in it’s table, with hop

count m = r.

More specifcally, a device may receive a DR for D from each of its neighbors. In

general, the stored DR is replaced by the received DR (after incrementing hop count and

modifying the next hop to the neighbor that sent the DR) if the received DR is fresher

(higher sequence number), or equally fresh and better (lower hop-count), or equally fresh

and provided by the current next hop.

Ultimately, the purpose of maintaining the DT and NT is to relay data packets. A device

S which desires to relay a data packet to D can do so only if it has a usable DR for D. A

DR [q, x, m, n = R] for a destination D is considered as usable only if m < ∞, the DR

has not expired, and the next hop n = R continues to be a neighbor. The data packet may

now be relayed to the next hop n = R. The device R at the next hop can likewise relay

the data packet onwards to it’s next hop, indicated in a usable DR for D in its DT, and so

on, until the data packet reaches D. When a device X receives a data packet intended for
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a destination D from a neighbor Y , and fnds that it no longer has a usable DR for D, it

responds by advertising a route error (RERR) packet. Y may now update it’s stored DR

for D (by setting m = ∞) and relay the RERR to it’s upstream neighbor (who had earlier

sent the data packet to Y ), and so on.

In proactive DV protocols like destination sequenced DV (DSDV) [49] every node

initiates a DR periodically — each time with a higher sequence number q. In reactive

protocols like ad hoc on demand DV (AODV) [48], nodes initiate DRs only if they desire

to send/receive data to/from another node. For this purpose, a node S desiring to send data

packets to D (and fnds that it does not have a usable DR for destination D) advertises a

route request (RREQ) packet which includes a fresh DR for itself, and it’s unusable DR

for D. The RREQ is fooded in the subnet. Any node with a usable DR for D, (or D itself)

may include the DR in a route response (RREP) packet which is relayed back to the source.

7.1.2 Covert and Overt Attacks

Broadly, an attack by a participating device (say, A) on a MANET can be seen as

an attempt to send a routing/data packet P to a neighbor (say, B) where the contents of

packet P were not generated in strict compliance with the protocol. Even more generally,

an attack may also include the act of not sending a packet P (when the protocol calls for a

packet to be sent).

An attack is successful if B is unable to distinguish between packets created strictly

according to the protocol and packets created in violation of the protocol. If B is able to

determine that a packet has been created by A in violation of the protocol, or that A should
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have sent a packet (when it did not), the attack is deemed unsuccessful (as B now has the

ability to penalize A by no longer entertaining A as a neighbor).

Attacks that can be inficted on a MANET subnet by a participating device can be

broadly classifed into overt and covert attacks. Overt attacks include incorrect packet for-

mats, and illegal modifcations to a relayed DR (for example, changing sequence number,

expiry time, or changing hop count in any other way except incrementing by one, etc.).

The reason that such attacks are overt is that

1. attacks like incorrect formats can be readily identifed, and

2. if suitable cryptographic authentication strategies1 are used to protect the integrity
of DRs advertised by devices, then the receiver of such a packet can readily detect
illegal modifcations and drop the offending packet.

The main challenges in the practical realization of assurances against overt attacks are two

fold. The frst stems from the overhead for cryptographic authentication schemes — espe-

cially for carrying over authentication over multiple hops. The second is that cryptographic

strategies are (ultimately) at most only as strong as the mechanism used for protection of a

device’s secrets. The absence of reliable mechanisms to protect secrets assigned to devices

from attackers (who may even be the owner of a device) implies that attackers may even

share secrets exposed from multiple devices to advertise misleading (but duly authenti-

cated) “routing information” at will.

Unlike overt attacks, covert attacks may not be readily discernible by the receiver of

a packet — even with sophisticated cryptographic authentication schemes. Examples of

such attacks include i) replaying DRs that were invalidated (or rendered sub-optimal) due
1For example, digital signature of the originator of the DR for protecting integrity of immutable DR felds,

and carrying over authentication for protecting the integrity of the hop-count feld.
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to recent changes in topology; ii) rebroadcasting RREQs (instead of responding with an

RREP) when a usable path exists; iii) not relaying data packets, or relaying data packets

incorrectly (for example, to a device that is not the next hop in the best DR for the des-

tination); iv) invoking unwarranted RERR packets (even when the link to the next hop is

not broken); v) accepting packets from (or relaying packets to) “neighbors” to whom a

bidirectional link does not exist (thereby, making sure that the reverse path will fail), etc.

vi) attacks based on misrepresentations of current time; for example, the clock of a device

may be modifed to make it think that a DR has expired.

The reason that such attacks may not be easily detectable is that in a scenario where

a device C receives a packet from a device A, there is no tangible way for the routing

process in a device C to confrm that A does have a link to it’s neighbor B (when A claims

that the link is broken) or that A does have a better path (when A advertises a suboptimal

path). While it might appear that a fairly sophisticated monitoring process in a neighbor

of C, (say) Y , which had earlier sent the better path to A, may be capable of detecting A’s

malicious intention it is entirely possible that Y ’s advertisement was not received by A (for

example, due to collision).

Furthermore, it is also possible for an attacker A to exploit collision-avoidance mecha-

nisms used in wireless medium access protocols to send some information to it’s all neigh-

bors while simultaneously ensuring that the information will not be heard by a specifc

neighbor B. For example, A can get to know of an impending reception by B from a CTS

(clear to send) packet from B. By transmitting information at a time that overlaps with B’s

reception, A can ensure that it’s suspicion-raising transmission will not be heard by B. An
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attacker A can also exploit this ability to carry out other possible attacks like i) claiming it

has lost it’s link to B to all its other neighbors (but continue to use B as a neighbor for it’s

own purposes); ii) faking relay of a data packet or route error packet to the next hop, etc.

From a broad perspective, covert attacks can be seen as replay attacks where the sender

is able to make contradictory statements to different entities. Any rogue process in a

MANET device may be able to perpetrate such attacks by either modifying the routing

process, or hardware drivers, or modifying the contents of the DT/NT, or by modifying

MANET parameters like τ, ∞, τs etc. Even a less sophisticated rogue process that does

not have the ability to do so, may be able to modify the interpretation of the contents of a

DT / NT by resetting the device’s clock.

7.2 Overview of TMM Based Approach

To our knowledge, the proposed approach is the frst to address both overt and covert

attacks, under the following reasonable assumptions:

1. a secure pre-image resistant cryptographic hash function h() exists; and

2. every MANET device possesses a TMM that is read-proof and write-proof.

All TMMs are identical except that each has a unique identity, and possess unique secrets

which enable any two TMMs to compute a pair-wise secret. Every TMM has a clock

which ticks at (very close to) the same frequency. However, the clocks of TMMs are not

synchronized. We shall assume that the identity of the TMM in a device A is also A.

However, to distinguish between the device and it’s TMM, we shall refer to “device A” as

Ā and “TMM A” as A.
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It is assumed that all components of MANET devices and the user(s) in control of the

device are untrusted/hostile. In other words, the untrusted user/device is able to modify the

routing software, and/or the device’s clock, and/or the DT/NT, and may possess complete

control over the wireless interface. Notwithstanding such capabilities attributed to the

rogue software/hardware in the device or the user controlling the device, the goal is to

ensure that “all devices will indeed abide by the protocol rules.”

¯ ¯In the proposed approach, any MANET packet sent by a device A to device B should

be accompanied by a corresponding message from TMM A to TMM B. Pairwise secrets

between TMMs are used to compute message authentication codes (MAC) for assuring the

¯integrity of such messages. As devices cannot impersonate TMMs, device A is required to

¯ ¯request it’s TMM A to create a message, and deliver the message to device B; device B is

similarly expected to submit the message to it’s TMM B and receive an acknowledgement

¯message that can be conveyed back to A through A.

7.2.1 Two-Step Approach

The TMM approach to secure MANET routing can be seen as consisting of two broad

steps

1. representation of protocol rules as a simple algorithm f() that can be executed even
inside the confnes of severely resource limited TMMs, and

2. ensuring the integrity of inputs and outputs of the algorithm;

Protocol Rules: Towards the frst step we outline an algorithm fdv() suitable for any

distance vector based protocol. The inputs to the fdv() are restricted to one DR for a
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destination, up to two NRs (corresponding to two neighbors), protocol specifc constants,

and parameters associated with an event.

An event can be the a message received from another TMM, or a request from the

device. The occurrence of an event may necessitate i) a modifcation to the DR (say, for

destination D) and/or two NRs (say, for neighbors F and G) and ii) creation of up to 2

messages — one intended for neighbor F and one for G. For each type of event (specifed

by event parameters) the algorithm fdv() specifes a) the manner in which a DR for D and

up to two NRs for F and G will need to be modifed; and b) the type of messages to be

created and sent to F and G.

7.2.2 Integrity of Inputs and Outputs

Towards assuring the integrity of inputs/outputs of fdv() it is required to a) assure the

integrity of all dynamic DRs and NRs stored in the DT/ NT; b) protect the integrity of the

(static) constants, and c) assure the integrity of messages exchanged between TMMs.

7.2.2.1 Integrity of DT and NT

Resource limited TMMs cannot store the entire DT and NT inside their protected

boundary. TMMs maintain a succinct summary of the DT and NT in the form of two

cryptographic hashes ξdt and ξnt respectively. More specifcally, ξdt and ξnt are roots of

two Index Ordered Merkle Trees (IOMT): root ξdt corresponding to the DT, with DRs as

leaves of the tree, and root ξnt corresponding to the NT, with NRs as leaves.

Similar to the Merkle tree [38], the IOMT is a binary hash tree maintained by an un-

trusted prover to demonstrate the integrity of dynamic records (also maintained by the
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prover) to a resource limited verifer that stores only a single cryptographic hash — the

root of the tree. For a database with N records, the prover stores all N records, and in

addition, 2N − 1 cryptographic hashes, which are nodes of the binary tree, distributed over

log2 N levels. The verifer stores only a single node — the root of the tree.

In order for a resource limited verifer (for our purposes, the TMM) to be able verify the

integrity of any number of dynamic records stored in an untrusted location (the untrusted

device), even a plain Merkle hash tree can be used. However, to address covert attacks, it is

not suffcient for a TMM to be able to merely verify the integrity of a DR for a destination

D or a neighbor record for a neighbor R; it is also essential for the TMM to be able to

verify that an NR for R or a DR for D does not exist. If TMMs cannot readily verify non-

existence, the untrusted device will be able to hide a DR or NR that does exist, to perpetrate

covert attacks. The use of IOMT instead of a plain Merkle tree prevents such attacks.

7.2.2.2 Integrity of Messages

The integrity of constants are assured by including a one-way function of the constants

in the process of computing shared secrets between TMMs. Protocol specifc constants are

used in the process of initializing a TMM to operate in a specifc MANET. All TMMs in

a MANET will need to be initialized with the same constants, as TMMs initialized with

different constants will not be able to agree on a shared secret. Such pairwise secrets are

used for computing message authentication codes (MAC) for TMM messages to assure the

integrity of messages in transit.
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However, protecting the integrity of messages in transit is not suffcient. It is also

necessary to have proactive strategies to guarantee that messages created by a TMM A for

consumption of TMM B are actually delivered to TMM B. Note that in the path between

¯ ¯the two TMMs A and B are two untrusted middle-men - the devices A and B that house

the TMMs, who can easily drop messages.

This issue is addressed by employing “locks”. A lock is a special feld s in the NR.

When a TMM A sends a message to a TMM B it sets the lock s in the NR of B. The lock

can be reset only if an acknowledgement is received from B. As TMM messages cannot

be impersonated, the acknowledgement from B can be provided to A only if the message

from A was actually delivered to B. If the lock is not reset, A will no longer consider B as

a neighbor. It does not matter if the misbehaving device (that dropped the message) was A 

or B. Both A and B will stop regarding each other as neighbors, and thus, will not be able

to exchange messages.

7.2.3 Records and Messages

From the perspective of a TMM, a record is of the form r = [v1, v2, v3, v4], and is

associated with a record hash ⎧ ⎪⎨ 0 v1 = 0 
ω = hr(r) = ⎪⎩ h(r) v1 6= 0 

(7.1)

A destination record (DR) for a destination D is of the form rD = [qd, xd,md, nd] where

the four values are the sequence number, time of expiry, hop count, and next hop. The DR

[qa, xa,ma, na] for a destination A is created by TMM A. As the clocks of different TMMs
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are not synchronized, the time of expiry is in terms of the clock of the TMM of the device

in which the DR is stored. A DR with sequence number 0 is interpreted as a empty record

[0, 0, 0, 0] 

The NR rF for a neighbor F specifes 3 values [lf , of , sf , 0] (time neighbor was last-

heard-from, the offset of the neighbor’s clock, and lock s (the fourth value is always zero,

and is ignored). Once again, all values of time are according to the clock of the TMM in

the device storing the NR. An NR with frst feld l = 0 is interpreted as an empty record.

TMMs exchange authenticated messages (authenticated using pairwise secrets) of three

types — HLO messages, DR messages that convey a DR, or data messages that convey the

hash of a data packet. All messages have a common format

M = [R, yr, tr, ar, Dr, νr] (7.2)

where R is the identity of the sender (TMM that created the message), yr is the type of

message (HLO, DR or DATA); tr is a time-stamp of the sender R, ar is an acknowledge-

ment feld, which is 0 for a spontaneous message, and for an ACK, set to the time-stamp

of the message that is acknowledged. The value Dr is the identify of a destination, and νr 

is a cryptographic hash.

In DR messages, Dr is destination that created the DR conveyed by the message. In

DATA messages, Dr is the ultimate destination of the data packet whose hash is conveyed

by the message. In HLO messages Dr = 0. In a DR messages the value νr is the record

hash of the received DR for Dr. In a DATA message νr is a one way function of the source

S of the data packet and the hash γ of the data packet.
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7.2.4 TMM Functions

The functional components of TMM can be broadly classifed into

1. IOMT functions that enable the TMM to maintain two virtual databases — a DT and
NT — by storing only the IOMT roots;

2. Functionality than enables TMMs to establish pairwise secrets, and use such secrets
to authenticate messages; and

3. Protocol specifc functionality expressed as an algorithm fdv() executed inside TMMs.

These functional components are accessed through interfaces exposed by the TMM. The

interfaces/functions exposed by TMMs include the following:

1) IOMT related functions Fmt(), Fcat() and Feq() that perform simple sequences of

hash operations and issue various types of self-memoranda. A self-memoranda issued by

a TMM to itself (for use at a later time) is authenticated using a secret χ known only to the

TMM.

2) Function Finit() to initialize a TMM to operate in a MANET.

3) Function Fmsg() to notify the TMM of the occurrence of an “event.” An event can

be receipt of a message from another TMM, or a request from the device (for example

to send a DR, initiate a data packet, remove a stale DR/NR, etc); Fmsg() stores event

(message) specifc parameters like R, yr, tr, ar, Dr, νr and the event time t̃ (time at which

the occurrence of the event was notifed) in a reserved event register E inside the TMM.

4) Function Fupd() which executes fdv(). Inputs to Fupd() include two DRs for D (a

stored DR and a received DR) and two NRs (for F and G). Depending on the nature of the

event, execution of fdv() may result in the modifcation of up to the three records (a DR
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and two NRs). Accordingly, Fupd() updates the IOMT roots and creates messages dictated

by two outputs Of and Og of algorithm fdv().

Inputs to Fupd() also include self-memoranda which simultaneously enable the TMM

to a) verify the consistency of the DRs and NRs against the current IOMT roots, and b)

modify the roots in accordance with the changes to the DR/NRs resulting from execution

of fdv().

Fupd() ensures that only DRs/NRs consistent with the current IOMT state can be pro-

vided as inputs and modifed only as specifed by the algorithm fdv(). On completion of

Fupd() the device is expected to take the following steps:

1) Modify the DR and two NRs in exactly the same manner. If not, the DR and the NRs

will no longer be recognized as consistent with the IOMT roots stored inside the TMM.

Inconsistent DRs cannot be advertised to other devices or used for forwarding data packets.

No messages will be accepted from / sent to neighbors with inconsistent NRs.

2) Send the messages to F and G. If a device does not send the message to a neighbor

F = Y , an acknowledgement from Y cannot be submitted to the TMM (as TMM messages

cannot be faked) to reset the lock s in the neighbor record of Y , which will result is then

the loss of the link to Y .

7.2.5 Distance Vector Algorithm

Protocol specifc components of the TMM based approach include a specifcation of

constants, and the algorithm fdv(). (Figure 7.1). The inputs to fdv() include a DR for D two

NRs (F and G), event related parameters, and constants∞, τ, τs, τr and τp. If D = 0 the
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implication is that no DR has been provided as input (if F = 0 no NR for F is provided).

qd = 0 it signifes an empty DR. lf = 0 implies an empty NR for F . D = I implies

self-DR (as I is the TMM identity). Most often, the neighbor F is the source of a event (or

F = R), and the neighbor G is the next hop nd in the DR for D (or G = nd) .

In the algorithm in Figure 7.1 the events can be classifed into three broad categories:

1) request from the device (R = 0, lines 3-16); 2) message from F (or R = F , lines 1-2

and 17-29) and 3) message from G (R = G, lines 30-33). Exection of fdv() may result in

the modifcation of the DR/NRs and two outputs Of and Og which specify the nature of

the message to be sent to F and G respectively.

The constant τr is the maximum permitted round trip time to recognize the existence

of a neighbor. If lf = 0 (empty record for F ) and if the received message from F = R is

an ack., such that t̃ − ar < τr, a successful handshake has occurred (lines 1-2). The time

tr according to the sender is roughly lf = (t̃ + ar)/2 in terms of the receivers clock. The

clock offset of the sender is then of = lf − tr.

Adding a NR for F after a successful handshake causes the NR for F to change from

[0, 0, 0] → [lf , of , 0]. Once a NR has been added, the neighbor is expected to periodically

affrm it’s continued presence by sending messages (HLO messages if there is no reason

the send other messages). On receipt of a message from F with a time stamp tf the last-

heard-from feld is updated to lf = tf + of .

The value τs is the maximum period of silence. If the time stamp lf in the NR for F 

is older than a duration τs, F will no longer be considered an active neighbor. Messages

will not be accepted from inactive neighbors. Consequently, their time-stamps cannot be
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updated. However, an NR for an inactive neighbor cannot be removed as soon as they

become inactive. If no ack. is outstanding (af = 0) a stale NR for F can be removed if

F has been inactive for duration τ . If the neighbor has been inactive due to failure to send

an acknowledgement, the inactive NR is retained for duration τp >> τ (lines 3-5). The

reason for retaining a stale NR of F for some duration is to ensure that F cannot be added

back as a neighbor (after performing a handshake).

DR and DATA messages can be sent only to active neighbors, and only if the neighbor

does not have the lock s set. A neighbor F is active at event time t̃  if t̃  − lf < τs. To

send a DR message to F to send the DR for D a value Of is set to 1. To send the DR to G 

the value Og is set to 1. When a DR or DATA message is sent to active neighbor F with

sf = 0, the lock sf is set to t̃. Later, when an ack. is received from F with ar = sf , the

lock is reset.

An acknowledgement for a DR / DATA message from F can be sent by setting Of = 2 

or Of = 3. Specifcally, Of = 2 implies a simple acknowledgement (the only purpose of

which is to reset the lock). Of = 3 is a DR message that simultaneously acknowledges a

received message and conveys a DR. Og = 4 implies initiation of a DATA message to G;

Og = 5 implies relaying a DATA message to G.

For example, when a DATA message is received from F to indicating Dr = D as the

destination, if the DR for D is usable md < ∞, and the next hop nd = G is active, then a

simple acknowledgement is sent to F (by setting Of = 2); to forward the DATA message

to G the value Og is set to 5. However, if no valid DR for D exists, the acknowledgement

sent to F also conveys the bad DR for D (Of = 3) so that F can update it’s DR for D (as
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the DR has been invalidated). Similarly, when an invalid DR message is received for F 

and the stored DR is good, the good DR is sent along with the ack.

INPUTS
(D, [qd, xd,md, nd]), (F, [lf , of , sf ]), (G, [lg , og, sg]) //DR,2 NRs
(R, yr, tr, ar, Dr, t̃), (∞, τ, τr, τs, τp) //Event, Constants
fdv(){

01 IF (y = HLO) ∧ (lf = 0) ∧ (t̃ − ar < τr) ∧ (R = F) 
02 lf ← (t̃+ ar)/2; of ← lf − tr; sf ← 0; 
03 ELSE IF (R = 0) ∧ (lf < t̃− τ ) 
04 IF (sf = 0) {lf ← 0; }
05 ELSE IF (lf < t̃− τp) {lf ← 0; }
06 ELSE IF ((R = 0) ∧ (D = I)) 
07 IF (F = 0) {qd ← ++ c; xd ← t̃+ τ ; md ← 0; nd ← I; }
08 ELSE IF ((lf < t̃− τs) ∧ (sf = 0)) {Of ← 1; sf ← t̃; }
09 ELSE IF (R = 0) ∧ (D 6= 0) ∧ (nd = G) 
10 IF ((md < ∞) ∧ (xd < t̃)) {md = ∞; nd ← 0; }
11 ELSE IF (md ≥ ∞) ∧ (xd < t̃) {qd ← 0; }
12 ELSE IF (lg < t̃− τs) {md = ∞; nd ← 0; }
13 ELSE IF ((lf < t̃− τs) ∧ (sf = 0)){Of ← 1; sf 
14 ELSE IF ((0 < md < ∞) ∧ (lg < t̃− τs) ∧ (sg = 0) 
15 Og ← 4; sg ← t̃; 
16 ELSE IF (R = 0) RETURN ERROR; 
17 ELSE IF (R = F ) ∧ (lf > t̃− τs) 
18 IF (sf = 0) ∨ (sf = ar) lf ← max(lf , of + tr); {sf ← 0; }
19 IF (Dr = I) ∧ (yr = DATA) {Of ← 2; }
20 ELSE IF ((y = DR) ∧ (D = Dr) ∧ (tr + of > lf ) ∧ (n 6= I)) 
21 IF (q > qd) ∨ (q = qd) ∧ (m < md + 1) 
22 qd ← q; xd ← x + of ; md = m + 1; nd ← F ; Of ← 2 
23 ELSE IF ((md < ∞) ∧ (ar = 0) ∧ (sf = 0)) {Of ← 3; }
24 ELSE Of ← 2; 
25 ELSE IF ((y = DATA) ∧ (D = Dr) ∧ (ar = 0)) 
26 IF (0 < md < ∞) {Of ← 2; Og ← 5; sg ← t̃; }
27 ELSE IF (md ≥ ∞) ∧ (sf = 0) {Of ← 3; sf 
28 ELSE IF (y = HLO); 
29 ELSE RETURN ERROR; 
30 ELSE IF ((R = G) ∧ (y = DR) ∧ (D = Dr) ∧ (tr 
31 IF (q ≥ qd) ∧ ((nd = 0) ∨ (nd = G)) 

← t̃; } 

← t̃; } 

+ og > lg)) 

32 qd ← q; xd ← x + og; md = m + 1; nd ← G; 
33 IF (sg = 0) ∨ (sg = ar) {lg ← tr + og; sg ← 0; Og ← 2; }
} 

Figure 7.1

DV Algorithm.
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Creating a new DR for itself implies incrementing the monotonic counter c and using

it as the sequence number for the freshly created DR. The time of expiry is set to τ + t̃.

Hop count is set to 0, and next hop is set to itself (line 7). The self DR can be sent to F if

F is active (line 8).

Lines 9-13 depicts events for which DR D needs to be updated on request by the device:

setting height to ∞ in an expired DR (line 10); deleting an expired DR (line 11); setting

hop count to∞ as the next hop nd = G is inactive (line 12).

Lines 13-15 depicts events for sending a DR to an active neighbor F (line 13); initiate

a data packet to D by creating a DATA message (Og = 4) to next hop G in a valid DR

(lines 14-15).

Lines 17-29 correspond to events where a message has been received from active neigh-

bor R = F . Update time stamp if no lock has been set, or if the message is an ack. that

clears the lock (ar = sf ) (line 18); DATA message with the receiver I as the destination

Dr; send ack to F (Of = 2) (line 19). DR message (line 20-24), updated and acknowl-

edged (Of = 2) as the received DR is better or fresher (lines 21-22). When a DR is updated

the expiry time is converted from the sender’s clock to receiver clock. If the stored DR is

better (line 23), ack with stored DR (Of = 3) only if F has no outstanding acks (else a

simple ack is sent - line 24).

DATA message (lines 25 to 27) from F with Dr = D which is not an ack (ar = 0);

relayed to the next hop G (if a path exists to D) along with an ack to F (or Og = 5, Of = 2);

if path does not exist DR message is sent to F as ack (Of = 3).
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Lines 30-33 G is the source of a DR message. The DR is updated (lines 31-32) if

fresher or equally fresh. The time stamp is updated and an ack created (Og = 2). G can be

the source of DR messages under three conditions: a) when no DR currently exists and the

DR supplied by G makes G the next hop; b) when G provides an update (which could be

a shorter or longer path); or c) if in response to a DATA message sent to the next hop G, a

DR message is received (route error).

7.3 IOMT used by MANET nodes

An IOMT in a MANET nodes takes the form

L = (A,A′, ωA), (7.3)

where A is the index of a record bound to the leaf, A′ is the next index, and ωA is the

record-hash for a record corresponding to index A.

ξ	
  

Hl(L)	
  

X	
   X’	
   ω	
  =	
  h(r)	
  Leaf - L 

Node - N 

v1	
   v2	
   v3	
   v4	
  Record 

Figure 7.2

IOMT in MANET model 2
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The record ωA (corresponding to the leaf index A) is of the form [v1, v2, v3, v4], where

v1 = 0 signifes an empty record. Associated with a record is a record-hash computed as⎧ ⎪⎨ 
ω = hr(v1, v2, v3, v4) = ⎪⎩ 

h(v1, v2, v3, v4) 

0 

v1 6= 0 

v1 = 0 
(7.4)

A DR is of the form [v1 = q, v2 = x, v3 = m, v4 = n] and an NR is of the form [v1 = 

l, v2 = o, v3 = s, v4 = 0] (the fourth value is not used in NRs). Two IOMT roots ξdt 

and ξnt (representing the DR and NR records respectively) are stored in internal registers

of TMMs. Such roots can be modifed due to different events using Fupd(), by providing

appropriate U1 and U2 certifcates. The IOMT roots can also be changed to an equivalent

root (for purposes of inserting/deleting place holders in either tree).

Specifcally, function Fph() exposed by TMMs can be used to insert or delete place

holders in the DR tree with root ξdt or NR tree with root ξnt.

Fph(r, r0, ρ){ 

IF (ρ 6= h(EI, r, r0, χ)) RETURN ERROR; 

0IF (r = ξdt) ξdt ← r ; 

0ELSE IF (r = ξdt) ξdt ← r; 

0ELSE IF (r = ξnt) ξnt ← r ; 

0ELSE IF (r = ξnt) ξnt ← r; 

} 

2Figure Notes: Values of the record r = [v1, v2, v3, v4], for a destination record take the form of [v1 = 
q, v2 = c, v3 = m, v4 = n], where q is the sequence number, time of expiry for the record is x, m is the
hop-count and n is the next hop neighbor. A neighbor record is of the form [v1 = l, v2 = o, v3 = s, v4 = 0],
where l is last-heard-from time, o is the offset value, and lock s (the fourth value is always zero, and is
ignored)
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Form the perspective of TMMs a self-certifcate satisfying ρ = h(U1, x, ξdt, x0, ξdt 
0 , χ) 

is proof that x is leaf node in the DR tree. Now, if there exists values (say) (A, A0, ωA) sat-

isfying x = HL(A, A0, ωA), the TMM concludes that ωA is the hash of record rA in the DR

tree. Similarly, a self certifcate satisfying ρ = h(U2, xf , xg, ξnt, x
0 
f , x

0 
g, ξnt 

0 , χ) along with

IOMT leaves (F, F 0, ωF ) and (G, G0, ωG) that are pre-images of xf and xg respectively,

and records rF and rG that are pre-images of record hashes ωF and ωG respectively, can be

provided as proof of existence of two NRs for neighbors F and G in the NT.

7.4 TMM Architecture

TMMs are resource limited modules that have only modest computational and storage

abilities. They perform only simple logical operations necessary to execute fdv() and hash

operations required to maintain IOMTs, compute pairwise secrets, and MACs.

Non-volatile Registers
I TMM Identity
κ KDC secret
c session counter

Volatile Registers
t Clock-tick counter
χ Self-Secret
ξdt, ξnt Roots of DR and NR IOMT
C Constants
ϑ Constant hash
E Event Register [R, yr, tr, ar, Dr, νr, t̃] 
Of , Og Outgoing message to G and F 
I Input Register [(D, D0 , rD), rD 

0 , 
(F, F 0 , rF ), (G, G0 , rG)] 

Figure 7.3

TMM Registers.
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Figure 7.3 depicts the internal registers of TMMs. Protected non-volatile registers are

reserved for the TMM identity I , a secret κ issued by a trusted key distribution center

(KDC), and a monotonic counter c. The self-identity I is used for creating DRs for I .

Every time a DR is created, or whenever a TMM is initialized, the monotonic counter c is

incremented. The secret κ is used for computing pairwise secrets shared with other TMMs.

The volatile registers include the IOMT roots ξdt and ξnt. TMMs possess a volatile

clock tick counter t which can be set to any value when a TMM is powered on/initialized,

and thereafter, incremented at the same rate in all TMMs. χ is the self-secret generated

whenever a TMM is initialized (which is used for self-MACs). Contents of the event

register E, and input register I and constants C are used by algorithm fdv() to modify

records in the input register, and set values Of and Og.

The function Finit() initializes a TMM and sets the contents of a registers C and ϑ, sets

the clock to a value provided by the device, initializes the roots of the NT and DT to zero,

increments the monotonic counter c, and generates a new self-secret χ using a random

sequence generator RSG().

Finit(t
0 , C0){ 

ϑ ← h(C0); C ← C0; χ ← RSG(); 

ξnt ← ξdt ← 0; c ← c + 1; t = t0; 

} 
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7.4.1 Mutual Authentication of Messages

The secret κx is used by TMM X to compute shared secrets with other TMMs. Specif-

ically, any two TMMs X and Y can using their respective KDC secrets κx and κy to com-

pute a common secret

Kxy = h(κx, Y ) ⊕ πxy = h(κy, X) ⊕ πyx (7.5)

where πxy and πyx are pairwise public values made available to the untrusted devices that

house TMM X and Y respectively. If the modifed Leighton Micali scheme (MLS) [50]

is used to compute the pairwise secret Kxy only one of the two nodes (X̄ or Ȳ ) requires

access to a public value; the other node employs the public value of 0 (if πxy 6= 0, then

πyx = 0; if πxy = 0 then πyx =6 0).

The MAC secret shared between two TMMs X and Y is a function of Kxy, the respec-

tive monotonic counter values cx and cy, and a value ϑ used to initialize all TMMs taking

part in the same application (for example, TMMs in all devices taking part in the same

MANET). The value ϑ is a one-way function of protocol-specifc constants.

The MAC secret Kout used by TMM X for computing MACs for outgoing messages

to TMM Y , and the MAC secret Kin used by TMM X for verifying MACs for messages

from Y are computed as

Kout = h(Kxy, cx, cy, ϑ), Kin = h(Kxy, cy, cx, ϑ), (7.6)

If the MAC secret employed for a message is K, the MAC for the message created by X ,

viz., [X, y, t, a, Dx, ν] is computed as

µ = h(y, t, a, Dx, ν, K). (7.7)
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Note that as the MAC secret K if a function of ϑ, TMMs initialized with different values of

ϑ will not agree on the MAC secret (and thus cannot exchange messages). Furthermore, as

K is a function of the session counters cx and cy, a message generated when the counters

of the sender X and receiver Y were cx and cy cannot be replayed if either cx or cy has

been modifed.

TMMs accept messages from other TMMs, or request from the device, and store con-

tents of the message/request in the event register

E = [R, yr, tr, ar, Dr, νr, t̃] (7.8)

Note that apart from the contents of the message, the time at which the message was

submitted is also recorded in the feld t̃ as the “event time.”

A function Fmsg() accepts messages from a neighbor M , verifes the MAC and stores

the message contents in register R. In addition, Fmsg() can also be used to create HLO

messages —either on request by the device, or as an acknowledgement for a received HLO

message. If Fmsg() is invoked with message source M = 0 this is construed as a request

from the device that conveys a type of request y and a value ν. If Fmsg() is invoked

with input MAC µ set to zero, this is interpreted as a request to create a HLO message

for a neighbor M . Else, the contents M, tm, am,M 0, ν of the message are verifed to be

consistent with the MAC µ. If consistent the message register R is populated. In addition,

if the message is of type HLO, then a MAC for an acknowledgement message with time

stamp t̃ is created.
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Fmsg(y, M, tm, am,M 0, ν, µ, pm, cm){ 

µ0 ← 0; t0 ← t; 

IF (M = 0) 

˜[R, yr, tr, ar, Dr, t, νr] ← [0, y, 0, 0, 0, t0, ν]; 

RETURN t0; 

K = h(κ, M) ⊕ pm; Kin ← h(K, cm, c, ϑ); Kout ← h(K, c, cm, ϑ); 

IF (µ = 0) µ0 ← h(HLO, t0 , 0, 0, 0, Kout); 

ELSE IF (µ = h(y, tm, am,M 0, ν, Kin)) 

R ← [M, y, tm, am,M 0, t0, ν]; 

IF (y = HLO) µ0 ← h(y, t0 , tm, 0, Kout); 

ELSE RETURN ERROR; 

0RETURN t0, µ ; 

} 

7.4.2 Updating TMM State Using Fupd() 

Function Fmsg() is invoked to notify the TMM of the occurrence of an event — either

a message received from another TMM, or a request from the device, and populate event

register E in the TMM. Processing the event involves execution of fdv(), which requires

access to a currently stored DR for a destination D, a received DR for D consistent with

νr (if the event is a DR message), currently stored NRs for up to two neighbors F and G,

and protocol specifc constants.

After processing the event, the end result is a change in the TMM state, and creation of

up to two message (one for F and one for G).
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As the response to the event may require modifcation of 3 records, the TMM will

expect a U1 certifcate that simultaneously certifes the integrity of the current state (before

the event) and future state (after processing the event) of a DR for D, and a U2 certifcate

that simultaneously certifes the integrity of the current state (before the event) and future

state (after processing the event) of two NRs (F and G). Specifcally, the U1 certifcate

instructs the TMM as to how the IOMT root ξdt should be changed due to the change to

the DR rD; the U2 certifcate instructs the TMM as to how the IOMT root ξnt should be

changed due to the change to the NRs rF and rG.

The register I is used to store other inputs necessary to process an event by executing

fdv(). Specifcally, the inputs include

1) a leaf from the DT IOMT for a destination D, except that instead of the third value

ωD, the pre-image rD is provided as input;

2) a record rD 
0 consistent with value νr in the received DR message; and

3) two IOMT leaves (F and G) from the NT tree; once again, instead of the value ω,

the pre-images are provided;

The contents of the input register are provided as inputs to a function Fupd() which

makes the appropriate changes to records rD, rF and rG, accordingly modifes TMM state,

and outputs MACs for messages.

Apart from contents of the input register, other inputs to Fupd() are a ) the next states

ξdt 
0 and ξdt 

0 ; and b) a U1 certifcate ρd and a U2 certifcate ρn.
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0Fupd(D, D0 , rD, r , F, F 0 , rF , G, G0 , rG,D 
ξ0 , ξ0 , ρd, ρn, pf , cf , pg, cg){dt nt 

0IF ((yr = DR) ∧ (hr(rD) 6= νr)) RETURN ERROR; 
ωD ← hr(rD); ωF ← hr(rF ); ωD ← hr(rF ); 

0I ← [(D, D0 , rD), rD, (F, F 0 , rF ), (G, G0 , rG)]; 
IF (fdv() = ERROR) RETURN ERROR; 
ω0 ← hr(rD); ω0 ← hr(rF ); ω0 ← hr(rF );D F D 

0xd = h(D, D0, ωD); x ← h(D, D0, ω0 );d D 
0IF (ρd =6 h(U1, xd, ξdt, x , ξ0 , χ) RETURN ERROR;d dt 

0xf = h(F, F 0, ωF ); x ← h(F, F 0, ω0 );f F 
0xg = h(G, G0, ωG); x ← h(G, G0, ω0 );g G 

0 0IF ((ρn 6 , ξnt, xf , x nt = h(U2, xf , xg g, ξ
0 , χ)∧ 

0 0(ρn 6= h(U2, xg, xf , ξnt, x , x , ξ0 , χ))g f nt 
RETURN ERROR; 

ξdt ← ξ0 nt;dt; ξnt ← ξ0 
0 0µ ← µg ← 0; //Initialize Output MACsf 

IF (Of > 0) 
K ← h(κ, F ) ⊕ πf ; Kf ← h(K, c, cf , ϑ); 

0IF (Of = 1) µ ← h(DR, t̃, 0, D, ωD 
0 , Kf );f 

0 ˜IF (Of = 2) µ ← h(yr, t, tr, 0, 0,Kf );f 
0IF (Of = 3) µ ← h(DR, t̃, tr, Dr, νr, Kf );f 
0IF (Of = 4) µ ← h(DATA, ̃t, 0, D, h(I, νr), Kf );f 
0IF (Of = 5) µ ← h(DATA, ̃t, 0, D, νr, Kf );f 

IF (Og > 0) 
K ← h(κ, G) ⊕ πg; Kg ← h(K, c, cg , ϑ); 

0IF (Og = 1) µ ← h(DR, t̃, 0, D, ωD 
0 , Kg);g 

0IF (Og = 2) µg ← h(yr, t, tr, 0, 0,Kg ˜ ); 
0IF (Og = 3) µ ← h(DR, t̃, tr, Dr, νr, Kg);g 
0IF (Og = 4) µ ← h(DATA, t̃, 0, D, h(I, νr), Kg);g 
0IF (Og = 5) µ ← h(DATA, t̃, 0, D, νr, Kg);g 

0 0RETURN µf , µ ;g 
} 

Figure 7.4

Updating TMM State.

Function Fupd() verifes that if the message is of type DR, then the record r0 D is consis-

tent with νr and notes down the current record hashes ωD, ωF and ωG of the three records

provided as inputs, and copies the contents of the leaves to the input register I.
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⎪
⎪

The protocol specifc function fdv() performs necessary modifcations to the records.

fdv() expects specifc pre-conditions to be satisfed, failing which fdv() return error and

terminates Fupd(). On successful execution of fdv() the DR and two NRs may be modifed.

In addition, fdv() instructs the types of messages to be sent to F and G by setting values

Of and Og.

Till this point Fupd() had simply assumed that the leaves for D, F and G provided as

inputs were consistent with the current IOMT roots. The four values ξdt 
0 , ρd and ξnt 

0 and ρn 

simultaneously permits the TMM to verify this assumption, and modify the IOMT roots in

accordance with the changes made to the DR and two NRs.

By providing contents of a leaf in the DT and two leaves in the NT, the device claims

that such such leaves are consistent with the IOMT roots ξdt and ξnt respectively. Let

ωD = hr(rD), ωF = hr(rF ), and ωG = hr(rG).

Specifcally, if xd = HL(D, D0, ωD) and x0 
d = HL(D, D0, ωD 

0 ) (where ωD 
0 is the record

hash after modifcation of the record in response to the event) then the certifcate ρd should

satisfy

ρd = h(U1, x, ξdt, x 0, ξdt 0 , χ). (7.9)

Similarly, if the leaf hashes corresponding to F and G are xf and xg before the event, and

x0 
f and x0 

g after the event, the certifcate ρn should satisfy⎧ ⎪⎨ 0 0h(U2, xf , xg, ξnt, xf , x , ξ0 , χ) or
ρd = 

g nt 
(7.10)⎪ 0 0⎩ h(U2, xg, xf , ξnt, x , x , ξ0 , χ)g f nt 
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If the preconditions (before execution of fdv()) and post conditions (after execution)

are consistent with the current state (ξdt, ξnt) and the next state (ξ′dt, ξ
′
nt) the IOMT roots

are modifed to ξ′dt, ξ
′
nt.

fdv()	
  
Create	
  
output	
  

rd	
  ,	
  rf	
  ,	
  rg	
  
ρd	
  ,	
  ρn	
  ,	
  ξdt’,	
  ξnt’	
  	
  
pf	
  ,	
  cf	
  ,	
  pg	
  ,	
  cg	
  	
  	
  

Output	
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  μg
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Constants	
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ωd’, ωf’, ωg’  

ωd,ωf, ωg  

Figure 7.5

Overall operation of TCB in MANET model.

Finally, output messages are created depending on the values Of and Og. Inputs pf

and cf (pg and cg) to Fupd() are necessary for computing the MAC secret to be used for

the message to F (G). Recall that O = 1, 4, 5 are spontaneous (not ACK) messages:

O = 1 instructs creation of a DR message. O = 4 instructs creation of a DATA message

to initiate a data packet to D. O = 5 instructs creation of a DATA message to relay a

received DATA message to the next hop. O = 2, 3 are acknowledgments; O = 2 is a

simple acknowledgement; O = 3 is a DR message that simultaneously acknowledges a

received DR/DATA message and conveys a DR.
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Figure 7.5 depicts overall operation of the system-specifc TCB functions. Events are

triggered by either a received message µ or a request REQ (from the device) submitted to

Fmsg which populates the event register E. Function Fupd() is then invoked to process the

event (and change state and/or create messages). The inputs provided to Fupd() are rd (DR

record), rf (NR record of F ), rg (NR record of G), update certifcates (ρd and ρn) along

with next next states (ξ0 and ξ0 ), and values pf , cf , pg, and cg necessary for computingdt nt 

MACs for verifcation by F and G. The inputs are loaded onto register I , and hash of

the current records (DR and 2 NR) are computed (ωd, ωf and ωg). All inputs necessary

for the protocol specifc function fdv() are now available in registers I (Input), E (Event),

ϑ (Rules) and C (Constants). Function fdv() updates the records in place (according to

protocol-specifc rules) and also sets the output registers (Of , Og).

Function Fupd() computes the new record hashes as ωd 
0 , ωf 

0 and ωg 
0 . Current state (ωd,

ωf , ωg, ξdt, ξnt) and the next state (ωd 
0 , ωf 

0 , ωg 
0 , ξdt 

0 , ξnt 
0 ) are verifed using certifcates ρd 

and ρn. If successful, TMM states are updated to ξ0 and ξ0 . Of and Og direct the outputdt nt 

generation for F and G in the form of MACs µf 
0 and µg 

0 .

7.4.3 Deploying TMM Based MANETs

For MANET secured using TMMs every device has a TMM. A (perhaps off-line)

administrator/operator of the MANET specifes the constants to be used. The off-line ad-

ministrator is also responsible for ensuring that every device has access to public values

necessary to facilitate computation of pairwise secrets between TMMs in devices (see Sec-

tion 3.1).

155



To operate in a MANET the device is required to initialize it’s TMM. At this point the

device has no records, and the IOMT roots are zero. From this point onwards the device

has to maintain it’s DT/NT and the corresponding IOMTs to be in sync with the roots

stored inside the TMM. Any number of place holders can be added in either tree by using

certifcate generation functions to create equivalence certifcates and using Fph() to modify

the IOMT roots accordingly.

As soon as a TMM is initialized the device can use Fmsg() to perform handshakes with

TMMs in neighbors, and then invoke Fupd() to insert neighbor records. Once a TMM rec-

ognizes neighbors, the TMMs own DRs can be incremented, and sent to active neighbors.

Whenever a message is received from a neighbor the device submits the message to it’s

TMM using Fmsg() and invokes Fupd() to modify the TMM state / create messages. Before

Fupd() is invoked, as the device is aware of the precise changes that should be made to a

DR and two NRs, the device can use IOMT functions to generate the necessary U1 and U2 

certifcates.

The broad assurance that all devices taking part in a MANET will modify DRs and

NRs in exactly the same manner as dictated by the protocol (algorithm fdv()) is enforced

as follows:

1. Only TMMs initialized with the same set of protocol-specifc constants will agree
on a pairwise secret. This feature is used to assure the integrity of protocol-specifc
constants.

2. IOMTs are used to ensure that only DRs/NRs consistent with the IOMT roots stored
inside the TMM will be considered as valid;

3. As the function fdv() cannot be modifed, the DR/NRs consistent with the current
IOMT roots can be modifed only according to the algorithm fdv().
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4. After modifcation of the records the device is forced to modify it’s copy of the
records in the same way.

5. If messages mandated by fdv() are not delivered by the device, the device cannot
retain the intended recipients of such messages as neighbors.

7.5 Related Work

Devices taking part in MANET offer an enormous attack surface that can be exploited

by attackers. Specifcally, hidden malicious functionality in component of the MANET

device could be exploited to illegally modify a) the MANET software, or b) the DT/NT or

the device’s clock, or expose secrets protected by the device to advertise arbitrary routing

information, and/or construct clone devices with arbitrary functionality. Current efforts to

secure MANETs simply ignore a wide range of attacks stemming from such issues. In the

proposed approach to secure MANETs all such attacks are side stepped as no component

of the device is trusted in the frst place.

Prior efforts in the literature that attempt to secure MANET by leveraging a trustworthy

computing module include [61], [29] that attempt to offer some assurances regarding the

medium access control layer; the “nuglets of currency” approach in [28]; the Bloom flter

[9] approach in [23], and the predecessor of the current work in [63].

In [61], the wireless transceiver is assumed to be inside a trusted boundary; in [29]

the wireless driver is executed inside a trusted boundary. In [28], nuglets of currency

are maintained inside the trusted boundary; they are incremented / decremented based

on selfsh/selfess acts performed by the device. However, [28] does not address specifc
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mechanisms that will enable a trusted module to unambiguously infer that the associated

device has indeed performed a selfsh/selfess task.

Gaines et al. [23] argued that mechanisms to guarantee integrity of MANET require

resource limited trusted modules to be able to vouch for the integrity of destination table

and neighbor table stored by the device. They also recognized the need for the trusted

module to identify non existence of routing information. For this purpose, [23] suggested

the use of Bloom flters to store succinct summaries of routing records.

In [63] the authors employed an Index Ordered Merkle Tree (IOMT) for keeping track

of routing records. The specifc improvements in our approach compared to [63] are as

follows:

1. In [63] the authors assumed that TMMs have synchronized clocks before they can
take part in a MANET; we do not make this assumption.

2. In [63] the NT is stored entirely inside the TMM; to eliminate restrictions on the NT
size the NT is also stored outside the TMM.

3. In [63] the goal is merely to ensure integrity of the destination table: no effort was
made to ensure that data packets will be relayed only in a manner consistent with the
DT/NT.

4. In [63] no strategy was proposed to enable TMMs to verify that devices indeed de-
liver TMM messages. This issue was addressed here by using a locking mechanism
(setting a feld s in an NR) to ensure reliable delivery (as failure to deliver/accept
messages will result in the inability of the device to use the link for some period into
the future).
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

With increasing complexity of hardware and software components, the presence of

undesired functionality cannot be ruled out. As it is far from practical to validate the

integrity of all components of a system, we adopted an alternative approach to secure

systems where any subsystem is associated with a trustworthy security kernel that enforces

of system specifc rules to be adhered to by the subsystem.

A crucial step in assuring the integrity of any subsystem (belonging to any system) is

assuring the integrity of dynamic data entrusted to the subsystem. In the approach adopted

in this dissertation all dynamic databases associated with a subsystem are succinctly cap-

tured as roots of one or more OMTs. The OMT roots can be seen as the state of the

subsystem.

From this perspective, the tasks performed by the security kernel is to ensure the con-

sistency of system-specifc messages created by a security kernel with it’s current state,

and ensuring that the receiver of the message (the security kernel of another subsystem of

the same system) modifes it’s state in a manner consistent with system-specifc rules.

For the systems considered in this dissertation,

1. File storage servers need to assure the integrity of different versions of different fles,
the ACLs for fles, and protect the privacy of fle encryption secrets.

159



2. Central servers in content distribution systems need to protect the integrity of content
provided by publishers, the ACL, and the privacy of content encryption secrets

3. Lookup servers need to protect the integrity of dynamic records and ensure that only
correct answers are provided for any query.

4. Different subsystems in BGP maintain different databases. IP/AS Registry needs to
assure the integrity of IP prefx and AS number assignments to various autonomous
systems. AS owners need to ensure that only owned prefxes can be delegated to
their BGP speakers. BGP speakers maintain several nested databases to enable iden-
tifcation of path (to any prefx) with the best weight, to to ensure the integrity of the
path vector, and to ensure that all policies and preferences specifed by the AS owner
are adhered to.

5. Devices taking part in MANET are required to ensure the integrity of the destination
table and neighbor table (as data packets for any destination can be sent only to an
active neighbor which is also the next hop in the best path to the destination).

As illustrated by the designs of security kernels for such substantially different systems

(in Chapters 4,5,6,7) it is possible to effciently utilize Ordered Merkle Trees. By using

a set of generalized security kernel functionality for maintaining OMTs (verifcation of

integrity of leaf nodes and insertion/deletion of place-holders), and simple system-specifc

functions for updating OMTs can be adapted to realize assurances for a wide range of

systems.

The security kernel for remote fle storage system leverages an IOMT to provide nec-

essary assurances like integrity, privacy and availability of fles. The security kernel for

the look-up server and content distribution server employed IOMTs to ensure integrity and

availability of records. Specifcally, in fle storage systems and CDS, IOMTs were used

for representing fles and ACLs. In MANETs, IOMTs were used to maintain a destina-

tion table and a neighbor table. BGP security kernels employed both IOMTs and ROMTs.

IOMTs were used to maintain the RIDB, maintain ordered list of weights, and as a succinct
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representation of the path vector. ROMTs were used to store ranges of IP addresses. Sim-

ply by using place-holder operations it is possible to ensure that only owned subset of IP

address ranges can be delegated, and that only aggregate-able addresses can be aggregated.

8.1 Contributions of the Research

Apart from overcoming the limitations of current approaches to securing systems (viz.,

ignoring the issue of hidden malicious functionality) the proposed security measures pro-

vide substantially improved scope of assurances. For example, current security measures

for remote fle storage systems do not cater for authenticated denial of existence. Apart

from catering for authenticated denial, the proposed security measures also ensure that no

information that is not explicitly queried need to be revealed to prevent attacks similar to

DNS-walk [67], [33].

None of the current approaches for securing routing protocols — either in MANETs or

BGP routing for the Internet, guarantee that only the best path will be advertised, or that all

rules that govern the protocol will be adhered to. The current approaches for securing BGP

do not assure the integrity of aggregated prefxes, which is an especially severe limitation

that is overcome by the proposed approach. The work done towards securing Mobile Ad-

Hoc network employed a very generic model to enforce protocol-specifc rules, which

could be easily adapted to other protocols (by specifying the set of rules as a function that

replaces fdv()).

The following publications resulted from the work carried out towards this dissertation:

• Securing File Storage in an Untrusted Server - Using a Minimal Trusted Computing
Base, CLOSER, 2011 [42].
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• An Effcient TCB for a Generic Content Distribution System, International Confer-
ence on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
2012.[43]

• An Effcient TCB for a Generic Data Dissemination System, International Confer-
ence on Communications in China: Communications Theory and Security (CTS),
ICCC12-CTS, [65].

• Realizing a Secure File Storage Service, submitted for IEEE Transactions on Relia-
bility - Special Section on Information, System, and Software Assurance: Research
& Practice (March 2013) [40].

• An Effcient Trusted Computing Base for MANET Security, submitted for IEEE
Transactions on Mobile Computing, (May 2013) [41].

• Ordered Merkle Tree: A Dynamic Authenticated Data Structure for Security Ker-
nels, submitted for IEEE Transactions on Dependable and Secure Computing, (May
2013) [39].

8.2 Future Work

The proposed research is a frst step towards arriving at a specifcation for a universal

security kernel or a universal TCB that can be used for any subsystem/system. The ad-

vantage of an universal TCB is that trustworthy chips with fxed TCB functionality can be

mass produced at low cost. Furthermore, the overhead for establishing a trusted infrastruc-

ture for verifcation of integrity and certifcation of such chips will also be low if all chips

to be tested have identical functionality.

Currently we expect the functional components of such a chip to include the generic

OMT functionality and mutual authentication functionality discussed in Section 3.4 and

Section 3.1. Realization of a universal TCB demands effcient strategies for generalizing of

subsystem-specifc functionality. Some of the work towards reducing such system-specifc

functionality was attempted in our approach to secure MANETs, where protocol specifc

rules were confned to a simple algorithm.
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