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Truncation errors and computational cost are obstacles that still hinder large-scale ap-

plications of the Computational Fluid Dynamics method. The discontinuous Galerkin

method is one of the high-order schemes utilized extensively in recent years, which is

locally conservative, stable, and high-order accurate. Besides that, it can handle complex

geometries and irregular meshes with hanging nodes.

In this document, the nondimensional compressible Euler equations and Reynolds-

Averaged Navier-Stokes equations are discretized by discontinuous Galerkin methods with

a two-equations turbulence model on both structured and unstructured meshes. The tradi-

tional equation of state for an ideal gas model is substituted by a multispecies thermody-

namics model in order to complete the governing equations. An approximate Riemann

solver is used for computing the convective flux, and the diffusive flux is approximated

with some internal penalty based schemes. The temporal discretization of the partial dif-



ferential equations is either performed explicitly with the aid of Rung-Kutta methods or

with semi-implicit methods. Inspired by the artificial viscosity diffusion based limiter for

shock-capturing method, which has been extensively studied, a novel and robust technique

based on the introduction of mass diffusion to the species governing equations to guar-

antee that the species mass fractions remain positive has been thoroughly investigated.

This contact-surface-capturing method is conservative and a high order of accuracy can be

maintained for the discontinuous Galerkin method. For each time step of the algorithm,

any trouble cell is first caught by the contact-surface discontinuity detector. Then some

amount of mass diffusions are added to the governing equations to change the gas mix-

tures and arrive at an equilibrium point satisfying some conditions. The species properties

are reasonable without any oscillations.

Computations are performed for many steady and unsteady flow problems. For general

non-mixing fluid flows, the classical air-helium shock bubble interaction problem is the

central test case for the high-order discontinuous Galerkin method with a mass diffusion

based limiter chosen. The computed results are compared with experimental, exact, and

empirical data to validate the fluid dynamic solver.

Key words: Computational Fluid Dynamics, Discontinuous Galerkin, diffusion based, high

order, shock capturing, basis function, unstructured
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CHAPTER 1

INTRODUCTION

Fluid dynamics plays an important role in understanding the designed performance

of many industrial products, particularly aircraft. Originally there were two main ap-

proaches to solving fluid dynamics problems: experimental and theoretical. The exper-

imental method is the most realistic and straightforward, and leads to the development of

techniques for understanding complicated physical phenomena of fluid flows. However,

the cost of required equipment is even higher for large-scale applications and it is difficult

to measure flow quantities in some specific situations. The theoretical or analytical method

provides us with general information in mathematical form, which usually can describe

only linear problems and is limited to very simple geometries and physical conditions.

In recent years, the hardware of computers have improved dramatically, both in terms of

processors and memory capacity. With this increase of computational capability, Compu-

tational Fluid Dynamics (CFD) has become a competitive way of studying fluid problems.

This method has many attractive properties in helping people understand flow problems

through numerical simulations: low cost, handling complicated geometries, solving non-

linear equations and unsteady flow. Leading edge CFD methods are at the foundation of

this document.
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1.1 CFD background

Based on the physics of fluid, the Euler equations are derived without considering vis-

cous effects from shear stress and thermal conductivity effects from temperature gradients.

These equations are simple and widely used for gasdynamics research. The Navier-Stokes

equations are derived from physics with some hypotheses as a basic model for realistic

fluid problems. For laminar flows, the governing equations can be solved numerically to

produce excellent results. But for turbulent flows, which are commonly seen in engineering

problems, the resources needed to resolve all turbulent length scales using the governing

equations are far beyond current capability. Then appropriate approximations of the time

dependent Navier-Stokes equations are necessary. Among the different methods in use, the

Reynolds-Averaged Navier-Stokes (RANS) model is the most widely accepted for practical

engineering problems. It is computationally efficient and can yield reasonable and accurate

results for steady flow from low-speed to supersonic without separation. However, since it

builds on an averaging process, this scheme can not give an accurate prediction of unsteady

features, nor shock wave boundary layer interactions.

Large Eddy Simulation (LES) is higher-order modeling method which has advantages

over the RANS models. The large eddies which interact with the mean flow to transport

the primary components in momentum and energy are solved by a Navier-Stokes solver,

and the small isotropic eddies which dissipate the energy are modeled. Unfortunately,

for cases at wall-bounded regions where shear stress is relatively large from low to high

Reynolds numbers, many fine meshes are required so that the computational cost becomes

large [13]. Direct numerical simulation (DNS) using Navier-Stokes equations theoretically
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can achieve more accurate predictions, but the high cost makes it virtually prohibitive in

engineering applications. The hybrid LES-RANS method [14] is a reasonable alternative

approach. It applies the RANS model to the near-wall viscous layer and the LES model

to capture large unsteady features away from boundaries. For second order of accuracy,

the numerical noise may overwhelm the LES sub-grid scale, hence high order schemes are

demanded to make this approach applicable in solving fluid problems.

In this work, the Euler equations have been primarily used although preliminary results

have been obtained with the RANS equations. Within the framework of the RANS model,

a properly selected turbulence model is needed in order to close the governing equations.

By far the most popular turbulence models applied to flow viscosity and heat transfer com-

putations are the low-Reynolds number two-equation turbulence models, including the κ-ε

and κ-ω models. These models often offer a good balance between complexity and ac-

curacy [28] and here κ-ω model is our choice because of its robustness. At present, the

RANS equations are closed by the high- or low-Reynolds number κ-ω turbulence model

of Wilcox [59]. In order to deal with the stiffness of the κ-ω equations, a non-standard

implementation of the κ-ω turbulence model has been used: the lnω is taken other than ω

itself.

CFD methods have been widely used in engineering in the design and simulation of

real fluid problems. However, truncation errors and computational cost are obstacles that

still hinder large-scale applications of CFD. The Loci platform, originally developed by

Dr. Luke at Mississippi State University, has been used in this work. Loci is both a

C++ library and a programming framework specifically designed for developing compu-
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tational simulations of physical fields, including CFD. One advantage the framework pro-

vides is automatic parallelization. Consequently, it provides strong support for problems

that require exceptional computational costs, including much higher resolution simulations

for increased accuracy in complicated geometry, high-order discontinuous Galerkin (DG)

methods for unstructured meshes, and coupled Navier-Stokes equations that include phys-

ical models featuring multiple species. The high order numerical schemes are the research

objects of this document.

1.2 Different high order discretization methods

In the current numerical simulation of flow problems, the governing equations need

to be discretized in space, satisfying some essential stability conditions. The most pop-

ular methods are Finite Difference (FD), Finite Volume (FV) and Finite Element (FE)

techniques, which have been widely applied in software developed by both academia and

industry. Nowadays in the aerodynamics field, the large majority of numerical methods

are at most second order accurate with the solution error decreasing on the order of O(h2),

where h is a measure of length scale based on the grid size. In order to achieve high order

of accuracy and reduce the effect of truncation errors, special techniques are required to

construct high order numerical schemes for different types of discretization methods.

The idea behind the FD method is to replace the analytical time and space derivatives

in the partial differential equations (PDEs) with discretized approximations. Then the ob-

tained algebraic equations can be solved using classical numerical approximation schemes.

Usually there are many forms of discretized derivatives to choose from and the approach
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that maintains stability of the system and costs less is generally preferred. The FD method

has the benefit of simplicity and efficiency in programming, and relatively low computa-

tional cost for simple geometry. High order of accuracy can be achieved by using more

accurate approximations of the derivatives and the resulting truncation errors would be de-

creasing as O(hOP ) with OP > 1, where OP is the solution order of accuracy. However,

since the FD method was originally designed and thoroughly investigated on structured

grids, it takes a complicated process to accommodate to unstructured grids [38]. In addi-

tion, considering the stability of the solver, the geometry of the unstructured domain can

not be sophisticated and the high order derivatives can not be approximated by compli-

cated formulas. Therefore the FD method is better used in fundamental research on simple

geometries.

The FV method, on the other hand, originates from a more physical approach. Based

on the integral form of the conservation laws, the numerical flux at the element interface

is evaluated to approximate the physical contribution from neighboring cells, then the so-

lution is updated through solving the governing equations with the fluxes just computed.

The popular upwind scheme [47] that is based on the characteristics of wave propagation

is usually accepted in computing the convective flux components. High order solutions

within FV methods can be obtained with the aid of reconstruction procedures. However,

the reconstruction stencil for three-dimensional unstructured grids is fairly large and the

computational cost is therefore expensive for large-scale fluid problems. So far the FV

method is the dominant CFD method in applications because of its robustness, efficiency
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and effectiveness in handling complex geometries. The problem of how to retain high order

of accuracy while decreasing the size of the reconstruction stencil is still an open question.

The theory of the FE method is different from both of the methods already mentioned.

The PDEs are first multiplied by an arbitrary test function and then integrated by parts.

The solution is represented by a linear combination of so called ansatz functions which

are piecewise polynomials. This strategy of discretizing the governing equations and rep-

resenting the solution constitutes the kernel of a typical FE method. Depending on the

specific type of test and ansatz functions, different kinds of FE methods have been devel-

oped, such as Galerkin method, Petrov-Galerkin method, etc. The classical FE methods

can be divided into two branches, continuous and discontinuous methods. The continu-

ous FE methods usually produce oscillations when solving Navier-Stokes equations, and

explicit artificial dissipation has to be added to keep stability. Moreover, a fully coupled

system of equations needs to be solved for each time step satisfying the continuity re-

quirement at the element interface, which could cause extra burden on computations and

then degrade efficiency. Discontinuous FE methods, especially the discontinuous Galerkin

method where test and ansatz functions are identical, do not have global continuity con-

straints, so that the approximation space is different from the continuous solution space.

Even the DG method has some stability problems when explicit time iteration is used. In

this document implicit and semi-implicit methods have also been considered as alterna-

tives. Because the DG method has a lot of advantages, this method was chosen as our

main tool for discretizing the governing equations. Compared to the FD and FV methods

applied to high order schemes, the FE method can simply construct a high order scheme by
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increasing the degree of test or ansatz functions, thus the discretization stencil is compact

without considering extra reconstruction procedure. This renders the DG method suitable

for hp-adaption (p for polynomial degree). More details will be discussed in a subsequent

chapter when p-multigrid scheme and time integration are introduced.

1.3 The Discontinuous Galerkin method

The word Galerkin comes from the person who first published on the topic of approx-

imating solution of differential equations in 1915 [27]. After that a family of procedures

named after Galerkin have been used within finite elements [60]. Among these procedures,

the DG method was originally formulated by Reed and Hill [46] to solve the neutron trans-

port problem. Lesaint and Raviart [37] conducted a preliminary analysis of this method

in the following years. This method was not very popular until the middle of the 1980’s.

The revival and subsequent development of the DG method is due primarily to the work of

Cockburn and Shu [19, 21]. The DG method was extended from solving linear hyperbolic

equations to systems of multidimensional nonlinear hyperbolic equations. Also Cockburn

and Shu were among the first to apply the DG method to the inviscid equations of gas

dynamics [20]. The DG method is a locally conservative, stable, and high-order accurate

method which can easily handle complex geometries and irregular meshes with hanging

nodes by using polynomials of different degrees in different elements [18].

The first formula for discretizing the viscous terms of the Navier-Stokes equations

in conjunction with the DG method was proposed by Bassi and Rebay [10]. Although

some viscous test cases have been simulated successfully, this formulation (called the
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BR1 scheme) was showing poor convergence for odd-order polynomial approximations

and was unstable for certain model problems. Later Bassi and Rebay developed an im-

proved scheme called BR2 which has much better numerical properties. Besides that, sev-

eral other schemes for evaluating the diffusive fluxes were developed at that time: the main

contributions are by Cockburn and Shu [22], Lomtev and Karniadakis [39], and Baumann

and Oden [12]. Recently the DG method has been applied to turbulence modeling so that

the RANS equations with turbulence models can be discretized in this framework. Bassi

and Rebay [8] took the κ-ω model to the RANS solver where the turbulence parameters

κ and ω are discretized using polynomial approximations in exactly the same manner as

the conservative variables in the RANS equations. However, some numerical difficulties

are still occurring. One is the stiffness caused by the highly non-linear source terms of the

turbulence model equations, another is stiffness resulting from the grid stretching needed

to resolve the near-wall behavior of the turbulent quantities. Realizability constraints and

Schwarz inequality can be used to improve the solution [8]. Meanwhile, implicit time in-

tegration scheme of the fully coupled RANS and κ-ω system equations can be a solution

for the grid stretching problem.

In shock regions, the high-order DG method is not very sensitive to the type and align-

ment of the mesh and it can minimize the interaction between shock wave and element in-

terface so that this method is capable of sub-cell shock resolution [16]. Moreover, the DG

method is inherently adapted to many solver acceleration strategies, including multigrid

and hp-refinement techniques. Therefore for doing simulations of high Reynolds number
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hypersonic turbulent flows with high order of accuracy, the DG method would possibly be

the best choice.

1.4 Shock-capturing method

For convection dominated problems, especially for hyperbolic conservation laws, the

existence of discontinuities (such as shock waves and contact discontinuities in high speed

gas dynamics) is a problem for the numerical schemes currently in use. A shock wave is an

important phenomenon in high-speed flow simulations. It is essentially a form of wave that

propagates pressure disturbances, and in an extremely thin region the flow characteristics

change drastically. Numerically capturing shock waves with computational tools is a basic

requirement and essential capability of a numerical solver. Traditionally for low order of

accuracy (first order), the Godunov type or the Roe type numerical schemes can resolve dis-

continuities monotonically without spurious numerical oscillations [47]. However, these

methods excessively smear discontinuities and even in smooth region the solutions contain

large numerical dissipation. Shocks are extended over several grid cells with poor resolu-

tions. In recent years, many high order shock-capturing schemes have been designed and

applied to flow problems successfully.

One practical approach for shock capturing is introducing limiting procedures. These

methods were originally designed in the context of FD and FV discretization schemes

and subsequently applied to the DG framework. The classical Runge-Kutta discontinuous

Galerkin (RKDG) methods [23] combine approximate Riemann solvers and nonlinear op-

erators (slope limiter) to satisfy Total Variation Bounded (TVB) in the mean. It is still an
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open question to extend these limiters to higher order approximations because they reduce

the approximation order to linear or constant even when the oscillations have been avoided.

The key in shock-capturing schemes is controlling dissipation. Another effective ap-

proach, called artificial viscosity, makes use of dissipation by adding artificial viscosity to

the system to spread the discontinuity over a length scale so that it can be resolved in the

approximating space by interpolating functions. Persson and Peraire [44] introduced a p-

dependent artificial viscosity that scales like h/p, where h is length scale of grid size and p

is interpolating polynomial degree, thus obtaining a shock with a width of δ � Ch/p with

C being constant coefficient. They also provide a robust discontinuity detection procedure,

properly indicating the location of the shock wave where the amount of numerical dissi-

pation is going to be added. Basically artificial diffusion techniques provide a robust and

accurate approach to capturing shocks with high-order DG methods. However, the extra

viscous-type terms in the governing equations require special ways to solve the nonlinear

high-order derivatives, which complicate the solver.

Most recently, high order accurate essentially nonscillatory (ENO) [32] and weighted

essentially nonscillatory (WENO) schemes [36] have become popular in numerical solu-

tions of hyperbolic PDEs. These schemes have the capability to achieve arbitrarily high or-

der formal accuracy in smooth regions while preserving nonlinear stability, nonoscillatory

characteristic, and sharp discontinuity profiles with additional degrees of freedom. They

are robust and suitable for problems containing both strong discontinuities and complex

smooth solution features. However, the computational overhead is excessive for high order
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approximations, and applying these methods to unstructured grids and three dimensions is

still an open issue.

In this work we take the diffusion-based artificial viscosity method with shock detector

to capture the shock wave. In fact, results will show that it is a robust and efficient way

to achieve good sub-cell resolution of shocks. There are several alternatives on how to

incorporate the artificial viscosity to the governing equations. Bassi and Rebay’s shock-

capturing approach [6] explicitly adds to the DG discretized equations an artificial viscosity

term to control the high-order components of the numerical solution within elements and

preserve the spatial resolution of discontinuities. Persson and Peraire’s shock-capturing

method [44] includes a discontinuity sensor and two options to control the amount of added

viscosity by means of Laplacian type or physical type. All of these will be explored in

detail in following chapters.

1.5 Contact-surface-capturing method

The physical phenomena occuring in nonequilibrium hypersonic flows are extremely

complex and have not been completely understood for the past sixty years [48]. The sim-

ulation of nonequilibrium hypersonic flows has focused on chemical nonequilibrium. For

example, a chemical kinetic model for air was employed to define the production terms in

the species continuity equations. Initially 12 species and 64 chemical reactions composed

the chemical model, then calculations performed for specific altitude and velocity regimes

made it possible to eliminate many trivial reactions from the model so as to obtain a sim-

plified model of 11 chemical species and 11 reactions involving only neutral species plus
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15 reactions for charged species. In the thermodynamic area, the kinetic theory of gas was

adopted. Since it did not consider the internal structure of atoms and molecules, the higher

degrees of excitation beyond translation motion had to be resolved by approximations, and

the vibrational and electronic degrees of freedom were assumed to remain in thermal equi-

librium with translation while chemical reactions proceed at finite rates. The free-electron

temperature was assumed to be equal to the heavy-particle translational temperature [24].

Understanding the basic theory of gasdynamics and fluid physics is necessary for a

researcher who wants to develop implementation of prevailing numerical schemes to real

gas problems. In the framework of the research for this document, some fundamental

conclusions have been drawn based on the facts in which a two species gas model (nitro-

gen/oxygen pair or air/helium pair) has been selected for implementation and a frozen flow

assumption has been made so that the thermodynamic properties can be computed simply

without nonequilibrium contributions. All of the above simplifications provide a starting

point for the current effort of applying the DG method to multiple species gas and captur-

ing the species interface (contact surface) with high order approximations. The progress

made in this dissertation is just the beginning of more sophisticated real gas or fluid simu-

lations with high order accurate DG method, where the thermal-chemical nonequilibrium

effects are considered in full. The thermal nonequilibrium energy is derived from different

temperatures and the chemical reactions from multiple species are incorporated into the

species continuity equations as source terms.

Flows involving multiple species are common in engineering applications of fluid ve-

hicles. In a special case, flows composed of two fluids which do not mix and are separated
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by a sharp fluid interface are found in many engineering and physical applications. Even

if two-fluid dynamics problems have been extensively examined from both analytical and

experimental points of view, solving this challenging problem by numerical methods is

an important component of multiple species gasdynamics modeling and still in working

progress. In contrast to the single-species flows for which many accurate and efficient

numerical schemes have been developed and successfully applied to engineering appli-

cations, there are difficulties in designing simulation tools for general two-species flows

because few accurate numerical schemes have been used to solve the sharp species inter-

face effectively. Therefore, the research detailed in this document has concentrated on the

development of a highly accurate DG numerical solver for the simulation of compressible,

unsteady and inviscid two-fluid flows described by the three-dimensional Euler equations

of gas dynamics.

The diffusion based artificial viscosity limiting strategies of shock capturing have been

widely studied for many years. The principle of this approach has been described and

can be used to initiate the study of novel contact-surface-capturing method. The idea is

to detect the trouble cells in the solution domain where negative species mass fraction

could cause nonphysical effects at the element interface and destroy the accuracy of the

flux computations. Then artificial mass diffusion is added to the species continuity com-

ponents of the governing equations with explicit time iterations at a pseudo time level,

until the species mass fraction is positive and meaningful. After that, the corrected species

component properties can be used to compute the numerical flux at the cell interface when

advancing the solution in time. More details will be discussed in a following chapter.
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1.6 Objectives of the present research effort

The long-term goal of the present research effort is to achieve accurate simulations of

thermal-chemical nonequilibrium gas mixtures for high temperature and high Mach num-

ber conditions. The Loci software framework provides the basic coding environment and

data structure support in building the current CFD solver. The Linux system and cluster

of high performance computing nodes and processors provide the computing facilities and

a massively parallel computing platform. The short-term goal of this effort is setting up

the complete algorithm implementation for high-order DG method. The new solver has

been built for solving three-dimensional RANS equations on unstructured grids, to prove

the capability of computing diffusion components accurately. A two species gas model is

adopted in this research, and typical test cases of air-helium shock-bubble interaction prob-

lem have been used as the primary examples to validate the algorithm. Because high-order

DG methods have not yet been largely used in the simulation of multiple species flows,

then our major contribution is preliminarily: constructing an efficient and robust higher-

order DG method based solver with a mass diffusion based limiter model, and capturing

the fluids with sharp material interface accurately in the high speed flow simulations. The

numerical solutions can be achieved with physically meaningful gas mixture properties

without losing order of accuracy when diffusion based limiters are used.

The outline of this document is the following. In Chapter 2, governing equations and

physical models are briefly described. In Chapter 3, the basic mathematical representation

of the DG method is introduced, including basis functions and geometrical issues. In Chap-

ter 4, the numerical discretization of the equations in space by the DG method is discussed
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in detail, and typical methods of computing the fluxes are introduced. In Chapter 5, the

approach for time integration of the resulting system of equations is discussed, including

acceleration strategies. In Chapter 6, details of the diffusion based limiter are presented.

Numerical results of typical test cases are presented in Chapter 7 and some conclusions are

given in Chapter 8.
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CHAPTER 2

GOVERNING EQUATIONS

In this chapter the basic fluid dynamics governing equations are described. The nondi-

mensional governing equations are supplemented with some physical models or closure

models as required. Two-equations turbulence models and thermodynamics models for

multiple species are introduced in this chapter as well.

2.1 Euler equations

Without considering viscous effects and thermal conduction, for a mixture of two

species, the governing Euler equations in differential form read:

∂U

∂t
+
∂Fj

∂xj
= 0 (2.1)

where the vectors are:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ2

ρu1

ρu2

ρu3

ρe0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1uj

ρ2uj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρujh0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j = 1, 2, 3 (2.2)
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In these equations, a gas mixture composed of only two species is used. The fluid densities

are ρ1 and ρ2, and the density of the mixture is ρ = ρ1 + ρ2. Also, t denotes time, x1, x2,

and x3 are global Cartesian coordinates, ui is the fluid velocity in direction xi, p is the fluid

pressure and δij is the Kronecker delta function. Other variables are defined as following:

the total enthalpy h0 and total energy e0 are related by:

h0 = e0 +
p

ρ
(2.3)

2.2 Thermodynamics model

In this research, a two-species model has been used as a simplified model for multiple

species gas problems, but the number of species and components of the gas mixture can be

extended easily depending on the specific engineering requirements. Typically we choose

a two-species air model composed of nitrogen molecules and oxygen molecules as a sim-

plified model for the general situation. The flow is considered to be frozen chemically and

the individual components are thermally perfect, so that the mixture properties are only

dependent on the mass fractions.

2.2.1 Gas mixture properties

Following the work of Grossman and Cinnella [30, 56], at high temperature the internal

energy per unit mass of each species is assumed to be the sum of two portions, one in

thermodynamic equilibrium and one in a nonequilibrium state, the latter being modeled

by appropriate production rates. For situations where the gas temperature is not too high,

17



only the thermodynamic equilibrium portion of the internal energy per unit mass of each

species is considered:

eN2 = ẽN2(T )

eO2 = ẽO2(T ) (2.4)

where ẽN2 and ẽO2 are the known equilibrium portion of the energy and T is the transla-

tional temperature. It is convenient to express ẽN2 and ẽO2 in terms of the specific heat at

constant volume C̃v,N2 = dẽN2/dT and C̃v,O2 = dẽO2/dT as follows:

ẽN2 =
∫ T

Tref

C̃v,N2(τ)dτ + eref,N2

ẽO2 =
∫ T

Tref

C̃v,O2(τ)dτ + eref,O2 (2.5)

where eref,N2 and eref,O2 are the reference value for the internal energy, and Tref is the

reference value of temperature, normally set to zero for simplicity. The internal energy per

unit mass of the mixture becomes:

e =
2∑

i=1

ρi
ρ
ei =

ρN2

ρ
eN2 +

ρO2

ρ
eO2 =

ρN2

ρ
ẽN2 +

ρO2

ρ
ẽO2 (2.6)

where the ratio ρi/ρ is the mass fraction of the i-th species. Then the mixture specific heats

and the gas constant can be defined by means of the general mixture rule, as follows:

C̃v =
2∑

i=1

ρi
ρ
C̃vi =

ρN2

ρ
C̃v,N2 +

ρO2

ρ
C̃v,O2

C̃p =
2∑

i=1

ρi
ρ
C̃pi =

ρN2

ρ
C̃p,N2 +

ρO2

ρ
C̃p,O2

R̃ =
2∑

i=1

ρi
ρ
R̃i =

ρN2

ρ
R̃N2 +

ρO2

ρ
R̃O2 = C̃p − C̃v (2.7)
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and it is possible to define an isentropic index γ̃:

γ̃ =
C̃p

C̃v

(2.8)

2.2.2 Equation of state

For conditions in which each individual species behaves as a thermally perfect gas, the

thermal equation of state will relate pressure to translational temperature, in accordance to

Dalton’s law:

p =
2∑

i=1

ρiRiT = ρN2RN2T + ρO2RO2T = ρR̃T (2.9)

where the density of the mixture is:

ρ =
2∑

i=1

ρi = ρN2 + ρO2 (2.10)

The relationship between pressure and specific internal energy is defined implicitly through

the temperature. The caloric equation of state is:

e =
2∑

i=1

ρi
ρ
[
∫ T

Tref

C̃vi(τ)dτ + eref,i]

=
ρN2

ρ
[
∫ T

Tref

C̃v,N2(τ)dτ + eref,N2] +
ρO2

ρ
[
∫ T

Tref

C̃v,O2(τ)dτ + eref,O2] (2.11)

2.3 Navier-Stokes equations

When the effects of viscosity and thermal conductivity are not neglected, the Euler

equations cannot properly describe the nature of fluid now. The transport phenomena of

momentum and heat by shear stress and temperature gradient are considered by adding a

diffusive flux tensor to the governing equations. Derived from physical laws of conserva-
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tion, the mathematical representation of the governing equations for viscous flows, called

the Navier-Stokes equations, are given in vector form as:

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
= 0 (2.12)

where the conservative variables vector and inviscid flux vector have been defined in Equa-

tion (2.2). The extra term is the divergence of the diffusive flux tensor defined by:

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1V1

−ρ2V2

−τj1

−τj2

−τj3

−(u1τj1 + u2τj2 + u3τj3)− qj −∑s ρshsVs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j = 1, 2, 3 (2.13)

For air roughly being considered as a mixture of nitrogen and oxygen gases, two individ-

ual species conservation laws have been used to substitute the original mass conservation

equation. Mass diffusion contribution has been added to the Euler governing equations in

Equation (2.1) for the case of multiple species. In Equation (2.13) the species diffusion

velocities need to be defined [40]. Fick’s law of diffusion is employed to model species

diffusion velocity Vs:

ρ1V1 = ρD1,2∇Y1

ρ2V2 = ρD2,1∇Y2 (2.14)

where D1,2 and D2,1 are the species diffusion coefficients and Ys is the species mass frac-

tion. More details of mass diffusion process will be discussed in a following chapter.
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The τij is a viscous stress tensor as:

τ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.15)

In this research air is used, which is assumed to be a Newtonian fluid for which the Boussi-

nesq hypothesis is valid. Then τij is symmetric and a linear function of the velocity gradi-

ents:

τij = μ
(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)
(2.16)

where μ is the molecular viscosity coefficient or dynamic viscosity coefficient, and δij is

the Kronecker delta function. Using kinetic theory, μ is a known function of temperature

for monoatomic gases. At moderate temperatures, air is composed of largely diatomic

gases and we can still approximately use the relation between μ and T . The popular semi-

empirical formula of Sutherland’s law reads:

μ

μ0

=
( T
T0

) 3
2 T0 + S

T + S
(2.17)

with μ0, T0 and S being constant values. The heat flux vector qj in the energy equation of

the viscous flux tensor is modeled according to Fourier’s law as:

qj = −λ ∂T
∂xj

(2.18)

where the thermal conductivity coefficient λ is related to the molecular viscosity coefficient

μ and the specific heat capacity at constant pressure Cp by the nondimensional Prandtl

number Pr in this form:

λ =
μ · Cp

Pr
(2.19)
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For air the Prandtl number is approximately constant for temperature between 200K and

600K and equal to 0.72. This is true for the cases used in this study.

2.4 Reynolds-Averaged Navier-Stokes equations

Laminar flow does only exist in very limited cases, and turbulent flows are dominant

in most engineering problems, which complicates the simulation of practical flows. If the

Navier-Stokes equations were still solved to obtain the solution of turbulent flow, then the

amount of grid cells required to capture the turbulent length scales would be prohibitively

large. Hence a more practical method is employing a reasonable approximation of the time

dependent Navier-Stokes equations for high Reynolds number flow problems. The RANS

equations result from time-averaging the governing equations. Physically they describe the

motion of the fluid by using time-averaged values of the flow quantities. This approxima-

tion requires some models to characterize the properties of the turbulent quantities in order

to close the system. The topic of turbulence models is going to be discussed in a following

chapter. First of all, RANS equations are introduced as:

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
= 0 (2.20)

with F and G are defined in Equation (2.2) and Equation (2.13). Here τij and qj are

modified to accommodate the effect of turbulent quantities as:

τ̂ij = 2(μ+ μt)
(
Sij − 1

3

∂uk
∂xk

δij

)
− 2

3
ρκδij

= (μ+ μt)
(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)
− 2

3
ρκδij (2.21)

q̂j = −
(
λ+ λt

)
∂T

∂xj
(2.22)
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λt =
μt · Cp

Prt
(2.23)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.24)

Here Sij is the mean strain-rate tensor and μt is the eddy viscosity, or turbulent viscosity.

Also, κ is the turbulent kinetic energy and λt is turbulent thermal conductivity. The Prt is

the turbulent Prandtl number, which is taken constant and equal to 0.9. We find that if the

form of eddy viscosity and turbulent thermal conductivity is similar to that of laminar flow

viscosity and thermal conductivity respectively, then a simple way of computing turbulent

viscous stress tensor and heat flux is to replace μ and λ with μ+μt and λ+λt as shown in

Equation (2.21) and Equation (2.22). Notice that λt is a function of μt, then we are still in

need of a function for the eddy viscosity in order to close the system mathematically. For a

mixture of multiple species, the species viscosity and thermal conductivity coefficients are

computed individually and the mixture properties are obtained by Wilke’s rule:

μ =
Ns∑
i=1

Wi · μi

λ =
Ns∑
i=1

Wi · λi

Wi =
Xi∑Ns

j=1Xj · Φij

Φij =
1√
8

(
1 +

Mi

Mj

)− 1
2 ·
[
1 +

√
μi

μj

(
Mi

Mj

)
1
4

]2
(2.25)

where Ns is number of species in the mixture, Xi is the mole fraction of the species

component, and Mi is the molecular weight for each species.
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2.5 Turbulence model and coupled equations

The classical Wilcox [59] κ−ω two-equations turbulence model is coupled to the mean

flow governing equations. This model includes not only turbulent velocity scales, but also

the turbulent length scales. Therefore, the RANS equations coupled with κ-ω equations

are:

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
+ S = 0 (2.26)

where the vectors are defined as follows:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ2

ρu1

ρu2

ρu3

ρe0

ρκ

ρω̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1uj

ρ2uj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρujh0

ρκuj

ρω̃uj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1V1

−ρ2V2

−τ̂1j

−τ̂2j

−τ̂3j

−uiτ̂ij − q̂j −∑ ρshsVs

−(μ+ σ∗μ̂t)
∂κ
∂xj

−(μ+ σμ̂t)
∂ω̃
∂xj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.27)

24



S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

τij
∂ui

∂xj
− β∗ρκ̂eω̃r

−τij ∂ui

∂xj
+ β∗ρκ̂eω̃r

−α
κ̂
τij

∂ui

∂xj
+ βρeω̃r − (μ+ σμ̂t)

∂ω̃
∂xk

∂ω̃
∂xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i, j = 1, 2, 3 (2.28)

Here laminar flow variables have been defined in Equation (2.2). τ is turbulent stress tensor

defined as:

τij = 2μ̂t

(
Sij − 1

3

∂uk
∂xk

δij

)
− 2

3
ρκ̂δij (2.29)

Turbulent quantities κ stands for turbulent kinetic energy and the new variable ω̃ = lnω

is used instead of ω which is the turbulent dissipation rate. ω̃r comes from realizability

constraints and the Schwarz inequality [8] where it is defined as ω̃r = max(ω̃, ω̃r0), ω̃r0 is

computed from the inequility. Other quantities are:

κ̂ = max(0, κ) μ̂t = α∗ρκ̂e−ω̃r (2.30)

γ, Pr and Prt are the ratio of gas specific heats, the molecular and turbulent Prandtl

numbers (constant for perfect gases). The value of the κ-ω closure parameters α, α∗, β,

β∗, σ, σ∗ are those of the low-Reynolds κ-ω model in [8].
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2.6 Nondimensional form of the governing equations

In order to reduce truncation errors from the finite precision of computers and decrease

the condition number of the linear system when implicit time integration is used, some op-

erations are made to guarantee that all variables are scaled to approximately the same order

of magnitude. Scaling the variables and normalizing the governing equations is a neces-

sary procedure in the solver implementation. Based on five reference quantities: length,

density, velocity, viscosity, and mixture gas constant defined from the initial freestream

conditions, other parameters can be made dimensionless consequently.

• Length(Lref = d): characteristic length (chord length, cylinder diameter, etc.)

• Density(ρref = ρ∞): Freestream density

• Velocity(υref = a∞): Freestream speed of sound

• Viscosity(μref = μ∞): Freestream viscosity

• Gas constant(Rref = R∞): Given species mass fraction, R∞ = Y1∞R1 + Y2∞R2

Meanwhile, some nondimensional derived variables are given here:

• Mach number: Ma∞ = U∞
a∞

• Reynolds number: Re∞ =
ρ∞a∞Lref

μ∞

• Prandtl number: Pr∞ = μ∞Cp

λ∞

• Temperature: T∞ = a2∞
R∞

In the following, the nondimensional quantities are displayed with an overbar (x̄), then

after scaling the derived variables are given here:

t̄ =
a∞t
Lref

, p̄ =
p

ρ∞a2∞
, ē =

e

a2∞
, h̄0 =

h0
a2∞

, ā =
a

a∞
, κ̄ =

κ

a2∞
,
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ω̄ = ω
Lref

a∞
, h̄ =

h

a2∞
, x̄ =

x

Lref

, ȳ =
y

Lref

, z̄ =
z

Lref

, ρ̄ =
ρ

ρ∞
,

ē0 =
e0
a2∞

, ū =
u

a∞
, T̄ =

T

T∞
=
TR∞
a2∞

, μ̄ =
μ

μ∞
, τ̄ij =

τij
ρ∞a2∞

,

q̄j =
qj

ρ∞a3∞
, λ̄ =

λ

μ∞R∞
, ¯̃ω = ω̃ − ln

a∞
Lref

= lnω − ln
a∞
Lref

= ln ω̄,

¯̂μt =
μ̂t

μ∞
, ρ̄1 =

ρ1
ρ∞

, ρ̄2 =
ρ2
ρ∞

, ¯̂κ =
κ̂

a2∞
, ¯̂τ ij =

τ̂ij
ρ∞a2∞

, ¯̂qj =
q̂j

ρ∞a3∞
,

λ̄t =
λt

μ∞R∞
, D̄s =

Dsρ∞
μ∞

, C̄v =
Cv

R∞
, C̄p =

Cp

R∞
, γ̄ = γ,

R̄ =
R

R∞
, ν̄ =

νρ∞
μ∞

, ρsVs =
ρsVsLref

μ∞
(2.31)

After substituting the dimensionless variables for the parameters in the original RANS

equations and rewriting the equations in terms of nondimensional variables, we can get the

normalized governing equations as follows. Note that the overbar has been removed for

clarity:

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
+ S = 0 (2.32)

where the vectors are :

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ2

ρu1

ρu2

ρu3

ρe0

ρκ

ρω̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1uj

ρ2uj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρujh0

ρκ̂uj

ρω̃uj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1V1

−ρ2V2

−τ̂1j

−τ̂2j

−τ̂3j

−uiτ̂ij − q̂j −∑ ρshsVs

− 1
Re∞ (μ+ σ∗μ̂t)

∂κ
∂xj

− 1
Re∞ (μ+ σμ̂t)

∂ω̃
∂xj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.33)
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

τij
∂ui

∂xj
− β∗ρκ̂eω̃r

−τij ∂ui

∂xj
+ β∗ρκ̂eω̃r

−α
κ̂
τij

∂ui

∂xj
+ βρeω̃r − 1

Re∞ (μ+ σμ̂t)
∂ω̃
∂xk

∂ω̃
∂xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i, j = 1, 2, 3 (2.34)

with the nondimensional turbulent quantities and thermal conduction quantities defined

here:

τij =
1

Re∞
μ̂t

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

]
− 2

3
ρk̂δij

τ̂ij =
1

Re∞
(μ+ μ̂t)

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

]
− 2

3
ρk̂δij

q̂j = − 1

Re∞

(
λ+ λt

)
∂T

∂xj
(2.35)
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CHAPTER 3

THE DISCONTINUOUS GALERKIN METHOD

Theoretically, the DG discretization can be performed on any type of elements or mesh

cells. In this document, both structured and unstructured grids have been used for three-

dimensional computations. In the DG framework, a family of orthogonal, hierarchical

bases, which are obtained from tensor product of Jacobi polynomial, are used as ansatz and

test functions, up to fourth order of accuracy. Moreover, transformation between different

spaces is an essential part of the current implementation. The global physical reference

coordinate (Cartesian coordinate) is transformed into the local computational space, there-

fore the basis functions operate relative to the computational space and integration rules

apply for each element. The popular Gaussian integration and quadrature rules will be

discussed in detail in the following, because they are at the foundation of this effort.

3.1 Unstructured elements and basis functions system

In computational aerodynamics, where unstructured meshes are employed to accom-

modate geometric complexity, low-order finite elements and finite volumes are the pre-

vailing discretization strategies. With the need for accurate solutions of viscous flow for

aerodynamic configurations, high order discretization on unstructured meshes are of inter-

est. The standard polynomial spectral methods provide high order accuracy but they are
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limited to simple geometries. Also extending spectral methods to complex geometries has

some limitations in adaptive capability. Thus we take the discontinuous Galerkin spectral

method [57] as a general framework. This method employs standard hybrid grids so as to

provide great flexibility in discretization. The unified polynomial basis, which is hierar-

chical and readily used in p-refinement, has been used. Moreover, data are expanded as

tensor products and thus three-dimensional operations are reduced to a series of inexpen-

sive one-dimensional operations. And the discontinuous Galerkin projections can be easily

formulated to provide locality and robustness. Based on these advantages of this spectral

method, the basis functions are constructed for hexahedra, prism, pyramid and tetrahedra

elements as a way for computing ansatz and test functions in our DG framework for the

governing equations.

The unified hybrid expansion basis functions using hexahedral, prismatic, pyramidic

and tetrahedral domains in three dimensions are analyzed in a diagrammatic representation

of the local collapsed coordinate systems in Figure 3.1. Details on how these coordinate

systems are collapsed can be seen in [57].

After the collapsed coordinate systems have been established, the basis function ex-

pansions are defined as orthogonal in an L2 inner product. That is, in hexahedral domain,

the basis function is constructed as tensor product of three one-dimensional expansions.

Warburton [57] has proved that this method of constructing the basis function is compu-

tationally attractive since the key operations, such as differentiation and integration, can

be performed as a series of one-dimensional expansions. In the unstructured domain of

collapsed coordinate systems, a similar process can be used to construct the basis func-
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Figure 3.1

Local collapsed Cartesian coordinate systems in hexahedral, prismatic, pyramidic and

tetrahedral domains
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tion as a product involving tensors of three dimensions. This process sets up the relation

between the local collapsed coordinate systems to the computational coordinate systems,

specifically for solution representation, where the basic operation can be applied under

these systems. Here the basis functions for hybrid domains are briefly summarized.

Based on the function Pα,β
p (z) which is the pth-order Jacobi polynomial, the principal

functions ψ̃a
i (z), ψ̃

b
ij(z), ψ̃

c
ijk(z) for orthogonal expansions are defined:

ψ̃a
i (z) = P 0,0

i (z)

ψ̃b
ij(z) =

(1− z

2

)i
P 2i+1,0
j (z)

ψ̃c
ijk(z) =

(1− z

2

)i+j
P 2i+2j+2,0
k (z) (3.1)

where i, j, k is the index of the i, j, k-th expansion polynomial for each degree of freedom

in one dimension, and z is the coordinate value at individual dimensions of the system.

Now three-dimensional expansions are defined in terms of the principal functions as:

Hexahedral φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(ξ1)ψ̃

a
q (ξ2)ψ̃

a
r (ξ3)

Prismatic φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(ξ1)ψ̃

a
q (η2)ψ̃

b
qr(ξ3)

Pyramidic φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η̄1)ψ̃

a
q (η2)ψ̃

c
pqr(η3)

Tetrahedral φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1)ψ̃

b
pq(η2)ψ̃

c
pqr(η3) (3.2)

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η̄1 =

2(1 + ξ1)

(1− ξ3)
− 1, η2 =

2(1 + ξ2)

(1− ξ3)
− 1, η3 = ξ3 (3.3)

are the three-dimensional normalized coordinates. These expansions are polynomials in

terms of local collapsed coordinates, therefore can be reformulated as functions of the

32



computational coordinate systems. On element faces, the basis functions can be computed

in the same way by simply substituting the coordinate values into the formulation and

interpolate to find the local collapsed coordinates in space. In this implementation, basis

functions for all element types are used up to fourth order of approximation accuracy. The

details of basis functions for each degree of freedom for hexahedral element are given in

APPENDIX A.

3.2 Transformation to computational space

In order to generalise all operations on different element geometry, the physical ele-

ment domains (Cartesian coordinates) need to be transformed to a computational reference

space (direct coordinate system) which is locally identical to the coordinates in hexahedral

element space. Now spatial Jacobian matries are defined here, and the computational coor-

dinate systems can be transformed from the global Cartesian coordinate systems as shown

in Figure 3.2 (taking prism domain as an example).

Using the prism element as an example for general unstructured domains for computa-

tion, a reference prism can be mapped from the computational space (ξ, η, ζ) to an arbitrary

prism in the physical space (x, y, z) with a linear transformation:

X̄(ξ, η, ζ) =
1

8
((1− ξ)(1− η)(1− ζ)X̄0 + (1 + ξ)(1− η)(1− ζ)X̄1 +

(1− ξ)(1 + η)(1− ζ)X̄2 + (1 + ξ)(1 + η)(1− ζ)X̄3 +

(1− ξ)(1− η)(1 + ζ)X̄4 + (1 + ξ)(1− η)(1 + ζ)X̄5 +

(1− ξ)(1 + η)(1 + ζ)X̄6 + (1 + ξ)(1 + η)(1 + ζ)X̄7) (3.4)
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Figure 3.2

Coordinates transformation from global Cartesion to local collapsed and normalized

coordinates

here X̄0 to X̄7 are the nodal positions at global coordinates, some of which could be col-

lapsed to a common value on unstructured elements. Hence the Jacobian of the transfor-

mation is defined as:

J =

∣∣∣∣∣∂(X, Y, Z)∂(ξ, η, ζ)

∣∣∣∣∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= const. (3.5)

Note that the Jacobian is independent of ξ, η and ζ and identical to the twice the volume

of the prism element for this case. As an alternative method, Bezier curves with Berstein

polynomials [45] can be used to represent the geometry, and can be differentiated to com-

pute the Jacobian directly.
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3.3 Gaussian integration and quadrature rules

The numerical integration from cell and face integrals is performed in the computa-

tional reference domain. For simplicity, the Gaussian integration is used to approximate

the numerical integration on each element for both cell integrals and face integrals. Let us

take the numerical flux integration of cell and face components in discretized Euler equa-

tions as an example.

For cell integration, applying Gaussian rule to the following equations results in:

∫
Ω
F(U(�x(ξ1, ξ2, ξ3))) · ∇ψk(�x(ξ1, ξ2, ξ3))dΩ

=
∫
ξ1

∫
ξ2

∫
ξ3
J−1(ξ1, ξ2, ξ3)F(ξ1, ξ2, ξ3) · ∇ψk(ξ1, ξ2, ξ3)J(ξ1, ξ2, ξ3)dξ1dξ2dξ3

=
nq∑
q=1

ωqJ
−1(ξ1,q, ξ2,q, ξ3,q)F(ξ1,q, ξ2,q, ξ3,q) · ∇ψk(ξ1,q, ξ2,q, ξ3,q)|J(ξ1,q, ξ2,q, ξ3,q)|

where dΩ is volume element operator in integration. The element face integration can be

approximated by a weighted summation as:

∮
∂Ω

F̂(U(�x(ξ1, ξ2, ξ3))) · nψk(�x(ξ1, ξ2, ξ3))dσ

=
∫
η1

∫
η2
J−1(η1, η2)F̂(η1, η2) · nψk(η1, η2)J(η1, η2)dη1dη2

=
nq∑
q=1

ωqJ
−1(η1,q, η2,q)F̂(η1,q, η2,q) · nψk(η1,q, η2,q)|J(η1,q, η2,q)|

where dσ is surface element operator in integration, nq is the number of quadrature points

for integration, ωq is the weight for each quadrature point, ξi are the local coordinates on

cells and ηi are the faces local coordinates. The choice of reference coordinates to two-

dimensional and three-dimensional elements and the details of the quadrature points and

integration are given in APPENDIX B.
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3.4 Basis function and mass matrix

Three-dimensional ansatz and test functions up to fourth order of accuracy have been

computed for this study. Lastly, one important thing needs to be mentioned which is so

called element mass matrix Mij . This mass matrix is used mainly for time integration

and iterations. It is especially useful in implicit time integration methods. The three-

dimensional mass matrix is:

Mij =
∫
ξ1

∫
ξ2

∫
ξ3
ψi(ξ1, ξ2, ξ3)ψj(ξ1, ξ2, ξ3)|J(ξ1, ξ2, ξ3)|dξ1dξ2dξ3 (3.6)

where i and j are degrees of freedom for each quadrature point. The mass matrix is sym-

metric, and for orthogonal polynomial functions, this mass matrix is diagonal. The mass

matrix is stored and can be reused in each time integration.
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CHAPTER 4

DISCONTINUOUS GALERKIN SPACE DISCRETIZATION

In this chapter, the Euler equations and RANS equations are discretized in space using

the discontinuous Galerkin method. Details of applying the DG method to the governing

equations and turbulence model are introduced. Several classical methods to compute the

inviscid flux and viscous flux are mentioned, and boundary conditions treatments are also

given for completeness.

4.1 Discretization of Euler equations

The differential form of the Euler equations, Equation (2.1), is multiplied by an arbi-

trary weighting function ψ and integrated over the domain as:

∫
Ω

∂U

∂t
ψdΩ +

∫
Ω
∇ · F(U)ψdΩ = 0 (4.1)

The flux term is integrated by parts (using the Gaussian divergence theorem) to obtain the

weak form:

∫
Ω
∇ · F(U)ψdΩ =

∫
∂Ω
(F(U) · n)ψdσ −

∫
Ω
F(U) · ∇ψdΩ (4.2)

where ∂Ω denotes the boundary of the solution domain Ω. Now consider Ωh as an approx-

imation of entire domain Ω, with Σh and Γh being defined as an approximation of element

interface and domain boundary separately. A discretization (here discretize the domain by
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unstructured meshes) of the domain Ωh is a set of non-overlapping elements Th = {e}

with the corresponding interface Ih = {i} and boundary Bh = {b}. Let us consider the

functions space:

Vh :=
{
v ∈ L2(Ωh) : ψ|e ∈ P k(e) ∀e ∈ Th

}
(4.3)

where P k(e) denotes the space of polynomial functions of degree at most k in element e.

Equation (4.1) can be rewritten as the summations of integrals over the entire computa-

tional domain and Uh ∈ Vh so that:

∑
e∈Th

∫
Ωe

∂Uh

∂t
ψhdΩ − ∑

e∈Th

∫
Ωe

F(Uh) · ∇ψhdΩ

+
∑
e∈Th

∫
∂Ωe

F(Uh) · nψhdσ = 0 (4.4)

holds for an arbitrary test function ψ ∈ Vh. The various summations in Equation (4.4)

are mandatory since the integration by part rule can not be applied to the entire doman

Ωh because of the discontinuities at element interfaces. So we need to split the integral

over Ωh into the group of integrals over the elements of Th and then apply integration by

parts to each integral of the group. This is a valid operation since the functions are locally

continuous inside the elements of Th [8].

Let us now rewrite the various summations in Equation (4.4) as integrals over the entire

domain Ωh, the interface Σh and the boundary Γh. The summations of integrals over the

element domains Ωe are obviously equivalent to integrals over the entire domain Ωh. Then

the system of equations over the domain can be rewritten as:

∫
Ωh

∂Uh

∂t
ψhdΩ−

∫
Ωh

F(Uh) · ∇ψhdΩ +
∫
Σh

F(Uh) · nψhdσ = 0 (4.5)
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Now we need to use proper numerical method to compute each part of the above equations.

The cell integration which is the second term in Equation (4.5) can be approximated by

integration rules in a straightforward fashion:

∫
Ωh

F(Uh) · ∇ψhdΩ ≈
nq∑
q=1

ωqJ
−1F · ∇ψk|J | (4.6)

where k = 0 . . . ndf with ndf polynomial number of degree of freedom. This flux contri-

bution has been evaluated as the summation of the integration from each quadrature point

in the cell. The face flux integration, which is the third term in Equation (4.5), can be

represented as:

∫
Σh

F(Uh) · nψhdσ =
∫
Σh

F̂(U−
h , U

+
h ;n)ψhdσ

=
∫
Σh

F̂(U−
h , U

+
h ;n

−)(ψ−
h − ψ+

h )dσ +
∫
Γh

F(U b
h) · nψhdσ (4.7)

where numerical flux F̂(U−
h , U

+
h ;n

−) is an approximation of the physical flux at interface,

and F(U b
h) is flux at boundary. The first term on the second line is the numerical flux

approximation from element interfaces, and the second term is the numerical flux on the

boundary of the domain. The well developed approximate Riemann solver [51] can now be

used. The details of the approximation to the face flux contribution are given in a following

section.
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4.2 Discretization of RANS equations

The dimensionless RANS equations coupled with κ-ω turbulence model equations are

given in Equation (2.32). Based on that, we can start applying DG space discretization to

the compact form of RANS equations and κ-ω turbulence model equations as:

∂U

∂t
+∇ · F(U) +∇ ·G(U,∇U) + S(U,∇U) = 0 (4.8)

The differential form is multiplied by an arbitrary weighting function ψ and integrated over

the domain as:

∫
Ω

∂U

∂t
ψdΩ +

∫
Ω
∇ · F(U)ψdΩ +

∫
Ω
∇ ·G(U,∇U)ψdΩ

+
∫
Ω
S(U,∇U)ψdΩ = 0 (4.9)

where the convective flux integrations have been computed in Equation (4.6) and Equa-

tion (4.7) from last section. Now let us consider the diffusive flux contribution which is the

third term in Equation (4.9). This flux can be reformulated as a first-order system as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z = ∇U

∇ ·G(U,∇U) = ∇ · [A (U)Z]

(4.10)

Note that it has been proved that the diffusive flux G(U,∇U) can be represented as a

nonlinear function operator A (U) of conservative variables U multiplied by the solution

gradient Z [8]. Then this first-order system is integrated by parts to obtain the weak form

as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω g · ZdΩ =

∫
Ω g · ∇UdΩ = − ∫Ω U∇ · gdΩ +

∫
∂Ω Ug · ndσ

∫
Ω ∇ ·G(U,∇U)ψdΩ =

∫
Ω ∇ · [A (U)Z]ψdΩ =

− ∫Ω [A (U)Z] · ∇ψdΩ +
∫
∂Ω [A (U)Z] · nψdσ

(4.11)
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where g is an arbitrary weighting vector function (note: in this context, we used bold for

vector and normal for scalar parameters). Substitute Equation (4.11) to Equation (4.9), we

can get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω g · ZdΩ =

∫
Ω g · ∇UdΩ = − ∫Ω U∇ · gdΩ +

∫
∂Ω Ug · ndσ

∫
Ω

∂U
∂t
ψdΩ− ∫Ω F(U) · ∇ψdΩ +

∫
∂Ω F(U) · nψdσ

− ∫Ω [A (U)Z] · ∇ψdΩ +
∫
∂Ω [A (U)Z] · nψdσ +

∫
Ω S(U,Z)ψdΩ = 0

(4.12)

Let us consider the functions space:

Vh :=
{
ψ ∈ L2(Ωh) : ψ|e ∈ P k(e) ∀e ∈ Th

}
Gh :=

{
g ∈ [L2(Ωh)]

d : g|e ∈ [P k(e)]d ∀e ∈ Th

}
(4.13)

Equation (4.12) can be rewritten as the summations of integrals over the entire computa-

tional domain and Uh ∈ Vh so that:

∑
e∈Th

∫
Ωe

gh · ZhdΩ = − ∑
e∈Th

∫
Ωe

Uh∇ · ghdΩ +
∑
e∈Th

∫
∂Ωh

Ûhgh · ndσ
∑
e∈Th

∫
Ωe

∂Uh

∂t
ψhdΩ − ∑

e∈Th

∫
Ωe

F(Uh) · ∇ψhdΩ +
∑
e∈Th

∫
∂Ωe

F̂(U−
h , U

+
h ;n)ψhdσ

− ∑
e∈Th

∫
Ωe

[Ah(Uh)Zh] · ∇ψhdΩ +
∑
e∈Th

∫
∂Ωe

[ ̂Ah(Uh)Zh

]
· nψhdσ

+
∑
e∈Th

∫
Ωe

S(Uh,Zh)ψhdΩ = 0 (4.14)

holds for arbitrary test functions ψ ∈ Vh and g ∈ Gh. Ûh and
[ ̂Ah(Uh)Zh

]
are numerical

flux approximation of U and [A (U)Z] at element interface. Now taking the procedure

similar to Equation (4.5), and rewriting the system of equations over the domain as:

∫
Ωh

gh · ZhdΩ = −
∫
Ωh

Uh∇ · ghdΩ +
∫
Σh

Ûhgh · ndσ
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∫
Ωh

∂Uh

∂t
ψhdΩ −

∫
Ωh

F(Uh) · ∇ψhdΩ +
∫
Σh

F̂(U−
h , U

+
h ;n)ψhdσ

−
∫
Ωh

[Ah(Uh)Zh] · ∇ψhdΩ +
∫
Σh

[ ̂Ah(Uh)Zh

]
· nψhdσ

+
∫
Ωh

S(Uh,Zh)ψhdΩ = 0 (4.15)

Since the convective components of the flux contribution are identical to those from the

Euler equations, here the computation of the diffusive terms is our concern, and several

methods can be utilized to obtain the numerical approximation of the diffusion [8, 22].

The details of both convective and diffusive flux approximations will be discussed in the

following sections.

4.3 Computing the convective flux

The typical methods used to compute the element interface convective flux in finite

volumes can be applied directly to the DG discretized governing equations. Currently four

numerical schemes have been examined and used to compute the convective flux. In this

research, since two species gas models have been used, the standard form of the numerical

flux approximation is modified to accommodate the species mass fractions.

4.3.1 Roe flux difference splitting

Two frequently used operators are introduced at first. The arithmetic average of a

quantity f will be denoted by:

〈f〉 = fl + fr
2

(4.16)

42



with the subscript l indicating the left state and the subscript r the right state, respectively.

Also the jump of a quantity f will be defined as:

[f ] = fr − fl (4.17)

The solution of the approximate Riemann problem [51] involves the determination of the

cell interface fluxes as a summation over wave speeds:

Fi = 〈F〉 − 1

2
([F]A + [F]B + [F]C) (4.18)

where the absolute value of the wave speeds must be taken into the formula for the jumps

in the fluxes, which involves projecting [F] onto the eigenvectors:

[F] = [F]A + [F]B + [F]C =
6∑

i=1

α̃i|λ̃i|r̃(i) (4.19)

Then the derived Roe interface flux approximation is:

Fi =
1

2

(
Fl + Fr −

6∑
i=1

α̃i|λ̃i|r̃(i)
)

(4.20)

where α̃i, λ̃i and r̃(i) are the wave strengths, eigenvalues and right eigenvectors respec-

tively. A simple algorithm for computing the Roe numerical flux according to the above

formulae is:

1. Compute the Roe averaged values of ũ, ṽ, w̃, H̃ and ã.

2. Compute the averaged eigenvalues λ̃i.

3. Compute the averaged right eigenvectors r̃(i).

4. Compute the wave strengths α̃i.

5. Use all derived quantities to compute the interface flux Fi from Equation (4.20).
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In above formulae, the [F]A term corresponds to the repeated eigenvalue λi = Ũn (Ũn is

contravariant velocity) and may be written from [56] as:

[F]A = ([ρ]− [p]

ã2
) · |Ũn| ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̃1

ρ̃2

Ũx

Ũy

Ũz

(h̃0 − ã2

γ̃−1
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ρ̃ · |Ũn| ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ρ1
ρ
]

[ρ2
ρ
]

([Ux]− [Un] · nx)

([Uy]− [Un] · ny)

([Uz]− [Un] · nz)

Θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

where:

Θ = (Ũx · [Ux] + Ũy · [Uy] + Ũz · [Uz])− Ũn · [Un]− (Ψ̃1[
ρ1
ρ
] + Ψ̃2[

ρ2
ρ
]) (4.22)

Similarly, the [F]B and [F]C corresponding to the eigenvalues Ũn + ã and Ũn − ã are:

[F]B,C =
[p]± ρ̃ã[Un]

2ã2
· |Ũn ± ã| ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̃1

ρ̃2

Ũx ± ã · nx

Ũy ± ã · ny

Ũz ± ã · nz

(h̃0 ± Ũn · ã)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)

The appropriate averaged values of the flow variables ρ̃, Ũx(= ũ1), Ũy(= ũ2), Ũz(= ũ3),

ρ̃i, h̃0, Ψ̃i with i = 1, 2 for number of species in the mixture are defined as:

ρ̃ =
√
ρrρl

Ũx =
〈Ux

√
ρ〉

〈√ρ〉
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Ũy =
〈Uy

√
ρ〉

〈√ρ〉
Ũz =

〈Uz
√
ρ〉

〈√ρ〉

ρ̃i =
〈ρi
ρ

√
ρ〉

〈√ρ〉
h̃0 =

〈h0√ρ〉
〈√ρ〉

Ψ̃i =
RiT̃

γ̃ − 1
− ẽi +

q̃2

2
(4.24)

where:

T̃ =
〈T√ρ〉
〈√ρ〉

ẽi =
〈ei√ρ〉
〈√ρ〉

q̃2 = Ũ2
x + Ũ2

y + Ũ2
z (4.25)

Also some thermodynamic properties and speed of sound are:

γ̃ − 1 =
R̃

C̃∗
v

R̃ =
2∑

i=1

ρ̃iRi =
〈R̃√ρ〉
〈√ρ〉

C̃∗
v =

2∑
i=1

ρ̃iC
∗
vi

C∗
vi =

1

[T ]

∫ Tr

Tl

C̃vidT

ã2 = (γ̃ − 1)
(
h̃0 − q̃2

2
+ C̃∗

v T̃ −
2∑

i=1

ρ̃iẽi
)

(4.26)

In addition, an entropy fix method was proposed by Harten and Hyman [34] to the Roe

flux approximation scheme. This method limits the minimum value of the wave speed

to linear wave field, which is same as adding extra numerical dissipation to damp out
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spurious oscillation, for the entropy condition to be satisfied. In applications, it is very

useful especially when small instabilities happened around shock regions.

4.3.2 HLLC scheme

Harten, Lax and van Leer put forward the following approximate Riemann solver:

Ũ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x
t
< SL,

UHLL if SL ≤ x
t
≤ SR,

UR if x
t
> SR.

(4.27)

where UHLL is the constant state vector and the speeds SL and SR are the fastest signal

velocities perturbing the initial data state UL and UR respectively. Taken from Einfeldt

[25]:

SL = min[λ1(UL), λ1(U
Roe)]

SR = max[λm(U
Roe), λm(UR)] (4.28)

with λ1(U
Roe) and λm(U

Roe) being the smallest and largest eigenvalues of the Roe matrix.

This approximate solution of the Riemann problem is called the HLL Riemann solver.

The approximation consists of just three constant states separated by two waves. Then the

corresponding HLL intercell flux for the approximate Godunov method is given as:

FHLL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if SL > 0,

SRFL−SLFR+SLSR(UR−UL)
SR−SL

if SL ≤ 0 ≤ SR,

FR if SR < 0.

(4.29)
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The HLLC scheme [52] is a modification of the HLL scheme, whereby the missing contact

and shear waves in the Euler equations are restored. The HLLC approximate Riemann

solver is given as follows:

FHLLC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if SL > 0,

F(U∗
L) if SL ≤ 0 < SM ,

F(U∗
R) if SM ≤ 0 ≤ SR,

FR if SR < 0.

(4.30)

where the intermediate states are given as:

U∗
L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗1L

ρ∗2L

(ρu)∗L

(ρv)∗L

(ρw)∗L

(ρe0)
∗
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ΩL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1L(SL − qL)

ρ2L(SL − qL)

(SL − qL)(ρu)L + (p∗ − pL)nx

(SL − qL)(ρv)L + (p∗ − pL)ny

(SL − qL)(ρw)L + (p∗ − pL)nz

(SL − qL)(ρe0)L − pLqL + p∗SM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U∗
R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗1R

ρ∗2R

(ρu)∗R

(ρv)∗R

(ρw)∗R

(ρe0)
∗
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ΩR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1R(SR − qR)

ρ2R(SR − qR)

(SR − qR)(ρu)R + (p∗ − pR)nx

(SR − qR)(ρv)R + (p∗ − pR)ny

(SR − qR)(ρw)R + (p∗ − pR)nz

(SR − qR)(ρe0)R − pRqR + p∗SM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.31)
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and the intermediate fluxes are given:

F∗
L = F(U∗

L) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗1LSM

ρ∗2LSM

(ρu)∗LSM + p∗nx

(ρv)∗LSM + p∗ny

(ρw)∗LSM + p∗nz

((ρe0)
∗
L + p∗)SM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F∗
R = F(U∗

R) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗1RSM

ρ∗2RSM

(ρu)∗RSM + p∗nx

(ρv)∗RSM + p∗ny

(ρw)∗RSM + p∗nz

((ρe0)
∗
R + p∗)SM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.32)

where following parameters are defined:

ΩL = (SL − SM)−1, ΩR = (SR − SM)−1,

p∗ = ρL(qL − SL)(qL − SM) + pL = ρR(qR − SR)(qR − SM) + pR. (4.33)

and q = unx + vny +wnz, with [nx, ny, nz]
T being the unit vector normal to the interface.

Moreover, ρL = ρ1L + ρ2L and ρR = ρ1R + ρ2R are relations for species density. SM is

taken from Batten [11] as:

SM =
ρRqR(SR − qR)− ρLqL(SL − qL) + pL − pR

ρR(SR − qR)− ρL(SL − qL)
(4.34)
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4.3.3 HLLE scheme

Motivated by the Roe eigenvalues Einfeldt [25] proposed the alternative estimates:

SL = ū− d̄, SR = ū+ d̄. (4.35)

for his HLLE solver, where ū is numerical approximation of the velocity at the contact

discontinuity, and both ū and d̄ are given here:

ū =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

,

d̄2 =

√
ρLa

2
L +

√
ρRa

2
R√

ρL +
√
ρR

+ η2(uR − uL)
2,

η2 =
1

2

√
ρL

√
ρR

(
√
ρL +

√
ρR)2

. (4.36)

These wave speed estimates are reported to lead to effective and robust Godunov-type

scheme. The formulas for SL, SR in Equation (4.35) are used in Equation (4.30) to create

the HLLE flux equations.

4.3.4 VL-FVS scheme

The van Leer Flux Vector Splitting method [54] defines the positive and negative fluxes

as functions of the local Mach number. They are given by:

F(UL, UR) = F+(UL) + F−(UR) (4.37)
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where

F+(U) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(U) if u ≥ a,

0 if u ≤ −a,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
ρa(u/a+ 1)2 ≡ F+

1

F+
1 ((γ − 1)u+ 2a)/γ

F+
1 v

F+
1 w

F+
1 ( ((γ−1)u+2a)2

2(γ2−1)
+ v2

2
+ w2

2
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

otherwise.

(4.38)

and

F−(U) = F(U)− F+(U) (4.39)

The scheme was originally a simple way to implement upwind differencing and can pro-

duce steady shock profiles. But it leads to numerical diffusion of contact discontinuities at

rest.

4.4 Computing diffusive flux

Since the second order derivatives with DG methods have been rewritten as a system of

first order equations in Equation (4.15), then some techniques [2] can be used to approx-

imate the diffusive flux contribution based on this form. Bassi and Rebay’s BR2 method

[8], and Cockburn and Shu’s LDG method [22] are implemented in this research, and are

analyzed in detail next.
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4.4.1 Bassi-Rebay method (BR2)

In Equation (4.15), the convective flux have been computed numerically from Equa-

tion (4.6) and Equation (4.7) so they are just symbolically represented by (A) and (B)

for simplicity. The key issue now is numerically solving the cell interface integrals of the

system equations, which now can be written as:

∫
Ωh

gh · ZhdΩ = −
∫
Ωh

Uh∇ · ghdΩ +
∫
Σh

Ûhgh · ndσ∫
Ωh

∂Uh

∂t
ψhdΩ − (A) + (B)−

∫
Ωh

[Ah(Uh)Zh] · ∇ψhdΩ

+
∫
Σh

[ ̂Ah(Uh)Zh

]
· nψhdσ +

∫
Ωh

S(Uh,Zh)ψhdΩ = 0 (4.40)

Because Uh and Ah(Uh)Zh have two different values at each element boundary Σh, then

we need to change their format first, and compute them subsequently. The face integrals

from the above equations are listed as:

∫
Σh

Ûhgh · ndσ =
∫
Σh

Ûh[(gh · n)− + (gh · n)+]dσ +
∫
Γh

U b
hgh · ndσ∫

Σh

[ ̂Ah(Uh)Zh

]
· nψhdσ =

∫
Σh

[ ̂Ah(Uh)Zh] · [(ψhn)
− + (ψhn)

+]dσ

+
∫
Γh

[Ah(Uh)Zh]
b · nψhdσ (4.41)

where U b
h and [Ah(Uh)Zh]

b are the values of Uh and [Ah(Uh)Zh] at element boundary. We

introduce a “vector jump operator” J :

J x = x−n− + x+n+, J · y = y− · n− + y+ · n+ (4.42)

then we have:

∫
Σh

Ûhgh · ndσ =
∫
Σh

ÛhJ · ghdσ +
∫
Γh

U b
hgh · ndσ
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∫
Σh

[ ̂Ah(Uh)Zh

]
· nψhdσ =

∫
Σh

[ ̂Ah(Uh)Zh] · J ψhdσ

+
∫
Γh

[Ah(Uh)Zh]
b · nψhdσ (4.43)

so Equation (4.40) becomes:

∫
Ωh

gh · ZhdΩ = −
∫
Ωh

Uh∇ · ghdΩ +
∫
Σh

ÛhJ · ghdσ +
∫
Γh

U b
hgh · ndσ (4.44)∫

Ωh

∂Uh

∂t
ψhdΩ− (A) + (B)−

∫
Ωh

[Ah(Uh)Zh] · ∇ψhdΩ +
∫
Σh

[ ̂Ah(Uh)Zh] · J ψhdσ

+
∫
Γh

[Ah(Uh)Zh]
b · nψhdσ +

∫
Ωh

S(Uh,Zh)ψhdΩ = 0 (4.45)

In the following we focus on the parts of (̂·) from the above discretized equations, as Ûh

and ̂Ah(Uh)Zh.

First, choose Ûh = {Uh}, which is:

{(·)} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
[( )− + ( )+] on Σh

( ) on Γh

(4.46)

so Equation (4.44) changes to:

∫
Ωh

gh · ZhdΩ = −
∫
Ωh

Uh∇ · ghdΩ +
∫
Σh

{Uh}J · ghdσ +
∫
Γh

U b
hgh · ndσ (4.47)

Using the identity formula derived from Bassi and Rebay’s paper [8]:

∫
Ωh

(Uh∇ · gh + gh · ∇Uh)dΩ =
∫
Σh

[{Uh}J · gh + {gh} · JUh]dσ

+
∫
Γh

Uhgh · ndσ

−
∫
Ωh

Uh∇ · ghdΩ =
∫
Ωh

gh · ∇UhdΩ−
∫
Σh

[{Uh}J · gh + {gh} · JUh]dσ

−
∫
Γh

Uhgh · ndσ (4.48)
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substitute Equation (4.48) into Equation (4.47) results in:

∫
Ωh

gh ·ZhdΩ−
∫
Ωh

gh ·∇UhdΩ+
∫
Σh

{gh}·JUhdσ+
∫
Γh

(Uh−U b
h)gh ·ndσ = 0 (4.49)

We define:

J 0x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x− xb)n on Γh

x−n− + x+n+ on Σh

and Σ0
h = Σh

⋃
Γh, finally Equation (4.44) becomes:

∫
Ωh

gh · ZhdΩ−
∫
Ωh

gh · ∇UhdΩ +
∫
Σ0

h

{gh} · J 0Uhdσ = 0 (4.50)

Second, choose:

̂Ah(Uh)Zh = {Ah(Uh)Zh} (4.51)

then Equation (4.45) changes to:

∫
Ωh

∂Uh

∂t
ψhdΩ− (A) + (B)−

∫
Ωh

[Ah(Uh)Zh] · ∇ψhdΩ

+
∫
Σ0

h

{Ah(Uh)Zh} · J 0ψhdσ +
∫
Ωh

S(Uh,Zh)ψhdΩ = 0 (4.52)

Now we introduce BR1 scheme, set gh = ∇ψh so that Equation (4.50) is:

∫
Ωh

∇ψh · ZhdΩ−
∫
Ωh

∇ψh · ∇UhdΩ +
∫
Σ0

h

{∇ψh} · J 0Uhdσ = 0 (4.53)

which is equivalent to:

∫
Ωh

∇ψh · (Zh −∇Uh)dΩ = −
∫
Σ0

h

{∇ψh} · J 0Uhdσ (4.54)

Now introduce “lift” operator as:

∫
Ωh

∇ψh ·Rh(J
0Uh)dΩ = −

∫
Σ0

h

{∇ψh} · J 0Uhdσ (4.55)
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by virtue of the global lift operator Rh in Equation (4.55), we can express the variable Zh

from Equation (4.54) in weak sense as:

∫
Ωh

∇ψh · (Zh −∇Uh)dΩ =
∫
Ωh

∇ψh ·Rh(J
0Uh)dΩ (4.56)

Because ψh and ∇ψh are arbitrary functions, the above relation implies that:

Zh −∇Uh = Rh(J
0Uh) =⇒ Zh = ∇Uh +Rh(J

0Uh) (4.57)

further we know:

Ẑh = {Zh} = {∇Uh}+
{
Rh(J

0Uh)
}

∫
Ωh

[Ah(Uh)Zh] · ∇ψhdΩ =
∫
Ωh

[
Ah(Uh)(∇Uh +Rh(J

0Uh))
]
· ∇ψhdΩ∫

Σ0
h

{Ah(Uh)Zh} · J 0ψhdσ =
∫
Σ0

h

{
Ah(Uh)(∇Uh +Rh(J

0Uh))
}
· J 0ψhdσ

(4.58)

substitute these relations to the corresponding parts in Equation (4.52) and we get:

∫
Ωh

∂Uh

∂t
ψhdΩ − (A) + (B)−

∫
Ωh

[
Ah(Uh)(∇Uh +Rh(J

0Uh))
]
· ∇ψhdΩ

+
∫
Σ0

h

{
Ah(Uh)(∇Uh +Rh(J

0Uh))
}
· J 0ψhdσ

+
∫
Ωh

S(Uh,∇Uh +Rh(J
0Uh))ψhdΩ = 0 (4.59)

Now we introduce the compact BR2 scheme. Define the local lift operator on two

neighboring elements:

∫
Ωσ

h

gh · rσh(J 0Uh)dΩ = −
∫
σ
{gh} · J 0Uhdσ (4.60)
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Here Ωσ
h is the union of the two neighboring elements, rσh(J

0Uh) is a local lift operator

and σ stands for interface of these two elements. The global lift operator expression can

be rewritten as:

∫
Ωh

gh ·Rh(J
0Uh)dΩ = −

∫
Σ0

h

{gh} · J 0Uhdσ = − ∑
σ∈Σ0

h

∫
σ
{gh} · J 0Uhdσ

=
∑
σ∈Σ0

h

∫
Ωσ

h

gh · rσh(J 0Uh)dΩ (4.61)

therefore we get the important relation:

Rh(J
0Uh) =

∑
σ∈Σ0

h

rσh(J
0Uh) (4.62)

which means the global lift operator can be represented as the summation of the local lift

operator in neighboring two cells. This is a very compact form to compute the global lift

operator, making the computational stencil small. Substitute Rh(J 0Uh) into the Equa-

tion (4.59), where the cell integration does not change, but the face integration needs to be

changed, then:

∫
Ωh

∂Uh

∂t
ψhdΩ − (A) + (B)−

∫
Ωh

[
Ah(Uh)(∇Uh +Rh(J

0Uh))
]
· ∇ψhdΩ

+
∑
σ∈Σ0

h

∫
Σ0

h

{
Ah(Uh)(∇Uh + rσh(J

0Uh))
}
· J 0ψhdσ

+
∫
Ωh

S(Uh,∇Uh +Rh(J
0Uh))ψhdΩ = 0 (4.63)

Finally, the DG discretization of RANS equations are expressed:

∫
Ωh

∂Uh

∂t
ψhdΩ−

∫
Ωh

F(Uh) · ∇ψhdΩ︸ ︷︷ ︸
(A)

+
∫
Σh

F̂(U−
h , U

+
h ;n

−)(ψ−
h − ψ+

h )dσ︸ ︷︷ ︸
(B)

+
∫
Γh

F(U b
h) · nψhdσ︸ ︷︷ ︸
(B)

−
∫
Ωh

[
Ah(Uh)(∇Uh +Rh(J

0Uh))
]
· ∇ψhdΩ︸ ︷︷ ︸

(C)
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+
∑
σ∈Σ0

h

∫
Σ0

h

{
Ah(Uh)(∇Uh + rσh(J

0Uh))
}
· J 0ψhdσ

︸ ︷︷ ︸
(D)

+
∫
Ωh

S(Uh,∇Uh +Rh(J
0Uh))ψhdΩ︸ ︷︷ ︸

(E)

= 0 (4.64)

Here some basic considerations about how to compute each flux component in the above

equations are introduced. Part(A) and (B) have been discussed in the previous section. In

Part(C), as we know diffusive flux is represented as Ah(Uh)∇Uh which is a linear function

of ∇Uh, then directly replace ∇Uh with ∇Uh+Rh(J 0Uh) in this expression Ah(Uh)∇Uh,

and take the same cell integration procedure as in Part (A). In Part (D), rσh(J
0Uh) is

computed at each interface, then directly replace ∇Uh with ∇Uh + rσh(J
0Uh) in face

diffusive flux expression Ah(Uh)∇Uh, after that all face flux integrations are summed up.

In Part(E), directly replace ∇Uh with ∇Uh +Rh(J 0Uh) in source term, then same cell

integration method applies. Simply speaking, we can write the DG discretized equations

as the symbolic expression:

∫
Ωh

∂Uh

∂t
ψhdΩ− (A) + (B)− (C) + (D) + (E) = 0 (4.65)

4.4.2 Local Discontinuous Galerkin method

Another approach to computing the diffusive flux is introduced here. Beginning with

Equations (4.15) and (4.40), the discretized RANS equations are written as:

∫
Ωh

gh · ZhdΩ +
∫
Ωh

Uh∇ · ghdΩ−
∫
Σh

ûhgh · ndσ = 0∫
Ωh

∂Uh

∂t
ψhdΩ − (A) + (B)−

∫
Ωh

σh · ∇ψhdΩ

+
∫
Σh

σ̂h · nψhdσ +
∫
Ωh

S(Uh,Zh)ψhdΩ = 0 (4.66)
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in this formula σh = Ah(Uh)Zh is used to represent the diffusive flux and uh = Uh is used

to represent conservative variables. Two additional numerical fluxes σ̂h =
[ ̂Ah(Uh)Zh

]
and ûh = Ûh appear in the face integrals of above equations, which are approximations

of numerical traces of σh and Uh on element Ωe boundaries. These numerical fluxes need

to be specified by LDG method as follows. Consider two adjacent elements Ωl and Ωr

sharing interface Γ = Ωl ∩ Ωr. Now the jump ‖ · ‖ and mean { · } operators are defined

along the interface Γ and the exterior boundary:

‖un‖ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ulnl + urnr on Γ

un on ∂Ω

{u} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(ul + ur) on Γ

u on ∂Ω

for scalars

‖σ · n‖ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σl · nl + σr · nr on Γ

σ · n on ∂Ω

{σ} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(σl + σr) on Γ

σ on ∂Ω

for vectors

(4.67)

The numerical fluxes σ̂h and ûh are defined as:

σ̂h = {σh}+C12‖σh · n‖ − C11‖uhn‖

ûh = {uh} −C12 · ‖uhn‖ (4.68)

for interior faces and:

σ̂h = σh − C11(uh − uD)n

ûh = uh (4.69)

for boundary faces. We find that two parameters need to be specified in this LDG method.

C11 is a non-negative constant and it acts as a penalty parameter. C12 is a vector, which
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is determined for each interior face. In this study, we chose C11 = 0 and C12 = ±0.5n,

and the solver appears to be stable in numerical experiments. The first equation in Equa-

tion (4.66) is solved locally, with face numerical flux Ûh computed from above to figure

out the value of Zh. Then substitute this Zh to the second equation of Equation (4.66) to

compute updated value of fluxes, including face numerical flux σ̂h. Finally the equation

can be integrated by time to find the solution.

4.5 Boundary conditions

In order to facilitate the implementation of the numerical method, all boundary condi-

tions (BC) are imposed in a weak manner. From Figure 4.1, the boundary face separates

the interior and exterior regions, where the interior domain is the computational domain

at which the solution is updated at each time iteration, and the exterior domain is a phys-

ical boundary domain in general, including inflow, outflow, wall and farfield domains. In

the implementation, the solution state at boundary U b
h(U

i
h, U

e
h) that is required to compute

the convective flux and diffusive flux, is a function of the interior state U i and the speci-

fied bounday value U e which will be discussed in this section. Moreover, in the implicit

time iteration an explicit Jacobi matrix from the dependency of boundary conditions U b
h to

known solutions U i
h is required, therefore this part is also included in the boundary condi-

tion implementation of this section.
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Figure 4.1

Illustration of boundary domains

4.5.1 Dirichlet BC

For dirichlet boundary condition, the solution variables need to be specified as:

ρb1 = ρ1,given, ρb2 = ρ2,given, ub1 = u1,given, ub2 = u2,given,

ub3 = u3,given, pb = pgiven, kb = kgiven, ωb = ωgiven. (4.70)

The convective and diffusive flux at the boundary are computed from these values. The

implicit time Jacobian matrix is:

J =
dU b(U i, U e)

dU i
(4.71)

and in this case J ≡ 0.
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4.5.2 Reflecting BC

For inviscid flow at wall, the reflecting boundary condition is utilized, and the solution

variables are computed as:

ρb1 = ρi1, ρb2 = ρi2, ub1 = ui1 − 2Un · nx,

ub2 = ui2 − 2Un · ny, ub3 = ui3 − 2Un · nz, pb = pi,

kb = ki, ωb = ωi. (4.72)

where Un = ui1 · nx + ui2 · ny + ui3 · nz, the fluxes at boundary are computed from these

specified variables. The implicit time Jacobian matrix can be computed easily.

4.5.3 No-slip BC

For viscous flow, the no-slip wall boundary condition is applied, and the solution vari-

ables are computed as:

ρb1 = ρi1, ρb2 = ρi2, ub1 = 0,

ub2 = 0, ub3 = 0, pb = pi,

κb = κwall, ωb = ωwall. (4.73)

where turbulent quantities κwall and ωwall are specified from Menter [42] as:

κwall = 0

ωwall =
60μ

ρβ1(Δy1)2
(4.74)

In this formula Δy1 is the distance of the first grid point from the wall, which in implemen-

tation is equal to the height of the wall boundary triangle or quadrilateral. Also β1 = 0.075
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is known constant in ωwall term. Furthermore, if adiabatic walls are assumed, then heat

flux at the wall and normal temperature gradient at the wall are:

(
∂T

∂n

)b

= (∇T )b · n

|n| = 0 (4.75)

If isothermal walls are assumed, then T b = Twall specified at wall so that other variables

(ρ, p) are derived from this relation. Finally, the fluxes at boundary are computed from

these specified variables. The implicit time Jacobian matrix can be computed directly.

4.5.4 Extrapolation BC

At supersonic outflow boundary, all variables are extrapolated from interior. First or-

der extrapolation boundary condition is used in this study, and the solution variables are

computed as:

ρb1 = ρi1, ρb2 = ρi2, ub1 = ui1,

ub2 = ui2, ub3 = ui3, pb = pi,

kb = ki, ωb = ωi. (4.76)

the fluxes at boundary are computed from these specified variables. The implicit time

Jacobian matrix is the identity matrix.
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CHAPTER 5

TIME INTEGRATION METHOD

The DG discretization of the governing equations in space leads to a system of ordinary

differential equations (ODEs) with respect to time in the form of:

M
dU

dt
= R(U) (5.1)

where M is the global mass matrix which is block-diagonal overall. U is a global vector

of degrees of freedom for each conserved variable, and R(U) is the global residual vector

which is composed of numerical fluxes and source terms. Equation (5.1) is identical to the

discretized Euler equations shown in Equation (4.5) or the discretized RANS equations in-

troduced in Equation (4.65). The system Equation (5.1) is time dependent, and any numer-

ical integration scheme applicable to ODEs can be used to solve it. The explicit methods

are straightforward to implement, but the computational time step is limited. Therefore

the convergence to a steady state could be very time consuming. This is true especially

for viscous flow problems, where the required CFL number is lower and the time step is

smaller in magnitude than in the case of inviscid applications. A typical explicit method is

the Runge-Kutta multiple steps iteration approach, which is introduced in this chapter to

solve both steady and unsteady problems. In order to overcome the difficulty of small time

steps, other approaches will be used in the following. The fully implicit time integration
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method can make use of large time steps, and a typical backward Euler implicit method

with Newton’s iterations will be given here. But in implicit methods, the Jacobian matrix

is relatively large and complex and takes up memory. Another choice of time integration,

with which the implementation of hp adaptive strategy in the DG framework can be fully

exploited, is the semi-implicit p-multigrid acceleration strategy [9], which iterates between

different solution degrees and smoothers are employed for implicit or explicit methods at

each level. This time integration strategy combines the benefits of both explicit and im-

plicit time integration methods and is the preferred choice for this study when large time

steps are desirable for steady state problems.

5.1 Explicit time integration

When the explicit approach is used for the temporal discretization, the right hand side

(RHS) of Equation (5.1) is taken at the previous time level tn:

M
dU

dt
= R(Un) (5.2)

The classical four-stage Runge-Kutta (RK4) method is adopted for explicit time integra-

tion. The idea of this method is to evaluate the RHS of Equation (5.2) at several values of

U in the time interval between nΔt and (n+1)Δt and to combine them in order to obtain a

high-order approximation of Un+1. The RK4 method can be summarized in the following:

U (0) = Un, k0 = 0

ki = M−1R(U = Un +Δtaiki−1)

U (i) = U (i−1) +Δtbiki, i = 1 . . .m
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U (m) = Un+1 (5.3)

here Δt is the physical time step and ai and bi are constant coefficients which are shown

here:

a = (a1, a2, a3, a4)
T = (0,

1

2
,
1

2
, 1)T

b = (b1, b2, b3, b4)
T = (

1

6
,
1

3
,
1

3
,
1

6
)T (5.4)

The Runge-Kutta explicit time integration is used for computing both steady and unsteady

problems. For steady flow simulation, the solution converges when the residual vector R

approximates zero. For unsteady problems, the system equations are solved in time until

the desired period of time has elapsed.

5.2 Implicit time integration

When a fully implicit approach is adopted, the RHS of Equation (5.1) is evaluated at

the new time level tn+1:

M
dU

dt
= R(Un+1) (5.5)

Here M is mass matrix, U is conservative variable polynomial, and R is the RHS residual

part of discretized governing equations.

The implicit backward Euler time integration scheme is used in this study, and the

discretized equations in time are given as:

M
ΔUn

Δt
= R(Un+1) (5.6)

where

ΔUn = Un+1 − Un (5.7)
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For steady flow problems, when the solution converges after some time, the global residual

R(U) should drop to a given low value (for example 10−10). For unsteady flow problems,

the solution state after elapsed time t can be achieved by many time iterations. In addi-

tion, depending on the order of accuracy used, the global residual R(U) may not drop to

such given value, and this is the inherent residual of this time iteration which cannot be

eliminated through time iterations.

Solving the Equation (5.6) directly is difficult due to the nonlinear terms in the global

residual function R(Un+1). A commonly accepted approach is to employ the Newton

iterative method for the numerical solution of the nonlinear homogeneous equations, the

Newton residual function is:

L(Un+1) = M(Un+1 − Un)−Δt ·R(Un+1) = 0 (5.8)

The Newton method proceeds by iteratively solving the equations as:

L′(Un+1,p)(Un+1,p+1 − Un+1,p) = −L(Un+1,p) (5.9)

where the Newton iteration is initialized using the previous time-step value as Un+1,p=0 =

Un. Newton’s method accommodates the linearized solution as an approximation to the

original nonlinear system equations. After several steps, when the iteration scheme con-

verges to Un+1, the residual function L(Un+1,p) should drop to a given low value (for

example 10−10). Also the Jacobian matrix L′(Un+1,p) is given here:

L′(Un+1,p) = M−Δt · ∂R(Un+1)

∂Un+1
(5.10)
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The derivation of L′(Un+1,p) is straightforward but involved. The details of the flux Ja-

cobian matrices are discussed in APPENDIX C. Finally, the Newton iteration scheme is

written as:

(
M

Δt
− ∂R(Un+1)

∂Un+1
)(Un+1,p+1 − Un+1,p) = −M

Δt
(Un+1,p − Un) +R(Un+1) (5.11)

The linearized Equation (5.11) can be symbolically represented in the form:

Ax = b (5.12)

where

A =
M

Δt
− ∂R(Un+1)

∂Un+1
,

x = Un+1,p+1 − Un+1,p,

b = −M

Δt
(Un+1,p − Un) +R(Un+1). (5.13)

The matrix A can be factored into a lower, an upper, and a diagonal block:

A = L+D+U (5.14)

Now the PETSc [4] solver can be applied to the linearized system equations, given the

lower, upper, diagonal blocks and RHS. When the solver converges with a residual drops

to a specified criteria, the updated solution Un+1 = Un+1,p+1 can be achieved.

5.3 Semi-implicit p-multigrid method

In the current research, the full multigrid (FMG) algorithm has been employed, see

Figure 5.1. The coarser level solutions are exploited to obtain good initial guess to initialize
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the computation on the finer grids. At each level, a number of pre-smoothing iterations are

performed prior to restricting the solution to the next coarser level, while on the way back

to finer levels, a number of post-smoothing iterations are performed after prolongation.

Converging the solution fully on each level is not practical because the discretization error

on the coarser level is usually above machine zero, so the solution is prolongated to the

finer level when a residual-based criterion is satisfied [26].

Figure 5.1

V-cycle full multigrid for p = 3 (•: pre-smoothing ◦: post-smoothing)

5.3.1 P -multigrid algorithm

Let us illustrate the p-multigrid algorithm from the DG discretization of RANS equa-

tions in Equation (4.65). The general form can be written as:

Ap(Up) = fp (5.15)
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where:

Ap(Up) =
∫
Ωh

∂Uh

∂t
ψhdΩ− (A) + (B)− (C) + (D) + (E)

fp = mms

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0 solving for solution

�= 0 for testing order of accuracy

(5.16)

The term mms exists only when a manufactured solution method [43] is used to test the

order of accuracy of p-multigrid solver for different solution orders. (The results of testing

the order with manufactured solutions will be mentioned in the chapter of numerical re-

sults.) Let V p be an approximation to the solution vector Up and define the residual vector

as:

rp(V p) = fp −Ap(V p) (5.17)

In the basic two-level multigrid method, the exact solution on the coarse level is used

to correct the solution on the fine level. The correction is performed according to the

following steps:

• restrict the solution and residual to the coarse level:

V p−1
0 = Ĩp−1

p V p, rp−1 = Ip−1
p rp(V p) (5.18)

where Ĩp−1
p and Ip−1

p are the solution and the residual restriction operators from level

p to level p− 1, respectively.

• compute the forcing term on the coarse level:

sp−1 = Ap−1(V p−1
0 )− rp−1 (5.19)

• solve problem on the coarse level:

Ap−1(V p−1) = fp−1 + sp−1 (5.20)

• calculate the coarse grid error:

ep−1 = V p−1 − V p−1
0 (5.21)
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• prolongate the coarse grid error so as to correct the fine level approximation:

V p
new = V p + Ĩpp−1e

p−1 (5.22)

where Ĩpp−1 is the error prolongation operator, and V p
new is the corrected value of V p.

Following the method of Bassi and Rebay [9], the operators are defined next. In the frame-

work of the DG method, if the basis functions are orthogonal and hierarchical, the compu-

tation of these multigrid operators is to be simple, thus the implementation of p-multigrid

method is very appropriate for the DG method. The solution’s restriction and error pro-

longation operators Ĩp−1
p and Ĩpp−1 are simply L2 projections between the low-order and

high-order spaces V p−1 and V p:

Ĩp−1
p = (Mp−1)−1Mp−1

p

Ĩpp−1 = (Mp)−1(Mp−1
p )T (5.23)

here the matrices are:

Mp−1 = [Mij]
p−1 =

∫
Ω
ψp−1
i ψp−1

j dΩ

Mp−1
p = [Mij]

p−1
p =

∫
Ω
ψp−1
i ψp

jdΩ (5.24)

where ψi and ψj are solution polynomials, and i and j are the degrees of freedom of these

polynomials.

An explicit expression of the residual restriction operator Ip−1
p can be obtained follow-

ing the approach proposed by Fidkowski [26], which shows that in fact Ip−1
p = (Ĩpp−1)

T .

The criterion used when the solver prolongates to the next finer level is described here. At

the end of a V-cycle, the current residual and its L1 norm, |rp|L1 are known. The solution
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vector is first prolongated to the p + 1 level and the residual is calculated along with its

L1 norm |rp+1|L1 . Iterations on the next finer level starts when |rp|L1 < ηr|rp+1|L1(usually

ηr = 0.5). If this condition is not satisfied, another V-cycle at level p is carried out [26].

5.3.2 Smoothers

At each level of the p-multigrid process, the time integration method needs to be per-

formed in order to estimate the solution at that time level. In the p-multigrid approach, we

use an implicit smoother at the coarsest level and a less expensive semi-implicit Runge-

Kutta scheme as smoother for other levels. The details of these strategies are discussed

below. With the exception of the coarsest level p = 0, the m-stage semi-implicit Runge-

Kutta scheme is used, which can be written as:

U0 = Un

DO k = 1,m

[M+ αkΔt ·D(U0)]δUk = −M(Uk−1 − U0)− αkΔt ·R(Uk−1)

Uk = Uk−1 + δUk

END DO

Un+1 = Um (5.25)

where D(U0) is the block diagonal part of the full Jacobian matrix ∂R(U0)/∂U . Replacing

full Jacobian matrix with block diagonal part makes the system matrix easy to be solved.

The LU factorization can be used to solve this linear system directly. At the coarsest level
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p = 0, an implicit iterative smoother based on the backward Euler scheme is chosen. The

implicit time integration has been introduced in previous section.
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CHAPTER 6

DIFFUSION BASED LIMITER

An important challenge of applying a high-order DG discretization to the governing

equations on an unstructured mesh is its instability when handling flow discontinuities.

Historically, many techniques including shock limiting procedures, ENO reconstruction

methods, and artificial diffusion schemes have been focusing on the topic of capturing

the shocks. The diffusion based limiter for shock capturing inspires our basic approach

to solve the multiple species gas mixture interface discontinuities, resulting in a new mass

diffusion based limiter. In this chapter, all basic limiters are reviewed and the mass contact-

surface-capturing method is discussed in detail.

6.1 Shock-capturing methods summary

Discontinuous Galerkin methods have become popular over the past decades for solv-

ing the Euler and Navier-Stokes equations in gas dynamics. With high order discretization

employed on either structured or unstructured meshes, these methods can directly utilize

the shock-capturing techniques developed for finite volumes and they are especially suit-

able for creating high resolution shock profiles for high order solutions. For the specific

case when first order of accuracy is employed, this DG method is consistent with classical

FV approach. Then the natural dissipation (induced by the interface jump mechanism) is
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sufficient to damp pressure oscillations and stabilize the solution in the presence of shock

waves. However, for higher order approximations, intrinsically explicit dissipation must

be added to obtain stable solutions in the region of shock discontinuity or contact surface

discontinuity within the framework of the DG method.

The well developed work on shock-capturing methods in FV systems can provide in-

sight in initiating wanted research for the DG system, especially at low order of polynomial

approximation. Following the procedure in finite volume systems, the most straightfor-

ward approach proposed is decreasing the order of accuracy of the interpolating polyno-

mial at those elements flagged by an effective sensor which has been defined by various

approaches [15] to identify the elements lying in the region of discontinuities. Since the

order of the interpolating polynomial has been reduced to some level, the jumps across the

element interface are then enhanced correspondingly. The increase of inter-element jumps

can add some amount of natural dissipation to the DG scheme which is equivalent to manu-

ally adding some dissipation to the governing equations. Even for the worst situation when

the discretization is taken all the way down to piecewise constant, the DG method can still

capture any shock discontinuity with the numerical fluxes computed from the approximate

Riemann scheme. The way to design a robust sensor that can detect the troubled cells

without invoking excessive dissipation plays an important role in this approach, and so far

some practical answers are found in the recent literature [15]. However, one challenge

with these limiting schemes is that they may become active away from discontinuities and

then the global order of accuracy is seriously deteriorated. Accuracy around shocks can be

achieved by adaptively refining the shock wave region, thus decreasing the element length
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scale h, and locally the order of accuracy can be recovered to yield satisfactory results.

Nevertheless, it is known that the shock waves are anisotropic with lower dimensional fea-

tures. Then the designed mesh adaptive strategies need to apply refining procedure with

directionality consideration in order to fit the shape of the shock, especially in high di-

mensional situations. Accordingly, this method is not a good choice for our high order

simulation with the DG method in three-dimensional problems.

A traditional and successful approach for shock-capturing problems is the limiting tech-

nique. Originally a Total Variation Diminishing (TVD) scheme introduced by van Leer

[53] was designed to facilitate the solution process in FD and FV systems. Applying the

slope limiting procedure to the DG framework was extensively studied by Cockburn and

Shu [21] in a series of papers, which are commonly known as the RKDG method. Basically

this method took nonlinear operators (slope limiters) together with approximate Riemann

solvers to satisfy Total Variation Bounded in the means (TVBM). The RKDG slope lim-

iter is one of the most popular techniques for shock capturing in the DG method, and has

been well extended by the scientific community. Although these techniques can yield sat-

isfactory results, the order of the approximations in the vicinity of shock has to be reduced

drastically. This is similar to simply degrading the order of accuracy as mentioned before,

so mesh adaption procedures are still required in order to achieve a high order of accuracy.

Besides, adaptive strategy for shock capturing needs to consider the directionality as well,

and the extension of current RKDG slope limiter to multiple dimensional cases is still a

challenging problem.
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Recently a new and sophisticated approach from the FD world, a high-order non-

oscillatory reconstruction known as the (weighted) essentially non-oscillatory (ENO or

WENO) approach, has been extensively investigated for shock capturing with a high order

of accuracy. This method was initially introduced by Harten and Osher [32], with the pur-

pose of capturing shock wave with high order approximations. The basic idea behind this

approach is constructing the solution with large stencils and additional degrees of freedom

so as to resolve the shock sharp interface while preserving nonlinear stability. Originally

the ENO method was used in the context of FD through Shu and Osher’s work [49], and

several years later extended to FV solutions [17]. Although this method has several attrac-

tive features, some aspects limiting its wide use should be mentioned here. Increasing the

degree of high order approximating polynomials results in a loss of robustness while the

computational cost remains relatively high. In addition, the method has largely been ap-

plied only to structured grids with no obvious extension to practical unstructured meshes.

Even if Luo [41] has proposed some ideas on using the WENO method to multiple dimen-

sional unstructured grids with the DG method, we have to admit that in three-dimensional

simulations, applying the WENO limiter to the DG method is still an open topic of re-

search.

A more direct scheme, whose underlying mechanism is easy to understand from a nu-

merical standpoint, is explicitly adding diffusion to the governing equations to stabilize

the solver in the vicinity of shock discontinuity. This idea is called the artificial viscos-

ity method. Von Neumann and Richtmyer [55] originally proposed the idea of explicitly

adding viscous terms to the governing partial differential equations. With the idea originat-
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ing from Streamline Upwind Petrov-Galerkin (SUPG) methods developed by Hughes [35]

in finite elements framework, Bassi and Rebay [10] and Hartmann [33] applied a residual

quantities based artificial diffusion term to the Euler and Navier-Stokes equations. Some

preliminary results have been obtained with this method, however some difficulties exist

on determining where and how much dissipation needs to be added without smearing the

sharp discontinuity profile, which limit its use as an efficient approach. At the same time,

Persson and Peraire [44] suggested a new artificial viscosity term involving the mesh size h

and the degree of the interpolating polynomial p. The basic idea of this method is to spread

the discontinuity over a length scale through diffusive effects so that it can be resolved

in the resolution of interpolating functions. With artificial viscosity added, the scales are

h/p and the shock width changes to δ = Ch/p for C ≥ 1. Following this idea, Barter

and Darmofal [5] proposed a smoother representation of artificial viscosity, rather than the

piecewise constant approach. These approaches are complemented with a shock detection

algorithm which is based on the rate of decay of the expansion coefficients of the solution.

Because current research is inspired by Persson and Peraire’s shock-capturing method, the

details of this approach are repeated and then the new mass diffusion based limiters are

introduced in the following sections.

6.2 Shock-capturing methods

The shock-capturing approach consists of adding to the DG discretized equations an

artificial viscosity term that aims at controlling the high-order modes of the numerical

solution within elements while preserving the spatial resolution of discontinuities. In recent
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years, many artificial viscosity shock-capturing methods have been studied. Here only

some typical ones are mentioned.

6.2.1 Bassi and Rebay’s method

Following the shock-capturing method proposed by Bassi and Rebay [7], the DG dis-

cretization of Euler equations in Equation (4.5) is modified according to the following

equations:

∫
Ωh

∂Uh

∂t
ψhdΩ −

∫
Ωh

F(Uh) · ∇ψhdΩ +
∫
Σh

F̂(U−
h , U

+
h ;n

−)(ψ−
h − ψ+

h )dσ

+
∑
K

∫
K
εp(U

±
h , Uh)(∇hψh · b)(∇hUh · b)dx = 0 (6.1)

with the shock sensor and the pressure gradient unit vector defined as:

εp(U
±
h , Uh) = Ch2K

|sp(U±
h , Uh)|+ |dp(Uh)|

p(Uh)
fp(Uh)

b(Uh) =
∇hp(Uh)

|∇hp(Uh)|+ ε

where:

sp(U
±
h , Uh) =

M∑
i=1

∂p(Uh)

∂Uh

si(U
±
h )

dp(Uh) =
M∑
i=1

∂p(Uh)

∂Uh

(∇h · F(Uh))i (6.2)

and M is number of equations, and ε is machine zero. The components si of the function

s, defined by the solution of the problem:

∫
Ωh

ψhs(U
±
h )dx =

∫
Σh

[ψh] · (F̂(U−
h , U

+
h ;n

−)− F(Uh))
±dσ (6.3)
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are actually the interface jump lifting in normal direction between the approximation and

inviscid flux components. The pressure sensor defined as:

fp(Uh) =
|∇hp(Uh)|
p(Uh)

(hK
k

)
(6.4)

keeps the solution accurate in regions with smooth gradients and k is degree of freedom.

The value of parameter C (typically C=0.2) is the same for different degrees of polynomial

approximation. And hK is given as:

hK =
1√

1
(Δx)2

+ 1
(Δy)2

+ 1
(Δz)2

(6.5)

where Δx, Δy and Δz are the dimensions of the enclosing element K.

6.2.2 Persson and Peraire’s method

Persson and Peraire’s shock-capturing method consists of a discontinuity sensor and

two choices of controlling the amount of added viscosity. All of them are briefly mentioned

next.

6.2.2.1 Discontinuity sensor

We write the solution within each element in terms of a hierarchical family of orthog-

onal polynomials. The three-dimensional Jacobi polynomials are used to represent the

solution by a series of continuous functions, and specifically on structured grid they de-

generate to frequently used Legendre polynomials. For smooth solutions, the coefficients

in the expansion are expected to decay very quickly. On the other hand, when the solution

is not smooth, the strength of the discontinuity will be measured by the rate of decay of
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the expansion coefficients. The solution of order p within each element can be expressed

in terms of an orthogonal basis as:

U =
N(p)∑
i=1

Uiψi (6.6)

where N(p) is the total number of terms in the expansion and ψi are the basis functions.

In addition, we consider a truncated expansion of the same solution, only containing the

terms up to order p− 1, resulting in:

Û =
N(p−1)∑
i=1

Uiψi (6.7)

Within each element Ωe, the smoothness indicator is defined as:

Se =
(U − Û , U − Û)e

(U,U)e
(6.8)

where (·, ·)e is the standard inner product inL2(Ωe). We found that for the three-dimensional

Jacobi polynomial used, the expected value of Se will scale like ∼ 1/p6. Once the shock

has been detected, the amount of viscosity is taken to be constant over each element by the

smooth function:

εe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if se < s0 − κ,

ε0
2
(1 + sinπ(se−s0)

2κ
) if s0 − κ ≤ se ≤ s0 + κ,

ε0 if se > s0 + κ.

(6.9)

where se = log10(Se) and the parameter ε0 = h/p, s0 = log10(1/p
6) and κ is chosen

empirically (here κ = 0.5).
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6.2.2.2 Laplacian artificial viscosity

The original Euler equations with the added diffusive model term becomes:

∂U

∂t
+∇ · F(U) = ∇ · (ε∇U) (6.10)

where the parameter ε controls the amount of diffusion. When characteristic quantities

such as density or Mach number are applied to the discontinuity detector, the ε in Equa-

tion (6.10) will be replaced by an element-wise viscosity coefficient εe which vanishes in

the region away from discontinuities. In order to discretize the viscous terms in the above

equations, the Bassi and Rebay’s BR2 model and Cockburn and Shu’s LDG model are both

employed to solve the artificial viscous flux contribution.

6.2.2.3 Physical artificial viscosity

An alternative viscosity model is based on the real physical dissipation of an ideal gas.

Hence the equations become:

∂U

∂t
+∇ · F(U) = ∇ ·G(U,∇U) (6.11)

where the viscous flux vector is in identical form to the physical viscous flux vector, but

the amount of viscosity μ and thermal conductivity κ need to be determined. Usually the

viscosity coefficient is assumed to be a function of temperature, hence μ = μ∗(T/T ∗)0.5,

where μ∗ is the viscosity at sonic temperature T ∗ = 2T0/(γ + 1) and μ∗ can be further

investigated as a function of shock thickness δs. The thermal conductivity can be computed

from the given Prandtl number Pr = μCp/κ. Again the shock detector is used to tell where

the viscous flux is added and it vanishes in the region away from discontinuities. In the
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same way, the BR2 model and LDG model can be taken to treat the viscous flux component

in the governing equations.

6.3 Contact-surface-capturing method

In this section, a new mass diffusion based limiter is proposed. Inspired by the idea

of artificial viscosity shock-capturing methods for shock wave discontinuities, a multiple

species contact-surface-capturing method is developed in this research for capturing the

contact discontinuities at a high order of accuracy with the DG method. For simplicity,

only two species are considered, but it is very straightforward to extend the number of

species as required by specific problems. The gas mixture composed of two species is

assumed frozen (no chemical reactions occur between the components). In the following,

the details of this approach will be introduced.

6.3.1 Start from physics: mass transfer and heat conduction

Transport processes in the environment may be divided into two categories: convec-

tion and diffusion. Convection is transporting with the mean fluid flow from one place

to another by bulk fluid motion. Density, momentum and energy can be transported by

convective effects. In contrast, diffusion is transporting of quantities by the action of ran-

dom motions. Diffusion has the effect of eliminating sharp discontinuities in concentration

resulting in smoother and flatter profiles. Convective and diffusive processes are usually

considered independent of each other. There are two types of random motion that in-

fluence a diffusion process, the random motion of molecules in a fluid, called molecular

diffusion and the random eddies in turbulent flow, called turbulent diffusion or eddy dif-

81



fusion. Another diffusion-like process is dispersion, which comes from the difference of

flow pathways or flow speeds, and is not discussed here. Together with viscous diffusion

and heat conduction transport phenomena, all the above transport activities can be seen in

the RANS governing equations. Now let us look at a simple example in our daily life. A

spot of dye is dropped into the center of a river, just from our observation without con-

sidering energy transfer processes, convection moves the center of mass of the dye spot

downstream, whereas diffusion spreads out the centered spot of dye to a larger and scat-

tered region. If following the center of the dye spot down the river, we can see that the

random motion of dye molecules across the boundaries slowly spreads out the spot, and

the turbulent diffusion would occur, in a much faster manner, as a result of eddies in the

river mixing the clean water from outside the spot with dye-colored water within the spot.

If a line of dye were laid across the river at one point, it would be stretched out as it flowed

down the river, with the center part of the line moving faster than the edges, due to the

effect of dispersion spreading out in the longitudinal direction of the flow.

Although mass transfer happens whenever fluid flows in way of bulk fluid motion (con-

vection), our interest now is on the topic of the transport process of one chemical species

within a mixture of chemical species that occurs as a direct result of a concentration gra-

dient (diffusion). The heat conduction process from temperature gradient has been widely

known, and the process of mass diffusion is analogous to heat transfer. The governing

equations for both cases are similar and therefore many of the relations and solution tech-

niques that have been developed for heat transfer can be directly applied to the mass diffu-

sion process as well. First of all, some basic relations are introduced regarding the concen-
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tration of different species in a mixture. Then an important law of mass diffusion, Fick’s

law, is derived in a similar manner as Fourier’s law for heat conduction. More details on

mass diffusion constants and the compact form of mass diffusion incorporated within the

governing equations are given at the end of this section.

6.3.1.1 Species concentration

A gas mixture of multiple chemical species is considered, with each species assumed

frozen (no chemical reactions occur between the components). The mixture properties

can be derived from the properties of the individual components and the knowledge of the

composition of the mixture. The total mass of the mixture M is the sum of the mass of

each component Mi, with i indicates the i-th species in the mixture:

M =
Ns∑
i=1

Mi (6.12)

where Ns is the number of species present in the mixture. Dividing both sides by the

volume of the mixture, the species and mixture densities are related:

ρ =
Ns∑
i=1

ρi

Ns∑
i=1

ρi
ρ

=
Ns∑
i=1

Yi = 1 (6.13)

where the ratio of the species density to the density of the mixture ρi/ρ is the mass fraction

Yi of species i. It is often useful to compute composition from moles rather than mass. A

mole of species i is defined as the amount of mass that is equal to the molar mass M̂i of

species i. The moles and mass of species i are related by:

Ni =
Mi

M̂i

(6.14)
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The total number of moles N in the mixture is the sum of the moles of each component Ni

as:

N =
Ns∑
i=1

Ni (6.15)

The mole fraction yi of species i is the number of species moles divided by mixture moles:

yi =
Ni

N
(6.16)

The mass and moles of mixture are related by molar mass of mixture according to:

M̂ =
M

N
(6.17)

where

M̂ =
Ns∑
i=1

yiM̂i (6.18)

The mass fraction and mole fraction are related according to:

M̂i =
Mi

Ni

=
Yi
yi

M

N
=
Yi
yi
M̂ (6.19)

The mass diffusion process of a species in the mixture is caused by differences in the

concentration of this species. Concentration is defined as the amount of species per unit

volume, which can be mass or mole based. If mass is employed, the concentration of

species i is the species mass per unit volume which is the species density as:

ρi =
Mi

V
=
YiM

V
= Yiρ (6.20)

where V is the volume and ρ is the mass density of the mixture. The molar concentration of

species i is the species number of moles per unit volume which is the species mole density

as:

ni =
Ni

V
=
yiN

V
= yin (6.21)
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where n is the molar density of the mixture. These quantities are defined here and will

be used in the formulae of mass diffusion computation. In this research, we prefer mass

of species as principal variable and species density as the concentration. All the following

derived equations are based on this choice, but it is straightforward to switch to mole-based

equations.

6.3.1.2 Fick’s Law

Mass diffusion process from concentration gradients in a mixture is similar to the ther-

mal conduction process due to energy transfer by temperature gradients. Now following

the standard derivation of Fourier’s law, we can derive the law for mass diffusion.

Consider a mixture composed of nitrogen and oxygen molecules (N2 and O2) initially

not mixed up, as shown in Figure 6.1. Each species in the mixture is assumed frozen. Ini-

tially the left region contains onlyN2 and the right region contains onlyO2. Mass diffusion

can move mass from regions of higher concentration to regions of lower concentration, and

if left to continue indefinitely, it would eventually result in equal concentrations in the en-

tire region and arrive at equilibrium with uniform distributions. Since species transport

phenomena can be considered independent, then we take nitrogen molecules in the deriva-

tion and the equations in the following are suitable for oxygen molecules as well.

Now let us look at N2 mole fraction changes when the mixing process starts to work.

The mole fraction of N2 is highest at the contact interface (x=0) which we called balance

value (ybal). The mole fraction of N2 decreases with distance away from the contact sur-

face, eventually reaching a value of constant mole fraction that corresponds to the region
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Figure 6.1

Mass diffusion process of nitrogen species in a mixture (•:N2 molecules ◦:O2 molecules)
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not affected by the diffusion process in unsteady situation. Mass transfer ofN2 is driven by

the gradient of the mole fraction yN2 that exists in x-direction. The flux of molecules of all

species that are passing through a plane located at position x is proportional to the molar

density of the mixture (n) and the mean velocity of the molecules (u) at that location. On

average, these molecules experienced their last molecular interaction at x−xd, where xd is

the average distance between molecular interaction (i.e., the mean free path). The number

of N2 molecules is proportional to the mole fraction of N2 at position x − xd. The molar

flux of N2 passing through a plane located at position x in the positive x-direction due to

diffusion (ṅN2,x+) is given approximately by:

ṅN2,x+ ≈ n · u · yN2,x−xd
(6.22)

where yN2,x−xd
is the mole fraction ofN2 at position x−xd. Similarly, the molar flux ofN2

crossing a plane in the negative x-direction due to diffusion (ṅN2,x−) is given approximately

by:

ṅN2,x− ≈ n · u · yN2,x+xd
(6.23)

The net molar flux of N2 from diffusion(ṅN2) is the difference between ṅN2,x+ and ṅN2,x−

which is expressed as:

ṅN2 ≈ n · u(yN2,x−xd
− yN2,x+xd

) (6.24)

which can be written in another form as:

ṅN2 ≈ −2n · u · xd (yN2,x+xd
− yN2,x−xd

)

2xd︸ ︷︷ ︸
∂yN2
∂x

(6.25)
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Assume that the length scale between molecular interactions is much smaller than the one

that characterizes this problem, then Equation (6.25) can be written in terms of theN2 mole

fraction gradient as:

ṅN2 ≈ −2n · u · xd∂yN2

∂x
(6.26)

Equation (6.26) provides the motivation for Fick’s law, which states that mass diffusive

function is proportional to the N2 mole fraction gradient. Fick’s law is typically written in

terms of the diffusion coefficient DN2,O2 for N2 in the mixture:

ṅN2 = −n ·DN2,O2

∂yN2

∂x
= −DN2,O2

∂nN2

∂x
= −DN2,O2∇xnN2 (6.27)

the equations above are built on mole fraction, but our interest actually is in the form of

mass fraction, then Fick’s law can be rewritten in mass fraction. The mass diffusive flux of

N2 (ṁN2) is related to mass fraction gradient or mass concentration as:

ṁN2 = −ρDN2,O2

∂YN2

∂x
= −DN2,O2

∂ρN2

∂x
= −DN2,O2∇xρN2 (6.28)

Equation (6.27) and Equation (6.28) are two equivalent statements of Fick’s law in mass

diffusion, where the N2 mass diffusion coefficient in the mixture can be defined in the

same way as the N2 thermal conductivity coefficient in Fourier’s law for conduction in the

following:

q̇ = −κ∂T
∂x

(6.29)

In above Fick’s law and Fourier’s law, the diffusive flux in general is proportional to a

gradient and this constant of proportionality (κ or DN2,O2) is a property of the substance
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that reflects its microscopic nature. Comparing Equation (6.26) with Equation (6.27) leads

to:

DN2,O2 ≈ u · xd (6.30)

The diffusion coefficient is closely related to the mean velocity of the molecules and the

average distance between molecular interactions. We can see that the diffusion coefficient

has the dimensions of length2/time, which is same as kinematic viscosity (ν). From

engineering results, we notice that the diffusion coefficients, like DN2,O2 in mass diffusion,

κ in heat transfer and ν in momentum transfer processes, play the similar role so that

comparison of these constants may be helpful for the analysis of mass diffusion process.

Generally, the diffusion coefficient is a transport property that represents the ability of

species to diffuse in a medium, for example here the case of N2 transport in the medium

of O2. The medium can be a gas, liquid or solid. Usually diffusion coefficients are largest

for gases, lower for liquids and lowest for solids. Gases have a large mean free path which,

according to Equation (6.30), leads to a large diffusion coefficient. The diffusion coeffi-

cient is a mixture property that depends on the properties of all of the interacting species

as well as on pressure and temperature, and this is also true for the thermal conductivity

and viscosity of a gas or liquid mixture. Moreover, diffusion problems are often concerned

with the mass transfer of a single species, such as above case of N2, within an otherwise

homogeneous phase, such as a pure gas of O2 or a homogeneous gas mixture (e.g., air).

Then the mixture can be treated as a binary system and the binary diffusion coefficient for

species 1 through another species 2 is termed D1,2. It is possible to show that D1,2 must be

equal to D2,1. The mass transport properties can be found out from experimental data for
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different compositions of the mixture. In this research, the N2/O2 pair and Air/He pair

have been used.

6.3.1.3 Compact governing equations

Since the two species mixture gas model is of interest in investigating the contact-

surface-capturing method, then we will apply the mass diffusion relations of Equation (6.28)

to a gas mixture composed of two general species resulting in:

ṁ1 = −ρD1,2∇Y1 = −D1,2∇ρ1

ṁ2 = −ρD2,1∇Y2 = −D2,1∇ρ2 (6.31)

where the diffusion coefficients D1,2 = D2,1, and the energy changes due to the mass

diffusion process is obtained from [40] as:

de0 = −ρD1,2∇Y1 · h1 − ρD2,1∇Y2 · h2 (6.32)

Therefore, two individual species conservation laws have been used to substitute the origi-

nal mass conservation equations. Mass diffusion contribution has been added to the Navier-

Stokes governing equations in Equation (2.12) for the case of multiple species with the

diffusion flux defined in Equation (2.13). So far the system of governing equations with

mass diffusion has been set up, and this will be used in the following sections.

6.3.2 Mass diffusion based limiter

In engineering flow field simulations, multiple species flows are common for many

applications. Consider a mixture of two fluids as a simplified model. In general, the
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two fluids are separated by a sharp interface or discontinuity. Unfortunately there are

few accurate numerical schemes designed to capture the sharp species interface effectively

with high order of accuracy. Therefore an important task of this research is developing a

highly accurate DG based numerical solver for the simulation of compressible, unsteady

and inviscid two-fluid flows described by the three-dimensional Euler equations of gas

dynamics.

The two fluids in the mixture are considered thermally perfect gases with no chemical

reactions. If this mixture is composed of two gas species with close molecular weight, for

example nitrogen molecules (N2) and oxygen molecules (O2), then their thermodynamic

properties are similar so that the interface discontinuity is not large enough to bring insta-

bility from non-physical species properties. Let us look at some numerical results from

the shock-bubble problem, where a shock wave of Ma = 1.22 is moving from left to right

across on O2 gas flow field with a gas bubble filled with N2 located inside the domain. The

DG method with fourth order of accuracy is used to simulate the unsteady process, and the

initial condition is given in Figure 6.2(a). When the shock wave intersect with the N2 bub-

ble, the mixture density contour is shown in Figure 6.2(b) and the mass fraction of species

O2 is given in Figure 6.2(c). From these results, we find out that if species properties are

similar to some extent, the contact discontinuity is very weak, and approximate Riemann

schemes can capture it with a high order accurate DG method. The resulting mass fraction

is always positive and properties are well maintained satisfying physical conditions. In

Figure 6.3(d) and Figure 6.3(e), the contact surface is clear to see in the density contour
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when the shock moves passed the N2 bubble, and the species mass fraction is kept in a

reasonable range (between 0 and 1).

Figure 6.2

O2/N2 shock bubble interaction (a)initial condition (CFL=0.1) (b)mixture density contour

at t=0.14s (c)O2 species mass fraction at t=0.14s

Unfortunately, these reasonable results are not always possible for a gas mixture of any

type of species. In the classical air-helium shock bubble problems, we note that a mixture

of air (Air) and helium (He) with average molecular weights of 29 and 4 respectively, is

a challenge for the problem just mentioned. In this case, a shock wave of Ma = 1.22 is

travelling from left to right in the Air flow field with He gas bubble initially located in

the domain. A high order (p ≥ 2) DG method is employed with the approximate Riemann

solver to compute the solution of this typical example. However, an unexpected problem

happens with this high order scheme. The species density and mass fraction in the cells
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Figure 6.3

O2/N2 shock bubble interaction (d)mixture density contour at t=0.47s (e)O2 species mass

fraction at t=0.47s

where the contact surface is confined by high order DG approximation are experiencing

large gradients and the values are negative at faces, which can produce non-physical gas

properties and eventually blow up the numerical solver. In order to completely understand

the nature of this problem and figure out some effective ways to eliminate these troubles,

we first need to build a model for this complicated phenomenon and analyze the physical

as well as numerical quantities in the contact surface region.

In the mixture, the speciesAir is numbered as 1 with density of ρ1 and the speciesHe is

numbered as 2 with density of ρ2. Moreover, the three-dimensional air-helium interaction

with contact surface can be simplified to one dimension here for analysis (see Figure 6.4).

From this illustration we can see that the solution profile is not piecewise constant any

more, instead a high order polynomials represented solution is adopted. With high-order

DG method used, the sharp contact discontinuity can be limited to a single cell, but the

slope of the mass fraction of each species could be large from the solution integration

strategy. At this moment, the mass fraction on the interface between this trouble cell and
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its neighbor could possibly be negative as shown in this figure Y1 = −0.6 and Y2 = −0.3

for example although the mean values are still reasonable of Y1 = 0.7 and Y2 = 0.3.

As we know, the mass fraction of each species should be in the range of 0 and 1 so that

the numerical quantities can be consistent with the physical meaning. The non-physical

mass fraction could cause the mixture thermodynamic properties, such as Cv, Cp and γ to

be either negative by large amounts or positive by large amounts, which would definitely

destroy the flux approximation at the cell interface hence ruin the whole integration system.

Figure 6.4

Illustration of Air(ρ1)/He(ρ2) contact discontinuity at neighboring cells (a)Air species

mass fraction (b)He species mass fraction

The artificial viscosity mass diffusion based limiter method aims at limiting the mass

fraction gradient to reasonable values by way of adding mass diffusion to the original
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governing equations. In Figure 6.5 the mass diffusion is supposed to be added to the system

according to the formulae from last section. Then theAir molecules are mixed up withHe

molecules resulting in the decrease of the mass fraction slope hence improvement of the

value of mass fraction at the cell interface. From the numerical results in the next chapter,

we can see that the species mass fraction and density can be corrected from negative value

to a reasonable positive value (for example, Y1 = 0.05 and Y2 = 0.1 in this figure) while

the contact discontinuity can still be captured within a single cell with DG method if proper

amount of diffusion is loaded. We note that the mean value of mass fraction is not changed,

but the species molecular distribution is actually modified. In Figure 6.6, the corrected

species mass fraction is displayed. With this method implemented, it is guaranteed that

there are no non-physical quantities existing in the integration scheme, and the numerical

flux approximation at cell interface can be meaningful.

Furthermore, some important features of mass diffusion based limiter are explained

next. The mass diffusion based limiter coupled with the DG method can produce a high

order accurate and stable solver which is conservative and consistent. The scheme is stable

since the non-physical factors have been removed from the solver and all the computational

results are physically meaningful. The species mass conservation laws can be repeated

from Equation (2.12) and Equation (2.13) as:

∂ρ1
∂t

+
∂(ρ1uj)

∂xj
− ∂(ρD1,2∇Y1)

∂xj
= 0

∂ρ2
∂t

+
∂(ρ2uj)

∂xj
− ∂(ρD2,1∇Y2)

∂xj
= 0 (6.33)
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Figure 6.5

Illustration of Air(ρ1)/He(ρ2) mass diffusion process at neighboring cells (a)Air species

mass fraction (b)He species mass fraction

Figure 6.6

Illustration of Air(ρ1)/He(ρ2) corrected results at neighboring cells (a)Air species mass

fraction (b)He species mass fraction
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We find that the mass diffusion components in the above two equations can be cancelled

out if the species mass equations are summed up and the result is identical to the mass

conservation laws of gas mixture. Except for the energy contribution to mass diffusion

process from Equation (6.32) which is not equal to zero generally because the species

enthalpy is different for each species, we can conclude that the mass conservation law is

consistent with the original governing equations for mass transfer. This does make sense

since the mass diffusion process only modifies the distribution of the species mass fraction

in cell so as to avoid the negative density on cell boundaries and the cell interface flux has

been maintained the same. This also proves that the mass diffusion process is conservative.

Lastly, since this scheme is employed under the framework of DG method with high order

of accuracy, an important feature is that it improves mass fractions while preserving the

formal order of accuracy. This is probably the most attractive characteristic of this scheme

and is better than other limiting methods, as already discussed, thus it provides a good

choice for multiple species simulation with high order of accuracy.

6.3.3 Procedure of applying limiter to solver

The basic principle of mass diffusion based limiter has been discussed in detail from the

last section. Now implementation steps will be covered. Based on the Euler equations from

gas dynamics with DG discretization, the mass diffusion is added to the solver following

the steps below to capture the sharp contact surface discontinuity with length scale less

than one cell.
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First of all, consider the discontinuity detector from Persson and Peraire [44] in Equa-

tion (6.8):

Se =
(U − Û , U − Û)e

(U,U)e
(6.34)

with species density as the characteristic variable to identify the trouble cells in the solution

domain where negative species mass fraction could happen, through detecting the rate of

decay of the expansion coefficients of the solution. The trouble cells in which the contact

discontinuity is located can be indicated by this sensor, whereas the cells that are away

from the contact surface discontinuity will not be affected. The second step is to set up a

solution iteration on these cells with the converging criteria as follows:

1. On cells, species density ρAir > 0 and species mass fraction 0 ≤ YAir ≤ 1.

2. On cells, species density ρHe > 0 and species mass fraction 0 ≤ YHe ≤ 1.

3. On cells, species mass fraction gradient |dYAir + dYHe| < ε, where ε is machine

zero.

4. On faces interior, species density ρ−Air > 0 and species mass fraction 0 ≤ Y −
Air ≤ 1.

5. On faces interior, species density ρ−He > 0 and species mass fraction 0 ≤ Y −
He ≤ 1.

6. On faces interior, species mass fraction gradient |dY −
Air + dY −

He| < ε.

7. On faces exterior, species density ρ+Air > 0 and species mass fraction 0 ≤ Y +
Air ≤ 1.

8. On faces exterior, species density ρ+He > 0 and species mass fraction 0 ≤ Y +
He ≤ 1.

9. On faces exterior, species mass fraction gradient |dY +
Air + dY +

He| < ε.

Only after all of the previous conditions are satisfied for the trouble cells can the iteration

process with mass diffusion terminate. Otherwise, mass diffusion is applied to modify the

mass fraction of each species. For the third step, at each iteration mentioned above, a RK4

explicit time integration from Equation (5.2) is applied at pseudo time level. The pseudo
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time step used is normally less than the physical time step computed from CFL number,

because the mass diffusion equations need a relatively small time step in order to stabilize

the solver. Now we take Δt = ts · Δtphy where Δtphy is the physical time step given by

the CFL condition and ts is a constant parameter, usually between 0.1 and 1. The fourth

step is to compute the residual component of the governing equations. At trouble cells,

the governing equations for iterations include only mass diffusion flux without considering

convective flux contribution so that the mixing process is going on until the mass fraction

slope is not very large. Therefore, two species Air and He mass diffusion equations are

inherited from Equation (2.12) with mass diffusion flux given in Equation (2.13) without

considering viscosity and heat transfer. The governing equations are discretized by means

of the DG method and the LDG numerical approximation scheme is used to solve the

system. In the fifth step, after solving the mass diffusion equations separately at trouble

cells, the mass fraction of each species should be adjusted to a reasonable value. The re-

gions away from the contact discontinuity are not affected by the diffusion process because

they are not identified by the discontinuity sensor. Then the new mass fractions are used to

compute the numerical flux approximations of the original flows, thus the numerical results

should be meaningful and feature reasonable gas properties.

The whole process discussed above is the mass diffusion based limiter, and can be

summarized as:

1. Detecting trouble cells with contact discontinuity sensor.

2. Iterations with necessary mass fraction conditions.

3. RK pseudo time integrations.

4. Solve the DG discretized mass diffusion systems with LDG method.
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5. Return to main solver and compute numerical flux from new mass fractions.

This new strategy has been successfully implemented into the current solver to cap-

ture the sharp contact surface with the DG method. We call this method contact-surface-

capturing method. Numerical results on two species air-helium shock bubble problems are

given in next chapter.
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CHAPTER 7

RESULTS

Many numerical examples are investigated to validate the newly developed numerical

solver, ranging from simple to complex geometries. The numerical schemes analyzed

in previous chapters are tested here. Additionally, the newly proposed contact-surface-

capturing method is examined by way of the classical shock-bubble problem with the high-

order DG method. In all of the following examples, except for the case testing order of

accuracy, three-dimensional grids have been used with one dimension reduced to one-cell

length, resulting in the computational grid being identical to a two-dimensional grid. Hence

the three-dimensional implementation of the solution on original three-dimensional mesh

is the same as a two-dimensional solver on two-dimensional plain grids. The computational

results are displayed on a two-dimensional plane as a convenience for the reader.

7.1 Test order of accuracy

The first simple and basic test case is showing that a high order of accuracy with the

numerical implementation can be obtained which is approximately identical to the actual

order of accuracy expected. The Manufactured Solution [43] method has been employed in

order to test the order of approximation from the numerical solution. The basic idea behind

this approach is the following: a C2 continuous mathematic function or higher is chosen
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as the exact solution to the governing equations in the computational domain, then a new

numerical flux or source term constructed from this specified solution has to be added to

the original governing equations. After discretization and time integration, the converged

numerical result is an approximation of the original manufactured solution. The difference

between the exact solution and the approximate solution is the numerical error from the

approximation with a high order DG method. Theoretically, this error is proportional to

the length scale ϑ(hp) and decreases drastically by increasing the order of accuracy of the

approximation. In order to compare the errors quantitively for different orders of accuracy,

a series of gradually refined simple hexahedral grids has been used in the computation,

decreasing the grid cell edge length by half at each time of refinement (See Figure 7.1).

The manufactured solution chosen in the following cases is:

ρext = ρ∞(1 + 0.1sin(x)cos(y))

uext = u∞(1 + 0.1sin(y)cos(z))

Text = T∞(1 + 0.1sin(y)cos(x)) (7.1)

where ρext, uext and Text are the manufactured solution for density, velocity and tempera-

ture respectively. The freestream conditions and x, y, z global coordinates are given. The

errors for the explicit RK inviscid solver with Roe scheme at orders of accuracy ranging

from first to fourth are shown in Figure 7.2 (data are listed in Table 7.1), using total en-

ergy. Furthermore, the errors for the explicit RK viscous solver with κ − ω turbulence

model solved by BR2 scheme at orders of accuracy ranging from first to fourth are shown

in Figure 7.3 (data are listed in Table 7.2), using total energy.
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Figure 7.1

Grids with different length scales (divided by two each time, using second order

quadrature points)

Figure 7.2

Errors for different orders of accuracy on progressively refined grids for inviscid scheme
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Table 7.1

Data of errors for different order on refined grids for inviscid solver

L1 error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.0159519 0.00679733 0.407498E-3 0.10979E-3

8(h/2) 0.0108563 0.923066E-3 0.509214E-4 0.354651E-5

64(h/4) 0.00351675 0.132768E-3 0.464611E-5 0.137527E-6

512(h/8) 0.00132934 0.214681E-4 0.466729E-6 0.5056531E-6

4096(h/16) 0.626341E-3 0.411676E-5 0.9213601E-7 0.3833126E-7

L2 error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.0159519 0.00861329 0.50358E-3 0.136624E-3

8(h/2) 0.0116613 0.00127075 0.639017E-4 0.469059E-5

64(h/4) 0.00418671 0.19447E-3 0.601904E-5 0.188964E-6

512(h/8) 0.00165381 0.316976E-4 0.607375E-6 0.691699E-7

4096(h/16) 0.744522E-3 0.606541E-5 0.1281583E-6 0.5102246E-7

L∞ error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.0159519 0.0153293 0.91298E-3 0.275167E-3

8(h/2) 0.0182272 0.00276871 0.133802E-3 0.119633E-4

64(h/4) 0.00740958 0.453117E-3 0.148286E-4 0.535359E-6

512(h/8) 0.00359881 0.79526E-4 0.171607E-5 0.1475646E-6

4096(h/16) 0.00187877 0.197088E-4 0.2740377E-6 0.1072611E-6
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Table 7.2

Data of errors for different order on refined grids for viscous solver

L1 error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.00635105 0.0145564 0.0017594 0.216325E-3

8(h/2) 0.0404615 0.00244346 0.238298E-3 0.115155E-4

64(h/4) 0.0201483 0.547681E-3 0.289034E-4 0.650491E-6

512(h/8) 0.00990994 0.125677E-3 0.337695E-5 0.413268E-7

4096(h/16) 0.00510534 0.30206E-4 0.399615E-6 0.141142E-7

L2 error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.00635105 0.019344 0.002197 0.271683E-3

8(h/2) 0.0517869 0.00315738 0.294413E-3 0.150965E-4

64(h/4) 0.0267395 0.694506E-3 0.35796E-4 0.847449E-6

512(h/8) 0.0133102 0.16215E-3 0.419567E-5 0.53518E-7

4096(h/16) 0.00677791 0.39417E-4 0.491085E-6 0.176329E-7

L∞ error order=1 order=2 order=3 order=4

(number of cells)

1(h) 0.00635105 0.0404802 0.00449059 0.953337E-3

8(h/2) 0.109959 0.00885285 0.837904E-3 0.75661E-4

64(h/4) 0.0791888 0.00211305 0.131493E-3 0.465556E-5

512(h/8) 0.042071 0.553338E-3 0.189099E-4 0.273771E-6

4096(h/16) 0.0218843 0.142224E-3 0.262084E-5 0.122007E-6
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Figure 7.3

Errors for different orders of accuracy on progressively refined grids for viscous scheme

In these figures, the slope of the error is defined as:

slope =
| ln(e0)p − ln(e0)

p−1|
| ln(h)p − ln(h)p−1| =

| ln(e0)p − ln(e0)
p−1|

ln(2)
= const (7.2)

From Figure 7.2 and Figure 7.3 we can see that the slope of the line is nearly constant for

different orders of accuracy as expected. The order of accuracy on a single cell is not well

maintained for first order, which is not significant since the errors are very large for only

one cell. And we note that at fourth order of accuracy the errors for the finest grid do not

decrease as expected since the computational truncation errors are of the same magnitude

as the round-off errors, and the round-off errors are actually dominant in this situation

so that the high order of accuracy can not be achieved. Except for these, other lines are

smooth with constant slope which is equal to the order of accuracy. Since the grids have
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been gradually refined, then theoretically the error is ϑ(hp), and decreases (in a logarithm)

in proportion to the change of grid length, thus the slope should be constant for different

order of accuracy. The slopes from the numerical results are very close to the theoretical

ones, and this effectively validates the numerical algorithm and proves that the high order

DG scheme realizes our original purpose to achieve high order approximation without side

effects.

7.2 Inviscid shock-tube problems

The Sod shock-tube problem [50] is a common test case to test the accuracy of approxi-

mate Riemann solvers. The unsteady Euler equations are solved in a time-accurate fashion

for this problem. Explicit RK time integration is used with HLLC scheme to approxi-

mate the convective flux for the DG discretized governing equations. In the unsteady time

marching process, three characteristics are formed, describing the propagation of waves.

The rarefaction wave, the contact discontinuity, and the shock wave are resolved with ap-

propriate numerical schemes. This test case provides us with some understanding of the

basic discontinuities in CFD and ways on how they can be captured with commonly used

numerical approximation schemes. This is a standard test case that has been widely stud-

ied, and the density, mach number, velocity, and pressure profiles in front of and behind

the discontinuities can be compared with analytical solution.

The configuration of a shock tube is shown in Figure 7.4(a). This is a tube closed at

both ends, with a diaphragm separating a region of high-pressure gas on the left from a

region of low-pressure gas on the right. When the diaphragm is broken, a shock wave
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propagates into section 1 and an expansion wave propagates into section 4. As the normal

shock wave propagates to the right with velocity W , it increases the pressure of the gas

behind it. The interface originally located between region 1 and 4 is called contact surface,

which also moves with velocity up. The pressure and velocity are the same across the con-

tact discontinuity. The expansion wave propagates to the left, smoothly and continuously

decreasing the pressure in region 4 to the lower value behind the expansion wave. The flow

field in the tube after the diaphragm is broken is shown in Figure 7.4(b), and is completely

determined by the given conditions in region 1 and 4 before the diaphragm is broken.

Figure 7.4

(a)Initital condition in a shock tube (b)Flow in a shock after the diaphragm is broken
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In this shock-tube problem, two different gas species are employed in different regions

to test the contact-surface-capturing method. Nitrogen is used in region 4 and oxygen is

used in region 1. The basic conditions are given:

1. Geometry: x ∈ [0,1] ft, number of grid points is 100.

2. CFL number: first order 0.01; second order 0.01; third order 0.01; fourth order 0.001.

3. Time: compare solution at t = 1.0E − 4s.

4. Initial condition: P4=68948Pa, T4=289K,U4=0.0, γ4 = 1.4; P1=6894.8Pa, T1=231K,

U1=0.0, γ1 = 1.4.

The inviscid flux are approximated by HLLC scheme. For higher order of accuracy, ar-

tificial viscosity diffusion based limiter and the newly proposed contact-surface-capturing

method are employed. The numerical solutions are compared with analytical solutions

from textbook [1]. The density, Mach number, x-direction velocity, pressure, and species

mass fraction of nitrogen gas are shown in Figure 7.5, Figure 7.6, Figure 7.7, and Fig-

ure 7.8, Figure 7.9 respectively. In density and pressure figures, the contact surface and

shock wave are captured by diffusion based limiter and closed to analytical solutions when

higher order of accuracy is employed. From Mach number and x-velocity figures, we can

see that the numerical oscillations are large for odd order of accuracy in the region between

the shock wave and the expansion wave and the numerical results match to the analytical

solutions smoothly for even solution order of accuracy. Moreover, the species mass frac-

tions for nitrogen gas in the region close to the contact surface are displayed in the mass

fraction figure. The species mass fraction from numerical results is very closed to the

analytical solution for higher order of accuracy. From above figures, we can see that the

numerical solution approximates to analytical solution well when the high-order scheme is
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used. The shock discontinuities can be well captured with diffusion based limiter. Also the

sharp contact surface can be captured effectively with mass diffusion based limiter, and the

oscillation is much less. This comparison proves that the diffusion based limiter for shock

wave and our new contact-surface-capturing method are robust and effective for simple

cases. Also the comparison shows that our time integration is valid for high order accurate

simulation.

Figure 7.5

Density distribution for different order of accuracy

7.3 Steady supersonic ramp test cases

The high order DG method can be investigated as a candidate for resolving the shock

wave and capturing the thin shock discontinuity within a single cell at higher dimensions.
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Figure 7.6

Mach number distribution for different order of accuracy

Figure 7.7

X-direction velocity distribution for different order of accuracy
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Figure 7.8

Pressure distribution for different order of accuracy

Figure 7.9

Nitrogen mass fraction distribution for different order of accuracy
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The first test case is a supersonic air flow passing a simple ramp, and the mesh used for

computation is shown in Figure 7.10. A supersonic flow with free stream Mach number

2.5, density 1.3 kg/m3 and pressure 1atm can be used to test the shock-capturing capability

of the solver. The DG discretized Euler equations for air are employed, with semi-implicit

p-multigrid acceleration strategy for high order of accuracy, where the convective flux is

computed using the Roe flux splitting scheme with entropy fix.

For first order of accuracy, whose pressure contour is shown in Figure 7.11, the DG

solver can capture the shock wave across several cells, similarly to a solution using the

finite volume method. The details of the pressure contour near the shock region are shown

in Figure 7.12. The shock wave is smeared over three cells using the first order approx-

imation shown in these figures. For second order of accuracy, whose pressure contour is

shown in Figure 7.13, the DG solver can capture the shock wave in a single cell. The

pressure contour in the shock region is magnified in Figure 7.14, and we clearly see that

the shock wave is constrained in a cell even though there are some high frequency errors in

front of and behind the shock wave (This is due to the fact that the figure displayed is from

cell-node averaged results and more will be discussed in the next section). For third order

of accuracy, a negative pressure would occur in some cells near shock wave if some kind of

limiting procedure is not employed and this could cause the numerical scheme to become

unstable. In this research, we take the diffusion based artificial viscosity method by Pers-

son and Peraire to damp the high frequency terms so as to achieve a single-cell resolution

with the desired order of accuracy. The third order solution with this limiter is shown in

Figure 7.15. The pressure contour in the shock region is magnified in Figure 7.16. Not
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only is the shock wave captured in a single cell, but the length scale of this shock is thinner

than the one from the second order case. This result indicates that the shock-capturing

scheme with artificial viscosity is working for supersonic flow, therefore this strategy can

be applied to a more sophisticated case of multiple species gas flow in the following.

Figure 7.10

Geometry and meshes of supersonic flow passing a simple ramp

An important technique is introduced to display the results from high order DG method

in high resolution mode. The figures we have seen so far are nodal averaged ones, for

example the pressure contour just provided. For each node of the domain, values are com-

puted from the several neighboring cells with DG approximation, then the arithmetically

averaged output can be achieved. This way of displaying the flow field results can only

provide roughly the mean of solution for each cell, and the high order component of the

solution or the details of the polynomial approximation from the DG method can not be
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Figure 7.11

First order solution of pressure contour (cfl=5)

Figure 7.12

First order solution of pressure contour, magnified view near shock region with mesh

displayed
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Figure 7.13

Second order solution of pressure contour (cfl=1)

Figure 7.14

Second order solution of pressure contour, magnified view near shock region with mesh

displayed
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Figure 7.15

Third order solution of pressure contour (cfl=0.5)

Figure 7.16

Third order solution of pressure contour, magnified view near shock region with mesh

displayed
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visualized in this simple way. Because the DG space discretization is implemented in this

solver, then it is required that the visualization of the solution not only shows the basic

information for each cell but also gives us more details about the high order components

within the space inside each cell. Therefore we design a high resolution strategy and apply

this to the updated solver to display the high order solution profile of each cell.

For the p-th order of accuracy obtained with DG method, each cell in the domain is

divided into p3 subcells for three-dimensional situations, and in this subdomain of each

cell p3 subcell nodes based solutions can be evaluated from the basis function approxima-

tions, according to the positions of these nodes. Finally we obtain the solution of the flow

problems on the subcell nodal points, and from that the slope and changes of the polyno-

mials can be viewed directly in the subdomain of each cell. This new strategy can help

investigating the solution polynomial distribution inside each cell and understanding the

formation of solution gradients in interesting regions, such as boundary layers.

The steady shock wave example studied above can be visualized again. This new tech-

nique of visualizing high resolution figures can be applied to the high order DG approx-

imation. From the second order accurate high resolution pressure contour of Figure 7.17

and third order accurate high resolution pressure contour of Figure 7.18, we can clearly

see that the shock profile is captured in a single cell and the width is decreasing as the

order of accuracy becomes higher. The most important benefit is that the contour of the

solution in each cell can be observed easily and the shock wave aligns properly with the

cell interfaces, which shows the good directionality of this shock-capturing method.
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Figure 7.17

Second order accurate high resolution pressure profile

Figure 7.18

Third order accurate high resolution pressure profile

119



7.4 Supersonic shock capturing test cases

A typical unsteady shock wave problem is the shock-wedge reflection test case. The

Euler equations are solved in time with the unsteady Runge-Kutta method, and Roe ap-

proximate Riemann scheme is used to compute convection flux with diffusion based limiter

added to capture the shock wave. The test problem of shock-wedge reflection is described

here by an incident shock wave (Ms = 1.2), initially perpendicular to the x-direction,

encountering a wedge at an angle of 30 ◦. A structured mesh is utilized for this implemen-

tation. Without using a limiter, the first order solution of Figure 7.19 and second order

solution of Figure 7.20 are shown at some instant when shock wave arrives at the wedge.

Moreover, the diffusion based limiter has been added to the third and fourth order solutions,

and the results are shown in Figure 7.21 and Figure 7.22 respectively.

Figure 7.19

First order density contour of shock-wedge reflection (cfl=0.8)
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Figure 7.20

Second order density contour of shock-wedge reflection (cfl=0.5)

The solution corresponds to a single Mach reflection and the three shock waves (inci-

dent, reflected, and Mach stem) meet at the triple point. These numerical results can be

compared to the results from [3]. A contact surface emerges from the triple point that joins

the wedge surface at a sharp angle. The present results were found to be in very good

agreement with other numerical results for high order approximations.

7.5 Laminar flow over a plate test cases

Solving the diffusion flux in the governing equations is an important task of this re-

search. Because the diffusion based limiter is dependent on the implementation of the DG

discretization of the diffusion flux, it is necessary to verify the second order derivative dif-

fusion flux with the DG method. Laminar flow over a flat plate is a fundamental problem of

fluid mechanics. The boundary layer is defined as the thin layer of the transition zone from

121



Figure 7.21

Third order density contour of shock-wedge reflection (cfl=0.1)

Figure 7.22

Fourth order density contour of shock-wedge reflection (cfl=0.1)

122



zero velocity at the flat plat to full small viscosity or large Reynolds number. The sim-

plified Navier-Stokes equations yield approximate solutions of viscosity at high Reynolds

number. In this case, the Navier-Stokes equations are solved for laminar flow, then two

choices can be taken to discretize the diffusion flux component, one of Bassi and Rebay’s

BR2 method and another of Cockburn and Shu’s LDG method. The numerical results are

compared to the analytical solution from [58].

This study examines laminar flow over a plate. The incoming free stream is uniform

with a Mach number of 0.1 and a Reynolds number of 200000. The free stream pressure is

41368.8Pa and temperature is 388.9K. A laminar boundary layer is formed at some point

over the plate, and numerical solution with current solver are compared to the analytical

Blasius [58] solution for some dimensionless similarity variables. The solutions of at most

third order of accuracy are compared to Blasius solutions for x-direction velocity and wall

friction coefficient in Figure 7.23 and Figure 7.24.

From above figures, we can see that the laminar flow problems including the diffusion

contribution can be solved by BR2 or LDG methods, which verified the solver through this

example. The second order derivative can be solved with both methods in DG framework,

and the comparison to analytical solutions shows that the diffusion flux approximation is

valid and can be applied to discretize the artificial diffusion in diffusion based limiter.

7.6 Multiple species test cases

As an important verification for the newly designed contact-surface-capturing scheme,

the classical unsteady air-helium shock bubble problem is investigated with the high or-
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Figure 7.23

Comparison of the x-velocity at the end of the flat plate for different order of accuracy to

analytical solution

Figure 7.24

Comparison of the skin friction along the flat plate for different order of accuracy to

analytical solution

124



der DG approximation for gas dynamics. The high order accurate numerical results are

compared to experimental results in the following.

7.6.1 Problem description

From [3], we know that when two motionless gases are brought into contact, they mix

by diffusion at a rate proportional to the product of the contact area and the concentration

gradient at the interface. If the gases are set into motion by a passing shock wave, the

mixing rate will increase because the motion produces an increase in the contact area.

The bubble may be lighter or denser than the surrounding medium (we choose lighter

bubble in the following). The shock-bubble interaction results in refraction, diffraction and

reflection phenomena. Haas and Sturtevant [31] proposed the interaction of a planar shock

wave with a bubble as a model problem for studying vorticity and turbulence generation in

compressible flows with shock waves.

In the present study, a planar shock wave propagates through air from left to right of

a tube and impinges on a cylindrical bubble. The cylindrical bubble has a radius of 25

mm and the vertical dimension of the shock tube is 89 mm. The horizontal dimension of

the shock tube is 10 times the radius of the bubble. The incident shock is moving with

a Mach number Ms = 1.22. Figure 7.25 is the schematic of the computational domain.

Helium (molecular weight is 4) gas is used inside the bubble and air (molecular weight

is 28.97) is used outside. In the computation, both structured and unstructured grids have

been employed, but only the results from structured grids will be displayed here, which are

similar to those from unstructured grids by comparison. In the following, several test cases
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are carried out based on this configuration for different schemes, types of grids and orders

of accuracy.

Figure 7.25

Schematic of the computational domain for the shock-bubble interaction problem

7.6.2 Case for comparing inviscid flux

First of all, a comparison of different inviscid numerical schemes for the air-helium

shock bubble problem with the mass diffusion based limiter is carried out to find the best

scheme for further study. Starting from the same initial condition at Ms = 1.22, we can

compare the iso-density contour for each inviscid flux approximation scheme at some time

after the shock interacts with bubble using second order of accuracy. At dimensionless time

t=0.9 in Figure 7.26, the incident shock is reflected on the surface of the bubble as well as

transmitted (refracted) through the bubble. At time t=3.8 in Figure 7.27, a kidney-shaped

bubble is formed. At time t=7.0 in Figure 7.28, the VL-FVS scheme exhibits ripples at the
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bubble interface because of instability, while other schemes can capture the bubble inter-

face smoothly. At time t=10.2 in Figure 7.29, two separate vortices are formed when the

jet vanished. From these comparisons, we find that different schemes have individual dif-

fusive capability, and the large gradient at the interface could cause a Richtmyer-Meshkov

[29] instability during the numerical computation process. The HLLC numerical scheme

seems to capture the contact surface smoothly with better solution profiles. In the following

implementation with the diffusion based limiter, we will use this method.

Figure 7.26

Iso-density contours at t=0.9 for different inviscid flux schemes

7.6.3 Testing discontinuity capturing case

The mass diffusion based limiter has been applied to the case of an unsteady shock

wave passing a helium bubble. The explicit RK time integration and HLLC method for

inviscid flux approximation are used, also the LDG method is used to compute the mass

diffusion. The diffusion based limiter is employed for second, third, and fourth order accu-
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Figure 7.27

Iso-density contours at t=3.8 for different inviscid flux schemes

Figure 7.28

Iso-density contours at t=7.0 for different inviscid flux schemes
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Figure 7.29

Iso-density contours at t=10.2 for different inviscid flux schemes

rate simulations. In order to enhance the comparison, we use the experimental results from

Haas and Sturtevant [31]. In Figure 7.30 at t=32μs, experimental results show refracted

wave (right) and reflected wave (left) and the motion of the upstream interface. In the nu-

merical results, the waves can be seen for all situations and the interface is sharp for high

order of accuracy. In Figure 7.31 at t=52μs, experimental results show a running refracted

wave, a transmitted wave and a reflected wave. In the numerical results, the refracted

wave is not very clear for second order of accuracy and is shown for higher order accurate

cases. The reflected and transmitted waves are clear in the figure. In Figure 7.32 at t=62μs,

experimental results show an entirely emerged transmitted wave from interface and shock-

on-shock interaction. In the numerical results, these two phenomena can be clearly seen,

especially at high order accurate results. In Figure 7.33 at t=72μs, experimental results

show secondary transmitted waves. In numerical results, these can be seen for high order

accurate cases. In Figure 7.34 at t=82μs, experimental results show two branches of the
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secondary transmitted waves intersecting on the centreline. In numerical results, this can

be seen clearly on all cases. In Figure 7.35 at t=102μs, experimental results show distor-

tion and motion of the helium volume, and this is also easy seen from the numerical results.

Afterwards, the incident shock is passing over the body, and the upstream face continues

to deform so that a kidney-shaped volume is formed both in experimental and numeri-

cal results, as seen in Figure 7.36 at t=245μs. In Figure 7.37 at t=427μs, Figure 7.38 at

t=674μs, and Figure 7.39 at t=983μs, a re-entrant jet forms both in experimental and nu-

merical results. When the head of jet impinges the downstream interface, it spreads out

and eventually forms a pair of vortical structures. From these figures, we can conclude that

the scheme with high-order approximation can bring accurate numerical results with the

diffusion based limiter.

Figure 7.30

Comparison of density gradient at t=32μs:(a)experimental data (b)second order (c)third

order (d)fourth order
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Figure 7.31

Comparison of density gradient at t=52μs:(a)experimental data (b)second order (c)third

order (d)fourth order

Figure 7.32

Comparison of density gradient at t=62μs:(a)experimental data (b)second order (c)third

order (d)fourth order
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Figure 7.33

Comparison of density gradient at t=72μs:(a)experimental data (b)second order (c)third

order (d)fourth order

Figure 7.34

Comparison of density gradient at t=82μs:(a)experimental data (b)second order (c)third

order (d)fourth order
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Figure 7.35

Comparison of density gradient at t=102μs:(a)experimental data (b)second order (c)third

order (d)fourth order

Figure 7.36

Comparison of density gradient at t=245μs:(a)experimental data (b)second order (c)third

order (d)fourth order
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Figure 7.37

Comparison of density gradient at t=427μs:(a)experimental data (b)second order (c)third

order (d)fourth order

Figure 7.38

Comparison of density gradient at t=674μs:(a)experimental data (b)second order (c)third

order (d)fourth order
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Figure 7.39

Comparison of density gradient at t=983μs:(a)experimental data (b)second order (c)third

order (d)fourth order

7.6.4 Diffusion based limiter on high order accurate cases

Increasing the order of approximation, the contact discontinuity can be captured within

only one cell. This can be verified from the numerical results of density for second order

and third order of accuracy with the DG method in Figure 7.40 at t=245μs. From this

figure, we can clearly find out that the species interface is sharp for the third order ap-

proximation. This is one of the benefits of the DG scheme with high order of accuracy.

Additionally, one important point needs to be stated. Without the mass diffusion based

limiter, the high-order scheme (for example, third order approximation) has large negative

species mass fractions at interface with the results shown in Figure 7.41(a). In this plot, we

notice that there are large negative mass fractions at the species interface, which are nu-

merically accelerating the mixing process so as to cause instability of the numerical solver.

On the other hand, when the proposed mass diffusion based limiter is considered in the
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third order scheme with the same condition shown in Figure 7.41(b), the mass fraction of

air is always maintained positive and the mass fraction interface is smooth. In this way,

other gas properties are reasonable and the numerical algorithm is robust.

Figure 7.40

Comparison of density contour for high order of accuracy (a)second order (b)third order

The examples in this chapter proved that the proposed mass diffusion based limiter

strategy can control the non-physical mass fraction so as to make the numerical scheme

stable and robust.
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Figure 7.41

Mass diffusion based limiter effect from comparison of air negative mass fraction(Y1)

(a)not using limiter (b)using proposed limiter
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CHAPTER 8

CONCLUSIONS

The objective of this research has been achieved and the results are provided in this

document. A high order DG solver has been set up for computations based on the Loci

framework for simulations of three-dimensional flow problems. Several numerical meth-

ods have been verified. However, there is still some additional work needed to improve

the solver. In the following, some conclusions are obtained and some long-term goals are

presented.

8.1 Conclusions

A few conclusions can be drawn here, based on the work presented in this study.

8.1.1 Governing equations

The basic Euler governing equations are mainly used and RANS equations with tur-

bulence model are implemented as well. The nondimensional governing equations are

supplemented with some physical models. A two-equations turbulence model and a ther-

modynamic model for multiple species are introduced. Explicit time integration and semi-

implicit p-multigrid algorithm are employed. Computing the Jacobian matrix in the fully

138



implicit method is too expensive, and so the p-multigrid method has the benefit of being

relatively less expensive in solving the Jacobian matrix.

8.1.2 Discontinuous Galerkin method

The most important task of this research was building the numerical solver based on the

DG method, which has actually been fulfilled. This solver provides a basic framework to do

simulations of flow problems with high order of accuracy, and from the numerical results

we conclude that the foundation of DG method is robust in real applications. Additionally,

it is straightforward to increase the order of accuracy by providing more basis functions

in quadrature rules. The DG method has been applied to both structured and unstructured

grids successfully, but the computations on very complicated geometry with this solver

should be further investigated. As the DG method becomes more popular, more functions

and techniques could be developed based on this framework in future research.

8.1.3 Multiple species gas

A mixture of multiple species has been used as a simple model for general gas proper-

ties. For simplicity, a mixture of two thermally perfect gases is considered and the proper-

ties of each species are well maintained in the shock bubble test case since the species mass

fraction is always positive to guarantee the gas properties to be physically meaningful. The

extension of this model to a mixture of multiple species is straightforward, but considering

thermo-chemical non-equilibrium process in a gas is still a challenging topic for further

efforts.
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8.1.4 Diffusion based limiter

The diffusion based limiter with high order DG method is successfully implemented

for multiple species. When multiple species are separated by a contact surface, the solution

gradient will not be large and the transition is smooth for species thermodynamic properties

with high order DG approximation. From the numerical results, we observed that the new

scheme is robust and can capture the contact discontinuity in a single cell with high order

of accuracy. This is probably the most important contribution of the present study.

8.2 Future work

There are some research issues that can be further studied as an extension of this work.

When computing the Jacobian matrix for the implicit time integration, the memory cost

is very large and optimization of the algorithm is needed to reduce the memory require-

ments. The RANS equations with turbulence model have not been fully investigated in this

research, and it would be interesting to concentrate on this topic. Currently the adaptive

strategy has not been implemented in the mass diffusion based limiter, and the compu-

tational expense is relatively large as a result. Another long-term goal is to achieve the

simulations of thermo-chemical non-equilibrium gas mixtures, for high temperature and

high Mach number conditions with high order DG approximation, which could produce

more accurate results based on the preliminary work shown in this document.
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APPENDIX A

BASIS FUNCTIONS
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A.1 Basis functions

In this section the basis functions of hexahedral element for each degree of freedom

in the implementation are listed for clarity. These symbolic formulae are the results of

Equation (3.2) and Equation (3.3) with the help of the Maple mathematic software package.

Table A.1

Basis functions for reference hexahedra (DOF: degree of freedom)

DOF/Order 1 2 3 4

0 1 1 1 1

1 ξ1 ξ1 ξ1
2 ξ2 ξ2 ξ2
3 ξ3 ξ3 ξ3
4 ξ1ξ2 ξ1ξ2 ξ1ξ2
5 ξ1ξ3 ξ1ξ3 ξ1ξ3
6 ξ2ξ3 ξ2ξ3 ξ2ξ3
7 ξ1ξ2ξ3 ξ1ξ2ξ3 ξ1ξ2ξ3
8 −1

2
+ 3

2
ξ23 −1

2
+ 3

2
ξ23

9 −1
2
ξ2 +

3
2
ξ2ξ

2
3 −1

2
ξ2 +

3
2
ξ2ξ

2
3

10 −1
2
+ 3

2
ξ22 −1

2
+ 3

2
ξ22

11 3
2
ξ3ξ

2
2 − 1

2
ξ3

3
2
ξ3ξ

2
2 − 1

2
ξ3

12 −3
4
ξ22 +

9
4
ξ22ξ

2
3+ −3

4
ξ22 +

9
4
ξ22ξ

2
3+

1
4
− 3

4
ξ23

1
4
− 3

4
ξ23

13 −1
2
ξ1 +

3
2
ξ1ξ

2
3 −1

2
ξ1 +

3
2
ξ1ξ

2
3

14 −1
2
ξ1ξ2 +

3
2
ξ1ξ2ξ

2
3 −1

2
ξ1ξ2 +

3
2
ξ1ξ2ξ

2
3

15 −1
2
ξ1 +

3
2
ξ1ξ

2
2 −1

2
ξ1 +

3
2
ξ1ξ

2
2
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Table A.1

(continued)

DOF/Order 1 2 3 4

16 3
2
ξ1ξ3ξ

2
2 − 1

2
ξ1ξ3

3
2
ξ1ξ3ξ

2
2 − 1

2
ξ1ξ3

17 −3
4
ξ1ξ

2
2 +

9
4
ξ1ξ

2
2ξ

2
3+ −3

4
ξ1ξ

2
2 +

9
4
ξ1ξ

2
2ξ

2
3+

1
4
ξ1 − 3

4
ξ1ξ

2
3

1
4
ξ1 − 3

4
ξ1ξ

2
3

18 −1
2
+ 3

2
ξ21 −1

2
+ 3

2
ξ21

19 3
2
ξ3ξ

2
1 − 1

2
ξ3

3
2
ξ3ξ

2
1 − 1

2
ξ3

20 −3
4
ξ21 +

9
4
ξ21ξ

2
3+ −3

4
ξ21 +

9
4
ξ21ξ

2
3+

1
4
− 3

4
ξ23

1
4
− 3

4
ξ23

21 3
2
ξ2ξ

2
1 − 1

2
ξ2

3
2
ξ2ξ

2
1 − 1

2
ξ2

22 3
2
ξ2ξ3ξ

2
1 − 1

2
ξ2ξ3

3
2
ξ2ξ3ξ

2
1 − 1

2
ξ2ξ3

23 −3
4
ξ2ξ

2
1 +

9
4
ξ2ξ

2
1ξ

2
3+ −3

4
ξ2ξ

2
1 +

9
4
ξ2ξ

2
1ξ

2
3+

1
4
ξ2 − 3

4
ξ2ξ

2
3

1
4
ξ2 − 3

4
ξ2ξ

2
3

24 −3
4
ξ21 +

9
4
ξ21ξ

2
2+ −3

4
ξ21 +

9
4
ξ21ξ

2
2+

1
4
− 3

4
ξ22

1
4
− 3

4
ξ22

25 9
4
ξ21ξ3ξ

2
2 − 3

4
ξ21ξ3− 9

4
ξ21ξ3ξ

2
2 − 3

4
ξ21ξ3−

3
4
ξ3ξ

2
2 +

1
4
ξ3

3
4
ξ3ξ

2
2 +

1
4
ξ3

26 −9
8
ξ21ξ

2
2 +

27
8
ξ21ξ

2
2ξ

2
3+ −9

8
ξ21ξ

2
2 +

27
8
ξ21ξ

2
2ξ

2
3+

3
8
ξ21 − 9

8
ξ21ξ

2
3 +

3
8
ξ22

3
8
ξ21 − 9

8
ξ21ξ

2
3 +

3
8
ξ22

−9
8
ξ22ξ

2
3 − 1

8
+ 3

8
ξ23 −9

8
ξ22ξ

2
3 − 1

8
+ 3

8
ξ23
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Table A.1

(continued)

DOF/Order 1 2 3 4

27 −3
2
ξ3 +

5
2
ξ33

28 −3
2
ξ2ξ3 +

5
2
ξ2ξ

3
3

29 15
4
ξ22ξ

3
3 − 9

4
ξ3ξ

2
2 − 5

4
ξ33 +

3
4
ξ3

30 −3
2
ξ2 +

5
2
ξ32

31 5
2
ξ3ξ

3
2 − 3

2
ξ2ξ3

32 −5
4
ξ32 +

15
4
ξ32ξ

2
3 +

3
4
ξ2 − 9

4
ξ2ξ

2
3

33 25
4
ξ32ξ

3
3 − 15

4
ξ32ξ3 − 15

4
ξ2ξ

3
3 +

9
4
ξ2ξ3

34 −3
2
ξ1ξ3 +

5
2
ξ1ξ

3
3

35 −3
2
ξ1ξ2ξ3 +

5
2
ξ1ξ2ξ

3
3

36 15
4
ξ1ξ

2
2ξ

3
3 − 9

4
ξ1ξ3ξ

2
2 − 5

4
ξ1ξ

3
3 +

3
4
ξ1ξ3

37 −3
2
ξ1ξ2 +

5
2
ξ1ξ

3
2

38 5
2
ξ1ξ3ξ

3
2 − 3

2
ξ1ξ3ξ2

39 −5
4
ξ1ξ

3
2 +

15
4
ξ1ξ

3
2ξ

2
3 +

3
4
ξ1ξ2 − 9

4
ξ1ξ2ξ

2
3

40 25
4
ξ1ξ

3
2ξ

3
3 − 15

4
ξ1ξ3ξ

3
2 − 15

4
ξ1ξ2ξ

3
3 +

9
4
ξ1ξ3ξ2

41 15
4
ξ21ξ

3
3 − 9

4
ξ3ξ

2
1 − 5

4
ξ33 +

3
4
ξ3

42 15
4
ξ2ξ

2
1ξ

3
3 − 9

4
ξ2ξ

2
1ξ3 − 5

4
ξ2ξ

3
3 +

3
4
ξ2ξ3

43 45
8
ξ21ξ

2
2ξ

3
3 − 27

8
ξ21ξ3ξ

2
2 − 15

8
ξ21ξ

3
3 +

9
8
ξ21ξ3

−15
8
ξ22ξ

3
3 +

9
8
ξ3ξ

2
2 +

5
8
ξ33 − 3

8
ξ3

44 15
4
ξ21ξ

3
2 − 9

4
ξ21ξ2 − 5

4
ξ32 +

3
4
ξ2

45 15
4
ξ21ξ3ξ

3
2 − 9

4
ξ21ξ3ξ2 − 5

4
ξ3ξ

3
2 +

3
4
ξ3ξ2

46 −15
8
ξ21ξ

3
2 +

45
8
ξ21ξ

3
2ξ

2
3 +

9
8
ξ21ξ2 − 27

8
ξ21ξ2ξ

2
3

+5
8
ξ32 − 15

8
ξ32ξ

2
3 − 3

8
ξ2 +

9
8
ξ2ξ

2
3

47 75
8
ξ21ξ

3
2ξ

3
3 − 45

8
ξ21ξ3ξ

3
2 − 45

8
ξ21ξ2ξ

3
3 +

27
8
ξ21ξ3ξ2

−25
8
ξ32ξ

3
3 +

15
8
ξ3ξ

3
2 +

15
8
ξ2ξ

3
3 − 9

8
ξ3ξ2
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Table A.1

(continued)

DOF/Order 1 2 3 4

48 −3
2
ξ1 +

5
2
ξ31

49 5
2
ξ3ξ

3
1 − 3

2
ξ3ξ1

50 −5
4
ξ31 +

15
4
ξ31ξ

2
3 +

3
4
ξ1 − 9

4
ξ1ξ

2
3

51 25
4
ξ31ξ

3
3 − 15

4
ξ3ξ

3
1 − 15

4
ξ1ξ

3
3 +

9
4
ξ3ξ1

52 5
2
ξ2ξ

3
1 − 3

2
ξ2ξ1

53 5
2
ξ2ξ3ξ

3
1 − 3

2
ξ2ξ3ξ1

54 −5
4
ξ2ξ

3
1 +

15
4
ξ2ξ

3
1ξ

2
3 +

3
4
ξ2ξ1 − 9

4
ξ2ξ1ξ

2
3

55 25
4
ξ2ξ

3
1ξ

3
3 − 15

4
ξ2ξ

3
1ξ3 − 15

4
ξ2ξ1ξ

3
3 +

9
4
ξ2ξ1ξ3

56 −5
4
ξ31 +

15
4
ξ31ξ

2
2 +

3
4
ξ1 − 9

4
ξ1ξ

2
2

57 15
4
ξ31ξ3ξ

2
2 − 5

4
ξ31ξ3 − 9

4
ξ1ξ3ξ

2
2 +

3
4
ξ1ξ3

58 −15
8
ξ31ξ

2
2 +

45
8
ξ31ξ

2
2ξ

2
3 +

5
8
ξ31 − 15

8
ξ31ξ

2
3

+9
8
ξ1ξ

2
2 − 27

8
ξ1ξ

2
2ξ

2
3 − 3

8
ξ1 +

9
8
ξ1ξ

2
3

59 75
8
ξ31ξ

2
2ξ

3
3 − 45

8
ξ31ξ3ξ

2
2 − 25

8
ξ31ξ

3
3 +

15
8
ξ31ξ3

−45
8
ξ1ξ

2
2ξ

3
3 +

27
8
ξ1ξ3ξ

2
2 +

15
8
ξ1ξ

3
3 − 9

8
ξ1ξ3

60 25
4
ξ31ξ

3
2 − 15

4
ξ31ξ2 − 15

4
ξ1ξ

3
2 +

9
4
ξ1ξ2

61 25
4
ξ31ξ3ξ

3
2 − 15

4
ξ31ξ3ξ2 − 15

4
ξ1ξ3ξ

3
2 +

9
4
ξ1ξ3ξ2

62 −25
8
ξ31ξ

3
2 +

75
8
ξ31ξ

3
2ξ

2
3 +

15
8
ξ31ξ2 − 45

8
ξ31ξ2ξ

2
3

+15
8
ξ1ξ

3
2 − 45

8
ξ1ξ

3
2ξ

2
3 − 9

8
ξ1ξ2 +

27
8
ξ1ξ2ξ

2
3

63 125
8
ξ31ξ

3
2ξ

3
3 − 75

8
ξ31ξ

3
2ξ3 − 75

8
ξ31ξ2ξ

3
3 +

45
8
ξ31ξ2ξ3

−75
8
ξ1ξ

3
2ξ

3
3 +

45
8
ξ1ξ

3
2ξ3 +

45
8
ξ1ξ2ξ

3
3 − 27

8
ξ1ξ2ξ3
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The Gauss quadrature rules are applied to the implementation. The space of polynomial

functions of degree at most k is:

P k = {p(x) | p(x) is polynomial of degree ≤ k} (B.1)

B.1 One-dimensional case

For 1D case, an approximation to the integral of polynomial function p(x) is obtained

by sampling function at the space abscissas xi with the corresponding weights ωi:

∫ 1

−1
p(x)dx =

n∑
i=1

ωip(xi) (B.2)

where n is the number of sampling points. Three choices of quadrature rules can be found

from mathematic formulae: Gauss-Legendre quadrature, Gauss-Lobatto quadrature, and

Gauss-Radau quadrature. For the current implementation, at most fourth order of accuracy

is considered, and the sampling points and weights are given in the following tables, Ta-

ble B.1 to Table B.5 (note: in order to minimize the effect of machine errors, very high

precision numbers are shown here).

B.2 Two-dimensional case

For 2D case, an approximation to the integral of polynomial function p(x, y) is obtained

by sampling function at the space abscissas xi, yi with the corresponding weights ωi:

∫ 1

−1

∫ 1

−1
p(x, y)dxdy =

n∑
i=1

ωip(xi, yi) (B.3)

For the case of reference quadrilateral domain, the numerical integration can be computed

as the tensor product of the two 1D integrations, for example, the integral is computed
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Table B.1

Gauss-Legendre quadrature points

Order Integration points xi
1 x1= 0.0000000000000000000000000000000000000000

2 x1= -0.5773502691896257645091487805019574556476

x2= 0.5773502691896257645091487805019574556476

3 x1= -0.7745966692414833770358530799564799221666

x2= 0.0000000000000000000000000000000000000000

x3= 0.7745966692414833770358530799564799221666

4 x1= -0.8611363115940525752239464888928095050957

x2= -0.3399810435848562648026657591032446872006

x3= 0.3399810435848562648026657591032446872006

x4= 0.8611363115940525752239464888928095050957

5 x1= -0.9061798459386639927976268782993929651257

x2= -0.5384693101056830910363144207002088049673

x3= 0.0000000000000000000000000000000000000000

x4= 0.5384693101056830910363144207002088049673

x5= 0.9061798459386639927976268782993929651257

Table B.2

Gauss-Legendre quadrature weights

Order Integration weights ωi

1 ω1= 2.0000000000000000000000000000000000000000

2 ω1= 1.0000000000000000000000000000000000000000

ω2= 1.0000000000000000000000000000000000000000

3 ω1= 0.5555555555555555555555555555555555555556

ω2= 0.8888888888888888888888888888888888888889

ω3= 0.5555555555555555555555555555555555555556

4 ω1= 0.3478548451374538573730639492219994072353

ω2= 0.6521451548625461426269360507780005927647

ω3= 0.6521451548625461426269360507780005927647

ω4= 0.3478548451374538573730639492219994072353

5 ω1= 0.2369268850561890875142640407199173626433

ω2= 0.4786286704993664680412915148356381929123

ω3= 0.5688888888888888888888888888888888888889

ω4= 0.4786286704993664680412915148356381929123

ω5= 0.2369268850561890875142640407199173626433
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Table B.3

Gauss-Radau quadrature points

Order Integration points xi
1 x1= -1.0

x2= 1/3

2 x1= -1.00000000000000000000000000000000

x2= -0.28989794855663561963945681494118

x3= 0.68989794855663561963945681494118

3 x1= -1.00000000000000000000000000000000

x2= -0.57531892352169411205048377975200

x3= 0.18106627111853057827014749586234

x4= 0.82282408097459210520890771246109

4 x1= -1.00000000000000000000000000000000

x2= -0.72048027131243889569582583775024

x3= -0.16718086473783364011339533732583

x4= 0.44631397272375234463990800462875

x5= 0.88579160777096463561375761489177

5 x1= -1.00000000000000000000000000000000

x2= -0.80292982840234714775300220422449

x3= -0.39092854670727218902922964744233

x4= 0.12405037950522771198997495998954

x5= 0.60397316425278365492841572640941

x6= 0.92038028589706251531838661981333
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Table B.4

Gauss-Radau quadrature weights

Order Integration weights ωi

1 ω1= 0.5

ω2= 1.5

2 ω1= 2/9

ω2= 1.02497165237684322767762689303920

ω3= 0.75280612540093455010015088473858

3 ω1= 2/16

ω2= 0.65768863996011948788857844214558

ω3= 0.77638693768634376156046461378002

ω4= 0.44092442235353675055095694407455

4 ω1= 2/25

ω2= 0.44620780216714148880512043645701

ω3= 0.62365304595148250816370982315323

ω4= 0.56271203029892412038434530068129

ω5= 0.28742712158245188264682443970824

5 ω1= 2/36

ω2= 0.31964075322051096654577998379628

ω3= 0.48538718846896991615982791558685

ω4= 0.52092678318957498257022940656957

ω5= 0.41690133431190773895940638274197

ω6= 0.20158838525348084020920075574912
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Table B.5

Gauss-Lobatto quadrature points and weights

Order Integration points xi Integration weights ωi

1 x1= -1.0 ω1= 1.0

x2= 1.0 ω2= 1.0

2 x1= -1.0 ω1= 1/3

x2= 0.0 ω2= 4/3

x3= 1.0 ω3= 1/3

3 x1= -1.0 ω1= 1/6

x2= -
√
5/5 ω2= 5/6

x3=
√
5/5 ω3= 5/6

x4= 1.0 ω4= 1/6

4 x1= -1.0 ω1= 0.1

x2= -
√
21/7 ω2= 49/90

x3= 0.0 ω3= 32/45

x4=
√
21/7 ω4= 49/90

x5= 1.0 ω5= 0.1

5 x1= -1.0 ω1= 1/15

x2= -
√
7 + 2

√
7/
√
21 ω2= (14−√

7)/30

x3= -
√
7− 2

√
7/
√
21 ω3= (14 +

√
7)/30

x4=
√
7− 2

√
7/
√
21 ω4= (14 +

√
7)/30

x5=
√
7 + 2

√
7/
√
21 ω5= (14−√

7)/30
x6= 1.0 ω6= 1/15
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from two independent Gauss-Legendre quadrature integrations as shown on the left of

Figure B.1.

Figure B.1

Second order quadrature points in quadrilateral domain and triangular domain

For the case of reference triangular domain, the numerical integration can be computed

on quadrature points as shown on the right of Figure B.1. For the current implementation,

at most fourth order of accuracy is used, then the data of sampling points and weights are

given in Table B.6 and Table B.7.

B.3 Three-dimensional case

For 3D case, an approximation to the integral of polynomial function p(x, y, z) is ob-

tained by sampling function at the space abscissas xi, yi, zi with the corresponding weights

ωi: ∫ 1

−1

∫ 1

−1

∫ 1

−1
p(x, y, z)dxdydz =

n∑
i=1

ωip(xi, yi, zi) (B.4)
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Table B.6

Quadrature points in triangular domain

Order First vertex T1 Second vertex T2 Third vertex T3

1 x1= 1/3 x1= 1/3 x1= 1/3

2 x1= 1/3 x1= 1/3 x1= 1/3

x2= 0.6 x2= 0.2 x2= 0.2

x3= 0.2 x3= 0.6 x3= 0.2

x4= 0.2 x4= 0.2 x4= 0.6

3 x1= 1/3 x1= 1/3 x1= 1/3

x2= α1 x2= β1 x2= β1
x3= β1 x3= α1 x3= β1
x4= β1 x4= β1 x4= α1

x5= α2 x5= β2 x5= β2
x6= β2 x6= α2 x6= β2
x7= β2 x7= β2 x7= α2

4 x1= ξ1 x1= η1 x1= 1− ξ1 − η1
x2= η1 x2= 1− ξ1 − η1 x2= ξ1
x3= 1− ξ1 − η1 x3= ξ1 x3= η1
x4= ξ2 x4= η2 x4= 1− ξ2 − η2
x5= η2 x5= 1− ξ2 − η2 x5= ξ2
x6= 1− ξ2 − η2 x6= ξ2 x6= η2
x7= ξ3 x7= η3 x7= 1− ξ3 − η3
x8= η3 x8= 1− ξ3 − η3 x8= ξ3
x9= 1− ξ3 − η3 x9= ξ3 x9= η3
x10= ξ4 x10= η4 x10= 1− ξ4 − η4
x11= η4 x11= 1− ξ4 − η4 x11= ξ4
x12= 1− ξ4 − η4 x12= ξ4 x12= η4
α1 = 0.059715871789769820459117580973106

β1 = 0.470142064105115089770441209513447

α2 = 0.797426985353087322398025276169754

β2 = 0.101286507323456338800987361915123

ξ1 = 0.0623822650944021181736830009963499

η1 = 0.0675178670739160854425571310508685

ξ2 = 0.0552254566569266117374791902756449

η2 = 0.321502493851981822666307849199202

ξ3 = 0.0343243029450971464696306424839376

η3 = 0.660949196186735657611980310197799

ξ4 = 0.515842334353591779257463386826430

η4 = 0.277716166976391782569581871393723
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Table B.7

Quadrature weights in triangular domain

Order Integration weights ωi

1 ω1= 1.0

2 ω1= -27/48

ω2= 25/48

ω3= 25/48

ω4= 25/48

3 ω1= 0.2250000000000000000000000000000000

ω2= 0.1323941527885061807376493878331518

ω3= 0.1323941527885061807376493878331518

ω4= 0.1323941527885061807376493878331518

ω5= 0.1259391805448271525956839455001812

ω6= 0.1259391805448271525956839455001812

ω7= 0.1259391805448271525956839455001812

4 ω1= 0.0265170281574362514287541804607391∗2.0

ω2= 0.0265170281574362514287541804607391∗2.0

ω3= 0.0265170281574362514287541804607391∗2.0

ω4= 0.0438814087144460550367699031392875∗2.0

ω5= 0.0438814087144460550367699031392875∗2.0

ω6= 0.0438814087144460550367699031392875∗2.0

ω7= 0.0287750427849815857384454969002185∗2.0

ω8= 0.0287750427849815857384454969002185∗2.0

ω9= 0.0287750427849815857384454969002185∗2.0

ω10= 0.0674931870098027744626970861664214∗2.0

ω11= 0.0674931870098027744626970861664214∗2.0

ω12= 0.0674931870098027744626970861664214∗2.0
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The integration strategies for different type of hybrid elements are not the same. For the

case of reference hexahedral domain, the numerical integration can be computed as the

tensor product of the three 1D integrations. For example, the integral is computed from

three independent Gauss-Legendre quadrature integrations. For the case of reference prism

domain, the numerical integration can be computed with triangle integration on collapsed

direction in triangular face and Gauss-Legendre integration on the third direction. For the

case of reference pyramid domain, the numerical integration can be computed with Gauss-

Radau integration on collapsed direction and two independent Gauss-Legendre integrations

on other two directions in quadrilateral face. For the case of reference tetrahedral domain,

the numerical integration can be performed on quadrature points, as shown on Figure B.2.

For the current implementation, at most fourth order of accuracy is used, then the data of

sampling points and weights are given in Table B.8 and Table B.9.
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Table B.8

Quadrature points in tetrahedral domain

Order First vertex T1 Second vertex T2 Third vertex T3 Fourth vertex T4

1 x1= 1/4 x1= 1/4 x1= 1/4 x1= 1/4

2 x1= 1/4 x1= 1/4 x1= 1/4 x1= 1/4

x2= 1/2 x2= 1/6 x2= 1/6 x2= 1/6

x3= 1/6 x3= 1/2 x3= 1/6 x3= 1/6

x4= 1/6 x4= 1/6 x4= 1/2 x4= 1/6

x5= 1/6 x5= 1/6 x5= 1/6 x5= 1/2

3 x1= α31 x1= α31 x1= α31 x1= β31
x2= β31 x2= α31 x2= α31 x2= α31

x3= α31 x3= β31 x3= α31 x3= α31

x4= α31 x4= α31 x4= β31 x4= α31

x5= α32 x5= α32 x5= α32 x5= β32
x6= β32 x6= α32 x6= α32 x6= α32

x7= α32 x7= β32 x7= α32 x7= α32

x8= α32 x8= α32 x8= β32 x8= α32

x9= α33 x9= α33 x9= α33 x9= β33
x10= β33 x10= α33 x10= α33 x10= α33

x11= α33 x11= β33 x11= α33 x11= α33

x12= α33 x12= α33 x12= β33 x12= α33

x13= α34 x13= α34 x13= β34 x13= γ34
x14= α34 x14= α34 x14= γ34 x14= β34
x15= α34 x15= β34 x15= α34 x15= γ34
x16= α34 x16= β34 x16= γ34 x16= α34

x17= α34 x17= γ34 x17= α34 x17= β34
x18= α34 x18= γ34 x18= β34 x18= α34

x19= β34 x19= α34 x19= α34 x19= γ34
x20= β34 x20= α34 x20= γ34 x20= α34

x21= β34 x21= γ34 x21= α34 x21= α34

x22= γ34 x22= α34 x22= α34 x22= β34
x23= γ34 x23= α34 x23= β34 x23= α34

x24= γ34 x24= β34 x24= α34 x24= α34
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Table B.8

(continued)

Order First vertex T1 Second vertex T2 Third vertex T3 Fourth vertex T4

4 x1= α41 x1= α41 x1= α41 x1= α41

x2= α42 x2= α42 x2= α42 x2= β42
x3= β42 x3= α42 x3= α42 x3= α42

x4= α42 x4= β42 x4= α42 x4= α42

x5= α42 x5= α42 x5= β42 x5= α42

x6= α43 x6= α43 x6= α43 x6= β43
x7= β43 x7= α43 x7= α43 x7= α43

x8= α43 x8= β43 x8= α43 x8= α43

x9= α43 x9= α43 x9= β43 x9= α43

x10= α44 x10= α44 x10= α44 x10= β44
x11= β44 x11= α44 x11= α44 x11= α44

x12= α44 x12= β44 x12= α44 x12= α44

x13= α44 x13= α44 x13= β44 x13= α44

x14= α45 x14= α45 x14= β45 x14= β45
x15= α45 x15= β45 x15= α45 x15= β45
x16= α45 x16= β45 x16= β45 x16= α45

x17= β45 x17= α45 x17= α45 x17= β45
x18= β45 x18= α45 x18= β45 x18= α45

x19= β45 x19= β45 x19= α45 x19= α45

x20= α46 x20= α46 x20= β46 x20= γ46
x21= α46 x21= α46 x21= γ46 x21= β46
x22= α46 x22= β46 x22= α46 x22= γ46
x23= α46 x23= β46 x23= γ46 x23= α46

x24= α46 x24= γ46 x24= α46 x24= β46
x25= α46 x25= γ46 x25= β46 x25= α46

x26= β46 x26= α46 x26= α46 x26= γ46
x27= β46 x27= α46 x27= γ46 x27= α46

x28= β46 x28= γ46 x28= α46 x28= α46

x29= γ46 x29= α46 x29= α46 x29= β46
x30= γ46 x30= α46 x30= β46 x30= α46

x31= γ46 x31= β46 x31= α46 x31= α46

x32= α47 x32= α47 x32= β47 x32= γ47
x33= α47 x33= α47 x33= γ47 x33= β47
x34= α47 x34= β47 x34= α47 x34= γ47
x35= α47 x35= β47 x35= γ47 x35= α47
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Table B.8

(continued)

Order First vertex T1 Second vertex T2 Third vertex T3 Fourth vertex T4

x36= α47 x36= γ47 x36= α47 x36= β47
x37= α47 x37= γ47 x37= β47 x37= α47

x38= β47 x38= α47 x38= α47 x38= γ47
x39= β47 x39= α47 x39= γ47 x39= α47

x40= β47 x40= γ47 x40= α47 x40= α47

x41= γ47 x41= α47 x41= α47 x41= β47
x42= γ47 x42= α47 x42= β47 x42= α47

x43= γ47 x43= β47 x43= α47 x43= α47

α31 = 0.214602871259152029288839219386284

β31 = 1.0 - 3.0α31

α32 = 0.0406739585346113531155794489564100

β32 = 1.0 - 3.0α32

α33 = 0.322337890142275510343994470762492

β33 = 1.0 - 3.0α33

α34 = 0.0636610018750175252992355276057269

β34 = 0.269672331458315808034097805727606

γ34 = 1.0 - 2.0α34 - β34
α41 = 1/4

α42 = 0.206829931610673204083980900024961

β42 = 1.0 - 3.0α42

α43 = 0.0821035883105467230906058078714215

β43 = 1.0 - 3.0α43

α44 = 0.00578195050519799725317663886414270

β44 = 1.0 - 3.0α44

α45 = 0.0505327400188942244256245285579071

β45 = 0.449467259981105775574375471442092

α46 = 0.229066536116811139600408854554753

β46 = 0.0356395827885340437169173969506114

γ46 = 1.0 - 2.0α46 - β46
α47 = 0.0366077495531974236787738546327104

β47 = 0.190486041934633455699433285315099

γ47 = 1.0 - 2.0α47 - β47
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Table B.9

Quadrature weights in tetrahedral domain

Order Integration weights ωi

1 ω1= 4/3

2 ω1= -4/5∗(4/3)

ω2= 9/20∗(4/3)

ω3= 9/20∗(4/3)

ω4= 9/20∗(4/3)

ω5= 9/20∗(4/3)

3 ω1= 0.00665379170969458201661510459291332∗8.0

ω2= 0.00665379170969458201661510459291332∗8.0

ω3= 0.00665379170969458201661510459291332∗8.0

ω4= 0.00665379170969458201661510459291332∗8.0

ω5= 0.00167953517588677382466887290765614∗8.0

ω6= 0.00167953517588677382466887290765614∗8.0

ω7= 0.00167953517588677382466887290765614∗8.0

ω8= 0.00167953517588677382466887290765614∗8.0

ω9= 0.00922619692394245368252554630895433∗8.0

ω10= 0.00922619692394245368252554630895433∗8.0

ω11= 0.00922619692394245368252554630895433∗8.0

ω12= 0.00922619692394245368252554630895433∗8.0

ω13= 0.00803571428571428571428571428571428∗8.0

ω14= 0.00803571428571428571428571428571428∗8.0

ω15= 0.00803571428571428571428571428571428∗8.0

ω16= 0.00803571428571428571428571428571428∗8.0

ω17= 0.00803571428571428571428571428571428∗8.0

ω18= 0.00803571428571428571428571428571428∗8.0

ω19= 0.00803571428571428571428571428571428∗8.0

ω20= 0.00803571428571428571428571428571428∗8.0

ω21= 0.00803571428571428571428571428571428∗8.0

ω22= 0.00803571428571428571428571428571428∗8.0

ω23= 0.00803571428571428571428571428571428∗8.0

ω24= 0.00803571428571428571428571428571428∗8.0
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Table B.9

(continued)

Order Integration weights ωi

4 ω1= -0.0205001886586399158405865177642941∗8.0

ω2= 0.0142503058228669012484397415358704∗8.0

ω3= 0.0142503058228669012484397415358704∗8.0

ω4= 0.0142503058228669012484397415358704∗8.0

ω5= 0.0142503058228669012484397415358704∗8.0

ω6= 0.00196703331313390098756280342445466∗8.0

ω7= 0.00196703331313390098756280342445466∗8.0

ω8= 0.00196703331313390098756280342445466∗8.0

ω9= 0.00196703331313390098756280342445466∗8.0

ω10= 0.000169834109092887379837744566704016∗8.0

ω11= 0.000169834109092887379837744566704016∗8.0

ω12= 0.000169834109092887379837744566704016∗8.0

ω13= 0.000169834109092887379837744566704016∗8.0

ω14= 0.00457968382446728180074351446297276∗8.0

ω15= 0.00457968382446728180074351446297276∗8.0

ω16= 0.00457968382446728180074351446297276∗8.0

ω17= 0.00457968382446728180074351446297276∗8.0

ω18= 0.00457968382446728180074351446297276∗8.0

ω19= 0.00457968382446728180074351446297276∗8.0

ω20= 0.00570448580868191850680255862783040∗8.0

ω21= 0.00570448580868191850680255862783040∗8.0

ω22= 0.00570448580868191850680255862783040∗8.0

ω23= 0.00570448580868191850680255862783040∗8.0

ω24= 0.00570448580868191850680255862783040∗8.0

ω25= 0.00570448580868191850680255862783040∗8.0

ω26= 0.00570448580868191850680255862783040∗8.0

ω27= 0.00570448580868191850680255862783040∗8.0

ω28= 0.00570448580868191850680255862783040∗8.0

ω29= 0.00570448580868191850680255862783040∗8.0

ω30= 0.00570448580868191850680255862783040∗8.0

ω31= 0.00570448580868191850680255862783040∗8.0

ω32= 0.00214051914116209259648335300092023∗8.0

ω33= 0.00214051914116209259648335300092023∗8.0

ω34= 0.00214051914116209259648335300092023∗8.0

ω35= 0.00214051914116209259648335300092023∗8.0

ω36= 0.00214051914116209259648335300092023∗8.0
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Table B.9 

(continued)

Figure B.2 

Second order quadrature points in tetrahedral domain 



APPENDIX C

JACOBIAN MATRIX
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The computation of the Jacobian matrix for the Euler equations in Equation (4.5) is

discussed now. The computation of the Jacobian matrix for the RANS equations in Equa-

tion (4.65) can be taken in a similar manner depending on the diffusive flux approximation

method chosen (BR2 or LDG method). The difference between these two matrices is in

computing the derivatives of diffusive flux and source term, which can be obtained analyt-

ically using mathematic software (Maple) or numerically from finite difference approxi-

mation. Since the derivation is very long and complicated, it is not shown here. Whenever

needed, they can be derived in a similar procedure as shown next for the Euler equations.

The residual vector from the Euler governing equations in Equation (4.5) is:

R(U) = (A)− (B) (C.1)

based on this general form, the full Jacobian matrix ∂R(U)/∂U is computed for implicit

time integration. Taking the derivative of the above equations, we can explicitly write out

the Jacobian matrix as:

∂R(U)

∂U
=
∂(A)

∂U
− ∂(B)

∂U
(C.2)

C.1 Compute ∂(A)/∂U

From Equation (4.6) we know the cell convective flux contribution is:

(A) =
∫
Ωh

F(Uh) · ∇ψhdΩ (C.3)

hence the derivative is:

∂(A)

∂Uh

=
∫
Ωh

∂F(Uh)

∂Uh

· ∇ψhdΩ (C.4)
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where the convective flux is given explicitly as a function of conservative variables, so we

can directly calculate this convective flux Jacobian matrix and integrate over domain to get

the ∂(A)/∂U term.

C.2 Compute ∂(B)/∂U

From Equation (4.7) we find the face convective flux contribution is:

(B) =
∫
Σh

F̂(U−
h , U

+
h ;n

−)(ψ−
h − ψ+

h )dσ (C.5)

hence the derivatives are computed on faces with respect to solution vector from left and

right side of this face are:

∂(B)

∂Uh

=
∂

∂Uh

[ ∫
Σh

F̂(U−
h , U

+
h ;n

−)(ψ−
h − ψ+

h )dσ
]

=
∂

∂U−
h

[ ∫
Σh

F̂(U−
h , U

+
h ;n

−)ψ−
h dσ

]
− ∂

∂U+
h

[ ∫
Σh

F̂(U−
h , U

+
h ;n

−)ψ+
h dσ

]
+

∂

∂U+
h

[ ∫
Σh

F̂(U−
h , U

+
h ;n

−)ψ−
h dσ

]
− ∂

∂U−
h

[ ∫
Σh

F̂(U−
h , U

+
h ;n

−)ψ+
h dσ

]

=
∫
Σh

∂F̂(U−
h , U

+
h ;n

−)
∂U−

h

ψ−
h dσ −

∫
Σh

∂F̂(U−
h , U

+
h ;n

−)
∂U+

h

ψ+
h dσ

+
∫
Σh

∂F̂(U−
h , U

+
h ;n

−)
∂U+

h

ψ−
h dσ −

∫
Σh

∂F̂(U−
h , U

+
h ;n

−)
∂U−

h

ψ+
h dσ (C.6)

The first and second terms in above equations are the contributions to the diagonal parts

of the convective flux Jacobian matrix, whereas the third and fourth terms are off-diagonal

parts of the matrix. Since the face convective flux is given explicitly as a function of con-

servative variables by means of the convective flux approximation method (for example the

Roe scheme), we can directly compute the derivative of this convective flux approximation

with respect to the solution vector (U−
h or U+

h ) and integrate over the domain to get the

∂(B)/∂U term.
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