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Bayesian networks are a widely used graphical model which formalize reasoning un-

der uncertainty. Unfortunately, construction of a Bayesian network by an expert is time-

consuming, and, in some cases, all experts may not agree on the best structure for a problem 

domain. Additionally, for some complex systems such as those present in molecular biol-

ogy, experts with an understanding of the entire domain and how individual components 

interact may not exist. In these cases, we must learn the network structure from available 

data. This dissertation focuses on score-based structure learning. In this context, a scoring 

function is used to measure the goodness of f t of a structure to data. The goal is to f nd the 

structure which optimizes the scoring function. 

The f rst contribution of this dissertation is a shortest-path f nding perspective for the 

problem of learning optimal Bayesian network structures. This perspective builds on ear-

lier dynamic programming strategies, but, as we show, offers much more f exibility. 



Second, we develop a set of data structures to improve the eff ciency of many of the 

integral calculations for structure learning. Most of these data structures benef t our algo-

rithms, dynamic programming and other formulations of the structure learning problem. 

Next, we introduce a suite of algorithms that leverage the new data structures and 

shortest-path f nding perspective for structure learning. These algorithms take advantage 

of a number of new heuristic functions to ignore provably sub-optimal parts of the search 

space. They also exploit regularities in the search that previous approaches could not. All 

of the algorithms we present have their own advantages. Some minimize work in a prov-

able sense; others use external memory such as hard disk to scale to datasets with more 

variables. Several of the algorithms quickly f nd solutions and improve them as long as 

they are given more resources. 

Our algorithms improve the state of the art in structure learning by running faster, using 

less memory and incorporating other desirable characteristics, such as anytime behavior. 

We also pose unanswered questions to drive research into the future. 

Key words: Bayesian networks, heuristic search 
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CHAPTER 1 

INTRODUCTION 

The proliferation of freely available repositories on the Internet has tremendously in-

creased the amount of available datasets. For example, the Gene Expression Omnibus 

houses a wealth of data from biological experiments. Large-scale social networking infor-

mation is available via the Facebook API. However, this information in not usable knowl-

edge. Bayesian networks are a common machine learning technique used to represent 

general relationships from such datasets. When these relationships are not known a priori, 

the structure of the network must be learned. The goal of this dissertation is to improve 

the state of the art in learning Bayesian network structures by casting the problem as a 

heuristic graph search problem. We propose a variety of novel, eff cient data structures and 

algorithms to solve the learning problem. 

The remainder of this chapter formally introduces Bayesian networks as well as nota-

tion and terminology used throughout the rest of this dissertation. Chapter 2 introduces 

several types of problems and algorithms for Bayesian networks, including those for in-

ference, parameter learning and structure learning. We then present our heuristic graph 

search perspective for Bayesian network structure learning in which the start node maps 

to an empty Bayesian network, the goal node represents the optimal Bayesian network 

and intermediate search nodes correspond to optimal networks over subsets of variables. 

1 



The next 5 chapters describe novel heuristic graph search algorithms for learning optimal 

Bayesian network structures. In Chapter 4, we give an admissible heuristic function that 

optimistically estimates the distance from any intermediate node to the goal node. We then 

use that function to guide an A* search algorithm and ignore unpromising subnetworks. 

Next, we take advantage of regularity present within the learning problem to reduce the 

memory requirements compared to existing dynamic programming algorithms by expand-

ing nodes in a breadth-f rst order. Furthermore, we use external memory to minimize the 

RAM requirements of the algorithm. We propose an anytime search algorithm in Chapter 

6 that uses a different heuristic function. That algorithm in particular takes advantage of ef-

f cient, sparse data structures to very quickly f nd good networks before ultimately f nding 

and proving the optimality of the best-scoring network. Chapter 7 focuses on improving 

the admissible heuristic by using pattern databases to calculate a tighter bound. The im-

proved bound allows us to safely ignore more of the search space, which decreases both 

running time and memory requirements. The penultimate chapter is dedicated to parallel 

algorithms and discusses an anytime parallel algorithm with provable quality bounds. In 

comparison to other parallel structure learning algorithms, ours uses orders of magnitude 

less running time and memory. Finally, conclusions and future work close the dissertation. 

1.1 Representation 

A Bayesian network consists of a structural component specifying the relationships 

among concepts in a domain and a quantitative specif cation of those relationships [72]. 

The structural component of the network is a directed acyclic graph (DAG). Each of the 

2 



vertices corresponds to a random variable. A directed edge from a vertex Xi to another 

vertex Xj indicates a relationship between the two variables. Xi is called a parent of Xj . 

All of the parents of Xj are called PAj. The quantitative specif cation is a conditional 

probability distribution of each variable given its parents, P (Xj|PAj). Thus, the DAG 

P 
represents a joint probability distribution factorized as P (X1 . . .Xn) = i

n

=1 P (Xi|PAi). 

Figure 1.1 

A Bayesian network. 

Figure 1.1 displays an example Bayesian describing the domain of how weather can 

affect the grass. A topological sort of the vertices in the graph roughly corresponds to a 

causal interpretation of the domain. For example, clouds cause rain, which in turn causes 

the grass to be wet. 
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1.2 Notation and Terminology 

The rest of this dissertation will use the following conventions. All variables are dis-

crete. Uppercase letters (X) are random variables. Lowercase letters (x) are particular 

values, or instantiations, of those variables. Bold, uppercase letters (V) are sets of random 

variables. Bold, lowercase letters (v) are instantiations of those sets. Two instantiations 

are consistent if, for every variable the two have in common, those variables have the same 

values in both instantiations. 

P (X) and P (X) are the probability distributions of a random variable and a set of 

random variables, respectively. P (X|Y ) is the conditional probability distribution of X 

given Y ; either or both of X and Y could be sets of variables. 

We denote the number of variables in a Bayesian network with n. Frequently, V will 

be used to refer to all of the variables in a Bayesian network. It is sometimes used in other 

contexts, though. The meaning should be clear from the context. Variable Xi ∈ V has ri

states. 

A dataset D is a set of records D1 . . . DN , where each record is an instantiation of 

the variables in V. If all of the records instantiate all of the variables, then the dataset 

is complete; otherwise, it is incomplete. We use N to show the number of records in the 

dataset. 

When discussing heuristic search, node refers to a node in the search graph. Bold, 

uppercase letters (U) are also used to refer to nodes. When nodes in the search graph cor-

respond to sets of variables, then the bold, uppercase letter is used to refer both to the node 

and the respective set of variables. The meaning should be clear from the context. When 

4 



referring specif cally to one of the vertices in the graphical Bayesian network structure, we 

say vertex. 
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CHAPTER 2 

BAYESIAN NETWORK ALGORITHMS 

Research in Bayesian networks can broadly be classif ed into several groups. Here, 

we consider inference, parameter learning and structure learning algorithms. Of course, 

other classif cations are possible. This chapter describes each of these three problems and 

algorithms for solving them. 

2.1 Inference 

Given a Bayesian network structure and parameters, inference is the problem of cal-

culating the probability distribution of a subset of variables given values for some other 

(possibly overlapping) subset of variables [17]. For example, with the network from Fig-

ure 1.1, we may perform inference to answer the query ”What is the probability that it is 

cloudy given that the sprinkler is on?” This section will describe six types of inference 

queries: prior marginals, posterior marginals, probability of evidence, most probable ex-

planation (MPE), maximum a posteriori hypothesis (MAP) and most relevant explanation 

(MRE). Computing both prior and posterior marginals are examples of belief updating. 

First, though, factors are described because they are a primitive structure in many of the 

inference algorithms. 
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2.1.1 Factors 

A factor maps from an instantiation of a set of variables to a non-negative number [17]. 

Sometimes factors represent (conditional) probability distributions, but not always. The 

conditional probability tables of a Bayesian network always def ne a set of factors. Four 

main operations on factors are multiplying two factors; summing, or marginalizing, out a 

variable; maximizing out a variable; and reducing a factor given evidence. 

Factor multiplication constructs a factor over the union of the variables in two other 

factors [17]. For example, suppose f1 is a factor over X1, X2 and X3, and f2 is a factor 

over X3 and X4. Then the result of the multiplication (f1f2) is a factor over the variables 

X1, X2, X3 and X4. The values for the new factor are (f1f2)(z) = f1(x)f2(y) where x and 

y are consistent with z. That is, the value in the new factor for a particular instantiation of 

X1, X2, X3 and X4 is equal to the value of f1 for the instantiation of X1, X2 and X3 times 

the value of f2 for the instantiation of X3 and X4. 

Marginalizing a variable from a factor removes one of the variables from that fac-

tor [17]. For example, suppose f1 is a factor over X1, X2 and X3. Marginalizing out X3 

P 
results in a new factor over X1 and X2. The values of the new factor are ( X f) (y) =

P 
x f(x, y). That is, the value in the new factor for a particular instantiation of X1 and X2 

is equal to the sum of the values of f1 consistent with the instantiation, regardless of the 

value of X3. 

Maximizing a variable from a factor is very similar to marginalizing it out of the fac-

tor [17]; the operation still removes one variable from the factor. If we again suppose f1 is 

a factor over X1, X2 and X3, then maximizing out X3 results in a new factor over X1 and 
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X2. The values of the new factor are (maxX f) (y) = maxx f(x, y). That is, the value in 

the new factor for a particular instantiation of X1 and X2 is equal to the maximum of the 

values of f1 consistent with the instantiation, regardless of the value of X3. So the only 

difference between marginalizing and maximizing lies in taking either a sum or a max over 

the original factor. 

Reducing a factor with evidence does not affect the variable domain of that factor [17]. 

So if f1 is a factor over X1, X2 and X3 and evidence e is an instantiation of X3, then 

reducing f1 given e results in the following. 

  
  
 
 f(x), ifx ∼ e  

f e(x) =
    0, otherwise  

(2.1) 








That is, the reduced factor returns the original value for instantiations consistent with 

the evidence and 0 otherwise. 

2.1.2 Prior Marginal Probability 

The prior marginal probability for a set of variables ref ects their probability distribu-

tion when no other information is given [17]. For example, for the network in Figure 1.1, 

we may ask ”What is the probability that the grass is wet?” Because the values of the 

Markov blanket variables (”Sprinkler” and ”Rain”) are unknown, we cannot directly ex-

tract this probability from the network representation. 

To compute the prior marginal probabilities over a set of query variables Q, we can 

marginalize all variables in V \ Q using an algorithm called variable elimination. Given 

an elimination ordering π over the variables to marginalize and the factors corresponding 
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to the CPTs of the network, the algorithm iterates over each variable π(i) in the ordering. 

All factors fk which contain π(i) are multiplied to f nd factor f . π(i) is summed out of f , 

P 
and all fks are replaced with ˇ(i) f . After eliminating all variables in the ordering, the 

remaining factors are multiplied together to calculate Pr(Q). The elimination order can 

dramatically affect the running time. 

2.1.3 Posterior Marginal Probability and Probability of Evidence 

Posterior marginal probabilities are similar to prior marginals, except that some evi-

dence is given [17]. For Figure 1.1, we may ask ”What is the probability that the grass 

is wet given that it is cloudy?” Again, we cannot directly extract this probability from the 

network structure. 

To compute posterior marginal probabilities over a set of query variables Q given evi-

dence e, we f rst calculate the joint marginal probabilities, Pr(Q, e). Joint marginals can 

be calculated using the variable elimination algorithm; however, rather than directly using 

the CPTs of the network as input, we instead reduce each of the CPT factors given e. The 

resulting factor gives Pr(Q, e). By adding the numbers in the factor, we obtain Pr(e). 

Consequently, normalizing the factor amounts to Pr(Q,e) .
Pr(e) This is the desired posterior 

marginal probability, P r(Q|e). 

2.1.4 Most Probable Explanation (MPE) 

The MPE instantiation for some evidence e is the instantiation q of all variables not in 

e that maximizes the joint probability P (e, q) [17]. For Figure 1.1, we may ask “Which 

rain and sprinkler setting maximizes the probability that the grass is wet and it is cloudy?” 
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The Viterbi and Forward algorithms for Hidden Markov Models are applications of this 

type of inference. 

To compute the MPE instantiation q, we use another slight adaptation of the variable 

elimination algorithm. We again reduce the CPT factors given e. Furthermore, rather than 

marginalizing out variables, we instead maximize them out. The resulting factor contains 

the probability of the MPE instantiation. We can easily extend factors to also track partial 

instantiations. Thus, the factor can also contain the actual MPE instantiation. 

MPE can also be solved with heuristic search. Each search node corresponds to a par-

tial instantiation. Successors of a node add one additional variable to the instantiation. The 

shortest path from the start node with no variables instantiated to a goal node with all vari-

ables instantiated corresponds to the MPE instantiation. Upper bounds can be calculated 

by introducing additional variables to the network. 

Local search techniques have also been applied to identify MPE instantiations. In one 

common scheme, each state corresponds to a complete variable instantiation. Neighbors 

of a state change the instantiation of one variable. Hill climbing, for example, can be used 

to f nd a locally optimal instantiation given a start state. 

2.1.5 Maximum A Posteriori Hypothesis (MAP) 

The MAP instantiation for some evidence e is the instantiation m of some variables not 

in e that maximizes the joint probability P (e, m) [17]. For Figure 1.1, we may ask ”Which 

sprinkler setting maximizes the probability that the grass is wet and it is cloudy?” MAP is 
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a generalization of MPE because the query is not restricted to all unobserved variables. In 

general, the MAP instantiation is not just a subset of the MPE instantiation. 

Variable elimination can again be adapted to f nd the MAP instantiation. All CPT 

factors are reduced given e. Additionally, the elimination takes place in two phases. First, 

all non-MAP variables are marginalized out. Then, all MAP variables are maximized out. 

The resulting factor contains the MAP probability and corresponding instantiation for the 

MAP variables. The heuristic and local techniques described for MPE can also be adapted 

for MAP. 

2.1.6 Most Relevant Explanation (MRE) 

MPE always f nds the most probable instantiations for all variables; MAP always f nd 

the most likely instantiation for a given set of variables. Other algorithms identify the in-

stantiation of a single variable which best explains evidence. Often, though, we would like 

to pick the best explanation for evidence from among several different possible explana-

tions which contain different variables. For example, in the f ctitious Asia network [57], 

dyspnea could be caused either by visiting Asia and contracting tuberculosis or by having 

bronchitis. After identifying the best explanation, we do not care about the other vari-

ables. MPE always f nd the instantiations for all unobserved variables, while MAP can 

not selectively return the instantiation of one set of variables or the other. Single vari-

able explanations, such as simply visiting Asia, cannot always fully explain evidence. 

MRE [101, 100, 99] is a framework which automatically identif es the best explanation 

according to a given relevance measure, such as genealized Bayes factor [32]. Like MAP, 
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MRE accepts as input evidence and a list of target variables. However, unlike MAP, MRE 

does not necessarily instantiate all of the target variables; rather, it f nds an instantiation 

of the variables which maximizes the relevance measure. Therefore, in contrast to MPE 

and MAP, MRE does not instantiate target variables which are irrelevant to the best expla-

nation. In contrast to single variable explanations, though, MRE can instantiate multiple 

variables if they best explain the evidence. 

2.2 Parameter Learning 

Given a network structure and a dataset, parameter learning is the problem of learning 

the conditional probability tables for each of the variables. In general, the probabilities are 

based on suff cient statistics (counts of particular instantiations) of the data. For example, 

for the network structure in Figure 1.1, if we were given a dataset instead of the probability 

tables, we may ask ”What is the probability it will rain given that it is cloudy?” This 

section describes two methods for learning parameters: maximum likelihood estimate for 

complete datasets and Expectation Maximization for incomplete datasets. 

2.2.1 Maximum Likelihood Estimate (MLE) 

Suppose we are given a complete dataset D with N records. Assuming records are 

generated independently and according to their true distribution, then the empirical distri-

bution PrD(·) for instantiation x is the frequency of that instantiation within the dataset, 

D#(x)PrD(x) = N
, where D#(x) is the number of records in D consistent with x. D# is 

also called a suff cient statistic. Suppose we have variable X = x and its parents U = u. 

Then the MLE parameters [17] are estimated from the empirical distribution. 
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D#(x, u)
θml = PrD(x|u) = (2.2) x|u D#(x, u 

The MLE parameters are the only estimates which maximize the likelihood function, 

QNL(θ|D) = i=1 Pr�(di). For example, suppose we are given the structure in Figure 1.1 

and a dataset in which D#(Cloudy = true) = 10 and D#(Cloudy = true, Rainy =

true) = 8. Then the MLE parameter Pr(Rainy = true|Cloudy = true) = 0.8. 

2.2.2 Expectation Maximization (EM) 

The MLE parameters maximize the likelihood of the data; however, their calculation 

requires a complete dataset for the suff cient statistics. EM [25] is a technique for es-

timating suff cient statistics when datasets are missing values. EM starts with an initial 

(possibly random) set of parameters. It then alternates between an expectation phase and a 

maximization phase. In the expectation phase, the current parameters are used to estimate 

the missing values by performing inference in the current Bayesian network. This has the 

effect of completing the dataset, though some of the variable instantiations have fractional 

counts. The next iteration of MLE parameters are computed with the completed dataset. 

The new parameters are guaranteed to never have a smaller likelihood than the previous 

parameters. This process continues until the parameters converge. 

2.3 Structure Learning 

Two approaches have been proposed for learning the structure of Bayesian networks 

from data. One group of algorithms focuses on establishing conditional independence be-
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⊥

tween variables using statistical tests such as the Chi-square test. A network structure is 

then constructed which maximizes the number of independencies discovered by the statis-

tical tests. 

The other group of algorithms focus on discovering a Bayesian network which opti-

mizes a scoring function. The scoring function computes a measure of the goodness of f t 

of a network to a dataset [43]. The scoring functions all embody Occam’s razor in one way 

or another. 

In this section, we f rst describe constraint-based learning algorithms. Next, several 

commonly used scoring functions are described. We then present several algorithms which 

use approximate search methods to f nd networks. Finaly, we give a number of algorithms 

which guarantee to optimize a scoring function. 

2.3.1 Constraint-based Learning Algorithms 

Constraint-based algorithms begin with the observation that Bayesian networks encode 

conditional dependence relationships among the variables. Therefore, they f rst use a set of 

statistical tests, such as Chi-square or G-test, to establish which variables are conditionally 

independent from each other. These results of those tests are used to create a directed 

network structure. Examples of these algorithms include PC [86] and IC [93]. 

The PC algorithm begins with a complete, undirected graph over all of the variables. It 

then begins the indepence tests. First, it tests all pairs of variables for marginal indepence 

(X ⊥ Y ). Edges between marginally independent variables are removed. It then tests all 

pairs which still have edges between them for conditional independence by conditioning 
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⊥on one variable (X ⊥ Y |A). Edges between conditionally independent variables are 

removed. This process continues until the conditioning set of variables reaches a user-

def ned size k. Finally, based on the result of the independence tests, some of the remaining 

edges are directed. Some edges may remain undirected because, for example, noise in the 

data could give contradictory test results. 

The PC algorithm can be tractable. For each iteration of tests, each pair is tested at most 

once, so each iteration includes at most O(n2) tests. Furthermore, the largest possible con-

ditioning set could be size n − 1, so there could be at most O(n) iterations. Consequently, 

an upper bound on the number of required independence tests is O(n3). Other constraint-

based algorithms reduce the number of independence tests compared to PC [23, 95]. Un-

fortunately, the algorithms are very sensitive to the results of the independence tests. The 

independence tests are in turn sensitive to the amount of available data. Often, though, we 

must learn in settings with limited data. Also, all of the independence tests require a user-

specif ed signif cance threshold, which may not be easy to estimate a priori. Additionally, 

constraint-based algorithms do not have a Bayesian interpretation [43]. For these reasons, 

the rest of this dissertation does not consider constraint-based algorithms. 

15 



2.3.2 Scoring Functions 

Many scoring functions are in the form of a penalized log-likelihood (LL) functions. 

The LL is the log probability of D given B. Under the standard i.i.d assumption, the 

likelihood of the data given a structure can be calculated as 
N
X 

LL(D|B) = logP (Dj|B)
j

n N
XX 

= logP (Dij|PAij), 
i j

(2.3) 

(2.4) 

where Dij is the instantiation of Xi in data point Dj , and PAij is the instantiation of Xi’s 

parents in Dj . Adding an arc to a network never decreases the likelihood of the network. 

Intuitively, the extra arc is simply ignored if it does not add any more information. The 

extra arcs pose at least two problems, though. First, they may lead to overf tting of the 

training data and result in poor performance on testing data. Second, densely connected 

networks increase the running time when using the networks for downstream analysis, such 

as inference and prediction. 

A penalized LL function aims to address the overf tting problem by adding a penalty 

term which penalizes complex networks. Therefore, even though the complex networks 

may have a very good LL score, a high penalty term may reduce the score to be below that 

of a less complex network. Here, we focus on decomposable penalized LL (DPLL) scores, 

which are always of the form 
n

X 
DP LL(B, D) = LL(D|B)− P enalty(Xi, B, D). (2.5) 

i=1 

The scores are all decomposable [43] because the score of the entire network is ex-

pressed as the sum of the scores of each variable. There are several well-known DPLL 
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scoring functions for learning Bayesian networks. We consider minimum description 

length (MDL) [80], Aikake’s information criterion (AIC) [2], Bayesian Dirichlet with score 

equivalence and uniform priors (BDeu) [13, 43] and factorized normalized maximum like-

lihood (fNML) [83]. These scoring functions only differ in the penalty terms, so we will 

focus on the penalty terms in the following discussions. 

A Bayesian network structure can represent a set of joint probability distributions. Two 

network structures are said to belong to the same equivalence class if they represent the 

same set of probability distributions [10]. A scoring function which assigns the same score 

to networks in the same equivalence class are score equivalent [43]. 

2.3.2.1 Minimum Description Length (MDL) 

The MDL [80] scoring metric for Bayesian networks was def ned in [54, 87]. MDL 

approaches scoring Bayesian networks as an information theoretic task. The basic idea is 

to minimally encode D in two parts: the network structure and the unexplained data. The 

model can be encoded by storing the conditional probability tables of all variables. This 

requires log 
2 
N ∗ p bits, where log 

2 
N is the expected space required to store one probability 

value and p is the number of individual probability values for all variables. The unexplained 

part of the data can be explained with LL(D|B) bits. Therefore, we can write the MDL 

penalty term as 

logN ∗ pi
P enaltyMDL(Xi, B, D) = , (2.6) 

2

where pi is the number of parameters for Xi. For MDL, the penalty term ref ects that more 

complex models will require longer encodings. The penalty term for MDL is larger than 
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that of most other scoring functions, so optimal MDL networks tend to be sparser than 

those by other scoring functions. As hinted at by its name, an optimal MDL network mini-

mizes rather than maximizes the scoring function. To interpret the penalty as a subtraction, 

the scores must be multiplied by −1. The Bayesian information criterion (BIC) [80] is a 

scoring function whose calculation is equivalent to MDL for Bayesian networks, but it is 

derived based on the asymptotic behavior of the models. That is, BIC is based on having a 

suff ciently large amount of data. Also, BIC does not require the −1 multiplication. 

2.3.2.2 Akaike’s Information Criterion (AIC) 

Bozdogan [5] def ned the AIC [2] scoring metric for Bayesian networks. It, like BIC, 

is another scoring function based on the asymptotic behavior of models with suff ciently 

large datasets. In terms of the equation, the penalty for AIC differs from that of MDL by 

the logN term. So the AIC penalty term is 

P enaltyAIC(Xi, B, D) = pi (2.7) 

Because its penalty term is less than that of MDL, AIC tends to favor more complex 

networks than MDL. 

2.3.2.3 Bayesian Dirichlet with Score Equivalence and Uniform Priors (BDeu) 

The Bayesian Dirichlet (BD) scoring function was f rst proposed by Cooper and Her-

skovits [13]. It computes the joint probability of a network for a given dataset. However, 

the BD metric requires a user to specify a hyper parameter for all possible variable-parents 

combinations. Furthermore, it is not score equivalent, which requires assigning the same 
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score to equivalent structures. To address the problems, a single “hyperparameter” called 

the equivalent sample size is introduced, referred to as α [43]. All of the needed parame-

ters can be calculated from α and a prior distribution over network structures. This score, 

called BDe, is score equivalent. Furthermore, if one assumes all network structures are 

equally likely, that is, the prior distribution over network structures is uniform, then α is 

the only input necessary for this scoring function. BDe with this additional uniformity as-

sumption is called BDeu [43]. Somewhat independently, the BDeu scoring function was 

also proposed earlier by Buntine [6]. BDeu is also a decomposable penalized LL scoring 

function whose penalty term is 

qi ri 
XX P (Dijk|Dij)

P enaltyBDeu(Xi, B, D) = log , (2.8) 
j k

P (Dijk|Dij , αij)

where qi is the number of possible values of PAi, ri is the number of possible values 

for Xi, Dijk is the number of times Xi = k and PAi = j in D, and αij is a parameter 

calculated based on the user-specif ed α. The original derivations [6, 43] include a more 

detailed description. The density of the optimal network structure learned with BDeu is 

correlated with α; low α values typically result in sparser networks than higher α values. 

Recent studies [81] have shown the BDeu behavior is very sensitive to α. If the density of 

the network to be learned is unknown, selecting an appropriate α is diff cult. 

2.3.2.4 Factorized Normalized Maximum Likelihood (fNML) 

Silander et al. [83] developed the fNML score function to address the problem of α 

selection with BDeu. fNML is based on the normalized maximum likelihood function 
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(NML) [78]. NML is a penalized LL scoring function in which regret is the penalty term. 

Regret is calculated as 
X 

P (D ′ |B), (2.9) 
D′ 

where the sum ranges over all possible datasets of size N . Kontkanen and Myllymäki [48] 

showed how to eff ciently calculate regret for a single variable. By calculating regret for 

each variable in the dataset, the NML becomes decomposable, or factorized. fNML is 

Nij 

given by 
qi 
X 

P enaltyfNML(Xi, B, D) = ri logCNij 
, 

k

(2.10) 

where Cri are the regrets. fNML is not score equivalent. 

2.3.3 Approximate Structure Learning Algorithms 

Learning a Bayesian network with a restricted number of parents for each variable 

which optimizes a particular scoring function is NP-complete [11]. Consequently, many 

early learning algorithms focused on approximate learning techniques which f nd local 

optima of the scoring function. Many approximate optimization techniques have been ap-

plied to learning Bayesian network structures. In general, these algorithms are based on a 

”search-and-score” approach. A search algorithm, such as greedy hill climbing, identif es 

candidate structures. The structures are scored, and the best scoring structures are used to 

identify new candidates. The algorithm continues until converging to a locally optimal net-

work structure. Hill climbing and genetic algorithms are two algorithms commonly applied 

to identify candidate structures. Optimal Reinsertion (OR) [64] is a more sophisticated hill 

climbing algorithms that performs well in practice [89, 91] 
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2.3.3.1 Hill Climbing 

Hill climbing algorithms require three components: a scoring function, a start state and 

successor generation operators. Any of the Bayesian network score functions, such as BD 

or MDL, can serve as the scoring function for hill climbing. Each state in the search space 

corresponds to a single Bayesian network structure. The start state often corresponds to an 

empty network (with no edges); however, a priori knowledge can also be used to create a 

different starting network structure. Different algorithms use different successor generation 

operators. Three commonly used operators [53] are edge insertion, deletion and reversal. 

In basic greedy hill climbing, the highest scoring successor is retained and used to generate 

the next set of candidates. This methodology can easily be extended by keeping multiple 

highest scoring successors (turning it into a beam search) or avoiding previously generated 

candidates (tabu search). 

2.3.3.2 Genetic Algorithms 

Genetic algorithms have also been extensively used to identify candidate structures [56]. 

These algorithms typically require four main components: a f tness function, a chromo-

some representation, a crossover strategy and a strategy to generate the next generation. 

Furthermore, other parameters such as mutation rate and elitism also affect the perfor-

mance of the algorithm. Any Bayesian network scoring function can serve as the f tness 

function. A chromosome in the genetic algorithm represents a complete Bayesian network 

structure. One possible representation is a bit string of length n2 . The f rst n bits indicate 

the parents of variable X0; the next n bits indicate the parents for X1, etc. After crossover, 
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chromosomes which do not correspond to valid Bayesian networks (because they have 

cycles, etc.) are removed from the population. The next generation of networks is then 

generated according to the generation strategy. Other evolutionary algorithms, such as ant 

colony optimization [16] and cooperative coevolution [3], have also been applied to this 

problem. 

2.3.3.3 Optimal Reinsertion 

The optimal reinsertion algorithm (OR) [64] is a hill climbing algorithm that uses a 

different operator: a variable is removed from the network, its optimal parents are selected, 

and the variable is then reinserted into the network with those parents. The parents are 

selected to ensure the new network is still a valid Bayesian network. While OR does select 

optimal parents locally, it does not guarantee to f nd the globally optimal structure. Often, 

a greedy hill climbing is run on the structure after OR reaches a local maximum to attempt 

to further improve its score. 

2.3.4 Optimal Structure Learning Algorithms 

The approximate search algorithms often run quickly; however, the learned network 

is of unknown quality. Thus, further interpretation of the learned structure must also ac-

count for this variance. This limitation led researchers to develop algorithms which learn 

networks which provably optimize a scoring function for a dataset. 
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2.3.4.1 Restricted Structure 

The oldest optimal learning algorithm we consider [12] has existed for several decades; 

however, this algorithm only learns tree-structured networks in which variables have only 

a single parent. This algorithm reduces the structure learning problem to f nding the mini-

mum spanning tree in a graph. A vertex in a fully connected graph represents each variable. 

The weight of each edge is equal to the mutual information between the two variables. The 

minimum spanning tree corresponds to an optimal tree network among the variables. 

2.3.4.2 Mathematical Programming 

Optimal networks have also been learned using mathematical programming (MP) [44, 

15]. This technique reformulates the structure learning problem as a linear or integer pro-

gram. An exponential number of constraints are used to def ne a convex hull in which each 

vertex corresponds to a DAG. The constraints are added incrementally as cutting planes. 

The algorithm alternates between two phases. In the f rst, it runs a linear or integer pro-

gram and determines if the returned (optimal) solution is a vertex on the hull. If so, the 

algorithm terminates. Otherwise, it adds a number of cutting planes to exclude the found 

solution (as well as other non-DAG structures) from the feasible space of the program. 

Intuitively, the algorithm looks for clusers of nodes in the solution which are highly cyclic 

and adds cutting planes to exclude those cycles. The algorithm then returns to the f rst 

phase. Coordinate descent is used to identify the vertex which corresponds to the optimal 

DAG structure. Furthermore, the dual of their formulation provides an upper bound which 

can help guide the descent algorithm. This algorithm was shown to have similar runtime 
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performance as dynamic programming [44]. Implementations of MP have not been made 

available from the authors; therefore, none of our empirical comparisons include MP. 

2.3.4.3 Branch and Bound Search 

de Campos and Ji [19] proposed a systematic branch and bound search algorithm (BB) 

to identify optimal network structures. The algorithm begins by calculating optimal parent 

sets for all variables. These sets are represented as a directed graph that may have cycles. 

Cycles are then repeatedly broken by removing one edge at a time. The new (possibly 

cyclic) graphs correspond to nodes in a search space and are expanded in best-f rst order. 

Graphs that have been generated but not expanded are stored using a priority queue. Ex-

panding a node consists of breaking a cycle in its graph. If a node does not have a cycle, 

its score is compared to the score of the best DAG so far. If its score is better, the network 

for that node becomes the new incumbent solution. Networks with lower bounds worse 

than the score of the current incumbent are not considered for expansion. The algorithm 

terminates when no more nodes need to be expanded. Their algorithm can also use simple 

constraints, such as “X can only have up to 3 parents” or “Y and Z must be parents of X .” 

They also add an anytime component to the algorithm by initially f nding a solution 

using an approximation technique. Because they expand nodes in a best-f rst order, the 

most recently expanded node gives a lower bound on the globally optimal solution. Fur-

thermore, in an attempt to f nd more acyclic graphs, their algorithm occasionally expands 

nodes with the worst score rather than the best. By considering the difference between 

the between the best network found so far and the lowest score of a node that has not yet 
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been expanded, they can bound the error of their solution. The algorithm also accounts 

for limited resources by switching to a depth-f rst search if the priority queue grows too 

large to f t in RAM. However, this algorithm was shown to be less effective than dynamic 

programming [21] for proving the optimality of networks. 

2.3.4.4 Dynamic Programming 

Dynamic programming algorithms f nd an optimal Bayesian network in O(n2n) time [84, 

82]. The algorithms derive from the observation that, because the network is a DAG, the 

optimal structure contains a leaf variable (that has no children) and its parents, plus an op-

timal subnetwork over the other variables. This subnetwork is also a DAG. The algorithm 

recursively f nds leaves of subnetworks to f nd the optimal complete network structure. 

Specif cally, for a scoring function Score(·|·) and variables V [84], the following equa-

tions give the recurrences. 

Score(V) = min{Score(V \ {X}) +BestScore(X, V \ {X})} (2.11) 
X∈V 

BestScore(X, V \ {X}) = min Score(X|PAX). (2.12) 
PAX ⊆V\{X} 

Score(V) gives the score for the subnetwork with variables V. X is selected as the leaf 

of the subnetwork. BestScore gives the best parents for X out of the remaining variables 

in the subnetwork V. This recurrence suggests an algorithm starting with all variables and 

recursively removing one variable at a time. Each variable must be tried as the leaf of each 

subnetwork. Hence, Score must be evaluated O(2n) times. Furthermore, each evaluation 

of Score requires O(n) calls to BestScore to try each remaining variable as a leaf. This 

gives the O(n2n) time complexity. All of the intermediate results are stored in memory, 
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so the memory complexity is also O(n2n). Silander and Myllmaki [82] adapted the al-

gorithm to instead begin with an empty subnetwork and recursively add leaves missing 

from V. This does not change the recurrences, but was empirically shown [82] to be more 

computationally eff cient. 

2.4 Other Problems 

Not all problems surrounding Bayesian networks fall squarely into one of these cate-

gories. This section discusses some of these problems in more detail. 

2.4.1 Constraints 

The preceding discussion has assumed no prior information was available about the 

dataset. Often, human experts know some of the relationships between some of the vari-

ables. This prior knowledge can be used to constrain the learned network. Constraints are 

broadly characterizable along two axes. First, they can apply to either the structure [22] or 

the parameters [20]. Second, the constraints can either be hard [29] or soft [8]. Learned 

networks must respect hard constraints, while enough data can supersede soft constraints. 

Many algorithms have been proposed for incorporating constraints. This dissertation as-

sumes no constraints on the learned network. 

2.4.2 Hidden Variables 

Bayesian networks represent a probability distribution over the variables X1 . . .Xn; 

however, it is possible that some other variables, not present in the dataset, also affect 

the probability distribution. For example, a hidden class variable could inf uence all of 

26 



the observed variables. In cases like these, if the network does not include the hidden 

variables, then it may not accurately model the probability distribution of the observed 

variables. If a hidden variable is known to exist, but simply unobserved, then it can be 

treated as a missing value. Relevant parameters can be estimated using EM [25]. In other 

cases, unknown hidden variables affect the probability distribution. Several algorithms 

exist for identifying hidden variables [34, 27, 26]. This work assumes no hidden variables 

exist which affect the probability distribution of the observed variables. 

2.4.3 Dynamic Bayesian Networks 

Because Bayesian network structures are restricted to DAGs, they are unable to cap-

ture cyclic relationships. This situation arises in, for example, learning gene regulatory 

networks [79]. In these networks, the protein products from gene g1 can affect g2 by being 

a transcription factor, for example. The protein products of g2 can then affect g1, creating 

a cycle. Dynamic Bayesian networks [39, 65] offer a solution to this problem. Dynamic 

Bayesian networks contain multiple vertices for each variable; each vertex corresponds to 

a different time slice. The gene regulatory relationships could be modeled in a dynamic 

Bayesian network with an edge from g1 to g2 in both time slices and an edge from g2 in 

the f rst time slice to g1 in the second time slice. This work does not consider these sorts 

of relationships. 

2.4.4 Classif cation 

Classif cation problems focus on learning a rule (classif er) which predicts the value of 

discrete variable (the class variables) given another set of variables (attributes). Regression 
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is a similar problem except the class variable is continuous. Typically, the only quality 

measure for a classif er is how accurately it predicts the class variable. In contrast, the dis-

cussed Bayesian network score functions, like MDL and BD, measure prediction accuracy 

across all variables (the likelihood of the data given the structure) as well as the complex-

ity of the network. Consequently, a network optimizing a scoring function may not also 

optimize the prediction accuracy of the class variable. Several restricted structures, such 

as naive Bayes [55] and tree augmented naive Bayes [35], have been shown to outper-

form unrestricted network structures in prediction tasks. This work focuses on learning the 

relationships among all of the variables rather than predicting a single class variable. 

2.4.5 Equivalence Classes 

Many, though not all, scoring functions are score equivalent [10]. Score equivalent 

functions assign the same score to networks which represent the same probability distri-

bution. The relationship among distributions with the same score is symmetric, transitive 

and ref exive; therefore, score equivalent functions partition the set of Bayesian networks 

into equivalence classes. Equivalent network structures [93] have the same skeleton (undi-

rected graphical structure) and v-structures. Both the MDL and BDe score functions are 

score equivalent [10]. 

Optimal structure learning algorithms learn one member of the equivalence class with 

the optimal score. Chickering [10] describes an algorithm which identif es the equiva-

lence class of a Bayesian network. This algorithm can extract the equivalence class of the 

structure found by the structure learning algorithm. 

28 



CHAPTER 3 

EVALUATION DESCRIPTION 

Throughout this dissertation, much of the evaluation procedure is the same. In general, 

we used data from the UCI machine learning repository [33], downloaded code from the 

authors for all comparisons, and ran on the same server. In order to prevent repeating the 

same material, we summarize all of this information here. 

3.1 Datasets 

Table 3.1 describes all of the UCI datasets used throughout this paper. To conserve 

space on the f gures in later chapters, we often abbreviate the dataset names. The table 

gives both the full name from the UCI repository as well as the abbreviation we use. It also 

lists the number of variables and number of records in the datasets. 

3.2 Other Implementations 

Table 3.2 describes all of the other implementations to which we compared. None 

of these algorithms are parallel learning algorithms. Both DP and BB include options to 

calculate local scores in parallel, but these options were never used. Unless otherwise 

noted, all other algorithms were implemented with custom code in Java. 

All experiments were performed on a PC with a dual quad-core 3.07 GHz Intel i7 

processor, 16 GB of RAM, 500 GB of hard disk space that was running Ubuntu 10.10. 
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Unless otherwise noted, no algorithms used more that one core of processor. Consequently, 

other tasks, such as operating system functions, did not have any impact on the running 

time of the results. 
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Table 3.1 

A description of all datasets used for evaluation in this dissertation. 

UCI Dataset Name Short Name n N 
Adult Adult 14 30,162 
Congressional Voting Records Voting 17 435 
Letter Recognition Letter 17 20,000 
Statlog (Vehicle Silhouettes) Statlog 19 752 
Hepatitis Hepatitis 20 126 
Image Segmentation Image 20 2,310 
Imports Imports 22 205 
SPECT Heart Heart 23 267 
Mushroom Mushroom 23 8,124 
Parkinsons Parkinsons 23 195 
Wall-Following Robot Navigation Data Robot 25 5,456 
Automobile Auto 26 159 
Horse Colic Horse 28 300 
Steel Plates Faults Steel 28 1,941 
Flags Flags 29 194 
Breast Cancer Wisconsin (Diagnostic) WDBC 31 569 
Soybean (Large) Soybean 36 266 
Alarm* Alarm 37 1,000 
Water Treatment Plant Water 38 380 
Cylinder Bands Bands 39 277 
SPECTF Heart SPECTF 45 267 
Lung Cancer Lung 57 26 
UCI Dataset Name gives the full name of the dataset in the UCI machine learning 
repository. Short Name gives the name by which the dataset is refered in the later 
evaluation sections. n gives the number of variables in the dataset. N gives the 
number of records in the dataset. 
* Alarm is not a dataset from UCI. Gibbs sampling was used to gener-
ate a dataset from the Alarm network in the Bayesian Network Repository 
(http://www.cs.huji.ac.il/site/labs/compbio/Repository/). 
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Table 3.2 

A description of all external algorithm implementations used in this evaluation. 

Algorithm Abbr Ref URL 
Dynamic Programming DP [82] http://www.cs.helsinki.f /u/tsilande/sw/bene/ 
Branch and Bound BB [19] http://www.ecse.rpi.edu/ cvrl/structlearning.html 
Optimal Reinsertion OR [64] http://www.autonlab.org/autonweb/10530.html 
Algorithm gives the name of the algorithm. Abbr gives the abbreviation used to 
refer to this implementation in the results sections in later chapters. Ref gives the 
paper associated with the implementation. URL gives the URL from which the 
code can be downloaded. 
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CHAPTER 4 

HEURISTIC GRAPH SEARCH PERSPECTIVE 

As described in Chapter 2, dynamic programming calculates three main functions: 

Score(U), BestScore(X, U) and Score(X|U). This work addresses the memory bottle-

neck of current dynamic programming algorithms by considering the problem as a series 

of graph search problems. This perspective allows adaptation of memory-eff cient heuris-

tic search techniques to f nd optimal structures. As shown in later chapters, comparison to 

current state of the art dynamic programming techniques show that heuristic search tech-

niques typically run several times faster and use much less memory. This chapter presents 

the heuristic search perspective of the problem. First, we describe the order graph, which 

is analogous to the dynamic programming lattice. We next def ne several auxiliary data 

structures used during the search. Parent graphs aid in calculating the cost of edges in the 

order graph; we give two formulations of parent graphs. Finally, we precompute and cache 

all necessary scores at the beginning of all of our search algorithms using a strategy similar 

to that of an AD-tree [62]. 

4.1 Learning Optimal Subnetworks 

Like the dynamic programming algorithms described in Section 2.3.4.4, we f nd the 

optimal Bayesian network structure for all variables by learning optimal networks over 
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subsets of variables. We use an order graph to learn the optimal subnetworks. In some of 

our algorithms, we begin the search with no variables. For search in this direction, we use 

a forward order graph. Other algorithms begin the search with all of the variables. We use 

a reverse order graph for searches beginning with all of the variables. 

4.1.1 Forward Order Graph 

Figure 4.1 displays a forward order graph for four variables. It contains subsets of 

all variables, so the order graph has 2n nodes. The top-most node in layer 0 containing 

no variables is the start node. The bottom-most node containing all variables is the goal 

node. A directed path in the order graph from the start node to any other node induces an 

ordering on the variables in the path with new variables appearing later in the ordering. 

For example, the path traversing nodes ∅, {X1}, {X1, X2}, {X1, X2, X3} stands for the 

variable ordering X1, X2, X3. Each edge on the path has a cost equal to BestScore for 

the new variable in the child node given the variables in the parent node as candidate 

parents. For example, the edge between {X1, X2} and {X1, X2, X3} has a cost equal to 

BestScore(X3, {X1, X2}). Each order node contains information including a subset of 

variables, the cost of the best path from the start node to this node, a leaf variable and its 

optimal parent set. The shortest paths from the start node to all the other nodes correspond 

to the optimal subnetworks, among which the shortest path to the goal node corresponds to 

a f nal optimal Bayesian network. The lattice divides the nodes into layers. Nodes in layer 

l contain optimal subnetworks of l variables. Layer l has C(n, l) nodes, where C(n, k) is 

the binomial coeff cient. 
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Figure 4.1 

A forward order graph of four variables. 

4.1.2 Reverse Order Graph 

Figure 4.2 displays a reverse order graph for four variables. It is similar to the forward 

order graph; however, the top-most, start node contains all variables, while the bottom-

most, goal node contains none of the variables. A directed path again corresponds to an or-

dering on the variables: the ordering is the reverse of the order in which the leaves were re-

moved. For example, the path traversing nodes {X1, X2, X3, X4},{X1, X2, X3},{X1, X2}, 

{X1},∅ corresponds to the reverse of the variable ordering X4, X3, X2, X1, which is X1, 

X2, X3, X4. An edge between node U and U \{X} has a cost equal to BestScore(X, U \ 

{X}). The shortest path between the start node and the goal node again corresponds to the 

optimal Bayesian network. Intuitively, the forward order graph adds leaves one at a time, 

and the candidate parent set for a node is all variables that have been added in the path 

from the start node to that node. In constrast, the reverse order graph removes leaves one at 
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a time. The candidate parent set for a node in the reverse order graph is all variables which 

have not been removed in the path from the start node to that node. Consequently, nodes 

at shallow layers in the forward order graph have small candidate parent sets, but shallow 

nodes in the reverse order graph have large candidate parent sets. Similarly, deeper nodes 

in the forward order graph can select from large candidate parent sets, and the candidate 

parent sets for deep nodes in the reverse order graph are more restricted. 

Figure 4.2 

A reverse order graph of four variables. 

4.2 Identifying Optimal Parent Sets 

In order to expand nodes in the order graphs, we need the BestScore(Xi|·) values. We 

calculate those values using parent graphs. Each variable has its own parent graph. We 

consider two different implementations of parent graphs. The f rst full parent graphs mirror 
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the structure of the order graph. Sparse parent graphs adopt a different data structure that 

often offers considerable memory savings in practice. 

4.2.1 Full Parent Graphs 

Figure 4.3 shows the construction of the full parent graph for variable X1 as a lattice. 

All 2n−1 subsets of all other variables are present in the graph. Each node contains one 

value for BestScore of X1 and the set of candidate parents shown. That is, each node 

stores the subset of parents from the given candidate set which minimizes the score of X1. 

In Figure 4.3(a), we show the score of X1 using the indicated set of parents. Figure 4.3(b) 

shows the f nal parent graph in which each has the optimal set of parents for that candidate 

parent set. The score of that conf guration is also stored. As with the order graph, the 

lattice divides the nodes into layers. We call the f rst layer of the graph, the layer with the 

single node for ∅ in Figure 4.3, layer 0. A node in layer l has l predecessors, all in layer 

l − 1. Layer l has C(n − 1, l) nodes. Thus, in total, the complete set of parent graphs stores 

n2n−1 optimal parent sets. 

4.2.2 Sparse Parent Graphs 

The full parent graph for a variable X exhaustively enumerates all subsets of V \ {X} 

and stores BestScore(X, U) for each subset U. Naively, this approach requires storing 

n2n−1 scores and parent sets [82]. A memory-eff cient approach described in Chapter 5 

reduces the memory requirement by storing only one layer of each parent graph in memory 

at once. That still requires storing O(nC(n−1, n
2 )) scores, though. This much information 

is stored in order to make retrieving the optimal parent sets eff cient (i.e., they are stored 
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Figure 4.3 

A sample parent graph for variable X1. 

in a hash table or similar data structure). However, the number of unique optimal parent 

sets is often far smaller than either of these numbers because the same parent set is often 

optimal for many candidate parents sets as described by the following theorem [89]. 

Theorem 1 Let U ⊂ T and X ∈/ T. If Score(X|U) < Score(X|T), T cannot be the 

optimal parent set for X . 

For example, Figure 4.3(b) shows that a score may be shared by several nodes in a 

parent graph. The full parent graph representation allocates space for this repetitive infor-

mation for each candidate parent set, resulting in waste of space. 

4.2.2.1 Construction 

Sparse parent graphs adopt a different approach. We f rst calculate scores (see Sec-

tion 4.3) and prune according to Theorem 1. We next sort all the unique parent scores 
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for each variable X in a list, and also maintain a parallel list that stores the associated 

optimal parent sets. Table 4.1 shows the sorted lists for the parent graph in Figure 4.3(b). 

We call these sorted lists scoresX and parentsX . If we allow X to use all the other vari-

ables as candidate parents, then BestScore(X, V \ {X}) is simply the f rst element in 

the sorted list. For example, the f rst score in Table 4.1 is optimal for the candidate par-

ent set {X2, X3, X4}. Suppose we remove X2 from consideration as a candidate parent. 

We can scan the list from the beginning. As we scan each score, we check the associated 

parent set. As soon as we f nd a parent set which does not include X2, we have found 

BestScore(X1, {X3, X4}). Similarly, if we remove both X2 and X3, we scan until f nding 

a parent set which includes neither X2 nor X3; that is BestScore(X1, {X4}). In essence, 

this allows us to store and eff ciently process only scores in Figure 4.3(c); suboptimal par-

ent sets are never stored or processed, as shown in Table 4.1. 

Because of the pruning of suboptimal scores, this approach requires less memory than 

storing all the possible parent sets and scores. As long as kscoresXk < C(n − 1, n
2 ), it 

also requires less memory than the more memory-eff cient algorithm for X . In practice, 

kscoresXk is almost always smaller than C(n − 1, n
2 ) by several orders of magnitude. 

So this approach offers (usually substantial) memory savings compared to previous best 

approaches. However, searching the lists to f nd optimal parent sets can be ineff cient if 

not done properly. Since we have to search for each arc, the ineff ciency of the searching 

can have a large impact on the the whole search algorithm. 
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4.2.2.2 Eff cient Scanning 

We propose the following eff cient scanning technique. The basic idea is to f rst al-

low all variables to be candidate parents and successively remove one variable at a time 

from the candidate parent set. For each variable X , we f rst initialize a working bit vector 

of length kscoresXk called validX to be all 1s. This indicates that all the parent scores 

in scoresX are usable. Therefore, the f rst score in the list will be the optimal score. 

Then, we create n − 1 bit vectors also of length kscoresXk, one for each variable in 

V \ {X}. The bit vector for variable Y is denoted as parentsYX and contains 1s for all 

the parent sets that contain Y and 0s for others. Table 4.2 shows the bit vectors for the 

example in Table 4.1. Then, to exclude variable Y as a candidate parent, we perform 

the bit operation validnewX ← validX& ∼ parentsXY . The new validX bit vector now 

contains 1s for all the parent sets that are subsets of V \ {Y }. The f rst set bit corre-

sponds to BestScore(X, V \ {Y }). Table 4.3 shows an example of excluding X3 from 

the set of possible parents for X1, and the f rst set bit in the new bit vector corresponds to 

BestScore(X1, V \ {X3}). If we further want to exclude X2 as a candidate parent, the 

new bit vector from the last step becomes the current bit vector for this step, and the same 

bit operation is applied: validnewX ← validX& ∼ parentsX
X

1

2 . The f rst set bit of the re-

sult corresponds to BestScore(X1, V \ {X2, X3}). Table 4.4 demonstrates this operation. 

These operations give rise to the calculateBestScore and createSparseP arentGraph 

procedures in Table 4.5. Also, it is important to note that we exclude one variable at a 

time. For example, if, after excluding X3, we wanted to exclude X4 rather than X2, we 
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could take validnewX ← validX& ∼ parentsX
X

1

4 ). In total, we store scoresX and parentsX

for each X and ∼ parentsX(Y ) for each X and Y . 

Table 4.1 

Sorted scores and parent sets for X1 after pruning parent sets which are not possibly 
optimal. 

parentsX1
{X2, X3} {X3} {X2} {}  

scoresX1
5 6 8 10  

4.2.2.3 Memory Savings 

We evaluated the memory savings made possible by using our sparse representation in 

comparison to the full parent graph data structures. In particular, we compared the maxi-

mum number of scores that have to be stored for all variables at once by each algorithm. 

A typical dynamic programming algorithm stores scores for all possible parent sets of all 

variables. Memory-eff cient dynamic programming [59] (assuming implementation opti-

mizations) and an algorithm described in Chapter 5 store all possible parent sets only in one 

layer of the parent graphs for all variables. The sparse representation requires the unique 

optimal parent sets for all variables at all layers in the search. 

As Figure 4.4 shows, the memory savings due to the pruning of provably suboptimal 

scores is signif cant. In fact, the number of unique scores is typically several orders of 

magnitude smaller than the number of parent sets stored by the other approaches. These 

results agree with previously published results [18]. Here, we conf rm that the trend of 
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Table 4.2 

The parentsX(Xi) bit vectors for X1. 

parentsX1 {X2, X3} {X3} {X2} {} 
X2 1 0 1 0 
X3 1 1 0 0 
X4 0 0 0 0 
A “1” in line Xi indicates that the corresponding parent set includes variable Xi, 
while a “0” indicates otherwise. Note that, after pruning, none of the optimal 
parent sets include X4. 

Table 4.3 

The result of performing the bitwise operation to exclude all parent sets which include X3. 

parentsX1 {X2, X3} {X3} {X2} {} 
validX1 1 1 1 1 
∼ X3 0 0 1 1 
validnewX1 

0 0 1 1 
A “1” in the validX1 bit vector means that the parent set does not include X3 and 
can be used for selecting the optimal parents. The f rst set bit indicates the best 
possible score and parent set. 

Table 4.4 

The result of performing the bitwise operation to exclude all parent sets which include 
either X3 or X2. 

parentsX1 {X2, X3} {X3} {X2} {} 
validX1 0 0 1 1 
∼ X2 0 1 0 1 
validnewX1 

0 0 0 1 
A “1” in the validnew bit vector means that the parent set includes neither X2 nor X1 

X3. The initial validX1 bit vector had already excluded X3, so f nding validnewX1 

only required excluding X2. 
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Table 4.5 

Sparse parent graph algorithms. 

1: procedure CALCULATEBESTSCORE(X, U) 
2: valid ← allScoresX
3: for each Y ∈ V \ U do 
4: Yvalid ← valid& ∼ parentsX
5: end for 
6: fsb ← firstSetBit(valid)
7: return scoresX [fsb]
8: end procedure 

9: procedure CREATESPARSEPARENTGRAPH(X) 
10: scoresX , parentsX ←sort(Scores(X|·)) 
11: for i = 0 → |scoresX | do 
12: for each Y ∈ parentsX(i) do 
13: Yset(parents (i)) X

14: end for 
15: end for 
16: end procedure 
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sparse parent graph size independent from n on datasets up to size 57. BB and mathemati-

cal programming enjoy similar memory savings because they only include unique optimal 

parent sets, as well. However, the nature of those searches does not suggest a clear relation-

ship between pruning scores and memory savings during the execution of their algorithm. 

Figure 4.4 also suggests that the savings increase as the number of variables increases in 

the datasets. This implies that, while more variables necessarily increases the number of 

candidate parent sets exponentially, the number of unique optimal parent sets increases 

much more slowly. Intuitively, even though we add more possible parents, only a small 

number of them are “good” parents for any particular variable. 

For most of our algorithms, we present results using both the full and the sparse repre-

sentations of parent graphs. All of the sparse versions benef t similarly from the reduced 

memory, so we do not repeat those results in each section. In most cases, the sparse par-

ent graphs also yield signif cant runtime improvements. Because those results vary from 

algorithm to algorithm, they are discussed in more detail in the appropriate chapters. 

4.3 Calculating Scores 

We use an AD-tree-like search to calculate all of the parent scores. An AD-tree [62] is 

an unbalanced tree which contains AD-tree nodes and varying nodes. The tree is used to 

collect count statistics from a dataset. An AD-node stores the number of records consistent 

with the variable instantiation of the node, while a varying node assigns a value to a vari-

able. Figure 4.5 shows an AD-tree. As described in Chapter 2 and shown in Equation 4.2, 

the scores can be calculated based on parent instantiation counts and variable and parent 
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Figure 4.4 

The maximum count of parent sets stored by each of the parent graph strategies. 
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instantiation counts. A count statistic is only used once and can be discarded afterwards. 

Therefore, we can use a depth-f rst traversal of the AD-tree to compute the parent scores to 

minimize the search space needed. In particular, our implementation calculates the MDL 

score. In addition to Theorem 1, we also use the following theorem [90] to prune the tree. 

Theorem 2 In an optimal Bayesian network based on the MDL scoring function, each 

variable has at most log( 2N ) parents, where N is the number of data points. 
log N

The theorem states that only small parent sets can possibly be optimal parents when 

using the MDL score. All nodes below the depth specif ed in the theorem can be pruned 

without computing them. 

While Equation 2.6 does accurately express the MDL scoring function, it is not partic-

ularly amenable to eff cient calculation. Consequently, we use the following (equivalent) 

equation for calculating the MDL score. 

X 
DL(G) = MDL(Xi|P Ai), 

i

M (4.1) 

where 
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Figure 4.5 

An AD-tree. 

logN 
MDL(Xi|PAi) = H(Xi|PAi) + K(Xi|PAi), (4.2) 

2
X Nxi,paiH(Xi|PAi) = − Nxi,pai log , (4.3) 

Npaixi,pai 

X X 
= Nxi,pai logNpai − Nxi,pai logNxi,pai , (4.4) 

xi,pai xi,pai 

Y 
K(Xi|PAi) = (ri − 1) rl. (4.5) 

Xl∈PAi 

Table 4.6 gives an algorithm which eff ciently implements these equations. All of our 

algorithms precompute the score cache using this algorithm. 
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1: procedure CALCULATESCORES(D) 
2: updateScores(∅, D) 
3: expandADNode(X−1, ∅, D) 
4: for each X ∈ V do 
5: prune(X, ∅, Score(X|∅)) 
6: end for 
7: end procedure 

8: procedure EXPANDADNODE(Xi , U, Du) 
9: For j = i + 1 → n do expandVaryNode(j, U, Du, d) 

10: end procedure 

11: procedure EXPANDVARYNODE(Xi , U, Du) 
12: for j = 0 → ri do 
13: updateScores(U ∪ {Xi}, DXi=j,u)  

14: 
15: 

if |U| 
end for 

< log( 2N ) then expandADNode(i, U ∪ {Xi}, DXi=j,u)
log N  

16: end procedure 

17: procedure UPDATESCORES(U, Du) 
18: for each X ∈ V \ U do 
19: if Score(X|U) is null then Score(X|U) ← K(X|U)
20: Score(X|U) ← Score(X|U) + |Du| ∗ log |Du| 
21: end for 
22: for each X ∈ U do 
23: Score(X|U \ {X}) is null Score(X|U \ {X}) ← K(X|U \ {X})
24: Score(X|U \ {X}) ← Score(X|U \ {X})− |Du| ∗ log |Du| 
25: end for 
26: end procedure 

27: procedure PRUNE(Y, U, bestScore) 
28: for each X ∈ V \ U do 
29: if Score(X|U ∪ X) < bestScore then 
30: prune(Y, U ∪ X, Score(X|U ∪ X)
31: else 
32: delete Score(X|U ∪ X)
33: prune(Y, U ∪ X, bestScore)
34: end if 
35: end for 
36: end procedure 
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CHAPTER 5 

BEST-FIRST HEURISTIC SEARCH 

A* [42] is a best-f rst heuristic graph search algorithm. It requires an evaluation func-

tion f(n) and a successor operator �(n). The evaluation function for a node n consists of 

two terms: the cost so far, g(n), and the admissible cost from n to a goal node, h(n). An 

admissible cost is an optimistic estimate of the distance from n to a goal node; that is, the 

admissible cost is an underestimate, or lower bound, on the distance from n to the goal. If 

the heuristic function h(n) is consistent, A* guarantees to f nd the shortest path from the 

start node to each node expanded. A consistent function always underestimates the cost 

from n to a goal node and assigns the same value or a higher value to all successors of 

n. Consequently, a consistent function is always admissible. Application of the successor 

operator to node n, expanding n, returns the successors of n as well as the cost from n to 

each successor. The algorithm begins by placing the start node on a priority queue called 

openlist. The open list is implemented as a heap in which nodes are organized according 

to increasing f values. At each iteration, the head of openlist is expanded and placed in 

a closedlist. The closed list is implemented as a hash table. For the Bayesian network 

structure learning problem, the key of the hash table is a subset of variables and the value 

is the node which corresponds to that subset. The f cost of each successor is calculated. 

Duplicate detection is performed by checking open and closedlists for each successor. If 
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1: procedure MAIN(D) 
2: calculateScores(D) 
3: for each X ∈ V do 
4: BestScore(X, ∅) ← Score(X|∅)

: calculateParentGraph(X, ∅) 
6: end for 

P 
7: push(open, φ, Y ∈V BestScore(Y, V \ {Y })
8: while !isEmpty(open) do 
9: U ←pop(open) 

: if U is goal then 
11: print(“The best score is ” + Score(V)) 
12: return 
13: end if 
14: put(closed, U) 

: for each X ∈ V \ U do 
16: if contains(closed, U ∪ {X}) then 
17: continue 
18: end if 
19: g ← BestScore(X, U) + Score(U)

P 
: h ← BestScore(Y, V \ {Y })Y ∈V\U 

21: if g + h < Score(U ∪ {X} then 
22: push(open, U ∪ {X}, g + h) 
23: Score(U ∪ {X}) ← g + h 
24: end if 

: end for 
26: end while 
27: end procedure 

28: procedure CALCULATEPARENTGRAPH(Y, U) 
29: for each X ∈ V \ U do 

: if Score(Y |U ∪ {X}) < BestScore(Y, U)
31: and Score(Y |U ∪ {X}) < BestScore(Y, U ∪ {X}) then 
32: BestScore(Y |U ∪ {X}) ← Score(Y |U ∪ {X})
33: else if BestScore(Y |U ∪ {X}) < BestScore(Y, U ∪ {X}) then 
34: BestScore(Y |U ∪ {X}) ← Score(Y |U ∪ {X})

: end if 
36: calculateParentGraph(Y, U ∪ {X}) 
37: end for 
38: end procedure 

Table 5.1 

A* search algorithm. 
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neither data structure contains the successor, it is added to openlist with the calculated f 

cost and a parent pointer to n. If a successor is on the openlist list with a higher g value, 

it is updated with the new value and parent pointer. If the successor is in closedlist with a 

higher g value, it is moved back to openlist. Otherwise, the successor is discarded. Once 

a goal node is selected for expansion, a shortest path is found by following parent pointers 

backward to the start node. 

Table 5.1 gives pseudocode for our A* algorithm to learn optimal Bayesian network 

structures. Our formulation of the order graph allows us to specify an evaluation func-

tion and a successor operator. This algorithm uses a forward order graph. As presented, 

the algorithm uses the full parent graph representation. The complete parent graphs are 

constructed before searching through the order graph in the calculateP arentGraph pro-

cedure. We can easily adapt the algorithm to use sparse parent graphs, though, by replacing 

the calls to BestScore(·) with calls to calculateBestScore(·) from Table 4.5. If we use 

sparse parent graphs, then we do not need to use the calculateP arentGraph procedure. 

Instead, we use createSparseP arentGraph from Table 4.5 to construct the sparse parent 

graphs at the beginning of the search. 

5.1 Heuristic Function 

The best-f rst algorithm def nes g(n) as the sum of edge costs from the start node to n. 

Each edge cost is BestScore(X, U) where X is the variable added to the ordering. We 

use the following heuristic function [102], 
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Def nition 1 
X 

h(U) = BestScore(Y, V\{Y }). (5.1) 
Y ∈V\U 

The heuristic function h allows variables missing from the ordering to choose optimal 

parents from all variables in V. This effectively relaxes the acyclic constraint to quickly 

calculate a lower bound. The following theorem [102] proves h is consistent. Consistent 

functions are also admissible. 

Theorem 3 h is consistent. 

Proof: For any successor node R of U, let Y ∈ R \ U. We have 

X 
h(U) = BestScore(Xi, V \ {Xi})

Xi∈V\U 

X 
≤ BestScore(Xi, V \ {Xi}) +BestScore(Y, U)

Xi∈V\U,Xi 6=Y

= h(R) + c(U, R). 

The inequality holds because fewer variables are used to select optimal parents for Y . 

Hence, h is consistent. 2 

5.2 Successor Operator 

The forward order graph also suggests the successor operator. To expand node U, we 

try each X ∈ V \ U as a leaf for U. The edge cost is BestScore(X, U), and the g value of 

the successor is equal to the g value of the predecessor summed with BestScore(X, U). 

52 



5.3 Solution Reconstruction 

For conciseness, Table 5.1 only includes the main logic in computing the optimal score; 

however, in addition to storing the optimal score over the variables in U, we also store the 

leaf and parents which give that score in leaf(U) and parents(U) while a node is in the 

open list. After expanding a node, we write that information to disk in order to conserve 

RAM. We also maintain an entry in the closed list that the node has already been expanded. 

We reconstruct the optimal solution by beginning with the goal node (so U = V). We 

consult leaf(U) and parents(U) to f nd the last leaf, l, and its optimal parent set. We then 

recursively look up leaf(U \ {l}) and parents(U \ {l}) until reconstructing the entire 

network. 

5.4 Advantages of A* 

A* offers several advantages over dynamic programming. Primarily, by expanding 

nodes according to their f values, A* never expands subnetworks which provably cannot 

compose an optimal complete structure. Subnetworks with a worse f value than the op-

timal network are either never generated or remain in the open list. The savings typically 

manifest in both reduced memory complexity, because the unexpanded nodes are not stored 

in the closed list, and reduced time complexity, because no time is spent expanding those 

nodes. In some cases, though, the overhead of maintaining the priority queue overshadows 

the savings from pruning. In these cases, very little pruning occurred, and nearly the entire 

order graph was expanded. 
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5.5 Empirical Results 

We evaluated our A* search algorithm on a set of benchmark datasets from the UCI 

repository [33]. We compared to dynamic programming (DP) and branch and bound (BB). 

We tested using both sparse and full parent graph representations. 

Figure 5.1 reports the running time of the three algorithms in solving the benchmark 

datasets. We terminated an algorithm if it ran for more than 2 hours on a dataset. We also 

report the sizes of the sparse parent graphs compared to the full parent graphs. Finally, we 

give the number of expanded nodes for both A* and DP. The difference in sizes demon-

strates the computation wasted by dynamic programming evaluating subnetworks which 

could not possibly compose an optimal structure. We had no way of tracking the size of 

the search space by BB because only binary code is provided. 

The timing results show that our A* algorithm with full parent graphs is typically sev-

eral times faster than DP and orders of magnitude faster than BB on most of the datasets 

we tested. A* is slower than DP on Adult and Letter, which have a large number of 

records and a relatively small number of variables, which makes the pruning technique in 

Theorem 1 less effective. Although the DP algorithm does not perform any pruning, due 

to its simplicity, the algorithm is highly optimized. Consequently, it was faster than A* 

search on the Adult and Letter datasets; however, on the Mushroom dataset, which also 

included a large number of samples but had a larger number of variables, A* runs faster 

than DP. Because of the exponential size of the parent and order graphs, as the number of 

variables grows, the amount of pruning of Theorem 1 has less impact on the running time. 
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The results call particular attention to the benef t of the sparse parent graphs. Because 

they do not require the construction overhead of the full parent graphs, the runtimes of all 

of the algorithms are signif cantly reduced. Of the datasets with more than 20 variables, 

A* with the sparse parent graphs runs more than an order of magnitude faster than DP 

on all of them except mushroom. As mentioned above, datasets with many records, such 

as Mushroom, limit the pruning offered by Theorem 1. In these cases, searching for 

BestScore(·) in the sparse representation takes longer to execute. Even under this less-

than-ideal circumstance, though, A* with the sparse parent graphs still runs over 5 times 

faster than DP. These results also show that the eff ciency of the sparse parent graphs do 

not depend heavily on n. 

The sparse parent graphs have another advantage over the full parent graphs for A* 

search. As evidenced by the number of nodes expanded by A* compared to the number 

in the complete order graph, at least in some cases, A* never needs some values from the 

parent graphs. However, the full parent graphs will calculate these values anyway, since 

they are created in full at the beginning of the search. On the other hand, the sparse parent 

graphs do not compute a value until asked, so they never waste time calculating scores that 

are never necessary. 

Finally, BB is much slower than A* with or without the sparse parent graphs. Its search 

space includes graphs with cycles, while the A* search space does not. The results indicate 

that it is better to search in the space of DAGs directly in f nding an optimal Bayesian 

network structure. 
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Figure 5.1 

Runtime comparison among BB, DP and A*. 

Figure 5.2 plots the number of nodes expanded by A* versus the full size of the order 

graph at each layer for adult and hepatitis. The heuristic function used by A* initially pro-

vides only loose bounds, so A* expands most nodes in the beginning layers. The heuristic 

bounds tighten as the search progresses, so A* prunes more nodes at deeper layers. For 

the adult dataset, A* expanded almost all the order nodes in the beginning 7 layers of the 

order graph before it started to prune order nodes in the f nal layers. In contrast, only a 

small percentage of the nodes were expanded in the order graph of hepatitis. The pruning 

became quite effective as early as at layer 4 and 5, and only a few nodes were expanded in 

the last 10 layers. 

Figure 5.3 shows the benef t of pruning on all of the datasets. The f gure shows that A* 

always expands fewer nodes that DP. On some of the datasets, such as Letter, the savings 
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Figure 5.2 

Nodes expanded by A* at the middle layer of two datasets. 

are modest. For V oting, though, A* expands almost an order of magnitude fewer nodes 

than DP. Unexpanded nodes reduce both memory and runtime costs because no work is 

wasted storing or processing the unexpanded nodes. 
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Figure 5.3 

Comparison of the order graph nodes expanded by DP and A*. 
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CHAPTER 6 

FRONTIER BREADTH-FIRST BRANCH AND BOUND SEARCH 

Our best-f rst heuristic search results agree with previous results [70] which show that 

learning optimal Bayesian networks is typically limited by RAM. This was more pro-

nounced when using the full parent graphs, but, especially on datasets for which Theo-

rem 1 was not very effective, the sparse parent graphs combined with the closed list for A* 

sometimes consumed a sizable amount of RAM. We next attempted to reduce the mem-

ory complexity of learning optimal Bayesian networks by taking advantage of the regular 

structure of the order and parent graphs. In particular, we observed that only a limited 

amount of information is required to generate each layer of the parent and order graphs. 

Generating a layer of a parent graph requires the previous layer of that parent graph and 

corresponding scores. A layer in the order graph requires the previous layer of the order 

graph and the current layer of the parent graphs. Because scores and parent sets are prop-

agated from layer to layer in the parent graphs, a layer can be deleted once it has been 

expanded. Similarly, scores in the order graph are propagated; these can also deleted once 

expanded. Reconstructing the network structure necessitates the leaf, its optimal parent set 

and a pointer to its predecessor for each order graph node be stored on disk. 

To overcome the memory constraint and leverage the structure present within the search 

space, we introduce a frontier breadth-f rst branch and bound algorithm with delayed du-
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1: procedure EXPANDORDERGRAPH(l, isP resent, upper, maxSize) 
2: for each Scorel(U) ∈ Scorel do 
3: for each X ∈ V \ U do 
4: g ← Scorel(U) +BestScorel(X|U)

P 
5: h ← BestScore(Y, V \ {Y })Y ∈V\U 
6: if g + h > upper then continue 
7: isP resent(U ∪ {X}) ← true 
8: if g < Scorel+1(U ∪ {X}) then 
9: Scorel+1(U ∪ {X}) ← g 

10: end if 
11: if |Scorel+1| > maxSize then writeTempFile(Scorel+1) 
12: end for 
13: end for 
14: Scorel+1 ← mergeTempFiles; delete Scorel
15: end procedure 

16: procedure EXPANDPARENTGRAPH(l, p, isP resent, maxSize) 
17: for each BestScorel(p|U) ∈ BestScorel(p do 
18: for each X ∈ V \ U and X = p do 
19: S ← U ∪ {X} 
20: if !isP resent(S) then continue 
21: if Score(p|S) < BestScorel+1(p|S) then 
22: BestScorel+1(p|S) ← Score(p|S)
23: end if 
24: if BestScorel(p|U) < BestScorel+1(p|S) then 
25: BestScorel+1(p|S) ← BestScorel(p|U)
26: end if 
27: if |BestScorel+1(p)| > maxSize then writeTempFile(BestScorel+1(p)) 
28: end for 
29: end for 
30: BestScorel+1(p) ←mergeTempFiles; delete BestScorel(p)
31: end procedure 

32: procedure MAIN(D, upper, maxSize) 
33: calculateScores(D); writeScoresToDisk 
34: for l = 1 → n do 
35: for p = 1 → n do expandParentGraph(l, p, isP resent, maxSize)
36: expandOrderGraph(l, isP resent, upper, maxSize)
37: end for 
38: print(“The best score is ” + Score(V))

60 39: end procedure 

Table 6.1 

A frontier BFBnB search algorithm. 
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plicate detection by adapting the breadth-f rst heuristic search algorithm proposed by Zhou 

and Hansen [104, 106]. It is also similar to the frontier search described by Korf [49]. We 

use the same notation for heuristic search introduced in Chapter 4. 

Breadth-f rst heuristic search expands a search space in order of layers of increasing 

g-cost with each layer comprising all nodes with a same g-cost. As each node is generated, 

a heuristic function is used to calculate a lower bound for that node. If the lower bound is 

worse than a given upper bound on the optimal solution, the node is pruned; otherwise, the 

node is added to the open list for further search. A divide-and-conquer method is used to 

reconstruct the optimal solution. 

Table 6.1 gives the pseudocode for our BFBnB search algorithm for learning optimal 

Bayesian networks. Like the A* search, it also uses the forward order graph. The algo-

rithm is similar to the breadth-f rst heuristic search algorithm but has several differences. 

First, the layers in our search graphs (the parent and order graphs) do not correspond to 

the g-costs of nodes; rather, layer l corresponds to variable sets (candidate parent sets or 

optimal subnetworks) of size l. For the order graph, though, we can calculate both a g- and 

h-cost for pruning. This pruning can also be propagated to the parent graphs, as described 

in Section 6.1. Another difference is that, when using the full parent graphs, our search 

problem is an interlaced search of order and parent graphs which must be carefully orches-

trated to ensure the correct nodes can be accessed easily at the correct time, as described 

in Section 6.2. This further requires the scores are stored in particular order, as described 

in Section 6.3. Yet another difference is that we use a variant of delayed duplicate de-

tection [51] in which external memory is not used to detect duplicates until the open list 
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exceeds the size of RAM, as described in Section 6.4. Finally, we use the network structure 

reconstruction algorithm described in Section 5.3 rather than using divide-and-conquer to 

reconstruct the optimal solution. 

As with the A* search algorithm, Algorithm 6.1 uses full parent graphs. The algo-

rithm can easily be adapted to use sparse parent graphs, though, by constructing them at 

the beginning of the search and replacing the calls to BestScore(·) with the appropriate 

procedures from Table 4.5. 

The pseudocode only includes the logic to calculate the optimal score. The optimal 

network is reconstructed using the technique described in Section 5.3. 

6.1 Branch and Bound 

In order to safely prune nodes, we need a heuristic function f(U) = g(U) +h(U) that 

estimates the cost of the best path from the start node to a goal node using order node U. 

We use the heuristic function described in Section 5.1. 

We also need an upper bound on the score of the optimal Bayesian network in order 

to prune. A search node U whose heuristic value f(U) is higher than the upper bound 

is immediately pruned. Numerous fast, approximate methods exist for learning a locally 

optimal Bayesian network. We use a greedy hill climbing algorithm with a tabu list and 

random restarts [40]. 
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6.2 Coordinating the Graph Searches 

The parent and order graph searches must be carefully coordinated to ensure that the 

parent graphs contain the necessary nodes to expand nodes in the order graph. In particular, 

expanding a node U in layer l in the order graph requires BestScore(X, U), which is 

stored in the node U of the parent graph for X . Hence, before expanding layer |U| in the 

order graph, that layer of the parent graphs must already exist. Therefore, the algorithm 

alternates between expanding layers of the parent graphs and order graph. In both graphs, 

a hash table is used to detect generated nodes and store their scores. 

Expanding a node U in the parent graph amounts to generating successor nodes with 

candidate parents U ∪{X} for all X in V \ U. For each successor S = U ∪{X}, the hash 

table for the next layer is f rst checked to see if S has already been generated. If not, the 

score of using all of S as parents of X is retrieved from the score cache and compared to 

the score of using the parents specif ed in U. If using all of the variables has a better score, 

then an entry is added to the hash table indicating that, for candidate parents S, using all 

of them is best. Otherwise, according to Theorem 1, the hash table stores a mapping from 

S to the parents in U. Similarly, if S has already been generated, the score of the existing 

best parent set for S is compared to the score using the parents in U. If the score of the 

parents in U is better, then the hash table mapping is updated accordingly. Once a layer of 

the parent graph is expanded, the whole layer can be discarded as it is no longer needed. 

The pseudocode uses BestScorel to store the optimal scores at each layer. 

Expanding a node U in the order graph amounts to generating successor nodes U∪{X} 

for all X in V \ U. To calculate the score of successor S = U ∪ {X}, the score of the 
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existing node U is added to BestScore(X, U), which is retrieved from parent graph node 

U for variable X . The optimal parent set out of U is also recorded. This is equivalent to 

trying X as the leaf and U as the subnetwork. Next, the hash table for the next layer is 

consulted. If it contains an entry for S, then a node for this set of variables has already 

been generated using another variable as the leaf. The score of that node is compared to 

the score for S. If the new score for S is better, or the hash table did not contain an entry 

for S, then the mapping in the hash table is updated. Unlike the parent graph, however, a 

portion of each order graph node is used to reconstruct the optimal network at the end of 

the search, as described in Section 5.3. This information is written to disk, while the other 

information is deleted. The pseudocode uses Scorel to store the score for each subnetwork. 

Additional care is needed to ensure that parent and order graph nodes for a particular 

layer are accessed in a regular, structured pattern. We arrange the nodes in the parent and 

order graphs in queues such that when node U is removed from the order graph queue, the 

head of each parent graph queue for all X in V \ U is U. So all of the successors of U can 

be generated by combining it with the head of each of those parent graph queues. Once the 

parent graph nodes are used, they can be removed, and the queues will be ready to expand 

the next node in the order graph queue. Because the nodes are removed from the heads 

of the queues, these invariants hold throughout the expansion of the layer. Regulating 

such access patterns improves the scalability of the algorithm because these queues can be 

stored on disk and accessed sequentially to reduce the requirement of RAM. The regular 

accesses also reduce disk seek time. The pseudocode assumes the nodes are written to disk 

in this order to easily retrieve the next necessary node. 
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The lexicographic ordering [46] of nodes within each layer is one possible ordering 

that ensures the queues remain synchronized. For example, the lexicographic ordering of 

4 variables of size 2 is {{X1, X2}, {X1, X3}, {X2, X3}, {X1, X4}, {X2, X4}, {X3, X4}}. 

The order graph queue for layer 2 of a dataset with 4 variables should be arranged in that 

order. The parent graph queue for variable X should have the same sequence, but without 

subsets containing X . In the example, the parent graph queue for variable X1 should be 

{{X2, X3}, {X2, X4}, {X3, X4}}. Figure 6.1 shows a simple example of expanding one 

order graph node by manipulating the necessary queues. As described in more detail in 

Section 6.4, the nodes of the graphs must be sorted to detect duplicates; the lexicographic 

order ensures that there is no additional work required to arrange the nodes when writing 

them to disk. 

If the sparse parent graphs are used, there is no coordination problem because each 

BestScore(·) is caculated from scratch using the eff cient bit-wise operations described in 

Section 4.2.2. 

6.3 Ordering the Scores on Disk 

We have assumed that, because of its pruned size due to Theorem 1, the score cache 

could f t in RAM. For large datasets, though, the score cache can grow quite large. We write 

it to disk to reduce RAM usage. Each score Score(X|P) is used once, when node P is f rst 

generated in the parent graph for X . As described in Section 6.2, the parent graph nodes are 

expanded in lexicographic order; however, they are not generated in that order. The succes-

sors of node {X1} in the parent graph for X0 are {X1, X2}, {X1, X3}, {X1, X4}.... When 
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Figure 6.1 

Coordinating the parent and order graphs. 

{X2} is expanded, the new successors are {X2, X3}, {X2, X4}... even though {X2, X3} 

precedes {X1, X4} in lexicographic order. Therefore, the scores must be written in order 

of successors of nodes expanded in lexicographic order. 

A f le is created for each variable for each layer to store these sorted scores after all 

scores not pruned by Theorem 1 are in the score cache. The f le for a particular layer can 

be deleted after expanding that layer in the appropriate parent graph. Each variable set U 

is generated in lexicographic order, {X0}, {X1}, {X0, X1}, {X2}.... U is then expanded 

as it would be in the parent graphs for variables V \ U. The scores of these successors 

which had not already been generated are written to disk. 

The sparse parent graphs can use external memory sorting during their construction if 

necessary. In practice, the pruned score cache does not consume more memory than the 
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order and parent graphs. Also, as demonstrated in Figure 4.4, the size of the cache does 

not depend on n. For all of the datasets considered in this work, the largest pruned score 

cache was 20MB (for the 57-variable lung cancer dataset). 

6.4 Duplicate Detection 

Duplicate nodes are generated during the parent and order graph searches. Duplicates 

in the parent and order graphs are nodes which consider the same sets of variables (candi-

date parent sets and optimal subnetworks, respectively). Because the successors of a node 

always consider exactly one more variable in both the parent and order graphs, the succes-

sors of a node in layer l are always in layer l + 1. Therefore, when a node is expanded, 

its successors could only be duplicates of nodes in the next layer. Duplicates are detected 

using a hash table in RAM. In both the parent and order graphs, the duplicate with the 

best score should be kept. After expanding a layer, nodes in the hash table are sorted (in 

lexicographic ordering, as per Section 6.2) and written to disk. The previous layer is then 

deleted from disk. 

For large datasets, it is possible that even one layer of the parent or order graph is too 

large to f t in RAM. We use a variant of delayed duplicate detection (DDD) [51] in our 

algorithm to utilize external memory when a layer will not f t in RAM. In DDD, search 

nodes are written to a f le on disk as soon as they are generated. After expanding a layer, 

an external-memory sorting algorithm, such as external-memory merge sort [37], is used 

to detect and remove duplicate nodes in the f le. The nodes in the f le are then expanded 

to generate the next layer of the search. In this manner, the search uses a minimal amount 
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of RAM; however, because all generated nodes are written to disk, much work is done 

reading and writing duplicates. 

Rather than immediately writing all generated nodes to disk, we detect duplicates in 

RAM with a hash table. Figure 6.2(a), (b) and (c) show several examples of duplicate 

detection in RAM. Once the hash table reaches a user-def ned maximum size, its contents 

are sorted and written to a temporary f le on disk. The hash table is then cleared. At the 

end of each layer, the remaining contents of the hash table are sorted and merged with 

the temporary f les into a single sorted f le. An example of this operation is shown in 

Figure 6.2(d). Locality in our search allows us to detect many duplicates in RAM with the 

hash table and reduce external memory usage. 

Figure 6.2 

Examples of immediate and delayed duplicate detection. 
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6.5 Advantages of Frontier Breadth-First Branch and Bound 

BFBnB enjoys many advantages over current state of the art methods. First, like A*, 

BFBnB can benef t from the pruning of Theorem 2 and the sparse parent graphs. Second, 

the layered structure we impose on the parent and order graphs ensures that we never 

need more than two layers of any of the graphs in memory, RAM or f les on disk, at 

once. Third, because of the pruning described in Section 6.1, BFBnB does not waste 

resources expanding subnetworks which provably cannot result in an optimal structure. 

However, unlike A*, the pruning of BFBnB is dependent on the upper bound; a tight upper 

bound will result in more pruning. Finally, the delayed duplicate detection method we use 

lifts the requirement that a single layer f ts in RAM. Because we do not resort to delayed 

duplicate detection until RAM is full, our algorithm takes advantage of all available RAM. 

By writing nodes to disk once RAM is full, we learn optimal Bayesian networks even when 

single layers of the search graph do not f t in RAM. The amount of available hard disk space 

and running time are the only limiting factors for the scalability of our algorithm. 

None of the existing algorithms take advantage of the structure in the parent and order 

graphs when calculating BestScore(X, V) or Score(V). Singh and Moore [84] use a 

depth-f rst search ordering to generate the necessary scores and variable sets, while Silan-

der and Myllymaki [82] use the lexicographic ordering over all of the variables. We use 

the lexicographic ordering only within each layer, not over all of the variables. The depth-

f rst approach does not generate nodes in one layer at a time. The lexicographic ordering 

also does not generate all nodes in one layer at a time. Consider the f rst four nodes in the 

lexicographic order: {X0}, {X1}, {X0, X1}, {X2}. Two nodes from layer 1 are generated, 
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then a node in layer 2; however, the next node generated is again in layer 1. Similarly, the 

seventh node generated is {X0, X1, X2} while the eighth node is {X3}. Because genera-

tion of nodes from different layers is interleaved, these orderings require the entire graphs 

remain in memory (either in RAM or on disk). In contrast, our BFBnB algorithm generates 

nodes one layer at a time and thus needs at most two layers of the graphs in memory, plus 

the extra information to reconstruct the path. The delayed duplicate detection and solution 

reconstruction strategies allow us to store that information in external memory once RAM 

is full. Previous layers can safely be deleted. 

6.6 Empirical Results 

We empirically evaluated our BFBnB algorithm against DP and A* (from Chapter 5) 

for both space and time usage. We used both full and sparse parent graphs for BFBnB, but 

only show the results using the sparse parent graphs for A*. We compared the size of the 

full order graph, which a typical dynamic programming algorithm stores, to the maximum 

size of a layer in the order graphs that BFBnB has to store. Additionally, we compared the 

running times of all the algorithms. 

Previous results found that memory is the main bottleneck restricting the size of learn-

able networks [70]. As our results in Figures 6.3 and 6.4 conf rm, algorithms which attempt 

to store entire parent or order graphs in RAM or on disk, such as DP and A* are limited 

to smaller sets of variables. BFBnB’s duplicate detection strategy allows it to write partial 

search layers to hard disk when the layers are too large to f t in RAM, so it can learn op-

timal Bayesian network structures regardless of the amount of RAM. Consequently, hard 
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Figure 6.3 

Runtime comparison of DP, BFBnB and A*. 

disk space and running time are its only limiting factors. The inexpensive cost of hard 

disks coupled with distributed f le systems can potentially erase the effect of memory on 

the scalability of the algorithm. The runtime results show that BFBnB not only takes much 

less space, but also runs several times faster than the DP algorithm. 

On the largest dataset, W DBC (31 variables and 569 records), we learned the optimal 

network in 93,682 seconds (about 26 hours) using full parent graphs. The time was reduced 

to 27,243 seconds (about 8 hours) using the sparse parent graphs. We also attempted to 

use DP, but its external memory usage exceeded the 500 gigabytes of hard disk space on 

the server. Figure 6.5 shows the total memory consumption of our algorithm on the largest 

layers of the W DBC search using full parent graphs. Very little memory is used before 
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Figure 6.4 

Comparison of order graph nodes stored in memory at once by DP and BFBnB. 

layer 9, and after layer 23, the memory consumption does not change much because the 

layer sizes decrease exponentially. As the f gure shows, both of the middle layers use 

nearly 70 gigabytes of disk space. Most of this space is consumed by the parent graphs, 

so it is freed after each layer. Using sparse parent graphs eliminates all of that external 

memory usage. Assuming that the running time and size of the middle layers double for 

each additional variable, which is a rough pattern from Figures 6.3 and 6.4, our algorithm 

could learn a 36-variable network in about one month using approximately 2 terabytes of 

hard disk space and a single processor when using the full parent graphs. This suggests 

that our method should scale to larger networks better than the method of Parviainen and 

Koivisto [70]. They observe that their implementation would take 4 weeks on 100 pro-

cessors to learn a 31-variable network, and, even with coding improvements and massive 

parallelization, only networks up to 34 variables would be possible. 
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Figure 6.5 

Hard disk usage for the W DBC dataset. 
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As with A*, the sparse parent graphs typically improved the running time by over an 

order of magnitude compared to the full parent graph implementation. However, the sparse 

parent graphs did cause the algorithm to run slower on the Sensor Readings dataset. As 

the table shows, though, the “sparse” parent graphs were storing more than 900,000 scores. 

For this dataset, then they were not very sparse, and the bit operations took much longer 

because they were applied to so many scores during each iteration. 
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CHAPTER 7 

ANYTIME DEPTH-FIRST BRANCH AND BOUND SEARCH 

Our A* algorithm is shown to be an order of magnitude more eff cient than the dynamic 

programming algorithms. However, A* requires all the search information, including par-

ent and order graphs, to be stored in RAM during the search, which makes the algorithm 

run out of memory for large datasets, even if using the parent graphs (see Chapter 8 for A* 

on very large datasets). BFBnB searches the order graph one layer at a time. By coordi-

nating the parent and order graphs, most of the search information can be stored on disk 

and are only processed incrementally after being read back to RAM when necessary. The 

BFBnB algorithm was shown to be as eff cient as the A* algorithm but was able to scale to 

much larger datasets. Theoretically, the scalability of the BFBnB algorithm is only limited 

by the amount of disk space available. 

However, the A* and BFBnB algorithms have a common limitation in that they do not 

f nd any solution until the very end of the search. If they run out of RAM or disk space 

before the search f nishes, they cannot provide any solution. As shown in Section 6.6, 

even if they do complete the search, a result my not be returned for hours or even days 

for large datasets. In many situations, we would desire the algorithms to exhibit anytime 

behavior; that is, we would like the algorithm to return a (potentially sub-optimal) solution 

quickly. Then, if time and other resources permit, the algorithm improves the solution 
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until converging upon the optimal network. If the search runs to completion, it guarantees 

to return the optimal network. 

Several other exact algorithms do exhibit some form of anytime behavior. The branch 

and bound search of de Campos and Ji [21] has anytime behavior, but searches in the space 

of cyclic graphs. We showed in Section 5.5 that it is very slow to converge to the optimal 

network. Mathematical programming algorithms [44, 15] also have anytime behavior, but 

extra work is required to decode their intermediate results into a usable network structure. 

Additionally, MP was shown to be only comparable or slightly more eff cient the DP [44]. 

7.1 Anytime Algorithms 

The notion of anytime search is not new. For example, Dean and Boddy [24, 4] present 

the notion in the context of planning under unknown time constraints. Standard DFS is 

a form of anytime search if the search is continued after the f rst solution is found. Un-

fortunately, graphs with many paths to each node, like the order graphs, can suffer an 

exponential increase in complexity using normal DFS (or normal DFBnB) because the 

same node can be expanded many times. Many algorithms have investigated approaches 

to minimize these node re-expansions. We f rst describe weighted A* because it serves as 

a basis for many of the algorithms, and then introduce three representative examples. 

7.1.1 Weighted A* 

Weighted A* (WA*) [74, 75, 71] is a variant of A* search in which the heuristic func-

tion is weighted by a factor ǫ. That is, f(n) = g(n)+ ǫ × h(n). By weighting the heuristic, 

it is no longer admissible. That is, the f value for a node may over-estimate the cost of 
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a path to the goal through this node. However, upon expanding a goal node, its cost is 

guaranteed to be no more than a factor of ǫ greater than the globally optimal solution [71]. 

For example, if ǫ = 1.05, and we expand a goal node with cost f , then the globally optimal 

solution is guaranteed to be no more than 5% better than f . 

7.1.2 Anytime Weighted A* 

Anytime WA* [41] begins as a normal WA* algorithm; however, rather than stopping 

the search as soon as a solution is found, Anytime WA* continues to expand nodes. The 

score of the incumbent solution is then used to prune nodes based on their true, unweighted 

f cost, although nodes continue to be expanded based on the weighted value. As better 

paths to a goal are found, the incumbent solution is updated, which gives the algorithm 

its anytime behavior. Eventually, unless it is interrupted, the search expands or prunes 

all nodes in the search space and terminates with the optimal solution. Because of the 

weighted heuristic, Anytime WA* may f nd a better path to a closed node. In order to 

guarantee optimality of the f nal solution, Anytime WA* must re-expand those nodes. 

7.1.3 Anytime Repairing A* 

Anytime Repairing A*(ARA*) [58] adopts a similar strategy. It also starts as a normal 

WA* and runs until f nding a solution. Upon f nding the solution, the algorithm decreases 

ǫ and searches again. The solution is improved (or stays the same) at each iteration, so 

this algorithm also has anytime behavior. The process continues until it is interrupted or 

ǫ = 1 and the algorithm terminates with an optimal solution. ARA* does not completely 

start from scratch for each search, though. Like AWA*, ARA* could also f nd a better 
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path to a node during the search. During each search iteration, the algorithm keeps a list of 

nodes closed during that iteration to which it f nds a better path. Rather than immediately 

re-expanding those nodes, though, ARA* instead begins each iteration after the f rst with 

that list serving as the initial open list. The iterative process continues until better paths are 

found to no nodes. 

7.1.4 Anytime Window A* 

Anytime Window A* (AWA*) [1] adopts a slightly different approach to deliver any-

time solutions. It is not based on WA*. Rather, it uses a type of sliding window to en-

courage deeper exploration of the search graph. Much like ARA*, the algorithm consists 

of a series of iterations. Instead of ǫ, AWA* uses a parameter w to control the size of the 

window. The algorithm keeps track of the depth of all nodes expanded during an iteration 

of the algorithm. After expanding a node in layer l, and nodes in layer l − w are frozen. 

Nodes that are frozen are placed into a list to prevent them from being expanded. After 

the algorithm f nds a solution on a particular iteration, the frozen nodes from the previous 

iteration become the new initial open list. This process continues until no nodes are frozen 

on an iteration. 

7.2 Anytime DFBnB Network Learning Algorithm 

There is no obvious way to convert the BFBnB algorithm into an anytime algorithm 

because the search expands one layer at a time in the order graph. The goal node is in the 

last layer and cannot be reached until the very end of the search. We can convert the A* 

search algorithm to an anytime algorithm by adopting a depth-f rst search strategy instead 
77 



of best-f rst search. Whenever the depth-f rst search reaches the goal node, a solution 

is found and can be used to update the best solution so far. Because, depth-f rst search 

requires retrieving BestScore(·) in a non-layered order, the full parent graphs are not 

practical for depth-f rst search. In this section, we present an anytime depth-f rst branch 

and bound search algorithm (DFBnB). 

Table 7.1 gives pseudocode for our DFBnB algorithm. Unlike A* and BFBnB, we use 

the reverse order graph for this algorithm. Additionally, its design precludes full parent 

graphs. Section 7.2.1 describes an incremental update scheme which allows this algorithm 

to take more advantage of the sparse parent graphs than A* or BFBnB. A traditional short-

coming of DFBnB in graphs with many duplicates, like the order graph, concerns node re-

expansions. We address this problem using a type of closed list described in Section 7.2.2. 

Because the start and goal nodes of the reverse order graph are different than those in the 

forward order graph, we use a heuristic described in Section 7.2.3. Unfortunately, because 

DFBnB does not expand nodes in best-f rst order, the closed list coupled with pruning 

causes some nodes to be inappropriately pruned. We use node re-expansions to ensure we 

consider the entire search space and guarantee optimality. In Section 7.2.4 we describe an 

iterative scheme to control node re-expansions while still guaranteeing optimality. 

Reconstructing the optimal network at the end of the search uses the basic backtracking 

approach described in Section 5.3. 
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Table 7.1 

A DFBnB search algorithm. 

1: procedure EXPAND(U, valid, toRepair) 
2: if U = {} then 
3: hexact(U) ← 0
4: end if 
5: for each X ∈ U do 
6: BestScore(X, U \ {X}) ← scoresX [firstSetBit(validX)]
7: g ← g(U) +BestScore(X, U \ {X})
8: duplicate ← exists(g(U \ {X}))
9: if g < g(U \ {X}) then g(U \ {X}) ← g 

10: if duplicate and g < g(U \ {X}) then toRepair ← toRepair ∪ {U, g} 
11: f ← h(U \ {X}) + g(U \ {X})
12: if (!duplicate and f < optimal then 
13: for each Y ∈ U do 
14: ′ valid ←  Y validY& ∼ parentsY (X)
15: end for 
16: ′ expand(U \ {X}, valid )
17: end if 
18: if hexact(U) > BestScore(X, U \ {X}) + hexact(U \ {X}) then 
19: hexact(U) ← BestScore(X, U \ {X}) + hexact(U \ {X})
20: end if 
21: end for 
22: if optimal > hexact(U) + g(U) then optimal ← hexact(U) + g(U)
23: end procedure 

24: procedure MAIN(D) 
25: for each X ∈ V do 
26: scoresX , parentsX ← calcScores(X, D); validX ← 1s 
27: for each Y ∈ V \ {X} do 
28: scoresX(Y ) ← getScores(parentsX , Y )
29: end for 
30: end for 
31: toRepairl ← {V, 0} 
32: while |toRepairl| > 0 do 
33: for each {V, g} ∈ toRepairl do 
34: if g(V) > g then 
35: g(V) ← g 
36: expand(V, valid, toRepairl+1) 
37: end if 
38: end for 
39: 
40: 

toRepairl ← toRepairl+1 
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7.2.1 Incremental Sparse Updates 

In addition to its anytime behavior, DFBnB has another useful property. Because it 

completely searches one branch of the graph before jumping to another, it allows us to 

exploit another regularity in the order graph. A successor of a node in the reverse or-

der graph removes exactly one variable (used as the leaf) from its predecessor. In Sec-

tion 4.2.2, we described an eff cient technique to remove one parent from consideration 

at a time when using the sparse parent graphs. Therefore, as shown in Table 7.1, we can 

incrementally modify the valid bit vectors within the main algorithm rather than using the 

calcualteBestScore procedure from Table 4.5. 

At each node U, we make one variable X as a leaf (line 5) and select its optimal parents 

from among U (lines 6 - 8). We then check if that is the best path to the subnetwork U\{X} 

(lines 10 - 12). Because X is no longer a valid parent, no decendents of U along this path 

can use X as a parent. We remove X as consideration as a parent by performing the bit 

operation validY& ∼ parentsXY for the other Y ∈ U (lines 15 - 17). We then recursively 

select optimal parents for the remaining variables (line 18). After backtracking to U, we 

select another Y in U to use as a leaf. Because we did not modify valid, the call stack 

maintains the valid parents before removing X; we can easily perform the bit operations 

for Y and continue the search. Because we have no more than n bit vectors and the reverse 

order graph always has n layers, we store at most O(n2) bit vectors in memory at once. 
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7.2.2 Closed List and Backups 

A potential problem with DFS in graphs with many paths to each node is generating 

duplicates. A traditional DFS algorithm does not perform duplicate detection; therefore, 

much work can be wasted in re-expanding duplicate nodes. Our search graph contains 

many duplicates; a node in layer l is generated l times. In order to combat this problem, 

our algorithm uses a hash table to detect duplicate nodes (lines 9, 14). However, because 

of the depth-f rst search strategy, we are not guaranteed that we have the optimal path to 

a node the f rst time we expand it. On the other hand, because we always consider all of 

a node’s descendants before backtracking to it, we know the exact distance between that 

node and the goal, hexact(U) before it is generated again. To take hexact(U) as correct, 

though, we must assume that none of its descendents are inadmissibly pruned. We discuss 

this issue in more detail in Section 7.2.4. When backtracking, we can compute hexact(U)

by calculating for each successor R the total distance between U and R and between R 

and the goal, and f nding the minimum distance among them (lines 20 - 22). Trivially, the 

distance of an immediate predecessor of the goal is just the distance between it and the 

goal. We pass this information up the call stack to calculate the distances for predecessor 

nodes. Then, the next time U is generated, we sum the distance on the current path and 

hexact(U). If it is better than the existing best path, optimal, then we update the best path 

found so far (lines 24 - 26). We store all values of hexact(U) in the hash table. 
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7.2.3 Heuristic Function for the Reverse Order Graph 

The eff ciency of the depth-f rst search can be signif cantly improved by using a lower 

bound for pruning. The best solution found so far is a trivial upper bound for the optimal 

solution. If we can also estimate a lower bound for all the paths that pass through the 

current search node, and the lower bound is already worse than the upper bound solution, 

the current node can be immediately pruned as it will not lead to any better solution. Since 

the new order graph has a different goal node from the original graph, we cannot use the 

heuristic function in Equation 5.1. 

At any point in the search, we have a set of variables remaining which must form the 

rest of the network. We know the scores which could possibly be used for all the remaining 

variables. By consulting the bit vectors valid at a particular node U, we can identify the 

best scores those variables could possibly have along the path which includes U; that is, 

for all X in U, we can calculate BestScore(X, U). By summing over these scores, we 

can calculate a lower bound on the optimal subnetwork over U, or the distance from U to 

the goal node, i.e., we use the following new heuristic function h∗ . 

Def nition 2 
X 

h ∗ (U) = BestScore(X, U \ {X}). (7.1) 
X∈U 

The heuristic is admissible because it allows the remaining variables to select their opti-

mal parents from among all of the other remaining variables. This has the effect of relaxing 

the acyclic constraint on those variables. The following theorem proves the heuristic is also 

consistent. 
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Theorem 4 h∗ is consistent. 

Proof: For any successor node R of U, let Y ∈ U \ R. We have 

X 
h ∗ (U) = BestScore(X, U \ {X})

X∈U 

X 
≤ BestScore(X, R \ {X}) +BestScore(Y, U \ {Y })

X∈R 

= h ∗ (R) + c(U, R). 

The inequality holds because the variables in R have fewer parents to choose from after 

making Y a leaf. Hence, h∗ is consistent. 2 

Because we do not expand nodes in a best-f rst order, the consistent heuristic does not 

allow us to discard duplicate nodes; however, we can use the heuristic to prune parts of the 

search space which cannot possibly be on the optimal path from the start to the goal node 

(lines 13 - 14). Computing the heuristic for any node U is linear in the number of variables 

remaining in U. 

7.2.4 Repairing Inconsistent Nodes 

Integrating a closed list to maintain hexact within the DFBnB framework greatly min-

imizes the number of node re-expansions that must occur; however, it also causes subtle 

problems when pruning. As mentioned several times, the f rst time we expand a node n 

it may not have its optimal g-cost. We expand n with the discovered g value, g ′ (n). The 

g cost of its successors, g(s) = g ′ (n) + c(n, s), then include the over-estimate present in 

g ′ (n). If the difference between the true g(n) (i.e., the shortest path from the start node 

to n) and g ′ (n) is �g and the difference between the f cost of the current incumbent and 
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f ′ (s) = g ′ (n) + cost(n, s) + h(n) is less than �g, then s will be inadmissibly pruned. 

Furthermore, it could happen that all of s’s predecessors are initially expanded with sub-

optimal g costs and s is always inadmissibly pruned. Because all of s’s predecessors are in 

the closed list, though, they will not be re-expanded. Then, even though s could have been 

a part of the optimal solution, it was never expanded because of inadmissible pruning. 

This is very similar to the problem faced by Anytime WA*, ARA*, AWA* and many 

other best-f rst algorithms which use inadmissible heuristics. Consequently, we adopt a 

similar solution. In constrast to those algorithms, we use a consistent heuristic function; 

however, as described in the example, we can expand a node that has a sub-optimal g-cost. 

During each iteration, we keep a list, similar to the inconsistent list of ARA*, that tracks 

nodes to which we f nd a better path. We do not re-expand nodes immediately. Instead, we 

add them to the list and note the new g cost. Once the current iteration of search f nishes, 

we repair the nodes in the list by expanding them with the new g cost. We repeat this 

iterative process until no nodes are added to the list during an iteration. 

We prefer the DFS strategy to a weighted best-f rst strategy here because it does not 

incur the overhead associated with maintaining a priority queue. Additionally, the DFS is 

guaranteed to f nd the f rst solution on the n + 1th expansion, while the WA*-based algo-

rithms may take longer to generate the f rst solution. Furthermore, the DFS strategy allows 

us to more eff ciently perform the incremental bitwise operations to the sparse parent graph, 

while best-f rst strategies require we start from scratch for each calculation. 
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7.2.5 Advantages of DFBnB 

The DFBnB algorithm offers several advantages compared to A*, BFBnB and other 

structure learning algorithms. Eventually DFBnB will either converge to the optimal so-

lution, or output the best solution found so far whenever it runs out of time or memory or 

has to be stopped early. A* cannot complete if it runs out of RAM. Although BFBnB is 

not restricted by RAM, it is limited by the amount of available hard disk space. On large 

datasets, BFBnB can easily require terabytes of hard disk; if this amount is not available, 

then BFBnB does not return any network. In contrast, even if DFBnB runs out of resources 

before provably f nding the optimal network, it can still output the best network found. 

As we show in Section 7.3, the algorithm has very good anytime behavior compared 

to the branch and bound algorithm of de Campos and Ji [19] and even Optimal Reinser-

tion [64], a local search algorithm. In fact, for many datasets, much of the search time is 

spent simply proving the optimality of the solution. Thus, in paractice, the algorithm can 

often be stopped very early and still give the optimal solution. 

7.3 Empirical Results 

We tested the DFBnB algorithm against several state of the art structure learning algo-

rithms. 

7.3.1 Comparison of Anytime Behavior 

First, we compared the anytime behavior of DFBnB to that of BB and OR on four 

datasets of up to 57 variables: Auto, F lag, W ater and Lung. We chose to compare to BB 
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because of its anytime behavior. We compare to OR as a representative for local search 

techniques because several studies [89, 91] suggest that it performs well on a wide variety 

of datasets. OR has several tunable parameters, including scoring function and maximum 

parent count. The MDL complexity penalty term implemented in DFBnB and BB dif-

fers from that of OR. (Implementations of other local search algorithms, such as sparse 

candidate [36], also varied in calculated scores, even for the same network structure.) To 

account for this difference, the structures learned by OR were rescored with the scores 

used by DFBnB and BB which always assigned the same scores to equivalent structures. 

For a dataset of size N and the MDL scoring function, no variable can have more than 

k = log 2N parents in the optimal network [90]; we used that value of k as the maximum 
log N

number of parents for each dataset. We ran OR with the given parameters. We then plotted 

the scores of the networks learned by each algorithm as a function of time. To perform 

these experiments, we allowed the algorithms to run up to one hour (3600s). The runtimes 

for DFBnB and BB include only the time spent on search; they do not include times to 

calculate the local scores. 

The convergence curves of these algorithms on the datasets are shown in Figures 7.1. In 

these experiments, OR was always the f rst algorithm to terminate. OR terminated because 

it reached a local optimum and was unable to escape. Only once on the water treatment 

dataset did it f nd a slightly better solution than DFBnB. BB did not f nish searching within 

the time limit for any of the datasets. Also, the convergence curves of BB stayed f at for 

all the datasets. That means BB was not able to improve any of the initial solutions found 

by the greedy algorithm it uses to initialize its bound. The true anytime behavior of BB is 
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thus unclear from the results. In comparison, DFBnB f nds all the solutions by itself, so 

its curves provide a reliable indication of its anytime behavior. On all the datasets, DFBnB 

continuously f nds better solutions during the search, and was also able to f nd and prove 

the optimality of its solutions on one of the datasets. On two occasions it was able to f nd 

solutions better than the initial solutions of BB. DFBnB could also benef t from the better 

initial solutions found by the greedy algorithm used in BB. 

7.3.2 Comparison of Running Time 

Finally, we compared the running time of DFBnB to those of DP, BFBnB and BB. 

DFBnB and BB were again given a one hour limit. We let BFBnB and DP run longer in 

order to obtain the optimal solutions for evaluation. For this comparison, we considered 

both the time to f nd the best structure and to prove its optimality by DFBnB and BB. 

The results in Figure 7.2 demonstrate that DFBnB f nds the optimal solution nearly two 

orders of magnitude faster than current state of the art algorithms. Furthermore, DFBnB 

proved the optimality nearly an order of magnitude more quickly when it had enough 

RAM. However, DFBnB does not take advantage of disk. The program stops when its 

hash table f lls RAM, so it is unable to prove the optimality for some of the searches. 

Nevertheless, the search f nds optimal solutions for all but two of the datasets. We verif ed 

this using the results from BFBnB. BB proved the optimality of its solution on only the 

smallest dataset. On all other cases, it did not improve its initial solutions. These echo the 

results of Figure 7.1. BB does not improve its initial solution quickly. DFBnB found better 

solutions than BB on all these datasets. 
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Figure 7.1 

Anytime comparison of DFBnB, OR and BB. 
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Figure 7.2 

Comparison on the runtimes of DP, BFBnB, DFBnB and BB to f nd optimal networks. 
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CHAPTER 8 

THE K-CYCLE CONFLICT HEURISTIC 

All of the proposed algorithms use an admissible heuristic to safely ignore parts of the 

search space. A* uses Equation 5.1 to leave parts of the search space unexpanded, while 

BFBnB uses the same heuristic function to prune away unpromising parts of the search. 

Similarly, DFBnB utilizes Equation 7.1 to prune the reverse order graph. Both of these 

heuristic functions relax the acyclic constraint of Bayesian networks so that each remaining 

variable can freely choose optimal parents from other variables. The heuristic provides 

an optimistic estimation of how good a solution can be and is admissible. This simiple 

relaxation does not consider interactions among the selected parents, though. Therefore, it 

may introduce many directed cycles into the relaxed problem. If a graph has many cycles, 

the bound may be quite loose and limit the effectiveness of pruning. 

In this chapter, we propose a tighter admissible heuristic which considers and elimi-

nates directed cycles within small groups of remaining variables. The resulting technique, 

called the k-cycle conf ict heuristic, is a type of additive pattern database [30]. Pattern 

databases [14] calculate an admissible heuristic value for a problem by solving a relaxed 

version of the problem optimally. The cost of the exact solution of the relaxed problem is 

admissible for the original problem [71]. In general, multiple problems in the original state 

space are relaxed to the same problem. Therefore, the relaxed problems form an abstract 
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state space in which multiple original states map to the same relaxed state. The relaxed 

state is also called a pattern. A pattern database consists of exact costs for the patterns, 

which can be looked up as an admissible heuristic for the original states. For Bayesian net-

work structure learning, a pattern consists of a set of variables. We can then create multiple 

pattern databases by relaxing it in different ways. If a set of relaxed problems have no in-

teractions between them, the costs of the pattern databases can be added together to obtain 

an admissible heuristic, which is why the method is called an additive pattern database. 

Otherwise, the only way to obtain an admissible heuristic is to take the maximum cost of 

the pattern databases. 

We consider two version of the k-cycle conf ict heuristic. The f rst version dynamically 

splits the remaining variables into small groups in an attempt to maximize the heuristic 

value. In the second version, we statically split the variables into groups at the beginning 

of the search and only break cycles among variables in the same group. Both versions of 

the heuristic are adapted to A* and BFBnB. 

8.1 A Motivating Example 

According to Equation 5.1, the heuristic estimate of the start node in the order graph 

allows each variable to choose optimal parents from all the other variables. Suppose the 

optimal parents for X1, X2, X3, X4 are {X2, X3, X4}, {X1, X4}, {X2}, {X2, X3} re-

spectively. The parent sets selected by the heuristic are shown as the directed graph in 

Figure 8.1. Since the acyclic constraint is ignored, directed cycles are introduced, e.g., 

between X1 and X2. However, we know the f nal solution cannot have cycles. Three sce-

91 



narios are possible between X1 and X2 in the optimal Bayesian network: (1) X2 is a parent 

of X1 (so X1 cannot be a parent of X2), (2) X1 is a parent of X2, or (3) neither of them is 

a parent of the other. Therefore, we can break the cycle to achieve a tighter bound. Before 

discussing how to do that, we f rst introduce the following theorem. 

Theorem 5 Let U and V be two candidate parent sets for X , and U ⊂ V, then 

BestScore(X, V) ≤ BestScore(X, U). 

The theorem has appeared in many earlier papers, e.g. [54], and simply means that a 

better score can be obtained if a larger set of parent candidates is available to choose from. 

Due to the theorem, the third case outlined earlier is guaranteed to be worse than the other 

two because one of the variables has fewer parents to choose from. Between the f rst two 

cases it is unclear which one provides a better value, so we take the minimum of them. 

Consider the f rst case: We have to delete the arc X1 → X2 to rule out X1 as a parent of 

X2. After that we have to let X2 to reselect optimal parents from {X3, X4}. The deletion 

of the arc alone cannot produce the new bound; we must check the second best, third best, 

etc., parent sets for X2 until we f nd one that does not include X1. To f nd the total bound 

for X1 and X2, we sum together the original bound for X1 and the new bound for X2. We 

call that b1. The second case is also handled similarly; we call that bound b2. Because the 

total bound for X1 and X2 must be optimistic, we take the minimum of b1 and b2. The new 

heuristic is clearly still admissible, because we still allow cycles among other variables. 

Often, the simple heuristic introduces multiple cycles. The graph in Figure 8.1 has a 

cycle between X1 and X2. It also has a cycle between X2 and X4. Because both cycles 
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X1 X2 

X4X3 

Figure 8.1 

A directed graph representing the heuristic estimate for the start search node. 

include X2, we say they overlap. Overlapping cycles cannot be broken independently. 

For example, suppose we break the cycle between X1 and X2 by setting the parents of 

X2 to be {X3}. Then we also break the cycle between X2 and X4, but introduce a new 

cycle between X2 and X3. As described in more detail below, we group variables together 

and do not break cycles between variables in different groups. So, if X2 and X3 were in 

different groups, we would not break that cycle. 

8.2 Dynamic k-cycle Conf ic Heuristic 

The dynamic k-cycle conf ict heuristic can be calculated by using sparse parent graphs 

to perform a breadth-f rst search through the f rst k layers in the reverse order graph. The 

createDynamicP D procedure of Table 8.1 gives pseudocode for constructing the pattern 

database. A node U in the reverse order graph represents a subnetwork over the variables 
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V \ U in which each variable X selects its optimal parents from among all of the variables 

which are removed after X . We call the sum of these scores as Score ′ U). This score is also 

gives a lower bound for any subnetwork in the forward order graph that does not include 

U. Therefore, the cost for the pattern V \ U is equal to Score ′ (U). We can also evaluate 

the quality of a pattern by comparing the difference between Score ′ (U) and h(U), which 

we call δh(U). A difference of 0 indicates that there is no benef t to using the pattern, so 

the optimal parent selections for the pattern variables do not include any cycles. A large 

difference suggests that the optimal parent selections include cycles, and breaking those 

cycles improves the heuristic. After calculating δh(U) for all subsets of variables up to 

size k, we prune all patterns which do not have a higher δh(U) than any of its subsets. 

The pruning can signif cantly reduce the size of the pattern database, which is important 

when using the dynamic pattern database during the heuristic search. Finally, we order the 

patterns in order of decreasing δh. That is, patterns that offer the most improvement over 

the simple heuristic are f rst in the list. 

Once the dynamic k-cycle conf ict heuristic is computed, we can use it to calculate the 

heuristic value for any node during any of the search algorithms we have presented. For a 

node U in A* or BFBnB, which use the forward order graph, we partition the remaining 

V\U variables into a set of non-overlapping patterns. Because the patterns do not interact, 

we then sum together their cost to f nd the total heuristic value of the node. The algorithms 

require no other modif cations to incorporate the tighter bounds offered by the pattern 

database. 
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Ideally, we would like to f nd the partition with the highest total cost, which corre-

sponds to the tightest heuristic value. We can then f nd the optimal partition by solving 

the maximum weighted matching problem on the graph [30]. For k = 2, we can def ne a 

matching graph in which vertices represent variables and edges between variables have a 

weight equal to the cost of the pattern which comprises those two variables. In this prob-

lem, we select a set of edges from the graph so that no two edges share a vertex and the 

total weight of the edges is maximized. The edges correspond to the patterns we should 

select. The matching problem can be solved in O(n3) time [69], where n is the number of 

vertices. 

Unfortunately, for k > 2, the matching graph contains hyperedges the connect up to k 

vertices to represent the larger patterns. For example, a pattern for three variables would 

induce a hyperedge connecting three vertices. We must again select edges (for patterns of 

size 2) and hyperedges (for larger patterns) that maximize the total weight. The higher-

order maximum weighted matching problems are NP-hard [38]. Therefore, calculating the 

heuristic value optimally would require solving an NP-hard problem for each search node. 

We use a greedy algorithm given in the hdynamic procedure of Table 8.1 to calculate 

the heuristic value to keep the computation eff cient. Assume we must partition U into 

non-overlapping patterns. Because the patterns are sorted by δh, we select the f rst pattern 

P which is a subset of U. We then search for the next pattern which is a subset of U \ P. 

We repeat this process until removing all variables. The total cost of the selected patterns 

is returned as the heuristic value. This method is an example of a dynamically partitioned 

pattern databases [30] because the patterns are partitioned dynamically for each node in 
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an attempt to f nd the tightest possible bound. We refer to this heuristic as the dynamic 

pattern database for short. 

8.3 Static k-cycle Conf ict Heuristic 

Computing the heuristic value for a search node using the dynamic pattern database 

even with the greedy method is much more expensive than the simple heuristic in Equa-

tion 5.1 because the list of patterns is scanned for each node. Consequently, each node 

expansion takes more time, so the total running time can be longer even though the tighter 

heuristic results in more pruning. 

We also designed a statically partitioned pattern database [30] based on the k-cycle 

conf ict heuristic. In this approach, we statically divide all variables into a set of disjoint 

groups at the beginning of the search. Then, we create a pattern database for each group 

using the createStaticP D procedure from Table 8.2. To construct the pattern database for 

a static group Vi, we again use sparse parent graphs to perform a breadth-f rst search in 

the reverse order graph; however, we only consider edges in the reverse order graph which 

correspond to selecting elements of Vi as leaves. In essence, this allows variables in Vi 

to always use X ∈ V \ Vi as candidate parents but detects and eliminates cycles among 

variables in Vi. 

Consider a problem with variables {X1, ..., X8}. We simply divide the variables into 

two equal-size groups, {X1, ..., X4} and {X5, ..., X8}. For each group, say {X1, ..., X4}, 

we create a pattern database that contains the costs of all subsets of {X1, ..., X4} and 

similarly for {X5, ..., X8}. 
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1: procedure CREATEDYNAMICPD(k) 
2: PD0(V) ← 0 
3: �h(V) ← 0 
4: for l = 1 → k do 
5: for each U ∈ PDl−1 do 
6: expand(U, l) 
7: checkSave(U) 
8: PD(V \ U) ← PDl−1(U) 
9: end for 

10: end for 
11: for each X ∈ PD \ save do 
12: delete PD(X) 
13: end for 
14: sort(PD : �h) 
15: end procedure 

16: procedure EXPAND(U, l) 
17: for each X ∈ U do 
18: g ← PDl−1(U) + BestScore(X,U \ {X}) 
19: if g < PDl(U \ {X}) then PDl(U \ {X}) ← g
20: end for 
21: end procedure 

22: procedure CHECKSAVE(U) 
P 

23: �h(U) ← g − BestScore(Y,V \ {Y })Y ∈V\U 
24: for each X ∈ V \ U do 
25: if �h(U) > �h(U ∪ {X}) then save(U) 
26: end for 
27: end procedure 

28: procedure hdynamic(U,X) 
29: h ← 0 
30: R ← U 
31: for each S ∈ PD do 
32: if S ∈ R then 
33: R ← R \ S 
34: h ← h+ PD(S) 
35: end if 
36: end for 
37: return h
38: end procedure 

Table 8.1 

Dynamic k-cycle conf ict heuristic. 
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We store each pattern database as a hash table. Typically, the pattern databases are 

much smaller than the size of the order graph, so there is no need to order or prune the 

patterns. For example, the order graph for a 30 variable dataset has roughly 1 billion nodes 

(230). If we create 3 pattern database of size 10 each, in total, they would only comprise 

about 3 thousand nodes (3 × 210). We refer to this heuristic as the static pattern database 

for short. 

Using the static pattern databases is simpler than the dynamic pattern databases, as 

shown in the hstatic procedure of Table 8.2. For the forward order graph used in A* and 

BFBnB, we partition the variables which have not yet been added as leaves (i.e., V \ U) 

according to the static grouping. We then look up the cost of the patterns in the appropriate 

pattern databases and sum them together. Since each node expansion affects only a single 

node expansion, we can incrementally compute the heuristic value. As with dynamic pat-

tern databases, the algorithms require no other modif cation to incorporate the static pattern 

databases. 

8.4 Advantages of the k-cycle Conf ict Heuristic 

Both version of the k-cycle conf ict heuristic offer obvious advantages to all of three of 

the described algorithms. As described in Sections 8.2 and 8.3, incorporating them into the 

search algorithms requires little additional effort, in terms of code complexity, additional 

runtime and memory overhead. As we show in Section 8.5, their tighter bound reduces the 

number of nodes expanded by A* and increases the number of nodes pruned by BFBnB. 

These result in improved runtimes and memory usage for all of the algorithms. 
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Table 8.2 

Static k-cycle conf ict heuristic. 

1:  procedure CREATESTATICPD(Vi) 
2: i (Vi) ←PD0  0 
3: for l = 1 → |V| do 
4: ifor each U ∈ PDl−1 do 
5: expand(U, l)
6: PDi(Vi \ U) ← iPDl (U)−1

7: end for 
8: end for 
9: end procedure 

10: procedure EXPAND(U, l) 
11: for each X ∈ U do 

S 
i12: g ← PDl (U) +BestScore(X, U \ {X} Vj)−1 j=i

13: if g < i(U i(UPDl \ {X}) then PDl  \ {X}) ← g 
14: end for 
15: end procedure 

16: procedure hstatic(U, X) 
17: h ← 0
18: for each Vi ∈ V do 
19: h ← h + PDi(U ∩ Vi)
20: end for 
21: return h 
22: end procedure 

6
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8.5 Empirical Results 

We tested the k-cycle conf ict heuristic on the A* and BFBnB algorithms by comparing 

to the heuristics given in Equation 5.1. In all cases, we used sparse parent graphs. The 

experiments were performed on a PC with 3.07 GHz Intel i7 processor, 16 GB of RAM, 

500 GB of hard disk space, and running Ubuntu 10.10. We used benchmark datasets from 

the UCI machine learning repository [33] to test the algorithms. For all the datasets, records 

with missing values were removed. All variables were discretized into two states around 

means. 

8.5.1 Improvement from the Pattern Database Heuristics 

The k-cycle conf ict heuristic has two versions: dynamic and static; each of them can be 

parameterized in different ways. We applied various combinations of the new techniques 

to A* and BFBnB on the datasets Autos and Flag. For the dynamic pattern database, 

we varied k from 2 to 4. Empirically, the performance of larger values of k deteriorated 

quickly (results not shown). For the static pattern databases, we tried groupings 9-9-8 and 

13-13 for the Autos dataset and groupings 10-10-9 and 15-14 for the Flag dataset. We 

selected these groupings because they result in roughly equally-sized pattern databases for 

each grouping. Felner et al. [30] used a similar grouping scheme for computing a static 

pattern database for the sliding tile puzzle. The results are shown in Table 8.3. 

Both the static and dynamic pattern databases helped both algorithms improve their 

eff ciency and scalability. A* with both the simple heuristic and the static pattern database 

with grouping 10 − 10 − 9 ran out of memory on the Flag dataset. The other pattern 
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database heuristics enabled A* to f nish successfully. The dynamic pattern database with 

k = 2 signif cantly reduced the number of nodes expanded for all algorithms, and k = 3

usually granted further improvement. Further increasing k to 4 was not as benef cial, 

though; often the runtime increased, and sometimes more nodes were expanded. The 

longer running time, even when the total number of nodes expanded is reduced, results 

because of the larger size of the pattern database. Our greedy scanning method to calculate 

the heuristic is linear in the size of the pattern database. Therefore, larger databases in-

crease the time required to compute the heuristic. That ineff ciency gradually outweighed 

the benef t brought by the tighter heuristic. The greedy scanning technique also explains 

the occasional increase in expanded nodes from k = 3 to k = 4. Given an optimal 

partitioning of the remaining variables, we believe that larger k always results in a bet-

ter (or at least the same) heuristic. However, the greedy partitioning may leave many 

variables nearly unconstrained. For example, suppose the remainig variables for a node 

in the search are {X0, X1, X2, X3, X4} and that the optimal partition is {X0, X2, X4}, 

{X1, X3}. If δh({X2, X3}) > δh({X0, X2, X4}), though, the greedy partitioning could 

result in {X2, X3}, {X0}, {X1}, {X4}. That is, X0, X1 and X4 are unrestricted in their 

choice of parents. Based on these results, we concluded that k = 3 is the best parametriza-

tion for the dynamic pattern database. 

For the static pattern databases, we were able to test much larger groups because we 

do not enumerate all subsets up to size k like the dynamic pattern database does. Rather, 

we enumerate the subsets of each grouping of variables. The results suggest that larger 
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groupings tend to result in tighter heuristic values because fewer nodes were expanded 

when using the larger groupings. 

The sizes of the static pattern databases are typically much larger than the dynamic 

pattern databases. However, they are still quite small in comparison to the number of 

expanded nodes in all cases, so it is cost effective to try to compute larger pattern databases 

to achieve better search eff ciency. The results show that the best static pattern databases 

typically helped all three algorithms to achieve better time eff ciency than the best dynamic 

pattern database. Sometimes the better time eff ciency is achieved when the number of 

expanded nodes is larger for the static pattern databases. Again, the reason is calculating 

the heuristic value for a node is more eff cient in the static pattern databases. Therefore, 

the selection between static and dynamic pattern databases embodies a space-time tradeoff. 

These results mirror those for using additive static and dynamic pattern databases for the 

sliding tile puzzle [30]. 

8.5.2 Results on Other Datasets 

Since static pattern databases resulted in faster runtimes than dynamic pattern databases, 

we compared the algorithms with a static pattern database to the original heuristic func-

tions on all the datasets. We used the grouping of ⌈n
2 ⌉−⌊n

2 ⌋ for the static pattern databases 

on all the datasets, where n is the number of variables. The results are shown in Table 8.4. 

For the BFBnB algorithm, the static pattern database reduced the number of nodes ex-

panded by up to 5 times on some databases. The improvements were more modest on oth-

ers, though. There are several explanations for the limited improvement on those datasets. 
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Table 8.3 

A comparison of BFBnB and A* with various heuristics on Auto and F lag. 

Pattern Database 
Dataset Type Size 

BFBnB 
Time (s) Expanded 

A* 
Time (s) Expanded 

Autos Simple 26 461 62,721,601 674 35,329,016 
Auto Dynamic, k=2 41 449 52,719,793 148 6,286,142 
Auto Dynamic, k=3 116 468 49,271,809 76 2,829,877 
Auto Dynamic, k=4 582 699 48,057,205 67 2,160,515 
Auto Static, 9-9-8 1,280 495 57,002,715 228 9,763,518 
Auto Static, 13-13 16,384 211 48,814,334 125 4,762,276 
Flag Simple 29 OT OT OM OM 
Flag Dynamic, k=2 45 1,222 132,431,610 824 19,359,296 
Flag Dynamic, k=3 149 788 79,332,390 207 5,355,085 
Flag Dynamic, k=4 858 1,624 84,054,443 350 7,377,817 
Flag Static, 10-10-9 2,560 2,600 249,638,318 OM OM 
Flag Static, 15-14 49,152 720 88,305,173 136 4,412,232 
Size means the number of patterns stored. Time means the running time (in sec-
onds). Nodes means the number of nodes expanded by the algorithms. OT means 
the algorithm fails to f nish within a 1-hour time limit set for this experiment. OM 
means the algorithm used up all the RAM. 
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First, the amount of pruning for BFBnB hangs heavily on the quality of the given upper 

bound. As described in Section 6.1, we use a tabu hill climbing algorithm with random 

restarts to f nd the upper bound for pruning. While this algorithm has been shown to have 

good performance on many datasets, it offers no quality guarantees. Therefore, many extra 

nodes may be expanded because of the quality of the initial bound. Furthermore, as Vidal 

et al. [94] point out, some search problems are “easy”; others, because of characteristics 

of the particular dataset, are “hard”. (They mean “easy” or “hard” in the sense of relative 

diff culty, not in the sense that some are NP-hard and others are not.) In the case of “hard” 

datasets, even a good heuristic, such as our pattern databases, may not guide the search 

very well. Additionally, some of the datasets may be “easy” because the original heuris-

tic is already tight. In these cases, the pattern databases do not improve the already tight 

bound. 

The benef ts of the new techniques are more obvious when applied to the A* algorithm. 

For the datasets on which the original A* algorithm was able to f nish, the improved A* 

was up to one order of magnitude faster; the number of expanded nodes is also signif cantly 

reduced. In addition, the improved A* was able to solve three other datasets: Sensor 

Readings, Autos, and Flag. The running time on each of those datasets is pretty short, 

which indicates that once the memory consumption of the parent graphs was reduced, the 

A* algorithm was able to use more memory for the order graph and solved the search 

problems pretty easily. 
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Table 8.4 

A comparison of BFBnB and A* on several datasets using static pattern databases. 

Dataset 
Name n N BFBnB 

Results 
BFBnB (SP) A* A* (SP) 

Hepatitis 20 126 Time (s) 
Nodes 

9 
610,974 

1 
129,889 

6 
411,150 

0 
8,565 

Parkinsons 23 195 Time (s) 
Nodes 

100 
8,388,607 

19 
4,646,877 

100 
8,388,607 

15 
1,152,576 

Robot 25 5,456 Time (s) 
Nodes 

632 
33,554,431 

3,121 
33,554,430 

OM 
OM 

731 
3,286,650 

Auto 26 159 Time (s) 
Nodes 

1,170 
53,236,395 

211 
48,814,295 

OM 
OM 

111 
4,762,276 

Horse 28 300 Time (s) 
Nodes 

4,221 
268,435,455 

678 
74,204,000 

OM 
OM 

OM 
OM 

Steel 28 1,941 Time (s) 
Nodes 

7,913 
268,435,455 

4,544 
264,887,347 

OM 
OM 

OM 
OM 

Flag 29 194 Time (s) 
Nodes 

12,902 
354,388,170 

421 
88,305,173 

OM 
OM 

147 
4,412,232 

WDBC 31 569 Time (s) 
Nodes 

93,382 
1,353,762,809 

26,196 
273,746,036 

OM 
OM 

OM 
OM 

For the static pattern databases, groupings were ⌈n
2 ⌉−⌊n

2 ⌋, where n is the number 
of variables, and sparse representation of parent scores (denoted by SP) against 
the original versions of these algorithms. n is the total number of variables. N is 
the number of data points. 

105 



CHAPTER 9 

BOUNDED ERROR, ANYTIME, PARALLEL SEARCH 

All of the algorithms presented so far execute serially. However, modern worksta-

tions often include 4, 8 and even up to 16 cores. Furthermore, manufacturers are rapidly 

approaching the physical barriers of how small they can produce microchips that behave 

reliably. Additionally, traditional shared memory architecture supercomputers are grad-

ually being replaced by more cost-eff cient, distributed memory clusters. According to 

the TOP500 list of fastest supercomputers in the world based on the HPL benchmark, the 

fastest three supercomputers (as well as many others) use a distributed memory model. For 

example, the K computer, currently ranked the fastest supercomputer, only allocates 16 GB 

of RAM for each core and offers no shared memory [97]. Message passing is necessary to 

exchange information between the cores. 

Tamada et al. [88] have developed a parallel structure learning algorithm based on dy-

namic programming in the forward order graph using full parent graphs. In particular, 

in their distributed memory algorithm, they minimize the amount of communications re-

quired between processors by maximizing the overlap between subsets calculated at each 

processor. They begin with the observation that calculating Score(U) requires Score(U \ 

{X}) for all X ∈ U. For example, suppose A = {X0, X1, X2}. Then calculating 

Score(A) requires Score({X0, X1}), Score({X0, X2}) and Score({X1, X2}). Further, 
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suppose that B = {X0, X2, X3} and C = {X0, X1, X3}. So calculating Score(B) requires 

Score({X0, X2}), Score({X0, X3}) and Score({X1, X3}), and calculating Score(C) re-

quires Score({X0, X1}), Score({X0, X3}) and Score({X1, X3}). Therefore, if a particu-

lar processor has the 5 necessary Score(·) values from layer 2, then it can reuse them to cal-

culate all 3 new Score(·) values for layer 3. Sets that have many variables in common can 

reuse more scores than those that do not. On the other hand, consider D = {X4, X5, X6}. 

None of the earlier scores necessary for its calculation overlap those of A. The intuition 

of their algorithm is to group sets with many overlapping variables on the same proces-

sor. They propose an indexing function which partitions variables in such a manner that 

provably maximizes the overlap among sets at the same processor. Consequently, it also 

provably minimizes the communication overhead and redundant communication. A key 

shortcoming of this parallel algorithm is its lack of anytime behavior. As with other dy-

namic programming algorithms [68, 84, 82, 59], this algorithm does not output any net-

work until outputting the best network at the end of the search. The authors also note that, 

for large networks, despite minimizing communication, their MPI communication time 

still accounted for over 80% of the runtime. 

9.1 Parallel Best-First Search 

The heuristic search community has also developed a number of search algorithms 

that incorporate parallelism in a variety of ways. Many of those algorithms are based on 

best-f rst search. 

107 



9.1.1 Parallel Window Search 

Parallel window search [76] is one of the oldest parallel search algorithms. It is an 

extension of iterative deepening A* (IDA*) [50]. IDA* is a limited-memory version of the 

A* algorithm in which the algorithm is given a threshold t. A normal depth-f rst search is 

then started from the start node; however, nodes whose f -cost exceeds t are pruned. If no 

goal node is found, the search begins again with a larger value of t. This process continues 

until a goal node is found. Asymptotically, IDA* expands the same number of nodes as 

A* for a tree search [50]. In practice, though, the search iterations which do not f nd a goal 

node can be time consuming [76] because each iteration is carried out serially. 

The parallel window search algorithm distributes the execution of a number of IDA* 

processes, each with a different threshold, to different cores. In this manner, the running 

time of the parallel algorithm is only dependent on the time of the IDA* process with the 

smallest threshold that includes a goal node. If a process completes without f nding a goal 

node, it restarts the search using a higher threshold than any of the other processes. 

9.1.2 Parallel Retracting A* 

Parallel retracting A* (PRA*) [28] and hash distributed A* (HDA*) [45] also extend 

best-f rst heuristic search to multiple cores. In these algorithms, a hash function is used to 

assign each node in a search space to a process. As a simple example, we could represent a 

node in the order graph using a bit vector in which the presence of a set bit indicates the re-

spective variable is present in the subset and treat the resulting bit vector as a numeric data 

type (e.g., long). So we could represent the subset {X0, X3} as the bit vector {1, 0, 0, 1} 
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which corresponds to the number 9. For our hash function, we could take the modulus of 

the number and the number of processes. If we had four processors, then {X0, X3} would 

be mapped to processor 9%4 = 1. Each processor has its own open and closed lists which 

contain only nodes which the hash function maps to it. In parallel, each processor expands 

a node, uses the hash function to determine where to send all of the successors and uses a 

message passing scheme to send the successors to the appropriate processors. PRA* syn-

chronously expanded nodes, so as soon as it would expand a goal state, the search ceases. 

The synchronicity introduces overhead, however. To address that overhead, HDA* used 

asynchronous message passing. However, with this strategy, expanding a node does not 

necessarily mean the best path to it has been found. For example, a better predecessor 

could be “in transit”. Consequently, HDA* may need to re-expand nodes. Similarly, after 

expanding a goal state, it must ensure that no better paths were available but had not yet 

been expanded because of the non-determinism introduced by parallel execution. 

9.1.3 Adaptive k-Parallel Best-First Search 

Adaptive k-parallel best-f rst search [94] is another approach to parallelize A* search. 

It is a parallel adaption of the k best-f rst search (KBFS) algorithm [31] for multi-core, 

shared memory architectures. The sequential version of KBFS proceeds much like a typical 

best-f rst search algorithm; however, at each step, rather than expanding the single best 

node, the k best nodes are expanded. Their successors are added to the open list, and the 

next iteration of the algorithm begins. The parallel version of KBFS observes that this 

process is easily parallelized by expanding the best k nodes in separate processes. In their 
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implementation of parallel KBFS, Vidal et al. [94] assume only one open and closed list 

(each) exist in shared memory. Therefore, access to these data structures is regarded as a 

critical section of the code; that is, only a single process can modify the data structures at 

once. Consequently, access to the open and closed lists is a bottleneck for their algorithm. 

Based on that, the authors suggest that, like KBFS, their algorithm is more useful when 

node expansions are expensive. They also focus on sub-optimal planning using a non-

admissible heuristic. 

Initial experiments revealed that many problems did not benef t from the parallelism. 

The authors observe that many of these problems are “easy”, while others that do benef t 

from the parallelism are “hard.” (This is only in the sense of relative diff culty, not that some 

of the problems are NP-hard and others are not.) The overhead associated with parallelism 

often trumps any benef ts for the “easy” problems. Based on these observations, the authors 

devised a scheme in which the number of threads is increased as the algorithm determines 

that a problem is “hard.” They assume that node expansions determine the diff culty of the 

problem. For up to 50 node expansions, only a single thread is used. Four threads are used 

for up to 400 nodes, 8 for 3,000 nodes, 16 threads for up to 20,000 nodes, 32 threads up 

to 100,000 nodes, and 64 threads are used for the remainder of the search. The authors 

also observed that restarting the search after increasing the number of threads improved 

the diversity of nodes expanded, which is important for sub-optimal search. 
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9.1.4 Parallel Structured Duplicate Detection and Parallel Best-NBlock First Search 

Parallel structured duplicate detection (PSDD) [107] and Parallel Best-NBlock-First 

(PBNF) [7] parallelize the structured duplicate detection (SDD) algorithm [105]. In SDD, 

a projection function, p is used to map a concrete state of a state space into an abstract 

state in an abstract state space. An nblock is the set of all nodes that map to the same 

abstract state. A node x ′ is a predecessor of y ′ in the abstract state space iff there exist 

nodes x and y in the original state space such that x is a predecessor of y and p(x) = x ′ 

and p(y) = y ′ . The duplicate detection scope of a node x in the original state space is all 

y ′ in the abstract state space such that y ′ is a successor of p(x). When expanding x, only 

nodes in its duplicate detection scope need to be checked for duplicates. This generalizes 

to all nodes in the nblock given by p(x). Originally, SDD used this strategy to reduce 

the RAM requirements for breadth-f rst search. In particular, when expanding nodes in a 

particular nblock, only its successors in the abstract state space need to be in RAM at once. 

PSDD adds parallelization to SDD. In particular, if the duplicate detection scope of two 

nblocks does not overlap, they can be expanded at the same time without risk of generating 

successors in the same nblock. The algorithm uses a single lock on the abstract state graph 

to indicate which nblocks are being expanded or in the duplicate detection scope of another 

abstract state being expanded. An nblock can be expanded when neither it nor anything in 

its duplicate detection scope is used by another process. PSDD expands nodes in a breadth-

f rst order. PBNF also adopts SDD, but expands nodes in a best-f rst order. Similar locking 

mechanisms are used as in PSDD; however, a data structure is also used to indicate the 

lowest f value of a node in each free nblock (i.e., one that is not being expanded or in the 
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duplicate detection scope of an nblock that is being expanded). A processor expands nodes 

in its current nblock until it encounters a node with a higher f value than the lowest f value 

of a free n block. The process will then expand nodes from the new nblock. Speculative 

expansion is used to ensure processors are not idle and do not incur too much overhead 

swapping between nblocks. 

9.1.5 Parallel Frontier A* with Delayed Duplicate Detection 

Frontier A* (FA*) search [49] is an approach to best-f rst search in which a closed list 

is not used. Rather, only the open list is kept in RAM for duplicate detection. Each node in 

the open list is annotated with a set of used operator bits indicating which of its neighbors 

have already been expanded. Nodes are expanded in a best-f rst order, so if a neighbor of 

a node has already been expanded, there is no need for it to be re-generated. As described 

in Section 6.4, delayed duplicate detection [51] is a strategy in which external memory is 

used to store nodes generated at a particular layer of a search. External-memory sorting, 

such as merge sort [37], is used to sort nodes and remove duplicates. Niewiadomski et 

al. [66] present an algorithm the incorporates both FA* and DDD. They address the “leak 

back problem” [51] in which nodes may be re-expanded by using two types of closed lists. 

The ClosedIn list maintains edges from non-closed to closed nodes, while the ClosedOut 

list maintains edges from closed to non-closed nodes. Generated nodes are added to the 

Open list if they are not in ClosedIn. 

To parallelize FA*-DDD, they also assign an integer to each node. Nodes are dis-

tributed to processors according to their integer values. The parallel algorithm consists 
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of f ve phases. In the f rst, processors communicate the number of nodes which have the 

global minimum f value and transfer nodes based on their integer values. Next, the pro-

cessors expand their nodes which have the global minimum f value. Third, the algorithm 

determines how to distribute nodes based on the range of integer values. Then, the pro-

cessors determine the next lowest global minimum f value. Finally, information from the 

previous iteration is deleted and the algorithm begins with the f rst step again. 

9.1.6 Parallel Dovetailing 

Parallel dovetailing [92] is another parallel search technique in the same vein as paral-

lel window search. Valenzano et al. [92] observe that many sub-optimal search algorithms 

require some sort of parameter conf guration. For example, IDA* requires the threshold, 

weighted A* requires the weight to use, beam search requires the size of beam to use 

and KBFS requires k. Adaptive parallel KBFS showed a method by which k is updated 

throughout the search. In contrast, parallel dovetailing begins by selecting a variety of pa-

rameter conf gurations and running each conf guration at the same time in parallel. Thus, 

parallel window search is a special case of parallel dovetailing specif c for IDA* and con-

sidering only the threshold as a parameter. The authors point out, though, that other, more 

subtle design decisions can affect the algorithm performance. For example, the order in 

which successor generation operators are applied can greatly impact the runtime behavior 

of an algorithm. As presented, each algorithm conf guration runs in parallel until any of 

them reach a solution, regardless of its optimality. At that point, a message is broadcast to 
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all running tasks that a solution has been found and the search can stop. Because of this 

behavior, the version of parallel dovetailing presented is applicable to sub-optimal search. 

9.2 BEAP Search Algorithm 

Based on the limitations of the parallel dynamic programming algorithm of Tamada 

et al. and the results of parallel best-f rst heuristic search, we developed a bounded er-

ror, anytime, parallel (BEAP) search algorithm. This algorithm is an example of parallel 

dovetailing [92] using WA* (see Section 7.1.1). In this algorithm we select a range of ǫ 

values and run one WA* process for each value in parallel. We adapt the A* algorithm in 

Table 5.1 into WA* by passing ǫ as an additional input to the algorithm. The only change 

required to the algorithm is that, when calculating h in Line 20, we multiply the value by 

ǫ. This works with both the simple heuristic given in Equation 5.1 as well as with pattern 

databases. There is no communication between the processes, so they do expand some of 

the same nodes. 

The anytime behavior of the parallel algorithm results because, as the WA* instances 

complete, their solutions give an upper bound on the optimal score of the Bayesian net-

work. Typically, instances with large ǫ values f nish very quickly, but the scores of the 

learned network are high (always bounded by ǫ, though). Instances with lower ǫ values 

f nish more slowly, but have better scores. Therefore, as the search progresses and WA* 

instances complete, the upper bound improves. Finally, the completion of an instance in 

which ǫ = 1, which we denote as ǫ1, gives the provably optimal network. 
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As each instance of WA* completes, the quality of the solution is bounded by ǫ. Conse-

quently, as more instances complete, the provable bound between the optimal network and 

the best learned network decreases. Running ǫ1 offers another way to calculate a bound on 

the error, though. Because ǫ1 does not weight the heuristic, it is guaranteed to be admissi-

ble since we use admissible heuristics in our search. Coupled with the best-f rst expansion 

policy, no optimal network could possibly have a score better than the f cost of the most 

recently expanded node of ǫ1, so that serves as a lower bound on the optimal network 

score. Also, that lower bound is guaranteed to increase (or stay the same) with each node 

expanded in ǫ1 because of the best-f rst expansion. Therefore, the ratio between the score 

of the best learned network and the f cost of the most recently expanded node of ǫ1 gives 

another bound on the solution quality. As shown in Section 9.4, the ratio bound is often 

tighter than the bound guaranteed by ǫ of the other instances of WA*. 

9.3 Advantages of BEAP 

The BEAP algorithm has several advantages compared to other parallel Bayesian net-

work structure learning algorithms. First, it has very little communication overhead be-

cause each WA* process uses a different ǫ; the processes do not communicate. The limited 

communication ensures that runtime is not wasted passing messages or waiting for syn-

chronization, which plagued the parallel DP algorithm [88]. Second, a proper range of ǫis 

gives the parallel algorithm very good anytime behavior. The parallel DP algorithm [88] 

does not have anytime behavior at all. 
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BEAP also has some similarites to, and advantages over, several serial anytime search 

algorithms, including AWA* [41] and Anytime Repairing A*(ARA*) [58]. All three al-

gorithms use a weighted heuristic to provably bound the error of solutions. BEAP offers 

advantages over these serial anytime search algorithms, though. First, BEAP re-expands 

nodes in parallel rather than serially. Second, in order to calculate a tighter bound than that 

given by ǫ, AWA* and ARA* must search through the open list and calculate the true f 

value of each node. In constrast, BEAP simply uses the f value of the most recently ex-

panded node of ǫ1. Third, unlike ARA*, BEAP does not require any data structures other 

than those normally required by A*. Like AWA* and ARA*, though, BEAP is a general 

purpose search algorithm that could be applied to any heuristic search problem, not just 

structure learning. 

9.4 Experimental Results 

We evaluated BEAP on a set of benchmark datasets from the UCI repository [33]. For 

all datasets, we removed records with missing values and discretized all variables into two 

states. The experiments were performed on a PC with 3.07 GHz Intel i7 processor and 16 

GB of RAM. We compared BEAP to BB and a custom implementation of AWA*. The 

AWA* implementation is a straight-forward adaptation of the existing A* algorithm [102]. 

Even though they are anytime algorithms, we did not compare to any local search algo-

rithms because they do not give an error bound. For BEAP, we used four different values 

of ǫ: 1.2, 1.08, 1.04 and 1. We empirically determined that ǫ > 1.2 did not improve 

learning. We allowed all algorithms a total execution time of 30 minutes, not including 
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local score calculations. BB and AWA* are sequential, so we gave them 30 minutes of 

wall clock time. Since BEAP used four processes (one for each value of ǫ), we gave it 7.5 

minutes of wall clock time, so its total time was also 30 minutes. Each BEAP process had 

4 GB of RAM. 

9.4.1 Node Expansions 

We f rst evaluated the number of nodes expanded by BEAP for each value of ǫ. The 

results in Figure 9.1 show that the algorithm typically found high quality solutions quickly. 

The f gure also sheds insight into several characteristics of the search algorithm. 

First, the searches with high ǫ, usually expand a very small number of nodes. For ex-

ample, on f ve of the datasets, the process with ǫ = 1.2 expands the minimum number of 

nodes possible to f nd a solution (n + 1). This takes only a fraction of a second; that pro-

cessor is idle for the rest of the search. This behavior suggests that a scheme similar to that 

in parallel window search [76] could be used to more fully utilize the available resources. 

In particular, that processor could then begin a search with a weight of, for example, 1.06. 

If another processor f nished, it could search with a weight of 1.03. Completion of these 

searches would give tighter bounds. 

Second, the f gure suggests that, like other combinatorial optimization problems, struc-

ture learning has a critical point [103]. A critical point for a problem is a point at which 

the problem diff culty undergoes a major change. For example, the problem of f nding an 

optimal path to a goal node in a random tree is polynomial if the probability that any node 

has a zero-cost edge to a successor is greater than 1, but exponential otherwise [61]. Mov-
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Figure 9.1 

Order graph nodes expanded for each dataset and value of ǫ by BEAP. 

ing across this critical point is called a phase transition. Based on Figure 9.1, the critical 

point for structure learning appears to be between 8% and 4% of optimal. Nearly all of the 

instances for ǫ = 1.08 complete quickly; however, over half fail for ǫ = 1.04. These results 

indicate that f nding a network that is 8% of optimal is much easier than f nding one that is 

4% of optimal. 
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Convergence behavior or BEAP and BB. 
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9.4.2 Comparison of Anytime Behavior 

We next compared the convergence and anytime behavior of BEAP compared to BB. 

As the convergence curves in Figure 9.2 show, BEAP f nds provably high quality solutions 

very quickly on all of the datasets. For both F lag and SP ECT F , within 2 seconds of 

wall clock time (8 seconds of total computing time), BEAP found networks with scores 

provably within 2.5% of optimal. The curves demonstrate that BEAP and BB improve 

error bounds differently. BB never improves its initial solution, but spends the entire 30 

minutes improving its lower bound. As BEAP processes complete and ǫ1 expands more 

nodes, both upper and lower bounds improve. 
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9.4.3 Comparison of Solution Quality 

Finally, we compared the solution quality of BEAP to AWA* and BB by comparing 

their upper and lower bounds. As Figure 9.2 shows, BEAP almost always f nds a solu-

tion with a tighter error bound than the other algorithms. BEAP is the only algorithm 

which f nds and proves the optimal structure on any of the datasets. It found tighter solu-

tions than AWA* because BEAP never re-expands nodes within the same process; AWA* 

must re-expand a node each time it f nds a better path to it. BB searches in the space of 

cyclic graphs, so these results suggest that the heuristic search formulation more effectively 

guides the algorithm to higher quality solutions than breaking cycles. 

The bounds for BEAP are always better than the best ǫi that was solved (shown in 

Figure 9.1). This shows that the bound given by the ratio between ǫ1 and the best solution 

is always tighter. 

For all algorithms, these results compare very favorably to those for parallel DP [88]. 

That algorithm took 483,874 seconds to f nd the optimal network for a 32 variable dataset. 

Of that time, 392,186 seconds were spent in MPI communication. Their algorithm also 

required 836.1 GB of RAM. In contrast, our algorithm used at most 16 GB, and typically 

less than 8 GB, which is an improvement of nearly two orders of magnitude. 
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Figure 9.3 

The solution quality of networks learned by AWA*, BEAP and BB. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have presented a novel heuristic graph search perspective for 

learning optimal Bayesian network structures. In the section, we review the contributions 

of this dissertation. We then describe some avenues for future work. 

10.1 Contributions 

We have made the following contributions: 

• cast an existing dynamic programming formulation of structure learning into the 
context of heuristic graph search; 

• formulated eff cient data structures and representations to calculate and store infor-
mation necessary in the search; 

• given a lower bound function that can be used to guide the heuristic search, thereby 
ignoring nodes the existing dynamic programming algorithms waste time and mem-
ory expanding and storing; 

• shown how to effectively leverage the regular structure of the search graph to dis-
card information once it is no longer necessary and use external memory when the 
problem size grows too large to f t into RAM; 

• developed anytime algorithms that can both f nd good networks quickly and, given 
enough time, f nd provably optimal networks; 

• improved upon the lower bound function using pattern databases to calculate much 
tighter bounds, which allow us to solve larger problems more quickly; 

• demonstrated how simple parallel algorithms can quickly f nd provably high quality 
algorithms using orders of magnitude less resources than existing parallel optimal 
learning algorithms. 
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We tested all of our algorithms on a variety of commonly used machine learning bench-

mark datasets against current state of the art algorithms. In most cases, we showed that our 

algorithms outperformed existing methods by running faster, using less memory and f nd-

ing better solutions more quickly. 

Improving the scalability of optimal structure learning algorithms has many practical 

applications. Learning regulatory networks is a very active area of research in compu-

tational biology, and our rigorously grounded learning methods can replace many of the 

ad-hoc programs currently in use [96, 9, 98, 77]. Optimal algorithms remove the uncer-

tainty associated with structure learning and allow the biologists to focus on interpretting 

the results. Similarly, as discussed in Section 2.3.2, there are many choices for scoring 

functions when learning Bayesian networks. Optimal structure learning algorithms allow 

researchers to directly evaluate the merits of each scoring function by, for example, com-

paring a learned network to a gold standard network using structural hamming distance [91] 

or KL divergence [52]. 

10.2 Future Work 

This work can be extended in several different ways. 

Hybrid Search Techniques Throughout this dissertation, we have focused only on un-

constrained score-based learning methods. That is, we always search for a network that op-

timizes the given scoring function; however, another class of algorithms known as constraint-

based algorithms [85] are also used to learn Bayesian network structures. Constraint-based 
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algorithms begin with a set of conditional indepence tests to establish the relationships 

among the variables. Then, based on the results of the tests, edges are added to the net-

work in a manner to satisfy as many of the tests as possible. Typically, constraint-based 

algorithms only require a polynomial number of tests. Compared to the exponential search 

space for score-based algorithms, this seems like an improvement. Unfortunately, the 

constraint-based searches are very susceptible to noisy and small datasets because they 

reduce the reliability of the independence tests. 

Recently, several hybrid algorithms [91, 73, 47] have been proposed which incorporate 

elements of both constraint- and score-based methods. They begin with a set of condi-

tional independence tests to establish a super-structure skeleton for the network. That is, 

edges in the super-structure are not directed, but only edges present in the super-structure 

may appear in the f nal network. The Max-Min Hill Climbing algorithm (MMHC) [91] 

then performs a greedy hill climbing search in the space restricted by the super-structure. 

As with any greedy hill climbing search, there are no quality guarantees for the learned 

network. The constrained optimal search (COS) [73] and ancestral constrained optimal 

search (ACOS) [47] also begin with a set of conditional independence tests to identify a 

super-structure. However, they then use dynamic programming to guarantee to f nd the 

optimal network that adheres to the super-structure. 

The conditional independence tests and resulting super-structure can greatly reduce the 

size of the search space of possible network structures. As we have shown, though, our 

heuristic search algorithms outperform dynamic programming in a number of measures, 

including running time, memory usage and anytime behavior. We could easily apply our 
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algorithms to the space restricted by the super-structure. A more interesting extension 

could relate to the phase transitions discussed in Section 9.4.1. It is possible that a phase 

transition exists based on properties of the super-structure. Because the signif cance cutoffs 

of independence tests is always a user-supplied value, they could always be specif ed in a 

manner to keep the problem on the “easy” side of the critical points. Some early results [67] 

suggest that state spaces induced by super-structures have phases in which structure learn-

ing is linear if both treewidth and the maximum degree of the super-structure are bounded 

by arbitrary constants. 

Expert Knowledge Super-structures are one way to introduce constraints into structure 

learning. For many f elds, such as computational biology, a massive amount of data is 

available which could potentially help in structure learning. For example, due to wet lab 

experiments, we may know that X should be a parent of Y . de Campos and Ji’s branch 

and bound algorithm [19] can use simple constraints; however, no dynamic programming-

based algorithms can currently take advantage of structure constraints. Incorporating these 

into structure learning should reduce both the time and memory requirements by pruning 

parts of the search inconsistent with the constraints. 

Score Calculations Currently, all optimal structure learning algorithms assume all nec-

essary local scores are pre-computed and easily accessible. We showed in Section 6.3 how 

to store the scores on disk if necessary and nodes are expanded in lexicographic order; 

however, because of the eff cient AD-tree-like search, we must store all scores in RAM 

at least during the score calculation phase. It may be possible to use a form of delayed 
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duplicate detection in which scores are periodically written to disk and summed together 

at the end of the search if they cannot all f t in RAM. 

Tian [90] and de Campos and Ji [19] give results for pruning scores without needing 

to actually calculate them. In that sense, then, those pruning results are more helpful than 

Theorem 1 because it still requires the score be calculated before it can be pruned. Because 

we incrementally calculate scores using the AD-tree-like search, we cannot effectively take 

advantage of these results. An alternative to our incremental calculation strategy would be 

to store an actual AD-tree in memory and calculate the scores one at a time. de Campos and 

Ji’s implementation adopts this approach. In practice, even though their implementation is 

in C++ and ours is in Java, the incremental calculation strategy signif cantly outperforms 

the one at a time strategy, even though it allows more pruning (see, for example, Sec-

tion 5.5). The dynamic programming algorithm of Silander and Myllymaki [82] also uses 

an incremental calculation strategy. 

However, a super-structure induced reduced space of networks would allow even more 

pruning, as would expert knowledge. Moore and Wong [64] use RADSEARCH [63] to 

make the score calculations for optimal reinsertion more eff cient. A similar approach 

could allow more pruning during score caclulation rather than having to wait until after 

the scores are calculated to prune. This improvement could benef t all optimal structure 

learning algorithms since they all require local scores. 

Publication Parts of this dissertation have been published in the the following con-

ference papers: [102, 59, 60]. The rest of it has been submitted to either journals or 

conferences and is under review (as of June 7, 2012). 
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