
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2012

Learning Optimal Bayesian Networks with Heuristic Search Learning Optimal Bayesian Networks with Heuristic Search

Brandon M. Malone

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Malone, Brandon M., "Learning Optimal Bayesian Networks with Heuristic Search" (2012). Theses and
Dissertations. 2937.
https://scholarsjunction.msstate.edu/td/2937

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2937?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2937&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Learning optimal Bayesian networks with heuristic search

By

Brandon M. Malone

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulf llment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2012

Copyright by

Brandon M. Malone

2012

Learning optimal Bayesian networks with heuristic search

By

Brandon M. Malone

Approved:

Changhe Yuan
Assistant Professor of Computer
Science and Engineering
(Major Professor)

Susan Bridges
Professor Emeritus of Computer
Science and Engineering
(Committee Member)

Andy Perkins Zhaohua Peng
Assistant Professor of Computer Associate Professor of Biochemistry
Science and Engineering and Molecular Biology
(Committee Member) (Committee Member)

Edward B. Allen Sarah A. Rajala
Associate Professor of Computer Dean of the James Worth Bagley College
Science and Engineering, of Engineering
and Graduate Coordinator

Name: Brandon M. Malone

Date of Degree: August 11, 2012

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Changhe Yuan

Title of Study: Learning optimal Bayesian networks with heuristic search

Pages of Study: 135

Candidate for Degree of Doctor of Philosophy

Bayesian networks are a widely used graphical model which formalize reasoning un-

der uncertainty. Unfortunately, construction of a Bayesian network by an expert is time-

consuming, and, in some cases, all experts may not agree on the best structure for a problem

domain. Additionally, for some complex systems such as those present in molecular biol-

ogy, experts with an understanding of the entire domain and how individual components

interact may not exist. In these cases, we must learn the network structure from available

data. This dissertation focuses on score-based structure learning. In this context, a scoring

function is used to measure the goodness of f t of a structure to data. The goal is to f nd the

structure which optimizes the scoring function.

The f rst contribution of this dissertation is a shortest-path f nding perspective for the

problem of learning optimal Bayesian network structures. This perspective builds on ear-

lier dynamic programming strategies, but, as we show, offers much more f exibility.

Second, we develop a set of data structures to improve the eff ciency of many of the

integral calculations for structure learning. Most of these data structures benef t our algo-

rithms, dynamic programming and other formulations of the structure learning problem.

Next, we introduce a suite of algorithms that leverage the new data structures and

shortest-path f nding perspective for structure learning. These algorithms take advantage

of a number of new heuristic functions to ignore provably sub-optimal parts of the search

space. They also exploit regularities in the search that previous approaches could not. All

of the algorithms we present have their own advantages. Some minimize work in a prov-

able sense; others use external memory such as hard disk to scale to datasets with more

variables. Several of the algorithms quickly f nd solutions and improve them as long as

they are given more resources.

Our algorithms improve the state of the art in structure learning by running faster, using

less memory and incorporating other desirable characteristics, such as anytime behavior.

We also pose unanswered questions to drive research into the future.

Key words: Bayesian networks, heuristic search

ACKNOWLEDGEMENTS

I thank Changhe Yuan, my advisor, for all of his help and encouragement in completing

this dissertation. Without his advice and guidance, I would never have been introduced to

the world of Bayesian networks and structure learning. When we began working together,

I had very little understanding of the problem; however, he deftly balanced pointing me in

the right direction and allowing me to explore on my own so that we ultimately arrived in

right place. I am thankful for all of the late nights he spent writing, editing and revising

papers and his help in putting together this dissertation.

I would also like to thank Susan Bridges who was my advisor when I f rst arrived at

MSU. She really showed me a world of research that I enjoyed (and still enjoy) very much.

She also spent many nights helping me f nalize papers and presentations, and I owe a large

part of my success here to her, as well.

The other members of my committee, Andy Perkins and Zhaohua Peng, always gave

any help they could. They were also very understanding when I had to focus on my disser-

tation. Eric Hansen provided some very stimulating talks on the heuristic search aspect of

my work, and I thank him for all of his time and help.

This work was supported in part by grant IIS-0953723 (CAREER grant) from the Na-

tional Science Foundation and by EPS-0903787 (EPSCoR grant). The f ndings and opin-

ii

ions in this dissertation belong solely to the author, and are not necessarily those of the

sponsors.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Representation . 2
1.2 Notation and Terminology . 4

2. BAYESIAN NETWORK ALGORITHMS 6

2.1 Inference . 6
2.1.1 Factors . 7
2.1.2 Prior Marginal Probability 8
2.1.3 Posterior Marginal Probability and Probability of Evidence 9
2.1.4 Most Probable Explanation (MPE) 9
2.1.5 Maximum A Posteriori Hypothesis (MAP) 10
2.1.6 Most Relevant Explanation (MRE) 11

2.2 Parameter Learning . 12
2.2.1 Maximum Likelihood Estimate (MLE) 12
2.2.2 Expectation Maximization (EM) 13

2.3 Structure Learning . 13
2.3.1 Constraint-based Learning Algorithms 14
2.3.2 Scoring Functions . 16

2.3.2.1 Minimum Description Length (MDL) 17
2.3.2.2 Akaike’s Information Criterion (AIC) 18
2.3.2.3 Bayesian Dirichlet with Score Equivalence and Uni-

form Priors (BDeu) 18
2.3.2.4 Factorized Normalized Maximum Likelihood (fNML) 19

2.3.3 Approximate Structure Learning Algorithms 20
2.3.3.1 Hill Climbing . 21

iv

2.3.3.2 Genetic Algorithms 21
2.3.3.3 Optimal Reinsertion 22

2.3.4 Optimal Structure Learning Algorithms 22
2.3.4.1 Restricted Structure 23
2.3.4.2 Mathematical Programming 23
2.3.4.3 Branch and Bound Search 24
2.3.4.4 Dynamic Programming 25

2.4 Other Problems . 26
2.4.1 Constraints . 26
2.4.2 Hidden Variables . 26
2.4.3 Dynamic Bayesian Networks 27
2.4.4 Classif cation . 27
2.4.5 Equivalence Classes . 28

3. EVALUATION DESCRIPTION . 29

3.1 Datasets . 29
3.2 Other Implementations . 29

4. HEURISTIC GRAPH SEARCH PERSPECTIVE 33

4.1 Learning Optimal Subnetworks 33
4.1.1 Forward Order Graph . 34
4.1.2 Reverse Order Graph . 35

4.2 Identifying Optimal Parent Sets 36
4.2.1 Full Parent Graphs . 37
4.2.2 Sparse Parent Graphs . 37

4.2.2.1 Construction . 38
4.2.2.2 Eff cient Scanning 40
4.2.2.3 Memory Savings 41

4.3 Calculating Scores . 44

5. BEST-FIRST HEURISTIC SEARCH 49

5.1 Heuristic Function . 51
5.2 Successor Operator . 52
5.3 Solution Reconstruction . 53
5.4 Advantages of A* . 53
5.5 Empirical Results . 54

6. FRONTIER BREADTH-FIRST BRANCH AND BOUND SEARCH . . . 59

6.1 Branch and Bound . 62

v

6.2 Coordinating the Graph Searches 63
6.3 Ordering the Scores on Disk . 65
6.4 Duplicate Detection . 67
6.5 Advantages of Frontier Breadth-First Branch and Bound 69
6.6 Empirical Results . 70

7. ANYTIME DEPTH-FIRST BRANCH AND BOUND SEARCH 74

7.1 Anytime Algorithms . 75
7.1.1 Weighted A* . 75
7.1.2 Anytime Weighted A* . 76
7.1.3 Anytime Repairing A* 76
7.1.4 Anytime Window A* . 77

7.2 Anytime DFBnB Network Learning Algorithm 77
7.2.1 Incremental Sparse Updates 80
7.2.2 Closed List and Backups 81
7.2.3 Heuristic Function for the Reverse Order Graph 82
7.2.4 Repairing Inconsistent Nodes 83
7.2.5 Advantages of DFBnB 85

7.3 Empirical Results . 85
7.3.1 Comparison of Anytime Behavior 85
7.3.2 Comparison of Running Time 87

8. THE K-CYCLE CONFLICT HEURISTIC 90

8.1 A Motivating Example . 91
8.2 Dynamic k-cycle Conf ic Heuristic 93
8.3 Static k-cycle Conf ict Heuristic 96
8.4 Advantages of the k-cycle Conf ict Heuristic 98
8.5 Empirical Results . 100

8.5.1 Improvement from the Pattern Database Heuristics 100
8.5.2 Results on Other Datasets 102

9. BOUNDED ERROR, ANYTIME, PARALLEL SEARCH 106

9.1 Parallel Best-First Search . 107
9.1.1 Parallel Window Search 108
9.1.2 Parallel Retracting A* . 108
9.1.3 Adaptive k-Parallel Best-First Search 109
9.1.4 Parallel Structured Duplicate Detection and Parallel Best-

NBlock First Search . 111
9.1.5 Parallel Frontier A* with Delayed Duplicate Detection . . 112
9.1.6 Parallel Dovetailing . 113

vi

9.2 BEAP Search Algorithm . 114
9.3 Advantages of BEAP . 115
9.4 Experimental Results . 116

9.4.1 Node Expansions . 117
9.4.2 Comparison of Anytime Behavior 119
9.4.3 Comparison of Solution Quality 120

10. CONCLUSIONS AND FUTURE WORK 122

10.1 Contributions . 122
10.2 Future Work . 123

REFERENCES . 127

vii

LIST OF TABLES

3.1 A description of all datasets used for evaluation in this dissertation. 31

3.2 A description of all external algorithm implementations used in this evaluation. 32

4.1 Sorted scores and parent sets for X1 after pruning parent sets which are not
possibly optimal. 41

4.2 The parentsX(Xi) bit vectors for X1. 42

4.3 The result of performing the bitwise operation to exclude all parent sets
which include X3. 42

4.4 The result of performing the bitwise operation to exclude all parent sets
which include either X3 or X2. 42

4.5 Sparse parent graph algorithms. 43

4.6 Score calculation algorithm. 48

5.1 A* search algorithm. 50

6.1 A frontier BFBnB search algorithm. 60

7.1 A DFBnB search algorithm. 79

8.1 Dynamic k-cycle conf ict heuristic. 97

8.2 Static k-cycle conf ict heuristic. 99

8.3 A comparison of BFBnB and A* with various heuristics on Auto and F lag. 103

8.4 A comparison of BFBnB and A* on several datasets using static pattern
databases. 105

viii

LIST OF FIGURES

1.1 A Bayesian network. 3

4.1 A forward order graph of four variables. 35

4.2 A reverse order graph of four variables. 36

4.3 A sample parent graph for variable X1. 38

4.4 The maximum count of parent sets stored by each of the parent graph strate-
gies. 45

4.5 An AD-tree. 47

5.1 Runtime comparison among BB, DP and A*. 56

5.2 Nodes expanded by A* at the middle layer of two datasets. 57

5.3 Comparison of the order graph nodes expanded by DP and A*. 58

6.1 Coordinating the parent and order graphs. 66

6.2 Examples of immediate and delayed duplicate detection. 68

6.3 Runtime comparison of DP, BFBnB and A*. 71

6.4 Comparison of order graph nodes stored in memory at once by DP and BFBnB. 72

6.5 Hard disk usage for the W DBC dataset. 73

7.1 Anytime comparison of DFBnB, OR and BB. 88

7.2 Comparison on the runtimes of DP, BFBnB, DFBnB and BB to f nd optimal
networks. 89

ix

8.1 A directed graph representing the heuristic estimate for the start search node. 93

9.1 Order graph nodes expanded for each dataset and value of ǫ by BEAP. . . . 118

9.2 Convergence behavior or BEAP and BB. 119

9.3 The solution quality of networks learned by AWA*, BEAP and BB. 121

x

CHAPTER 1

INTRODUCTION

The proliferation of freely available repositories on the Internet has tremendously in-

creased the amount of available datasets. For example, the Gene Expression Omnibus

houses a wealth of data from biological experiments. Large-scale social networking infor-

mation is available via the Facebook API. However, this information in not usable knowl-

edge. Bayesian networks are a common machine learning technique used to represent

general relationships from such datasets. When these relationships are not known a priori,

the structure of the network must be learned. The goal of this dissertation is to improve

the state of the art in learning Bayesian network structures by casting the problem as a

heuristic graph search problem. We propose a variety of novel, eff cient data structures and

algorithms to solve the learning problem.

The remainder of this chapter formally introduces Bayesian networks as well as nota-

tion and terminology used throughout the rest of this dissertation. Chapter 2 introduces

several types of problems and algorithms for Bayesian networks, including those for in-

ference, parameter learning and structure learning. We then present our heuristic graph

search perspective for Bayesian network structure learning in which the start node maps

to an empty Bayesian network, the goal node represents the optimal Bayesian network

and intermediate search nodes correspond to optimal networks over subsets of variables.

1

The next 5 chapters describe novel heuristic graph search algorithms for learning optimal

Bayesian network structures. In Chapter 4, we give an admissible heuristic function that

optimistically estimates the distance from any intermediate node to the goal node. We then

use that function to guide an A* search algorithm and ignore unpromising subnetworks.

Next, we take advantage of regularity present within the learning problem to reduce the

memory requirements compared to existing dynamic programming algorithms by expand-

ing nodes in a breadth-f rst order. Furthermore, we use external memory to minimize the

RAM requirements of the algorithm. We propose an anytime search algorithm in Chapter

6 that uses a different heuristic function. That algorithm in particular takes advantage of ef-

f cient, sparse data structures to very quickly f nd good networks before ultimately f nding

and proving the optimality of the best-scoring network. Chapter 7 focuses on improving

the admissible heuristic by using pattern databases to calculate a tighter bound. The im-

proved bound allows us to safely ignore more of the search space, which decreases both

running time and memory requirements. The penultimate chapter is dedicated to parallel

algorithms and discusses an anytime parallel algorithm with provable quality bounds. In

comparison to other parallel structure learning algorithms, ours uses orders of magnitude

less running time and memory. Finally, conclusions and future work close the dissertation.

1.1 Representation

A Bayesian network consists of a structural component specifying the relationships

among concepts in a domain and a quantitative specif cation of those relationships [72].

The structural component of the network is a directed acyclic graph (DAG). Each of the

2

vertices corresponds to a random variable. A directed edge from a vertex Xi to another

vertex Xj indicates a relationship between the two variables. Xi is called a parent of Xj .

All of the parents of Xj are called PAj. The quantitative specif cation is a conditional

probability distribution of each variable given its parents, P (Xj|PAj). Thus, the DAG

P
represents a joint probability distribution factorized as P (X1 . . .Xn) = i

n

=1 P (Xi|PAi).

Figure 1.1

A Bayesian network.

Figure 1.1 displays an example Bayesian describing the domain of how weather can

affect the grass. A topological sort of the vertices in the graph roughly corresponds to a

causal interpretation of the domain. For example, clouds cause rain, which in turn causes

the grass to be wet.

3

1.2 Notation and Terminology

The rest of this dissertation will use the following conventions. All variables are dis-

crete. Uppercase letters (X) are random variables. Lowercase letters (x) are particular

values, or instantiations, of those variables. Bold, uppercase letters (V) are sets of random

variables. Bold, lowercase letters (v) are instantiations of those sets. Two instantiations

are consistent if, for every variable the two have in common, those variables have the same

values in both instantiations.

P (X) and P (X) are the probability distributions of a random variable and a set of

random variables, respectively. P (X|Y) is the conditional probability distribution of X

given Y ; either or both of X and Y could be sets of variables.

We denote the number of variables in a Bayesian network with n. Frequently, V will

be used to refer to all of the variables in a Bayesian network. It is sometimes used in other

contexts, though. The meaning should be clear from the context. Variable Xi ∈ V has ri

states.

A dataset D is a set of records D1 . . . DN , where each record is an instantiation of

the variables in V. If all of the records instantiate all of the variables, then the dataset

is complete; otherwise, it is incomplete. We use N to show the number of records in the

dataset.

When discussing heuristic search, node refers to a node in the search graph. Bold,

uppercase letters (U) are also used to refer to nodes. When nodes in the search graph cor-

respond to sets of variables, then the bold, uppercase letter is used to refer both to the node

and the respective set of variables. The meaning should be clear from the context. When

4

referring specif cally to one of the vertices in the graphical Bayesian network structure, we

say vertex.

5

CHAPTER 2

BAYESIAN NETWORK ALGORITHMS

Research in Bayesian networks can broadly be classif ed into several groups. Here,

we consider inference, parameter learning and structure learning algorithms. Of course,

other classif cations are possible. This chapter describes each of these three problems and

algorithms for solving them.

2.1 Inference

Given a Bayesian network structure and parameters, inference is the problem of cal-

culating the probability distribution of a subset of variables given values for some other

(possibly overlapping) subset of variables [17]. For example, with the network from Fig-

ure 1.1, we may perform inference to answer the query ”What is the probability that it is

cloudy given that the sprinkler is on?” This section will describe six types of inference

queries: prior marginals, posterior marginals, probability of evidence, most probable ex-

planation (MPE), maximum a posteriori hypothesis (MAP) and most relevant explanation

(MRE). Computing both prior and posterior marginals are examples of belief updating.

First, though, factors are described because they are a primitive structure in many of the

inference algorithms.

6

2.1.1 Factors

A factor maps from an instantiation of a set of variables to a non-negative number [17].

Sometimes factors represent (conditional) probability distributions, but not always. The

conditional probability tables of a Bayesian network always def ne a set of factors. Four

main operations on factors are multiplying two factors; summing, or marginalizing, out a

variable; maximizing out a variable; and reducing a factor given evidence.

Factor multiplication constructs a factor over the union of the variables in two other

factors [17]. For example, suppose f1 is a factor over X1, X2 and X3, and f2 is a factor

over X3 and X4. Then the result of the multiplication (f1f2) is a factor over the variables

X1, X2, X3 and X4. The values for the new factor are (f1f2)(z) = f1(x)f2(y) where x and

y are consistent with z. That is, the value in the new factor for a particular instantiation of

X1, X2, X3 and X4 is equal to the value of f1 for the instantiation of X1, X2 and X3 times

the value of f2 for the instantiation of X3 and X4.

Marginalizing a variable from a factor removes one of the variables from that fac-

tor [17]. For example, suppose f1 is a factor over X1, X2 and X3. Marginalizing out X3

P
results in a new factor over X1 and X2. The values of the new factor are (X f) (y) =

P
x f(x, y). That is, the value in the new factor for a particular instantiation of X1 and X2

is equal to the sum of the values of f1 consistent with the instantiation, regardless of the

value of X3.

Maximizing a variable from a factor is very similar to marginalizing it out of the fac-

tor [17]; the operation still removes one variable from the factor. If we again suppose f1 is

a factor over X1, X2 and X3, then maximizing out X3 results in a new factor over X1 and

7

X2. The values of the new factor are (maxX f) (y) = maxx f(x, y). That is, the value in

the new factor for a particular instantiation of X1 and X2 is equal to the maximum of the

values of f1 consistent with the instantiation, regardless of the value of X3. So the only

difference between marginalizing and maximizing lies in taking either a sum or a max over

the original factor.

Reducing a factor with evidence does not affect the variable domain of that factor [17].

So if f1 is a factor over X1, X2 and X3 and evidence e is an instantiation of X3, then

reducing f1 given e results in the following.

 
 

 f(x), ifx ∼ e 

f e(x) =
  0, otherwise

(2.1)








That is, the reduced factor returns the original value for instantiations consistent with

the evidence and 0 otherwise.

2.1.2 Prior Marginal Probability

The prior marginal probability for a set of variables ref ects their probability distribu-

tion when no other information is given [17]. For example, for the network in Figure 1.1,

we may ask ”What is the probability that the grass is wet?” Because the values of the

Markov blanket variables (”Sprinkler” and ”Rain”) are unknown, we cannot directly ex-

tract this probability from the network representation.

To compute the prior marginal probabilities over a set of query variables Q, we can

marginalize all variables in V \ Q using an algorithm called variable elimination. Given

an elimination ordering π over the variables to marginalize and the factors corresponding

8

to the CPTs of the network, the algorithm iterates over each variable π(i) in the ordering.

All factors fk which contain π(i) are multiplied to f nd factor f . π(i) is summed out of f ,

P
and all fks are replaced with ˇ(i) f . After eliminating all variables in the ordering, the

remaining factors are multiplied together to calculate Pr(Q). The elimination order can

dramatically affect the running time.

2.1.3 Posterior Marginal Probability and Probability of Evidence

Posterior marginal probabilities are similar to prior marginals, except that some evi-

dence is given [17]. For Figure 1.1, we may ask ”What is the probability that the grass

is wet given that it is cloudy?” Again, we cannot directly extract this probability from the

network structure.

To compute posterior marginal probabilities over a set of query variables Q given evi-

dence e, we f rst calculate the joint marginal probabilities, Pr(Q, e). Joint marginals can

be calculated using the variable elimination algorithm; however, rather than directly using

the CPTs of the network as input, we instead reduce each of the CPT factors given e. The

resulting factor gives Pr(Q, e). By adding the numbers in the factor, we obtain Pr(e).

Consequently, normalizing the factor amounts to Pr(Q,e) .
Pr(e) This is the desired posterior

marginal probability, P r(Q|e).

2.1.4 Most Probable Explanation (MPE)

The MPE instantiation for some evidence e is the instantiation q of all variables not in

e that maximizes the joint probability P (e, q) [17]. For Figure 1.1, we may ask “Which

rain and sprinkler setting maximizes the probability that the grass is wet and it is cloudy?”
9

The Viterbi and Forward algorithms for Hidden Markov Models are applications of this

type of inference.

To compute the MPE instantiation q, we use another slight adaptation of the variable

elimination algorithm. We again reduce the CPT factors given e. Furthermore, rather than

marginalizing out variables, we instead maximize them out. The resulting factor contains

the probability of the MPE instantiation. We can easily extend factors to also track partial

instantiations. Thus, the factor can also contain the actual MPE instantiation.

MPE can also be solved with heuristic search. Each search node corresponds to a par-

tial instantiation. Successors of a node add one additional variable to the instantiation. The

shortest path from the start node with no variables instantiated to a goal node with all vari-

ables instantiated corresponds to the MPE instantiation. Upper bounds can be calculated

by introducing additional variables to the network.

Local search techniques have also been applied to identify MPE instantiations. In one

common scheme, each state corresponds to a complete variable instantiation. Neighbors

of a state change the instantiation of one variable. Hill climbing, for example, can be used

to f nd a locally optimal instantiation given a start state.

2.1.5 Maximum A Posteriori Hypothesis (MAP)

The MAP instantiation for some evidence e is the instantiation m of some variables not

in e that maximizes the joint probability P (e, m) [17]. For Figure 1.1, we may ask ”Which

sprinkler setting maximizes the probability that the grass is wet and it is cloudy?” MAP is

10

a generalization of MPE because the query is not restricted to all unobserved variables. In

general, the MAP instantiation is not just a subset of the MPE instantiation.

Variable elimination can again be adapted to f nd the MAP instantiation. All CPT

factors are reduced given e. Additionally, the elimination takes place in two phases. First,

all non-MAP variables are marginalized out. Then, all MAP variables are maximized out.

The resulting factor contains the MAP probability and corresponding instantiation for the

MAP variables. The heuristic and local techniques described for MPE can also be adapted

for MAP.

2.1.6 Most Relevant Explanation (MRE)

MPE always f nds the most probable instantiations for all variables; MAP always f nd

the most likely instantiation for a given set of variables. Other algorithms identify the in-

stantiation of a single variable which best explains evidence. Often, though, we would like

to pick the best explanation for evidence from among several different possible explana-

tions which contain different variables. For example, in the f ctitious Asia network [57],

dyspnea could be caused either by visiting Asia and contracting tuberculosis or by having

bronchitis. After identifying the best explanation, we do not care about the other vari-

ables. MPE always f nd the instantiations for all unobserved variables, while MAP can

not selectively return the instantiation of one set of variables or the other. Single vari-

able explanations, such as simply visiting Asia, cannot always fully explain evidence.

MRE [101, 100, 99] is a framework which automatically identif es the best explanation

according to a given relevance measure, such as genealized Bayes factor [32]. Like MAP,

11

MRE accepts as input evidence and a list of target variables. However, unlike MAP, MRE

does not necessarily instantiate all of the target variables; rather, it f nds an instantiation

of the variables which maximizes the relevance measure. Therefore, in contrast to MPE

and MAP, MRE does not instantiate target variables which are irrelevant to the best expla-

nation. In contrast to single variable explanations, though, MRE can instantiate multiple

variables if they best explain the evidence.

2.2 Parameter Learning

Given a network structure and a dataset, parameter learning is the problem of learning

the conditional probability tables for each of the variables. In general, the probabilities are

based on suff cient statistics (counts of particular instantiations) of the data. For example,

for the network structure in Figure 1.1, if we were given a dataset instead of the probability

tables, we may ask ”What is the probability it will rain given that it is cloudy?” This

section describes two methods for learning parameters: maximum likelihood estimate for

complete datasets and Expectation Maximization for incomplete datasets.

2.2.1 Maximum Likelihood Estimate (MLE)

Suppose we are given a complete dataset D with N records. Assuming records are

generated independently and according to their true distribution, then the empirical distri-

bution PrD(·) for instantiation x is the frequency of that instantiation within the dataset,

D#(x)PrD(x) = N
, where D#(x) is the number of records in D consistent with x. D# is

also called a suff cient statistic. Suppose we have variable X = x and its parents U = u.

Then the MLE parameters [17] are estimated from the empirical distribution.
12

D#(x, u)
θml = PrD(x|u) = (2.2) x|u D#(x, u

The MLE parameters are the only estimates which maximize the likelihood function,

QNL(θ|D) = i=1 Pr�(di). For example, suppose we are given the structure in Figure 1.1

and a dataset in which D#(Cloudy = true) = 10 and D#(Cloudy = true, Rainy =

true) = 8. Then the MLE parameter Pr(Rainy = true|Cloudy = true) = 0.8.

2.2.2 Expectation Maximization (EM)

The MLE parameters maximize the likelihood of the data; however, their calculation

requires a complete dataset for the suff cient statistics. EM [25] is a technique for es-

timating suff cient statistics when datasets are missing values. EM starts with an initial

(possibly random) set of parameters. It then alternates between an expectation phase and a

maximization phase. In the expectation phase, the current parameters are used to estimate

the missing values by performing inference in the current Bayesian network. This has the

effect of completing the dataset, though some of the variable instantiations have fractional

counts. The next iteration of MLE parameters are computed with the completed dataset.

The new parameters are guaranteed to never have a smaller likelihood than the previous

parameters. This process continues until the parameters converge.

2.3 Structure Learning

Two approaches have been proposed for learning the structure of Bayesian networks

from data. One group of algorithms focuses on establishing conditional independence be-

13

⊥

tween variables using statistical tests such as the Chi-square test. A network structure is

then constructed which maximizes the number of independencies discovered by the statis-

tical tests.

The other group of algorithms focus on discovering a Bayesian network which opti-

mizes a scoring function. The scoring function computes a measure of the goodness of f t

of a network to a dataset [43]. The scoring functions all embody Occam’s razor in one way

or another.

In this section, we f rst describe constraint-based learning algorithms. Next, several

commonly used scoring functions are described. We then present several algorithms which

use approximate search methods to f nd networks. Finaly, we give a number of algorithms

which guarantee to optimize a scoring function.

2.3.1 Constraint-based Learning Algorithms

Constraint-based algorithms begin with the observation that Bayesian networks encode

conditional dependence relationships among the variables. Therefore, they f rst use a set of

statistical tests, such as Chi-square or G-test, to establish which variables are conditionally

independent from each other. These results of those tests are used to create a directed

network structure. Examples of these algorithms include PC [86] and IC [93].

The PC algorithm begins with a complete, undirected graph over all of the variables. It

then begins the indepence tests. First, it tests all pairs of variables for marginal indepence

(X ⊥ Y). Edges between marginally independent variables are removed. It then tests all

pairs which still have edges between them for conditional independence by conditioning

14

⊥on one variable (X ⊥ Y |A). Edges between conditionally independent variables are

removed. This process continues until the conditioning set of variables reaches a user-

def ned size k. Finally, based on the result of the independence tests, some of the remaining

edges are directed. Some edges may remain undirected because, for example, noise in the

data could give contradictory test results.

The PC algorithm can be tractable. For each iteration of tests, each pair is tested at most

once, so each iteration includes at most O(n2) tests. Furthermore, the largest possible con-

ditioning set could be size n − 1, so there could be at most O(n) iterations. Consequently,

an upper bound on the number of required independence tests is O(n3). Other constraint-

based algorithms reduce the number of independence tests compared to PC [23, 95]. Un-

fortunately, the algorithms are very sensitive to the results of the independence tests. The

independence tests are in turn sensitive to the amount of available data. Often, though, we

must learn in settings with limited data. Also, all of the independence tests require a user-

specif ed signif cance threshold, which may not be easy to estimate a priori. Additionally,

constraint-based algorithms do not have a Bayesian interpretation [43]. For these reasons,

the rest of this dissertation does not consider constraint-based algorithms.

15

2.3.2 Scoring Functions

Many scoring functions are in the form of a penalized log-likelihood (LL) functions.

The LL is the log probability of D given B. Under the standard i.i.d assumption, the

likelihood of the data given a structure can be calculated as
N
X

LL(D|B) = logP (Dj|B)
j

n N
XX

= logP (Dij|PAij),
i j

(2.3)

(2.4)

where Dij is the instantiation of Xi in data point Dj , and PAij is the instantiation of Xi’s

parents in Dj . Adding an arc to a network never decreases the likelihood of the network.

Intuitively, the extra arc is simply ignored if it does not add any more information. The

extra arcs pose at least two problems, though. First, they may lead to overf tting of the

training data and result in poor performance on testing data. Second, densely connected

networks increase the running time when using the networks for downstream analysis, such

as inference and prediction.

A penalized LL function aims to address the overf tting problem by adding a penalty

term which penalizes complex networks. Therefore, even though the complex networks

may have a very good LL score, a high penalty term may reduce the score to be below that

of a less complex network. Here, we focus on decomposable penalized LL (DPLL) scores,

which are always of the form
n

X
DP LL(B, D) = LL(D|B)− P enalty(Xi, B, D). (2.5)

i=1

The scores are all decomposable [43] because the score of the entire network is ex-

pressed as the sum of the scores of each variable. There are several well-known DPLL
16

scoring functions for learning Bayesian networks. We consider minimum description

length (MDL) [80], Aikake’s information criterion (AIC) [2], Bayesian Dirichlet with score

equivalence and uniform priors (BDeu) [13, 43] and factorized normalized maximum like-

lihood (fNML) [83]. These scoring functions only differ in the penalty terms, so we will

focus on the penalty terms in the following discussions.

A Bayesian network structure can represent a set of joint probability distributions. Two

network structures are said to belong to the same equivalence class if they represent the

same set of probability distributions [10]. A scoring function which assigns the same score

to networks in the same equivalence class are score equivalent [43].

2.3.2.1 Minimum Description Length (MDL)

The MDL [80] scoring metric for Bayesian networks was def ned in [54, 87]. MDL

approaches scoring Bayesian networks as an information theoretic task. The basic idea is

to minimally encode D in two parts: the network structure and the unexplained data. The

model can be encoded by storing the conditional probability tables of all variables. This

requires log
2
N ∗ p bits, where log

2
N is the expected space required to store one probability

value and p is the number of individual probability values for all variables. The unexplained

part of the data can be explained with LL(D|B) bits. Therefore, we can write the MDL

penalty term as

logN ∗ pi
P enaltyMDL(Xi, B, D) = , (2.6)

2

where pi is the number of parameters for Xi. For MDL, the penalty term ref ects that more

complex models will require longer encodings. The penalty term for MDL is larger than

17

that of most other scoring functions, so optimal MDL networks tend to be sparser than

those by other scoring functions. As hinted at by its name, an optimal MDL network mini-

mizes rather than maximizes the scoring function. To interpret the penalty as a subtraction,

the scores must be multiplied by −1. The Bayesian information criterion (BIC) [80] is a

scoring function whose calculation is equivalent to MDL for Bayesian networks, but it is

derived based on the asymptotic behavior of the models. That is, BIC is based on having a

suff ciently large amount of data. Also, BIC does not require the −1 multiplication.

2.3.2.2 Akaike’s Information Criterion (AIC)

Bozdogan [5] def ned the AIC [2] scoring metric for Bayesian networks. It, like BIC,

is another scoring function based on the asymptotic behavior of models with suff ciently

large datasets. In terms of the equation, the penalty for AIC differs from that of MDL by

the logN term. So the AIC penalty term is

P enaltyAIC(Xi, B, D) = pi (2.7)

Because its penalty term is less than that of MDL, AIC tends to favor more complex

networks than MDL.

2.3.2.3 Bayesian Dirichlet with Score Equivalence and Uniform Priors (BDeu)

The Bayesian Dirichlet (BD) scoring function was f rst proposed by Cooper and Her-

skovits [13]. It computes the joint probability of a network for a given dataset. However,

the BD metric requires a user to specify a hyper parameter for all possible variable-parents

combinations. Furthermore, it is not score equivalent, which requires assigning the same

18

score to equivalent structures. To address the problems, a single “hyperparameter” called

the equivalent sample size is introduced, referred to as α [43]. All of the needed parame-

ters can be calculated from α and a prior distribution over network structures. This score,

called BDe, is score equivalent. Furthermore, if one assumes all network structures are

equally likely, that is, the prior distribution over network structures is uniform, then α is

the only input necessary for this scoring function. BDe with this additional uniformity as-

sumption is called BDeu [43]. Somewhat independently, the BDeu scoring function was

also proposed earlier by Buntine [6]. BDeu is also a decomposable penalized LL scoring

function whose penalty term is

qi ri
XX P (Dijk|Dij)

P enaltyBDeu(Xi, B, D) = log , (2.8)
j k

P (Dijk|Dij , αij)

where qi is the number of possible values of PAi, ri is the number of possible values

for Xi, Dijk is the number of times Xi = k and PAi = j in D, and αij is a parameter

calculated based on the user-specif ed α. The original derivations [6, 43] include a more

detailed description. The density of the optimal network structure learned with BDeu is

correlated with α; low α values typically result in sparser networks than higher α values.

Recent studies [81] have shown the BDeu behavior is very sensitive to α. If the density of

the network to be learned is unknown, selecting an appropriate α is diff cult.

2.3.2.4 Factorized Normalized Maximum Likelihood (fNML)

Silander et al. [83] developed the fNML score function to address the problem of α

selection with BDeu. fNML is based on the normalized maximum likelihood function

19

(NML) [78]. NML is a penalized LL scoring function in which regret is the penalty term.

Regret is calculated as
X

P (D ′ |B), (2.9)
D′

where the sum ranges over all possible datasets of size N . Kontkanen and Myllymäki [48]

showed how to eff ciently calculate regret for a single variable. By calculating regret for

each variable in the dataset, the NML becomes decomposable, or factorized. fNML is

Nij

given by
qi
X

P enaltyfNML(Xi, B, D) = ri logCNij
,

k

(2.10)

where Cri are the regrets. fNML is not score equivalent.

2.3.3 Approximate Structure Learning Algorithms

Learning a Bayesian network with a restricted number of parents for each variable

which optimizes a particular scoring function is NP-complete [11]. Consequently, many

early learning algorithms focused on approximate learning techniques which f nd local

optima of the scoring function. Many approximate optimization techniques have been ap-

plied to learning Bayesian network structures. In general, these algorithms are based on a

”search-and-score” approach. A search algorithm, such as greedy hill climbing, identif es

candidate structures. The structures are scored, and the best scoring structures are used to

identify new candidates. The algorithm continues until converging to a locally optimal net-

work structure. Hill climbing and genetic algorithms are two algorithms commonly applied

to identify candidate structures. Optimal Reinsertion (OR) [64] is a more sophisticated hill

climbing algorithms that performs well in practice [89, 91]

20

2.3.3.1 Hill Climbing

Hill climbing algorithms require three components: a scoring function, a start state and

successor generation operators. Any of the Bayesian network score functions, such as BD

or MDL, can serve as the scoring function for hill climbing. Each state in the search space

corresponds to a single Bayesian network structure. The start state often corresponds to an

empty network (with no edges); however, a priori knowledge can also be used to create a

different starting network structure. Different algorithms use different successor generation

operators. Three commonly used operators [53] are edge insertion, deletion and reversal.

In basic greedy hill climbing, the highest scoring successor is retained and used to generate

the next set of candidates. This methodology can easily be extended by keeping multiple

highest scoring successors (turning it into a beam search) or avoiding previously generated

candidates (tabu search).

2.3.3.2 Genetic Algorithms

Genetic algorithms have also been extensively used to identify candidate structures [56].

These algorithms typically require four main components: a f tness function, a chromo-

some representation, a crossover strategy and a strategy to generate the next generation.

Furthermore, other parameters such as mutation rate and elitism also affect the perfor-

mance of the algorithm. Any Bayesian network scoring function can serve as the f tness

function. A chromosome in the genetic algorithm represents a complete Bayesian network

structure. One possible representation is a bit string of length n2 . The f rst n bits indicate

the parents of variable X0; the next n bits indicate the parents for X1, etc. After crossover,

21

chromosomes which do not correspond to valid Bayesian networks (because they have

cycles, etc.) are removed from the population. The next generation of networks is then

generated according to the generation strategy. Other evolutionary algorithms, such as ant

colony optimization [16] and cooperative coevolution [3], have also been applied to this

problem.

2.3.3.3 Optimal Reinsertion

The optimal reinsertion algorithm (OR) [64] is a hill climbing algorithm that uses a

different operator: a variable is removed from the network, its optimal parents are selected,

and the variable is then reinserted into the network with those parents. The parents are

selected to ensure the new network is still a valid Bayesian network. While OR does select

optimal parents locally, it does not guarantee to f nd the globally optimal structure. Often,

a greedy hill climbing is run on the structure after OR reaches a local maximum to attempt

to further improve its score.

2.3.4 Optimal Structure Learning Algorithms

The approximate search algorithms often run quickly; however, the learned network

is of unknown quality. Thus, further interpretation of the learned structure must also ac-

count for this variance. This limitation led researchers to develop algorithms which learn

networks which provably optimize a scoring function for a dataset.

22

2.3.4.1 Restricted Structure

The oldest optimal learning algorithm we consider [12] has existed for several decades;

however, this algorithm only learns tree-structured networks in which variables have only

a single parent. This algorithm reduces the structure learning problem to f nding the mini-

mum spanning tree in a graph. A vertex in a fully connected graph represents each variable.

The weight of each edge is equal to the mutual information between the two variables. The

minimum spanning tree corresponds to an optimal tree network among the variables.

2.3.4.2 Mathematical Programming

Optimal networks have also been learned using mathematical programming (MP) [44,

15]. This technique reformulates the structure learning problem as a linear or integer pro-

gram. An exponential number of constraints are used to def ne a convex hull in which each

vertex corresponds to a DAG. The constraints are added incrementally as cutting planes.

The algorithm alternates between two phases. In the f rst, it runs a linear or integer pro-

gram and determines if the returned (optimal) solution is a vertex on the hull. If so, the

algorithm terminates. Otherwise, it adds a number of cutting planes to exclude the found

solution (as well as other non-DAG structures) from the feasible space of the program.

Intuitively, the algorithm looks for clusers of nodes in the solution which are highly cyclic

and adds cutting planes to exclude those cycles. The algorithm then returns to the f rst

phase. Coordinate descent is used to identify the vertex which corresponds to the optimal

DAG structure. Furthermore, the dual of their formulation provides an upper bound which

can help guide the descent algorithm. This algorithm was shown to have similar runtime

23

performance as dynamic programming [44]. Implementations of MP have not been made

available from the authors; therefore, none of our empirical comparisons include MP.

2.3.4.3 Branch and Bound Search

de Campos and Ji [19] proposed a systematic branch and bound search algorithm (BB)

to identify optimal network structures. The algorithm begins by calculating optimal parent

sets for all variables. These sets are represented as a directed graph that may have cycles.

Cycles are then repeatedly broken by removing one edge at a time. The new (possibly

cyclic) graphs correspond to nodes in a search space and are expanded in best-f rst order.

Graphs that have been generated but not expanded are stored using a priority queue. Ex-

panding a node consists of breaking a cycle in its graph. If a node does not have a cycle,

its score is compared to the score of the best DAG so far. If its score is better, the network

for that node becomes the new incumbent solution. Networks with lower bounds worse

than the score of the current incumbent are not considered for expansion. The algorithm

terminates when no more nodes need to be expanded. Their algorithm can also use simple

constraints, such as “X can only have up to 3 parents” or “Y and Z must be parents of X .”

They also add an anytime component to the algorithm by initially f nding a solution

using an approximation technique. Because they expand nodes in a best-f rst order, the

most recently expanded node gives a lower bound on the globally optimal solution. Fur-

thermore, in an attempt to f nd more acyclic graphs, their algorithm occasionally expands

nodes with the worst score rather than the best. By considering the difference between

the between the best network found so far and the lowest score of a node that has not yet

24

been expanded, they can bound the error of their solution. The algorithm also accounts

for limited resources by switching to a depth-f rst search if the priority queue grows too

large to f t in RAM. However, this algorithm was shown to be less effective than dynamic

programming [21] for proving the optimality of networks.

2.3.4.4 Dynamic Programming

Dynamic programming algorithms f nd an optimal Bayesian network in O(n2n) time [84,

82]. The algorithms derive from the observation that, because the network is a DAG, the

optimal structure contains a leaf variable (that has no children) and its parents, plus an op-

timal subnetwork over the other variables. This subnetwork is also a DAG. The algorithm

recursively f nds leaves of subnetworks to f nd the optimal complete network structure.

Specif cally, for a scoring function Score(·|·) and variables V [84], the following equa-

tions give the recurrences.

Score(V) = min{Score(V \ {X}) +BestScore(X, V \ {X})} (2.11)
X∈V

BestScore(X, V \ {X}) = min Score(X|PAX). (2.12)
PAX ⊆V\{X}

Score(V) gives the score for the subnetwork with variables V. X is selected as the leaf

of the subnetwork. BestScore gives the best parents for X out of the remaining variables

in the subnetwork V. This recurrence suggests an algorithm starting with all variables and

recursively removing one variable at a time. Each variable must be tried as the leaf of each

subnetwork. Hence, Score must be evaluated O(2n) times. Furthermore, each evaluation

of Score requires O(n) calls to BestScore to try each remaining variable as a leaf. This

gives the O(n2n) time complexity. All of the intermediate results are stored in memory,
25

so the memory complexity is also O(n2n). Silander and Myllmaki [82] adapted the al-

gorithm to instead begin with an empty subnetwork and recursively add leaves missing

from V. This does not change the recurrences, but was empirically shown [82] to be more

computationally eff cient.

2.4 Other Problems

Not all problems surrounding Bayesian networks fall squarely into one of these cate-

gories. This section discusses some of these problems in more detail.

2.4.1 Constraints

The preceding discussion has assumed no prior information was available about the

dataset. Often, human experts know some of the relationships between some of the vari-

ables. This prior knowledge can be used to constrain the learned network. Constraints are

broadly characterizable along two axes. First, they can apply to either the structure [22] or

the parameters [20]. Second, the constraints can either be hard [29] or soft [8]. Learned

networks must respect hard constraints, while enough data can supersede soft constraints.

Many algorithms have been proposed for incorporating constraints. This dissertation as-

sumes no constraints on the learned network.

2.4.2 Hidden Variables

Bayesian networks represent a probability distribution over the variables X1 . . .Xn;

however, it is possible that some other variables, not present in the dataset, also affect

the probability distribution. For example, a hidden class variable could inf uence all of

26

the observed variables. In cases like these, if the network does not include the hidden

variables, then it may not accurately model the probability distribution of the observed

variables. If a hidden variable is known to exist, but simply unobserved, then it can be

treated as a missing value. Relevant parameters can be estimated using EM [25]. In other

cases, unknown hidden variables affect the probability distribution. Several algorithms

exist for identifying hidden variables [34, 27, 26]. This work assumes no hidden variables

exist which affect the probability distribution of the observed variables.

2.4.3 Dynamic Bayesian Networks

Because Bayesian network structures are restricted to DAGs, they are unable to cap-

ture cyclic relationships. This situation arises in, for example, learning gene regulatory

networks [79]. In these networks, the protein products from gene g1 can affect g2 by being

a transcription factor, for example. The protein products of g2 can then affect g1, creating

a cycle. Dynamic Bayesian networks [39, 65] offer a solution to this problem. Dynamic

Bayesian networks contain multiple vertices for each variable; each vertex corresponds to

a different time slice. The gene regulatory relationships could be modeled in a dynamic

Bayesian network with an edge from g1 to g2 in both time slices and an edge from g2 in

the f rst time slice to g1 in the second time slice. This work does not consider these sorts

of relationships.

2.4.4 Classif cation

Classif cation problems focus on learning a rule (classif er) which predicts the value of

discrete variable (the class variables) given another set of variables (attributes). Regression
27

is a similar problem except the class variable is continuous. Typically, the only quality

measure for a classif er is how accurately it predicts the class variable. In contrast, the dis-

cussed Bayesian network score functions, like MDL and BD, measure prediction accuracy

across all variables (the likelihood of the data given the structure) as well as the complex-

ity of the network. Consequently, a network optimizing a scoring function may not also

optimize the prediction accuracy of the class variable. Several restricted structures, such

as naive Bayes [55] and tree augmented naive Bayes [35], have been shown to outper-

form unrestricted network structures in prediction tasks. This work focuses on learning the

relationships among all of the variables rather than predicting a single class variable.

2.4.5 Equivalence Classes

Many, though not all, scoring functions are score equivalent [10]. Score equivalent

functions assign the same score to networks which represent the same probability distri-

bution. The relationship among distributions with the same score is symmetric, transitive

and ref exive; therefore, score equivalent functions partition the set of Bayesian networks

into equivalence classes. Equivalent network structures [93] have the same skeleton (undi-

rected graphical structure) and v-structures. Both the MDL and BDe score functions are

score equivalent [10].

Optimal structure learning algorithms learn one member of the equivalence class with

the optimal score. Chickering [10] describes an algorithm which identif es the equiva-

lence class of a Bayesian network. This algorithm can extract the equivalence class of the

structure found by the structure learning algorithm.

28

CHAPTER 3

EVALUATION DESCRIPTION

Throughout this dissertation, much of the evaluation procedure is the same. In general,

we used data from the UCI machine learning repository [33], downloaded code from the

authors for all comparisons, and ran on the same server. In order to prevent repeating the

same material, we summarize all of this information here.

3.1 Datasets

Table 3.1 describes all of the UCI datasets used throughout this paper. To conserve

space on the f gures in later chapters, we often abbreviate the dataset names. The table

gives both the full name from the UCI repository as well as the abbreviation we use. It also

lists the number of variables and number of records in the datasets.

3.2 Other Implementations

Table 3.2 describes all of the other implementations to which we compared. None

of these algorithms are parallel learning algorithms. Both DP and BB include options to

calculate local scores in parallel, but these options were never used. Unless otherwise

noted, all other algorithms were implemented with custom code in Java.

All experiments were performed on a PC with a dual quad-core 3.07 GHz Intel i7

processor, 16 GB of RAM, 500 GB of hard disk space that was running Ubuntu 10.10.
29

Unless otherwise noted, no algorithms used more that one core of processor. Consequently,

other tasks, such as operating system functions, did not have any impact on the running

time of the results.

30

Table 3.1

A description of all datasets used for evaluation in this dissertation.

UCI Dataset Name Short Name n N
Adult Adult 14 30,162
Congressional Voting Records Voting 17 435
Letter Recognition Letter 17 20,000
Statlog (Vehicle Silhouettes) Statlog 19 752
Hepatitis Hepatitis 20 126
Image Segmentation Image 20 2,310
Imports Imports 22 205
SPECT Heart Heart 23 267
Mushroom Mushroom 23 8,124
Parkinsons Parkinsons 23 195
Wall-Following Robot Navigation Data Robot 25 5,456
Automobile Auto 26 159
Horse Colic Horse 28 300
Steel Plates Faults Steel 28 1,941
Flags Flags 29 194
Breast Cancer Wisconsin (Diagnostic) WDBC 31 569
Soybean (Large) Soybean 36 266
Alarm* Alarm 37 1,000
Water Treatment Plant Water 38 380
Cylinder Bands Bands 39 277
SPECTF Heart SPECTF 45 267
Lung Cancer Lung 57 26
UCI Dataset Name gives the full name of the dataset in the UCI machine learning
repository. Short Name gives the name by which the dataset is refered in the later
evaluation sections. n gives the number of variables in the dataset. N gives the
number of records in the dataset.
* Alarm is not a dataset from UCI. Gibbs sampling was used to gener-
ate a dataset from the Alarm network in the Bayesian Network Repository
(http://www.cs.huji.ac.il/site/labs/compbio/Repository/).

31

http://www.cs.huji.ac.il/site/labs/compbio/Repository

Table 3.2

A description of all external algorithm implementations used in this evaluation.

Algorithm Abbr Ref URL
Dynamic Programming DP [82] http://www.cs.helsinki.f /u/tsilande/sw/bene/
Branch and Bound BB [19] http://www.ecse.rpi.edu/ cvrl/structlearning.html
Optimal Reinsertion OR [64] http://www.autonlab.org/autonweb/10530.html
Algorithm gives the name of the algorithm. Abbr gives the abbreviation used to
refer to this implementation in the results sections in later chapters. Ref gives the
paper associated with the implementation. URL gives the URL from which the
code can be downloaded.

32

CHAPTER 4

HEURISTIC GRAPH SEARCH PERSPECTIVE

As described in Chapter 2, dynamic programming calculates three main functions:

Score(U), BestScore(X, U) and Score(X|U). This work addresses the memory bottle-

neck of current dynamic programming algorithms by considering the problem as a series

of graph search problems. This perspective allows adaptation of memory-eff cient heuris-

tic search techniques to f nd optimal structures. As shown in later chapters, comparison to

current state of the art dynamic programming techniques show that heuristic search tech-

niques typically run several times faster and use much less memory. This chapter presents

the heuristic search perspective of the problem. First, we describe the order graph, which

is analogous to the dynamic programming lattice. We next def ne several auxiliary data

structures used during the search. Parent graphs aid in calculating the cost of edges in the

order graph; we give two formulations of parent graphs. Finally, we precompute and cache

all necessary scores at the beginning of all of our search algorithms using a strategy similar

to that of an AD-tree [62].

4.1 Learning Optimal Subnetworks

Like the dynamic programming algorithms described in Section 2.3.4.4, we f nd the

optimal Bayesian network structure for all variables by learning optimal networks over

33

subsets of variables. We use an order graph to learn the optimal subnetworks. In some of

our algorithms, we begin the search with no variables. For search in this direction, we use

a forward order graph. Other algorithms begin the search with all of the variables. We use

a reverse order graph for searches beginning with all of the variables.

4.1.1 Forward Order Graph

Figure 4.1 displays a forward order graph for four variables. It contains subsets of

all variables, so the order graph has 2n nodes. The top-most node in layer 0 containing

no variables is the start node. The bottom-most node containing all variables is the goal

node. A directed path in the order graph from the start node to any other node induces an

ordering on the variables in the path with new variables appearing later in the ordering.

For example, the path traversing nodes ∅, {X1}, {X1, X2}, {X1, X2, X3} stands for the

variable ordering X1, X2, X3. Each edge on the path has a cost equal to BestScore for

the new variable in the child node given the variables in the parent node as candidate

parents. For example, the edge between {X1, X2} and {X1, X2, X3} has a cost equal to

BestScore(X3, {X1, X2}). Each order node contains information including a subset of

variables, the cost of the best path from the start node to this node, a leaf variable and its

optimal parent set. The shortest paths from the start node to all the other nodes correspond

to the optimal subnetworks, among which the shortest path to the goal node corresponds to

a f nal optimal Bayesian network. The lattice divides the nodes into layers. Nodes in layer

l contain optimal subnetworks of l variables. Layer l has C(n, l) nodes, where C(n, k) is

the binomial coeff cient.

34

Figure 4.1

A forward order graph of four variables.

4.1.2 Reverse Order Graph

Figure 4.2 displays a reverse order graph for four variables. It is similar to the forward

order graph; however, the top-most, start node contains all variables, while the bottom-

most, goal node contains none of the variables. A directed path again corresponds to an or-

dering on the variables: the ordering is the reverse of the order in which the leaves were re-

moved. For example, the path traversing nodes {X1, X2, X3, X4},{X1, X2, X3},{X1, X2},

{X1},∅ corresponds to the reverse of the variable ordering X4, X3, X2, X1, which is X1,

X2, X3, X4. An edge between node U and U \{X} has a cost equal to BestScore(X, U \

{X}). The shortest path between the start node and the goal node again corresponds to the

optimal Bayesian network. Intuitively, the forward order graph adds leaves one at a time,

and the candidate parent set for a node is all variables that have been added in the path

from the start node to that node. In constrast, the reverse order graph removes leaves one at
35

a time. The candidate parent set for a node in the reverse order graph is all variables which

have not been removed in the path from the start node to that node. Consequently, nodes

at shallow layers in the forward order graph have small candidate parent sets, but shallow

nodes in the reverse order graph have large candidate parent sets. Similarly, deeper nodes

in the forward order graph can select from large candidate parent sets, and the candidate

parent sets for deep nodes in the reverse order graph are more restricted.

Figure 4.2

A reverse order graph of four variables.

4.2 Identifying Optimal Parent Sets

In order to expand nodes in the order graphs, we need the BestScore(Xi|·) values. We

calculate those values using parent graphs. Each variable has its own parent graph. We

consider two different implementations of parent graphs. The f rst full parent graphs mirror

36

the structure of the order graph. Sparse parent graphs adopt a different data structure that

often offers considerable memory savings in practice.

4.2.1 Full Parent Graphs

Figure 4.3 shows the construction of the full parent graph for variable X1 as a lattice.

All 2n−1 subsets of all other variables are present in the graph. Each node contains one

value for BestScore of X1 and the set of candidate parents shown. That is, each node

stores the subset of parents from the given candidate set which minimizes the score of X1.

In Figure 4.3(a), we show the score of X1 using the indicated set of parents. Figure 4.3(b)

shows the f nal parent graph in which each has the optimal set of parents for that candidate

parent set. The score of that conf guration is also stored. As with the order graph, the

lattice divides the nodes into layers. We call the f rst layer of the graph, the layer with the

single node for ∅ in Figure 4.3, layer 0. A node in layer l has l predecessors, all in layer

l − 1. Layer l has C(n − 1, l) nodes. Thus, in total, the complete set of parent graphs stores

n2n−1 optimal parent sets.

4.2.2 Sparse Parent Graphs

The full parent graph for a variable X exhaustively enumerates all subsets of V \ {X}

and stores BestScore(X, U) for each subset U. Naively, this approach requires storing

n2n−1 scores and parent sets [82]. A memory-eff cient approach described in Chapter 5

reduces the memory requirement by storing only one layer of each parent graph in memory

at once. That still requires storing O(nC(n−1, n
2)) scores, though. This much information

is stored in order to make retrieving the optimal parent sets eff cient (i.e., they are stored
37

Figure 4.3

A sample parent graph for variable X1.

in a hash table or similar data structure). However, the number of unique optimal parent

sets is often far smaller than either of these numbers because the same parent set is often

optimal for many candidate parents sets as described by the following theorem [89].

Theorem 1 Let U ⊂ T and X ∈/ T. If Score(X|U) < Score(X|T), T cannot be the

optimal parent set for X .

For example, Figure 4.3(b) shows that a score may be shared by several nodes in a

parent graph. The full parent graph representation allocates space for this repetitive infor-

mation for each candidate parent set, resulting in waste of space.

4.2.2.1 Construction

Sparse parent graphs adopt a different approach. We f rst calculate scores (see Sec-

tion 4.3) and prune according to Theorem 1. We next sort all the unique parent scores

38

for each variable X in a list, and also maintain a parallel list that stores the associated

optimal parent sets. Table 4.1 shows the sorted lists for the parent graph in Figure 4.3(b).

We call these sorted lists scoresX and parentsX . If we allow X to use all the other vari-

ables as candidate parents, then BestScore(X, V \ {X}) is simply the f rst element in

the sorted list. For example, the f rst score in Table 4.1 is optimal for the candidate par-

ent set {X2, X3, X4}. Suppose we remove X2 from consideration as a candidate parent.

We can scan the list from the beginning. As we scan each score, we check the associated

parent set. As soon as we f nd a parent set which does not include X2, we have found

BestScore(X1, {X3, X4}). Similarly, if we remove both X2 and X3, we scan until f nding

a parent set which includes neither X2 nor X3; that is BestScore(X1, {X4}). In essence,

this allows us to store and eff ciently process only scores in Figure 4.3(c); suboptimal par-

ent sets are never stored or processed, as shown in Table 4.1.

Because of the pruning of suboptimal scores, this approach requires less memory than

storing all the possible parent sets and scores. As long as kscoresXk < C(n − 1, n
2), it

also requires less memory than the more memory-eff cient algorithm for X . In practice,

kscoresXk is almost always smaller than C(n − 1, n
2) by several orders of magnitude.

So this approach offers (usually substantial) memory savings compared to previous best

approaches. However, searching the lists to f nd optimal parent sets can be ineff cient if

not done properly. Since we have to search for each arc, the ineff ciency of the searching

can have a large impact on the the whole search algorithm.

39

4.2.2.2 Eff cient Scanning

We propose the following eff cient scanning technique. The basic idea is to f rst al-

low all variables to be candidate parents and successively remove one variable at a time

from the candidate parent set. For each variable X , we f rst initialize a working bit vector

of length kscoresXk called validX to be all 1s. This indicates that all the parent scores

in scoresX are usable. Therefore, the f rst score in the list will be the optimal score.

Then, we create n − 1 bit vectors also of length kscoresXk, one for each variable in

V \ {X}. The bit vector for variable Y is denoted as parentsYX and contains 1s for all

the parent sets that contain Y and 0s for others. Table 4.2 shows the bit vectors for the

example in Table 4.1. Then, to exclude variable Y as a candidate parent, we perform

the bit operation validnewX ← validX& ∼ parentsXY . The new validX bit vector now

contains 1s for all the parent sets that are subsets of V \ {Y }. The f rst set bit corre-

sponds to BestScore(X, V \ {Y }). Table 4.3 shows an example of excluding X3 from

the set of possible parents for X1, and the f rst set bit in the new bit vector corresponds to

BestScore(X1, V \ {X3}). If we further want to exclude X2 as a candidate parent, the

new bit vector from the last step becomes the current bit vector for this step, and the same

bit operation is applied: validnewX ← validX& ∼ parentsX
X

1

2 . The f rst set bit of the re-

sult corresponds to BestScore(X1, V \ {X2, X3}). Table 4.4 demonstrates this operation.

These operations give rise to the calculateBestScore and createSparseP arentGraph

procedures in Table 4.5. Also, it is important to note that we exclude one variable at a

time. For example, if, after excluding X3, we wanted to exclude X4 rather than X2, we

40

could take validnewX ← validX& ∼ parentsX
X

1

4). In total, we store scoresX and parentsX

for each X and ∼ parentsX(Y) for each X and Y .

Table 4.1

Sorted scores and parent sets for X1 after pruning parent sets which are not possibly
optimal.

parentsX1
{X2, X3} {X3} {X2} {}

scoresX1
5 6 8 10

4.2.2.3 Memory Savings

We evaluated the memory savings made possible by using our sparse representation in

comparison to the full parent graph data structures. In particular, we compared the maxi-

mum number of scores that have to be stored for all variables at once by each algorithm.

A typical dynamic programming algorithm stores scores for all possible parent sets of all

variables. Memory-eff cient dynamic programming [59] (assuming implementation opti-

mizations) and an algorithm described in Chapter 5 store all possible parent sets only in one

layer of the parent graphs for all variables. The sparse representation requires the unique

optimal parent sets for all variables at all layers in the search.

As Figure 4.4 shows, the memory savings due to the pruning of provably suboptimal

scores is signif cant. In fact, the number of unique scores is typically several orders of

magnitude smaller than the number of parent sets stored by the other approaches. These

results agree with previously published results [18]. Here, we conf rm that the trend of

41

Table 4.2

The parentsX(Xi) bit vectors for X1.

parentsX1 {X2, X3} {X3} {X2} {}
X2 1 0 1 0
X3 1 1 0 0
X4 0 0 0 0
A “1” in line Xi indicates that the corresponding parent set includes variable Xi,
while a “0” indicates otherwise. Note that, after pruning, none of the optimal
parent sets include X4.

Table 4.3

The result of performing the bitwise operation to exclude all parent sets which include X3.

parentsX1 {X2, X3} {X3} {X2} {}
validX1 1 1 1 1
∼ X3 0 0 1 1
validnewX1

0 0 1 1
A “1” in the validX1 bit vector means that the parent set does not include X3 and
can be used for selecting the optimal parents. The f rst set bit indicates the best
possible score and parent set.

Table 4.4

The result of performing the bitwise operation to exclude all parent sets which include
either X3 or X2.

parentsX1 {X2, X3} {X3} {X2} {}
validX1 0 0 1 1
∼ X2 0 1 0 1
validnewX1

0 0 0 1
A “1” in the validnew bit vector means that the parent set includes neither X2 nor X1

X3. The initial validX1 bit vector had already excluded X3, so f nding validnewX1

only required excluding X2.

42

Table 4.5

Sparse parent graph algorithms.

1: procedure CALCULATEBESTSCORE(X, U)
2: valid ← allScoresX
3: for each Y ∈ V \ U do
4: Yvalid ← valid& ∼ parentsX
5: end for
6: fsb ← firstSetBit(valid)
7: return scoresX [fsb]
8: end procedure

9: procedure CREATESPARSEPARENTGRAPH(X)
10: scoresX , parentsX ←sort(Scores(X|·))
11: for i = 0 → |scoresX | do
12: for each Y ∈ parentsX(i) do
13: Yset(parents (i)) X

14: end for
15: end for
16: end procedure

43

sparse parent graph size independent from n on datasets up to size 57. BB and mathemati-

cal programming enjoy similar memory savings because they only include unique optimal

parent sets, as well. However, the nature of those searches does not suggest a clear relation-

ship between pruning scores and memory savings during the execution of their algorithm.

Figure 4.4 also suggests that the savings increase as the number of variables increases in

the datasets. This implies that, while more variables necessarily increases the number of

candidate parent sets exponentially, the number of unique optimal parent sets increases

much more slowly. Intuitively, even though we add more possible parents, only a small

number of them are “good” parents for any particular variable.

For most of our algorithms, we present results using both the full and the sparse repre-

sentations of parent graphs. All of the sparse versions benef t similarly from the reduced

memory, so we do not repeat those results in each section. In most cases, the sparse par-

ent graphs also yield signif cant runtime improvements. Because those results vary from

algorithm to algorithm, they are discussed in more detail in the appropriate chapters.

4.3 Calculating Scores

We use an AD-tree-like search to calculate all of the parent scores. An AD-tree [62] is

an unbalanced tree which contains AD-tree nodes and varying nodes. The tree is used to

collect count statistics from a dataset. An AD-node stores the number of records consistent

with the variable instantiation of the node, while a varying node assigns a value to a vari-

able. Figure 4.5 shows an AD-tree. As described in Chapter 2 and shown in Equation 4.2,

the scores can be calculated based on parent instantiation counts and variable and parent

44

	
��

 � �
 �� 	

�
 	

	
 � 	
 	
��

 � � �
 	 � �� 	

 �
 	

 	

� 	
��

 �

 	

	

 �

	

	

	

�
�

	

�
�
�
�

�

�

�

�

�

�

	

	
�

�

�
�

	

	

�

�

�
�

�
�
�

�

	

�

�

	

	
 ��

��
���� ������������� ˘
 ����

�
��

��
�

 �
 �

�
 �

 �
�

�
�
 �������

��������
�������
��������
��������
�������
��������
�������
��������
��������

�
�
�
��
��
�

��

�

�

�
�
��
�
�
��
�
�
��

�
�

��
��
�
��
��
�
��

�

˘
�ˇ
��
�
�
��
�
ˆ
��
�
�

�

˙
�
˝
ˇ
��
��
˛�
�
��
�

�

°˜
ˇ
�
�
��

��

�

�

°˜
˝
�
��
˛�
�
��

�
�

˙
�
ˇ
��
��

��

�
�

�
˛!
��
�
˜
��

��
"
�

�

#
ˇ
�$
��
˛�
�
˛�
�
��
�
ˆ
�
�

%
�
&
�
��
�
�
��
�

�

�

�
�
��
��

��
�
�
ˆ
�

˙
�
�˛
�
��

"
��

�

˘
��
�
��
�
"
��
�
ˆ

�
�

'
�ˇ
�
˛�
� ̂
��
�
ˆ

�

(
)
*
+
��

�
��
�
 ̂
�

˘
�
,
&
�
ˇ
�
��

��

�

�
�ˇ
�˜
��

�
��
�

�

(
ˇ
��
��
�
"
��

"

�

*
ˇ
�
�
˛�
� ̂
��

�
�
�

˘
#
-
+
.
'
��

�
��

�
�

��
�
�
��
�
�
��

�

�������� �� � � ����� ����	 � ����

������ � ������ ��� � ������ ��� � ��� ���� ���������	 � ���� ��
 � � ���
 � ������������������
��� ����� ��� ���� � ��
 ����˘
� �
� �� ������ ��� � ������ ��� � ��� �� � � �ˇ������� ���	 � ����
 ��
 � � 	��� ��
 ������� � � ����� � ����� �ˆ��� � �˙����������� ����� ��� ����� ����������� � ��
 ����˘
��	 � ������ ��� � ������ ��� � ��� �� ������ ����� � ��
 ��������������� ����� ��������� ��
� �� 	���� �� ��˝��� � �˛˘

Figure 4.4

The maximum count of parent sets stored by each of the parent graph strategies.

45

instantiation counts. A count statistic is only used once and can be discarded afterwards.

Therefore, we can use a depth-f rst traversal of the AD-tree to compute the parent scores to

minimize the search space needed. In particular, our implementation calculates the MDL

score. In addition to Theorem 1, we also use the following theorem [90] to prune the tree.

Theorem 2 In an optimal Bayesian network based on the MDL scoring function, each

variable has at most log(2N) parents, where N is the number of data points.
log N

The theorem states that only small parent sets can possibly be optimal parents when

using the MDL score. All nodes below the depth specif ed in the theorem can be pruned

without computing them.

While Equation 2.6 does accurately express the MDL scoring function, it is not partic-

ularly amenable to eff cient calculation. Consequently, we use the following (equivalent)

equation for calculating the MDL score.

X
DL(G) = MDL(Xi|P Ai),

i

M (4.1)

where

46

Figure 4.5

An AD-tree.

logN
MDL(Xi|PAi) = H(Xi|PAi) + K(Xi|PAi), (4.2)

2
X Nxi,paiH(Xi|PAi) = − Nxi,pai log , (4.3)

Npaixi,pai

X X
= Nxi,pai logNpai − Nxi,pai logNxi,pai , (4.4)

xi,pai xi,pai

Y
K(Xi|PAi) = (ri − 1) rl. (4.5)

Xl∈PAi

Table 4.6 gives an algorithm which eff ciently implements these equations. All of our

algorithms precompute the score cache using this algorithm.

47

1: procedure CALCULATESCORES(D)
2: updateScores(∅, D)
3: expandADNode(X−1, ∅, D)
4: for each X ∈ V do
5: prune(X, ∅, Score(X|∅))
6: end for
7: end procedure

8: procedure EXPANDADNODE(Xi , U, Du)
9: For j = i + 1 → n do expandVaryNode(j, U, Du, d)

10: end procedure

11: procedure EXPANDVARYNODE(Xi , U, Du)
12: for j = 0 → ri do
13: updateScores(U ∪ {Xi}, DXi=j,u)

14:
15:

if |U|
end for

< log(2N) then expandADNode(i, U ∪ {Xi}, DXi=j,u)
log N

16: end procedure

17: procedure UPDATESCORES(U, Du)
18: for each X ∈ V \ U do
19: if Score(X|U) is null then Score(X|U) ← K(X|U)
20: Score(X|U) ← Score(X|U) + |Du| ∗ log |Du|
21: end for
22: for each X ∈ U do
23: Score(X|U \ {X}) is null Score(X|U \ {X}) ← K(X|U \ {X})
24: Score(X|U \ {X}) ← Score(X|U \ {X})− |Du| ∗ log |Du|
25: end for
26: end procedure

27: procedure PRUNE(Y, U, bestScore)
28: for each X ∈ V \ U do
29: if Score(X|U ∪ X) < bestScore then
30: prune(Y, U ∪ X, Score(X|U ∪ X)
31: else
32: delete Score(X|U ∪ X)
33: prune(Y, U ∪ X, bestScore)
34: end if
35: end for
36: end procedure

48

Table 4.6

Score calculation algorithm.

CHAPTER 5

BEST-FIRST HEURISTIC SEARCH

A* [42] is a best-f rst heuristic graph search algorithm. It requires an evaluation func-

tion f(n) and a successor operator �(n). The evaluation function for a node n consists of

two terms: the cost so far, g(n), and the admissible cost from n to a goal node, h(n). An

admissible cost is an optimistic estimate of the distance from n to a goal node; that is, the

admissible cost is an underestimate, or lower bound, on the distance from n to the goal. If

the heuristic function h(n) is consistent, A* guarantees to f nd the shortest path from the

start node to each node expanded. A consistent function always underestimates the cost

from n to a goal node and assigns the same value or a higher value to all successors of

n. Consequently, a consistent function is always admissible. Application of the successor

operator to node n, expanding n, returns the successors of n as well as the cost from n to

each successor. The algorithm begins by placing the start node on a priority queue called

openlist. The open list is implemented as a heap in which nodes are organized according

to increasing f values. At each iteration, the head of openlist is expanded and placed in

a closedlist. The closed list is implemented as a hash table. For the Bayesian network

structure learning problem, the key of the hash table is a subset of variables and the value

is the node which corresponds to that subset. The f cost of each successor is calculated.

Duplicate detection is performed by checking open and closedlists for each successor. If

49

5

10

15

20

25

30

35

1: procedure MAIN(D)
2: calculateScores(D)
3: for each X ∈ V do
4: BestScore(X, ∅) ← Score(X|∅)

: calculateParentGraph(X, ∅)
6: end for

P
7: push(open, φ, Y ∈V BestScore(Y, V \ {Y })
8: while !isEmpty(open) do
9: U ←pop(open)

: if U is goal then
11: print(“The best score is ” + Score(V))
12: return
13: end if
14: put(closed, U)

: for each X ∈ V \ U do
16: if contains(closed, U ∪ {X}) then
17: continue
18: end if
19: g ← BestScore(X, U) + Score(U)

P
: h ← BestScore(Y, V \ {Y })Y ∈V\U

21: if g + h < Score(U ∪ {X} then
22: push(open, U ∪ {X}, g + h)
23: Score(U ∪ {X}) ← g + h
24: end if

: end for
26: end while
27: end procedure

28: procedure CALCULATEPARENTGRAPH(Y, U)
29: for each X ∈ V \ U do

: if Score(Y |U ∪ {X}) < BestScore(Y, U)
31: and Score(Y |U ∪ {X}) < BestScore(Y, U ∪ {X}) then
32: BestScore(Y |U ∪ {X}) ← Score(Y |U ∪ {X})
33: else if BestScore(Y |U ∪ {X}) < BestScore(Y, U ∪ {X}) then
34: BestScore(Y |U ∪ {X}) ← Score(Y |U ∪ {X})

: end if
36: calculateParentGraph(Y, U ∪ {X})
37: end for
38: end procedure

Table 5.1

A* search algorithm.

50

neither data structure contains the successor, it is added to openlist with the calculated f

cost and a parent pointer to n. If a successor is on the openlist list with a higher g value,

it is updated with the new value and parent pointer. If the successor is in closedlist with a

higher g value, it is moved back to openlist. Otherwise, the successor is discarded. Once

a goal node is selected for expansion, a shortest path is found by following parent pointers

backward to the start node.

Table 5.1 gives pseudocode for our A* algorithm to learn optimal Bayesian network

structures. Our formulation of the order graph allows us to specify an evaluation func-

tion and a successor operator. This algorithm uses a forward order graph. As presented,

the algorithm uses the full parent graph representation. The complete parent graphs are

constructed before searching through the order graph in the calculateP arentGraph pro-

cedure. We can easily adapt the algorithm to use sparse parent graphs, though, by replacing

the calls to BestScore(·) with calls to calculateBestScore(·) from Table 4.5. If we use

sparse parent graphs, then we do not need to use the calculateP arentGraph procedure.

Instead, we use createSparseP arentGraph from Table 4.5 to construct the sparse parent

graphs at the beginning of the search.

5.1 Heuristic Function

The best-f rst algorithm def nes g(n) as the sum of edge costs from the start node to n.

Each edge cost is BestScore(X, U) where X is the variable added to the ordering. We

use the following heuristic function [102],

51

Def nition 1
X

h(U) = BestScore(Y, V\{Y }). (5.1)
Y ∈V\U

The heuristic function h allows variables missing from the ordering to choose optimal

parents from all variables in V. This effectively relaxes the acyclic constraint to quickly

calculate a lower bound. The following theorem [102] proves h is consistent. Consistent

functions are also admissible.

Theorem 3 h is consistent.

Proof: For any successor node R of U, let Y ∈ R \ U. We have

X
h(U) = BestScore(Xi, V \ {Xi})

Xi∈V\U

X
≤ BestScore(Xi, V \ {Xi}) +BestScore(Y, U)

Xi∈V\U,Xi 6=Y

= h(R) + c(U, R).

The inequality holds because fewer variables are used to select optimal parents for Y .

Hence, h is consistent. 2

5.2 Successor Operator

The forward order graph also suggests the successor operator. To expand node U, we

try each X ∈ V \ U as a leaf for U. The edge cost is BestScore(X, U), and the g value of

the successor is equal to the g value of the predecessor summed with BestScore(X, U).

52

5.3 Solution Reconstruction

For conciseness, Table 5.1 only includes the main logic in computing the optimal score;

however, in addition to storing the optimal score over the variables in U, we also store the

leaf and parents which give that score in leaf(U) and parents(U) while a node is in the

open list. After expanding a node, we write that information to disk in order to conserve

RAM. We also maintain an entry in the closed list that the node has already been expanded.

We reconstruct the optimal solution by beginning with the goal node (so U = V). We

consult leaf(U) and parents(U) to f nd the last leaf, l, and its optimal parent set. We then

recursively look up leaf(U \ {l}) and parents(U \ {l}) until reconstructing the entire

network.

5.4 Advantages of A*

A* offers several advantages over dynamic programming. Primarily, by expanding

nodes according to their f values, A* never expands subnetworks which provably cannot

compose an optimal complete structure. Subnetworks with a worse f value than the op-

timal network are either never generated or remain in the open list. The savings typically

manifest in both reduced memory complexity, because the unexpanded nodes are not stored

in the closed list, and reduced time complexity, because no time is spent expanding those

nodes. In some cases, though, the overhead of maintaining the priority queue overshadows

the savings from pruning. In these cases, very little pruning occurred, and nearly the entire

order graph was expanded.

53

5.5 Empirical Results

We evaluated our A* search algorithm on a set of benchmark datasets from the UCI

repository [33]. We compared to dynamic programming (DP) and branch and bound (BB).

We tested using both sparse and full parent graph representations.

Figure 5.1 reports the running time of the three algorithms in solving the benchmark

datasets. We terminated an algorithm if it ran for more than 2 hours on a dataset. We also

report the sizes of the sparse parent graphs compared to the full parent graphs. Finally, we

give the number of expanded nodes for both A* and DP. The difference in sizes demon-

strates the computation wasted by dynamic programming evaluating subnetworks which

could not possibly compose an optimal structure. We had no way of tracking the size of

the search space by BB because only binary code is provided.

The timing results show that our A* algorithm with full parent graphs is typically sev-

eral times faster than DP and orders of magnitude faster than BB on most of the datasets

we tested. A* is slower than DP on Adult and Letter, which have a large number of

records and a relatively small number of variables, which makes the pruning technique in

Theorem 1 less effective. Although the DP algorithm does not perform any pruning, due

to its simplicity, the algorithm is highly optimized. Consequently, it was faster than A*

search on the Adult and Letter datasets; however, on the Mushroom dataset, which also

included a large number of samples but had a larger number of variables, A* runs faster

than DP. Because of the exponential size of the parent and order graphs, as the number of

variables grows, the amount of pruning of Theorem 1 has less impact on the running time.

54

The results call particular attention to the benef t of the sparse parent graphs. Because

they do not require the construction overhead of the full parent graphs, the runtimes of all

of the algorithms are signif cantly reduced. Of the datasets with more than 20 variables,

A* with the sparse parent graphs runs more than an order of magnitude faster than DP

on all of them except mushroom. As mentioned above, datasets with many records, such

as Mushroom, limit the pruning offered by Theorem 1. In these cases, searching for

BestScore(·) in the sparse representation takes longer to execute. Even under this less-

than-ideal circumstance, though, A* with the sparse parent graphs still runs over 5 times

faster than DP. These results also show that the eff ciency of the sparse parent graphs do

not depend heavily on n.

The sparse parent graphs have another advantage over the full parent graphs for A*

search. As evidenced by the number of nodes expanded by A* compared to the number

in the complete order graph, at least in some cases, A* never needs some values from the

parent graphs. However, the full parent graphs will calculate these values anyway, since

they are created in full at the beginning of the search. On the other hand, the sparse parent

graphs do not compute a value until asked, so they never waste time calculating scores that

are never necessary.

Finally, BB is much slower than A* with or without the sparse parent graphs. Its search

space includes graphs with cycles, while the A* search space does not. The results indicate

that it is better to search in the space of DAGs directly in f nding an optimal Bayesian

network structure.

55

	

�
�

	
 ��

	
��� 	

	 	 ��	 	 	 		 	
��
 	 	 	

	 	 	 	 	 	 	 	 	 � 	 	 	 �

�� �� ��� ���
�����

�

��

���

����

�����

�
�
�
�
��
�
�
��

 �

�������� �� � � ����� ����	 � ����

������ ����� ��	���˘ ˇ� ������ ˆ���˘� ˙ ����� ����� ��	���˘ ������	������

ˆ���˘�˙ �� ˝˛° ˇ˜�	�� ����� �˘�� �� � �˜� !˜�� ���	�˘�	����!˘ ���˘�� " ˘˜ ��˙

Figure 5.1

Runtime comparison among BB, DP and A*.

Figure 5.2 plots the number of nodes expanded by A* versus the full size of the order

graph at each layer for adult and hepatitis. The heuristic function used by A* initially pro-

vides only loose bounds, so A* expands most nodes in the beginning layers. The heuristic

bounds tighten as the search progresses, so A* prunes more nodes at deeper layers. For

the adult dataset, A* expanded almost all the order nodes in the beginning 7 layers of the

order graph before it started to prune order nodes in the f nal layers. In contrast, only a

small percentage of the nodes were expanded in the order graph of hepatitis. The pruning

became quite effective as early as at layer 4 and 5, and only a few nodes were expanded in

the last 10 layers.

Figure 5.3 shows the benef t of pruning on all of the datasets. The f gure shows that A*

always expands fewer nodes that DP. On some of the datasets, such as Letter, the savings

56

	

�

	
��
�

��

	

	

�

�

��
�

��

������ � ���� ��� � � �� �� ����
���� � � ����� � � ���� � � ����� � �

���� ������
������ ����
������

�
��
�
��
�
�
�
	
�

�
�

� � � �� �� �� � �� �� �� �� ��

�
��
�
��
�
�
�
	
�

�
�

����
������
������
������
�����
 �����

����

����

����

����
������

��� ������
� ������

����� �����
��� ���

Figure 5.2

Nodes expanded by A* at the middle layer of two datasets.

are modest. For V oting, though, A* expands almost an order of magnitude fewer nodes

than DP. Unexpanded nodes reduce both memory and runtime costs because no work is

wasted storing or processing the unexpanded nodes.

57

	

�

	

�

	
 ��
 	

�

�
�
�
�
��

�

�
�
�

��

�������

�������

�������

��������

�������

��������

��������

��������

�������� �� � � ����� ���� � ����

Figure 5.3

Comparison of the order graph nodes expanded by DP and A*.

58

CHAPTER 6

FRONTIER BREADTH-FIRST BRANCH AND BOUND SEARCH

Our best-f rst heuristic search results agree with previous results [70] which show that

learning optimal Bayesian networks is typically limited by RAM. This was more pro-

nounced when using the full parent graphs, but, especially on datasets for which Theo-

rem 1 was not very effective, the sparse parent graphs combined with the closed list for A*

sometimes consumed a sizable amount of RAM. We next attempted to reduce the mem-

ory complexity of learning optimal Bayesian networks by taking advantage of the regular

structure of the order and parent graphs. In particular, we observed that only a limited

amount of information is required to generate each layer of the parent and order graphs.

Generating a layer of a parent graph requires the previous layer of that parent graph and

corresponding scores. A layer in the order graph requires the previous layer of the order

graph and the current layer of the parent graphs. Because scores and parent sets are prop-

agated from layer to layer in the parent graphs, a layer can be deleted once it has been

expanded. Similarly, scores in the order graph are propagated; these can also deleted once

expanded. Reconstructing the network structure necessitates the leaf, its optimal parent set

and a pointer to its predecessor for each order graph node be stored on disk.

To overcome the memory constraint and leverage the structure present within the search

space, we introduce a frontier breadth-f rst branch and bound algorithm with delayed du-

59

1: procedure EXPANDORDERGRAPH(l, isP resent, upper, maxSize)
2: for each Scorel(U) ∈ Scorel do
3: for each X ∈ V \ U do
4: g ← Scorel(U) +BestScorel(X|U)

P
5: h ← BestScore(Y, V \ {Y })Y ∈V\U
6: if g + h > upper then continue
7: isP resent(U ∪ {X}) ← true
8: if g < Scorel+1(U ∪ {X}) then
9: Scorel+1(U ∪ {X}) ← g

10: end if
11: if |Scorel+1| > maxSize then writeTempFile(Scorel+1)
12: end for
13: end for
14: Scorel+1 ← mergeTempFiles; delete Scorel
15: end procedure

16: procedure EXPANDPARENTGRAPH(l, p, isP resent, maxSize)
17: for each BestScorel(p|U) ∈ BestScorel(p do
18: for each X ∈ V \ U and X = p do
19: S ← U ∪ {X}
20: if !isP resent(S) then continue
21: if Score(p|S) < BestScorel+1(p|S) then
22: BestScorel+1(p|S) ← Score(p|S)
23: end if
24: if BestScorel(p|U) < BestScorel+1(p|S) then
25: BestScorel+1(p|S) ← BestScorel(p|U)
26: end if
27: if |BestScorel+1(p)| > maxSize then writeTempFile(BestScorel+1(p))
28: end for
29: end for
30: BestScorel+1(p) ←mergeTempFiles; delete BestScorel(p)
31: end procedure

32: procedure MAIN(D, upper, maxSize)
33: calculateScores(D); writeScoresToDisk
34: for l = 1 → n do
35: for p = 1 → n do expandParentGraph(l, p, isP resent, maxSize)
36: expandOrderGraph(l, isP resent, upper, maxSize)
37: end for
38: print(“The best score is ” + Score(V))

60 39: end procedure

Table 6.1

A frontier BFBnB search algorithm.

6

plicate detection by adapting the breadth-f rst heuristic search algorithm proposed by Zhou

and Hansen [104, 106]. It is also similar to the frontier search described by Korf [49]. We

use the same notation for heuristic search introduced in Chapter 4.

Breadth-f rst heuristic search expands a search space in order of layers of increasing

g-cost with each layer comprising all nodes with a same g-cost. As each node is generated,

a heuristic function is used to calculate a lower bound for that node. If the lower bound is

worse than a given upper bound on the optimal solution, the node is pruned; otherwise, the

node is added to the open list for further search. A divide-and-conquer method is used to

reconstruct the optimal solution.

Table 6.1 gives the pseudocode for our BFBnB search algorithm for learning optimal

Bayesian networks. Like the A* search, it also uses the forward order graph. The algo-

rithm is similar to the breadth-f rst heuristic search algorithm but has several differences.

First, the layers in our search graphs (the parent and order graphs) do not correspond to

the g-costs of nodes; rather, layer l corresponds to variable sets (candidate parent sets or

optimal subnetworks) of size l. For the order graph, though, we can calculate both a g- and

h-cost for pruning. This pruning can also be propagated to the parent graphs, as described

in Section 6.1. Another difference is that, when using the full parent graphs, our search

problem is an interlaced search of order and parent graphs which must be carefully orches-

trated to ensure the correct nodes can be accessed easily at the correct time, as described

in Section 6.2. This further requires the scores are stored in particular order, as described

in Section 6.3. Yet another difference is that we use a variant of delayed duplicate de-

tection [51] in which external memory is not used to detect duplicates until the open list

61

exceeds the size of RAM, as described in Section 6.4. Finally, we use the network structure

reconstruction algorithm described in Section 5.3 rather than using divide-and-conquer to

reconstruct the optimal solution.

As with the A* search algorithm, Algorithm 6.1 uses full parent graphs. The algo-

rithm can easily be adapted to use sparse parent graphs, though, by constructing them at

the beginning of the search and replacing the calls to BestScore(·) with the appropriate

procedures from Table 4.5.

The pseudocode only includes the logic to calculate the optimal score. The optimal

network is reconstructed using the technique described in Section 5.3.

6.1 Branch and Bound

In order to safely prune nodes, we need a heuristic function f(U) = g(U) +h(U) that

estimates the cost of the best path from the start node to a goal node using order node U.

We use the heuristic function described in Section 5.1.

We also need an upper bound on the score of the optimal Bayesian network in order

to prune. A search node U whose heuristic value f(U) is higher than the upper bound

is immediately pruned. Numerous fast, approximate methods exist for learning a locally

optimal Bayesian network. We use a greedy hill climbing algorithm with a tabu list and

random restarts [40].

62

6.2 Coordinating the Graph Searches

The parent and order graph searches must be carefully coordinated to ensure that the

parent graphs contain the necessary nodes to expand nodes in the order graph. In particular,

expanding a node U in layer l in the order graph requires BestScore(X, U), which is

stored in the node U of the parent graph for X . Hence, before expanding layer |U| in the

order graph, that layer of the parent graphs must already exist. Therefore, the algorithm

alternates between expanding layers of the parent graphs and order graph. In both graphs,

a hash table is used to detect generated nodes and store their scores.

Expanding a node U in the parent graph amounts to generating successor nodes with

candidate parents U ∪{X} for all X in V \ U. For each successor S = U ∪{X}, the hash

table for the next layer is f rst checked to see if S has already been generated. If not, the

score of using all of S as parents of X is retrieved from the score cache and compared to

the score of using the parents specif ed in U. If using all of the variables has a better score,

then an entry is added to the hash table indicating that, for candidate parents S, using all

of them is best. Otherwise, according to Theorem 1, the hash table stores a mapping from

S to the parents in U. Similarly, if S has already been generated, the score of the existing

best parent set for S is compared to the score using the parents in U. If the score of the

parents in U is better, then the hash table mapping is updated accordingly. Once a layer of

the parent graph is expanded, the whole layer can be discarded as it is no longer needed.

The pseudocode uses BestScorel to store the optimal scores at each layer.

Expanding a node U in the order graph amounts to generating successor nodes U∪{X}

for all X in V \ U. To calculate the score of successor S = U ∪ {X}, the score of the

63

existing node U is added to BestScore(X, U), which is retrieved from parent graph node

U for variable X . The optimal parent set out of U is also recorded. This is equivalent to

trying X as the leaf and U as the subnetwork. Next, the hash table for the next layer is

consulted. If it contains an entry for S, then a node for this set of variables has already

been generated using another variable as the leaf. The score of that node is compared to

the score for S. If the new score for S is better, or the hash table did not contain an entry

for S, then the mapping in the hash table is updated. Unlike the parent graph, however, a

portion of each order graph node is used to reconstruct the optimal network at the end of

the search, as described in Section 5.3. This information is written to disk, while the other

information is deleted. The pseudocode uses Scorel to store the score for each subnetwork.

Additional care is needed to ensure that parent and order graph nodes for a particular

layer are accessed in a regular, structured pattern. We arrange the nodes in the parent and

order graphs in queues such that when node U is removed from the order graph queue, the

head of each parent graph queue for all X in V \ U is U. So all of the successors of U can

be generated by combining it with the head of each of those parent graph queues. Once the

parent graph nodes are used, they can be removed, and the queues will be ready to expand

the next node in the order graph queue. Because the nodes are removed from the heads

of the queues, these invariants hold throughout the expansion of the layer. Regulating

such access patterns improves the scalability of the algorithm because these queues can be

stored on disk and accessed sequentially to reduce the requirement of RAM. The regular

accesses also reduce disk seek time. The pseudocode assumes the nodes are written to disk

in this order to easily retrieve the next necessary node.

64

The lexicographic ordering [46] of nodes within each layer is one possible ordering

that ensures the queues remain synchronized. For example, the lexicographic ordering of

4 variables of size 2 is {{X1, X2}, {X1, X3}, {X2, X3}, {X1, X4}, {X2, X4}, {X3, X4}}.

The order graph queue for layer 2 of a dataset with 4 variables should be arranged in that

order. The parent graph queue for variable X should have the same sequence, but without

subsets containing X . In the example, the parent graph queue for variable X1 should be

{{X2, X3}, {X2, X4}, {X3, X4}}. Figure 6.1 shows a simple example of expanding one

order graph node by manipulating the necessary queues. As described in more detail in

Section 6.4, the nodes of the graphs must be sorted to detect duplicates; the lexicographic

order ensures that there is no additional work required to arrange the nodes when writing

them to disk.

If the sparse parent graphs are used, there is no coordination problem because each

BestScore(·) is caculated from scratch using the eff cient bit-wise operations described in

Section 4.2.2.

6.3 Ordering the Scores on Disk

We have assumed that, because of its pruned size due to Theorem 1, the score cache

could f t in RAM. For large datasets, though, the score cache can grow quite large. We write

it to disk to reduce RAM usage. Each score Score(X|P) is used once, when node P is f rst

generated in the parent graph for X . As described in Section 6.2, the parent graph nodes are

expanded in lexicographic order; however, they are not generated in that order. The succes-

sors of node {X1} in the parent graph for X0 are {X1, X2}, {X1, X3}, {X1, X4}.... When

65

Figure 6.1

Coordinating the parent and order graphs.

{X2} is expanded, the new successors are {X2, X3}, {X2, X4}... even though {X2, X3}

precedes {X1, X4} in lexicographic order. Therefore, the scores must be written in order

of successors of nodes expanded in lexicographic order.

A f le is created for each variable for each layer to store these sorted scores after all

scores not pruned by Theorem 1 are in the score cache. The f le for a particular layer can

be deleted after expanding that layer in the appropriate parent graph. Each variable set U

is generated in lexicographic order, {X0}, {X1}, {X0, X1}, {X2}.... U is then expanded

as it would be in the parent graphs for variables V \ U. The scores of these successors

which had not already been generated are written to disk.

The sparse parent graphs can use external memory sorting during their construction if

necessary. In practice, the pruned score cache does not consume more memory than the
66

order and parent graphs. Also, as demonstrated in Figure 4.4, the size of the cache does

not depend on n. For all of the datasets considered in this work, the largest pruned score

cache was 20MB (for the 57-variable lung cancer dataset).

6.4 Duplicate Detection

Duplicate nodes are generated during the parent and order graph searches. Duplicates

in the parent and order graphs are nodes which consider the same sets of variables (candi-

date parent sets and optimal subnetworks, respectively). Because the successors of a node

always consider exactly one more variable in both the parent and order graphs, the succes-

sors of a node in layer l are always in layer l + 1. Therefore, when a node is expanded,

its successors could only be duplicates of nodes in the next layer. Duplicates are detected

using a hash table in RAM. In both the parent and order graphs, the duplicate with the

best score should be kept. After expanding a layer, nodes in the hash table are sorted (in

lexicographic ordering, as per Section 6.2) and written to disk. The previous layer is then

deleted from disk.

For large datasets, it is possible that even one layer of the parent or order graph is too

large to f t in RAM. We use a variant of delayed duplicate detection (DDD) [51] in our

algorithm to utilize external memory when a layer will not f t in RAM. In DDD, search

nodes are written to a f le on disk as soon as they are generated. After expanding a layer,

an external-memory sorting algorithm, such as external-memory merge sort [37], is used

to detect and remove duplicate nodes in the f le. The nodes in the f le are then expanded

to generate the next layer of the search. In this manner, the search uses a minimal amount

67

of RAM; however, because all generated nodes are written to disk, much work is done

reading and writing duplicates.

Rather than immediately writing all generated nodes to disk, we detect duplicates in

RAM with a hash table. Figure 6.2(a), (b) and (c) show several examples of duplicate

detection in RAM. Once the hash table reaches a user-def ned maximum size, its contents

are sorted and written to a temporary f le on disk. The hash table is then cleared. At the

end of each layer, the remaining contents of the hash table are sorted and merged with

the temporary f les into a single sorted f le. An example of this operation is shown in

Figure 6.2(d). Locality in our search allows us to detect many duplicates in RAM with the

hash table and reduce external memory usage.

Figure 6.2

Examples of immediate and delayed duplicate detection.

68

6.5 Advantages of Frontier Breadth-First Branch and Bound

BFBnB enjoys many advantages over current state of the art methods. First, like A*,

BFBnB can benef t from the pruning of Theorem 2 and the sparse parent graphs. Second,

the layered structure we impose on the parent and order graphs ensures that we never

need more than two layers of any of the graphs in memory, RAM or f les on disk, at

once. Third, because of the pruning described in Section 6.1, BFBnB does not waste

resources expanding subnetworks which provably cannot result in an optimal structure.

However, unlike A*, the pruning of BFBnB is dependent on the upper bound; a tight upper

bound will result in more pruning. Finally, the delayed duplicate detection method we use

lifts the requirement that a single layer f ts in RAM. Because we do not resort to delayed

duplicate detection until RAM is full, our algorithm takes advantage of all available RAM.

By writing nodes to disk once RAM is full, we learn optimal Bayesian networks even when

single layers of the search graph do not f t in RAM. The amount of available hard disk space

and running time are the only limiting factors for the scalability of our algorithm.

None of the existing algorithms take advantage of the structure in the parent and order

graphs when calculating BestScore(X, V) or Score(V). Singh and Moore [84] use a

depth-f rst search ordering to generate the necessary scores and variable sets, while Silan-

der and Myllymaki [82] use the lexicographic ordering over all of the variables. We use

the lexicographic ordering only within each layer, not over all of the variables. The depth-

f rst approach does not generate nodes in one layer at a time. The lexicographic ordering

also does not generate all nodes in one layer at a time. Consider the f rst four nodes in the

lexicographic order: {X0}, {X1}, {X0, X1}, {X2}. Two nodes from layer 1 are generated,

69

then a node in layer 2; however, the next node generated is again in layer 1. Similarly, the

seventh node generated is {X0, X1, X2} while the eighth node is {X3}. Because genera-

tion of nodes from different layers is interleaved, these orderings require the entire graphs

remain in memory (either in RAM or on disk). In contrast, our BFBnB algorithm generates

nodes one layer at a time and thus needs at most two layers of the graphs in memory, plus

the extra information to reconstruct the path. The delayed duplicate detection and solution

reconstruction strategies allow us to store that information in external memory once RAM

is full. Previous layers can safely be deleted.

6.6 Empirical Results

We empirically evaluated our BFBnB algorithm against DP and A* (from Chapter 5)

for both space and time usage. We used both full and sparse parent graphs for BFBnB, but

only show the results using the sparse parent graphs for A*. We compared the size of the

full order graph, which a typical dynamic programming algorithm stores, to the maximum

size of a layer in the order graphs that BFBnB has to store. Additionally, we compared the

running times of all the algorithms.

Previous results found that memory is the main bottleneck restricting the size of learn-

able networks [70]. As our results in Figures 6.3 and 6.4 conf rm, algorithms which attempt

to store entire parent or order graphs in RAM or on disk, such as DP and A* are limited

to smaller sets of variables. BFBnB’s duplicate detection strategy allows it to write partial

search layers to hard disk when the layers are too large to f t in RAM, so it can learn op-

timal Bayesian network structures regardless of the amount of RAM. Consequently, hard

70

	

�
�

	
 ��
 	

	 �� 	 �

	

� � 	 	

� � 	

�� ��� ����
 ��� ��� ���� ��

��

���

����

������

�������

��������

�
�
�
�
��
�
�
��

 �

�������� �� � � ����� ���� � ����
� ������˘�����ˇ��	 ��ˆ˙�ˆ�˝ˆ���˛ˆ��	 �� �ˇ�ˇ˘�°���˜ ˝��ˇ�	 ̂���˛ ��!�!�ˆ˙��"���#��

�$�˝ �% ��˘ �ˆ˙�����$��&��� ������˘�����ˇ��	 ��ˆ˙�ˆ�˝ˆ��'�(� ��)���˛ ��!�!�ˆ˙���*�#��

�$�˝ �% ��˘ �ˆ˙�����$��&

Figure 6.3

Runtime comparison of DP, BFBnB and A*.

disk space and running time are its only limiting factors. The inexpensive cost of hard

disks coupled with distributed f le systems can potentially erase the effect of memory on

the scalability of the algorithm. The runtime results show that BFBnB not only takes much

less space, but also runs several times faster than the DP algorithm.

On the largest dataset, W DBC (31 variables and 569 records), we learned the optimal

network in 93,682 seconds (about 26 hours) using full parent graphs. The time was reduced

to 27,243 seconds (about 8 hours) using the sparse parent graphs. We also attempted to

use DP, but its external memory usage exceeded the 500 gigabytes of hard disk space on

the server. Figure 6.5 shows the total memory consumption of our algorithm on the largest

layers of the W DBC search using full parent graphs. Very little memory is used before

71

	

�

�

	

�
�

	
 ��
 	

�� �����

�
�

�
��

�
�

 �

��������
�������
�������
�������
�������
�������
��������
�������
��������
��������
��������

�������� �� � � ����� ���� � ����

Figure 6.4

Comparison of order graph nodes stored in memory at once by DP and BFBnB.

layer 9, and after layer 23, the memory consumption does not change much because the

layer sizes decrease exponentially. As the f gure shows, both of the middle layers use

nearly 70 gigabytes of disk space. Most of this space is consumed by the parent graphs,

so it is freed after each layer. Using sparse parent graphs eliminates all of that external

memory usage. Assuming that the running time and size of the middle layers double for

each additional variable, which is a rough pattern from Figures 6.3 and 6.4, our algorithm

could learn a 36-variable network in about one month using approximately 2 terabytes of

hard disk space and a single processor when using the full parent graphs. This suggests

that our method should scale to larger networks better than the method of Parviainen and

Koivisto [70]. They observe that their implementation would take 4 weeks on 100 pro-

cessors to learn a 31-variable network, and, even with coding improvements and massive

parallelization, only networks up to 34 variables would be possible.
72

	
 	

�
�

��
 � � ��
 � �
������ ���� ����˘���ˇ��ˆ˙ ������ ���� ��˝���˛ �ˇ��ˆ˙°

��

 �

��

��

��

��

��

�

�����

Figure 6.5

Hard disk usage for the W DBC dataset.

�
�
��

��
 �

 �

��

� �
�

�

�� �� �� �� �� �� � �� � � �� �� �� ��

As with A*, the sparse parent graphs typically improved the running time by over an

order of magnitude compared to the full parent graph implementation. However, the sparse

parent graphs did cause the algorithm to run slower on the Sensor Readings dataset. As

the table shows, though, the “sparse” parent graphs were storing more than 900,000 scores.

For this dataset, then they were not very sparse, and the bit operations took much longer

because they were applied to so many scores during each iteration.

73

CHAPTER 7

ANYTIME DEPTH-FIRST BRANCH AND BOUND SEARCH

Our A* algorithm is shown to be an order of magnitude more eff cient than the dynamic

programming algorithms. However, A* requires all the search information, including par-

ent and order graphs, to be stored in RAM during the search, which makes the algorithm

run out of memory for large datasets, even if using the parent graphs (see Chapter 8 for A*

on very large datasets). BFBnB searches the order graph one layer at a time. By coordi-

nating the parent and order graphs, most of the search information can be stored on disk

and are only processed incrementally after being read back to RAM when necessary. The

BFBnB algorithm was shown to be as eff cient as the A* algorithm but was able to scale to

much larger datasets. Theoretically, the scalability of the BFBnB algorithm is only limited

by the amount of disk space available.

However, the A* and BFBnB algorithms have a common limitation in that they do not

f nd any solution until the very end of the search. If they run out of RAM or disk space

before the search f nishes, they cannot provide any solution. As shown in Section 6.6,

even if they do complete the search, a result my not be returned for hours or even days

for large datasets. In many situations, we would desire the algorithms to exhibit anytime

behavior; that is, we would like the algorithm to return a (potentially sub-optimal) solution

quickly. Then, if time and other resources permit, the algorithm improves the solution

74

until converging upon the optimal network. If the search runs to completion, it guarantees

to return the optimal network.

Several other exact algorithms do exhibit some form of anytime behavior. The branch

and bound search of de Campos and Ji [21] has anytime behavior, but searches in the space

of cyclic graphs. We showed in Section 5.5 that it is very slow to converge to the optimal

network. Mathematical programming algorithms [44, 15] also have anytime behavior, but

extra work is required to decode their intermediate results into a usable network structure.

Additionally, MP was shown to be only comparable or slightly more eff cient the DP [44].

7.1 Anytime Algorithms

The notion of anytime search is not new. For example, Dean and Boddy [24, 4] present

the notion in the context of planning under unknown time constraints. Standard DFS is

a form of anytime search if the search is continued after the f rst solution is found. Un-

fortunately, graphs with many paths to each node, like the order graphs, can suffer an

exponential increase in complexity using normal DFS (or normal DFBnB) because the

same node can be expanded many times. Many algorithms have investigated approaches

to minimize these node re-expansions. We f rst describe weighted A* because it serves as

a basis for many of the algorithms, and then introduce three representative examples.

7.1.1 Weighted A*

Weighted A* (WA*) [74, 75, 71] is a variant of A* search in which the heuristic func-

tion is weighted by a factor ǫ. That is, f(n) = g(n)+ ǫ × h(n). By weighting the heuristic,

it is no longer admissible. That is, the f value for a node may over-estimate the cost of
75

a path to the goal through this node. However, upon expanding a goal node, its cost is

guaranteed to be no more than a factor of ǫ greater than the globally optimal solution [71].

For example, if ǫ = 1.05, and we expand a goal node with cost f , then the globally optimal

solution is guaranteed to be no more than 5% better than f .

7.1.2 Anytime Weighted A*

Anytime WA* [41] begins as a normal WA* algorithm; however, rather than stopping

the search as soon as a solution is found, Anytime WA* continues to expand nodes. The

score of the incumbent solution is then used to prune nodes based on their true, unweighted

f cost, although nodes continue to be expanded based on the weighted value. As better

paths to a goal are found, the incumbent solution is updated, which gives the algorithm

its anytime behavior. Eventually, unless it is interrupted, the search expands or prunes

all nodes in the search space and terminates with the optimal solution. Because of the

weighted heuristic, Anytime WA* may f nd a better path to a closed node. In order to

guarantee optimality of the f nal solution, Anytime WA* must re-expand those nodes.

7.1.3 Anytime Repairing A*

Anytime Repairing A*(ARA*) [58] adopts a similar strategy. It also starts as a normal

WA* and runs until f nding a solution. Upon f nding the solution, the algorithm decreases

ǫ and searches again. The solution is improved (or stays the same) at each iteration, so

this algorithm also has anytime behavior. The process continues until it is interrupted or

ǫ = 1 and the algorithm terminates with an optimal solution. ARA* does not completely

start from scratch for each search, though. Like AWA*, ARA* could also f nd a better
76

path to a node during the search. During each search iteration, the algorithm keeps a list of

nodes closed during that iteration to which it f nds a better path. Rather than immediately

re-expanding those nodes, though, ARA* instead begins each iteration after the f rst with

that list serving as the initial open list. The iterative process continues until better paths are

found to no nodes.

7.1.4 Anytime Window A*

Anytime Window A* (AWA*) [1] adopts a slightly different approach to deliver any-

time solutions. It is not based on WA*. Rather, it uses a type of sliding window to en-

courage deeper exploration of the search graph. Much like ARA*, the algorithm consists

of a series of iterations. Instead of ǫ, AWA* uses a parameter w to control the size of the

window. The algorithm keeps track of the depth of all nodes expanded during an iteration

of the algorithm. After expanding a node in layer l, and nodes in layer l − w are frozen.

Nodes that are frozen are placed into a list to prevent them from being expanded. After

the algorithm f nds a solution on a particular iteration, the frozen nodes from the previous

iteration become the new initial open list. This process continues until no nodes are frozen

on an iteration.

7.2 Anytime DFBnB Network Learning Algorithm

There is no obvious way to convert the BFBnB algorithm into an anytime algorithm

because the search expands one layer at a time in the order graph. The goal node is in the

last layer and cannot be reached until the very end of the search. We can convert the A*

search algorithm to an anytime algorithm by adopting a depth-f rst search strategy instead
77

of best-f rst search. Whenever the depth-f rst search reaches the goal node, a solution

is found and can be used to update the best solution so far. Because, depth-f rst search

requires retrieving BestScore(·) in a non-layered order, the full parent graphs are not

practical for depth-f rst search. In this section, we present an anytime depth-f rst branch

and bound search algorithm (DFBnB).

Table 7.1 gives pseudocode for our DFBnB algorithm. Unlike A* and BFBnB, we use

the reverse order graph for this algorithm. Additionally, its design precludes full parent

graphs. Section 7.2.1 describes an incremental update scheme which allows this algorithm

to take more advantage of the sparse parent graphs than A* or BFBnB. A traditional short-

coming of DFBnB in graphs with many duplicates, like the order graph, concerns node re-

expansions. We address this problem using a type of closed list described in Section 7.2.2.

Because the start and goal nodes of the reverse order graph are different than those in the

forward order graph, we use a heuristic described in Section 7.2.3. Unfortunately, because

DFBnB does not expand nodes in best-f rst order, the closed list coupled with pruning

causes some nodes to be inappropriately pruned. We use node re-expansions to ensure we

consider the entire search space and guarantee optimality. In Section 7.2.4 we describe an

iterative scheme to control node re-expansions while still guaranteeing optimality.

Reconstructing the optimal network at the end of the search uses the basic backtracking

approach described in Section 5.3.

78

Table 7.1

A DFBnB search algorithm.

1: procedure EXPAND(U, valid, toRepair)
2: if U = {} then
3: hexact(U) ← 0
4: end if
5: for each X ∈ U do
6: BestScore(X, U \ {X}) ← scoresX [firstSetBit(validX)]
7: g ← g(U) +BestScore(X, U \ {X})
8: duplicate ← exists(g(U \ {X}))
9: if g < g(U \ {X}) then g(U \ {X}) ← g

10: if duplicate and g < g(U \ {X}) then toRepair ← toRepair ∪ {U, g}
11: f ← h(U \ {X}) + g(U \ {X})
12: if (!duplicate and f < optimal then
13: for each Y ∈ U do
14: ′ valid ← Y validY& ∼ parentsY (X)
15: end for
16: ′ expand(U \ {X}, valid)
17: end if
18: if hexact(U) > BestScore(X, U \ {X}) + hexact(U \ {X}) then
19: hexact(U) ← BestScore(X, U \ {X}) + hexact(U \ {X})
20: end if
21: end for
22: if optimal > hexact(U) + g(U) then optimal ← hexact(U) + g(U)
23: end procedure

24: procedure MAIN(D)
25: for each X ∈ V do
26: scoresX , parentsX ← calcScores(X, D); validX ← 1s
27: for each Y ∈ V \ {X} do
28: scoresX(Y) ← getScores(parentsX , Y)
29: end for
30: end for
31: toRepairl ← {V, 0}
32: while |toRepairl| > 0 do
33: for each {V, g} ∈ toRepairl do
34: if g(V) > g then
35: g(V) ← g
36: expand(V, valid, toRepairl+1)
37: end if
38: end for
39:
40:

toRepairl ← toRepairl+1
79 end while

41: end procedure

7.2.1 Incremental Sparse Updates

In addition to its anytime behavior, DFBnB has another useful property. Because it

completely searches one branch of the graph before jumping to another, it allows us to

exploit another regularity in the order graph. A successor of a node in the reverse or-

der graph removes exactly one variable (used as the leaf) from its predecessor. In Sec-

tion 4.2.2, we described an eff cient technique to remove one parent from consideration

at a time when using the sparse parent graphs. Therefore, as shown in Table 7.1, we can

incrementally modify the valid bit vectors within the main algorithm rather than using the

calcualteBestScore procedure from Table 4.5.

At each node U, we make one variable X as a leaf (line 5) and select its optimal parents

from among U (lines 6 - 8). We then check if that is the best path to the subnetwork U\{X}

(lines 10 - 12). Because X is no longer a valid parent, no decendents of U along this path

can use X as a parent. We remove X as consideration as a parent by performing the bit

operation validY& ∼ parentsXY for the other Y ∈ U (lines 15 - 17). We then recursively

select optimal parents for the remaining variables (line 18). After backtracking to U, we

select another Y in U to use as a leaf. Because we did not modify valid, the call stack

maintains the valid parents before removing X; we can easily perform the bit operations

for Y and continue the search. Because we have no more than n bit vectors and the reverse

order graph always has n layers, we store at most O(n2) bit vectors in memory at once.

80

7.2.2 Closed List and Backups

A potential problem with DFS in graphs with many paths to each node is generating

duplicates. A traditional DFS algorithm does not perform duplicate detection; therefore,

much work can be wasted in re-expanding duplicate nodes. Our search graph contains

many duplicates; a node in layer l is generated l times. In order to combat this problem,

our algorithm uses a hash table to detect duplicate nodes (lines 9, 14). However, because

of the depth-f rst search strategy, we are not guaranteed that we have the optimal path to

a node the f rst time we expand it. On the other hand, because we always consider all of

a node’s descendants before backtracking to it, we know the exact distance between that

node and the goal, hexact(U) before it is generated again. To take hexact(U) as correct,

though, we must assume that none of its descendents are inadmissibly pruned. We discuss

this issue in more detail in Section 7.2.4. When backtracking, we can compute hexact(U)

by calculating for each successor R the total distance between U and R and between R

and the goal, and f nding the minimum distance among them (lines 20 - 22). Trivially, the

distance of an immediate predecessor of the goal is just the distance between it and the

goal. We pass this information up the call stack to calculate the distances for predecessor

nodes. Then, the next time U is generated, we sum the distance on the current path and

hexact(U). If it is better than the existing best path, optimal, then we update the best path

found so far (lines 24 - 26). We store all values of hexact(U) in the hash table.

81

7.2.3 Heuristic Function for the Reverse Order Graph

The eff ciency of the depth-f rst search can be signif cantly improved by using a lower

bound for pruning. The best solution found so far is a trivial upper bound for the optimal

solution. If we can also estimate a lower bound for all the paths that pass through the

current search node, and the lower bound is already worse than the upper bound solution,

the current node can be immediately pruned as it will not lead to any better solution. Since

the new order graph has a different goal node from the original graph, we cannot use the

heuristic function in Equation 5.1.

At any point in the search, we have a set of variables remaining which must form the

rest of the network. We know the scores which could possibly be used for all the remaining

variables. By consulting the bit vectors valid at a particular node U, we can identify the

best scores those variables could possibly have along the path which includes U; that is,

for all X in U, we can calculate BestScore(X, U). By summing over these scores, we

can calculate a lower bound on the optimal subnetwork over U, or the distance from U to

the goal node, i.e., we use the following new heuristic function h∗ .

Def nition 2
X

h ∗ (U) = BestScore(X, U \ {X}). (7.1)
X∈U

The heuristic is admissible because it allows the remaining variables to select their opti-

mal parents from among all of the other remaining variables. This has the effect of relaxing

the acyclic constraint on those variables. The following theorem proves the heuristic is also

consistent.

82

Theorem 4 h∗ is consistent.

Proof: For any successor node R of U, let Y ∈ U \ R. We have

X
h ∗ (U) = BestScore(X, U \ {X})

X∈U

X
≤ BestScore(X, R \ {X}) +BestScore(Y, U \ {Y })

X∈R

= h ∗ (R) + c(U, R).

The inequality holds because the variables in R have fewer parents to choose from after

making Y a leaf. Hence, h∗ is consistent. 2

Because we do not expand nodes in a best-f rst order, the consistent heuristic does not

allow us to discard duplicate nodes; however, we can use the heuristic to prune parts of the

search space which cannot possibly be on the optimal path from the start to the goal node

(lines 13 - 14). Computing the heuristic for any node U is linear in the number of variables

remaining in U.

7.2.4 Repairing Inconsistent Nodes

Integrating a closed list to maintain hexact within the DFBnB framework greatly min-

imizes the number of node re-expansions that must occur; however, it also causes subtle

problems when pruning. As mentioned several times, the f rst time we expand a node n

it may not have its optimal g-cost. We expand n with the discovered g value, g ′ (n). The

g cost of its successors, g(s) = g ′ (n) + c(n, s), then include the over-estimate present in

g ′ (n). If the difference between the true g(n) (i.e., the shortest path from the start node

to n) and g ′ (n) is �g and the difference between the f cost of the current incumbent and
83

f ′ (s) = g ′ (n) + cost(n, s) + h(n) is less than �g, then s will be inadmissibly pruned.

Furthermore, it could happen that all of s’s predecessors are initially expanded with sub-

optimal g costs and s is always inadmissibly pruned. Because all of s’s predecessors are in

the closed list, though, they will not be re-expanded. Then, even though s could have been

a part of the optimal solution, it was never expanded because of inadmissible pruning.

This is very similar to the problem faced by Anytime WA*, ARA*, AWA* and many

other best-f rst algorithms which use inadmissible heuristics. Consequently, we adopt a

similar solution. In constrast to those algorithms, we use a consistent heuristic function;

however, as described in the example, we can expand a node that has a sub-optimal g-cost.

During each iteration, we keep a list, similar to the inconsistent list of ARA*, that tracks

nodes to which we f nd a better path. We do not re-expand nodes immediately. Instead, we

add them to the list and note the new g cost. Once the current iteration of search f nishes,

we repair the nodes in the list by expanding them with the new g cost. We repeat this

iterative process until no nodes are added to the list during an iteration.

We prefer the DFS strategy to a weighted best-f rst strategy here because it does not

incur the overhead associated with maintaining a priority queue. Additionally, the DFS is

guaranteed to f nd the f rst solution on the n + 1th expansion, while the WA*-based algo-

rithms may take longer to generate the f rst solution. Furthermore, the DFS strategy allows

us to more eff ciently perform the incremental bitwise operations to the sparse parent graph,

while best-f rst strategies require we start from scratch for each calculation.

84

7.2.5 Advantages of DFBnB

The DFBnB algorithm offers several advantages compared to A*, BFBnB and other

structure learning algorithms. Eventually DFBnB will either converge to the optimal so-

lution, or output the best solution found so far whenever it runs out of time or memory or

has to be stopped early. A* cannot complete if it runs out of RAM. Although BFBnB is

not restricted by RAM, it is limited by the amount of available hard disk space. On large

datasets, BFBnB can easily require terabytes of hard disk; if this amount is not available,

then BFBnB does not return any network. In contrast, even if DFBnB runs out of resources

before provably f nding the optimal network, it can still output the best network found.

As we show in Section 7.3, the algorithm has very good anytime behavior compared

to the branch and bound algorithm of de Campos and Ji [19] and even Optimal Reinser-

tion [64], a local search algorithm. In fact, for many datasets, much of the search time is

spent simply proving the optimality of the solution. Thus, in paractice, the algorithm can

often be stopped very early and still give the optimal solution.

7.3 Empirical Results

We tested the DFBnB algorithm against several state of the art structure learning algo-

rithms.

7.3.1 Comparison of Anytime Behavior

First, we compared the anytime behavior of DFBnB to that of BB and OR on four

datasets of up to 57 variables: Auto, F lag, W ater and Lung. We chose to compare to BB

85

because of its anytime behavior. We compare to OR as a representative for local search

techniques because several studies [89, 91] suggest that it performs well on a wide variety

of datasets. OR has several tunable parameters, including scoring function and maximum

parent count. The MDL complexity penalty term implemented in DFBnB and BB dif-

fers from that of OR. (Implementations of other local search algorithms, such as sparse

candidate [36], also varied in calculated scores, even for the same network structure.) To

account for this difference, the structures learned by OR were rescored with the scores

used by DFBnB and BB which always assigned the same scores to equivalent structures.

For a dataset of size N and the MDL scoring function, no variable can have more than

k = log 2N parents in the optimal network [90]; we used that value of k as the maximum
log N

number of parents for each dataset. We ran OR with the given parameters. We then plotted

the scores of the networks learned by each algorithm as a function of time. To perform

these experiments, we allowed the algorithms to run up to one hour (3600s). The runtimes

for DFBnB and BB include only the time spent on search; they do not include times to

calculate the local scores.

The convergence curves of these algorithms on the datasets are shown in Figures 7.1. In

these experiments, OR was always the f rst algorithm to terminate. OR terminated because

it reached a local optimum and was unable to escape. Only once on the water treatment

dataset did it f nd a slightly better solution than DFBnB. BB did not f nish searching within

the time limit for any of the datasets. Also, the convergence curves of BB stayed f at for

all the datasets. That means BB was not able to improve any of the initial solutions found

by the greedy algorithm it uses to initialize its bound. The true anytime behavior of BB is

86

thus unclear from the results. In comparison, DFBnB f nds all the solutions by itself, so

its curves provide a reliable indication of its anytime behavior. On all the datasets, DFBnB

continuously f nds better solutions during the search, and was also able to f nd and prove

the optimality of its solutions on one of the datasets. On two occasions it was able to f nd

solutions better than the initial solutions of BB. DFBnB could also benef t from the better

initial solutions found by the greedy algorithm used in BB.

7.3.2 Comparison of Running Time

Finally, we compared the running time of DFBnB to those of DP, BFBnB and BB.

DFBnB and BB were again given a one hour limit. We let BFBnB and DP run longer in

order to obtain the optimal solutions for evaluation. For this comparison, we considered

both the time to f nd the best structure and to prove its optimality by DFBnB and BB.

The results in Figure 7.2 demonstrate that DFBnB f nds the optimal solution nearly two

orders of magnitude faster than current state of the art algorithms. Furthermore, DFBnB

proved the optimality nearly an order of magnitude more quickly when it had enough

RAM. However, DFBnB does not take advantage of disk. The program stops when its

hash table f lls RAM, so it is unable to prove the optimality for some of the searches.

Nevertheless, the search f nds optimal solutions for all but two of the datasets. We verif ed

this using the results from BFBnB. BB proved the optimality of its solution on only the

smallest dataset. On all other cases, it did not improve its initial solutions. These echo the

results of Figure 7.1. BB does not improve its initial solution quickly. DFBnB found better

solutions than BB on all these datasets.

87

	
 �

	

	
��

	
��

	
�

� �

�

�

�

�

�

�

�

�

�

	
 �

�

	

	
��

 	
��

	
�

�

	
 �

�

	

	
��

 � 	
��

	
�

�

�

	
 �

	

	
��

	
��

	
�

	
��
�
 � � �
� � 	
 �� � � � � �

�� �
�

� �
� 	
� �
 ��

� 	

� � �
�
� 	
� �
 � � � �
�

�
 �

� � �
�
�
�	
��	 � �� 	
 ��

�� � �

 � � � � � �
� 	� �
 � � � � 	
� �
�
 � �
�

� �

� �� �
 �
 ��

� ��� � � 	 	�� � �

 ��
 �
 ��

�� � �
� 	� � ��
 �

 ��
� 	� �

�
� � �
 �
 �

�

� ��� � � 	�� � �

 ��
 �
 ��
 �� � �

 ��
� 	� �

�
� � �
 �
 ��

� �� � � 	 	�� � �

 �� �
 �
 ��

� ��� � � 	 	�� � �

�������� �� � �������� �� �
��� ���

�������� � ��� � �� �� �� ����������
���������� ˘ � ˇ� ˆ˙ ˇ ����˝�ˆ � � ��ˆ� �� �� �� ˆ � ˘

˛� ����� ˝� ��� ��ˆ��˝ �� �� � ˙ � �� ˆ �ˆ�� �
ˆ�� ˇ ˆ � �� � � �� ���� �� ������� ˘

°� �� ˆ ˜ ��� ���!�˝�˝ ��� ���˝ �� ���� � � �"��˙˜ ˇ�� ˝�˝ ��� � ���� ���� �� ������� ����˝ ̌ !���

����� � �� ˝!� �ˆ�˘ �� ��#$ � �	�� � ˝ �� ��� ˆ���� ��ˆ � ���� � � %� ˆ��˝ ˘ & � � �	 �� � ˝ �� ��

���˝��� �˝ ������� �� ���� �
������� �� ��%' ˆ��˝ ˘ ˛� ���� � ˆ�� � %'((˘%�˘ �ˇ��#$ � �	�� � ˝

�� ��� ˆ���� ��ˆ � ���� � � %% ˆ��˝ ˘ & � � �	�� � ˝ �� ����������$�) � *%' ˆ��˝ ˘ ˛� ���� �

ˆ�� � +(*,˘�'˘ �ˆ��#$ � �	�� � ˝ �� ��� ˆ����� ��ˆ � ���� � � *� ˆ��˝ ˘ �˝��#$ � �	�� � ˝ �� ��

� ˆ���� ��ˆ � ���� � � *' ˆ��˝ ̆

Figure 7.1

Anytime comparison of DFBnB, OR and BB.

�
�
�
��
�

�

�
�
�
��
�

�

��
�

��
�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�

� �����
���� ���

���� ���

����
����
� ��

��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

��
�

�
��
�

�
��
�

�������� �� � �������� �� �
��� ���

� �� ����� ��� ��˘����ˇ� ���
� � � �� � � � ��

���� ���
���� � �
���� ���
� ��

� �
���� � �

����

����

����

������ �� ��� �� ��� �� ���
� � � �� � � � ��

���� ���
���

���� ���
���

�
��
�

��
�

��
�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�

�
�
��
�

�
�

�

�
�
��
�

�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��
�

�

�
�
�
��
�

�

���

���

���

���
���
���
���

��
�

�
��
�

��
�

��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

��
�

�
��
�

� �
�

�

�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

��
�

�
�
��
�

�
�
��
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�

�
�
��
�

88

	

	

�
�

	
 ��
 	

� �
� �

� � ��

� � � �� �

� �
� �

� � ��

�

	

� � ��

�� ��

� �

� � � �� ���� �� ����

�
�
�
�
��
�
�
��

 �

�����

������

������

������

������

������

�������� �� � � ����� ���� � ����
����� � �����˘ˇ���������ˆˇ˙���˝��˛�°�˙��˜�˙ˇ˛��˙�� �˛!"�˙��ˆ� �°#���˜�˙$�ˇ��

�˜˜ˇ ˇ��˙�°#���˜��%˙����"�˛�˛�� �̋� � ���� ������˘ˇ������˛�%ˇ˛°˛��°��ˇ�˘�˙ˇ˛��

�˜�����$�°��� ��� �����&'(�˜�������˙�#�˙�˛���#�˙$���%˙����"�˛�˛��˝�°#�˘���% ������

���)� �� ��� � ���� �����&'(�˛���#�ˇ˙��ˇ����˙�!�����˙$���!˙ˇ˛�"ˇ˙˝��˜�˙$��#�"°˙ˇ���

˜�°����*��&'(��˙�˙ˇ˛����˜��� �˛���#�˙$�˙� ��ˇ����˙�ˇ˛!�����ˇ˙#�ˇ�ˇ˙ˇ�"�˘����˝�#�"°˙ˇ���

�����ˇ����˙�˜ˇ���˙$���!˙ˇ˛�"�#�"°˙ˇ���� � ˜�°���˙$���!˙ˇ˛�"�#�"°˙ˇ����˙$�°˘$�˛�˝�

��˙�$����!������ˇ˙��˜����""���˙�#�˙#��$ˇ $������˙�$�������&+(�ˆ�#ˇ���˙$����˛��

Figure 7.2

Comparison on the runtimes of DP, BFBnB, DFBnB and BB to f nd optimal networks.

89

CHAPTER 8

THE K-CYCLE CONFLICT HEURISTIC

All of the proposed algorithms use an admissible heuristic to safely ignore parts of the

search space. A* uses Equation 5.1 to leave parts of the search space unexpanded, while

BFBnB uses the same heuristic function to prune away unpromising parts of the search.

Similarly, DFBnB utilizes Equation 7.1 to prune the reverse order graph. Both of these

heuristic functions relax the acyclic constraint of Bayesian networks so that each remaining

variable can freely choose optimal parents from other variables. The heuristic provides

an optimistic estimation of how good a solution can be and is admissible. This simiple

relaxation does not consider interactions among the selected parents, though. Therefore, it

may introduce many directed cycles into the relaxed problem. If a graph has many cycles,

the bound may be quite loose and limit the effectiveness of pruning.

In this chapter, we propose a tighter admissible heuristic which considers and elimi-

nates directed cycles within small groups of remaining variables. The resulting technique,

called the k-cycle conf ict heuristic, is a type of additive pattern database [30]. Pattern

databases [14] calculate an admissible heuristic value for a problem by solving a relaxed

version of the problem optimally. The cost of the exact solution of the relaxed problem is

admissible for the original problem [71]. In general, multiple problems in the original state

space are relaxed to the same problem. Therefore, the relaxed problems form an abstract

90

state space in which multiple original states map to the same relaxed state. The relaxed

state is also called a pattern. A pattern database consists of exact costs for the patterns,

which can be looked up as an admissible heuristic for the original states. For Bayesian net-

work structure learning, a pattern consists of a set of variables. We can then create multiple

pattern databases by relaxing it in different ways. If a set of relaxed problems have no in-

teractions between them, the costs of the pattern databases can be added together to obtain

an admissible heuristic, which is why the method is called an additive pattern database.

Otherwise, the only way to obtain an admissible heuristic is to take the maximum cost of

the pattern databases.

We consider two version of the k-cycle conf ict heuristic. The f rst version dynamically

splits the remaining variables into small groups in an attempt to maximize the heuristic

value. In the second version, we statically split the variables into groups at the beginning

of the search and only break cycles among variables in the same group. Both versions of

the heuristic are adapted to A* and BFBnB.

8.1 A Motivating Example

According to Equation 5.1, the heuristic estimate of the start node in the order graph

allows each variable to choose optimal parents from all the other variables. Suppose the

optimal parents for X1, X2, X3, X4 are {X2, X3, X4}, {X1, X4}, {X2}, {X2, X3} re-

spectively. The parent sets selected by the heuristic are shown as the directed graph in

Figure 8.1. Since the acyclic constraint is ignored, directed cycles are introduced, e.g.,

between X1 and X2. However, we know the f nal solution cannot have cycles. Three sce-

91

narios are possible between X1 and X2 in the optimal Bayesian network: (1) X2 is a parent

of X1 (so X1 cannot be a parent of X2), (2) X1 is a parent of X2, or (3) neither of them is

a parent of the other. Therefore, we can break the cycle to achieve a tighter bound. Before

discussing how to do that, we f rst introduce the following theorem.

Theorem 5 Let U and V be two candidate parent sets for X , and U ⊂ V, then

BestScore(X, V) ≤ BestScore(X, U).

The theorem has appeared in many earlier papers, e.g. [54], and simply means that a

better score can be obtained if a larger set of parent candidates is available to choose from.

Due to the theorem, the third case outlined earlier is guaranteed to be worse than the other

two because one of the variables has fewer parents to choose from. Between the f rst two

cases it is unclear which one provides a better value, so we take the minimum of them.

Consider the f rst case: We have to delete the arc X1 → X2 to rule out X1 as a parent of

X2. After that we have to let X2 to reselect optimal parents from {X3, X4}. The deletion

of the arc alone cannot produce the new bound; we must check the second best, third best,

etc., parent sets for X2 until we f nd one that does not include X1. To f nd the total bound

for X1 and X2, we sum together the original bound for X1 and the new bound for X2. We

call that b1. The second case is also handled similarly; we call that bound b2. Because the

total bound for X1 and X2 must be optimistic, we take the minimum of b1 and b2. The new

heuristic is clearly still admissible, because we still allow cycles among other variables.

Often, the simple heuristic introduces multiple cycles. The graph in Figure 8.1 has a

cycle between X1 and X2. It also has a cycle between X2 and X4. Because both cycles

92

X1 X2

X4X3

Figure 8.1

A directed graph representing the heuristic estimate for the start search node.

include X2, we say they overlap. Overlapping cycles cannot be broken independently.

For example, suppose we break the cycle between X1 and X2 by setting the parents of

X2 to be {X3}. Then we also break the cycle between X2 and X4, but introduce a new

cycle between X2 and X3. As described in more detail below, we group variables together

and do not break cycles between variables in different groups. So, if X2 and X3 were in

different groups, we would not break that cycle.

8.2 Dynamic k-cycle Conf ic Heuristic

The dynamic k-cycle conf ict heuristic can be calculated by using sparse parent graphs

to perform a breadth-f rst search through the f rst k layers in the reverse order graph. The

createDynamicP D procedure of Table 8.1 gives pseudocode for constructing the pattern

database. A node U in the reverse order graph represents a subnetwork over the variables

93

V \ U in which each variable X selects its optimal parents from among all of the variables

which are removed after X . We call the sum of these scores as Score ′ U). This score is also

gives a lower bound for any subnetwork in the forward order graph that does not include

U. Therefore, the cost for the pattern V \ U is equal to Score ′ (U). We can also evaluate

the quality of a pattern by comparing the difference between Score ′ (U) and h(U), which

we call δh(U). A difference of 0 indicates that there is no benef t to using the pattern, so

the optimal parent selections for the pattern variables do not include any cycles. A large

difference suggests that the optimal parent selections include cycles, and breaking those

cycles improves the heuristic. After calculating δh(U) for all subsets of variables up to

size k, we prune all patterns which do not have a higher δh(U) than any of its subsets.

The pruning can signif cantly reduce the size of the pattern database, which is important

when using the dynamic pattern database during the heuristic search. Finally, we order the

patterns in order of decreasing δh. That is, patterns that offer the most improvement over

the simple heuristic are f rst in the list.

Once the dynamic k-cycle conf ict heuristic is computed, we can use it to calculate the

heuristic value for any node during any of the search algorithms we have presented. For a

node U in A* or BFBnB, which use the forward order graph, we partition the remaining

V\U variables into a set of non-overlapping patterns. Because the patterns do not interact,

we then sum together their cost to f nd the total heuristic value of the node. The algorithms

require no other modif cations to incorporate the tighter bounds offered by the pattern

database.

94

Ideally, we would like to f nd the partition with the highest total cost, which corre-

sponds to the tightest heuristic value. We can then f nd the optimal partition by solving

the maximum weighted matching problem on the graph [30]. For k = 2, we can def ne a

matching graph in which vertices represent variables and edges between variables have a

weight equal to the cost of the pattern which comprises those two variables. In this prob-

lem, we select a set of edges from the graph so that no two edges share a vertex and the

total weight of the edges is maximized. The edges correspond to the patterns we should

select. The matching problem can be solved in O(n3) time [69], where n is the number of

vertices.

Unfortunately, for k > 2, the matching graph contains hyperedges the connect up to k

vertices to represent the larger patterns. For example, a pattern for three variables would

induce a hyperedge connecting three vertices. We must again select edges (for patterns of

size 2) and hyperedges (for larger patterns) that maximize the total weight. The higher-

order maximum weighted matching problems are NP-hard [38]. Therefore, calculating the

heuristic value optimally would require solving an NP-hard problem for each search node.

We use a greedy algorithm given in the hdynamic procedure of Table 8.1 to calculate

the heuristic value to keep the computation eff cient. Assume we must partition U into

non-overlapping patterns. Because the patterns are sorted by δh, we select the f rst pattern

P which is a subset of U. We then search for the next pattern which is a subset of U \ P.

We repeat this process until removing all variables. The total cost of the selected patterns

is returned as the heuristic value. This method is an example of a dynamically partitioned

pattern databases [30] because the patterns are partitioned dynamically for each node in

95

an attempt to f nd the tightest possible bound. We refer to this heuristic as the dynamic

pattern database for short.

8.3 Static k-cycle Conf ict Heuristic

Computing the heuristic value for a search node using the dynamic pattern database

even with the greedy method is much more expensive than the simple heuristic in Equa-

tion 5.1 because the list of patterns is scanned for each node. Consequently, each node

expansion takes more time, so the total running time can be longer even though the tighter

heuristic results in more pruning.

We also designed a statically partitioned pattern database [30] based on the k-cycle

conf ict heuristic. In this approach, we statically divide all variables into a set of disjoint

groups at the beginning of the search. Then, we create a pattern database for each group

using the createStaticP D procedure from Table 8.2. To construct the pattern database for

a static group Vi, we again use sparse parent graphs to perform a breadth-f rst search in

the reverse order graph; however, we only consider edges in the reverse order graph which

correspond to selecting elements of Vi as leaves. In essence, this allows variables in Vi

to always use X ∈ V \ Vi as candidate parents but detects and eliminates cycles among

variables in Vi.

Consider a problem with variables {X1, ..., X8}. We simply divide the variables into

two equal-size groups, {X1, ..., X4} and {X5, ..., X8}. For each group, say {X1, ..., X4},

we create a pattern database that contains the costs of all subsets of {X1, ..., X4} and

similarly for {X5, ..., X8}.

96

1: procedure CREATEDYNAMICPD(k)
2: PD0(V) ← 0
3: �h(V) ← 0
4: for l = 1 → k do
5: for each U ∈ PDl−1 do
6: expand(U, l)
7: checkSave(U)
8: PD(V \ U) ← PDl−1(U)
9: end for

10: end for
11: for each X ∈ PD \ save do
12: delete PD(X)
13: end for
14: sort(PD : �h)
15: end procedure

16: procedure EXPAND(U, l)
17: for each X ∈ U do
18: g ← PDl−1(U) + BestScore(X,U \ {X})
19: if g < PDl(U \ {X}) then PDl(U \ {X}) ← g
20: end for
21: end procedure

22: procedure CHECKSAVE(U)
P

23: �h(U) ← g − BestScore(Y,V \ {Y })Y ∈V\U
24: for each X ∈ V \ U do
25: if �h(U) > �h(U ∪ {X}) then save(U)
26: end for
27: end procedure

28: procedure hdynamic(U,X)
29: h ← 0
30: R ← U
31: for each S ∈ PD do
32: if S ∈ R then
33: R ← R \ S
34: h ← h+ PD(S)
35: end if
36: end for
37: return h
38: end procedure

Table 8.1

Dynamic k-cycle conf ict heuristic.

97

We store each pattern database as a hash table. Typically, the pattern databases are

much smaller than the size of the order graph, so there is no need to order or prune the

patterns. For example, the order graph for a 30 variable dataset has roughly 1 billion nodes

(230). If we create 3 pattern database of size 10 each, in total, they would only comprise

about 3 thousand nodes (3 × 210). We refer to this heuristic as the static pattern database

for short.

Using the static pattern databases is simpler than the dynamic pattern databases, as

shown in the hstatic procedure of Table 8.2. For the forward order graph used in A* and

BFBnB, we partition the variables which have not yet been added as leaves (i.e., V \ U)

according to the static grouping. We then look up the cost of the patterns in the appropriate

pattern databases and sum them together. Since each node expansion affects only a single

node expansion, we can incrementally compute the heuristic value. As with dynamic pat-

tern databases, the algorithms require no other modif cation to incorporate the static pattern

databases.

8.4 Advantages of the k-cycle Conf ict Heuristic

Both version of the k-cycle conf ict heuristic offer obvious advantages to all of three of

the described algorithms. As described in Sections 8.2 and 8.3, incorporating them into the

search algorithms requires little additional effort, in terms of code complexity, additional

runtime and memory overhead. As we show in Section 8.5, their tighter bound reduces the

number of nodes expanded by A* and increases the number of nodes pruned by BFBnB.

These result in improved runtimes and memory usage for all of the algorithms.

98

Table 8.2

Static k-cycle conf ict heuristic.

1: procedure CREATESTATICPD(Vi)
2: i (Vi) ←PD0 0
3: for l = 1 → |V| do
4: ifor each U ∈ PDl−1 do
5: expand(U, l)
6: PDi(Vi \ U) ← iPDl (U)−1

7: end for
8: end for
9: end procedure

10: procedure EXPAND(U, l)
11: for each X ∈ U do

S
i12: g ← PDl (U) +BestScore(X, U \ {X} Vj)−1 j=i

13: if g < i(U i(UPDl \ {X}) then PDl \ {X}) ← g
14: end for
15: end procedure

16: procedure hstatic(U, X)
17: h ← 0
18: for each Vi ∈ V do
19: h ← h + PDi(U ∩ Vi)
20: end for
21: return h
22: end procedure

6

99

8.5 Empirical Results

We tested the k-cycle conf ict heuristic on the A* and BFBnB algorithms by comparing

to the heuristics given in Equation 5.1. In all cases, we used sparse parent graphs. The

experiments were performed on a PC with 3.07 GHz Intel i7 processor, 16 GB of RAM,

500 GB of hard disk space, and running Ubuntu 10.10. We used benchmark datasets from

the UCI machine learning repository [33] to test the algorithms. For all the datasets, records

with missing values were removed. All variables were discretized into two states around

means.

8.5.1 Improvement from the Pattern Database Heuristics

The k-cycle conf ict heuristic has two versions: dynamic and static; each of them can be

parameterized in different ways. We applied various combinations of the new techniques

to A* and BFBnB on the datasets Autos and Flag. For the dynamic pattern database,

we varied k from 2 to 4. Empirically, the performance of larger values of k deteriorated

quickly (results not shown). For the static pattern databases, we tried groupings 9-9-8 and

13-13 for the Autos dataset and groupings 10-10-9 and 15-14 for the Flag dataset. We

selected these groupings because they result in roughly equally-sized pattern databases for

each grouping. Felner et al. [30] used a similar grouping scheme for computing a static

pattern database for the sliding tile puzzle. The results are shown in Table 8.3.

Both the static and dynamic pattern databases helped both algorithms improve their

eff ciency and scalability. A* with both the simple heuristic and the static pattern database

with grouping 10 − 10 − 9 ran out of memory on the Flag dataset. The other pattern

100

database heuristics enabled A* to f nish successfully. The dynamic pattern database with

k = 2 signif cantly reduced the number of nodes expanded for all algorithms, and k = 3

usually granted further improvement. Further increasing k to 4 was not as benef cial,

though; often the runtime increased, and sometimes more nodes were expanded. The

longer running time, even when the total number of nodes expanded is reduced, results

because of the larger size of the pattern database. Our greedy scanning method to calculate

the heuristic is linear in the size of the pattern database. Therefore, larger databases in-

crease the time required to compute the heuristic. That ineff ciency gradually outweighed

the benef t brought by the tighter heuristic. The greedy scanning technique also explains

the occasional increase in expanded nodes from k = 3 to k = 4. Given an optimal

partitioning of the remaining variables, we believe that larger k always results in a bet-

ter (or at least the same) heuristic. However, the greedy partitioning may leave many

variables nearly unconstrained. For example, suppose the remainig variables for a node

in the search are {X0, X1, X2, X3, X4} and that the optimal partition is {X0, X2, X4},

{X1, X3}. If δh({X2, X3}) > δh({X0, X2, X4}), though, the greedy partitioning could

result in {X2, X3}, {X0}, {X1}, {X4}. That is, X0, X1 and X4 are unrestricted in their

choice of parents. Based on these results, we concluded that k = 3 is the best parametriza-

tion for the dynamic pattern database.

For the static pattern databases, we were able to test much larger groups because we

do not enumerate all subsets up to size k like the dynamic pattern database does. Rather,

we enumerate the subsets of each grouping of variables. The results suggest that larger

101

groupings tend to result in tighter heuristic values because fewer nodes were expanded

when using the larger groupings.

The sizes of the static pattern databases are typically much larger than the dynamic

pattern databases. However, they are still quite small in comparison to the number of

expanded nodes in all cases, so it is cost effective to try to compute larger pattern databases

to achieve better search eff ciency. The results show that the best static pattern databases

typically helped all three algorithms to achieve better time eff ciency than the best dynamic

pattern database. Sometimes the better time eff ciency is achieved when the number of

expanded nodes is larger for the static pattern databases. Again, the reason is calculating

the heuristic value for a node is more eff cient in the static pattern databases. Therefore,

the selection between static and dynamic pattern databases embodies a space-time tradeoff.

These results mirror those for using additive static and dynamic pattern databases for the

sliding tile puzzle [30].

8.5.2 Results on Other Datasets

Since static pattern databases resulted in faster runtimes than dynamic pattern databases,

we compared the algorithms with a static pattern database to the original heuristic func-

tions on all the datasets. We used the grouping of ⌈n
2 ⌉−⌊n

2 ⌋ for the static pattern databases

on all the datasets, where n is the number of variables. The results are shown in Table 8.4.

For the BFBnB algorithm, the static pattern database reduced the number of nodes ex-

panded by up to 5 times on some databases. The improvements were more modest on oth-

ers, though. There are several explanations for the limited improvement on those datasets.

102

Table 8.3

A comparison of BFBnB and A* with various heuristics on Auto and F lag.

Pattern Database
Dataset Type Size

BFBnB
Time (s) Expanded

A*
Time (s) Expanded

Autos Simple 26 461 62,721,601 674 35,329,016
Auto Dynamic, k=2 41 449 52,719,793 148 6,286,142
Auto Dynamic, k=3 116 468 49,271,809 76 2,829,877
Auto Dynamic, k=4 582 699 48,057,205 67 2,160,515
Auto Static, 9-9-8 1,280 495 57,002,715 228 9,763,518
Auto Static, 13-13 16,384 211 48,814,334 125 4,762,276
Flag Simple 29 OT OT OM OM
Flag Dynamic, k=2 45 1,222 132,431,610 824 19,359,296
Flag Dynamic, k=3 149 788 79,332,390 207 5,355,085
Flag Dynamic, k=4 858 1,624 84,054,443 350 7,377,817
Flag Static, 10-10-9 2,560 2,600 249,638,318 OM OM
Flag Static, 15-14 49,152 720 88,305,173 136 4,412,232
Size means the number of patterns stored. Time means the running time (in sec-
onds). Nodes means the number of nodes expanded by the algorithms. OT means
the algorithm fails to f nish within a 1-hour time limit set for this experiment. OM
means the algorithm used up all the RAM.

103

First, the amount of pruning for BFBnB hangs heavily on the quality of the given upper

bound. As described in Section 6.1, we use a tabu hill climbing algorithm with random

restarts to f nd the upper bound for pruning. While this algorithm has been shown to have

good performance on many datasets, it offers no quality guarantees. Therefore, many extra

nodes may be expanded because of the quality of the initial bound. Furthermore, as Vidal

et al. [94] point out, some search problems are “easy”; others, because of characteristics

of the particular dataset, are “hard”. (They mean “easy” or “hard” in the sense of relative

diff culty, not in the sense that some are NP-hard and others are not.) In the case of “hard”

datasets, even a good heuristic, such as our pattern databases, may not guide the search

very well. Additionally, some of the datasets may be “easy” because the original heuris-

tic is already tight. In these cases, the pattern databases do not improve the already tight

bound.

The benef ts of the new techniques are more obvious when applied to the A* algorithm.

For the datasets on which the original A* algorithm was able to f nish, the improved A*

was up to one order of magnitude faster; the number of expanded nodes is also signif cantly

reduced. In addition, the improved A* was able to solve three other datasets: Sensor

Readings, Autos, and Flag. The running time on each of those datasets is pretty short,

which indicates that once the memory consumption of the parent graphs was reduced, the

A* algorithm was able to use more memory for the order graph and solved the search

problems pretty easily.

104

Table 8.4

A comparison of BFBnB and A* on several datasets using static pattern databases.

Dataset
Name n N BFBnB

Results
BFBnB (SP) A* A* (SP)

Hepatitis 20 126 Time (s)
Nodes

9
610,974

1
129,889

6
411,150

0
8,565

Parkinsons 23 195 Time (s)
Nodes

100
8,388,607

19
4,646,877

100
8,388,607

15
1,152,576

Robot 25 5,456 Time (s)
Nodes

632
33,554,431

3,121
33,554,430

OM
OM

731
3,286,650

Auto 26 159 Time (s)
Nodes

1,170
53,236,395

211
48,814,295

OM
OM

111
4,762,276

Horse 28 300 Time (s)
Nodes

4,221
268,435,455

678
74,204,000

OM
OM

OM
OM

Steel 28 1,941 Time (s)
Nodes

7,913
268,435,455

4,544
264,887,347

OM
OM

OM
OM

Flag 29 194 Time (s)
Nodes

12,902
354,388,170

421
88,305,173

OM
OM

147
4,412,232

WDBC 31 569 Time (s)
Nodes

93,382
1,353,762,809

26,196
273,746,036

OM
OM

OM
OM

For the static pattern databases, groupings were ⌈n
2 ⌉−⌊n

2 ⌋, where n is the number
of variables, and sparse representation of parent scores (denoted by SP) against
the original versions of these algorithms. n is the total number of variables. N is
the number of data points.

105

CHAPTER 9

BOUNDED ERROR, ANYTIME, PARALLEL SEARCH

All of the algorithms presented so far execute serially. However, modern worksta-

tions often include 4, 8 and even up to 16 cores. Furthermore, manufacturers are rapidly

approaching the physical barriers of how small they can produce microchips that behave

reliably. Additionally, traditional shared memory architecture supercomputers are grad-

ually being replaced by more cost-eff cient, distributed memory clusters. According to

the TOP500 list of fastest supercomputers in the world based on the HPL benchmark, the

fastest three supercomputers (as well as many others) use a distributed memory model. For

example, the K computer, currently ranked the fastest supercomputer, only allocates 16 GB

of RAM for each core and offers no shared memory [97]. Message passing is necessary to

exchange information between the cores.

Tamada et al. [88] have developed a parallel structure learning algorithm based on dy-

namic programming in the forward order graph using full parent graphs. In particular,

in their distributed memory algorithm, they minimize the amount of communications re-

quired between processors by maximizing the overlap between subsets calculated at each

processor. They begin with the observation that calculating Score(U) requires Score(U \

{X}) for all X ∈ U. For example, suppose A = {X0, X1, X2}. Then calculating

Score(A) requires Score({X0, X1}), Score({X0, X2}) and Score({X1, X2}). Further,

106

suppose that B = {X0, X2, X3} and C = {X0, X1, X3}. So calculating Score(B) requires

Score({X0, X2}), Score({X0, X3}) and Score({X1, X3}), and calculating Score(C) re-

quires Score({X0, X1}), Score({X0, X3}) and Score({X1, X3}). Therefore, if a particu-

lar processor has the 5 necessary Score(·) values from layer 2, then it can reuse them to cal-

culate all 3 new Score(·) values for layer 3. Sets that have many variables in common can

reuse more scores than those that do not. On the other hand, consider D = {X4, X5, X6}.

None of the earlier scores necessary for its calculation overlap those of A. The intuition

of their algorithm is to group sets with many overlapping variables on the same proces-

sor. They propose an indexing function which partitions variables in such a manner that

provably maximizes the overlap among sets at the same processor. Consequently, it also

provably minimizes the communication overhead and redundant communication. A key

shortcoming of this parallel algorithm is its lack of anytime behavior. As with other dy-

namic programming algorithms [68, 84, 82, 59], this algorithm does not output any net-

work until outputting the best network at the end of the search. The authors also note that,

for large networks, despite minimizing communication, their MPI communication time

still accounted for over 80% of the runtime.

9.1 Parallel Best-First Search

The heuristic search community has also developed a number of search algorithms

that incorporate parallelism in a variety of ways. Many of those algorithms are based on

best-f rst search.

107

9.1.1 Parallel Window Search

Parallel window search [76] is one of the oldest parallel search algorithms. It is an

extension of iterative deepening A* (IDA*) [50]. IDA* is a limited-memory version of the

A* algorithm in which the algorithm is given a threshold t. A normal depth-f rst search is

then started from the start node; however, nodes whose f -cost exceeds t are pruned. If no

goal node is found, the search begins again with a larger value of t. This process continues

until a goal node is found. Asymptotically, IDA* expands the same number of nodes as

A* for a tree search [50]. In practice, though, the search iterations which do not f nd a goal

node can be time consuming [76] because each iteration is carried out serially.

The parallel window search algorithm distributes the execution of a number of IDA*

processes, each with a different threshold, to different cores. In this manner, the running

time of the parallel algorithm is only dependent on the time of the IDA* process with the

smallest threshold that includes a goal node. If a process completes without f nding a goal

node, it restarts the search using a higher threshold than any of the other processes.

9.1.2 Parallel Retracting A*

Parallel retracting A* (PRA*) [28] and hash distributed A* (HDA*) [45] also extend

best-f rst heuristic search to multiple cores. In these algorithms, a hash function is used to

assign each node in a search space to a process. As a simple example, we could represent a

node in the order graph using a bit vector in which the presence of a set bit indicates the re-

spective variable is present in the subset and treat the resulting bit vector as a numeric data

type (e.g., long). So we could represent the subset {X0, X3} as the bit vector {1, 0, 0, 1}

108

which corresponds to the number 9. For our hash function, we could take the modulus of

the number and the number of processes. If we had four processors, then {X0, X3} would

be mapped to processor 9%4 = 1. Each processor has its own open and closed lists which

contain only nodes which the hash function maps to it. In parallel, each processor expands

a node, uses the hash function to determine where to send all of the successors and uses a

message passing scheme to send the successors to the appropriate processors. PRA* syn-

chronously expanded nodes, so as soon as it would expand a goal state, the search ceases.

The synchronicity introduces overhead, however. To address that overhead, HDA* used

asynchronous message passing. However, with this strategy, expanding a node does not

necessarily mean the best path to it has been found. For example, a better predecessor

could be “in transit”. Consequently, HDA* may need to re-expand nodes. Similarly, after

expanding a goal state, it must ensure that no better paths were available but had not yet

been expanded because of the non-determinism introduced by parallel execution.

9.1.3 Adaptive k-Parallel Best-First Search

Adaptive k-parallel best-f rst search [94] is another approach to parallelize A* search.

It is a parallel adaption of the k best-f rst search (KBFS) algorithm [31] for multi-core,

shared memory architectures. The sequential version of KBFS proceeds much like a typical

best-f rst search algorithm; however, at each step, rather than expanding the single best

node, the k best nodes are expanded. Their successors are added to the open list, and the

next iteration of the algorithm begins. The parallel version of KBFS observes that this

process is easily parallelized by expanding the best k nodes in separate processes. In their

109

implementation of parallel KBFS, Vidal et al. [94] assume only one open and closed list

(each) exist in shared memory. Therefore, access to these data structures is regarded as a

critical section of the code; that is, only a single process can modify the data structures at

once. Consequently, access to the open and closed lists is a bottleneck for their algorithm.

Based on that, the authors suggest that, like KBFS, their algorithm is more useful when

node expansions are expensive. They also focus on sub-optimal planning using a non-

admissible heuristic.

Initial experiments revealed that many problems did not benef t from the parallelism.

The authors observe that many of these problems are “easy”, while others that do benef t

from the parallelism are “hard.” (This is only in the sense of relative diff culty, not that some

of the problems are NP-hard and others are not.) The overhead associated with parallelism

often trumps any benef ts for the “easy” problems. Based on these observations, the authors

devised a scheme in which the number of threads is increased as the algorithm determines

that a problem is “hard.” They assume that node expansions determine the diff culty of the

problem. For up to 50 node expansions, only a single thread is used. Four threads are used

for up to 400 nodes, 8 for 3,000 nodes, 16 threads for up to 20,000 nodes, 32 threads up

to 100,000 nodes, and 64 threads are used for the remainder of the search. The authors

also observed that restarting the search after increasing the number of threads improved

the diversity of nodes expanded, which is important for sub-optimal search.

110

9.1.4 Parallel Structured Duplicate Detection and Parallel Best-NBlock First Search

Parallel structured duplicate detection (PSDD) [107] and Parallel Best-NBlock-First

(PBNF) [7] parallelize the structured duplicate detection (SDD) algorithm [105]. In SDD,

a projection function, p is used to map a concrete state of a state space into an abstract

state in an abstract state space. An nblock is the set of all nodes that map to the same

abstract state. A node x ′ is a predecessor of y ′ in the abstract state space iff there exist

nodes x and y in the original state space such that x is a predecessor of y and p(x) = x ′

and p(y) = y ′ . The duplicate detection scope of a node x in the original state space is all

y ′ in the abstract state space such that y ′ is a successor of p(x). When expanding x, only

nodes in its duplicate detection scope need to be checked for duplicates. This generalizes

to all nodes in the nblock given by p(x). Originally, SDD used this strategy to reduce

the RAM requirements for breadth-f rst search. In particular, when expanding nodes in a

particular nblock, only its successors in the abstract state space need to be in RAM at once.

PSDD adds parallelization to SDD. In particular, if the duplicate detection scope of two

nblocks does not overlap, they can be expanded at the same time without risk of generating

successors in the same nblock. The algorithm uses a single lock on the abstract state graph

to indicate which nblocks are being expanded or in the duplicate detection scope of another

abstract state being expanded. An nblock can be expanded when neither it nor anything in

its duplicate detection scope is used by another process. PSDD expands nodes in a breadth-

f rst order. PBNF also adopts SDD, but expands nodes in a best-f rst order. Similar locking

mechanisms are used as in PSDD; however, a data structure is also used to indicate the

lowest f value of a node in each free nblock (i.e., one that is not being expanded or in the

111

duplicate detection scope of an nblock that is being expanded). A processor expands nodes

in its current nblock until it encounters a node with a higher f value than the lowest f value

of a free n block. The process will then expand nodes from the new nblock. Speculative

expansion is used to ensure processors are not idle and do not incur too much overhead

swapping between nblocks.

9.1.5 Parallel Frontier A* with Delayed Duplicate Detection

Frontier A* (FA*) search [49] is an approach to best-f rst search in which a closed list

is not used. Rather, only the open list is kept in RAM for duplicate detection. Each node in

the open list is annotated with a set of used operator bits indicating which of its neighbors

have already been expanded. Nodes are expanded in a best-f rst order, so if a neighbor of

a node has already been expanded, there is no need for it to be re-generated. As described

in Section 6.4, delayed duplicate detection [51] is a strategy in which external memory is

used to store nodes generated at a particular layer of a search. External-memory sorting,

such as merge sort [37], is used to sort nodes and remove duplicates. Niewiadomski et

al. [66] present an algorithm the incorporates both FA* and DDD. They address the “leak

back problem” [51] in which nodes may be re-expanded by using two types of closed lists.

The ClosedIn list maintains edges from non-closed to closed nodes, while the ClosedOut

list maintains edges from closed to non-closed nodes. Generated nodes are added to the

Open list if they are not in ClosedIn.

To parallelize FA*-DDD, they also assign an integer to each node. Nodes are dis-

tributed to processors according to their integer values. The parallel algorithm consists

112

of f ve phases. In the f rst, processors communicate the number of nodes which have the

global minimum f value and transfer nodes based on their integer values. Next, the pro-

cessors expand their nodes which have the global minimum f value. Third, the algorithm

determines how to distribute nodes based on the range of integer values. Then, the pro-

cessors determine the next lowest global minimum f value. Finally, information from the

previous iteration is deleted and the algorithm begins with the f rst step again.

9.1.6 Parallel Dovetailing

Parallel dovetailing [92] is another parallel search technique in the same vein as paral-

lel window search. Valenzano et al. [92] observe that many sub-optimal search algorithms

require some sort of parameter conf guration. For example, IDA* requires the threshold,

weighted A* requires the weight to use, beam search requires the size of beam to use

and KBFS requires k. Adaptive parallel KBFS showed a method by which k is updated

throughout the search. In contrast, parallel dovetailing begins by selecting a variety of pa-

rameter conf gurations and running each conf guration at the same time in parallel. Thus,

parallel window search is a special case of parallel dovetailing specif c for IDA* and con-

sidering only the threshold as a parameter. The authors point out, though, that other, more

subtle design decisions can affect the algorithm performance. For example, the order in

which successor generation operators are applied can greatly impact the runtime behavior

of an algorithm. As presented, each algorithm conf guration runs in parallel until any of

them reach a solution, regardless of its optimality. At that point, a message is broadcast to

113

all running tasks that a solution has been found and the search can stop. Because of this

behavior, the version of parallel dovetailing presented is applicable to sub-optimal search.

9.2 BEAP Search Algorithm

Based on the limitations of the parallel dynamic programming algorithm of Tamada

et al. and the results of parallel best-f rst heuristic search, we developed a bounded er-

ror, anytime, parallel (BEAP) search algorithm. This algorithm is an example of parallel

dovetailing [92] using WA* (see Section 7.1.1). In this algorithm we select a range of ǫ

values and run one WA* process for each value in parallel. We adapt the A* algorithm in

Table 5.1 into WA* by passing ǫ as an additional input to the algorithm. The only change

required to the algorithm is that, when calculating h in Line 20, we multiply the value by

ǫ. This works with both the simple heuristic given in Equation 5.1 as well as with pattern

databases. There is no communication between the processes, so they do expand some of

the same nodes.

The anytime behavior of the parallel algorithm results because, as the WA* instances

complete, their solutions give an upper bound on the optimal score of the Bayesian net-

work. Typically, instances with large ǫ values f nish very quickly, but the scores of the

learned network are high (always bounded by ǫ, though). Instances with lower ǫ values

f nish more slowly, but have better scores. Therefore, as the search progresses and WA*

instances complete, the upper bound improves. Finally, the completion of an instance in

which ǫ = 1, which we denote as ǫ1, gives the provably optimal network.

114

As each instance of WA* completes, the quality of the solution is bounded by ǫ. Conse-

quently, as more instances complete, the provable bound between the optimal network and

the best learned network decreases. Running ǫ1 offers another way to calculate a bound on

the error, though. Because ǫ1 does not weight the heuristic, it is guaranteed to be admissi-

ble since we use admissible heuristics in our search. Coupled with the best-f rst expansion

policy, no optimal network could possibly have a score better than the f cost of the most

recently expanded node of ǫ1, so that serves as a lower bound on the optimal network

score. Also, that lower bound is guaranteed to increase (or stay the same) with each node

expanded in ǫ1 because of the best-f rst expansion. Therefore, the ratio between the score

of the best learned network and the f cost of the most recently expanded node of ǫ1 gives

another bound on the solution quality. As shown in Section 9.4, the ratio bound is often

tighter than the bound guaranteed by ǫ of the other instances of WA*.

9.3 Advantages of BEAP

The BEAP algorithm has several advantages compared to other parallel Bayesian net-

work structure learning algorithms. First, it has very little communication overhead be-

cause each WA* process uses a different ǫ; the processes do not communicate. The limited

communication ensures that runtime is not wasted passing messages or waiting for syn-

chronization, which plagued the parallel DP algorithm [88]. Second, a proper range of ǫis

gives the parallel algorithm very good anytime behavior. The parallel DP algorithm [88]

does not have anytime behavior at all.

115

BEAP also has some similarites to, and advantages over, several serial anytime search

algorithms, including AWA* [41] and Anytime Repairing A*(ARA*) [58]. All three al-

gorithms use a weighted heuristic to provably bound the error of solutions. BEAP offers

advantages over these serial anytime search algorithms, though. First, BEAP re-expands

nodes in parallel rather than serially. Second, in order to calculate a tighter bound than that

given by ǫ, AWA* and ARA* must search through the open list and calculate the true f

value of each node. In constrast, BEAP simply uses the f value of the most recently ex-

panded node of ǫ1. Third, unlike ARA*, BEAP does not require any data structures other

than those normally required by A*. Like AWA* and ARA*, though, BEAP is a general

purpose search algorithm that could be applied to any heuristic search problem, not just

structure learning.

9.4 Experimental Results

We evaluated BEAP on a set of benchmark datasets from the UCI repository [33]. For

all datasets, we removed records with missing values and discretized all variables into two

states. The experiments were performed on a PC with 3.07 GHz Intel i7 processor and 16

GB of RAM. We compared BEAP to BB and a custom implementation of AWA*. The

AWA* implementation is a straight-forward adaptation of the existing A* algorithm [102].

Even though they are anytime algorithms, we did not compare to any local search algo-

rithms because they do not give an error bound. For BEAP, we used four different values

of ǫ: 1.2, 1.08, 1.04 and 1. We empirically determined that ǫ > 1.2 did not improve

learning. We allowed all algorithms a total execution time of 30 minutes, not including

116

local score calculations. BB and AWA* are sequential, so we gave them 30 minutes of

wall clock time. Since BEAP used four processes (one for each value of ǫ), we gave it 7.5

minutes of wall clock time, so its total time was also 30 minutes. Each BEAP process had

4 GB of RAM.

9.4.1 Node Expansions

We f rst evaluated the number of nodes expanded by BEAP for each value of ǫ. The

results in Figure 9.1 show that the algorithm typically found high quality solutions quickly.

The f gure also sheds insight into several characteristics of the search algorithm.

First, the searches with high ǫ, usually expand a very small number of nodes. For ex-

ample, on f ve of the datasets, the process with ǫ = 1.2 expands the minimum number of

nodes possible to f nd a solution (n + 1). This takes only a fraction of a second; that pro-

cessor is idle for the rest of the search. This behavior suggests that a scheme similar to that

in parallel window search [76] could be used to more fully utilize the available resources.

In particular, that processor could then begin a search with a weight of, for example, 1.06.

If another processor f nished, it could search with a weight of 1.03. Completion of these

searches would give tighter bounds.

Second, the f gure suggests that, like other combinatorial optimization problems, struc-

ture learning has a critical point [103]. A critical point for a problem is a point at which

the problem diff culty undergoes a major change. For example, the problem of f nding an

optimal path to a goal node in a random tree is polynomial if the probability that any node

has a zero-cost edge to a successor is greater than 1, but exponential otherwise [61]. Mov-

117

	

�

�

	
 ��
 	

� � � �

 � 	

���
����
���� �

�
�
�
�
��

�
	

 �

�
�

�����

�����

�����

������

������

������

������

������

�������� �� � � ����� ���� � ����
������������˘ˇˆ˙�ˇ˝˘ˇ�ˇ˝ˆ�˙ˆ˘˛�˝������°ˇ��°˜ !ˆˇˆ�"�ˇ˝���ˇ˝ˆ�ˇ�˜ˆ�# � �˜��$ˇˆ˙%�°˛�

˜ˆ˜°˛&�#��'(%�˛ˆ˙ˇ˛��ˇ�°�˙�

Figure 9.1

Order graph nodes expanded for each dataset and value of ǫ by BEAP.

ing across this critical point is called a phase transition. Based on Figure 9.1, the critical

point for structure learning appears to be between 8% and 4% of optimal. Nearly all of the

instances for ǫ = 1.08 complete quickly; however, over half fail for ǫ = 1.04. These results

indicate that f nding a network that is 8% of optimal is much easier than f nding one that is

4% of optimal.

118

	

�

	

	

�
�

 	 	

�
	

�

	

	

	 ��

	
� �

	
��

 	
�

��

 �

	

� 	

� 	

� 	

�
�

	

	

	

	
��

	
� �

	
��

 	
�

��

 �

	
� �

 	
 �	

	
 �	
 	
 �	

� �

� �
�
�
� �
 �

�
 	
�	 �
 � �

�
� �

 � 	
�

 �

�	
 	
 �
 � �
�

������ �� � � � � ����������� � � � �
 � ���� ��� � ������ ��� � ���� ��� � ������ ���
 ���� ��� ������ ��� ���� ��� ������ ���

���� ����
����

����
����
��ˇ�

����

�
�
�
��
�

�

��˘�
����
����

�
�
�
��
�

�

����

����

����

����
����
����

���� ����

�
��

�
�� �
�

�
�

�
�
�

�
� �
�

�
�
�

�
�
�

�
�

�

 �

�

 �

�

 �

�

�

 �
�

�
�
�

�������� �� �
 �������� �� �
������������ 	�� ������� � � � � ����� ���� ��� �� � � �����˘� ˇ� �ˆ������ˇ��˘� � ��� �˙˝˛�	 	�� ��

�� �°˜��� ˇ� �� �!�ˇ" � � �ˇ! 	���� ˆˇ����� �˙#˛� �� �� �� �°˜��� $�
 � � �%�&��ˇ � �� ���

°°��� � ˇ�� � � � �'(�� � �� ˇ���ˇ� �� � �� ��

Figure 9.2

Convergence behavior or BEAP and BB.

�
��

�
��

� �

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�

�

 �

�

�
�
�

9.4.2 Comparison of Anytime Behavior

We next compared the convergence and anytime behavior of BEAP compared to BB.

As the convergence curves in Figure 9.2 show, BEAP f nds provably high quality solutions

very quickly on all of the datasets. For both F lag and SP ECT F , within 2 seconds of

wall clock time (8 seconds of total computing time), BEAP found networks with scores

provably within 2.5% of optimal. The curves demonstrate that BEAP and BB improve

error bounds differently. BB never improves its initial solution, but spends the entire 30

minutes improving its lower bound. As BEAP processes complete and ǫ1 expands more

nodes, both upper and lower bounds improve.

119

9.4.3 Comparison of Solution Quality

Finally, we compared the solution quality of BEAP to AWA* and BB by comparing

their upper and lower bounds. As Figure 9.2 shows, BEAP almost always f nds a solu-

tion with a tighter error bound than the other algorithms. BEAP is the only algorithm

which f nds and proves the optimal structure on any of the datasets. It found tighter solu-

tions than AWA* because BEAP never re-expands nodes within the same process; AWA*

must re-expand a node each time it f nds a better path to it. BB searches in the space of

cyclic graphs, so these results suggest that the heuristic search formulation more effectively

guides the algorithm to higher quality solutions than breaking cycles.

The bounds for BEAP are always better than the best ǫi that was solved (shown in

Figure 9.1). This shows that the bound given by the ratio between ǫ1 and the best solution

is always tighter.

For all algorithms, these results compare very favorably to those for parallel DP [88].

That algorithm took 483,874 seconds to f nd the optimal network for a 32 variable dataset.

Of that time, 392,186 seconds were spent in MPI communication. Their algorithm also

required 836.1 GB of RAM. In contrast, our algorithm used at most 16 GB, and typically

less than 8 GB, which is an improvement of nearly two orders of magnitude.

120

	

�

	
 ��

�
� �

� �

� �� � ��

�
�
��
�
��
�
�

�

���

�

�

�

��

��

��

��

��

��

��

�������� �� � � ����� ����	 � ����

��������˘�ˇˆ˙˝˛�˙°ˆ˙��� ��˜ !�˘�ˆ�˘�"# $˝˘�˙°˝� "˙�%ˆ&��˝˙' #(�'�˙°���˙°˝�#˝˛ !#ˇ˝�

ˇ �˛˙#ˆ��˙˛)

Figure 9.3

The solution quality of networks learned by AWA*, BEAP and BB.

121

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have presented a novel heuristic graph search perspective for

learning optimal Bayesian network structures. In the section, we review the contributions

of this dissertation. We then describe some avenues for future work.

10.1 Contributions

We have made the following contributions:

• cast an existing dynamic programming formulation of structure learning into the
context of heuristic graph search;

• formulated eff cient data structures and representations to calculate and store infor-
mation necessary in the search;

• given a lower bound function that can be used to guide the heuristic search, thereby
ignoring nodes the existing dynamic programming algorithms waste time and mem-
ory expanding and storing;

• shown how to effectively leverage the regular structure of the search graph to dis-
card information once it is no longer necessary and use external memory when the
problem size grows too large to f t into RAM;

• developed anytime algorithms that can both f nd good networks quickly and, given
enough time, f nd provably optimal networks;

• improved upon the lower bound function using pattern databases to calculate much
tighter bounds, which allow us to solve larger problems more quickly;

• demonstrated how simple parallel algorithms can quickly f nd provably high quality
algorithms using orders of magnitude less resources than existing parallel optimal
learning algorithms.

122

We tested all of our algorithms on a variety of commonly used machine learning bench-

mark datasets against current state of the art algorithms. In most cases, we showed that our

algorithms outperformed existing methods by running faster, using less memory and f nd-

ing better solutions more quickly.

Improving the scalability of optimal structure learning algorithms has many practical

applications. Learning regulatory networks is a very active area of research in compu-

tational biology, and our rigorously grounded learning methods can replace many of the

ad-hoc programs currently in use [96, 9, 98, 77]. Optimal algorithms remove the uncer-

tainty associated with structure learning and allow the biologists to focus on interpretting

the results. Similarly, as discussed in Section 2.3.2, there are many choices for scoring

functions when learning Bayesian networks. Optimal structure learning algorithms allow

researchers to directly evaluate the merits of each scoring function by, for example, com-

paring a learned network to a gold standard network using structural hamming distance [91]

or KL divergence [52].

10.2 Future Work

This work can be extended in several different ways.

Hybrid Search Techniques Throughout this dissertation, we have focused only on un-

constrained score-based learning methods. That is, we always search for a network that op-

timizes the given scoring function; however, another class of algorithms known as constraint-

based algorithms [85] are also used to learn Bayesian network structures. Constraint-based

123

algorithms begin with a set of conditional indepence tests to establish the relationships

among the variables. Then, based on the results of the tests, edges are added to the net-

work in a manner to satisfy as many of the tests as possible. Typically, constraint-based

algorithms only require a polynomial number of tests. Compared to the exponential search

space for score-based algorithms, this seems like an improvement. Unfortunately, the

constraint-based searches are very susceptible to noisy and small datasets because they

reduce the reliability of the independence tests.

Recently, several hybrid algorithms [91, 73, 47] have been proposed which incorporate

elements of both constraint- and score-based methods. They begin with a set of condi-

tional independence tests to establish a super-structure skeleton for the network. That is,

edges in the super-structure are not directed, but only edges present in the super-structure

may appear in the f nal network. The Max-Min Hill Climbing algorithm (MMHC) [91]

then performs a greedy hill climbing search in the space restricted by the super-structure.

As with any greedy hill climbing search, there are no quality guarantees for the learned

network. The constrained optimal search (COS) [73] and ancestral constrained optimal

search (ACOS) [47] also begin with a set of conditional independence tests to identify a

super-structure. However, they then use dynamic programming to guarantee to f nd the

optimal network that adheres to the super-structure.

The conditional independence tests and resulting super-structure can greatly reduce the

size of the search space of possible network structures. As we have shown, though, our

heuristic search algorithms outperform dynamic programming in a number of measures,

including running time, memory usage and anytime behavior. We could easily apply our

124

algorithms to the space restricted by the super-structure. A more interesting extension

could relate to the phase transitions discussed in Section 9.4.1. It is possible that a phase

transition exists based on properties of the super-structure. Because the signif cance cutoffs

of independence tests is always a user-supplied value, they could always be specif ed in a

manner to keep the problem on the “easy” side of the critical points. Some early results [67]

suggest that state spaces induced by super-structures have phases in which structure learn-

ing is linear if both treewidth and the maximum degree of the super-structure are bounded

by arbitrary constants.

Expert Knowledge Super-structures are one way to introduce constraints into structure

learning. For many f elds, such as computational biology, a massive amount of data is

available which could potentially help in structure learning. For example, due to wet lab

experiments, we may know that X should be a parent of Y . de Campos and Ji’s branch

and bound algorithm [19] can use simple constraints; however, no dynamic programming-

based algorithms can currently take advantage of structure constraints. Incorporating these

into structure learning should reduce both the time and memory requirements by pruning

parts of the search inconsistent with the constraints.

Score Calculations Currently, all optimal structure learning algorithms assume all nec-

essary local scores are pre-computed and easily accessible. We showed in Section 6.3 how

to store the scores on disk if necessary and nodes are expanded in lexicographic order;

however, because of the eff cient AD-tree-like search, we must store all scores in RAM

at least during the score calculation phase. It may be possible to use a form of delayed

125

duplicate detection in which scores are periodically written to disk and summed together

at the end of the search if they cannot all f t in RAM.

Tian [90] and de Campos and Ji [19] give results for pruning scores without needing

to actually calculate them. In that sense, then, those pruning results are more helpful than

Theorem 1 because it still requires the score be calculated before it can be pruned. Because

we incrementally calculate scores using the AD-tree-like search, we cannot effectively take

advantage of these results. An alternative to our incremental calculation strategy would be

to store an actual AD-tree in memory and calculate the scores one at a time. de Campos and

Ji’s implementation adopts this approach. In practice, even though their implementation is

in C++ and ours is in Java, the incremental calculation strategy signif cantly outperforms

the one at a time strategy, even though it allows more pruning (see, for example, Sec-

tion 5.5). The dynamic programming algorithm of Silander and Myllymaki [82] also uses

an incremental calculation strategy.

However, a super-structure induced reduced space of networks would allow even more

pruning, as would expert knowledge. Moore and Wong [64] use RADSEARCH [63] to

make the score calculations for optimal reinsertion more eff cient. A similar approach

could allow more pruning during score caclulation rather than having to wait until after

the scores are calculated to prune. This improvement could benef t all optimal structure

learning algorithms since they all require local scores.

Publication Parts of this dissertation have been published in the the following con-

ference papers: [102, 59, 60]. The rest of it has been submitted to either journals or

conferences and is under review (as of June 7, 2012).

126

REFERENCES

[1] S. Aine, P. P. Chakrabarti, and R. Kumar, “AWA*-a window constrained anytime
heuristic search algorithm,” Proceedings of the 20th international joint conference
on Artif cal intelligence, San Francisco, CA, USA, 2007, IJCAI’07, pp. 2250–2255,
Morgan Kaufmann Publishers Inc.

[2] H. Akaike, “Information Theory and an Extension of the Maximum Likelihood
Principle,” Proceedings of the Second International Symposium on Information
Theory, 1973, pp. 267–281.

[3] O. Barriàre, E. Lutton, and P.-H. Wuillemin, “Bayesian network structure learning
using cooperative coevolution,” Proceedings of the 11th Annual conference on Ge-
netic and evolutionary computation, New York, NY, USA, 2009, GECCO ’09, pp.
755–762, ACM.

[4] M. Boddy and T. Dean, “Solving time-dependent planning problems,” Proceedings
of the 11th international joint conference on Artif cial intelligence - Volume 2, San
Francisco, CA, USA, 1989, IJCAI’89, pp. 979–984, Morgan Kaufmann Publishers
Inc.

[5] H. Bozdogan, “Model selection and Akaike’s Information Criterion (AIC): The
general theory and its analytical extensions,” Psychometrika, vol. 52, 1987, pp.
345–370, 10.1007/BF02294361.

[6] W. Buntine, “Theory ref nement on Bayesian networks,” Proceedings of the sev-
enth conference (1991) on Uncertainty in artif cial intelligence, San Francisco, CA,
USA, 1991, pp. 52–60, Morgan Kaufmann Publishers Inc.

[7] E. Burns, S. Lemons, W. Ruml, and R. Zhou, “Best-First Heuristic Search for
Multicore Machines,” Journal of Artif cial Intelligence, vol. 39, 2010, pp. 689–743.

[8] R. Castelo and A. Siebes, “Priors on network structures. Biasing the search for
Bayesian networks,” vol. 24, 2000, pp. 39–57–.

[9] X.-w. Chen, G. Anantha, and X. Wang, “An effective structure learning method for
constructing gene networks,” Bioinformatics, vol. 22, no. 11, 2006, pp. 1367–1374.

127

[10] D. M. Chickering, “A Transformational Characterization of Equivalent Bayesian
Network Structures,” Proceedings of the Eleventh Conference on Uncertainty in
Artif cial Intelligence, 1995, pp. 87–98.

[11] D. M. Chickering, “Learning Bayesian Networks is NP-Complete,” Learning from
Data: Artif cial Intelligence and Statistics V. 1996, pp. 121–130, Springer-Verlag.

[12] C. Chow and C. Liu, “Approximating discrete probability distributions with depen-
dence treesID - 196,” 1968.

[13] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Proba-
bilistic Networks from Data,” Mach. Learn., vol. 9, October 1992, pp. 309–347.

[14] J. C. Culberson and J. Schaeffer, “Pattern Databases,” vol. 14, 1998, pp. 318–334.

[15] J. Cussens, “Bayesian network learning with cutting planes,” Proceedings of the
Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty
in Artif cial Intelligence (UAI-11), Corvallis, Oregon, 2011, pp. 153–160, AUAI
Press.

[16] R. Daly and Q. Shen, “Learning Bayesian network equivalence classes with Ant
Colony optimization,” J. Artif. Int. Res., vol. 35, June 2009, pp. 391–447.

[17] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge Uni-
versity Press, 2009.

[18] C. P. De Campos and Q. Ji, “Properties of Bayesian Dirichlet Scores to Learn
Bayesian Network Structures,” Twenty-Fourth AAAI Conference on Aritif cial Intel-
ligence (AAAI-10), 2010.

[19] C. P. de Campos and Q. Ji, “Eff cient Learning of Bayesian Networks using Con-
straints,” Journal of Machine Learning Research, vol. 12, 2011, pp. 663–689.

[20] C. P. de Campos and J. Qiang, “Improving Bayesian Network parameter learning
using constraints,” Pattern Recognition, 2008. ICPR 2008. 19th International Con-
ference on, 2008, pp. 1–4–.

[21] C. P. de Campos, Z. Zeng, and Q. Ji, “Structure learning of Bayesian networks using
constraints,” Proceedings of the 26th Annual International Conference on Machine
Learning, New York, NY, USA, 2009, ICML ’09, pp. 113–120, ACM.

[22] L. M. de Campos and J. G. Castellano, “Bayesian network learning algorithms using
structural restrictions,” vol. 45, 2007, pp. 233–254–.

[23] L. M. de Campos and J. F. Huete, “A new approach for learning belief networks
using independence criteria,” International Journal of Approximate Reasoning, vol.
24, no. 1, 2000, pp. 11 – 37.

128

[24] T. Dean and M. Boddy, “An Analysis of Time-Dependent Planning,” Proceedings,
1988.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incom-
plete Data Via the EM Algorithm,” 1977, pp. 1–22–.

[26] G. Elidan and N. Friedman, “Learning Hidden Variable Networks: The Information
Bottleneck Approach,” vol. 6, 2005, pp. 81–127–.

[27] G. Elidan, N. Lotner, N. Friedman, and D. Koller, “Discovering Hidden Variables
- A Structure-Based Approach,” Neural Informatin Processing Systems 13. 2000,
pp. –, MIT Press.

[28] M. Evett, J. Hendler, A. Mahanti, and D. Nau, “PRA*: a memory-limited heuristic
search procedure for the Connection Machine,” Frontiers of Massively Parallel
Computation, 1990. Proceedings., 3rd Symposium on the, oct 1990, pp. 145 –149.

[29] A. Feelders and L. C. van der Gaag, “Learning Bayesian network parameters under
order constraints,” Int. J. Approx. Reasoning, vol. 42, May 2006, pp. 37–53.

[30] A. Felner, R. Korf, and S. Hanan, “Additive Pattern Database Heuristics,” Journal
of Artif cial Intelligence Research, vol. 22, 2004, pp. 279–318.

[31] A. Felner, S. Kraus, and R. E. Korf, “KBFS: K-Best-First Search,” Annals of
Mathematics and Artif cial Intelligence, vol. 39, no. 1, 2003, pp. 19–39.

[32] B. Fitelson, “Likelihoodism, Bayesianism, and relational conf rmation,” Synthese,
vol. 156, 2007, pp. 473–489, 10.1007/s11229-006-9134-9.

[33] A. Frank and A. Asuncion, “UCI Machine Learning Repository,” 2010.

[34] N. Friedman, “Learning Belief Networks in the Presence of Missing Values and
Hidden Variables,” 1997.

[35] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Classif ers,”
Mach. Learn., vol. 29, November 1997, pp. 131–163.

[36] N. Friedman, I. Nachman, and D. Peer, “Learning Bayesian network structure from
massive datasets: The ”sparse candidate” algorithm,” Proceedings of UAI-13, 1999,
pp. 206–215.

[37] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The Complete
Book, 2 edition, Prentice Hall Press, Upper Saddle River, NJ, USA, 2008.

[38] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

129

[39] Z. Ghahramani, “Learning Dynamic Bayesian Networks,” Adaptive Processing of
Sequences and Data Structures, International Summer School on Neural Networks,
”E.R. Caianiello”-Tutorial Lectures, London, UK, 1998, pp. 168–197, Springer-
Verlag.

[40] F. Glover, “Tabu Search: A Tutorial,” Interfaces, vol. 20, no. 4, July/August 1990,
pp. 74–94.

[41] E. A. Hansen and R. Zhou, “Anytime Heuristic Search,” Journal of Artif cial Intel-
ligence Research, vol. 28, 2007, pp. 267–297.

[42] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths,” Ieee Transactions On Systems Science And
Cybernetics, vol. 4, no. 2, 1968, pp. 100–107.

[43] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks:
The combination of knowledge and statistical data,” vol. 20, 1995, pp. 197–243.

[44] T. Jaakkola, D. Sontag, A. Globerson, and M. Meila, “Learning Bayesian Network
Structure using LP Relaxations,” Proceedings of the 13th International Conference
on Artif cial Intelligence and Statistics (AISTATS), 2010.

[45] A. Kishimoto, A. Fukunaga, and A. Botea, “Scalable, Parallel Best-First Search for
Optimal Sequential Planning,” Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, 2009.

[46] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicles 0-4, 1st
edition, Addison-Wesley Professional, 2009.

[47] K. Kojima, E. Perrier, S. Imoto, and S. Miyano, “Optimal Search on Clustered
Structural Constraint for Learning Bayesian Network Structure,” vol. 11, pp. 285–
310.

[48] P. Kontkanen and P. Myllymäki, “A linear-time algorithm for computing the multi-
nomial stochastic complexity,” Inf. Process. Lett., vol. 103, September 2007, pp.
227–233.

[49] R. Korf, W. Zhang, I. Thayer, and H. Hohwald, “Frontier search,” Journal of the
ACM, vol. 52, no. 5, 2005, pp. 715–748.

[50] R. E. Korf, “Depth-f rst iterative-deepening: an optimal admissible tree search,”
Artif cial Intelligence, vol. 27, 1985, pp. 97–109.

[51] R. E. Korf, “Best-f rst frontier search with delayed duplicate detection,” Proceed-
ings of the 19th national conference on Artif cal intelligence, San Jose, California,
2004, pp. 650–657, AAAI Press.

130

[52] S. Kullback and R. Leibler, “On Information and Suff ciency,” The Annals of Math-
ematical Statistics, vol. 22, no. 1, March 1951, pp. 79 – 86.

[53] W. Lam and F. Bacchus, “Using Causal Information and Local Measures to Learn
Bayesian Networks,” Proceedings of Uncertainty in Artif cial Intelligence, 1993,
pp. 243–250.

[54] W. Lam and F. Bacchus, “Learning Bayesian belief networks: An approach based
on the MDL principle,” Computational Intelligence, vol. 10, 1994, pp. 269–293.

[55] P. Langley, W. Iba, and, and K. Thompson, “An analysis of Bayesian classi-
f ers,” Proceedings of the tenth national conference on Artif cial intelligence. 1992,
AAAI’92, pp. 223–228, AAAI Press.

[56] P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers, “Struc-
ture learning of Bayesian Networks by GenetioAlgorithms: A performance analysis
of control parameters,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 1996, pp. 912–926.

[57] S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on
graphical structures and their application to expert systems, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990, pp. 415–448.

[58] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* Search with Provable
Bounds on Sub-Optimality,” Proceedings of Conference on Neural Information
Processing Systems (NIPS), S. Thrun, L. Saul, and B. Schölkopf, eds. 2003, MIT
Press.

[59] B. Malone, C. Yuan, and E. Hansen, “Memory-Eff cient Dynamic Programming for
Learning Optimal Bayesian Networks,” Proceedings of the 25th national conference
on Artif cal intelligence, 2011.

[60] B. Malone, C. Yuan, E. Hansen, and S. Bridges, “Improving the Scalability of
Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First
Branch and Bound Search,” Proceedings of the Proceedings of the Twenty-Seventh
Conference Annual Conference on Uncertainty in Artif cial Intelligence (UAI-11),
Corvallis, Oregon, 2011, pp. 479–488, AUAI Press.

[61] C. McDiarmid, “Probabilistic Analysis of Tree Search,” Disorder in Physical Sys-
tems. 1990, pp. 249–260, Oxford Science.

[62] A. Moore and M. S. Lee, “Cached suff cient statistics for eff cient machine learning
with large datasets,” J. Artif. Int. Res., vol. 8, March 1998, pp. 67–91.

131

[63] A. Moore and J. Schneider, “Real-valued All-Dimensions search: Low-overhead
rapid searching over subsets of attributes,” Proceedings of the Eighteenth Con-
ference Annual Conference on Uncertainty in Artif cial Intelligence (UAI-02), San
Francisco, CA, 2002, pp. 360–369, Morgan Kaufmann.

[64] A. Moore and W.-K. Wong, “Optimal reinsertion: A new search operator for ac-
celerated and more accurate Bayesian network structure learning,” Intl. Conf. on
Machine Learning, 2003, pp. 552–559.

[65] K. P. Murphy, Dynamic bayesian networks: representation, inference and learning,
doctoral dissertation, 2002, AAI3082340.

[66] R. Niewiadomski, J. N. Amaral, and R. C. Holte, “Sequential and parallel algorithms
for frontier A* with delayed duplicate detection,” proceedings of the 21st national
conference on Artif cial intelligence - Volume 2. 2006, AAAI’06, pp. 1039–1044,
AAAI Press.

[67] S. Ordyniak and S. Szeider, “Algorithms and Complexity Results for Exact Bayesian
Structure Learning,” Proceedings of the Twenty-Sixth Conference Annual Confer-
ence on Uncertainty in Artif cial Intelligence (UAI-10), Corvallis, Oregon, 2010, pp.
401–408, AUAI Press.

[68] S. Ott, S. Imoto, and S. Miyano, “Finding Optimal Models for Small Gene Net-
works,” Pac. Symp. Biocomput, 2004, pp. 557–567.

[69] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and
complexity, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[70] P. Parviainen and M. Koivisto, “Exact structure discovery in Bayesian networks
with less space,” Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artif cial Intelligence, Montreal, Quebec, Canada, 2009, AUAI Press.

[71] J. Pearl, Heuristics: intelligent search strategies for computer problem solving,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[72] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence, Morgan Kaufmann Publishers Inc., 1988.

[73] E. Perrier, S. Imoto, and S. Miyano, “Finding Optimal Bayesian Network Given a
Super-Structure,” Journal of Machine Learning Research, vol. 9, October 2008, pp.
2251–2286.

[74] I. Pohl, “First Results on the Effect of Error in Heuristic Search,” 1969, pp. 219–
236, cited By (since 1996) 6; Conference of Machine Intelligence 5, Annu Mach
Intel Workshop.

132

[75] I. Pohl, “Heuristic search viewed as path f nding in a graph,” Artif cial Intelligence,
vol. 1, no. 3-4, 1970, pp. 193 – 204.

[76] C. Powley and R. E. Korf, “Single-agent parallel window search: a summary of
results,” Proceedings of the 11th international joint conference on Artif cial intel-
ligence - Volume 1, San Francisco, CA, USA, 1989, IJCAI’89, pp. 36–41, Morgan
Kaufmann Publishers Inc.

[77] Y. Qi, Y. Zhang, J. Lv, H. Liu, J. Zhu, and J. Su, “Deducing Causal Relationships
among Different Histone Modif cations, DNA Methylation and Gene Expression,”
Proceedings of the 2009 Fifth International Conference on Natural Computation -
Volume 06. 2009, pp. 139–143, IEEE Computer Society.

[78] J. Rissanen, “Fisher information and stochastic complexity,” Information Theory,
IEEE Transactions on, vol. 42, no. 1, jan 1996, pp. 40 –47.

[79] T. Schlitt and A. Brazma, “Current approaches to gene regulatory network mod-
elling,” BMC Bioinformatics, vol. 8, no. Suppl 6, 2007, p. S9.

[80] G. Schwarz, “Estimating the Dimension of a Model,” vol. 6, 1978, pp. 461–464.

[81] T. Silander, P. Kontkanen, and P. Myllymaki, “On Sensitivity of the MAP Bayesian
Network Structure to the Equivalent Sample Size Parameter,” Proceedings of the
Twenty-Third Conference Annual Conference on Uncertainty in Artif cial Intelli-
gence (UAI-07), Corvallis, Oregon, 2007, pp. 360–367, AUAI Press.

[82] T. Silander and P. Myllymaki, “A simple approach for f nding the globally optimal
Bayesian network structure,” Proceedings of the 22nd Annual Conference on Un-
certainty in Artif cial Intelligence (UAI-06), Arlington, Virginia, 2006, AUAI Press.

[83] T. Silander, T. Roos, P. Kontkanen, and P. Myllymaki, “Factorized normalized max-
imum likelihood criterion for learning Bayesian network structures,” Proceedings
of the 4th European Workshop on Probabilistic Graphical Models (PGM-08), 2008,
pp. 257–272.

[84] A. Singh and A. Moore, Finding Optimal Bayesian Networks by Dynamic Program-
ming, Tech. Rep., Carnegie Mellon University, June 2005.

[85] P. Spirtes, C. Glymour, and R. Schemes, Causation, Prediction, and Search, 2
edition, The MIT Press, 2000.

[86] P. Sprites and C. Meek, “Learning Bayesian networks with discrete variables,” Pro-
ceedings of the First International Conference on Knowledge Discovery and Data
Mining, 1995, pp. 294 – 299.

[87] J. Suzuki, “Learning Bayesian Belief Networks Based on the Minimum Description
Length Principle: Basic Properties,” vol. E82-D, 1999, pp. 356–367.

133

[88] Y. Tamada, S. Imoto, and S. Miyano, “Parallel Algorithm for Learening Opti-
mal Bayesian Network Structure,” Journal of Machine Learning Research, vol.
12, 2011, pp. 2437–2459.

[89] M. Teyssier and D. Koller, “Ordering-Based Search: A Simple and Effective Algo-
rithm for Learning Bayesian Networks,” Proceedings of the Twenty-First Confer-
ence Annual Conference on Uncertainty in Artif cial Intelligence (UAI-05), Arling-
ton, Virginia, 2005, pp. 584–590, AUAI Press.

[90] J. Tian, “A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks,”
Proceedings of the 16th Conference on Uncertainty in Artif cial Intelligence. 2000,
pp. 580–588, Morgan Kaufmann Publishers Inc.

[91] I. Tsamardinos, L. Brown, and C. Aliferis, “The max-min hill-climbing Bayesian
network structure learning algorithm,” Machine Learning, vol. 65, 2006, pp. 31–78,
10.1007/s10994-006-6889-7.

[92] R. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, and A. Kishimoto, “Simulta-
neously Searching with Multiple Settings: An Alternative to Parameter Tuning for
Suboptimal Single-Agient Search Algorithms,” Proceedings of the Twentieth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2010), 2010.

[93] T. Verma and J. Pearl, “Equivalence and synthesis of causal models,” Proceedings
of the Sixth Annual Conference on Uncertainty in Artif cial Intelligence, New York,
NY, USA, 1991, UAI ’90, pp. 255–270, Elsevier Science Inc.

[94] V. Vidal, L. Bordeaux, and Y. Hamadi, “Adaptive K-Parallel Best-First Search:
A Simple but Eff cient Algorithm for Multi-Core Domain-Independent Planning,”
International Symoposium on Combinatorial Search, 2010.

[95] A. Wille and P. Bhlmann, “Low-order conditional independence graphs for inferring
genetic networks.,” Statistical Applications in Genetics and Molecular Biology, vol.
5, no. 1, 2006, p. Article1.

[96] P. J. Woolf, W. Prudhomme, L. Daheron, G. Q. Daley, and D. A. Lauffenburger,
“Bayesian analysis of signaling networks governing embryonic stem cell fate deci-
sions,” Bioinformatics, vol. 21, no. 6, 2005, pp. 741–753.

[97] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, and T. Watanabe, “The K computer:
Japanese next-generation supercomputer development project,” Low Power Elec-
tronics and Design (ISLPED) 2011 International Symposium on, aug. 2011, pp. 371
–372.

[98] H. Yu, S. Zhu, B. Zhou, H. Xue, and J.-D. J. Han, “Inferring causal relationships
among different histone modif cations and gene expression,” vol. 18, 2008, pp.
1314–1324–.

134

[99] C. Yuan, H. Lim, and M. Littman, “Most Relevant Explanation: computational
complexity and approximation methods,” Annals of Mathematics and Artif cial In-
telligence, vol. 61, 2011, pp. 159–183, 10.1007/s10472-011-9260-z.

[100] C. Yuan, H. Lim, and T.-C. Lu, “Most Relevant Explanation in Bayesian Networks,”
Journal of Artif cial Intelligence Research, vol. 42, 2011, pp. 309 – 352.

[101] C. Yuan and T.-C. Lu, “A general framework for generating multivariate expla-
nations in Bayesian networks,” Proceedings of the 23rd national conference on
Artif cial intelligence - Volume 2. 2008, pp. 1119–1124, AAAI Press.

[102] C. Yuan, B. Malone, and X. Wu, “Learning Optimal Bayesian Networks using
A* Search,” Proceedings of the 22nd International Joint Conference on Artif cial
Intelligence, 2011.

[103] W. Zhang and J. C. Pemberton, “Epsilon-transformation: exploiting phase transi-
tions to solve combinatorial optimization problemsinitial results,” Proceedings of
the twelfth national conference on Artif cial intelligence (vol. 2), Menlo Park, CA,
USA, 1994, AAAI’94, pp. 895–900, American Association for Artif cial Intelli-
gence.

[104] R. Zhou and E. Hansen, “Sweep A*: Space-eff cient heuristic search in partially or-
dered graphs,” Proceedings of 15th IEEE International Conf. on Tools with Artif cial
Intelligence, 2003, pp. 427–434.

[105] R. Zhou and E. A. Hansen, “Structured duplicate detection in external-memory
graph search,” Proceedings of the 19th national conference on Artif cal intelligence.
2004, AAAI’04, pp. 683–688, AAAI Press.

[106] R. Zhou and E. A. Hansen, “Breadth-f rst heuristic search,” Artif cial Intelligence,
vol. 170, 2006, pp. 385–408.

[107] R. Zhou and E. A. Hansen, “Parallel structured duplicate detection,” Proceedings of
the 22nd national conference on Artif cial intelligence - Volume 2. 2007, AAAI’07,
pp. 1217–1223, AAAI Press.

135

	Learning Optimal Bayesian Networks with Heuristic Search
	Recommended Citation

	dissertation.dvi

