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Dendrite growth is the primary form of crystal growth observed in laser 

deposition process of most commercial metallic alloys. The properties of metallic alloys 

strongly depend on their microstructure; that is the shape, size, orientation and 

composition of the dendrite matrix formed during solidification. Understanding and 

controlling the dendrite growth is vital in order to predict and achieve the desired 

microstructure and hence properties of the laser deposition metals. 

A two dimensional (2D) model combining the finite element method (FE) and the 

cellular automaton technique (CA) was developed to simulate the dendrite growth both 

for cubic and for hexagonal close-packed (HCP) crystal structure material. The 

application of this model to dendrite growth occurring in the molten pool during the 

Laser Engineered Net Shaping (LENS®) process was discussed. Based on the simulation 

results and the previously published experimental data, the expressions describing the 

relationship between the cooling rate and the dendrite arm spacing (DAS), were 

proposed. In addition, the influence of LENS process parameters, such as the moving 

speed of the laser beam and the layer thickness, on the DAS was also discussed. Different 



dendrite morphologies calculated at different locations were explained based on local 

solidification conditions. And the influence of convection on dendrite growth was 

discussed. The simulation results showed a good agreement with previously published 

experiments. This work contributes to the understanding of microstructure formation and 

resulting mechanical properties of LENS-built parts as well as provides a fundamental 

basis for optimization of the LENS process.  
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CHAPTER I 

INTRODUCTION AND LITERATURE SUMMARY 

1.1 Research blackground 

The solidification process is an important step in the manufacturing of 

components. In most cases, mechanical properties depend on the solidification structure 

at micro-scale level, including grain size or secondary dendrite arm spacing, grain type, 

and so on. Figures 1.1 a) and b) show the relationships between the yield strength and the 

grain size [1] and secondary DAS (SDAS) [2]. The yield strength increases with 

decreasing grain size or SDAS. As the grain size decreases, the ratio of surface area to 

volume of the grain will increase, which allows more buildup of dislocations at the grain 

boundary. Also, the build-up of dislocations increase the yield stress of the materials 

since it requires a lot of energy to move dislocations to another grain. It is the well known 

Hall-Petch strengthening. 
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Figure 1.1 Relationship between yield strength and (a) grain size [1] and (b) secondary 
dendrite arm spacing [2] 

However, the component with fine grain size is not always a good choice [3]. 

When creep resistance is required, eliminating grain boundaries is needed. Figure 1.2 

(a) 

(b)
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show the gas turbine blades of Nickel-base superalloys obtained using a ceramic mould 

by different casting methods, producing different microstructure: quiaxed, columnar, and 

single-crystal grain microstructure. For the equiaxed grain microstructure, the presence of 

grain boundaries makes this structure susceptible to creep and cracking along those 

boundaries under centrifugal forces at elevated temperatures. For the columnar grain 

microstructure, the longitudinal but not transverse grain boundaries makes the blade 

stronger in the direction of the centrifugal forces developed in the gas turbine. For the 

single crystal blade, the lack of grain boundaries makes these blades resistant to creep 

and thermal shock. Thus, they have a longer and more reliable service life. 

 

 

Figure 1.2 Nickel-based superalloy turbine blades solidified as (a) equiaxed grains, (b) 
columnar grains, and (c) a single crystal [3] 

Since the importance of the prediction of solidification microstructure, this work 

talks about the development of modeling the dendrite growth. The dendrite growth is the 

primary form of crystal growth observed in the Laser Engineered Net Shaping (LENS®), 

and the properties of metallic alloys strongly depend on their microstructure; besides, 

(a) (b) (c)
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understanding and controlling the dendrite growth is vital in order to predict and achieve 

the microstructure and hence the mechanical properties. The application of the model to 

the prediction of dendrite growth in the solidification of molten pool during LENS was 

especially discussed. 

1.2 Description of the LENS process 

LENS is a rapid fabrication process through which near-net-shaped three-

dimensional (3D) components are built by the successive overlapping of layers of laser 

melted powder by computer-guided movement of the substrate or the laser in 3D space. 

The LENS fabrication technique was developed by Sandia National Laboratories in the 

late 90’s, and it is gaining popularity as a rapid prototyping and repair technology 

because of its cost saving potentials and high cooling rates leading to fine microstructures 

similar to those observed in rapid solidification [4-6]. 

A typical LENS system consists of four parts: a laser, a controlled-atmosphere 

glove box, a 3D computer-controlled positioning system, and several powder-feed units 

as Figure 1.3 shows. Laser beam creates a small melt pool at the top surface into which 

the feed-metal powder is delivered. The powder melts and then begins to solidify. The 

combined effects of surface melting with newly-added-powder melting gives rise to the 

formation of a new layer. 

Various alloys have been used in the LENS process, such as, stainless steel, tool 

steel, nickel-based alloys, and titanium alloys. LENS has several advantages over the 

traditional metal processing, including low cost and time saving, enhanced design 

flexibility and automation, and superior material properties. The main distinct 

applications of LENS technology include applying metal to existing parts and repairing 
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worn or broken parts, 3D product with thin section or depth-to-diameter aspect ratios, and 

solid parts with complex internal and external features near to net shape. 

 

  

Figure 1.3 Schematic of a typical LENS system 

1.3 Experiment on thermal behavior during LENS process 

Since the complex manufacturing process, the LENS process is not yet fully 

understood, and the selection of process parameters is still often based on previous 

experience and trial and error experimentation. Appropriate tuning of the laser power, 

travel speed, powder flow rate, and several other parameters is essential to avoid defects 

and undesired microstructures. Kurz [7], Kelly and Kampe [8], Colaco and Vilar [9-10], 

among others, have shown that the microstructure and mechanical properties obtained 
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with the LENS process partly depend on the solid-state transformations during cooling 

down to room temperature. However, the transformations are mainly driven by the 

consecutive thermal cycles during the LENS process when the laser beam moves along 

the part surface line by line and layer by layer. Therefore, it is critical to understand the 

local thermal cycles and temperature history in order to predict the solid phase 

transformations and thus the final microstructure in the part. Many experimental works 

have been done to characterize the thermal behavior during LENS deposition. 

1.3.1 Thermocouple measurements 

A relatively easy way to obtain a thermal signature during processing is by 

inserting thermocouples directly into the sample during fabrication. A sample of single-

pass-width wide shell boxes with equal side lengths of 6.35cm was fabricated by Griffith 

et al. [11-13] from H13 tool steel with varying laser powers and traverse velocities. A 

fine diameter (10µm) Type C thermocouple bead was inserted directly into the deposition 

sample zone to obtain the accurate thermal history during the LENS fabrication for 

twenty deposition layers. The experimental temperature traces at one position were 

shown in Figure 1.4 as twenty layers were deposited on top of the thermocouple inserted 

into H13 LENS shell build. 

Some experiments were also conducted to obtain temperature measurement data 

by K-type thermocouple. Pinkertona [14] positioned K-type thermocouple on the side 

surface of the uppermost deposited track, halfway along it. An experiment was conducted 

by Peyre et al. [15] that 0.2mm diameter type-K thermocouples were spot welded at 

different locations in the substrate, as close as possible (0.5-4mm) from the manufactured 

wall, to record temperature versus time data. 
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Figure 1.4 In-situ temperature readings for twenty deposition layers 

1.3.2 Non-invasive thermal imaging 

It is known intuitively that a thermal gradient exists across the molten pool and 

into the bulk material created by the LENS process. The nature and extent of this gradient 

has not been fully characterized. Since mechanical properties are dependent upon the 

microstructure of the material, which in turn is a function of the thermal history of 

solidification, an understanding of the temperature gradient induced by LENS processing 

is of special interest. It would be particularly beneficial to use non-invasive thermal 

imaging to measure the temperature profile and gradients and to use these thermal 

profiles in feedback control.  

Hofmeister et al. [16] employed a digital 64×64 pixel CCD video camera with 

thermal imaging techniques to observe the molten pool. The thermal-imaging camera 

views the sample through a CaF viewpoint in the front of the LENS glove box. The 

experimental setup is shown in Figure 1.5. These experiments were conducted on 

AISI316 stainless steel using two different particle size distributions. The molten pool 
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size was analyzed from the thermal images (shown in Figure 1.6(a)), and the temperature 

gradients and cooling rates in the vicinity of the molten pool were also obtained as shown 

in Figure 1.6(b) and (c) respectively. Griffith and Hu et al. [12, 13, 17] conducted similar 

experiments with 320×244 and 128×128 pixel CCD respectively. 

 

 

Figure 1.5 A schematic of the thermal-imaging experimental setup for LENS 

The smart digital CMOS camera (Fastcam Photron) was also used to capture the 

thermal image [15, 18]. It is a powerful standalone vision-capture device and has the 

capability to measure the melt pool and adjacent region simultaneously and their 

evolution with incremental layers. Compared to the typical CCD camera, the CMOS 

camera converts the light intensity to voltage in a logarithmic manner other than linear 

which expands measurement range. This feature allows the CMOS camera to work 

efficiently at such a strong light intensity circumference as the laser material process. 
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Figure 1.6 (a) A thermal image of the line build with corresponding graphs of (b) the 
temperature distribution along the yellow cursor and (c) the cooling rate 
[16] 

1.4 Heat transfer simulation 

However, the experimental measurement of a detailed thermal history in the part 

is difficult to achieve because the required experiments would be very costly and time-

consuming. An alternative approach is to use numerical simulation with appropriate 

(b) 

(a)

(c) 
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mathematical models. Many numerical models have been developed to try to establish an 

understanding of the thermal behavior in the LENS process. 

Grujicic et al. [19, 20] developed a two-dimensional (2D) finite difference (FD) 

model to calculate the temperature profiles in the fabricated part when the laser beam 

moved across the top surface of the sample, obtaining the minimum power of the laser 

needed to initiate melting of the part surface. Jendrzejewski et al. [21] developed a 2D 

finite element (FE) modeling of temperature distribution for multi-layer structures by 

direct laser deposition in an Ar environment to numerically obtain and compare with 

experimental data, and powders of bronze B10 and stellite SF6 alloys and also base plates 

of S235JR steel were taken as sample materials. Kelly and Kampe [8] developed a 2D 

transient thermal model to calculate the temperature distribution for multiple layer 

depositions of the titanium alloy Ti-6Al-4V during a single-line build, and implicit 

(backward-difference) FD techniques was taken to solve the transient-heat-conduction 

equation. Wang and Felicelli [22] predicted the temperature distribution during 

deposition of AISI316 stainless steel as a function of time and process parameters by 

developing a 2D thermal model with one layer of deposition. 

Besides the 2D models, 3D models were also built. Ye et al. [23] developed a 3D 

FE model to predict temperature distribution during the process, especially near the 

molten pool. Their results showed good agreement with experimental observations. In the 

simulation process, a thin wall part deposited on the substrate was discretized by using 

cubic solid elements. For AISI316 stainless steel thin wall fabricated in the LENS 

process, numerical simulation was performed to study the entire thermal behavior in 

process. Temperature distribution and gradient in the fabricated part were obtained from 

the results of FE method simulation. Costa et al. [24] developed and applied a 3D FE 
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model to calculate the thermal history in a single-wall plate. They also studied the 

influence of substrate size and idle time on the temperature field of the fabricated parts. A 

paper by Alimardani et al. [25] presented a 3D transient numerical approach for modeling 

the multilayer laser solid freeform fabrication (LSFF) process. Using this modeling 

approach, the geometry of the deposited material as well as temperature and thermal 

stress fields across the process domain could be predicted in a dynamic fashion. Dai and 

Shaw [26] developed a 3D FE model to investigate the effects of the volume shrinkage 

due to transformation from a powder compact to dense liquid on the temperature 

distribution and the size of the transformation zone during laser densification. The results 

showed that simplified models that did not include the local geometry change due to the 

volume shrinkage during densification provided good estimations of the temperature 

field. 

Some commercial softwares were used to simulate the thermal behavior for the 

laser deposition process. Peyre et al. [15] carried out a 3D FE calculation on COMSOL 

3.3 Multiphysics software to describe thermal behavior during direct metal deposition 

(DMD) of a titanium alloy. Labudovic et al. [27] developed a 3D model for direct laser 

metal powder deposition process and rapid prototyping with commercial software 

ANSYS. The model calculated transient temperature profiles, dimensions of the fusion 

zone, and residual stresses. Wang et al. [28] developed a 3D FE model using the 

commercial software SYSWELD to study the molten pool size by analyzing the 

temperature and phase evolution in stainless steel 410 during the LENS deposition of a 

thin-walled structure. 
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1.5 Fluid flow simulation 

1.5.1 Fluid flow simulation for welding 

Beside the heat transfer simulation, a number of 2D and 3D numerical models 

have also been developed to understand fluid flow phenomena in welding processes. 

Fusion zone geometry can be predicted from the transient heat transfer and fluid flow 

with natural convection model for various conditions [29-33]. The velocity of the liquid 

metal in the weld pool increases with time during heating, and convection plays an 

increasingly important role in the heat transfer in the weld pool towards the end of the 

pulse. Many literatures describe the fluid flow in the pool with considering the surface 

tension induced Marangoni convection. The surface tension force arises because of the 

spatial variation of surface tension between the middle and the periphery of the weld pool 

resulting from the temperature variation between the centre and the edges of the melt 

pool, while the thermal gradients in depth trigger buoyancy flow. The liquid flow is 

mainly driven by the surface tension and, to a much less extent, by the buoyancy force. 

Marangoni convection also plays critical role in determining the temperature distribution 

in the work-piece and melt flow in the weld pool. 

Some models [34-37] respectively adopted FD and finite volume (FV) methods to 

discover that the fluid flow in laser generated melt pool was dominated by Marangoni 

flow. Sundar et al. [36] calculated two cases: (1) without fluid flow, that is, pure 

conduction and (2) with surface tension driven flow. From the simulation, it was 

observed that the fluid flow played a significant role in deciding the temperature 

distribution and the final shape and size of the weld pool. Ye and Chen [37] developed a 

3D model to compare the melt flow and heat transfer between the Marangoni convection 

and natural convection, finding that the Marangoni convection played a critical role in 
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determining the temperature distribution and melt flow in the weld pool and could not be 

ignored even for the full-penetration welding of a thin plate. Since the melt flow driven 

by the surface tension gradient as ߲ߪ ߲ܶ⁄ ൏ 0 could appreciably enhance the energy 

transport from the vapor hole, both the length and width of the weld pool increased with 

increasing Marangoni number. Hughes et al. [38] developed a 2D model to discuss the 

influence of positive and negative surface tensions on pool shapes. For the negative and 

positive gradient cases the predominant surface flow was away from and towards the heat 

source respectively. The convective heat transport was consequently directed towards or 

away from the axis, resulting in either a deeper or flatter weld pool shape respectively. 

The analysis by He et al. [39] showed that the liquid metal convection continued 

to be an important mechanism for heat transfer within the weld pool as the scale of the 

weld was reduced in linear and spot laser micro-welding operations in comparison with 

the conventional welds. Even with relatively small dimensions of laser micro-welds, the 

Peclet number was found to be large enough for Marangoni convection to be important in 

the heat transfer. 

However, some works indicated that heat conduction sometimes played an 

important role in the heat transfer in the weld pool under some particular conditions. Rai 

et al. [40] developed a 3D model to calculate the temperature and velocity fields and 

weld pool geometry for welding systems. It was shown that the temperature profile and 

the weld pool’s shape and size depended strongly on the convective heat transfer for low 

thermal conductivity alloys like stainless steel. For high thermal conductivity aluminum 

alloys, convection did not play a significant role in determining the shape and size of the 

weld pool. The weld cross sections for AISI304 stainless steel showed a large width near 

the surface which narrowed considerably toward the bottom due to convection dominated 
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heat flow. On the other hand, the main mechanism of heat transfer during welding of 

5754 aluminum alloy was heat conduction during keyhole mode laser welding. And He et 

al. [41] also found that heat transfer by conduction was important when the liquid 

velocity was small at the beginning of the pulse and during weld pool solidification. 

A few articles [42, 43] even discussed about the turbulent convection in the weld 

pool. Chakraborty et al. [43] carried out two sets of simulations from a 3D model for the 

same set of processing parameters: one with the turbulence model and the other without 

activating the turbulence model. The enhanced diffusive transport associated with 

turbulence was shown to decrease the maximum values of temperature, velocity 

magnitude, and copper mass fraction in the molten pool. The composition distribution in 

turbulent simulation was found to be more uniform than that obtained in the simulation 

without turbulent transport. In addition to that, the maximum values of these quantities 

were also found to be smaller in the turbulent pool than the corresponding magnitudes 

obtained from the laminar simulation, since the eddy mass diffusivities turned out to be 

several orders of magnitude higher than the corresponding molecular mass diffusion 

coefficients of molten metal. 

Some models [44, 45] assumed the flat top surface of the model pool while 

calculating the fluid flow in the weld pool, and some others [30, 46-48] calculated the 

free surface. Surface profile was calculated by minimizing the total surface energy [30, 

46]. Level set (LS) method was also used to get the free surface [47]. Ha and Kim [48] 

discussed the Marangoni effect with deformable free surface in fixed grid system. The 

free surface elevated near the weld pool edge and descended at the center of the weld 

pool if ݀ݎ ݀ܶ⁄  was dominantly negative. The predicted width and depth of the weld pool 

with moving surface were a little greater than those with flat weld pool surface. It was 
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believed that the oscillation of the weld pool surface during the melting process enhanced 

the rate of convective heat transfer in the weld pool. 

1.5.2 Fluid flow simulation in the molten pool for laser deposition 

Compared to the large works on the fluid flow for welding, only a few papers [49-

53] were published to investigate the fluid flow in the molten pool for the laser deposition 

or laser surface melting. The simulation results of the models with free surface movement 

by LS approach showed that Marangoni driven convection played significant roles on 

heat dissipation and melt pool shape [49-51]. Lei et al. [52] found that if a pure 

conduction model was used or only buoyancy-driven flow was considered one would 

more greatly over predict the surface temperature. When surface-tension temperature 

coefficient was less than zero, the flow was outward from the center of the pool to the 

pool periphery and resulted in a shallow and wide pool shape. Three dimensional model 

[53] was applied to laser processing of AISI 304 stainless steel. The effects of heat 

conduction, Marangoni flow, and thermal buoyancy on melting process and shape of 

molten pool were thoroughly analyzed. Marangoni flow made a molten pool wider and 

shallower by comparing to the heat conduction. 

1.6 Properties and microstructure for LENS parts 

1.6.1 Properties of LENS components 

A lot of experiments [12, 13, 54-66] have been conducted to examine the 

mechanical properties of LENS deposited material, and various materials have been 

involved, such as steel alloys, In alloys, Ti alloys, and Al alloys. Hardness has been tested 

for LENS deposited materials, such as H13 [12, 54], AISI4140 [55], WC-Co [56], Fe-

based metallic glass [57], and AIS316 [59]. Some calculations on the hardness were also 
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carried out, including AISI420 [24], H13 [54, 58], and AISI316 [59]. The experiment and 

calculation results showed that hardness had a slightly higher value when having a higher 

moving speed of laser beam. Also Sandia report in 1999 [62] showed that the LENS 

AISI308 component had higher hardness than the annealed AISI308. The ultimate tensile 

strength and yield tensile strength were also tested for many materials. Many materials 

including Sandia report in 2006 [65] showed that LENS deposited components had 

superior strength properties to annealed material, such as AISI304 [60, 64], AISI316 [61], 

AISI308 [62], and 663 copper alloy [66]. Zheng et al. [59] also compared the tensile 

mechanical properties for LENS and conventional wrought AISI316 and investment cast, 

and comparison [66] was also made by LENS to sand mould casting for 663, and the 

same results were concluded. Griffith et al. [13] reported a partial list of the room 

temperature mechanical properties for alloys fabricated parts by LENS, ranging from 

stainless steels to titanium to nickel-based alloys. It was found from the results that, in 

most cases, the LENS properties were as good as if not better than the traditionally 

fabricated material. For AISI316, the yield strength was double that of wrought while 

retaining a ductility of nearly 50%. This is most likely due to Hall-Petch grain size 

refinement, where finer grain sizes result in higher yield strengths. Typical LENS-

processed grain sizes range from 1-10 microns, where traditional wrought material is 

around 40 microns. 

1.6.2 Microstructure for LENS parts 

The cooling rate calculated in present research is found to be as high as 104K/s, 

which leads to a fine microstructure. Several other numerical simulation [21, 67-69] and 
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experimental [13, 59, 70, 71] results have also reported that the cooing rate was usually 

determined to be in the range of 103 to 104K/s.  

Many experiments conducted with various alloys under different operation 

conditions have proved that the dendrite structure could be observed [14, 59, 70, 72-85], 

and some experiments [79-85] have proved that cell and column/dendrite coexist. The 

grain size is as fine as a few microns [16, 59, 68, 72, 73, 75, 76, 85-91] due to the high 

cooling rate. Both cellular and dendrite structures were observed by Smugeresky et al. 

[90], and the cell sizes and the SDAS were in the range of 2 to 15m, with laser power 

150-600W, travel speed of 4.2-16.9mm/s for AISI316. Hofmeister et al. [16] found that 

the average dendrite mean intercept length increased from 3 to 9m when increasing the 

laser power for deposition of AISI316. In laser deposition of Ni-based alloys, it has also 

been observed that the primary DAS (PDAS) was about 5m and that the SDAS was in 

the range of 1.5 to 2.5m [76]. A summary of reported microstructures for different 

materials and deposition processes is given in Table 1.1. Note that reported dendrite 

dimensions differ for the same material; this is probably due to the different operation 

parameters during the deposition process. 

Table 1.1 Measured grain and dendrite sizes 

Materials Dimension (m) Process Reference 
AISI316 DAS:1.31-3.0 LENS [85] 
AISI308 PDAS: 4 LENS [86] 
AISI308 PDAS: 4 LENS [87] 
H13 Grain width: 4-20 DMD [75] 
H13 SDAS: 2 LENS [73] 
AISI316 Mean intercept length: 3.25-8.68 LENS [16] 
H13 PDAS: 1.5-4; SDAS: 2-5.5 DMD [68] 
AISI304 Grain width: ~10 LENS [89] 
AISI316 SDAS: <5 LENS [72] 
Ni-based alloy PDAS: 5; SDAS: 1.5-2.5 DMD [76] 
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Table 1.1 (Continued) 

AISI316 PDAS: 8-20 LCF [59] 
AISI316 SDAS: 2-15 LENS [90] 
H13 Grain width: 6.4-12.2 DMD [91] 

 

Different dendrite morphologies can be obtained by controlling the thermal 

gradient (G) and cooling rates (solidification velocity (R)) in the molten pool [14, 92, 93]. 

Some analytic models were also built to prove the formation of dendrite on the basis of 

the G and R calculated during the LENS process [68, 94, 95]. Bontha et al. [94] 

determined the relationship between the dendrite morphology, the temperature gradient, 

and solidification velocity during the LENS process by plotting points in G versus R 

space as Figure 1.7 shows. The authors found that the resulting grain morphology could 

be predicted as either columnar, equiaxed, or mixed. The conditions of laser power and 

laser travel speed for which a fully columnar dendritic structure was also obtained in 

LENS-deposited Ti-6Al-4V thin walls. 
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Figure 1.7 Effects of laser velocity on predicted grain morphology in thin-wall Ti-
6Al-4V deposits in Ref. [94]. 

The microstructure in the deposited part is very complicated because it undergoes 

a near rapid solidification process and several solid state phase transformations when 

cooling to room temperature. Due to the lack of re-crystallization of the last layer in the 

multi-layer deposition of the LENS process, the microstructure of the last layer differs 

from the rest of the layers. Cellular, as well as dendritic structures, have been observed in 

the deposition layers [81, 89, 96, 97]. A dendritic structure was usually found in last layer 

while a dendrite/cell structure was found in the previous layers [72, 74, 76, 80, 83, 84, 

98]. Columnar dendrites were observed in the last layer with AISI316 [74]. The cell 

structure of AISI316 after cooling down to room temperature was also obtained [98] as 

Figure 1.8 shows. A dendritic microstructure can also occur in layers other than the last 

one. The top layer showed a mainly dendritic structure, and this structure was also 
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observed at layer boundaries [72] as Figure 1.9 shows. It can be identified that the 

microstructure of the last layer differs from others partly because all other layers are 

tempered during deposition of the next layer except for the last one. All the above reports 

provide clear evidence that dendritic structures can occur during the solidification in the 

LENS process. 

 

 

Figure 1.8 AISI316 typical cellular microstructure found in recrystallized layers [98] 

 

 

Figure 1.9 AISI316 fine dendritic structure found in the top layer [72] 
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1.6.3 Simulation of microstructure evolution 

Kurz [7] developed a model on microstructure mapping in processes with a clear 

character of directional solidification such as was observed in laser surface treatment and 

laser welding. Pavlyk and Dilthey [99] simulated the dendrite morphology for arc 

welding and calculated a stable dendrite structure with a PDAS of 10-15μm. Simulation 

on 106×106 grid points took 2×105 time steps. And a cell size of about 0.1μm was used, 

which was more than one order of magnitude smaller than that the dendrite tip radius and 

the diffusion length. 

Very few papers published the results on the microstructure simulation on the 

LENS process. Miller et al. [100] developed a 3D model with the Monte Carlo method to 

simulate the microstructure evolution, but only obtained the cell grain microstructure, and 

also Grujicic et al. [19] calculated the columnar grain evolution of solidification 

microstructure in the LENS rapid fabrication process with CA method, but without 

dendrite details. 

1.6.4 Review of solidification modeling 

In earlier times, most of the solidification problems were solved by analytical 

solutions with simple geometries due to the constraints in the available computational 

tools. The occurrence of computer numerical methods were adopted, but constrained to 

one diffusion equation because of the limited power of computer. Then multidimensional 

models have been developed to deal with multi-physics phenomena with the advanced 

and powerful computers in the past few decades. Several articles reviewed the 

solidification simulation. Hu and Argyropoulos [101] summarized the macro energy 

transport models during the solidification and analyzed the relative merits and 

disadvantages of each formulation. Rappaz [102] introduced the basic concepts of 
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macroscopic and microscopic phenomena which entered normally into any solidification 

process. The mechanism of microstructure formation was outlined for both eutectic and 

dendritic alloys solidified with equiaxed and columnar morphologies. Stefanescu [103] 

classified the prediction method of microstructural evolution as being the continuum 

approach (deterministic), or on the stochastic (probabilistic) approach, or, more recently, 

on a combined approach. The prediction of microstructure evolution was analyzed based 

on the solid/liquid transformation during the solidification. Boettinger et al. [104] 

discussed the most important advances in solidification science and technology and 

summarized the advent of new mathematical techniques (especially phase field (PF) and 

cellular automata (CA) models) coupled with powerful computers to simulate grain 

growth and final microstructure evolution. A most recent review [105] revealed that the 

recent popular research on solidification science places extra emphasis on (1) key 

anisotropic properties of the solid-liquid interface that governed solidification pattern 

evolution, including the solid-liquid interface free energy and the kinetic coefficient and 

(2) dendrite solidification at small scale (atomic scale) and at large growth rates, with 

particular emphasis on orientation selection and/or under complex conditions (fluid 

flow). 

1.7 Simulation methods for solidification microstructure evolution  

The emergence of simulation methods enables prediction on grain structure and 

morphological evolution. In the last decade, numerical simulation has been widely used 

to predict microstructural changes during solidification. Various types of deterministic 

and stochastic methods have been applied to characterize the dendritic growth during 

solidification, including front tracking (FT), PF, LS, and CA methods. 
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1.7.1 Front tracking method 

Some models with FT algorithm were built for solidification problems [106-108]. 

The main idea of this method is that the interface is identified by an ordered set of marker 

points located on the interface and is represented by the distance between the points and 

some reference surface. A line connecting the marker points, usually a piecewise 

polynomial, represents the front. Three distinct steps are involved, including interface 

reconstruction and advection (tracking), calculation of normal velocity, and solution of 

the governing equations. 

The first task of this method is to find the points where the interface intersects the 

Cartesian grid lines. First, identify the points where the interface cuts the vertical lines in 

the grid (see Figure 1.10), which is termed as marker points. Next, determine the points 

of intersection of the interface with the other two sets of grid lines, which are referred to 

as intersection points. Once the interface is advected over time step, new marker points 

corresponding to the new interface location need to be determined. 

The normal velocity ௡ܸ of the interface is obtained from the difference between 

the normal gradients of temperature in the liquid and solid as latent heat is liberated via 

the following equation (Stefan condition): 

 

௦ߣ
డ்ೞ

డ௡
െ ௟ߣ

డ்೗

డ௡
ൌ ܪ∆ · ௡ܸ       (Eq.1.1) 

Where is ∆ܪ enthalpy of freezing, and  ߣ௦ and ߣ௟ are thermal conductivity for 

solid and liquid, and ܶ௟ and ܶ௦ are interface temperature in liquid and solid. 

In order to solve the governing equations in the two phases, a methodology needs 

to be devised for applying the equations for each of the phases in the interfacial cells. The 
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interfacial cell is partitioned according to the actual position of the interface in the cell, 

and the equations are solved separately in each phase. 

 

 

Figure 1.10 Schematic for front tracking method 

For the FT method, topological changes like coalescence (merging of two 

dendrite arms) is difficult to be handled and/or implemented. Besides, this method 

usually involves fairly large grid anisotropy. 

1.7.2 Phase field method 

The PF method was firstly developed by J. Langer (1978) [109], and it simulates 

the microstructure by solving the equations governing the evolution of the PF variable 

and heat or solute. A field variable, ׎, can describe the real world by identifying the 

phase of a point in the domain but without physical meaning. If the point lies in the liquid 
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region, ׎ ൌ 0; if the point lies in the solid region,׎ ൌ 1. Values of ׎ between zero and 

one represent points that lie in the interface. The phase variable can be obtained by 

solving the Kinetics equation: 

 
డ׎

డ௧
ൌ െ߁ ڄ ఋி

ఋ׎
         (Eq.1.2) 

Where the ߁ is interface kinetic coefficient. The free energy function ܨ is: 

 

ܨ ൌ ׬ ቂ݂ሺ߶ሻ ൅ ଵ

ଶ
· ሺ׎ߝሻଶ · ሺ׎׏ሻଶቃ ܸ݀௏                (Eq.1.3) 

Where the ݂ሺ߶ሻ is free energy density and ׎ߝ is gradient energy coefficient. There 

are several advantages for this method, including easy to be implemented, capable of 

reproducing most of the phenomena associated with microstructure formation, but it has 

its disadvantage, and that is parameter identification and the simulation domain size. 

The PF method simulates the phase types by solving differential equations that 

govern the evolution of the PF variable [110-114]. It has been applied to simulate the 

microstructural evolution of pure metals [113] and multi-component systems [110, 114]. 

However, the PF method requires significant computer resources which limits its 

application because the calculation domain cannot be very large. 

The main advantage of this approach is that complex topology changes are easily 

handled since there is no need to explicitly track the interface or even provide interfacial 

boundary conditions. The disadvantage of this method is in relating the parameters in the 

evolution equation for ׎ to phenomenological parameters such as surface tension and 

interface kinetic coefficient. 
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1.7.3 Level set method 

Several models [115-117] were also developed to simulate the dendrite growth 

during solidification. The LS method also constructs a field ׎ to describe the interface 

such that at any time ݐ, the interface is equal to the zero LS of ׎, i.e., 

 
ሻݐሺ߁ ൌ ሼݔ א Ω: ߶ሺݔ, ሻݐ ൌ 0ሽ                                                                   (Eq.1.4) 

And the ׎ is equal to the signed distance function from the interface 

 

߶ሺݔ, ሻݐ ൌ ቐ
൅݀ሺݔ, ݔ    ,ሻݐ א Ω௟

ݔ                  ,0 א Ω௟ 
െ݀ሺݔ, ݔ    ,ሻݐ א Ω௦

                                                                   (Eq.1.5) 

Where the ݀ሺݔ,  .from the interface ݔ ሻ is normal distance of pointݐ

At the solid-liquid interface, the motion of the interface moving velocity ሬܸԦ (see 

Figure 1.11) is dictated by the classical Stefan equation (energy balance at the freezing 

front), which can be obtained by: 

 

௦ߩ · ܮ · ሬܸԦ ൌ ௦ሬሬሬሬԦݍ െ  ௟ሬሬሬԦ        (Eq.1.6)ݍ

Where ݍ௦ሬሬሬሬԦ and ݍ௟ሬሬሬԦ the heat flux at the interface to the solid and to the liquid, which 

can be obtained by: 

 
Ԧݍ ൌ ߣ · ܶ׏ · ݊        (Eq.1.7) 

Where the ݊ is normal direction at the interface. 

The idea behind the LS method is to move ׎ with the correct speed ሬܸԦ at the 

interface which is extracted from Eq.1.8.  

The interface position is thus implicitly stored in ׎. And the motion equation 

governing the ׎ is given by: 
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డ׎

డ௧
൅ ሬܸԦ · |׎׏| ൌ 0        (Eq.1.8) 

 

 

Figure 1.11 Schematic for level set method 

The advantages of the LS method include that discontinuities can be naturally 

handled and computation is accurate enough. The disadvantage is that it still needs to 

calculate the phase as variable to determine the interface 

1.7.4 Cellular automaton method 

Another method used to simulate the grain growth is the CA method. This method 

produces results similar to those of the PF method by obtaining the temperature and 

solute fields and then determining the solid/liquid (S/L) interface. The CA method was 

first proposed by Von Neumann and Burks (1966) [118]. Since then, it has had numerous 

diverse applications, including microstructure evolution during solidification. CA 

systems consist of a lattice of discrete areas known as cells, and the solidification domain 

is mapped with a regular arrangement of cells as Figure 1.12 (a) shows [119]. The cells 

each store their state, which changes in discrete time-steps. For the solidification model, 

each CA cell has three possible phase types, the liquid, solid, and interface cell as Figure 
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1.12 (b) shows. The state of a cell at the next time-step is dependent on its current state 

and the current states of its immediate neighbors. 

 

 

 

Figure 1.12 (a) Arrangement of CA cells in calculation domain; and (b) three possible 
phase types for each cell 

In the 2D case, three kinds of neighborhood configurations have been defined, 

including the Von Neumann, Moore, and uniform configurations as shown in Figure 1.13 

[120]. The Von Neumann neighbors are the four nearest cells located directly above, 

below, and to the left and right of the cell, while the Moore neighbors are the cells in all 

(a)

(b)
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eight directions, including the four nearest cells and four next-nearest cells. The uniform 

configuration is used for hexagonal lattices, and the uniform neighbors are the all six 

touching hexagonal cells. 

 

 

Figure 1.13 Three kinds of neighborhoods from left to right: Von Neumann, Moore, 
and uniform 

A set of rules is defined which determine the conditions upon which the cell will 

change its state as Figure 1.14 shows [121]. Initially a square representing nuclei to 

growth is put at the center of cell, and this cell is defined to be interface cell. The length, 

 ௔, determining the growth velocity, depends on the changing of solid fraction. If theܮ

corner of this square reaches a neighbor cell, the neighbor cell is changed to be an 

interface cell. A new solid square is generated in the interface cell, and the center of the 

square is set at the corner of the original square; the new square, representing new nuclei, 

starts to grow. After the original square has changed the neighboring cells into interface 

cells, the original cell continues to grow. If the fraction of solid in the original cell 

becomes unity, the state of the original cell becomes solid and changes any surrounding 

liquid cells into interface cells. 
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Figure 1.14 Schematic of CA transition rules to capture interface cells 

 

௔ܮ
௧ା∆௧ ൌ ௔ܮ

௧ ൅ ∆ ௦݂ · ܽ        (Eq.1.7) 

Where ∆ ௦݂ is the increasing of solid fraction, ܽ is the size of the cell, and ܮ௔ is the 

distance between the center and the side of the solid square. 

As just mentioned, the calculation domain is mapped with cells, and usually there 

are many grains in the domain, and each grain is described by different sets of cells as 

Figure 1.15(a) shows, but only those located at the boundary (i.e. in contact with liquid 

cells) being active for the calculation of the growth process as shown in Figure 1.15(b) 

[122]. The states of all cells are updated synchronously during each time-step, producing 

an overall change in the lattice. 
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Figure 1.15 (a) Dendrite being described with a set of cells; and (b) the only the cell at 
interface being active for growth calculation 

 

The CA method can treat arbitrary grain shapes, and it is also well adapted to 

describe the grain competition growth, morphology transition, and the merging between 

two arms. However, this method has the difficulties of the artificial anisotropy introduced 

by the CA mesh. 

(b)

(a)
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1.8 Previous solidification modeling with CA technique 

Many CA models were built to simulate the solidification of alloys [123-154]. 

Rappaz and Gandin [133, 134] developed a 2D probabilistic model to simulate the 

dendritic grain formation during solidification based on the CA technique. They coupled 

the CA algorithm and FE method to obtain the thermal field and the microstructure of an 

Al-Si alloy, but this work did not provide the details of the growing process of dendritic 

grain. Sanchez and Stefanescu [135] developed a dendrite growth model which proposed 

a solution for the artificial anisotropy, but the dendrite could grow only aligned with the 

mesh or in a 45-degree orientation. Then improved models [136, 137] were proposed by 

introducing a new virtual FT method, which was able to simulate dendrites growing in 

any preferential orientation. Zhu and Hong [138] developed a CA model to simulate the 

solidification microstructure of both eutectic and hypoeutectic Al-Si alloy and provided 

good insight into the eutectic nucleation and growth behaviors. They [122] also applied 

this model to simulate the evolution of dendritic structures in competitive growth of 

columnar dendrites in the directional solidification of alloys and metal mold casting. 

Wang and Nakagawa et al. [121, 130] developed the dendrite growth models using a 

modified FT technique with new growth algorithm to capture the solid/liquid interface 

cell, thus to simulate the dendrite growth with consideration of preferential 

crystallographic orientation of a dendrite. 

Some articles [139-142] simulated the columnar-to-equiaxed transition (CET) 

during the directional solidification of alloys by a solute diffusion controlled dendritic 

solidification model with coupled CA technique-FD or FE methods. 

Later, a CA model which considered the influence of fluid flow on the dendrite 

growth was also developed [143-145] with constant and uniform inlet flow velocity 
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imposed on one side to discuss the growth features under convection, finding that the tip 

growth velocity increased in the upstream direction with an increase of the inlet flow 

velocity. Mullis [146] built a model to evaluate the effect of fluid flow orthogonal to the 

principal growth direction on the dendritic growth, finding that such a flow caused 

rotation of the tip due to thermal/solutal advection. 

In addition to these 2D simulations, several 3D models [121, 147-154] were also 

reported, which combined the CA and FE methods to simulate the dendritic growth in 

binary alloys controlled by solute diffusion. Chang et al. [151] developed a 3D 

solidification model to simulate the dendritic grain structures of gas atomized droplets in 

a non-uniform temperature field on the basis on combined CA technique and the FV heat 

flow calculation. Gandin et al. [152] proposed a 3D model coupled CA and FE model to 

calculate the final grain structure for super alloy precision castings. Zhu et al. [153] 

developed a three dimensional CA model to calculate the microstructures evolution with 

competitive dendritic growth in the practical solidification of alloys casting. Lee et al. 

[154] built a 3D multiscale model coupled CA technique for microscale component 

diffusion with FE method for macroscale heat transfer to simulate the grain growth and 

microstructure evolution and thus predicted the microporosity and microsegregation. 

1.9 Research objectives and dissertation structure 

Dendrite growth is the primary form of crystal growth observed in the laser 

deposition process. The properties of metallic alloys strongly depend on their 

microstructure. Understanding and controlling the dendrite growth is vital in order to 

predict and achieve the desired microstructure and hence the mechanical properties of the 

laser deposition metals. So the objective of this work is to develop a solidification model, 
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which couples the FE method and CA technique to predict the dendrite growth in the 

molten pool during the LENS process. For this research: 

Chapter II presents model development for the calculation of the temperature 

distribution during deposition of multiple layers of AISI410. The calculation results with 

this 2D model are analyzed and compared with those by the 3D model developed by 

Wang et al. [28]. 

Chapter III presents the macro-solidification model development to understand 

the heat/mass transfer and fluid flow during the LENS deposition of stainless steel 

AISI410. Simulation results on fluid flow with buoyancy forces are compared to those 

with considering the surface tension caused by temperature gradient. 

Chapter IV presents the simulation on solidification microstructure evolution 

during the LENS process with deposition of a single layer of Fe-0.13wt%C. DAS and 

dendrite morphology are predicted, and the influence of LENS process parameters on the 

dendrite growth is also discussed. 

Chapter V presents the modeling of dendritic growth for binary Mg-8.9wt%Al 

alloys with HCP structure during the solidification. Hexagonal shape mesh is generated, 

and the simulation dendrite morphology is predicted with perfect six-fold symmetry. The 

impact factors on dendrite morphology, including cooling rate, undercooling, surface 

tension, and anisotropy coefficient are discussed. 

Chapter VI presents 2D lattice Boltzmann (LB)-CA model to simulate the 

temperature field, solute concentration, fluid flow, and dendrite growth. LB method is 

adopted to simulate the solute distribution and fluid flow, and CA is used to predict the 

dendrite growth. 
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Chapter VII summarizes the results of the work performed in this research, and 

recommendations for future research are also presented. 
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CHAPTER II 

TWO-DIMENSIONAL THERMAL MODEL FOR LENS PROCESS 

2.1 Introduction  

It is critical to understand the local thermal cycles and temperature history since it 

partly determines the final microstructure and thus the mechanical properties of the 

LENS components. Many experiments and simulations (including 2D and 3D models) 

have been done to characterize the thermal behavior during LENS deposition. But no 

work has been done to compare the results from 2D and 3D models. 

As with most 3D models, the computational time greatly exceeds that of 

equivalent 2D models. This is even so when only simple heat conduction is being 

calculated. The computational cost of a 3D model becomes impractical when more 

complex phenomena of interest are simulated, like solidification, segregation, porosity, 

molten pool convection, solid phase transformations, strain and stresses, and others. The 

single-wall build, in which a thin plate is deposited layer by layer, is the geometry of 

choice to study the LENS process because of its relative simplicity for modeling and 

experimental trials. The fact that both 2D and 3D models have been used in the literature 

to simulate this simple geometry indicates that it is not clear whether a 2D model can 

capture the thermal phenomena of interest. The situation has not been analyzed and, 

when in doubt, authors resort to 3D modeling at the expense of analysis time and 

simplified physics. Because the thermal history is the key to predict microstructure and 

mechanical response, the determination of the conditions under which a 2D model can be 
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used to calculate the temperature field with acceptable accuracy would be very useful to 

undertake combined numerical/experimental studies of the LENS process that go beyond 

thermal-only aspects. 

In this chapter, a 2D FE model is developed to calculate the temperature 

distribution during deposition of multiple layers of AISI410. The thermal characteristics 

and molten pool size predicted with this 2D model is then compared with those calculated 

with the 3D model developed by Wang et al. [28] and with experimental data. The 

experimental data of temperature/coolingrate need compensation to obtain the correct 

thermal results; however, the cooingrate was obtained by consecutive temperature at 

curtain time interval in the simulation. The conditions under which the 2D simulations 

produce acceptable results are identified, as well as the cases in which 3D effects cannot 

be captured by the 2D model. The influence of the idle time between the depositions of 

consecutive layers of material and of substrate size on the thermal cycle/history is also 

illustrated. 

2.2 Two dimensional FE model 

2.2.1 Model description 

A 2D FE model is developed to simulate the transient temperature field during the 

deposition of ten consecutive layers of a single-wall plate of AISI410. The schematic of 

the geometry is shown in Figure 2.1(a). A fixed FE mesh is constructed for the substrate 

and the ten layers of the plate. A uniform layer thickness is used whose value is set 

consistently with the powder deposition rate and the travel speed of the laser/nozzle head. 

Initially, the substrate is at room temperature, and the layer elements are inactive. When a 

new layer is being deposited, the elements of that layer are activated and they remain 
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active for the rest of the simulation. The initial temperature for the new layer being 

deposited is above the melting temperature, and which means the injecting melt powder 

is supposed to be totally melted. The boundary conditions (Figure 2.1(b)) include 

convection heat loss on the top and sides, a prescribed temperature at the bottom of the 

substrate, and convection/radiation on the top plus a heat flux due to the incident laser 

power. The boundary conditions are updated dynamically as layers are activated and new 

sections of the boundary become active. After finishing depositing one layer and before 

beginning depositing the next layer, there is a time interval called the idle time, during 

which the laser/nozzle head is returned to the left end of the plate, so that all layers are 

deposited from left to right. During the idle time, the laser and powder injection are 

turned off and the corresponding heat flux boundary condition is inactive. 

 

 

Figure 2.1 (a) Sketch of element activation to illustrate the laser powder deposition 
with multi-passes, (b) schematic of the model showing the boundary 
conditions used for the temperature calculation, (c) 3D model of Ref. [28] 

(a)
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Figure 2.1 (Continued) 

 

In order to compare the results of the 2D model with those from the 3D model by 

Wang et al. [28], the same material properties and process parameters are employed. The 

plate is built by depositing 10 layers of material, each with a length of 10.0mm and a 

height of 0.5mm, on top of a substrate with dimensions 5.0mm high and 10.0mm long. 

(b)

(c)



 

40 

For comparison purposes, the geometry of the 3D model of Ref. [28] is shown in Figure 

2.1(c). The travel speed of the laser beam is 7.62mm/s, and the laser beam moves from 

left to right for each layer deposition. AISI410 was used for both the deposited plate 

layers and the substrate. The thermal properties of AISI410 used in this model are 

presented in Table A.1 in Appendix A. 

2.2.2 Heat transfer equation 

The 2D transient equation of heat conduction describing the heat transfer within 

the plate during the LENS process is: 

 
డ்

డ௧
ൌ ߙ · ቀడమ்

డ௫మ ൅ డమ்

డ௬మቁ െ ௅

஼೛

డ௙೗

డ௧
           (Eq.2.1) 

Where ܶ is temperature, ݐ is time, ݔ and ݕ are the horizontal and vertical 

coordinates, respectively; ߙ is the thermal diffusivity, ܮ is the latent heat of melting, ܥ௣ is 

the specific heat, and ௟݂ is the fraction of liquid, approximated as ௟݂ ൌ

ሺܶ െ ௦ܶሻ ሺ ௟ܶ െ ௦ܶሻ⁄ , where ௟ܶ is the liquidus temperature and ௦ܶ is the solidus temperature 

of the alloy.  

2.2.3 Initial and boundary conditions 

The boundary conditions are shown in Figure 2.1(b).  A forced boundary 

condition is prescribed on bottom of the substrate: 

 
ܶሺݔ, ,ݕ ሻ|௬ୀ଴ݐ ൌ ௔ܶ        (Eq.2.2) 

Where ௔ܶ is the ambient temperature around the part, and in this work it was 

considered to be equal to the room temperature. The initial temperature of the substrate is 

also assumed at room temperature: 
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ܶሺݔ, ,ݕ ሻ|௧ୀ଴ݐ ൌ ௔ܶ ݕ ൑  (Eq.2.3)       ܪ

The initial condition of the newly deposited material for each layer is set equal to 

the melting temperature: 

 
ܶሺݔ, ,ݕ ሻ|௧ୀ଴ݐ ൌ ௔ܶ  ݕ ൐  (Eq.2.4)        ܪ

The boundary condition on the section of the top layer under the laser beam is 

[28]: 

 

െߣ · డ்

డ௬
ൌ ݄ሺܶ െ ௔ܶሻ ൅ ሺܶସߪߝ െ ௪ܶ

ସሻ െ ܳ௥                                          (Eq.2.5) 

Where ݇ is the thermal conductivity, ݄ is the convective heat transfer coefficient, 

 5.6710-8 = ߪ] the Stefan-Boltzmann constant ߪ ,the emissivity of the part surface ߝ

W/m2K4], and ௪ܶ the temperature of the internal wall of the glove box (taken equal to ௔ܶ 

in this work). In Eq.2.5, ܳ௥ is a distributed heat source with a Gaussian profile: 

 

ܳ௥ ൌ ଴ܣ · expሺ‐ ଶሺ௫ି௫బሻమ

௪బ
మ ሻ                                                              (Eq.2.6) 

Where ܣ଴ ൌ െ ሺ2ܽ௘ ௟ܲሻ ሺ√2ݓߨ଴ሻ⁄  being ܽ௘ is the effective absorption of the laser 

beam energy, ௟ܲ the laser beam power, ݓ଴ the beam radius, and ݔ଴ the ݔ coordinate of the 

laser-beam axis. Because ܽ௘ and ݓ଴ are constants, in this model, different ܳ௥ was 

obtained by changing ܣ଴. 

The boundary condition for the new elements of the top surface, other than the 

elements beneath the laser beam, considers only the effects of convection and radiation 

heat loss: 

 

െߣ డ்

డ௬
ൌ ݄ሺܶ െ ௔ܶሻ ൅ ሺܶସߪߝ െ ௪ܶ

ସሻ     (Eq.2.7) 
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For the two vertical sides, heat loss due to heat convection is assumed: 

 

െߣ డ்

డ௫
ൌ ݄ሺܶ െ ௔ܶሻ ݔ ൌ  (Eq.2.8a)      ܮ

 

൅ߣ డ்

డ௫
ൌ ݄ሺܶ െ ௔ܶሻ ݔ ൌ 0      (Eq.2.8b) 

Where ܮ is the width of the plate. Because of the limitation of 2D modeling, it is 

not possible to establish a direct correlation between the actual 3D absorbed power 

distribution and the idealized 2D power profile used in this work. Ye et al. [155] 

investigated the thermal behavior in the LENS process with the FE method. In their work, 

the temperatures of the nodes where the laser beam focused on were set as the melting 

point temperatures, thus the laser power did not actually play a role. In this study, the 

coefficient ܣ଴ is determined by matching the maximum calculation temperature in the 

molten pool with the measured value reported by Hofmeister et al. [16]. By using a 2D 

model, it is also assumed that there is no significant heat loss through the front and back 

surface of the part. The time evolution of the isotherms is calculated as the laser beam 

travels across the top surface of the part and layers are deposited. The model dynamically 

updates the thermal boundary conditions with laser position and newly added layers; 

hence it is able to calculate temperature profiles both far of and near the side edges of the 

plate. 

2.3 Results and discussions 

In lack of available experimental data with AISI410, I use the experiments of 

Hofmeister et al. [16] for correlation purposes. In these experiments, ultra high speed 

digital imaging techniques were employed to analyze the image of the molten pool and 

the temperature gradient on the surface surrounding the molten pool in AISI316 samples 
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fabricated using LENS. AISI316 and AISI410 have similar thermal properties and in my 

calculations, I use computational process parameters that approximated the conditions of 

Hofmeister’s experiments. To compare the 2D model with the Hofmeister’s 

measurements, a first calculation is performed for the deposition of the top layer (the 10th 

layer), using the experimental temperature data as initial condition for the previously 

built layers. 

Figure 2.2 shows the temperature contours when the laser beam is at the center of 

the top layer. The travel speed of the laser beam is 7.62mm/s. It is observed that the 

temperature profiles predicted by the 2D model and the 3D model of Ref. [28] are very 

similar. The size of the molten pool predicted by the 2D model (Figure 2.2(b)) is a 

slightly larger than the one predicted by the 3D model (Figure 2.2(a)) because the heat 

loss along the z direction is not considered in the 2D model. Figure 2.2(c) shows the 

profile of temperature and cooling rate from the center of the molten pool to a position 

4mm away opposite to the laser moving direction (indicated in Figures 2.2(a-b)). The 

temperature profile calculated by the 2D model qualitatively agrees with the experimental 

data of Ref. [16] and with the results calculated by the 3D model of Wang et al. [28]. 

However, the 2D model predicts two small kinks in the temperature and cooling rate 

curves which are missed by the 3D model, but are consistent with the trend shown in the 

experiment data. The location of these kinks corresponds to a very thin mushy zone 

surrounding the molten pool and consequent effect of the latent heat of fusion. The 3D 

model of Ref. [16], based on the commercial software SYSWELD, did not include latent 

heat effects and hence could not capture this trend. 
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Figure 2.2 Temperature distribution predicted by (a) the 2D model and (b) the 3D 
model. Molten pool is indicated by the 1450°C isotherm, (c) Comparison 
of calculated results by the 2D and 3D models and experimental data of 
Hofmeister et al. [16] 

(b)

(a)
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Figure 2.2 (Continued) 
 

In the next simulations, I compare the 2D and 3D models for multilayer 

deposition for three different travel speeds of the laser beam. In the 3D simulations of 

Ref. [28], the power program during the deposition of different layers was optimized to 

obtain a steady molten pool size. In order to reproduce this feature with a 2D model, the 

power coefficient ܣ଴ needs to be selected accordingly. For each travel speed, the power 

coefficient ܣ଴ is first determined by matching the maximum temperature in the mid-point 

of the first layer with the one calculated by the 3D model. For subsequent layers, I 

assume that ܣ଴ follows the same profile of the power curve of the 3D model, which was 

optimized for steady pool size. The ܣ଴ – curves for different travel speeds as a function 

of layer number are shown in Figure 2.3(a). As explained in Ref. [28], in order to 

maintain the same pool size from layer to layer, the applied power must decrease as 

layers are deposited in order to compensate for the heating of the part and less heat loss to 

the substrate. The corresponding temperature profiles along the plate centerline, 

(c) 
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calculated with the 2D and the 3D models, are indicated for three different travel speeds 

in Figure 2.3(b), at the time when the 10th layer has been deposited. Higher speeds 

correspond with higher temperature because less time is available for the layers to cool 

down between laser scans. In Figure 2.3(b), I can observe the consequence of having 

used the same power profile of the 3D part in the 2D calculation. Because the heat loss in 

the z-direction is not considered in the 2D model (and particularly, the heat loss from a 

3D substrate), the temperature of the lower portion of the part becomes hotter as layers 

are deposited, in comparison with the 3D plate. At the end of the deposition of the 10th 

layer, the bottom temperature of the 2D plate has increased to 600°C, while the 3D part 

remained at 200°C.  For the upper layers, the temperature is more sensitive to travel 

speed, but the temperature difference between the 2D and 3D parts becomes less 

pronounced as the dissipation of the substrate is less dominant. 

 

 

Figure 2.3 (a) Profiles of the ܣ଴ power coefficient of 2D model. (b) Temperature 
profiles calculated by the 2D and 3D models along the plate centerline for 
various scanning speeds of the laser beam 

(a) 
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Figure 2.3 (Continued) 
 

Figures 2.4(a) and (b) show the temperature contours in and around the molten 

pool for layers number 2, 4, 6, 8, and 10, predicted by the 2D and 3D models, when the 

laser is at the mid-point of the layer. The laser travel speed is 7.62mm/s. The molten pool 

size of the 10th layer is very similar to that predicted by Wang et al. [28]. The discrepancy 

in pool size between the 2D and 3D model increases as it moves down closer to the 

substrate, as expected from the thermal profiles observed in Figure 2.3. 

Figure 2.4(c) shows the thermal cycles at the mid-points of deposited layers 1, 3, 

5, and 10 for the 2D model. Figure 2.4(d), extracted from Ref. [28], shows the same 

cycles calculated with the 3D model. The temperature of each layer reaches a peak every 

time the laser goes over the mid-point of the plate, and then decreases to a minimum 

value before the laser starts scanning a new layer (the idle time between layers also 

affects the minimum temperature). The calculated thermal cycles look similar for the 2D 

(b) 
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and 3D models, with the discrepancies already observed in Figure 2.3, which show higher 

temperature for the lower layers of the 2D model at the end of the deposition because of 

the extra heat loss by the 3D substrate. Note also that the cooling part of the cycle curves 

in the 2D model shows the effect of latent heat, which is missed by the 3D model. 

 

 

 

Figure 2.4 Temperature distribution when the laser beam is at the center of layers 2, 4, 
6, 8 and 10 calculated by the (a) 2D and (b) 3D models; molten pool is 
indicated by the 1450°C isotherm. Temperature cycles at the mid-points of 
layers 1, 3, 5 and 10 as ten layers are deposited for the (c) 2D and (d) 3D 
models. V=7.62mm/s. In (d), Ms is the martensite start temperature 
(350°C). 

(b)

(a)
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Figure 2.4 (Continued) 
 

A comparison of the temperature contours predicted by the 2D and 3D models is 

shown in Figure 2.5 for the two other values of travel speed, 2.5mm/s and 20 mm/s, when 

the laser is at the mid-point of the 10th layer. It is observed that the molten pool size in 

this layer is very similar for both 2D and 3D calculations, but the 2D substrate is hotter 

than the 3D one, the difference being more pronounced for higher travel speed. The 

elongation effect of the pool for higher speed is similarly captured by the 2D and 3D 

models. 

 

(c) 

(d) 
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Figure 2.5 Temperature distribution when the laser beam is at the center of the 10th 
layer as predicted by the (a) 2D model and (b) 3D model for V=2.50mm/s 
and by the (c) 2D model and (d) 3D model for V=20.0mm/s 

 

(b)

(a)
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Figure 2.5 (Continued) 

 

Figure 2.6 illustrates the influence of the idle time elapsed between finishing 

depositing one layer and starting the next layer. Figure 2.6(a) shows the temperature 

(d)

(c)
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profile along the plate centerline after the 10th layer has been deposited. It is observed 

that the idle time does not change the shape of the profiles, but only displaces the curves 

toward lower temperature for longer idle time. The thermal cycles for the case of an idle 

time of 4.4s are shown in Figure 2.6(b). This figure should be compared with Figure 

2.4(c), where the idle time was 0.82s. It can be seen that longer idle time allows the 

midpoint to cool down to a lower temperature, in particular, below the martensite start 

temperature (350°C). Hence, idle time can play an important role when trying to control 

the final microstructure. 

 

 
 

 

Figure 2.6 (a) Temperature along the plate centerline for four different idle times after 
the 10th layer is deposited. (b) Temperature cycles at the mid-points of 
layers 1, 3, 5 and 10 calculated with the 2D model as ten layers are 
deposited. Idle time is 4.4s, travel speed V=2.5mm/s. 

(a) 

(b) 
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The substrate size has an obvious influence on the thermal cycles of depositions. 

More heat is lost from a larger substrate, which causes a higher temperature gradient 

along the height of the plate and leads to a lower average temperature. Because of the 

restricted heat loss in a 2D substrate, increasing the height of the substrate will lead to the 

opposite results, i.e., a higher temperature in the part. This is contrary to the prediction of 

the 3D model and also opposes the results published by Costa et al. [24]. Actually, in 

order to approximate the effect of a larger 3D substrate, either the height of the 2D 

substrate has to be reduced or a lower temperature must be applied as boundary condition 

on the bottom of the 2D substrate. The first option is illustrated in Figure 2.7 for a travel 

speed of 7.62mm/s. Figure 2.7(a) shows the molten pool in different layers for a substrate 

height of 2mm. Note the smaller pool size compared with Figure 2.4(a), in which the 

substrate height is 5mm. The temperature profiles along the centerline of the plate are 

shown in Figure 2.7(b) for different substrate sizes. Observe that a smaller substrate size 

tends to better approximate the temperature profiles in Figure 2.3(b) calculated with the 

3D model. 
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Figure 2.7 (a) Molten pool size and shape when the laser beam moves to the center of 
the part for layers 2, 4, 6, 8 and 10, with a substrate height of 2mm. (b) 
Temperature along the plate centerline for four different substrate sizes. 

2.4 Conclusions 

A 2D FE model was developed to simulate the temperature history during 

multilayer deposition by the LENS process. The objective of the paper was to investigate 

(b) 

(a) 
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the applicability of a 2D model to capture thermal phenomena observed in experiments 

and previously simulated by commercial software. The deposition of a thin plate made of 

10 layers of AISI410 built over a substrate of the same material was analyzed. The 

temperature distribution, temperature history, molten pool size and shape, and cooling 

rates were calculated with both the 2D and 3D models, comparing the predicted results 

under variations of process parameters like laser travel speed, power program, substrate 

size and idle time. It was found that the 2D model can reasonably reproduce the results of 

the 3D model for most cases. However, care must be taken when analyzing the 

optimization of the power program for steady molten pool size, as well as the effect of 

changes in the substrate size. The higher heat loss produced by the 3D substrate leads to 

large discrepancies between the two models, particularly at the lower layers of the part. 

However, it is possible to design an equivalent 2D model that uses a shorter substrate and 

produces a thermal response of the part similar to the one observed in the 3D model. 

Because of the inherent savings in computational time of 2D simulations, more 

phenomena of interest could be added to a LENS model, like solidification, pool 

convection, segregation and porosity, while still keeping the computational costs at 

manageable levels. A validated equivalent 2D model can also constitute an improved 

alternative for online control of the process, which is currently based only on monitoring 

of the pool size. 

The work of this chapter was published in the Journal of Heat Transfer in 2008 

[156].
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CHAPTER III 

MARANGONI CONVECTION AND SOLIDIFICATION DURING LASER 

DEPOSITION OF AISI410 ALLOY 

3.1 Introduction 

In recent years there has been much progress in the understanding of heat transfer 

by both numerical simulation and non-contact temperature measurement techniques 

during the LENS process [22-24, 28, 50, 155, 157]. However, most of these works were 

mostly concerned with the heat transfer aspect of the process, while only some studies 

have been reported to gain insight into the fluid flow phenomena, particularly the flow 

pattern that occurs in the molten pool. Fortunately, the fluid flow and heat transfer in 

LENS processes share certain common features with laser welding or laser cladding 

processes. Therefore, the abundant literature available on these processes can provide 

useful information about the particular features of LENS fabrication. A number of 2D 

and 3D numerical models have been developed to understand fluid flow and heat transfer 

phenomena in welding processes with considering the Marangoni effect, finding that 

Marangoni flow plays an important role in the heat transfer in the laser welding. 

In this chapter, a transient FE solidification model is used to understand the 

heat/mass transfer and fluid flow during the LENS deposition of AISI410. Surface 

tension and buoyancy forces are considered for the calculation of transient liquid pool 

convection. The calculated molten pool dimensions, flow pattern and the profiles of 

temperature and velocity were compared for different moving speeds of the laser beam, 
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which helps to understand the significance of the various driving forces for the liquid 

pool convection. The results also reveal the importance of the laser moving speed in the 

calculation of the flow field in molten pool. In addition, solute transport during 

solidification is also calculated, revealing the macrosegregation profiles left by the 

deposition process. 

3.2 Numerical model 

3.2.1 Mathematical formulation 

A 2D FE model is used to simulate solidification in a molten pool under a moving 

heat source, as shown in Figure 3.1. Several assumptions are made in the model as 

follows [45]: a) The top surface of the liquid pool can be assumed to be flat; b) The liquid 

metal is considered an incompressible Newtonian fluid; c) The properties are taken to be 

different for solid and liquid phases; d) Laser power distributed in a Gaussian manner is 

applied at the top surface; e) The solid and liquid phases are considered as a continuum 

medium, and the velocity of the solid phase is zero. 

 

 

Figure 3.1 Schematic diagram of calculation domain for fluid flow simulation in the 
molten pool during LENS process 
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3.2.2 Momentum conservation 

With the foregoing simplifications, the equations of continuity and momentum 

can be written as follows [158]: 
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Where the subscript ݅ refers to the ݔ or ݕ directions, ׏ is the gradient operator,  ݑ 

is the superficial velocity, ௟݂ is the liquid fraction, ݐ is time, ߩ is density, ݌ is pressure, ߤ 

is viscosity, ߚ is the thermal expansion coefficient, ܭ௜ is the permeability in the ݔ or ݕ 

direction, and ݃௜ is the magnitude of gravity in the ݔ or ݕ direction. 

3.2.3 Mass conservation 
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3.2.4 Energy equation 
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 (Eq.3.3) 

Where ܶ is temperature, ߩ௦ഥ  is density of solid, ܿ௟ and ܿ௦ are solute concentration 

in liquid and solid, respectively, ߙ is the thermal diffusivity, and ܶு is the temperature at 

which the latent heat ܮ is given. 

3.2.5 Conservation of solute components 

It is assumed that the diffusion of each alloy element in the liquid is simply 

Fickian, and an equation of solute conservation can be written independently for each one 

of the alloy solutes. The diffusion in the solid phase is neglected, and each solute has a 

conservation equation in the liquid: 
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Where ܥఫതതത is the mixture concentration of solute ݆ in solid and liquid and ܦ௝ is the 

diffusivity of solute ݆. 

3.2.6 Initial and boundary conditions 

The calculation domain is assumed to be initially at uniform temperature: 

 
ܶሺݔ, ,ݕ 0ሻ ൌ ଴ܶ        (Eq.3.5) 

On the top surface the heat boundary condition is: 
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           (Eq.3.6) 

Where ܣ଴ ൌ െ ሺ2ܽ௘ ௟ܲሻ ሺ√2ݓߨ଴ሻ⁄  being ܽ௘ the effective absorption of the laser 

beam energy, ௟ܲ the laser beam power, ݓ଴ the beam radius, and ݔ଴ the ݔ coordinate of the 

laser-beam axis. In addition, ݄ is the convective heat transfer coefficient, ௔ܶ is the 

environment temperature, ߪ is the Stefan-Boltzmann constant [5.67 = ߪ10-8W/m2K4], ߝ 

is the emissivity of the part surface, ߣ is the thermal conductivity, and ௪ܶ is the 

temperature of the internal wall of the glove box (taken equal to ௔ܶ in this work). 

 
ܶሺݔ, 0, ሻݐ ൌ ଴ܶ                   (Eq.3.7) 

On the lateral surfaces of the model, the heat boundary condition is: 
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3.2.7 The flow boundary condition 

At the surface of the weld pool, the Marangoni effect is incorporated by relating 

the shear stress to the spatial gradient of surface tension as follows: 

 

െߤ డ௨

డ௭
ൌ డఊ

డ்

డ்

డ௫
         (Eq.3.9) 

Where ߲ߛ ߲ܶ⁄  is the temperature coefficient of the surface tension. In this 

research, the surface tension as a function of temperature is specified as a model 

parameter, namely the surface tension coefficient. It is important to note that the 

curvature effects are neglected as a flat weld pool surface is assumed. 

3.3 Simulation results 

The physical properties of the AISI410 alloy used in the simulations are given in 

Table A.1 in Appendix A. The thermal properties are the same used in thermal analysis 

of Refs. [28,159], while the phase diagram information was calculated with Thermo-Calc 

software. 

Figure 3.2(a) shows temperature profiles along the depth direction obtained by 

experiments and a 3D heat conduction model as described in Ref. [159]. The temperature 

calculated by the 3D model is comparatively higher than the measured data because the 

model considered only heat conduction and did not account for the additional heat 

transfer produced by Marangoni convection. Figure 3.2(b) shows the temperature profiles 

obtained with the current model under the same process parameters, with and without 

consideration of Marangoni convection in the molten pool. 
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Figure 3.2 Temperature profiles along the depth direction. (a) Experiment and 3D heat 
conduction model of Ref. [159]. (b) Temperature profiles along the depth 
direction obtained by 2D model 

The scales of temperature of Figures 3.2(a) and (b) are not directly comparable 

because the results of Figure 3.2(b) were obtained with a 2D model, which results in a 

higher power density. However, it is clear from Figure 3.2(b) that the effect of ignoring 

(a) 

(b) 
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Marangoni convection is to over-predict the temperature by approximately 60°C, in good 

agreement with the experimental observation in Figure 3.2(a). 

Figure 3.3 shows the velocity field in molten pool with (Marangoni convection in 

Figure 3.3(a)) and without (Natural convection in Figure 3.3(b)) consideration of surface 

tension at the moving speed of 4mm/s. The melt steel rises from the pool bottom to the 

pool surface. It continues to flow outward from where (the right of center of the pool 

surface) the temperature is higher and the surface tension lower (for Marangoni 

convection) or the density lower (for natural convection), toward the edge of the pool 

surface, where the temperature is lower and the surface tension higher (for Marangoni 

convection) or the density higher (for natural convection). It goes on to sink along the 

container wall and returns to the pool bottom to start all over again. There are two 

asymmetric flow loops in the pool. The one on the right is clockwise and the one on the 

left is counterclockwise. The flow vertex centers are closer to the surface with the 

consideration of Marangoni effect than with natural convection. 

 

 

Figure 3.3 Velocity field with (a) Marangoni convection and (b) Natural convection at 
the moving speed of 4mm/s with high laser power 
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Calculation is performed at the same moving speed of laser speed, but decreasing 

the laser power input (energy of laser beam), aiming to get a smaller geometry size of 

molten pool comparing to that shown in Figure 3.3. Figure 3.4 shows the velocity and 

fluid flow pattern. While considering the Marangoni effect, the surface tension makes the 

pool obviously appear two flow loops even in much smaller pool size. If the calculation is 

carried out only with natural convection, it is easily and interestingly to be seen that the 

right vertex in the molten pool is too close to the pool surface and nearly disappears. So, 

it can be concluded that the flow pattern in molten pool is affected by pool size. 

 

 

Figure 3.4 Velocity field with (a) Marangoni convection and (b) Natural convection at 
the moving speed of 4mm/s with low laser power 

Figure 3.5(a) and (b) respectively show the velocity fields for Marangoni 

convection and natural convection with the moving speed of 16mm/s. There is only one 

loop in the liquid pool with its center far from the pool surface and the right loop 

disappears when just considering the natural convection as shown in the figure. However, 
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there still exist two loops although the right one is small if considering the effect of 

surface tension in the calculation 

 

 

Figure 3.5 Velocity field with (a) Marangoni convection and (b) Natural convection at 
the moving speed of 16mm/s with high laser power 

As shown in the three Figures 3.3-3.5, it is clearly seen that there are two flow 

loops (if have) which are asymmetric because of the movement of laser beam, and the 

centers of the flow loops are closer to the pool surface with the effect of Marangoni than 

that without the effect of Marangoni. By comparing the results of marangoni and natural 

convections, these three figures have another obvious common: the pool has a wider size 

with the consideration of Marangoni effect. Also, the flow pattern in molten pool is 

affected not only by pool size also by moving speed of laser beam. So the convection in 

these pools is dominated by Marangoni convection in each case. 

Figure 3.6(a) shows the temperature profiles along the pool surface for a laser 

travel speed of 4mm/s calculated under different assumptions of heat transfer 

mechanisms. The flow of molten steel from locations of higher temperature to lower 

temperature makes the peak temperature decrease in comparison with the pure 

conduction case, while increasing the temperature at the periphery of the pool. For this 
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value of the laser travel speed (4mm/s) the maximum temperature in the surface of the 

pool calculated with heat-conduction-only model exceeds the one calculated with the 

Marangoni model by approximately 100°C. As expected, the temperature profiles 

corresponding to natural convection and heat conduction are almost identical because of 

the weak buoyancy flow in the small molten pool. It is also observed that the molten pool 

becomes wider with the Marangoni effect. It indicates that the Marangoni flow plays an 

important role in transferring the heat from the center of the laser beam to the molten 

pool boundary. A similar comparison of the temperature profiles is done in Figure 3.6(b) 

for a laser travel speed of 16mm/s. It is observed that in this case the temperature profiles 

are closer to each other, with peak temperatures differing by 50°C approximately. This is 

an interesting observation because it indicates that for large laser travel speeds, a 

conduction-only model may be good enough to simulate the thermal transport in the pool. 

Keep in mind that the laser power is another factor that affects the temperature profile 

and is not considered here; a large power will increase the size of the pool and may make 

again important the Marangoni effect, even for fast travel speeds. 
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Figure 3.6 Temperature profiles along the pool surface for laser travel speeds of (a) 
4mm/s and (b) 16mm/s 

The solidification model can calculate the volume fraction of liquid and hence 

allow comparison of the size of the molten pool relative to the mushy zone, as shown in 

Figure 3.7. It is observed that, due to the very steep temperature gradients, the mushy 
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zone is extremely thin, only about 0.1 mm at the trailing edge and much thinner at the 

front. A fine mesh discretization is necessary in order to properly capture the 

solidification and transport phenomena in this region. 

The convection field in the pool is also shown in Figure 3.7. The liquid metal 

flows upward at the position where the laser beam impinges on the surface and then two 

recirculation cells form, a small one ahead of the laser beam and a larger one behind. 

Note the high magnitude of the velocity caused by the Marangoni convection, in 

agreement with previous reports [43, 45]. The velocity drops several orders of magnitude 

as the liquid enters the tip of the mushy zone, but it is evident that this intense convection 

field must have a strong influence in the solute mixing and dendrite growth, which in turn 

will affect the solidification microstructure. Because of the thin mushy zone and strong 

convection, a continuum-type model as used in this work is not adequate to investigate 

the interdendritic transport phenomena in more detail. This is an area for potential 

research using a microscopic model of dendrite growth under strong convection fields 

[19, 122]. 

 

 

Figure 3.7 Volume liquid fraction for laser moving speed of 8mm/s (Red: all liquid, 
Blue: all solid). Velocity vectors are shown in black 

Figures 3.8(a) and (b) show the profiles of temperature gradient along the x- and 

y- directions calculated for two laser travel speeds and with two different assumptions of 
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heat transfer: heat conduction and Marangoni convection. It is observed that the 

Marangoni convection affects mostly the x-component of the gradient when compared to 

a pure conduction model. The y-component of the gradient is relatively insensitive to the 

Marangoni effect for both travel speeds, while the maximum x-component is over 

predicted by about 300°C/mm when a pure conduction model is used instead of a model 

including Marangoni convection. However, both models (pure-conduction and 

Marangoni) predict a doubling of the maximum y-gradient when increasing the travel 

speed from 4 to 16mm/s. This indicates that heat conduction in the y-direction (i.e., depth 

direction) is dominated by heat conduction, while Marangoni convection affects mainly 

the heat transport in the x- (horizontal) direction. 

 

 

Figure 3.8 (a) x- component and (b) y-component of temperature gradient profiles 
along the pool surface for laser speeds of 4mm/s and 16mm/s 
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Figure 3.8 (Continued) 

 

The simulation results shown in Figure 3.9 give an idea of the sensitivity of the 

velocity profiles along the molten pool surface to the magnitude of the surface tension 

coefficient (Eq.3.9). The value of the surface tension gradient used in the previous 

calculations is -0.0004N/(m K) (Table A.1 in Appendix A). It is observed that doubling 

the value of the surface tension coefficient approximately doubles the peak velocity in the 

pool, although the shape of the velocity profile stays basically the same. Note the strong 

intensity of the velocity, which is consistent with other observations reported in the 

literature [43, 45]. The case of zero surface tension gradient corresponds to natural 

convection; for this case the maximum velocity is about 10-3m/s and does not show in the 

plot. 
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Figure 3.9 The velocity profile on the pool surface for different surface tension 
coefficients 

The model developed in this work is able to calculate solute redistribution during 

solidification due to solute partitioning and diffusion/convection transport. To our 

knowledge, this is the first calculation of this type reported for the LENS process. The 

liquidus temperature of AISI410 and the partition ratios for C, Si, Mn, and Cr are 

calculated using the commercial software ThermoCalc. The initial solute concentrations 

for each element in AISI410 are indicated in Table 3.1. 

Table 3.1 Chemical composition of AISI410 used in the simulations, wt % 

C Si Mn Cr 
0.13 0.35 0.46 12.0 

 

Figure 3.10 shows the solute concentration field of C, Si, Mn, and Cr in the melt 

pool and surrounding area during deposition. The mushy zone has been indicated by two 

black lines corresponding to the liquidus and solidus isotherms. In this simulation the 
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laser travel speed is 2.5mm/s, hence a wider mushy zone is obtained than the one 

observed in Figure 3.7. Although the color scale has been amplified to detect slight 

variations of concentration, it is observed that no significant macrosegregation has 

occurred. This is attributed to the effective mixing produced by the strong Marangoni 

convection. 

 

 

Figure 3.10 Solute concentration fields at the moving speed of laser beam 2.5mm/s for 
(a) C, (b) Si, (c) Mn, and (d) Cr 

3.4 Discussion 

3.4.1 Relative importance of different driving forces 

The driving forces for the liquid flow in the weld pool considered in the model 

include the surface-tension and the buoyancy forces. The surface tension force, often 
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referred as the Marangoni force, arises because of the spatial variation of surface tension 

between the near-middle and the periphery of the pool resulting from the temperature 

gradient. The Marangoni number, ܯ௔, is used to describe the ratio of surface tension 

gradient force to viscous force, while the Grashof number, ܩ௥, describes the ratio of 

buoyancy force to viscous force.  Some works have reported the relative importance of 

different driving forces in the molten pool based on the ratio of surface tension force to 

buoyancy force [39,41], which for the parameters of our simulations yield: 
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Where ݃ is the gravitational acceleration, ߚ is the thermal expansion coefficient, 

Δܶ is the temperature difference between the peak pool temperature and the solidus 

temperature, and ܮ௕ is a characteristic length for the buoyancy force in the liquid pool 

which is approximated by one eighth of the pool radius. ܮோ is a characteristic length taken 

as the pool radius at the top surface of weld pool. Therefore, it can be expected that the 

liquid flow is mainly driven by Marangoni convection and to a much less extent by the 

buoyancy force, which is consistent with the results shown in Figures 3.3-3.5 and 3.9. 

3.4.2 Relative importance of conduction and convection 

In the weld pool, heat is transported by a combination of convection and 

conduction. The relative importance of convection and conduction in the overall transport 

of heat can be assessed from the value of the Peclet number, ௘ܲ, which for the parameters 

of our simulations yields: 

 

௘ܲ ൌ ௛௘௔௧೎೚೙ೡ೐೎೟೔೚೙

௛௘௔௧೎೚೙೏ೠ೎೟೔೚೙
ൌ ௨ఘ஼ು∆்

ሺఒ∆்ሻ ௅ೃ⁄
ൌ ோܮ௉ܥߩݑ ⁄ߣ ൌ  (Eq.3.11)           ݑ240
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Where ݑ is the velocity of the liquid metal in the pool. The Marangoni force 

causes a large horizontal velocity (~0.2m/s), particularly near the surface of the pool, 

hence it is expected that advection dominates heat transport in the x-direction, while in 

the vertical direction heat is transported mostly by conduction. This observation is also 

made from the analysis of the temperature gradient profiles in Figure 3.8. 

3.4.3 Order of magnitude of maximum velocity in the weld pool 

The convection in the pool results mainly from the surface tension force that is 

determined by the temperature gradient at the pool surface. The maximum velocity can 

be roughly estimated assuming that it occurs approximately halfway between the heat 

source axis and the weld pool edge [41, 160] 

 

௠ݑ
ଷ ଶ⁄ ൌ డఊ

డ்

డ்

డ௬
ሺ ௐభ మ⁄

଴.଺଺ସఘభ మ⁄ ఓభ మ⁄ ሻ       (Eq.3.12) 

Where ܹ is the width of the weld pool. According the above equation, the 

maximum velocity is approximately 0.9m/s, while the simulations give a maximum 

velocity of about 0.2m/s. The smaller simulated velocity is attributed to the shallow pool 

of the LENS process in comparison with the larger spot-welding pools for which Eq.3.12 

is usually applied. It should be mentioned that although velocities of this magnitude and 

higher have been reported in the literature, there exist wide discrepancies in the results 

obtained by various investigators. Experimental determination of the velocities and 

temperatures in the weld pool remains a major challenge in the field. 

3.5 Conclusions 

A comprehensive 2D solidification model, that included the calculation of fluid 

flow and macrosegregation, was developed to simulate the temperature, solute 
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redistribution, geometry and flow pattern in the molten pool during the LENS process of 

steel alloy AISI410. The velocity profile in the molten pool was affected not only by the 

moving speed of the laser beam but also by the pool geometry and size. Strong 

Marangoni convection dominated the liquid flow in the pool and increased the width of 

the pool. When surface tension effects were not important, the velocity due to natural 

convection was very small and the temperature profiles in the pool were indistinguishable 

of the pure conduction case. The effect of the Marangoni convection on the temperature 

profiles was also affected by the laser travel speed, producing changes in the temperature 

gradient.  Both the temperature coefficient of the surface tension and the laser travel 

speed affected the peak fluid velocity in the pool. For the material and process parameters 

analyzed, no significant macrosegregation was observed in the calculated solute profiles. 

The work of this chapter was pre-viewed and presented in the conference TMS in 

2008 [161].
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CHAPTER IV 

DENDRITE GROWTH SIMULATION DURING SOLIDIFICATION IN LENS 

PROCESS 

4.1 Introduction 

Many samples have been tested to prove the good mechanical properties obtained 

with LENS, like yield strength, ultimate strength and hardness for various kinds of alloys 

Some comparisons were made with the same deposition materials by LENS to other 

processing methods, and the results showed that the LENS parts had better mechanical 

properties due to the very fine microstructure produced by the high cooling rate.  

The microstructure, which is determined by the thermal history and also controls 

the mechanical properties, gained more and more attention, and many experiments have 

been done to analyze the microstructure, especially the grain size (DAS for columnar 

dendrite) and morphology. Experiments have proved that very fine microstructures were 

formed due to the high cooling rates and temperature gradients and studied the 

relationship between the cooling rate  (K/s) and DAS, , and these showed that a linear 

relationship exists between log  and log  [162]. A general relationship between  and 

SDAS (2, in m) was experimentally determined as 2 = 25-0.28 for AISI310 in laser 

welding [163]. Ghosh and Choi [68] deduced an equation which described the 

relationship between the DAS and the thermal behaviors, and based on the equation, the 

DAS was calculated to evaluate the microstructure. Very few papers [19, 100] were 

published on the numerical modeling of the microstructure evolution during the 
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solidification and solid-state phase transformation while cooling down to room 

temperature, with scarce or no details on the dendrite morphology and growth process. 

This chapter will focus on the microstructure evolution of the solidification 

process: DAS and dendrite morphology and the influence of LENS process parameters on 

the solidification. A 2D FE method coupled with a CA technique is developed to 

calculate the dendritic growth during the solidification in the molten pool during LENS 

deposition of a single layer of Fe-0.13wt%C binary alloy, and the thermal properties 

adopted in the calculation as listed in Table A.2 in Appendix A. The model solves the 

conservation equations of heat and mass transfer in order to calculate the temperature 

field, solute concentration, and the dendrite growth morphology. The relationship 

between the cooling rate and DAS, including PDAS and SDAS, is determined by 

evaluating the constants of the empirical expression of Ref. [163]. The effect of the 

moving speed of the laser beam, laser power, layer thickness, and substrate size on the 

grain growth is discussed. Dendrite morphologies at locations close to the top surface and 

close to the substrate are also compared. 

4.2 Model description 

The simulation of dendrite growth needs a much smaller scale (microns) than that 

of thermal modeling of LENS process; hence two spatial scales are used in the model – a 

macro scale for LENS heat transfer calculation and a micro scale for the simulation of 

dendrite growth. 

4.2.1 Calculation of solute distribution and nucleation 

The Chapter II gives the details of the thermal field simulation during LENS 

deposition. The calculation of the transient temperature field is performed in a 
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computational domain encompassing the molten pool and surrounding area as shown in 

Figure 4.1(a) with mesh as shown in Figure 4.1(c). A small square domain of 100m in 

side length (Figure 4.1(b)) is considered for the grain growth simulation. Each FE mesh 

in this small domain is refined into mm cells for the solute and CA calculations with 

mesh as shown in Figure 4.1(d). The temperature of each cell is obtained by interpolating 

the temperatures of the four nodes of the FE. At two different locations of the molten 

pool, top domain (next to the pool surface) and bottom domain (0.5 and 0.25mm below 

the pool surface for layer thickness of 0.5 and 0.25mm, respectively), the dendrite 

morphologies are studied. A comparison is also performed for dendrite growth resulting 

from deposition over a thin (1.5mm) and thick (5mm) substrate.  

 

 

Figure 4.1 (a) LENS calculation domain of thermal model with indicated molten pool 
at the top; (b) small square domains with side length of 100m (upper 
domain is close to top surface and bottom domain is one-layer-thickness 
from top surface; (c) magnification of small domain (upper/bottom 
domains) in (b) with FE mesh; (d) the cells network of each finite element 
as shown in (c) (example: element HIJK) for calculation of solute transfer 
and grain growth in the CA method. 
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Figure 4.1 (Continued) 
 

The solute conservation in solid and liquid phases is obtained by solving the 

governing equation for each phase separately, as shown below: 

 
డ௖೔

డ௧
ൌ ௜ܦ · ଶܿ௜׏ ൅ ܿ௜ · ሺ1 െ ݇ሻ డ௙ೞ

డ௧
      (Eq.4.1) 

Where ܿ is solute concentration, ܦ is solute diffusivity, the subscript ݅ indicates 

solid or liquid, ݇ is the partition coefficient, and ௦݂ is solid fraction. 

At the Solid/Liquid interface, the solute partition between liquid and solid is given 

by: 

 
ܿ௦

כ ൌ ݇ · ܿ௟
 (Eq.4.2)                    כ

Where ܿ௦
and ܿ௟ כ

 ,are interface solute concentrations in solid and liquid phases כ

respectively. A zero-flux boundary condition is applied to the cells located at the 

boundaries of the calculation domain. 

The interface curvature of a cell with solid fraction ௦݂ can be obtained by counting 

the nearest and second nearest neighboring cells [139]: 
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ܭ ൌ ଵ

௔
ሺ1 െ 2

௙ೞା∑ ௙ೞሺ௝ሻಿ
ೕసభ

ேୀଵ
ሻ          (Eq.4.3) 

Where ܽ is the length of the CA cell side, ܰ is the number of the nearest and 

second nearest neighboring cells, and ௦݂ሺ݆ሻ is the solid fraction of neighboring cells. 

The liquid concentration in interface cell is given by [121]: 

 

ܿ௟ ൌ ܿ௟
כ െ ଵି௙ೞ

ଶ
· ܽ ·  ௖           (Eq.4.4)ܩ

Where ܩ௖ is the concentration gradient in front of the solid/liquid interface, and 

the interface equilibrium composition (ܿ௟
 :is calculated by (כ

 

ܿ௟
כ ൌ ܿ଴ ൅

ିכ் ೗்
೐೜ା୻K

௠೗
            (Eq.4.5) 

Where ܿ଴is the initial solute concentration, ܶכis the interface equilibrium 

temperature calculated by Eq.2.1, ௟ܶ
௘௤ is the equilibrium liquidus temperature at the 

initial solute concentration, ݉௟ is the liquidus slope, Γ is the Gibbs-Thomson coefficient, 

and ܭ is the curvature of the S/L interface. 

A continuous Gaussian nucleation distribution, ݀݊ ݀ሺ∆ܶሻ⁄ , is used to describe the 

grain density increase(݀݊) with the increase of undercooling by ݀ሺ∆ܶሻ. The total density 

of nuclei, ݊ሺ∆ܶሻ, at a certain undercooling ∆ܶ, is given by [102, 133, 140, 164]: 

 

݊ሺ∆ܶሻ ൌ ே೘ೌೣ

√ଶగ∆ ഑்
׬ exp ቂെ

ሺ∆்ି∆்ಿሻమ

ଶሺ∆ ഑்ሻమ ቃ
∆்

଴ ݀ሺ∆ܶሻ    (Eq.4.6) 

Where ∆ ேܶ is the mean nucleation undercooling, ∆ ఙܶ is the standard deviation of 

undercooling, and ܰ௠௔௫ is the maximum nucleation density. 

For one time step, the undercooling increases by ߜሺ∆ܶሻ, so the density of nuclei 

increases by: 
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݊ߜ ൌ ݊൫∆ܶ ൅ ሺ∆ܶሻ൯ߜ െ ݊ሺ∆ܶሻ ൌ ே೘ೌೣ

√ଶగ∆ ഑்
׬ exp ቂെ

ሺ∆்ି∆்ಿሻమ

ଶሺ∆ ഑்ሻమ ቃ
∆்ାఋሺ∆்ሻ

∆் ݀ሺ∆ܶሻ 

 (Eq.4.7) 

The nucleation probability of each cell is given by: 

 
௡݌ ൌ ݊ߜ · ௖ܸ                   (Eq.4.8) 

Where ௖ܸ is the volume of a single cell. Nucleation will occur in the cell when the 

cell’s random number [0, 1] is less than ݌௡. 

4.2.2 The rules of capturing interface cells 

Each cell of the CA mesh has three possible states: solid, liquid, and interface 

(partially solidified). Figure 4.2 shows a sketch of the grain growth model, illustrated for 

the case of a cubic crystal material [121, 130]. Since a cubic crystal material grows 

following four preferred directions and has a four-fold symmetry, a square-shape solid 

seed is initially placed at the center of a cell and the seed is allowed to grow along its 

diagonals. Once the corners of the square seed reach any of the eight neighboring cells, 

the neighbor cell will be changed to an interface cell. A new square seed, having the same 

preferential crystallographic orientation as the original cell, is generated and placed at the 

center of the new interface cell. The new square seed starts to grow according to the 

change of the solid fraction in the new interface cell. After the original square has 

changed its neighboring cells into interface cells, the original cell continues to grow until 

its solid fraction becomes unity, after which the state of the original cell becomes solid 

and changes any surrounding liquid cells into interface cells. During the growth, the 

length of the diagonal (݀௦) of the seed is calculated based on the solid fraction ௦݂. 

 

݀௦ ൌ √2 · ௦݂ · ܽ                  (Eq.4.9) 
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Figure 4.2 Sketch of growth algorithm for cubic crystal material used in this model, 
with a nucleus set in the cell center with preferential orientation of ߠ to the 
x-axial. 

4.3 Simulation results 

4.3.1 Cooling rate and DAS 

The SDAS and PDAS for various cooling rates are determined by examining the 

simulated dendritic structure in this model. Figure 4.3(a) and (b) show the relationship 

between the cooling rates and the SDAS and PDAS, respectively, both of which indicate 

that the DAS (SDAS and PDAS) decreases with increasing cooling rates. The 

experimental relationship between the SDAS and cooling rate for AISI310 from Ref. 

[163] and the experiment data for Fe-Ni-Cr ternary alloys with 59 pct Fe by Electron-

Beam Surface melting from Ref. [165] are also plotted in Figure 4.3(a), showing a similar 

trend with the simulated curve and good agreement for low cooling rate. The 

experimental data, however, shows about 30% larger DAS than the calculation for higher 

cooling rate.  This may be due to the different composition contents of the alloy used in 
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this model and the experiments. By fitting the calculation data, a new equation describing 

the relationship between the cooling rate and SDAS for AISI310 is proposed as indicated 

in Figure 4.3(a). The simulated values of PDAS are significantly higher than the SDAS, 

reaching values as large as 20m for the lower cooling rates. Choi and Mazumder [166] 

developed a FE welding model to predict thermal history and PDAS and found that the 

average size of the PDAS was dependent upon the welding speed, varying between 7.5 

and 20m for columnar dendrites at a cooling rate of  around 400K/s for AISI304 

stainless steel, which is in good agreement with our results of Figure 4.3(b). The 

calculated values of PDAS is also supported by the measured data by Elmer et al. [165] 

as shown in Figure 4.3(b). 
 

 

Figure 4.3 (a) SDAS and (b) PDAS as a function of the cooling rate calculated in this 
model for alloy Fe-0.13%C and published experiments. 
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Figure 4.3 (Continued) 

4.3.2 Moving speed of laser beam and dendrite morphology 

A single layer of 0.25mm is deposited over a 5mm thick substrate. The laser 

power is set so that the depth of the molten pool is somewhat larger than 0.25mm in order 

to have an overlap with the substrate. In the calculation, in order to keep approximately a 

constant size of the molten pool for various moving speeds of the laser beam, a higher 

laser power must be used for faster laser speed, as determined in several experimental 

and modeling works [167-169, 90]. Figure 4.4(a-c) show the solidification microstructure 

in the small square domain located in the lower region of the molten pool (see Figure 

4.1(b)) for different travel speeds of the laser beam. The calculated cooling rate is also 

shown. The color bar scale on the right denotes solute concentration of Carbon in wt%. 

With the increase of the scanning speed, the dwell time of the heat source at each point of 

the track decreases; therefore, the solidification velocity and cooling rate increase. When 

the laser moving speed increases from 2 to 20mm/s, the cooling rate increases from 1050 

to 9000K/s with constant pool size. The figures clearly show the columnar-type dendritic 
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growth, with varied DAS depending on the cooling rate. It is easily seen that by 

increasing the scan speed of the laser beam both the PDAS and SDAS decrease. Due to 

the extremely high cooling rate and the narrow PDAS (less than 5m) at the laser moving 

speed of 20mm/s (Figure 4.4(c)), formation of secondary and terciary arms is not always 

possible, and an interesting dendrite-to-cellular transition is observed.  Previous 

experimental works [59, 69, 97] have confirmed that both a finer microstructure and a 

higher cooling rate were obtained by increasing the laser travel speed. Kobryn et al. [97] 

investigated the influence of laser speed on grain growth and found that the grain size 

decreased by increasing the laser scaning speed. Pal [170] observed that dendrites and 

cells coexisted in laser welded AISI316 with scanning speed of 15mm/s. Pan et al. [77] 

conducted laser deposition experiments with scanning speed of 50.2mm/s and observed 

the directional growth of cells within the center part of the molten pool. It must be noted 

that although the simulations of Figure 4.4 show an approximately constant molten pool 

size, this is achieved by adjusting the laser power. In actual depositions, the laser power 

is left constant and if the laser moving speed is increased, a smaller pool size will be 

obtained, which results in a higher cooling rate and smaller dendrite size. 
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Figure 4.4 Solidification microstructure when laser moving speed is (a) 2mm/s, (b) 
10mm/s, and (c) 20mm/s. Cooling rate (K/s) is also shown. Color bar 
denotes solute concentration of C (wt%). Note dendritic to cellular 
transition for the highest cooling rate (c). (d) microstructure of type 
AISI316 Laser welds, Power 1.2KW, Speed 15 mm/s. 200X[170]; (e) SEM 
micrograph of cells within the center part of the molten pool (50.2mm/s) 
[77]. 
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Figure 4.4 (Continued) 

(d) 
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Figure 4.4 (Continued) 

4.3.3 Layer thickness and dendrite morphology 

Figure 4.5(a) and (b) show the dendrite structure in the small square domain 

located in the lower region of the molten pool (see Figure 4.1(b)) for a laser moving 

speed of 10mm/s and layer thickness 0.25mm (Figure 4.5(a)) and 0.5mm (Figure 4.5(b)). 

When increasing the deposited layer from 0.25 to 0.5mm (larger amount of powder 

metal) for a single pass, the corresponding laser power is also increased, and thus a larger 

molten pool is formed. A thicker layer needs higher laser power, which results in more 

latent heat removed from the molten pool. This produces a lower cooling rate as indicated 

in Figure 4.5, which is in agreement with the experimental observations in Refs. 

[13,16,91]. It can be observed in Figure 4.5 that the dendrites have larger PDAS and 

SDAS with higher laser power and larger pool size because of the lower cooling rate 

obtained when a larger amount of powder (thicker layer) is deposited. With a high laser 

power, as well as a larger amount of molten material being added, the solidifying material 

is held at a higher temperature for a longer time, and therefore, the local temperature 

(e) 



 

88 

gradients are smaller. This allows the grains to have more time to grow. It is interesting to 

see from Figure 4.5(b) that not all grains grow with an aligned columnar structure. Owing 

to the high rate of solidification, the grain growth becomes unstable. The dendrite tips 

may split and continue growing in two directions or the side arms grow faster than the 

main arm does [105]. Several experiments have also shown that a finer dendrite structure 

is obtained for lower power levels [16,75,91]. Mazumder et al. [75] performed 

experiments in which they deposited two samples with different layers of thickness to 

determine the influence on the microstructure. It was observed that the dendrite structure 

was finer when depositing a thinner layer (0.25mm) in comparison with a thicker layer 

(1.37mm). 

 

 

Figure 4.5 Dendrite structure with deposition layer thickness of (a) 0.25mm and (b) 
0.5mm at a laser moving speed of 10mm/s. The color bar indicates solute 
concentration of C (wt%); Microstructure of LENS deposited H13 with (c) 
1.37mm and (d) 0.25mm layer thickness, showing a finer dendritic 
structure for thinner layer [75] 
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Figure 4.5 (Continued) 
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Figure 4.5 (Continued) 
 

In Figure 4.6, I compare the simulated PDAS obtained by the present model for a 

layer thickness of 0.25mm and 0.5mm (hollow circles in Figure 4.6) with the data from 

Ref. [75], showing a very good agreement with the measured data. Microstructure of 

LENS deposited H13 with 1.37 mm (Figure 4.5(c)) and 0.25mm (Figure 4.5(d)) layer 

thickness, showing a finer dendritic structure for thinner layer [75]. 
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Figure 4.6 PDAS vs. layer thickness calculated from this model for alloy Fe-
0.13wt%C and comparison with data for H13 from Ref. [75] 

The experiments of Hofmeister et al. [16] showed that the cooling rates were 

substantially higher at low power levels when the molten zone was small. They also 

examined the microstructure of LENS deposited AISI316 for different laser power, 

reported in Table 4.1, which clearly shows a finer structure for lower laser power. Sparks 

et al. [91] measured the grain size of H13 Tool steel for different laser power, as listed in 

Table 4.2, again confirming the finer microstructure when laser power is reduced. All the 

above experimental reports support the simulated results obtained by our model. It must 

be noted that if the layer thickness is increased and the laser power is left unchanged, as it 

would usually occur in actual depositions, a higher cooling rate and finer dendrites would 

be obtained due to the rapid quenching effect of a larger powder feed rate. 

Table 4.1 Laser power and grain mean intercept length [16] 

Laser Power (W) 410 345 275 200 165 115 
Mean intercept length (m) 8.68 8.55 7.12 6.46 4.63 3.25 

 



 

92 

Table 4.2 Laser power and mean grain size [91] 

Run order Power (W) Powder flow rate 
(grams/min) 

Grain size (m) 
mean stdev 

1 750 6 6.43 2.86 
4 1000 8 12.19 5.2 

 

4.3.4 Substrate size and dendrite morphology 

The effect of the size of the substrate on the microstructure is studied next by 

performing simulations of a single layer deposition on two substrates of thickness 5mm 

and 1.5mm. A laser speed of 5mm/s and a layer thickness of 0.5mm is used for both 

simulations. Figure 4.7 shows the simulated dendritic structures in the small square 

domain located in the lower region of the molten pool (see Figure 4.1(b)). It is observed 

that, as the substrate thickness decreases, more heat is extracted from the molten pool 

with higher temperture gradient because a constant temperature is set at the substrate 

bottom surface as boundary condition. Hence, a thin substrate results in higher cooling 

rate, which leads to fine dendrites with smaller PDAS and SDAS. These results agree 

with previous reports. Kobryn et al. [97] performed experiments to compare the grain 

width for thin and thick substrates, finding that grain width decreased for thinner 

substrates. They also concluded that this was due to a change in cooling rate produced by 

different substrate sizes. Hofmeister et al. [88] measured the microstructure at different 

locations for both AISI316 and H13 and observed that the mean intercept length was 

smaller at the initial layer than that at the layer 4mm above the substrate. The dendrites at 

the interface between the substrate and the molten pool was obtained by Pan et al. [77] 

with scanning speed of around 1.3mm/s. It can be said that a finer structure results from 

smaller substrates and that the preheat of the previous layers also exerts an influence on 

the microstructure evolution of the upper layers. Because of the high temperature 
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gradient in the pool, the dendrites grow along the heat flow direction; the preferred 

crystal orientation of different grains also has remarkable influence on the direction of the 

growing dendrites. 

 

 

Figure 4.7 Dendritic structures for scan speed of 5mm/s and substrate thickness of (a) 
5mm and (b) 1.5mm. Cooling rate is also shown. The color bar scale 
indicates solute concentration of C (wt%).(c) SEM micrograph of 
directionally solidified dendrites of copper alloy at the interface between 
the laser molten pool and the substrate (1.2-1.4mm/s) [77]. 
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Figure 4.7 (Continued) 

4.3.5 Dendrite morphology and temperature field at various locations 

In this section, a comparison of simulated dendritic structures is performed for the 

two small square domains depicted in Figure 4.1(b), which represent locations close to 

(c) 



 

95 

the surface and the bottom of the molten pool. A thin 1.5mm thick substrate is used for 

all the simulations in this section. Figure 4.8(a) and (b) show the dendrite structure and 

temperature field for the square domain located next to the pool surface (referred as “top 

domain”), while Figure 4.8(c) and (d) show the same variables for the square domain 

located at the bottom of the molten pool (referred as “bottom domain”). A laser moving 

speed of 5mm/s is used for both simulations. A similar calculation in the bottom domain 

for a laser speed of 10mm/s produces the results shown in Figure 4.8(e) and (f). 

Due to the nature of competitive dendrite growth for metals or alloys with cubic 

crystal structure, the developed columnar grains are oriented with the preferential 

direction <100>, being parallel to the direction of the highest temperature gradient. The 

growth of columnar grains occurs trying to follow the highest temperature gradient, while 

still maintaining their preferred direction, as observed in Figure 4.8. Some grains are 

stopped by other grains with preferential directions parallel to the highest temperature 

gradient direction. At the location close to the pool surface (“upper domain”), the highest 

temperature gradient is nearly along the laser movement direction (horizontal), as shown 

in Figure 4.8(b). At the bottom domain, with the combined effect of the laser beam 

moving direction and the heat conduction direction through the substrate, the maximum 

temperature gradient direction is nearly upright, as shown in Figure 4.8(d). When the 

speed of the laser beam increases to 10mm/s, the maximum temperature gradient 

direction moves closer toward the laser beam moving direction, as shown in Figure 

4.8(f). 
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Figure 4.8 (a) Dendrite morphology and (b) temperature field at the upper domain 
with laser speed 5mm/s. (c) Dendrite morphology and (d) temperature field 
at the bottom domain with laser speed 5mm/s. (e) Dendrite morphology 
and (f) temperature field at the bottom domain with laser speed 10mm/s. 
Color bars show solute concentration of C in wt% and temperature in K. 
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The above simulated results are consistent with previously reported experiments 

[73, 59] showing that the grain growth direction varies at different locations of deposited 

parts. Choi and Chang [73] reported a near horizontal columnar structure at the top 

surface with a layer thickness of 0.245mm, while in the bottom region the dendrites were 

usually perpendicular to the layer boundaries, i.e., along the direction of higher 

temperature gradient as Figure 4.9 shows. From Figure 4.8 and 4.9, it is easily seen that 

preferential orientation and heat flow direction both exert influence on the dendrite 

growth direction. 

 

 

Figure 4.9 Columnar dendrites (a) near the top surface with growth direction along 
with deposition direction and (b) at the interface between two consecutive 
clad layers [73]. 
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Figure 4.9 (Continued) 

4.4 Conclusions 

This work presented a new multiscale model to simulate the dendritic structure 

during solidification of a Fe-C alloy in the molten pool of the LENS laser deposition 

process. The model solved the energy equation by the FE method to calculate the 

temperature distribution in a macro region around the melt pool during deposition of one 

layer. The temperature field was then transferred to a micro region inside the mushy zone 

of the pool, where solute microsegregation and dendrite growth was calculated with a 

combined FE + CA technique. The effect of several process conditions on the 

solidification microstructure was investigated, in particular, laser moving speed, layer 

thickness, and substrate size. Confirming reports of previous experimental works, 

dendrite growth could occur even at the high cooling rates of the LENS process, with 

DAS as small as a few microns. A columnar growth from the bottom of the pool was 

observed, with varying DAS and orientation depending on the location in the pool and 

the moving speed of laser beam. For the highest laser speeds, secondary and tertiary arms 
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could not form and a dendrite to cellular transition was observed. Calculated values of 

DAS and simulated microstructure variation with laser scanning speed, layer thickness 

and substrate size agreed rather well with previous observations. In its present stage, the 

model did not include convection, which would be a desirable extension given the strong 

Marangoni flow produced by the high temperature gradients in the melt pool. It must also 

be observed that, although I addressed multilayer deposition in previous chapters [167-

169], the work described in this chapter was focused on the smaller scale of dendrite 

growth, which would become much more difficult in a multilayer setting. Therefore, the 

results of this work were relevant after a layer has been deposited. When more layers are 

deposited on top, dendrites will coarsen and may even remelt. Microstructure evolution 

during the thermal cycles and solid-solid phase transformation should be considered. In 

spite of these limitations, the developed model is a useful tool to study the response of the 

solidification microstructure to changes in process parameters. The calculated 

microstructure can also serve as an initial condition for a model that simulates solid phase 

transformations during subsequent cooling after solidification. 

The work of this chapter was published in the Acta materialia in 2010 [171] and 

was also pre-viewed and presented in the conference TMS 2010 [172]. 
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CHAPTER V 

A CELLULAR AUTOMATON MODEL FOR DENDRITE GROWTH IN ALLOY 

AZ91 

5.1 Background and introduction 

In the last decade, numerical simulation has been widely used to predict 

microstructural changes during solidification in alloys. But most of the published papers 

in this area of research focus on dendritic growth of cubic crystal materials during 

solidification. Bottger et al. [173] used the PF method to simulate the microstructure 

during the equiaxed solidification of hexagonal crystal materials, particularly the 

magnesium alloy AZ31, but their results did not show the single dendritic morphology 

with six-fold symmetry. Liu et al. [174] simulated the 2D dendrite profiles by employing 

a mathematical construction method. But this mathematical description method of the 

grain contour did not consider the tertiary and above arm branching.  

In this chapter, a model coupling the CA and FE methods is developed to simulate 

the dendritic growth of hexagonal metals during the solidification process. The model is 

applied to the simulation of small specimens with equiaxed and columnar grain growth 

under directional solidification, showing good performance in avoiding mesh-induced 

anisotropy. For the case of dendrite growth in a binary Mg-8.9wt%Al alloy, a simulated 

microstructure with perfect six-fold symmetry is obtained. The influences of certain 

factors on dendrite morphology, including cooling rate, mesh size, undercooling, surface 

tension, and anisotropy coefficient are discussed. Although the model is capable of 
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predicting the six-fold geometry of the HCP crystal structure, in the present version the 

dendrite growth is limited to the grid orientation and arbitrary orientations are not 

currently possible. 

5.2 Model development 

5.2.1 Introduction to Mg-alloy dendrite growth simulation 

The dendrite growth for Mg-8.9wt%Al alloy, which is similar in composition to 

alloy AZ91, is simulated. The properties of this alloy in the simulations are listed in 

Table A.3 in Appendix A [175-177]. Magnesium is a material with a HCP crystal 

structure, and its dendrite structural sketch can be found in Ref. [178] as shown in Figure 

5.1. 

 

 

Figure 5.1 Dendritic structural schematics of basal plane of hexagonal crystal 
material: Mg 
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5.2.2 Temperature field and solute distribution calculation 

The 2D transient differential equation governing the heat transfer within the 

calculation domain is given by: 

 
డ்

డ௧
ൌ  · ଶܶ׏ ൅ ௅

ఘ஼ು

డ௙ೞ

డ௧
        (Eq.5.1) 

Where ܶ is temperature, ݐ is time,  is thermal diffusivity, ܮ is latent heat of 

solidification, ߩ is density, ܥ௉ is specific heat, and ௦݂ is volume solid fraction. A forced 

boundary condition, heat flux ݍ, is prescribed on the four walls (equiaxed grain growth 

simulation) or single wall (columnar grain growth simulation) as shown below: 

 

ݍ ൌ െߣ డ்

డ௡
                   (Eq.5.2) 

Where ߣ is the thermal conductivity; and ݊ is the outward direction normal to the 

boundary. The FE method is employed to solve the Eq.5.1 and Eq.5.2 and thus obtaining 

the temperature field.  

The calculation of solute distribution in solid and liquid phases and the 

concentration in solid/liquid interface can refer to the Chapter IV. 

5.2.3 Kinetics parameters for the CA model 

The solute distribution ahead of the interface is used as a driving force to simulate 

the dendrite growth in the CA model. The process of dendrite growth is predominantly 

controlled by the difference between the local interface equilibrium solute concentration 

and the local actual liquid solute concentration. The changing rate of solid fraction 

determines the velocity and morphology of grain growth. Based on the calculation of the 

local actual liquid concentration ܿ௟ from Eq.4.1 and the interface equilibrium composition 

ܿ௟
∆ ,the increase of solid fraction כ ௦݂ at the interface cells can be obtained as: 
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∆ ௦݂ ൌ ሺܿ௟
כ െ ܿ௟ሻ ൫ܿ௟

כ · ሺ1 െ ݇ሻ൯⁄         (Eq.5.3) 

The interface equilibrium composition is calculated by: 

 

ܿ௟
כ ൌ ܿ଴ ൅

ିכ் ೗்
೐೜ା୻K·௙ሺఝ,ఏబሻ

௠೗
       (Eq.5.4) 

Where ܿ଴ is the initial solute concentration, ௟ܶ
௘௤ is the equilibrium liquidus 

temperature at the initial solute concentration, ݉௟ is the liquidus slope, Γ is the Gibbs-

Thomson coefficient, and ܭ is the curvature of the S/L interface. The function accounting 

for the anisotropy of the surface tension is denoted by ݂ሺ߮,  ଴ሻ where ߮ is the growthߠ

angle between the normal to the interface and the x-axis, and ߠ଴ is the angle of the 

preferential growth direction with respect to the x-axis. The interface equilibrium 

temperature calculated by Eq.5.1 is denoted by ܶכ. 

For hexagonal crystals, the function ݂ሺ߮,  ,଴ሻ exhibits a six-fold anisotropy [173ߠ

179]: 

 
݂ሺ߮, ଴ሻߠ ൌ 1 െ ߜ · cosሾ6 · ሺ߮ െ  ଴ሻሿ      (Eq.5.5)ߠ

Where ߜ is the anisotropy coefficient, and the growth angle can be calculated 

from the following equation: 

 

߮ ൌ ቐ
cosିଵ ቀ డ௙ೞ డ௫⁄

ሺሺడ௙ೞ డ௫⁄ ሻమାሺడ௙ೞ డ௬⁄ ሻమሻభ మ⁄ ቁ                    డ௙ೞ

డ௬
൒ 0

ߨ2 െ cosିଵ ቀ డ௙ೞ డ௫⁄

ሺሺడ௙ೞ డ௫⁄ ሻమାሺడ௙ೞ డ௬⁄ ሻమሻభ మ⁄ ቁ          డ௙ೞ

డ௬
൏ 0

   (Eq.5.6) 

The interface curvature of a cell with solid fraction ௦݂ can be obtained by counting 

the nearest and second nearest neighboring cells [139], and it also shown in chapter IV, 

but for hexagonal mesh, ܰ ൌ 19: 
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Different time steps, ∆்ݐ and Δݐ௖, are used for the calculation of heat transfer and 

mass transfer, respectively: 

 

்ݐ∆ ൌ ఘ஼ುሺ௠·௔ሻమ

ସ.ହఒ
        (Eq.5.7a) 

 

Δݐ௖ ൌ ௔మ

ସ.ହ஽೗
         (Eq.5.7b) 

Since the heat diffusivity is much faster than the solute diffusivity, Eq.5.1 is 

solved ௧ܰ ( ௧ܰ ൌ ௖ݐ∆ ⁄்ݐ∆ ) times with time step ∆்ݐ, per each solution of Eq.4.1 with 

time step ∆ݐ௖ in order to obtain converged temperature and solute concentration fields. 

5.2.4 The rules of capturing interface cells 

Each cell has three possible states: solid, liquid, and interface (partially 

solidified). Figure 5.2 shows a sketch of the grain growth model, illustrated for the case 

of a HCP structure material [130]. Because a HCP crystal material grows following six 

preferred directions and has a six-fold symmetry, a hexagon-shape solid seed is initially 

placed at the center of a cell and the seed is allowed to grow along its diagonals. Once the 

corners of the hexagon seed reach any of the six neighboring cells, the neighbor cell will 

be changed to an interface cell. A new hexagon seed, having the same preferential 

crystallographic orientation as the original cell, is generated and placed at the center of 

the new interface cell. The new hexagon seed starts to grow according to the change of 

the solid fraction in the new interface cell. After the original hexagon has changed all the 

neighboring cells into interface cells, the original cell continues to grow until its solid 

fraction becomes unity, after which the state of the original cell becomes solid and 

changes any surrounding liquid cells into interface cells. The length of the diagonal (݀௦) 

of the seed is calculated based on the solid fraction ௦݂. 
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݀௦ ൌ ௞೏·௙ೞ·௔

ୡ୭ୱ ఏబ
         (Eq.5.8) 

Where ݇ௗis the diagonal length coefficient, and ܽ is the cell side size. 

5.2.5 Numerical implementation procedures 

The simulation of the grain growth process can be summarized in the following 

steps: 

(1) Solve Eq.5.1 to obtain the temperature field in the domain using time step 

 ;for ௧ܰ iterations with constant heat flux as boundary condition ்ݐ∆

(2) Interpolate in each FE to obtain the temperature for all cells inside the 

element and then solve the Eq.4.1 with time step to obtain the solute field in the whole 

domain; 

(3) Calculate the increase of solid fraction at the interface cells; 

(4) Update the thermal field and solute fields based on the release of latent 

heat and the rejection of solute during solidification; 

(5) Use the CA transition rules to capture the new interface cells. 

5.3 Proposition of hexagonal mesh generation 

A single nucleus with the preferential orientation of 0 degree is put at the center in 

the calculation domain (100100m) with regular FE mesh of quadrilateral bilinear 

elements. Figure 5.2(a) shows a sketch of the growth algorithm. Due to the hexagonal 

shape of magnesium crystal structure, I select a hexagonal-shaped seed which grows in 

six directions. When any of the seed diagonal reaches a neighboring cell, a new seed is 

placed at the center of this cell. The calculated composition field for a single equiaxed 

crystal is shown in Figure 5.2(b). It is observed that there are six primary arms, but the 



 

106 

angle between the primary arms is not 60 degrees. Some arms grow aligning with the axis 

of the mesh, and others grow at 45 degrees. They should grow with perfect six-fold 

symmetrical, without hindrance from other grains or walls. Fu et al. [178] also 

experienced a similar problem and they attributed it to the methodology of defining 

neighboring cells as shown in Figure 5.2(c). 
 

 

 

Figure 5.2 (a) Sketch of growth algorithm for hexagonal crystal material, (b) single 
equiaxed grain morphology during solidification of Mg alloy, and (c) single 
equiaxed grain growth calculated in Ref. [178] 
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Figure 5.2 (Continued) 
 

As evidenced in the previous example, the CA method used to simulate dendrite 

evolution has a disadvantage: grid dependent anisotropy [132, 180], which is that the 

grain growth process is very sensitive to the mesh shape and mesh size. For the 
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simulation of dendrite growth with cubic crystal structure materials, meshes of 

rectangular elements have been widely used, and hexagonal meshes have also been 

introduced by some articles using PF methods [181, 182]. Based on the fact that Mg has 

an HCP crystal structure with six-fold symmetry and previous reports that the use of 

hexagonal elements seems to reduce mesh-induced anisotropy [180, 183], a FE mesh 

consisting of hexagonal elements is developed to solve this problem with the CA 

technique. A sketch of the mesh for thermal diffusion and CA calculations is shown 

respectively in Figure 5.3(a) and (b). The model is described in the following sections. 

 

 

Figure 5.3 (a) Finite element hexagonal mesh for heat diffusion, and (b) cellular 
network for solute transfer and grain growth in the CA method 

5.4 Model validation 

The relationship between the PDAS and SDAS with the cooling rate has been 

amply documented and empirical relations have been proposed for several alloy systems 

(a)

(b) 
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[162, 184]. Using our developed model, I simulate the growth of an individual dendrite 

under several intensities of cooling rate. The SDAS is then recorded for different values 

of cooling rate and plotted in Figure 5.4. The data on SDAS vs. cooling rate previously 

reported by Caceres et al. [185], Labrecque et al. [186], Dube et al. [187], and Sequeira 

et al. [188] are also included in Figure 5.4, showing a reasonable agreement with my 

calculated values. 

 

 

Figure 5.4 SDAS vs. cooling rate for alloy AZ91 calculated by the present model and 
comparison with the data from Refs. [185-188] 

Lipton, Glicksman and Kurz [189] developed an analytical model (the LGK 

model) which described free dendrite growth at a given melt undercooling. The tip 

growth velocity with various undercoolings calculated by the LGK theory is shown in 

Figure 5.5, alongside values calculated by the present CA model. It is observed that our 

simulation results follow rather well the LGK predictions. It can also be observed that 
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increasing the cooling rate enhances the branching of the dendrite arms, which is in 

agreement with the calculations reported by Bottger et al. [173] using the PF method. 

 

 

Figure 5.5 Tip growth velocity vs. undercooling calculated by the present model and 
comparison with the LGK theory [189]. 

5.5 Simulation results 

A single nucleus is set at the calculation domain center to simulate the grain 

growth process during solidification. With constant heat flux (10kW/m2), the calculation 

domain has uniform initial temperature and composition. The nucleus has an initial 

composition kC0 and preferred growth orientations of zero degree with respect to the 

horizontal direction. The square domain has a 400400 mesh with side lengths of 0.5µm. 

Figure 5.6(a), (b), and (c) show the simulated evolution of equiaxed dendrite growth at 

different simulation times of 0.0212s, 0.0424s, and 0.0636s, respectively. It can be seen 

that in the early stages of solidification, dendrites develop primary arms which follow the 

crystallographic orientations as shown in Figure 5.6(a). As solidification proceeds, the 
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primary arms become larger and the secondary arms begin to occur (Figure 5.6(b)). With 

further solidification, some tertiary dendritic arms form on the secondary arms (Figure 

5.6(c)). The simulated structure compares qualitatively well with the measured 

microstructure of an AZ91 dendrite reported in [178] as Figure 5.6(d) shows. 

 

 

 

Figure 5.6 Solute map at different simulation times: (a) 0.0212s, (b) 0.0424s, (c) 
0.0636s and (d) the measured microstructure of AZ91D dendrite [178] 
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In the following, a set of numerical simulations are performed to illustrate the 

influence of mesh size on the simulated dendrite structure. A square domain is generated 

with the four walls being cooled at a constant heat flux of 10kW/m2. Figure 5.7 shows the 

solute maps with meshes of 200200 (1µm element size), 400400 (0.5µm), and 

600600 (0.33µm), respectively, each having a simulation time of 0.0636s. A single 

grain is initially placed at the center of the domain with uniform composition kC0. No 

tertiary arms occur from the secondary arms in Figure 5.7(a); however, tertiary arms can 

be seen in Figure 5.7(b) and (c). The arm trunk is thinner in Figure 5.7(c) than that in 

Figure 5.7(b). In addition, the maximum composition obtained with the simulation in a 

coarse mesh is higher than that in fine mesh. Based on these figures, it is evident that 

mesh size affects the grain morphology; therefore, using a sufficiently fine mesh size is 

necessary to obtain converged results. In the remaining calculations, meshes with 

hexagonal cell sides of 0.25µm are employed to save computational time without losing 

significant accuracy of results. 
 

 

 

Figure 5.7 Solute map calculated with different mesh sizes: (a) 1.0µm, (b) 0.5µm and 
(c) 0.33µm 
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Figure 5.7 (Continued) 
 

Four simulation cases with different magnitudes of the heat flux are performed in 

order to observe the influence of cooling rate on dendrite morphology. The calculation 

domains have the same 400400 mesh with cell side lengths of 0.25µm. Large heat flux 

corresponds to a high cooling rate. Increasing the heat flux speeds up dendrite growth, 

but it is observed in Figure 5.8 that the primary arms have similar lengths for different 

cooling rates, which is due to the smaller simulation time corresponding to higher cooling 

rates. With lower cooling rates, the secondary arms have shorter lengths and eventually 

dissipate. When the heat flux is 2kW/m2, only a few secondary arms occur as is shown in 

Figure 5.8(d). Since a larger heat flux increases the speed of grain growth, more solute is 

released from the solid and there is less time for solute diffusion, which increases the 

maximum composition in the liquid. Bottger et al. simulated the solidification 

microstructure of AZ31 by the PF method, and they found that the stronger cooling 

resulted in a higher branching of the dendrite arms [173] as shown in Figure 5.8(f). By 

comparison with the Figure 5.8(a) and (d), this model gives similar results. 

 



 

114 

 

 

 

Figure 5.8 Solute map with various heat fluxes imposed at the four walls: (a) 
20kW/m2, (b) 10kW/m2, (c) 5kW/m2, and (d) 2kW/m2; Equiaxed 
solidification with parameter variation: (e) AZ31 reference, (f) enhanced 
heat extraction rate (from 25(e) to 100Jcm-3s-1(f)) [173] 
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To demonstrate the influence of undercooling on dendrite growth, two 

simulations are conducted with undercoolings of 20K and 4K, with corresponding 

simulation times of 0.0053s and 0.0080s. The calculation domain, with a nuclei having 

preferential crystallographic orientation of zero degrees at its center, has a 400400 mesh 

with cell side lengths of 0.25µm. The larger circles in both Figure 5.9(a) and (b) 

respectively represent the dendrite envelopes with undercoolings at 20K and 4K. The 

solid circles show the locations where the grains begin to bifurcate to form primary arms. 

It is noticed that the larger undercooling helps the formation of the primary arms. Smaller 

undercooling leads to lower velocity of grain growth, which results in more time for the 

transfer of solute from the S/L interface to the bulk liquid region. This is the reason that 

small undercooling results in lower maximum composition. 

 

 

Figure 5.9 Solute map for undercooling of (a) 20K and (b) 4K 

Figure 5.10 shows simulations with two different values of the Gibbs-Thomson 

coefficient for the same simulation time of 0.0238s and with the same parameters used in 

the previous calculations. The calculation domain has a 400400 mesh with cell sides of 
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0.25µm. The Gibbs-Thomson coefficients for Figure 5.10(a) and (b) are 4.010-7K•m and 

0.510-7K•m, respectively. By comparing the simulation results, the influence of the 

Gibbs-Thomson coefficient on the grain morphology can be observed. The lengths of the 

primary and secondary arms do not change much when increasing the coefficient. 

However, a larger Gibbs-Thomson coefficient results in a higher volume of solid (shown 

in blue in Figure 5.10). Also, it is observed that less branching takes place for the case of 

higher surface tension, a trend also reported in Ref. [182]. 

 

 

Figure 5.10 Solute map with Gibbs-Thomson coefficient of (a) 4.010-7K•m and (b) 
0.510-7K•m 

The influence of the anisotropy coefficient on the dendritic growth is also studied 

by the model. The calculation results are shown in Figure 5.11(a), (b), and (c) with 

anisotropy coefficients of 2.1, 1.6, and 0.6, respectively, at the same simulation time of 

0.2968s. Small anisotropy coefficients lead to large dendritic trunks, while large 

anisotropy coefficients result in thin arms, which aid in the formation of secondary and 

tertiary arms. High anisotropy coefficients promote grain growth with the characteristic 

hexagonal shape and assist in the formation of the secondary and tertiary arms. 
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Figure 5.11 Solute map with anisotropy coefficient of (a) 2.1, (b) 1.6, and (c) 0.6 

Columnar dendrite growth was also simulated with the AZ91 alloy directionally 

solidified under constant heat flux applied on the left boundary. The calculation domain 

has a 400200 mesh with an element size of 0.25µm. At the beginning of the simulation, 

two nuclei are placed at the left wall with the same crystallographic orientation aligned 

with the temperature gradient. Figure 5.12(a) and (b) show the simulated columnar 

dendrites under a heat flux of 80kW/m2 and 20kW/m2, respectively, at corresponding 

simulation times of 0.0339s and 0.1166s. The primary arms whose morphology 

orientations are not parallel to the heat transfer direction are stopped by the growth of the 
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arm which is parallel to the heat transfer direction. The growth of some main arms is 

suppressed by nearby dendrites. High liquid composition between the two columnar 

grains makes the secondary arms comparatively short due to the small separation between 

them. The simulation results agree qualitatively well with the measured columnar 

microstructure of the AZ31 alloy reported in Ref. [190]. 

 

 

 

 

Figure 5.12 Solute maps with (a) heat flux of 80kW/m2 and simulation time 0.0339s, 
(b) heat flux of 20kW/m2 and simulation time 0.1166s, and (c) experiment 
morphology [190] 
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5.6 Discussion 

5.6.1 Influence of mesh size on the grain morphology 

The mesh size may have a significant effect on the simulated microstructure. 

Stefanescu [136] and Zhu [137] discussed the influence of mesh size on the convergence 

of tip velocity, but they reached different conclusions. Stefanescu conducted simulations 

for a Fe-0.6wt%C alloy with varying mesh size to demonstrate its influence. His 

calculations indicated that the tip velocity tends to stabilize at about 58µm/s when the 

mesh size is approximately less than 0.3µm, which implies convergence of the model. 

However, the model developed by Zhu converges when the mesh size is less than 1µm at 

which the stable velocity of the tip is 117µm/s for Al-4wt%Cu. For the present model, the 

influence of mesh size on the morphology is shown in Figure 5.7. The microstructure 

shown in Figure 5.7(a) gradually converges to the one shown in Figure 5.7(c) for a mesh 

size of 0.33µm, which is closer to the value obtained by Stefanescu. 

5.6.2 Influence of undercooling on the grain morphology 

Zhu and Stefanescu [137] compared the dendritic morphologies for Al dendrites 

grown at different undercoolings, finding that the dendrite arms at smaller undercooling 

were thicker than those for the larger undercooling. In the present model, similar results 

are obtained, as Figure 5.9 shows, but it is not as obvious as found in Ref. [137]. This is 

due to the fact that in our simulation the temperature continuously decreases with 

constant heat extraction, and therefore the undercooling keeps changing. But, in the 

simulation of Ref. [137], the heat extraction rate was changed according to the amount of 

latent heat rejected during dendritic growth in order to keep the heat balance, thus 

obtaining a constant undercooling of the melt in the domain.  
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5.6.3 Influence of diagonal size ࢊ on the grain morphology 

In this model, it is evident that the diagonal size of the cell determines when the 

neighboring cells are captured and become interface cells, which influences the growth 

velocity. It is indicated from Eq.5.8 that the diagonal size can be large even for a small 

solid fraction if the diagonal length coefficient ݇ௗ is large enough. By comparing Figure 

5.13(a) and (b), the primary arm is longer for larger ݇ௗ values. As the diagonal size 

increases, the neighboring cells can be captured sooner, and more cells are changed to 

interface cells. This results in the release of more latent heat, which causes remelting and 

lower solute concentration as observed in Figure 5.13(a). 

 

 

Figure 5.13 Solute maps obtained with diagonal length coefficient of (a) 0.962 and (b) 
0.912 

5.7 Conclusions 

A 2D model coupling the CA and FE methods was developed to simulate solute 

controlled dendrite growth in hexagonal crystal metals. The model simulations compared 

reasonably well with previously published experimental and computational results of 

dendrite growth in hexagonal structure materials, including reported trends with cooling 

rate. A study of the effect of model parameters showed different degrees of sensitivity to 
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mesh size, surface tension, undercooling, and anisotropy. By using a honeycomb-like FE 

mesh and hexagonal CA cells, the model was able to predict the six-fold symmetry of 

dendritic growth in magnesium alloy AZ91 (approximated with the binary Mg-

8.9wt%Al). To the my knowledge, this is the first report of a FE-CA coupled model 

capable of simulating the free growth of a perfect six-fold dendrite starting from a solid 

seed, both in equiaxial and columnar structures. Although this is an encouraging result, 

the model still needs further testing and developing, particularly in handling the 

interaction of multiple six-fold dendrites growing in arbitrary orientations and a more 

comprehensive study of the convergence properties for different mesh size and growth 

rates. 

The work of this chapter was published in the Modelling Simulation of Materials 

Science and Engineering in 2009 [191] and was also pre-viewed and presented in the 

conference TMS 2009 [192]. 
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CHAPTER VI 

SOLIDIFICATION MODEL WITH COUPLED LATTICE BOLTZMANN AND 

CELLULAR AUTOMATON METHOD 

6.1 Introduction 

The traditional computational fluid dynamics (CFD) methods solve the 

conservation equations of macroscopic properties numerically, such as mass, momentum, 

and energy, using a FD method, FV method, or FE method as the previous chapters 

discussed. All those solvers are continuum-based approaches, and it is difficult to handle 

the discontinuity of flow velocity at the moving SL interface. Moreover, the fluid flow 

simulation is difficult to converge as the dendrite morphology becomes complicated with 

increasing solid fraction. However, in lattice Boltzmann (LB) method models, the fluid is 

treated as consisting of fictive particles, which perform consecutive propagation/ 

streaming and collision/relaxation processes over a discrete lattice mesh. For 2D model 

with quadrangle mesh, each lattice node is connected to its neighbors by 9 lattice 

velocities. Through a Chapman-Enskog analysis, one can recover the governing 

continuity and Navier-Stokes equations from the LB algorithm. In addition, the pressure 

field is also directly available from the density distributions and hence, there is no extra 

Poisson equation to be solved as in traditional CFD methods [193-195].  

Over the last two decades, the LB method has rapidly emerged as a comparatively 

powerful technique with great potential for numerically solving momentum [196-202], 

energy and/or composition equations [203-207]. Miller [208, 209] built LB-PF models to 
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simulate the flows of binary-alloys with liquid-solid phase-transition. Cellular growth 

was simulated with shear flow but without giving much details of the growth process and 

without considering the temperature field. A 2D LB-CA model was also built to simulate 

the dendrite growth [210]. In the model, the LB method was adopted to simulate the 

solute distribution and fluid flow. CA technique was used to predict the dendrite growth, 

but the model did not consider the calculation of temperature field. The present 2D 

model, which coupled the LB and CA methods, is built to simulate the temperature field, 

solute concentration, fluid flow, and dendrite growth. 

6.2 Model description 

6.2.1 D2Q9 model 

For fluid flow instance, a 2D incompressible fluid flow with density ߩ and 

kinematic viscosity ߥ is considered in a rectangular domain. The calculation domain is 

divided into a regular arrange of lattice as shown in Figure 6.1(a) [193]. The fluid is 

represented as a group of fluid particles residing at lattice nodes that move to its eight 

immediate neighboring nodes along eight different directions with given eight different 

discrete velocities at ݁௔, (ܽ ൌ 0, … 8) discrete times as shown Figure 6.1(b).  
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Figure 6.1 (a) D2Q9 model for LB method with quadrangle lattice having 9 discrete 
(b) velocities and (c) density functions 

The primary variables in the LB formulation are the so-called fluid density 

distribution function (Figure 6.1(c)), each relating to the probable number of fluid 

particles moving with velocity ݁௔, along the ܽ௧௛ direction at each node. Following the 

single relaxation time BGK (Bhatnagar-Gross-Krook) formulation, the evolution of 

density distribution functions at each time step is given by [211,212]: 

 

(b) (c)

(a)
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௔݂ሺܺ ൅ ݁௔Δݐ, ݐ ൅ 1ሻ ൌ ௔݂ሺܺ, ሻݐ െ
௙ೌ ሺ௑,௧ሻି௙ೌ೐೜ሺ௑,௧ሻ

ఛೡ
    (Eq.6.1) 

Where ܺ ൅ ݁௔Δݐ is the nearest node of ܺ along the direction ܽ, and ߬௩ is the 

relaxation time (߬௩ ൌ ߥ3 ൅ 0.5), and ௔݂
௘௤ is the equilibrium distribution functions. 

 

௔݂
௘௤ሺܺሻ ൌ ሺܺሻߩ௔ݓ ቂ1 ൅ 3 ௘ೌ·௨

௖మ ൅ ଽ

ଶ

ሺ௘ೌ·௨ሻమ

௖ర െ ଷ

ଶ

௨మ

௖మቃ    (Eq.6.2) 

 

݁௔ ൌ ቐ
ሺ0,0ሻ                                                            ܽ ൌ 0

ሺcosሾሺܽ െ 1ሻߨ 2⁄ ሿ, sinሾሺܽ െ 1ሻߨ 2⁄ ሿሻܿ       ܽ ൌ 1 െ 4
ሺcosሾሺܽ െ 1ሻߨ 2⁄ ሿ, sinሾሺܽ െ 1ሻߨ 2⁄ ሿሻܿ       ܽ ൌ 5 െ 8

     (Eq.6.3) 

Two steps are needed for the computation with LB method: collision ௔݂ሺܺ ൅

݁௔Δݐ, ݐ ൅ 1ሻ ൌ ௔݂ሺܺ, ,ሻ and streaming ௔݂ሺܺݐ ሻݐ െ ௔݂
௘௤ሺܺ, ሻݐ ߬௩⁄ . The collision operation 

computes the right hand side of Eq.6.1 that only involves the variables associated with 

each node ܺ, and it is a local operation. The streaming step is to explicitly propagate the 

direction-specific distribution functions (the updated ௔݂ after collision) to its nearest 

neighbor lattice nodes, where clearly no computations are required and only data 

exchange between neighboring nodes is necessary. 

The macroscopic fluid variables, density ߩ and velocity ݑ, can be obtained from 

the moments of distribution function ௔݂ as below: 

 

ߩ ൌ ∑ ௔݂
଼
௔ୀ଴             (Eq.6.4) 

 

ݑ ൌ ଵ

ఘ
∑ ௔݂݁௔

଼
௔ୀ଴           (Eq.6.5) 

6.2.2 Boundary conditions 

Bounce back boundary would be applied at the slit wall [193, 196]. This kind of 

boundary is particularly simple and has played a major role in making LB method 



 

126 

popular in simulating fluids in domains characterized by complex geometries such as 

those found in porous media. It only needs to designate a particular node as a solid 

obstacle and no special programming treatment is required, and the bounce back process 

is shown in Figure 6.2. 

 

 

Figure 6.2 Illustration of mid-plane bounce-back movement of direction specific 
densities [193] 



 

127 

 

Figure 6.2 (Continued) 
 

Von Neumann boundary conditions constrain the flux at the boundaries. For 

example at the north side of the calculation as shown in Figure 6.3, and the velocity 

vector consists of zero x-component, and y-component is ݒ଴, 

 

 

Figure 6.3 Direction-specific density are unknown after streaming at a north boundary 

The contributions from ௔݂ for ܽ ൌ 0,1,2,3,5,6 are already known because they 

arrive from other nodes inside the domain. Four variables, including ߩ, ସ݂, ଻݂, and ଼݂  are 

needed to be solved, which means four equations are needed. 
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The macroscopic density formula is the one equation: 

 
ߩ ൌ ଴݂ ൅ ଵ݂ ൅ ଶ݂ ൅ ଷ݂ ൅ ସ݂ ൅ ହ݂ ൅ ଺݂ ൅ ଻݂ ൅ ଼݂    (Eq.6.6) 

The macroscopic velocity in x- and y- directions: 

 
0 ൌ ଵ݂ െ ଷ݂ ൅ ହ݂ െ ଺݂ െ ଻݂ ൅ ଼݂      (Eq.6.7) 

 
଴ݒߩ ൌ ଶ݂ െ ସ݂ ൅ ହ݂ ൅ ଺݂ െ ଻݂ െ ଼݂          (Eq.6.8) 

A fourth equation can be written by assuming that the bounce back condition 

holds in the direction normal to the boundary. 

 

ଶ݂ െ ଶ݂
௘௤ ൌ ସ݂ െ ସ݂

௘௤        (Eq.6.9) 

However, based on the equilibrium distribution function: 

 

ସ݂ ൌ ଶ݂ െ ଶ݂
௘௤ ൅ ସ݂

௘௤ ൌ ଶ݂ െ ଶ

ଷ
 ଴               (Eq.6.10)ݒߩ

Solve the Eq.6.5-6.7 together with the Eq.6.9, and the other three variables can be 

obtained as below: 

 

ߩ ൌ ௙బା௙భା௙యାଶሺ௙మା௙ఱା௙లሻ

ଵା௩బ
               (Eq.6.11) 

 

଻݂ ൌ ହ݂ ൅ ଵ

ଶ
ሺ ଵ݂ െ ଷ݂ሻ െ ଵ

଺
 ଴                (Eq.6.12)ݒߩ

 

଼݂ ൌ ଺݂ െ ଵ

ଶ
ሺ ଵ݂ െ ଷ݂ሻ െ ଵ

଺
 ଴                (Eq.6.13)ݒߩ

6.2.3 Thermal and concentration calculation 

The thermal energy distribution solves the following kinetic equations for the 

distribution function ்݂ ,௔ [211, 212]: 
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்݂ ,௔ሺܺ ൅ ݁௔Δݐ, ݐ ൅ 1ሻ ൌ ்݂ ,௔ሺܺ, ሻݐ െ
௙೅,ೌሺ௑,௧ሻି௙೅,ೌ

೐೜ ሺ௑,௧ሻ

ఛഀ
   (Eq.6.14) 

Where ߬ఈ ൌ ߙ3 ൅  is thermal diffusivity. The macroscopic energy is ߙ ,0.5

defined as ݁ ൌ ∑ ௔ܶ௔ ⁄ߩ , and similarly the equilibrium distribution functions for the 

thermal energy distribution ்݂ ,௔
௘௤ can be written as: 

 

ە
ۖ
۔

ۖ
்݂ۓ ,଴

௘௤ ൌ െ ଶఘ௘

ଷ

௨మ

௖మ                                                                        

்݂ ,௔
௘௤ ൌ ఘ௘

ଽ
ቂଷ

ଶ
൅ ଷ

ଶ

௘ೌ·௨

௖మ ൅ ଽ

ଶ

ሺ௘ೌ·௨ሻమ

௖ర െ ଷ

ଶ

௨మ

௖మቃ    ሺܽ ൌ 1,2,3,4ሻ

்݂ ,௔
௘௤ ൌ ఘ௘

ଷ଺
ቂ3 ൅ ଺௘ೌ·௨

௖మ ൅ ଽ

ଶ

ሺ௘ೌ·௨ሻమ

௖ర െ ଷ

ଶ

௨మ

௖మቃ    ሺܽ ൌ 5,6,7,8ሻ

    (Eq.6.15) 

The solute transport solves the following equation for the distribution ݃௔ [193]: 

 

݃௔ሺܺ ൅ ݁௔Δݐ, ݐ ൅ 1ሻ ൌ ݃௔ሺܺ, ሻݐ െ
௚ೌሺ௑,௧ሻି௚ೌ

೐೜ሺ௑,௧ሻ

ఛ೎
             (Eq.6.16) 

Where ߬௖ ൌ ௟ܦ3 ൅ ௟ is the solute diffusivity. The concentration is ܿఙܦ ,0.5 ൌ

∑ ݃௔௔ , and so the equilibrium distribution is given by [193]: 

 

݃௔
௘௤ ൌ ௔ܿఙሺ1ݓ ൅ 3݁௔ ·  ሻ           (Eq.6.17)ݑ

Constant concentration boundary ܿҧఙ is imposed to solve the solute transport 

[193]. For example at the north side boundary (Figure 6.3), assume the unknown 

directional densities ݃௔ for ܽ in {4, 7, 8} are of the form ݃௔ ൌ ௔݃ఙݓ
ᇱ , which denotes the 

residual amount of concentration needed to satisfy the specified concentration condition 

ܿҧఙ.  

 

ܿҧఙ ൌ ∑ ݃௔௔          
ൌ ݃଴ ൅ ଵ݃ ൅ ݃ଶ ൅ ݃ଷ ൅ ݃ହ ൅ ݃଺ ൅ ݃ఙ

ᇱ ሺݓସ ൅ ଻ݓ ൅  ሻ(Eq.6.18)଼ݓ

So the residual concentration can be computed as below: 
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݃ఙ
ᇱ ൌ ஼ҧ഑ିሺ௚బା௚భା௚మା௚యା௚ఱା௚లሻ

௪రା௪ళା௪ఴ
              (Eq.6.19) 

The unknown directional densities are: 

 

݃ସ ൌ ସ݃ఙݓ
ᇱ ൌ ଵ

ଽ
݃ఙ

ᇱ         (Eq.6.20) 

 

݃଻ ൌ ଻݃ఙݓ
ᇱ ൌ ଵ

ଷ଺
݃ఙ

ᇱ         (Eq.6.21) 

 

଼݃ ൌ ఙ଼݃ݓ
ᇱ ൌ ଵ

ଷ଺
݃ఙ

ᇱ         (Eq.6.22) 

Other boundaries for temperature and concentration calculations can refer to the 

published articles [213-215]. 

6.3 Calculation results with 2D model 

Evaluation of this model for heat and mass transfer and fluid flow has been done 

by comparing to analytical solution and/or published results. 

6.3.1 Heat and mass evaluation of LB method 

A 2D model was built with constant higher temperature and composition at left 

side and with lower ones at the right to simulate the heat and mass transfer from the left 

side to the right side. The calculation domain is 0.0020.001m with mesh of 200  100 as 

Figure 6.4 shows. The simulation material has solute diffusivity:ܦ௟ = 5.010-9m2/s and 

thermal diffusivity:1/12 = ߙ10-4m2/s. The two equations below are the analytical 

solutions for temperature and solute concentration at a certain time and location as below: 

 

ܿ ൌ ܿ଴ ൅ ሺܿு െ ܿ଴ሻ ൈ ሺ1 െ erfሺ ௫

ଶඥ஽೗௧
ሻሻ              (Eq.6.23) 

 

ܶ ൌ ଴ܶ ൅ ሺ ுܶ െ ଴ܶሻ ൈ ሺ1 െ erfሺ ௫

ଶ√ఈ௧
ሻሻ                (Eq.6.24) 
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Figure 6.4 Schematic of two dimensional model for heat/mass transfer 

 

 

Figure 6.5 (a) Composition profile along x-direction at time of 19.355s, and (b) 
temperature profile along x-direction at time of 3.87110-2s 

(a) 
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Figure 6.5 (Continued) 
 

The Figure 6.5 shows good agreements between the simulation results of 

concentration and temperature profiles by present model and those from the analytical 

solutions, which give the evaluation of the model with LB method for heat and mass 

transfer. 

6.3.2 Lid-driven flow evaluation of LB method 

A lid-driven cavity flow is built to test the flow problem with LB method. The 

objective of this model is to implement and evaluate the LB method by comparing the 

results of an upper, lid-driven cavity flow with previous published results. The 

calculation domain is 0.020.02m with the mesh of 200200 as Figure 6.6 shows. The 

simulation materials have the viscosity of 0.006Pa·s and density of 6000Kg/m3, and 

velocity ܷ଴ is applied at the surface. Different lid moving velocities resulting in different 

Reynolds numbers are adopted to examine the flow pattern in the cavity. 

(b) 



 

133 

Bounce back boundary conditions are applied to the three stationary walls as 

Figure 6.2 shows. The Von Neumann boundary is imposed to the top wall of the cavity. 

The equilibrium distribution function at the upper moving plate is computed by 

substituting the uniform plate velocity into the Eq.6.2. After the streaming, the velocity at 

the top plate is reinforced to be the uniform plate velocity and then the equilibrium 

distribution function is reevaluated using the fixed plate velocity and the updated density 

at the plate. The upper two corner lattice points are considered as the part of the moving 

plate. 

 

 

Figure 6.6 Schematic of lid-driven model with constant velocity ܷ଴ at upper side 

The uniform top velocity is ܷ଴ = 0.005 and 0.05m/s considering the validity of 

using LB method in simulating near-incompressible flows, and the Reynolds numbers are 

100 and 1000 respectively. Figure 6.7 shows the simulated streamline for Reynolds 

numbers of 100 and 1000. There is a major vortex in the center, which circulates in 

clockwise direction as expected because the upper plate moves into the right-hand 

Wall

Wall

Wall

U0 is applied on the surface
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direction. In addition to the one major vortex, there appear two minor vortices circulating 

counterclockwise in the two lower cavity corners. Besides, the sizes of the minor vortices 

increase with increasing Reynolds numbers – here, from 100 to 1000. By comparison of 

the simulation results for different Reynolds numbers, generally speaking, the overall 

flow structures (streamlines) predicted by the models are very similar to those predicted 

by Wu and Shao [216]. 

 

 

 

Figure 6.7 The calculation streamlines by present model for (a) ܷ଴ = 0.005m/s or 
Re=100 and for (b) ܷ଴ = 0.05m/s or Re = 1000; (c) and (d) are the 
published results with LB method for Reynolds numbers of 100 and 1000, 
respectively [216].  

(a) (b)

(c) (d)
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6.4 Solidification model with LB method and CA technique 

A 2D LB-CA model is built to simulate the dendrite growth in convection. The 

model adopts the LB method to describe the transport phenomena and fluid flow, such as 

the energy and solute, and CA is adopted to simulate the dendrite growth process. The 

simulation material is binary alloy Al-3.0wt% Cu, and the main thermal properties used 

in the simulation are listed in Table A.4 in Appendix A. Figure 6.8 illustrates the physical 

system under consideration with domain of 9090m and with mesh number of 300300. 

The forced flow is generated by imposing a uniform inlet flow velocity indicated as U0 at 

the left side of the domain. This model also can calculate the temperature field by 

imposing the temperature gradient at the boundary sides to examine the influence of 

cooling rate on the dendrite growth. 

 

 

Figure 6.8 Illustration of the physical system and boundary conditions for 
solidification modeling 

Initially, one nucleus is placed at the center of the domain, and the temperature 

field inside the domain is considered to be uniform with a constant undercooling and 

without the inflow velocity at left side. These two pictures evaluate the model 

quantitatively by comparing the numerical simulations with the LGK predictions for the 
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steady-state tip parameters as function of the melt undercooling. Figure 6.9(a) shows the 

comparison of tip velocity against uncercooling calculated by current model with LGK 

analytical solution. And Figure 6.9(b) shows the comparison of equilibrium liquid 

composition at the tip against undercooling by current model with LGK analytical 

solution. As the Figure 6.9 shows, both the steady-state tip velocity and the equilibrium 

composition increase with increasing undercooling. The predicted tip velocity by the 

present model is a little higher, but the composition is slightly lower than the LGK 

analytical solutions [189]. However, the numerical simulation results are all close to the 

theoretical solutions. 

 

 

Figure 6.9 Comparisons of the present model to LGK analytical solutions for (a) tip 
velocities with various under cooling and (b) equilibrium liquid 
composition at tip against the under cooling 
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Figure 6.9 (Continued) 
 

To simulate the free dendrite growth in a forced flow and to investigate the 

influence of convection on the dendrite growth, an inlet flow with constant velocity could 

be imposed on the left boundary of the domain, but with constant undercooling. The 

dendrite morphology with different preferential orientations, 30 and 60 degrees, were 

also calculated, both of them follow the crystallographic orientations as Figure 6.10 

shows. Figure 6.10(b) and (d) show the dendrite morphologies considering the influence 

of convection. By comparing the dendrite morphologies with and without fluid flow from 

Figure 6.10, it is apparent that the dendrite shape is significantly influenced by the fluid 

flow for such calculation conditions. The growth of the dendrite enhances on the 

upstream side and decreases on the downstream side. When the dendrite grows in the 

presence of convection, the solute rejected at the SL interface is washed away from the 

upstream to the downstream direction by the flowing melt, resulting in an asymmetrical 

solute profile in liquid, i.e. the concentration in the upstream region is lower than that in 
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the downstream. The decreased local actual solute concentration at the interface results in 

a higher increment in solid fraction and thereby a higher tip velocity. 

 

 

 

Figure 6.10 Single dendrite morphology with preferential directions of 30 ((a) and (b)) 
and 60 ((c) and (d)) for free dendrite growth ((a) and (c)) and for dendrite 
growth in convection ((b) and (d)) 

Figure 6.11(a) shows the dendrite morphology with preferential direction of 0 

degrees at constant under cooling and without the convection. Four-fold symmetrical 

shape is obtained with the primary dendrite arms. Figure 6.11(b) shows the dendrite 

(a) (b)

(c) (d)
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morphology in convection imposed at the left side with the same other simulation 

parameter as adopted in Figure 6.11(a) shown. It is clearly shown that convection 

enhances the dendrite growth. To study the influence of cooling rate on the dendrite 

growth, constant temperature gradient is imposed on the boundaries to obtain the non-

uniform temperature field with cooling rate in the domain. By comparing the Figure 

6.11(a) and (c), it is obvious that secondary arms form from the primary dendrite arm if 

there exists a cooling rate in the calculation domain, that means the cooling rate enhances 

the branching of dendrite arms. When increasing the anisotropy degree coefficient from 

0.4 (simulation results shown in Figure 6.11(c)) to 0.8(simulation results shown in Figure 

6.11(d)), SDAS is more obvious by comparing the Figure 6.11(c) and (d). 

 

 

Figure 6.11 Single dendrite morphology with 0 preferential direction (a) at constant 
undercooling and (b) at constant inflow at left wall and (c) at constant 
temperature gradient at the boundaries and (d) with a higher anisotropy 
coefficient 

(a) (b)
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Figure 6.11 (Continued) 

6.5 Conclusions 

A 2D model, which coupled the LB method and CA technique, was developed to 

simulate dendrite growth during the solidification. LB method was adopted to simulate 

the temperature field, solute concentration, and fluid flow, while the CA was used to 

simulate the dendrite growth. The model of the energy and solute calculations was 

evaluated by comparing the present simulation results of temperature and composition 

profiles to analytical solutions. The lid-driven fluid flow was also calculated and 

compared to the published simulation. In addition, the dendrite growth simulation was 

carried out and evaluated by comparing the tip velocity and the equilibrium liquid solute 

to the analytical solutions. Besides, the influence of cooling rate, stream velocity, and 

anisotropy coefficient on the dendrite growth was also discussed. 

 

(c) (d)
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

7.1 Summary 

A multi-scale model was developed to simulate the dendritic structure during 

solidification of a Fe-C binary alloy in the molten pool of the LENS laser deposition 

process. The model could calculate temperature distribution and thermal history for 

LENS process with multi-layer deposition by solving the energy equation with the FE 

method. The fluid flow in the molten pool during LENS process was also predicted with 

FE method by solving momentum and concentration conservation equations. The 

influences on the heat transfer and fluid flow of surface tension induced Marangoni 

convection were also discussed. The solidification dendrite structure in the molten pool 

was also predicted based on the CA technique and the simulation results on temperature 

and composition. A columnar growth from the bottom of the pool was observed, with 

varying DAS and orientation depending on the location in the pool and the moving speed 

of laser beam. Confirming reports of previous experimental works, dendrite growth could 

occur even at the high cooling rates of the LENS process, with DAS as small as a few 

microns and transition from dendrite to cellular grain in high enough cooling rate. The 

effect of process conditions, in particular, the laser moving speed, the layer thickness, and 

the substrate size, on the solidification microstructure was investigated. 

The model was also adopted to simulate solute controlled dendrite growth in 

hexagonal crystal metals – magnesium alloy AZ91 (approximated with the binary Mg-
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8.9wt%Al), and perfect six-fold symmetrical dendrite shape was predicted by using a 

honeycomb-like FE mesh and hexagonal CA cells. Additionally, a 2D model, which 

coupled LB method and CA technique, was developed to simulate dendrite growth during 

the solidification. LB method was adopted to simulate the temperature field, solute 

concentration, and fluid flow, while the CA was used to simulate the dendrite growth. 

Besides, the dendrite growth in convection was also predicted in LB-CA model. 

7.2 Future works 

7.2.1 Dendrite growth in whole molten pool 

In this research, the dendrite growth in the molten pool during LENS process is 

simulated, but it is only for small square calculation domain in the pool. Actually the 

nucleation occurs at the S/L boundaries and continuously grows in the whole pool (see 

Figure 7.1(a)). So simulation of the dendrite growth for the whole pool can be more 

reasonable. Figure 7.1(b) shows the solute concentration predicted by present 

solidification model for the whole pool, indicating that the growth directions are different 

at the locations close to the surface from those close to the bottom. However, the details 

of dendrite arm cannot be seen since the coarse mesh size (~5m) adopted in this 

simulation comparing to the fine DAS (<5m). 
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Figure 7.1 (a) Nucleation occur at S/L boundary, and (b) solute concentration of C 

7.2.2 Dendrite growth in convection 

The simulation of dendrite growth in the convection is one of the popular research 

topics for the solidification microstructure evolution modeling. A single nucleus is set at 

the center of the calculation domain to simulate the dendrite growth in the convection 

with uniform and constant inlet flow velocity at the left side. Figure 7.2 shows the 

dendrite morphologies with inflow velocity at 0.005 m/s (Figure 7.2(a)) and 0.03 m/s 

(Figure 7.2(b)). At the S/L in the upstream direction, the flow takes away the composition 

and increases equilibrium temperature, thus increasing the solid fraction and tip velocity. 

So, the higher inflow velocity leads to larger tip velocity and makes the dendrite 

morphology more asymmetric. 

 

(a) 

(b) 
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Figure 7.2 Single dendrite morphology in convection at inflow velocity of (a) 
0.005m/s and (b) 0.03m/s 

The influence of convection on the dendrite growth at the bottom of the molten 

pool is examined for different moving speeds of laser beam (see Figure 7.3(a)). Figure 

7.3(b) and (c) show the dendrite structure with and without convection at the laser 

moving speed of 10mm/s. The dendrite growth direction and morphology is obviously 

different considering the convection from that without it. Figure 7.3(d) and (e) show the 

dendrite structure with and without convection at the laser moving speed of 20mm/s. 

There is not much difference in the dendrite microstructure whether or not the convection 

is considered. Higher laser scanning speed corresponds to higher cooling rate and 

solidification velocity, so it can be said that solidification microstructure is affected by 

convection, but the magnitude of the influence is determined partly by the solidification 

velocity. 

 

(a) (b)
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Figure 7.3 Calculation domain close to bottom in pool (a); dendrite morphologies 
without ((b) and (d)) or with ((c) and (e)) considering convection at laser 
moving speed of 10mm/s ((b) and (c)) and 20mm/s ((d) and (e)) 

(a) 

(b) 

(c) 

(d) 

(e) 
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7.2.3 3D model of dendrite with LB method 

The 2D single dendrite growth simulation is carried out as discussed in Chapter 

VI, which couples the LB method and CA technique. The calculation of fluid flow with 

LB method can save much time. Also this method is easy to be implemented in parallel 

algorithm, so, it is possible to develop a 3D LB-CA solidification model to simulate the 

heat/mass transfer, fluid flow, and dendrite growth. Additionally, the application of this 

3D model to the dendrite growth in the molten pool during LENS process will be another 

challenging topic. 

7.2.4 Dendrite growth simulation of HCP materials 

Chapter V presents the modeling development with hexagonal mesh for HCP 

crystal structure materials (Mg-Al binary alloy). Single dendrite (preferential direction of 

0) growth process is simulated. However, the crystallographic orientation is random, so a 

solidification model that can predict the dendrite growth in any direction could be of 

future research interest. 
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APPENDIX A 

THERMOPHYSICAL PROPERTIES FOR SOME MATERIALS AND ASSOCIATED 

CALCULATION PARAMETERS ADOPTED IN THE SIMULATIONS
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Table A.1 AISI 410 thermal properties and LENS process parameters 

Parameter Symbol Units Value 
Density-solid ߩ௦ kg/m3 7400 
Density-liquid ߩ௟ kg/m3 7150 
Thermal conductivity-solid ߣ௦ W/m K 28.4 
Thermal conductivity-liquid ߣ௟ W/m K 24.8 
Specific heat of solid ܥ௦ J/kg K 460 
Specific heat of liquid ܥ௟ J/kg K 520 
Latent heat ܮ J/kg 2.77×105 
Liquidus ௟ܶ K 1799 
Solidus ௦ܶ K 1735 
Surface tension gradient ߪ௞ N/(m×K) -4×10-4 
Viscosity ߤ N×s/m2 6.0×10-3 
Emissivity ߝ N/A 0.8 
Slopes of liquidus C 

݉௝ K/wt pct 

-75.0 
Si -15.0 
Mn -5.0 
Cr -0.7 

Partition Coeff. C 

݇௝ 

 0.17 
Si 0.66 
Mn 0.75 
Cr 0.93 

Convective heat transfer coefficient ݄ W/m2 K 100 
Radius of the laser beam ݓ଴ mm 0.5 

 

 

Table A.2 Fe-0.13wt%C thermal properties and calculation parameters 

Parameter Symbol Units Value 
Density-solid ߩ௦ kg/m3 7250 
Density-liquid ߩ௟ kg/m3 7100 
Thermal conductivity-solid ߣ௦ W/m K 27.8 
Thermal conductivity-liquid ߣ௟ W/m K 25.4 
Specific heat of solid ܥ௦ J/kg K 460 
Specific heat of liquid ܥ௟ J/kg K 520 
Latent heat ܮ J/kg 2.77×105 
Liquidus ௟ܶ K 1784 
Solidus ௦ܶ K 1723 
Surface tension gradient ߪ௞ N/(m×K) -4×10-4 
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Table A.2 (Continued) 

Viscosity ߤ N×s/m2 6.2×10-3 
Emissivity ߝ N/A 0.8 
Slopes of liquidus ݉௝ K/wt pct -80.0 

Partition Coeff. ݇௝  0.17 

Convective heat transfer coefficient ݄ W/m2 K 100 
Radius of the laser beam ݓ଴ mm 0.5 

 

 

Table A.3 Mg-8.9wt%Al thermal properties and calculation parameters 

Property Value 
Thermal expansion coefficient (ߚ) 2.6  105K1 
Density of liquid (ߩ௟) 
Density of solid (ߩ௦) 

1650kg m3 
1750kg m3 

Viscosity (ߤ) 2  103N s m2 
Diffusivity of alloy elements in liquid (ܦ௟) 
Diffusivity of alloy elements in solid (ܦ௦) 

5.0  109m2 s1 
5.0  1013 m2 s1 

Thermal conductivity in liquid (ߣ௟) 
Thermal conductivity in solid (ߣ௦) 

80J K1 m1 s1 

105J K1 m1 s1 

Average specific heat of liquid (ܥ௟) 
Average specific heat of solid (ܥ௦) 

1350J kg1 K1 
1200J kg1 K1 

Latent heat of fusion (ܮ) 3.7  105J kg1 
Liquidus temperature ( ௟ܶ) 868K 
Eutectic temperature ( ாܶ) 705K 
Gibbs-Thomson coefficient 2.0  10-7K·m 

 

 

Table A.4 Al-3.0wt%Cu thermal properties and calculation parameters 

Parameter Symbol Units Value 
Density ߩ kg/m3 2475 
Thermal conductivity ߣ W/m K 30 
Thermal diffusivity ߙ m^2/s 1/12×10-4 
Specific heat ܥ௣ J/kg K 500 
Solute diffusivity ܦ௟ m^2/s 3×10-9 
Liquidus ௟ܶ K 925.8 
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Table A.4 (Continued) 

Viscosity ߤ N×s/m2 1.4×10-4 
Slopes of liquidus ݉ K/wt pct -2.6 

Partition Coeff. ݇  0.17 

Under cooling  K 4.5 
Inflow velocity  m/s 0.0023 
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