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Regional crop yield estimations using crop models is a national priority due to its 

contributions to crop security assessment and food pricing policies. Many of these crop 

yield assessments are performed using time-consuming, intensive field surveys. This 

research was initiated to test the applicability of remote sensing and grid-based 

meteorological model data for providing improved and efficient predictive capabilities 

for crop bio-productivity.

The soybean prediction model (Sinclair model) used in this research, requires 

daily data inputs to simulate yield which are temperature, precipitation, solar radiation, 

day length initialization of certain soil moisture parameters for each model run. The 

traditional meteorological datasets were compared with simulated South American Land 

Data Assimilation System (SALDAS) meteorological datasets for Sinclair model runs 

and for initializing soil moisture inputs. Considering the fact that grid-based 



meteorological data has the resolution of 1/8th of a degree, the estimations demonstrated a 

reasonable accuracy level and showed promise for increase in efficiency for regional 

level yield predictions.

The research tested daily composited Normalized Difference Vegetation Index 

(NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (both 

AQUA and TERRA platform) and simulated Visible/Infrared Imager Radiometer Suite 

(VIIRS) sensor product (a new sensor planned to be launched in the near future) for crop 

growth and development based on phenological events. The AQUA and TERRA fusion 

based daily MODIS NDVI was utilized to develop a planting date estimation method.

The results have shown that daily MODIS composited NDVI values have the capability 

for enhanced monitoring of soybean crop growth and development. The method was able 

to predict planting date within ±3.4 days. A geoprocessing framework for extracting data 

from the grid data sources was developed. Overall, this study was able to demonstrate the 

utility of MODIS and VIIRS NDVI datasets and SALDAS meteorological data for 

providing effective inputs to crop yield models and the ability to provide an effective 

remote sensing-based regional crop monitoring. The utilization of these datasets helps in 

eliminating the ground-based data collection, which improves cost and time efficiency 

and also provides capability for regional crop monitoring.
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CHAPTER I

INTRODUCTION

1.1 Research Introduction

Crop models have been used for predicting crop yield before harvest. The benefits 

of such predictions have potential effects from local to regional to global. Such 

predictions warn decision makers about potential reductions in crop yields and allow 

timely import and export decisions. These pre-harvest crop yield estimations also help in 

regional and global crop pricing and trade policies. Thus, reliable yield prediction 

methods are highly important for national and global food security. The Production 

Estimation and Crop Assessment Division (PECAD) of United States Department of 

Agriculture (USDA)/ Foreign Agricultural Service (FAS) provide global crop yield 

forecasts for major food grain and oil seed crops. These estimates require a tremendous 

amount of ground data collection network. The ability of remote sensing and 

meteorological grid datasets to provide information on crop growth and environmental 

conditions that affect crop growth is a huge benefit for agencies such as USDA/FAS 

PECAD for regional yield predictions. With the benefits and limitations of remote 

sensing considered, this research has been developed with the hypothesis that utilization 

of remote sensing and spatial technologies can greatly benefit in regional scale crop yield
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estimation modeling. A detailed literature review has showed that most remote sensing 

based regional yield prediction models use coarse resolution imageries such as the 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectro-radiometer 

(MODIS). The USDA/FAS PECAD currently utilizes (MODIS) Normalized Difference 

Vegetation Index (NDVI) for assessing the crop growth conditions. However, a future 

sensor Visible/Infrared Radiometer Suite (VIIRS) is expected to replace MODIS in the 

near future. This research compares MODIS and VIIRS to assess whether VIIRS sensor 

product is applicable to replace MODIS for regional yield prediction and crop 

productivity monitoring. The types of models used for crop predictions are highly varied. 

Different methods of crop prediction using remote sensing and spatial datasets for crop 

prediction have been researched. However, most of these methods either use highly 

empirical methods, or methods that use parameters that cannot be utilized for regional 

level predictions (Rasmussen, 1998; Dabrawoska et al., 2002; Bastiaanssen and Ali, 

2003; Lobell et al., 2003). Doraiswamy et al. (2005) applied remote sensing to a semi-

mechanistic crop model for regional yield assessment and found that with the use of the 

correct crop model, the information from remote sensing observations can be effectively 

integrated into crop modeling methodologies.

This research uses Sinclair model for soybean yield prediction for Argentina. 

Sinclair model has been used operationally by USDA/FAS PECAD to provide estimation 

on soybean production (Reynolds, 2001). This model has been described as “semi-

mechanistic” and is considered as “a compromise between completely empirical 

approaches and extremely detailed mechanistic approaches” (Speath et al., 1987, p. 298); 
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therefore, suitable for adapting to a geoprocessing environment.  The model uses daily 

inputs of temperature (daily minimum and maximum), precipitation, solar radiation, day 

length and planting date.  The input variables are obtained from meteorological stations. 

Besides these variables, the model also requires initialization of certain parameters during 

each model run, of which planting date and soil moisture content are very sensitive to the 

yield estimates.

Remote sensing is used in a number of crop prediction models. These range from 

simple regression-based models to very complicated models based on a number of inputs. 

Although remote sensing is beneficial for local uses such as precision agriculture, remote 

sensing is increasingly being used in regional predictions due to the ability to efficiently 

provide spatially based results for larger areas. Most regional level yield prediction 

methods consider using MODIS and AVHRR due to their wide swath width. Since crop 

yield models are usually developed from field-based experiments, regional prediction 

models based on remote sensing are usually adapted from crop models developed from 

field-level experimentations. Therefore, in order to obtain as much accuracy as possible 

in predicting yield, the spatially-based input variables should be able to represent field 

level conditions as much as possible. Different types of models for field-level crop yield 

predictions for various crop types are available. The adaptation of crop models to 

regional-level predictions of yield are lacking validated mechanisms for their application. 

The major challenge in such adaptation lies in the area of scaling or substituting model 

inputs to obtain representative estimates that extend capabilities to a regional or national 

level. In scaling models to regional-level analysis, field-level conditions such as row 

spacing, amount of fertilizer per field, and other field-level details cannot be used. 
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Difficulties arise when field-specific input variables to the models are replaced by 

information extracted from satellite image based observations. The probability that the 

inaccuracy of the model output would increase cannot be neglected because on one hand 

a field level model is being used for regional level estimates, and on the other hand, the 

input parameters are estimated from remote sensing. Even then, it can be quite beneficial 

for using such crop models for regional predictions using remote sensing based inputs. In 

fact researchers agree that remote-sensing technologies can help to reduce the costs, time, 

and money to effectively predict crop yield (Reynolds et al., 2000; Wiegand et al., 1991). 

Therefore, the research evaluates the use of remote sensing (current and future sensors) 

and grid-based meteorological datasets to reduce the need for detailed time consuming 

field data and for providing improvement in efficiency to monitor and model crop bio-

productivity.

1.2 Literature Review

1.2.1 Crop Yield Modeling

Crop growth modeling was initiated and developed by C.T. de Wit. The origin of 

crop modeling can be traced into the publication in 1965 by C.T. de Wit on modeling 

photosynthesis as a function of leaf canopies (Boumat et al., 1996). The crop models that 

follow the modeling philosophy of C. T. de Wit are considered to belong to the “School 

of de Wit”. De Wit and Penning (1982) proposed a basic classification of modeling 

system that consisted of four production situations: a) potential production b) water 

limited production c) nitrogen limited production and d) nutrient limited production 
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(Bouman et al., 1996). De Wit (1965) demonstrated that canopy photosynthesis is the 

sum of photosynthesis of all the individual leaves. De Wit (1982) introduced growth rate 

calculation as a function of time, a dynamic system of crop modeling was introduced.

1.2.2 NDVI and Crop Productivity Monitoring

The utilization of remote sensing in crop yield estimation and crop growth 

monitoring can be traced back to the development of vegetation indices that are based 

upon the plant spectral characteristics. Vegetation indices utilize the properties of the 

chlorophyll reflectance in the red and near-infrared region of the electromagnetic 

spectrum (Myneni et al., 2005). Among the many vegetation indices, NDVI is the most 

researched and widely used index. The development of the NDVI is shared by Tucker 

(1979) and Deering (1978). Tucker (1977) found that leaf water content was best 

estimated in the region of 0.4-0.5, 0.63-0.69 and 0.74 to 0.8 µm in the electromagnetic 

spectrum. He concluded that these resulted due to the strong chlorophyll absorption on 

the 0.4-0.5 µm, 0.63-0.69 µm and high reflectance of vegetation in the 0.74 to 0.8 µm

regions. Tucker (1979) studied in-situ spectral reflectance of grass for 80% green 

biomass, 50% green biomass and dead biomass and compared various vegetation indices 

which included NIR/R, Visible/IR ratios. He concluded that for vegetation studies, the 

IR/Red ratio was most useful. Tucker (1979) also pointed out that some means of 

normalization for different irradiation conditions would be useful for studying the green 

leaf biomass of crops. Tucker (1979) found that the normalized difference transformation 

was effective in compensating for the variation in irradiation conditions. Tucker (1979) 

also found that the percentage of crop cover was closely related to vegetation indices. As 
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crop cover increased or decreased, the vegetation index values measured had a 

corresponding change. Thus, he concluded that due to the observed relationship between 

the vegetation indices and crop development, crop conditions could be monitored through 

spectral measurements. The early set of researches on relationship between the vegetation 

growth and the spectral bands of NDVI as well as the IR/Red ratios has led to a great deal 

of research such that NDVI has been used as proven index for monitoring vegetation 

condition. Wiegand and Richardson (1984) found that plants express their development, 

stress response, and yield capability through spectral observable canopy relating 

vegetation index to leaf area index, fractional observed photosynthetically active 

radiation (PAR) and economic yield (Richardson, 1990). 

Wiegand and Richardson (1990a) proposed a rationale in which the spectral 

observations i.e. vegetation indices were related to plant processes specifically leaf area, 

evapo-transpiration and yield. Wiegand and Richardson (1990b) tested the rationale 

proposed on relating vegetation indices to plant processes to cotton, wheat and corn. The 

vegetation indices used include NDVI, Perpendicular Vegetation Index (PVI), and red 

index and found that although limited, the vegetation indices do have relationships to 

crop growth and development and can be used to infer leaf area, evapo-transpiration and 

yield. Various researchers have since utilized NDVI to predict crop yield.



7

1.2.3 Crop Yield Models and Remote Sensing

The review of different methods of crop yield predictions has shown that crop 

yield predictions using remote sensing and spatial technologies can be basically 

categorized into the following (Moulin et al., 1998):

•   Regression based empirical method

•   Semi-empirical based method (Monteith based model)

•   Mechanistic or agro-meteorological based method

1.2.3.1 Regression Based Emperical Method

Regression based crop yield models are developed on the basis of the relationship 

between crop yield to a variety of biophysical factors such as crop vigor, rainfall, 

temperature, and soil. Boken et al. (2002) used NOAA-AVHRR based composited NDVI 

for spring wheat model in Canadian Prairies, using a monthly model based on a 

cumulative moisture index. The main purpose of this research was to improve an 

operational wheat model using remote sensing information based on monthly weather 

data. The model uses monthly temperature and precipitation data, estimated daily crop 

water requirement to obtain the Cumulative Moisture Index (CMI), which provides the 

daily moisture data; these data are cumulated for the whole of the growing season (from 

sowing to harvest). The use of CMI is based on the theory that if soil moisture 

requirement has been met, optimum growth will be attained. The research found that the 

use of NDVI based variable in a regression model with CMI improves the prediction 

power of the model significantly. The coefficients of determination in a NDVI based 

model were 0.79, 0.96, 0.83, 0.95, and 0.39 in five districts as opposed to 0.13, 0.70, 
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0.70, 0.75, 0.50, and 0.00 in a regular monthly model. Boken et al. (2002) also compared 

different variables obtained from NDVI and crop growth with wheat yield, and found that 

average NDVI during the heading period correlated highly with the wheat yield.

In other research, Rasmussen et al. (1998) used NOAA-AVHRR NDVI based 

model for predicting crop yield in Senegal, West Africa. The nine-day maximum value 

composited NDVI imagery of the years 1990 and 1991 were used. Besides NDVI, 

percent tree cover data were collected through low altitude systematic reconnaissance 

flights. Similarly, Tropical Livestock Unit (TLU) densities and percentage cultivated land 

data and population density data for grownup males were collected. These data were 

collected as point data and were interpolated using inverse distance weighted method 

with grid cell size of 500 m. On regression analysis of the various data parameters, it was 

found that grain yield and time weighted NDVI values (iNDVI) were highly correlated. 

The application of the model to stratified data with greater than 22% cultivated land 

improved the yield from r2 = 0.62 to 0.73. The TLU density showed a significant relation 

with yield. The regression model, for cultivated area of percentage value greater than 

22%, based on the iNDVI and TLU density, improved the yield prediction to r2 = 0.88.

Dabrawoska (2002) also used AVHRR NDVI based regression model for cereal 

yield estimation. In this research NOAA-AVHRR GAC (global area coverage) data with 

4 km resolution was used to calculate NDVI and brightness temperature (BT). The NDVI 

and BT were further used to obtain VCI (vegetation condition index) and TCI 

(temperature condition index), respectively. Landsat data were also used to obtain 

agricultural distribution map to obtain pixels with agricultural land less than 50, 50- 70

and 70-100%. High correlations of yield with VCI were noted in the weeks of 16, 22 of 
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crop growing period and TCI in the week 25 of the crop growing period. Therefore, 

Dabrawoska et al. (2002) developed a regression-based model using TCI at weeks 16 and 

22 and VCI at week 25 of crop growing season. The prediction result showed only a 

mean average error of 4%.

1.2.3.2 Semi-Empirical Method

Montieth-based models can be considered semi-empirical in nature (Moulin et al., 

1998). Bastiaanssen and Ali (2003) used a Monteith-based model that uses accumulated 

above ground biomass to predict yield. The biomass is derived from APAR (absorbed 

photosynthetically active radiation) values, which are derived from NDVI-derived PAR 

and APAR/PAR fraction. PAR values are obtained from incoming solar radiation values 

measured from Gumble Stokes recorders at ground meteorological stations. The method 

used also required estimation of light use efficiency values. The estimation of light-use 

efficiency requires values of ‘impact soil moisture’, ‘heat effect factors’, and ‘evaporative 

fraction’ that require complex derivations and assumptions. The authors found that their 

method was successful in predicting wheat, rice, and sugarcane yields, with 22, 29 and 

23% relative deviation from the observed yield values. However, this method was not 

successful in predicting cotton yield and the reason has been given as the inability of 

AVHRR in distinguishing cotton fields. Lobell et al. (2003) also used a Montieth-based 

model to predict crop yield using Landsat TM. But the derivation of variables of the 

model is different from the method used by Bastiaanssen and Ali (2003). The 

APAR/PAR fraction and light-use efficiency are calculated using a different procedure. 

PAR values are calculated in the field using a pyranometer. APAR values are calculated 
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using simple ratio (SR) and maximum and minimum possible APAR. The light-use 

efficiency is calculated from plot-based harvested biomass and APAR values.

1.2.3.3 Mechanistic or Agro-meteorological Method 

Mechanistic models usually contain a defined process using crop state variables 

and energy, carbon, nutrient fluxes at crop/soil/atmosphere interfaces (Moulin et al., 

1998). One such mechanistic agro-meteorological model is FAO-based crop specific 

water balance model (CSWB) used by Reynolds et al. (2000). In this method, near real 

time satellite products such as NDVI, RFE (rainfall estimate) images are used. The NDVI 

is derived from NOAA-AVHRR and RFE images are obtained from stationary Meteosat-

5 satellite. Ground-based PET (potential evapo-transpiration data) from meteorological 

station was also used. This method incorporates remote sensing data with a ground-based 

model. The data are integrated in a GIS-based model called WINDISP3. This method 

also requires locally derived information such as yield reduction factor, maximum yield 

that differ spatially. The agrometeorological-based method has even been used by 

PECAD FAS to provide estimation on global agricultural production (Reynolds, 2001; 

NASA, 2003). PECAD’s method is based on an automated decision support system 

called Crop Condition Data Retrieval and Evaluation (CADRE). CADRE is an 

operational outgrowth of the Large Area Crop Inventory Experiment (LACIE) and 

Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing 

(AgRISTARS). CADRE integrates remote sensing data, crop and soil models with 

weather information. It serves as an interface to different models and outputs data 

through GIS software, time-series plot and web interface displays. The agro-
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meteorological data to CADRE is provided by Agricultural Meteorological Model 

(AGRMET) and World Meteorological Organization (WMO) network of weather 

stations. AGRMET provides precipitation, minimum and maximum temperature, snow 

depth, solar and long wave radiation and potential and actual evapo-transpiration (ET). 

CADRE computes its own ET from temperature inputs using the Penman-Monteith 

equation. The satellite-based data include AVHRR and SPOT vegetation data. CADRE 

also requires baseline data which are digital elevation model which comprises of, FAO 

generated Digital Soil Map of the World (DSMW) information, historical crop 

production database from FAS, average temperature, rainfall spatial data, and 

administrative boundaries. The CADRE crop model requires crop calendar models, crop 

stress models (CERES, AgRISTARS, Maas, URCROP, Sinclair) and a two-layer soil 

moisture model. The two-layer soil moisture model runs the crop calendar and crop stress 

models. The soil moisture model accounts for the total water gained or lost in the soil 

profile by recording the amount withdrawn by evapo-transpiration and replenished by 

precipitation. The crop calendar model is based on the growing degree-days algorithm 

that uses minimum, maximum and threshold temperatures defined by a particular crop 

report. The crop stress model developed by AgRIStars informs analyst on abnormal 

temperature or moisture stress that may affect yields. Thus, PECAD uses a highly 

operational crop yield prediction system that requires an extensive input of time series 

data, baseline data and crop information and models from various sources.
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1.2.3.4 Methods useful for regional predictions

Most of the methods reviewed have used NOAA-AVHRR-based NDVI images to 

estimate crop yield. The regression-based models may be used for regional yield 

estimations; however, it is highly empirical in nature. The three methods based on 

regression reviewed here (Boken, 2002; Rasmussen, 1998; Dabrawoska, 2002) are all 

empirical in nature and are locally based such that the models derived cannot be used for 

regional or global application. However, if a globally derived model can be obtained, 

regression-based yield models are the simplest of all models. According to Moulin et al. 

(Moulin et al., 1998), regression-based models based on vegetation index and yield are 

empirically derived; hence, not based on a theoretical and experimentally proved relation. 

Therefore, Moulin et al. (1998, p.1023) stated that, “more mechanistic and 

physiologically sound models are necessary to assimilate remote sensing data and to 

predict production of major crops”. However, even though Montieth-based models are 

physiologically sound and experimentally proven, their uses in regional based application 

remain questionable. The Montieth-based models reviewed required values such as light-

use efficiency values which were calculated using highly complex relations in 

Bastiaansen and Ali (2003) and using field based values as in Lobell et al. (2003). Thus, 

the applicability of such models in regional yield predictions whose variables cannot be 

computed regionally or globally need to be further studied. Contrary to the empirical 

methods and Montieth-based method, the agro-meteorological-based crop yield 

prediction method seems to have a good scope in regional yield predictions using remote 

sensing. The variables in these methods are mostly obtained from either meteorological 

stations or remote sensing satellites; thus, they have global or regional applicability. One 



13

such model used by PECAD is the ‘Sinclair’ model. Sinclair model has been used 

operationally by PECAD to estimate regional soybean yield. 

1.2.4 Sinclair Crop Model

This model has been described as “semi-mechanistic” and is considered as “a 

compromise between completely empirical approaches and extremely detailed 

mechanistic approaches” (Speath et al., 1987, p.298).  According to  Speath et al. (1987, 

pp. 299-300) this model “uses five major relationships: 1) leaf emergence as a function of 

temperature; 2) leaf area index as a function of leaf number and plant population; 3) 

interception of solar radiation as a function of leaf area; 4) biomass accumulation 

proportional to intercepted radiation; and 5) seed yield proportional to biomass”.  The 

model has several sub-modules for various physiological processes required for soybean 

growth simulation and yield assessment: a) leaf growth; b) carbon budget calculation; c) 

vegetative growth; d) nitrogen budget calculation; e) seed growth; f) water budget 

calculation; and g) calculation of development rate (Sinclair, 1986). The meteorological 

data required for the model for its daily runs are obtained from ground stations. The 

model uses daily inputs of temperature (daily minimum and maximum), precipitation, 

solar radiation, day length and planting date (Figure 1.1).  The temperature, precipitation, 

solar radiation data are usually obtained from meteorological stations. The planting date 

is estimated from reports and local knowledge. Besides these daily input variables, the 

model also requires initializing parameters for planting date and initial soil moisture 

conditions. The day length is calculated based on latitude. Due to its mechanistic nature, 
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the model has potential to be effectively used in a geo-processing environment using 

remote sensing inputs. 

Figure 1.1  Abridged schematic flowchart depicting inputs and program flow of major
modules for Sinclair soybean model. 

The model requires initializing conditions for soil water conditions during 

sowing, sowing date and soil evaporation coefficient for no-till residue on soil surface.  

Sinclair et al. (2007) found that the model is highly sensitive to initial soil water content 

and the predicted yields are highly sensitive to the initial soil water conditions at sowing 

date. In the absence of a process for estimating initial soil water conditions, the 

simulations were initiated “at the harvest of the previous crop and assuming zero water 

content at that time (or even simulating the water use by the preceding crop if it might 

leave significant amounts of water in the soil)”. The conclusions drawn from the above 
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study by Sinclair et al. (2007) emphasized the need for methods for measuring or 

predicting accurate estimation method for initial soil water conditions.

Similarly, the daily meteorological input requirements for temperature, 

precipitation, and solar radiation drive the various modules such as daily calculation of 

leaf area growth, phenological stages, seed growth and daily water balance, which finally 

leads to the estimation of yield (Sinclair et al., 1986; Speath et al., 1987). These daily 

input variables are traditionally derived from ground meteorological stations. The output 

values are therefore only correct for a given area in which the meteorological values have 

influence. Utilization of gridded meteorological data sources can provide better capability 

to reduce the error in the modeling process due to spatial differences in location of the 

source of input variables and the location of the field to be modeled. Ultimately, the 

utilization of gridded datasets with spatial reference provides the opportunity to utilize 

the model in a geo-processing framework and also helps in improving the capability of 

the model to be used for regional level predictions.

1.3 Statement of Problem

Pre-harvest crop yield estimations and growth monitoring of crops can provide 

early warnings on status of crops that allows for making timely policy decisions for crop 

pricing as well as import and export quantities for major crops. Use of remote sensing has 

been utilized by many agencies and has been proved in different studies as an efficient 

way in comparison to the ground surveys that are required to collect crop-based

information. Remote sensing is highly useful in providing a wide spatial view for 

regional-level crop estimation and monitoring. Review of various previous studies has 
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shown that there are two basic methods through which such crop yield predictions and 

growth monitoring through the use of remote sensing is being performed: a) direct use of 

NDVI from satellite imagery to relate with biomass and yield; and b) use of remote 

sensing-based variables in a crop yield model as inputs to drive the processes.

Both of these methods are relatively new and still in the development phase as far 

as providing proven technological methods are concerned. In the methods where NDVI 

have been used, researchers have focused mostly on NOAA-AVHRR NDVI products. 

NOAA-AVHRR is in the process of being phased out and MODIS is considered as the 

immediate successor. However VIIRS, a new sensor is already being planned as a future 

successor to MODIS sensors. NOAA-AVHRR NDVI has been used by agencies 

worldwide to obtain wide-area information on crop status. In the US, USDA/FAS 

PECAD as well as USDA National Agricultural Statistics Service utilizes AVHRR NDVI 

datasets for their national as well as worldwide crop prediction and monitoring activities. 

Ultimately, in the future, these activities will need to be replaced with MODIS and then 

with VIIRS. However, a lack of research specifically on the applicability of MODIS for 

such crop monitoring and yield predictions were found.

With respect to the use of crop models for crop yield estimation and growth 

monitoring activities, the requirement of field level information to run crop models act as 

hindrance in providing accurate yield estimations in regional level. In most of the cases,

highly detailed crop models that utilized a lot of field-based variables were not very 

effective for regional applications. However, use of crop models can greatly benefit 

accurate yield predictions and research that can make such applications possible is 

needed. Therefore for crop yield estimations, crop models that provide accuracy as well 
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as require less information which can be easily obtained should be used. The semi-

mechanistic nature of Sinclair model was found to be suitable for regional level 

adaptation. This model was originally developed for field-based analysis. However, the 

requirement of fewer field level inputs can provide an opportunity to utilize the model for 

regional level analysis and for spatially-based inputs that can provide crop growth and 

yield monitoring capabilities with fewer ground level data collection. 

Therefore, based on the problem statement, this research aims are to look at two 

specific areas within the scope of regional crop yield and growth monitoring:

a. Efficient means of input variables to crop models and to research ways to 

integrate new sources of variables that are cost effective and time saving. 

b. Applicability of MODIS data for crop yield prediction and monitoring as well 

as for the future sensor VIIRS that is expected to follow the heritage of 

AVHRR and MODIS.

1.4 Research Objectives

Based on the problem statement, the main research objective was to evaluate the 

use of remote sensing (current and future sensors) and grid-based meteorological datasets 

to reduce the need for field data and for providing improved predictive capabilities to 

monitor and model regional agricultural bio-productivity.

To fulfill the main objective, the study has three specific research objectives:

1. To test the ability of integrated grid-based meteorological datasets to provide 

inputs to crop model. In this study, the focus is directed on testing the South 

American Land Data Assimilation System (SALDAS) forcings data and soil 
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moisture to provide input to the Sinclair soybean yield model as a drop-in 

replacement to ground-based meteorological station datasets and to provide 

initializing soil moisture conditions. 

2. To test the regional crop monitoring capability of MODIS, an existing 250 m

resolution sensor, and to test the capability of VIIRS, a future 400 m sensor 

planned to replace MODIS, in providing continuity to crop monitoring 

application of MODIS. The study focuses on MODIS NDVI, an existing 

sensor product and VIIRS NDVI, a future sensor product. The baseline 

MODIS evaluation is used to compare against simulated VIIRS to verify 

capabilities of the future sensor product to provide future continuity to 

regional crop productivity monitoring capability that the existing MODIS 

sensor provides.

3. To test the ability of MODIS NDVI time-series data in estimating planting 

date for improving soybean yield predictions using Sinclair model. Planting 

date is a sensitive initialization parameter used in the model and is usually 

estimated due to difficulty in obtaining actual field data.
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CHAPTER II

ANALYSIS OF SALDAS METEOROLOGICAL FORCINGS AND SALDAS

SIMULATED SOIL MOISTURE FOR SOYBEAN YIELD

ESTIMATION MODELING

2.1 Abstract

South American Land Data Assimilation System (SALDAS) is a part of the 

NASA/GSFC Global Land Data Assimilation System (GLDAS) project. In this research, 

a new meteorological grid-based data source provided by SALDAS was tested for its 

capability to provide inputs to Sinclair soybean yield prediction model. The Sinclair 

model requires daily inputs of meteorological variables for precipitation, solar radiation, 

and daily minimum and daily maximum temperatures. This model also requires 

initializing parameters for the soil moisture.

The hypothesis of this research is that the assimilation of SALDAS or similar data 

sources can benefit the yield modeling process significantly through simplification of the 

data collection effort for model runs. For the research analysis, SALDAS forcings 

datasets which have a similar geographic coverage and daily temporal resolution and 1/8 

of a degree of spatial resolution for the precipitation, solar radiation, minimum 

temperature, and maximum temperature were utilized as drop-in replacements to ground 

meteorological data. The yield values, obtained from the Sinclair model runs using
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traditional ground-based meteorological inputs, were used as the baseline result to 

compare with yield results from model runs with inputs from SALDAS forcings datasets. 

When the SALDAS data were tested with one on one replacement for Sinclair model 

runs, the yields values were comparable with yield values obtained from the use of 

ground meteorological datasets as inputs. However, when all the ground meteorological 

datasets were replaced with SALDAS inputs, the resulting simulated yields had a higher 

amount of deviation from the baseline yield values seemingly as a result of cumulative 

effect, as each variable input contributed to the deviation resulting in a larger observed

total deviation of yield values. In the case of utilizing SALDAS soil moisture as 

initializing variables for water budgeting within the Sinclair model, the SALDAS soil 

moisture values showed good potential.

2.2 Introduction

The world today faces an increase in demand for agricultural production to supply 

the needs of an increasing population. For a geographic region, a reduction in any major 

crop’s yield means potential food shortages. Information of crop yield forecasts before 

harvest can provide the administration the ability to make decisions for the prevention of 

such shortages. Crop yield prediction also has an additional economic importance; since 

excessive or deficient food imports are damaging to national interests. Imports that 

exceed actual demand can lead to economic damage whereas insufficient imports may 

lead to severe food shortages. Such yield predictions have become even more important 

with the advent of unstable rainfall patterns and other climatic variability due to global 

climatic changes (Reynolds et al., 2000; Bastiaanssen and Ali, 2003). According to 
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Lobell et al. (2003), timely regional crop yield predictions are also important to manage 

regional agricultural lands and to regulate regional food prices and trade approaches. 

Thus, reliable yield prediction methods are highly important for regional as well as 

national and global food security.

Yield predictions have traditionally been carried out using rigorous field-based 

assessments. The traditional method of obtaining crop yield information is considered to 

be highly time consuming, labor intensive and costly. These methods also have large data 

gaps resulting in inaccurate yield predictions even after extensive investment in labor and 

expenditure of large amounts of funds (Lobell et al., 2003 Reynolds et al., 2000; 

Bastiaanssen and Ali, 2003). Therefore, efficient ways of providing crop information 

before harvest are highly desirable. Although remote sensing-based methods have been 

used in the past (Rasmussen, 1998; Dabrawoska et al., 2002; Bastiaanssen and Ali, 2003; 

Lobell et al., 2003; Doraiswamy et al., 2005) for crop yield estimations, there is need for 

research to increase the efficiency of such methods allowing for a reduction of field data 

collection, reduction in inconsistencies in providing crop initializing parameters and for 

continued increase in the estimation and monitoring of crop condition and yield. In order 

to utilize remote sensing-based data inputs and methods, geo-processing friendly data 

sources and crop yield models need to be integrated together.

Mechanistic crop yield models have been found to be more efficient in providing 

regional level crop yield estimates. These crop models, however, require daily input of 

meteorological variables such as precipitation and temperature. The crop model utilizes 

the meteorological input variables, and outputs daily balances on soil water and crop 

growth parameters, which are then utilized for harvest index and ultimately crop yield. 
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Traditionally ground meteorological station datasets have been used to provide daily 

meteorological data inputs to the models. However, the distribution of ground 

meteorological stations is sparse and absent in many areas. National and regional 

agencies that require timely crop forecasts need estimates on international crop 

production levels as well. The lack of sufficient meteorological stations and their sparse 

locations create hindrances for efficient regional or global yield estimations.

2.2.1 Meteorological datasets in crop yield modeling

Many researchers have tested various meteorological inputs for regional yield 

predictions. Reynolds et al. (2000) used rainfall estimation images which had resolution 

of 7.6 km obtained from geostationary Meteosat - 5 satellite for Africa. Liang et al. 

(2004) used North American land data assimilation system (NLDAS) forcing data of 

about one-eighth of a degree for coupling with the crop model.

In cases of both local and regional predictions, the most popular source of 

meteorological datasets has been data from meteorological stations. One source of 

meteorological data is the National Climatic Data Center (NCDC) which provides daily 

meteorological datasets that includes precipitation, daily minimum and maximum

temperature among other weather parameters. Doraiswamy et al. (2005), Bastainssen and 

Ali (2003), and Carbone et al. (1996), and others have used local weather station data to 

input precipitation and temperature. 

A qualitative comparison of various available meteorological data sources is 

given in Tables 2.1 and 2.2. Comparison between some example sources of 

meteorological data sources from satellite images and ground stations with respect to 
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their spatial and temporal distribution is given in Table 2.1. The comparative analysis 

shows that using a single source of data from a satellite can be problematic because each 

satellite source tends to focus on a single meteorological variable. For example, TRMM 

provides precipitation data for tropical regions; Meteosat provides precipitation and 

thermal datasets. These satellite meteorological sources also have varying spatial and 

temporal aspects. The local ground stations can provide most of the needs of 

meteorological data for agricultural modeling; however, the densities of meteorological 

stations are not distributed evenly in all regions. Another problem is the data collection 

effort required to collect the local ground station data for regional analysis. The lack of 

uniform distribution and sufficient density of meteorological station is one of the 

drawbacks of utilizing local ground stations for regional analysis. 

Mechanistic crop yield models usually require daily inputs of precipitation, 

temperature, and solar radiation. Combining various satellite sources and collecting 

ground station data is a challenge for regional applicability. Therefore, integrated data 

sources provide a more viable source of meteorological data for inputs to crop yield

models.
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Table 2.1 Satellite based meteorological data sources.

An example of utilization of integrated data source is PECAD’s operational 

global crop assessment method. The system used by PECAD is based on an automated 

decision support system called Crop Condition Data Retrieval and Evaluation (CADRE). 

The agro-meteorological data input to CADRE is provided by Agricultural 

Meteorological Model (AGRMET) and World Meteorological Organization (WMO) 

network of weather stations (Reynolds, 2001). AGRMET provides precipitation, 

minimum and maximum temperature, snow depth, solar and long wave radiation, and 

potential and actual evapo-transpiration. The AGRMET data have a resolution of 40 km. 

The vegetation datasets can be obtained in 250 m for MODIS and 1 km for AVHRR, but 

it is almost impossible to obtain the same resolution data for meteorological datasets.  

The use of 1 km dataset with 40 km AGRMET dataset may not produce the desired 

results. Geostationary Operational Environmental Satellite (GOES) which has 4 km 

INPUT 
DATA

SOURCES

LOCAL GROUND
STATIONS

GOES Satellite 
Systems 

METEOSAT, 
TRMM

AVHRR,
MODIS

Data 
Temperature, 

Precipitation, Solar 
Radiation, 

Precipitation 
METEOSAT: Precipitation, 

Thermal
TRMM:Precipitation

Land Surface 
Temperature 

Resolution Needs interpolation 4 km 2.5-5km MODIS : 1km
AVHRR LAC: 1km

Temporal 
cycle Hourly, Daily, Weekly Daily Daily Daily

Coverage Depends upon countries North and South 
America

METEOSAT: 
Europe/Africa/Indian 

Ocean
TRMM: Tropics

Global 
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resolution covers US in which the precipitation dataset is the main component that it 

provides from its distribution website. There are few other products that integrate various 

sources of weather information to provide weather information like the one used by 

Liang et al. (2004). 

Table 2.2 Integrated Data Sources.

In this research, a new meteorological data source, Land Data Assimilation 

System (LDAS) is tested for its ability to provide daily meteorological variables as inputs 

to crop models as well as to provide initial soil moisture estimates. The research is based 

in Pampas in Argentina, one of the largest soybean producing regions of the world. 

Argentina’s soybean production is one of the highest in the world and the prevalence of 

no-till agriculture as well as mostly rain-fed agriculture makes Argentina a good choice 

for soybean yield estimation studies. Large soybean fields in Argentina also provide a 

INPUT 
DATA

SOURCES

NCDC ( National 
Climatic Data    Center)

USAF-AGRMET (Agriculture 
Meteorology model)

NASA-LIS (Land 
Information 

System)

Source Ground Met Stations Integrated, Interpolated and 
Assimilated dataset

High-performance 
land surface 

modeling and data 
assimilation system

Data Temperature, Precipitation, 
Solar Radiation,

Precipitation, Temperature, Soil 
Temperature, Soil Moisture, Evapo-

transpiration etc

Precipitation, 
Temperature, Soil 

Moisture etc

Resolution Needs interpolation ½ degree ( ~ 40 km) 1/8 degree 

Temporal 
cycle Hourly, Daily, Weekly 3 hourly,Daily Daily

Coverage United States Global Global
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good opportunity to utilize coarser resolution imageries such as MODIS for field level 

validation. A simple mechanistic model, Sinclair soybean model, is used for this study. 

For South American region, South American Land Data Assimilation System (SALDAS) 

gridded meteorological datasets are tested. The model of SALDAS is similar to North 

American Land Data Assimilation System (NLDAS).

2.2.1.1 SALDAS forcing’s as input to Sinclair model 

Precipitation is one of the most important input parameters for running the 

Sinclair model.  The model is highly sensitive to soil water as soil moisture affects 

several physiological processes leading to changes in soybean growth. Therefore, daily 

accurate precipitation data is important to obtain correct yield predictions. Similarly, 

temperature is also an important factor for soybean growth model. Solar radiation data is 

another input that is required daily for the model. 

Through SALDAS, daily gridded inputs of SALDAS forcings for Sinclair inputs 

are available, which include daily minimum and maximum temperature, daily 

precipitation, and daily solar radiation. The SALDAS forcings data are from South 

American Regional Reanalysis (SARR) data from CPTEC/INPE (Centro de Previsão do 

Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais). SARR data is 

based upon the ETA Model, Regional Physical-space Statistical System (RPSS). These 

data are also utilized by SALDAS as forcings to provide soil moisture datasets (Larozza 

et al., 2007; Personal communications, Goncalves, 2007). 
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2.2.1.2 SALDAS for intializing soil moisture parameters

The Sinclair model requires certain initializing parameters during sowing time 

which are related to the water budget module. The model requires soil moisture at the 

planting date for initial soil moisture conditions at 15 and 90 cm depths. These 

initializing parameters are CSEVP, DYSE, DEEP, ESW and WH (water holding 

capacity). ESW is the water contained in the top 15 cm of the soil layer. CSEVP is the 

water evaporation coefficient based on the previous crop mulch. DEEP is the initial water 

in 90 cm depth. DYSE denotes days since last rainfall of more than 4 mm. WH is the 

water holding capacity. Detailed descriptions of the initializing parameters are given in 

the forthcoming pages. The main function inside the water budget model calculated by 

the Sinclair model is a daily calculated parameter called FTSW (fraction of transpirable 

soil water). The FTSW factor is coined by Sinclair and Ludlow (1986). FTSW factor is 

important for seed growth module, nitrogen budgeting, and leaf growth module. 

According to Sinclair (1986), the leaf area growth is restricted when FTSW is less than 

0.2, and the leaf area growth stopped at the FTSW value of 0.05. The other physiological 

processes within the model are sensitive to the values of FTSW.

Sinclair et al. (2007) found that an accurate estimate of initial water content can 

help in predicting yield accurately. The study also pointed out the need for methods to 

either predict or measure initial water content. The study used predicted soil water 

content at sowing obtained by initiating simulations at the harvest of the previous crop 

and also by assuming zero water content at that time. However, for initiating simulations 

based on previous crops, information regarding the farming practices of a particular farm 

in study is necessary. At the same time, expert experience in handling simultaneous runs 
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of crop models is also required.  Therefore, this method may not provide efficient means 

for model runs especially for regional yield predictions. 

Another study showed that soil moisture conditions may be estimated by running 

a 10 year model with information from farmers about the previous cropping and mulch 

type information (Salado and Sinclair, 2008). This method requires detailed information 

on crop rotations for previous years and an initial water budget condition. However, the 

availability of such detailed yearly cropping information for larger areas is not usually 

available. In practice, for local studies, initial soil water condition may be determined by 

local soil sampling and performing lab work needed to determine soil moisture for the 

field before planting. For large areas or regional implementation, direct sampling or long-

term modeling to estimate soil moisture condition for setting initializing conditions in a 

crop model is highly inefficient. Again, in most cases of yield prediction modeling, the 

modeling is performed for off-site locations where field-based information is not 

accessible. In these cases, the unavailability of initial estimates for the initializing values 

of soil moisture conditions may be a highly limiting factor in providing accurate yield 

predictions. A more suitable method for measuring and/or estimating soil moisture 

conditions across a region is a practical necessity for implementing crop modeling larger

areas or for regional level analysis.Therefore, in this study soil moisture data available 

from SALDAS is tested. If effective, soil moisture data sources such as SALDAS can be 

highly useful as an efficient source of providing initial soil moisture values in comparison 

to the current practice of utilizing a multi-year simultaneous crop modeling for water 

budget calculations.
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2.3 Study Area

The study area is on the main soybean growing region of Argentina (The Pampas)

and within the following coordinates (Upper left corner -65.2237, -31.089747; Lower 

right corner -60.091664, -35.0000). This includes the Cordoba region and other nearby 

areas (See Figure 2.1). From the eight different locations identified, various fields were 

selected with basic three crop rotation types: full season soybean after full season 

soybean, full season soybean after maize and double cropped soybeans after wheat. A 

near monthly field trip was taken to collect information including planting date, soil 

moisture, crop emergence and growth, crop residue information in addition to other 

relevant information important for the experiment.

Figure 2.1 AWIFS imagery showing study sites selected for soybean farms and also for 
installing seven automatic weather stations (except Monte Buey).
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2.4 Methodology

2.4.1 Data Collection

2.4.1.1 The South American Land Data Assimilation System (SALDAS) 

SALDAS (de Goncalves et al., 2006) uses NASA’s Land Information System 

(LIS - Kumar et al., 2006) as framework to run a suite of land surface models over South 

America. SALDAS is part of the NASA/GSFC Global Land Data Assimilation System 

(GLDAS) project.  The SALDAS data were provided in one-eighth of a degree 

resolution. SALDAS utilizes meteorological forcings provided from CPTEC inputs to 

generate soil moisture, evapo-transpiration and other outputs. In this study, only soil 

moisture data from SALDAS is tested. The soil moisture values provided by SALDAS 

had data units in kg/m2 for a given layer of soil moisture. 

The soil moisture values are divided by range of soil layer. The total layer of soil 

moisture provided was 200 m in depth. At the same time, SALDAS forcings for daily 

minimum and maximum temperatures, total daily precipitation, and average daily solar 

radiation were tested as inputs to the Sinclair model meteorological data requirement

(Figure 2.2). These data are also utilized by SALDAS as forcings to provide soil moisture 

datasets.
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Figure 2.2 Gridded SALDAS meteorological forcings and soil moisture data.

2.4.1.2 Selection of Soybean Fields  

Various soybean fields with large areas were selected in this study area of interest 

in Argentina. As applicable as possible (See Figure 2.3, Table 2.3), large soybean fields 

with at least 50 ha in area were selected. GPS points were obtained and field boundaries 

were delineated from those points using AWiFS, Google Earth and ArcGIS.

Figure 2.3 An example of fields selected for the study: Marcos Juarez fields over 
AWIFS imagery.
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Table 2.3 Soybean fields used for the study for the year 2006/2007 in Argentina. 

Field Location Crop Rotation Zonal Id Area in Hectares 

Rio Segundo soy/soy 101 143 

Rio Segundo soy/wheat 102 110 

Rio Segundo soy/maize 104 77 

Monte Buey soy/wheat 401 42 

Marcos Juarez soy/maize 501 65 

Marcos Juarez soy/wheat 503 57 

Magiolo soy/wheat 601 109 

Magiolo soy/maize 602 117 

Magiolo soy/soy 604 161 

Pergamino soy/soy 703 54 

Pergamino soy/maize 704 81 

Pergamino soy/wheat 705 51 

Rosario soy/soy 801 60 

2.4.1.3 Ground Meteorological Data 

Ground meteorological stations were installed near the site of the field to collect 

daily rainfall, minimum and maximum temperatures, and solar radiation. The seven 

automatic weather stations, which included all of our sites except for MonteBuey, were 

installed in early November 2006, from which data are recorded every 15 minutes on air 

temperature, solar radiation and rainfall. These data are then aggregated to obtain daily 

datasets for each of the measurements. In case of areas where data are missing, the daily 

rainfall measured by the farmer, from the available locations, were collected. In most 

cases, the rainy days measured by the weather stations coincide with the farmer’s 

observations, although the monthly totals showed some differences.
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2.4.1.4 Soil Moisture Field Sampling

Soil moisture samples were taken from different soybean and maize fields. 

Samples were taken on each replication (three to four reps per field), up to a depth of 1.5 

m, at 30 cm intervals. The available soil water was determined gravimetrically on each 

location by the Soils Lab of INTA Manfredi Experimental Station in Argentina.

2.4.1.5 Yield, Cultivars and Planting Date

Planting dates, cultivars, and crop yield for each field and farm samples were 

collected from the farmers.

2.4.2 Data Preprocessing

Daily SALDAS meteorological forcing datasets (maximum and minimum 

temperatures, solar radiation, precipitation, and soil moisture) for Argentina, South 

America were received in netCDF format. The data in netCDF format were converted to 

ASCIIGrid format using an IDL/ENVI script. These SALDAS forcings grid datasets 

were used for further geo-processing using a zonal analysis Arc-aml script with batch 

processing capability (O’Hara, 2008). For the selected zonal analysis script, the selected 

soybean farms were considered as zones, and were utilized to extract daily values of 

precipitation, minimum and maximum temperatures, and solar radiation. In the table 

below are the field zones used for the analysis and the code names given for zonal 

extraction. Each zone or field site was given a specific code which was used for zonal 

function within ArcGIS. The zonal function created a separate text output files for each 

zonal NDVI value for each day. These were rearranged into a spreadsheet for analysis 
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using script for database manipulation written in Matlab by Shrestha (2008). The script 

extracted the mean zonal values from separate files created from Arc-aml zonal analysis 

function into an integrated text file in which the variable values were arranged for each 

day and was used as inputs to the Sinclair model (Figure 2.4). 

Figure 2.4 Geo-processing methods utilized to extract and process SALDAS grid 
datasets for providing “Sinclair model ready” inputs. 

2.4.3 Use of SALDAS forcings meteorological input 

This study incorporated a field data collection campaign which included 

compilation of crop plantings, varieties, yields, and a ground meteorological baseline 

database. A baseline model testing procedure for evaluating regional yield prediction was 

developed using the ground meteorological database for inputs to the Sinclair model and 

results were compared to observed yields.  Results from the baseline model testing were 
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compared to model results derived from the use of gridded SALDAS-based 

meteorological datasets as inputs to the Sinclair model. 

To effectively use SALDAS and other spatial data, a geo-processing based 

framework was developed to manipulate and extract model-ready data from various 

spatially referenced grid datasets (See Figure 2.4). The SALDAS daily meteorological

data were compared with ground-based meteorological data. SALDAS provided daily 

precipitation, minimum and maximum temperatures and solar radiation. These SALDAS 

variables were tested against the ground meteorological data by replacing one variable at 

a time and comparing the results against the base simulation results that contained all the 

input variables from the ground meteorological stations.

2.4.4 Use of SALDAS soil moisture as initializing inputs

The use of SALDAS soil moisture values to initialize inputs to the Sinclair model 

required conversion of units. The SALDAS soil moisture values were available in kg/m2

for a given amount of depth. This value can be converted to mm per given amount of 

depth [1 kg/m2 = 1 mm]. For the purpose of this analysis, the SALDAS layers were 

combined for a column depth of 200 cm. In the field, soil moisture values were measured 

for selected study areas. The soil moisture values were determined gravimetrically on 

each location and converted to volumetric values. The soil moisture measurements were 

performed at the Soils Lab of INTA Manfredi Experimental Station.

Comparative analysis was performed between the field measurements of soil 

moisture and SALDAS simulated soil moisture for the month of November, in which 

soybeans were planted in most of the fields. Field conditions of very dry soils resulted in 
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lack of soil samples for months before November. For the analysis, the field calculated 

measurement of volumetric soil water for 150 cm in mm of units were used. The 

volumetric fractional values were multiplied by the each depth of measurement (300 mm) 

and the summation of the values over the five layers of each 300 mm depth provided the 

volumetric content of soil water in mm for 150 cm depth. The SALDAS soil moisture 

values were in kg/m2 for 200cm depth. For the data obtained for the year 2006, there 

were four layers of the following depths 100, 300, 600, and 1000 mm with the total depth 

of 2000 mm (200 cm). The SALDAS values in kg/m2 could be directly converted to mm 

of water. The values were multiplied by 0.75 to obtain the representative fractional water 

content for 150 cm.

2.5 Results and Discussion

2.5.1 Yield results from ground meteorological inputs

The yield simulation analysis utilizing ground meteorological data for selected 

fields of Argentina Pampas in Sinclair model showed a majority of the predicted yield 

results were within 20% of the actual yield. All of the percentage differences had 

negative values, which is due to higher values of predicted yields than the actual yields 

obtained from farmers. Since, Sinclair model predicts potential yield without accounting 

for other stresses that might be present in the field such as soil nutrient, pests, and weeds 

as well as other management related issues such as crop row spacing; the higher values of 

predicted yields are an expected result. The overall percentage differences between the 

actual yields obtained from farmers and predicted yields with ground-based 
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meteorological station data is within 30%. However, the majority of the fields have 

differences between actual and predicted yield within 15-20%. The yield obtained from 

ground-based daily meteorological datasets is considered as ‘Base Yield’ which is used to 

compare with the yield obtained from SALDAS forcings throughout the analysis (See 

Table 2.4).

2.5.2 Yield results from all SALDAS forcings

The daily ground-based meteorological inputs required by the Sinclair soybean 

model, which are daily minimum and maximum temperatures, solar radiation and 

precipitation values, were replaced with SALDAS forcings meteorological inputs. 

Although, a majority of the fields had predicted yield values within 30% of the actual 

yield compared to the farmers, most of the simulated yields had lower percentage 

difference. Only one farm had higher than 30% difference from actual yield when using 

ground meteorological data. Whereas the yield values obtained using the SALDAS 

forcings, five farms showed greater than 30% difference than actual yield (See Table 

2.4).
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Table 2.4 Comparison between Sinclair simulated base yields using with ground 
meteorological data and the simulated yield using SALDAS data.

Field 
Location 

Crop 
Rotation 

Zonal Id 
Farmer's 
Yield (g/ 

m2) 

Simulated 
Yield [Base] 

(g/m2)) 

SALDAS  
Yield(g/ 

m2) 

% Difference 
(Farmers Vs. 
Base Yield) 

% Difference 
(Farmer Vs. 

SALDAS 
Yield) 

% Difference 
(Base and 
SALDAS  
Yield) 

Rio Segundo soy/soy 101 460 514 350 -12 24 32 

Rio Segundo soy/wheat 102 400 453 326 -13 19 28 

Rio Segundo soy/maize 104 484 512 365 -6 25 29 

Monte Buey soy/wheat 401 340 388 489 -14 -44 -26 

Marcos 
Juarez 

soy/maize 501 468 493 482 -5 -3 2 

Marcos 
Juarez 

soy/wheat 503 401 467 399 -16 1 15 

Magiolo soy/wheat 601 368 455 527 -23 -43 -16 

Magiolo soy/maize 602 397 476 534 -20 -34 -12 

Magiolo soy/soy 604 395 484 524 -23 -33 -8 

Pergamino soy/soy 703 420 514 493 -22 -17 4 

Pergamino soy/maize 704 420 481 521 -14 -24 -8 

Pergamino soy/wheat 705 320 441 499 -38 -56 -13 

Rosario soy/soy 801 400 500 495 -25 -24 1 

2.5.3 Yield results from SALDAS precipitation

In separate yield simulations, only the precipitation values from ground 

meteorological station data were replaced with SALDAS precipitation values. This was 

done to obtain a separate analysis for SALDAS precipitation. From the yield simulations 

performed, it was observed that the SALDAS precipitation performed moderately well. 

Comparison of yield values from SALDAS precipitation with yield values from all

ground meteorological data showed that when the SALDAS precipitation was used, the 

differences were within 15% (Table 2.5).  On comparing the farmer obtained actual yield 
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values with the SALDAS precipitation yield values, percentage difference between the

yield values were within 15% for six fields and the remaining seven fields were within 

20-31%.

Table 2.5 Comparison between Sinclair simulated base yields using with ground 
meteorological data and the simulated yield in which the ground 
meteorological input is replaced with only the SALDAS precipitation.

Field 
Location 

Crop 
Rotation 

Farmer'
s Yield 
(g/ m2) 

Base Yield 
(g/ m2) 

Yield 
Simulated 

with SALDAS 
Precipitation 

(g/ m2) 

% Difference 
[Farmer  vs. 

SALDAS Yield] 

% Difference 
[Base Vs. 

SALDAS Yield] 
Rio 

Segundo soy/soy 460 514 452 2 12 
Rio 

Segundo soy/wheat 400 453 431 -8 5 
Rio 

Segundo soy/maize 484 512 461 5 10 

Monte Buey soy/wheat 340 388 445 -31 -15 
Marcos 
Juarez soy/maize 468 493 520 -11 -5 

Marcos 
Juarez soy/wheat 401 467 514 -28 -10 

Magiolo soy/wheat 368 455 458 -24 -1 

Magiolo soy/maize 397 476 519 -31 -9 

Magiolo soy/soy 395 484 511 -29 -5 

Pergamino soy/soy 420 514 441 -5 14 

Pergamino soy/maize 420 481 466 -11 3 

Pergamino soy/wheat 320 441 403 -26 9 

Rosario soy/soy 400 500 502 -25 0 

2.5.4 Yield results from SALDAS minimum temperature

Another set of simulations were performed where only the minimum temperature 

from the ground meteorological datasets were replaced with SALDAS forcings minimum 

temperature dataset.  The SALDAS forcings minimum temperature data performed quite 
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well, with nine of the fields had yield differences within 30% of the actual yield obtained 

from farmers (Table 2.6). The comparison with ground meteorological data yield 

simulation results showed that twelve out of thirteen fields were within 10% difference. 

The remaining one field was also within 15% difference.

Table 2.6 Comparison between Sinclair simulated base yields using with ground 
meteorological data and the simulated yield in which the ground 
meteorological input is replaced with only the SALDAS minimum 
temperature.

Field 
Location 

Crop 
Rotation 

Farmer's 
Yield (g/ 

m2) 

Base 
Yield 
(g/ 
m2) 

Yield 
Simulated 

with SALDAS 
Minimum 

Temperature 
(g/ m2) 

% 
Difference  

[Farmer  
vs. SALDAS 

Yield] 

% Difference 
[Base Vs. 

SALDAS Yield] 
Rio 

Segundo soy/soy 460 514 489 -6 5 
Rio 

Segundo soy/wheat 400 453 459 -15 -1 
Rio 

Segundo soy/maize 484 512 522 -8 -2 
Monte 
Buey soy/wheat 340 388 416 -22 -7 

Marcos 
Juarez soy/maize 468 493 479 -2 3 

Marcos 
Juarez soy/wheat 401 467 502 -25 -7 

Magiolo soy/wheat 368 455 489 -33 -7 

Magiolo soy/maize 397 476 510 -29 -7 

Magiolo soy/soy 395 484 486 -23 0 

Pergamino soy/soy 420 514 462 -10 10 

Pergamino soy/maize 420 481 486 -16 -1 

Pergamino soy/wheat 320 441 457 -43 -3 

Rosario soy/soy 400 500 525 -31 -5 

2.5.5 Yield results from SALDAS maximum temperature

Similarly, another set of simulations was performed for the thirteen test fields, in 

which the maximum temperature dataset from ground meteorological stations were 
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replaced by SALDAS forcings maximum temperature. This performed better than other 

meteorological forcings. Ten of the thirteen fields simulated yields within 21% of the 

actual yield (Table 2.7). In comparison to base yields with ground meteorological 

datasets, eleven of the thirteen fields had differences within 10%.

Table 2.7 Comparison between Sinclair simulated base yields using with ground 
meteorological data and the simulated yield in which the ground 
meteorological input is replaced with only the SALDAS maximum 
temperature.

2.5.6 Yield results from SALDAS solar radiation

Finally, in a similar manner the simulations were repeated for the SALDAS solar 

radiation values. Eight of the fields had yield values that differed by more than 20% from 

actual field values (Table 2.8). Three fields had yield values within 15-20%, and two 

Field Location 
Crop 

Rotation 

Farmer’s 
Yield (g/ 

m2) 

Base 
Yield 
(g/ 
m2) 

Yield Simulated 
with SALDAS 

Maximum 
Temperature  

(g/ m2) 

% Difference 
[Farmer  vs. 

SALDAS Yield] 

%Difference 
[Base Vs. 
SALDAS 
Yield] 

Rio Segundo soy/soy 460 514 490 -7 5 

Rio Segundo soy/wheat 400 453 356 11 21 

Rio Segundo soy/maize 484 512 494 -2 3 

Monte Buey soy/wheat 340 388 375 -10 3 

Marcos Juarez soy/maize 468 493 503 -8 -2 

Marcos Juarez soy/wheat 401 467 402 0 14 

Magiolo soy/wheat 368 455 491 -33 -8 

Magiolo soy/maize 397 476 467 -18 2 

Magiolo soy/soy 395 484 519 -31 -7 

Pergamino soy/soy 420 514 483 -15 6 

Pergamino soy/maize 420 481 478 -14 1 

Pergamino soy/wheat 320 441 418 -31 5 

Rosario soy/soy 400 500 479 -20 4 
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fields had yield values within 15% of the actual yield. Comparison with the simulated 

yield from using all the ground meteorological inputs showed that nine of the fields had 

yield values within 10% and the rest were within 10 -20%.

Table 2.8 Comparison between Sinclair simulated base yields using with ground 
meteorological data and the simulated yield in which the ground 
meteorological input is replaced with only the SALDAS solar radiation.

2.5.7 SALDAS soil moisture as initializing inputs

For most of the sample sites, differences were seen in field soil moisture values 

and SALDAS soil moisture values, with SALDAS estimating much lower values. On

average, percentage difference of 50 was obtained. The differences in the values are 

listed in the table below (Table 2.9).

Field Location 
Crop 

Rotation 

Farmer's 
Yield (g/ 

m2) 
Base Yield 

(g/ m2) 

Yield 
Simulated 

with 
SALDAS 

Solar 
Radiation 

(g/ m2) 

% Difference 
[Farmer  vs. 

SALDAS Yield] 

%Difference 
[Base Vs. 

SALDAS Yield] 

Rio Segundo soy/soy 460 514 534 -16 -4 

Rio Segundo soy/wheat 400 453 534 -33 -18 

Rio Segundo soy/maize 484 512 502 -4 2 

Monte Buey soy/wheat 340 388 437 -28 -13 

Marcos Juarez soy/maize 468 493 519 -11 -5 

Marcos Juarez soy/wheat 401 467 475 -18 -2 

Magiolo soy/wheat 368 455 511 -39 -12 

Magiolo soy/maize 397 476 563 -42 -18 

Magiolo soy/soy 395 484 512 -30 -6 

Pergamino soy/soy 420 514 520 -24 -1 

Pergamino soy/maize 420 481 491 -17 -2 

Pergamino soy/wheat 320 441 481 -50 -9 

Rosario soy/soy 400 500 511 -28 -2 
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Table 2.9 Comparison between SALDAS soil moisture values and field observed soil 
moisture.

Volumetric Soil 
moisture from fields 

for November for 150
cm depth

Field 
No.

Date field 
samples taken

SALDAS soil 
moisture

(mm) for 200
cm

SALDAS 
soil 

moisture
(mm) for 
150 cm

Field vol. soil 
moisture (mm) 

for 150 cm

%
Difference 
[Field vs. 
SALDAS 
values]

La Carlota Lot 3 301 2 Nov, 2006 181.50 136.13 239.40 43
La Carlota Lot 10 303 2 Nov, 2006 181.50 136.13 258.22 47
La Carlota Lot 9 304 2 Nov, 2006 181.50 136.13 218.50 38
Maggiolo Lot 27 604 2 Nov, 2006 273.32 204.99 442.57 54
Maggiolo Lot 40 602 2 Nov, 2006 269.18 201.88 391.11 48
Maggiolo Lot 41 605 2 Nov, 2006 270.53 202.89 388.80 48

Marcos Juarez Lot 23 501 3 Nov,2006 272.32 204.24 458.10 55
Marcos Juarez Lot 6 502 3 Nov,2006 272.32 204.24 453.20 55
Monte Buey Lot 1 404 3 Nov,2006 224.70 168.52 476.02 65
Monte Buey Lot 2 402 3 Nov,2006 224.70 168.52 476.55 65
Monte Buey Lot 3 403 3 Nov,2006 224.70 168.52 450.80 63
Pergamino Lot 3 703 1 Nov, 2006 350.15 262.61 527.70 50
Pergamino Lot 4 704 1 Nov, 2006 350.15 262.61 517.10 49
Rafaela Lot 103 202 4 Nov, 2006 352.79 264.59 434.65 39
Rafaela Lot 54 201 4 Nov, 2006 351.28 263.46 522.67 50
Rafaela Lot 3 205 4 Nov, 2006 352.79 264.59 453.10 42

Rosario Lot 4Y5 801 4 Nov, 2006 418.73 314.05 530.80 41
Rosario Lot 2 803 4 Nov, 2006 418.73 314.05 539.40 42

RioSegundo Circle A 101 6 Nov, 2006 455.57 341.68 357.00 4
RioSegundo Lot 32 104 6 Nov, 2006 455.57 341.68 356.85 4
RioSegundo Lot 39 103 6 Nov, 2006 412.72 309.54 212.20 -46

Average=
50

2.5.7.1 Use of SALDAS moisture values for initializing Sinclair model

A small comparison test was performed to compare the volumetric soil water 

values calculated from SALDAS with field measured volumetric soil water values for a 

depth of 150 cm. The comparison of percentage difference between the field-based 

volumetric soil moisture values and SALDAS volumetric soil moisture values for 21

fields showed that the differences ranged from 37 to 64%. The three fields in Rio 

Segundo showed different pattern with respect to the other fields. Two fields in Rio 

Segundo had percentage difference of only 4.25 and one of the fields in Rio Segundo
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showed lower soil moisture values than SALDAS soil moisture.  These three fields in Rio 

Segundo were considered as outliers. 

The comparison was done for the month of November, which is the month of 

planting for most varieties of soybean. All the fields, except for the three fields in the Rio 

Segundo which were considered outliers, showed underestimation of soil moisture by 

SALDAS with an average value of 50%.

To utilize SALDAS soil moisture values to initialize the Sinclair model, a 

conversion process was utilized to convert the total daily average soil moisture values to 

the plant available water values. In the Sinclair model, all the values used for soil water 

initialization are in millimeters of water per given depth. The SALDAS values show 

promise for initializing ESW (variable that represents soil moisture at the first 15 cm of 

the top layer where evaporation takes place) and DEEP (variable which is the initial 

water in 90 cm depth).  

The actual available soil water content for these initializing variables can be 

calculated by negating the permanent wilting point or its comparative replacement factor 

‘crop lower limit’. The permanent wilting point values were measured from the field 

samples for each site at the INTA Manfredi Station. 

These values were averaged to obtain a single representative value for our area of 

interest. It is well known that permanent wilting point values differ in different soils but 

for this study, it was assumed that the soils for our area of interest were more or less 

homogenous. An average value of 0.15 (or 15%) permanent wilting point was obtained

from all the field observations.
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The SALDAS values were converted to fraction and plant available water in 

fraction was calculated by using the following formula:

Plant available water = water content at field capacity - wilting point             (2.1)

The fractional values of plant available water content were again converted to 

millimeters of plant available water content for a given depth. Using these values, the 

available water content for 15 and 90 cm depths were calculated for ESW and DEEP 

respectively. Sinclair model simulations were run to test whether SALDAS soil moisture 

values could be used to initialize the Sinclair model runs (Table 2.10). Two simulations 

sets were run for both ESW and DEEP values. The sets are as follows:

a. Simulations run for SALDAS obtained ESW values for plant available water 

in top 15 cm with expert provided DEEP values. 

b. Simulations run for SALDAS obtained ESW values increased by 50% for 

plant available water in top 15 cm with expert provided DEEP values. 

c. Simulations run for SALDAS obtained DEEP values for plant available water 

for 90 cm depth expert provided ESW values. 

d. Simulations run for SALDAS obtained DEEP values increased by 50% for 

plant available water for 90 cm depth expert provided ESW values.

e. Simulations run for SALDAS obtained DEEP values as well as ESW values 

for plant available water. 

f. Simulations run for SALDAS obtained DEEP values as well as ESW values 

increased by 50% for plant available water. 
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The results from the comparison to the base yield show that the percentage 

difference utilizing the ESW and DEEP values derived from SALDAS soil moisture is 

below 5% in majority of the fields. Even though SALDAS soil moisture values were 

observed to be 50% lower than field measured soil moisture values (as shown in Table 

2.9), the utilization of  ESW and DEEP values derived from SALDAS soil moisture did 

not produce much difference in the simulated yields. 

From this result, we can safely say that that the Sinclair model is not very 

sensitive to ESW and DEEP initialization factors (Table 2.11). The model runs are more 

dependent on the accuracy of meteorological variables, especially rainfall data for the 

soil-water budget calculation. Therefore, as long as the daily rainfall meteorological 

inputs are accurate, the lower initialization values of ESW and DEEP are not detrimental 

to the simulation results. 

However, too high initialization values for DEEP seem to have some influence in 

the water budget calculation. It can be observed from the case of the field in RioSegundo 

Lot 39, in which the SALDAS soil moistures was higher by 46% than the field measured 

soil moisture values and was considered as an outlier. However, utilizing the SALDAS 

values for initialization for this field, which was 46% higher, did not produce much 

difference in the yield. But when the original SALDAS DEEP values were increased by 

50%, a much larger difference of 22% in the simulated yield was observed.

The root mean square error (RMSE) calculated between the yields from six sets of 

simulations using different ESW and DEEP values and base yield (Table 2.12) showed 

that the RMSE values were lower when only the ESW values were replaced with 

SALDAS soil moisture. The RMSE values increased when the DEEP values were 
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replaced with SALDAS soil moisture. The results point out that the DEEP value 

initializations of soil moisture from SALDAS causes more deviated variation in yield 

results than utilizing ESW values.

Table 2.10  Yield from six sets of simulations using different ESW and DEEP    values 
 results obtained.  

Location Field 
ID

Yield 1: 
SALDAS 
ESW 15

cm
(g/m2)

Yield 2: 
SALDAS 

ESW 15 cm 
+ 50% 

Increase 
(g/m2)

Yield 3: 
SALDAS 
DEEP 90

cm
(g/m2)

Yield 4: 
SALDAS 
DEEP 90
cm + 50% 
Increase 
(g/m2)

Yield 5: 
SALDAS 
ESW 15

cm + 
DEEP
(g/m2)

Yield6: 
SALDAS 

ESW 15 cm 
DEEP 90
cm + 50% 
Increase 
(g/m2)

BASE 
YIELD
(g/m2)

Maggiolo Lot 
37 601 468 455 451 459 451 459 455

Maggiolo  Lot 
27 604 485 480 556 505 556 505 484

Maggiolo Lot 
40 602 475 476 482 479 482 479 476

Marcos Juarez  
Lot 23 501 492 520 482 477 482 477 493
Marcos 

Jurarez Lot 26 503 468 468 470 521 470 521 467
Monte Buey 

Lot A4 401 388 388 371 380 371 380 388
Pergamino 

Lot 3 703 515 514 473 511 473 511 514
Pergamino 

Lot 5 705 442 442 442 442 442 442 441
Pergamino 

Lot 4 704 481 481 478 479 478 479 481
Rosario  Lot 

4Y5 801 500 500 512 517 512 517 500
RioSegundo  

Circle A 101 514 514 507 519 507 519 514
RioSegundo 

Lot 32 104 512 512 504 519 505 519 512
RioSegundo

Lot 39 103 453 453 436 355 436 355 453
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Table 2.11 Percentage differences of the simulated yields with ESW and DEEP from 
  SALDAS with base yields (simulated yield results using all experts provided 
  initializing variables and ground meteorological datasets as inputs).

Location Field ID Base Vs. 
Yield 1 (%)

Base Vs. 
Yield 2 (%)

Base Vs. 
Yield 3 (%)

Base Vs. 
Yield 4 (%)

Base Vs. 
Yield 5 (%)

Base Vs. 
Yield 6 (%)

Maggiolo 
Lot 37 601 -3 0 1 -1 1 -1 

Maggiolo  
Lot 27 604 0 1 -15 -4 -15 -4 

Maggiolo 
Lot 40 602 0 0 -1 -1 -1 -1 

Marcos 
Juarez  Lot 

23
501 0 -6 2 3 2 3 

Marcos 
Jurarez Lot 

26
503 0 0 -1 -12 -1 -12

Monte Buey 
Lot A4 401 0 0 4 2 4 2 

Pergamino 
Lot 3 703 0 -7 8 1 8 1 

Pergamino 
Lot 5 705 0 0 0 0 0 0 

Pergamino 
Lot 4 704 0 0 0 0 0 0 

Rosario  Lot 
4Y5 801 -3 -3 -2 -3 -2 -3 

RioSegundo  
Circle A 101 0 0 1 -1 1 -1 

RioSegundo 
Lot 32 104 0 0 1 -1 1 -1 

RioSegundo
Lot 39 103 0 0 4 22 4 22

Table 2.12  Root mean square error (RMSE) calculated between yield from six sets of 
 simulations using different ESW and DEEP values and base yield. 

RMSE
SALDAS 
ESW 15 
cm and 

Base Yield 
(g/m2)

RMSE  
ESW 15 cm + 

50% Increase and 
Base Yield  

(g/m2)

RMSE
SALDAS 

DEEP 90 cm 
and Base Yield 

(g/m2)

RMSE
SALDAS 

DEEP 90 cm 
+ 50% 

Increase and 
Base Yield 

(g/m2)

RMSE  
ESW 15 cm + 

DEEP and Base 
Yield 

(g/m2)

RMSE 
ESW 15 cm 

DEEP 90 cm + 
50% Increase and 

Base Yield 
(g/m2)

3.66 7.58 24.63 32.44 24.61 32.44 
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2.6 Conclusions

The utilization of grid-based datasets such as SALDAS have many benefits for 

regional yield predictions. One major benefit is that such datasets can facilitate the 

process of geo-processing enabled efficient regional crop modeling. The other benefit is 

to provide a source of meteorological variables for any geographical region even in areas 

where meteorological stations are absent. Similarly, the usefulness of SALDAS type 

datasets depends upon the nature of the model as well. In this case, Sinclair model which 

is a semi-mechanistic model was used. The model depends upon daily input of 

meteorological variables and some initialization parameters for initial soil moisture 

conditions. The SALDAS forcings as well as soil moisture grids were applicable for use 

for both conditions. The daily availability of SALDAS datasets was compatible with the 

daily meteorological variable requirements of the Sinclair model. Therefore, crop models 

similar to Sinclair can benefit more from SALDAS type datasets. The geo-processing 

framework developed led to an efficient adaptation of the Sinclair model to use spatially 

referenced SALDAS grid datasets. A cell-based implementation of crop yield model may 

be desirable in the future. However, such cell by cell implementation maybe 

computationally intensive. 

Sinclair model simulation of soybean growth and yield simulations were validated 

with the farmer’s reported yields. The results showed the use of SALDAS inputs resulted 

in less accurate yield prediction, when compared with the yield prediction with respect to 

the inputs of ground-based meteorological datasets as well as actual yield. The deviation 

from the baseline yield values seemed to increase when all the ground meteorological 

datasets were replaced with SALDAS data values. A one on one replacement of ground 
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based datasets with SALDAS seemed to provide yield results within a difference of 10% 

in most cases. Replacing all the ground meteorological datasets with SALDAS seemed to 

have a cumulative increase in deviation from the actual yields. The results were not 

unexpected considering the fact that each SALDAS pixel is 1/8th of a degree and were 

utilized for field level yield predictions. A higher resolution grid datasets may be 

expected to provide a better accuracy to the yield results. Similarly, the SALDAS soil 

moisture initializing variables for soil water at 15 cm depth (ESW) and for 90 cm depth 

(DEEP) were tested. The analysis of SALDAS soil moisture values for initializing 

Sinclair model showed less sensitivity of the model to these variables. The ESW 

initializations showed less variation in the yield results than the DEEP initializations as 

observed from the results of the RMSE analysis. The results show that the SALDAS soil 

moisture values can be used as an efficient source for initializing soil moisture for model 

runs. Future work is recommended in utilizing SALDAS type grid datasets to be used for 

other crop models as well as for different geographical regions.
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CHAPTER III

THE UTILITY OF MODIS AND SIMULATED VIIRS IMAGERIES FOR 

MONITORING CROP PRODUCTIVITY

3.1 Abstract

This research evaluates the ability of Normalized Difference Vegetation Index 

(NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) and simulated 

Visible/Infrared Imager Radiometer Suite (VIIRS) imageries to monitor soybean crop 

bio-productivity. A geo-processing framework was employed to extract time-series 

Normalized Difference Vegetation Index (NDVI) values from selected fields that 

provided representative values of crop vigor for each crop type. These extracted daily 

time-series NDVI values were used to create NDVI time-series plot or curve to study the 

ability of MODIS NDVI to monitor, track, and evaluate soybean crop growth and 

phenological stages of development. The time-series plots obtained from MODIS NDVI 

were compared with predicted phenological events from the Sinclair model to cross-

validate the Sinclair model and MODIS daily NDVI values. This served as a baseline to 

compare the simulated VIIRS with MODIS, in which simulated VIIRS daily NDVI 

values were compared in a similar framework. The results, from the cross-validation

between MODIS NDVI and Sinclair model confirmed the ability of MODIS data to 

monitor crop growth conditions and also validated the ability of Sinclair crop model to
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predict and simulate important plant phenological events. The comparison of MODIS

with simulated VIIRS NDVI in the same framework showed that VIIRS data, although 

having coarser resolution than MODIS, is capable of providing the same level of 

performance as MODIS for crop growth monitoring capability with respect to providing 

NDVI time-series curves that conformed to soybean crop phenological events.

3.2 Background and Introduction

Satellite remote sensing has the ability to provide spectral information of the crop 

canopy and physical plant properties that helps to assess crop vigor and growth, which is 

related to crop yield (Lobell et al., 2003). Early research in this area found that the 

percentage of crop cover was closely related to vegetation indices (Tucker, 1979).  In that 

research, when the crop cover increased or decreased the vegetation index values 

measured had a corresponding change. Thus, due to the observed relationship between 

the vegetation indices and crop development, crop conditions could be monitored through 

spectral measurements. Wiegand and Richardson (1990a, 1990b) in their research with 

different vegetation indices which included NDVI, Perpendicular Vegetation Index 

(PVI), and Red index, found that although limited, the vegetation indices do have 

relationships to crop growth and development and can be used to infer leaf area, evapo-

transpiration and yield. Of the many vegetation indices, NDVI is the most commonly 

used index for monitoring vegetation growth.

NDVI is based on the properties of the plant that absorb light in the visible red 

wavelength and its inherent property that reflect in the infra-red wavelengths. One of the 

many applications of NDVI for agricultural applications has been in finding relationships 
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between NDVI values and crop biomass and growth processes that can be related with 

yield.  Research conducted by Boken et al. (2002) found that the average NDVI during 

the heading period correlated highly with wheat yield. Dabrawoska et al. (2002) 

concluded that there was a strong correlation between cereal yields and VCI (Vegetation 

Condition Index) calculated from NDVI and brightness temperature from National 

Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution 

Radiometer (AVHRR) data in the weeks of 16 and 22 of crop growing period. Similarly, 

Rasmussen (1998) used a NOAA-AVHRR NDVI-based model for predicting crop yield 

in Senegal. In that research, regression analysis of the various data parameters was 

performed, and grain yield and time weighted NDVI values were highly correlated. These 

research efforts all indicate some correlation between NDVI during crop growth stages 

and crop yield. 

Reed et al. (1994) developed a set of metrics from time-series NDVI from 

AVHRR for characterizing phenological states. The metrics characterizes various 

phenology states such as onset of greenness, duration of greenness, maximum NDVI, and 

end of greenness; which can be related to different vegetative photosynthetic activities as 

well as different stages of plant development (Kastens et al., 1998; Leeuwen et al., 2006).

For operational uses, agencies such as Foreign Agricultural Service (FAS) at the United 

States Department of Agriculture (USDA), Production Estimation and Crop Assessment 

Division (PECAD) require global NDVI data in the operational process for their global 

decision making in crop condition assessments and predictions of yield before harvest. 

Currently, PECAD utilizes NDVI from AVHRR to fulfill their operational needs (Turner, 

1998; Bethel and Doorn, 1998).
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It is valid to note that in these referenced past research studies for regional 

monitoring of crop conditions, NDVI from NOAA-AVHRR has been predominantly 

used. NOAA-AVHRR has a spatial resolution of 1 km and can provide daily global 

reflectance datasets. The reason for using NOAA-AVHRR in many applications more 

specifically in regional crop monitoring is largely because it was historically the only 

available data source for large area monitoring that could provide cloud-free composited 

NDVI values. The AVHRR NDVI data are usually available as near weekly, bi-weekly 

or monthly composites. In the future, AVHRR will be discontinued and succeeded by the 

multi-agency sponsored MODIS and VIIRS sensors. 

Since the launch of the NASA Earth Observing System (EOS) AQUA and 

TERRA satellites in December 1999 and May 2002, respectively, global daily reflectance 

datasets from MODIS sensor have been available with spectral characteristics similar to 

AVHRR in red and infrared bands but at a higher resolution of 250 m. MODIS data will 

provide continuity to the historic NDVI datasets that have been computed since 1979, 

when NOAA-6 was launched with the inclusion of visible and near-infrared (NIR) 

spectral bands (Ji et al., 2008).   Compared to AVHRR, MODIS can provide better results 

due to its spatial resolution at 250 m. Although the MODIS NDVI product is considered 

as a continuity product for AVHRR NDVI, utilization of MODIS NDVI products are still 

limited and more research is required for validating the potential of MODIS in 

agricultural applications. Another sensor called VIIRS has been planned to collect visible

and infrared imagery at 400 m spatial resolution onboard the US National Polar-orbiting 

Operational Environmental Satellite System (NPOESS) as a “successor” sensor for 

MODIS (Ji et al., 2008). The major difference between these sensors are their spatial 
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resolutions and spectral ranges for visible and NIR bands. VIIRS has more similarity with 

AVHRR radiometry although at 400 m the spatial resolution lies between MODIS and 

AVHRR. The benefit of data sources such as MODIS is not only the spatial resolution 

that allows regional level analysis, but also the temporal resolution of daily data 

availability, which is a significant advantage for detecting crop damages due to sudden 

weather anomalies. MODIS, which is on both TERRA and AQUA platforms, can acquire 

spectral data daily two times a day; therefore MODIS provides the benefit of near real-

time regional monitoring of vegetation growth stages, which is especially important for 

seasonal crops that require constant monitoring. In fact, both MODIS, and in the future 

VIIRS, can provide daily temporal coverage and their spatial resolution are effective for 

large area (regional and national) monitoring of crop conditions (see Table 3.1).

Table 3.1 Comparison between spatial, temporal and spectral resolution of MODIS, 
VIIRS and AVHRR.

Sensors Temporal Resolution Spatial Resolution

Spectral Ranges (FWHM 

bandwidth in nm) for Red and 

NIR (Source: Leeuwen et al., 

2006)

VIIRS 1 day 400 m
Red: 600-680 nm

NIR: 846-885 nm

MODIS 1-2 days 250 m
Red: 620-670 nm

NIR: 841-876 nm

AVHRR 

(NOAA-17)
1 day 1 km

Red: 589-680 nm

NIR: 734-988 nm
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Therefore, this study has been undertaken with the objective of exploring, 

documenting, and understanding more fully the potential of MODIS datasets for 

monitoring crop growth processes.  The research was designed to test the ability of 

MODIS 250 m NDVI to detect changes in soybean phenology at the farm level for the 

2006/2007 soybean growing season in Argentina. Argentina’s soybean production is one 

of the highest in the world with intensive soybean farming in the Pampas region. 

Additionally, the availability of large soybean fields in Argentina provide an opportunity 

to utilize coarser resolution imageries such as MODIS for field level validation and for 

obtaining unmixed soybean-based NDVI time-series data for each farm as much as 

possible  within the constraints of the 250 m resolution of MODIS images. The 

sensitivity of the MODIS datasets to detect changes in NDVI at the farm level, will in 

large part, determine the level of effectiveness of MODIS datasets for regional 

applications. The ability of MODIS data to provide continuity for regional crop growth 

and yield monitoring applications in which AVHRR NDVI has been used successfully by 

crop scientists will also be tested.  Data continuity is important for operational use of 

long-term NDVI datasets provided by AVHRR for agencies such as PECAD, as well as 

for the research community. MODIS and VIIRS have been identified as the sensors that 

can provide datasets with similar spectral and temporal characteristics to AVHRR 

datasets (Gallo et al., 2005; Ji et al., 2008; Leeuwen et al., 2006).

In this research, NDVI values from MODIS data are used to create soybean crop 

growth stage curves to study the ability of MODIS NDVI to monitor, track, and evaluate 

soybean crop growth stages of development by comparing observed values of NDVI with 

predicted phenological events from the Sinclair model. Since VIIRS is a planned future 
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sensor, the research utilizes simulated VIIRS data as well. The study will help to 

determine the effect of resolution, in this case comparing the ground resolution of 

MODIS at 250 m with an effective resolution of VIIRS at 400 m, on the time-series 

NDVI values that can provide phenological growth characteristic curves for a particular 

crop during a growing season. The simulated VIIRS daily NDVI values will be compared 

with MODIS NDVI to test the effectiveness of future VIIRS vegetation index products 

by comparing the resultant time-series curve depicting soybean growth generated from 

each source to ascertain their similarities and differences, as well as the degree to which 

they are in agreement with ground-truth crop data and Sinclair model predictions for the 

growth process of the soybean crop.

3.3 Methodology

3.3.1 Study Area

The study area lies within the main soybean growing region of Argentina (The 

Pampas), which includes the Cordoba region and other nearby areas. The Pampas is a 

major soybean farming region within Argentina. For this study, various farms engaged in 

soybean farming were selected for field information on planting dates, and other pertinent 

ancillary information on farming practices. The major crops in our selected sites were 

wheat, corn, and soybeans which were planted in a rotational basis. For our study time of 

interest 2006/2007, large farms were selected to match the 250 m and 400 m resolution of 

MODIS and VIIRS, in which soybeans were planted for the 06/07 cropping season. 

These soybean farms were selected as our study areas of interest (AOI) and are within the 
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following coordinates: upper left corner -65.2237, -31.089747 and lower right corner -

60.091664, -35.0000. (See figure 3.1)

3.3.2 Data Sources

3.3.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) 

AQUA and TERRA satellite platforms view the entire earth surface every 1-2

days and contain the Moderate Resolution Imaging Spectroradiometer (MODIS), which 

acquires data on 36 spectral bands at different spatial resolutions of 250 m, 500 m and 

1000 m. For this research, only infrared and red bands are utilized, which are available at 

250 m resolution. MODIS is designed to follow the heritage of the NOAA-AVHRR 

sensor series for providing long-term integrated measurements of the land surface (see 

http://modis.gsfc.nasa.gov). For the purpose of this research, the MODIS product 

MOD/MYD (TERRA/AQUA) 09GQK gridded data were used. The tile number H12V12 

for this gridded dataset contained the area of interest. 
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Figure 3.1 The AOI of our interest is shown by the red box inside the larger magenta 
colored box. The magenta colored box is the MODIS tile H12V12 used for 
this experiment.

3.3.2.2 Visible Infrared Imaging Radiometer Suite (VIIRS)

VIIRS is a future NASA sensor that is planned to serve as an operational follow-

on for primary visible to thermal infrared sensing assets for both civil and defense 

communities that are currently using NOAA-AVHRR and Defense Meteorological 
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Satellites Program (DMSP) and MODIS. VIIRS onboard NPOESS Preparatory Project

(NPP), with a spatial resolution of 400 m, will collect visible/infrared imagery and 

radiometric data (Lee et al., 2005). This study evaluates simulated VIIRS dataset to 

assess its use for agricultural efficiency applications. The MODIS reflectance data is used 

to obtain simulated VIIRS products using ART (Application Research Toolkit) developed 

by Science System and Applications, Incorporated (SSAI). The input MODIS datasets 

which have the resolution of 250 m are converted to resolution of VIIRS with 400 m after 

simulation.

3.3.3 Preprocessing

3.3.3.1 Field Boundary Delineation and Verification

GPS points for corners of soybean fields selected for the study were provided by 

Dr. Luis Salado Navarro, a research collaborator in Argentina. These points were used to 

delineate and demarcate field boundaries. Google Earth’s high resolution imageries were 

used to place these GPS points in the correct field corners. At the same time, Advanced 

Wide Field Sensor (AWiFS) imagery for the location was also used for properly 

delineating the soybean fields. These points were then digitized as an ArcGIS polygon 

shape file. The digitized fields were then verified using land parcel maps obtained from 

farmers for each field and as well as from the first hand knowledge of Dr. Navarro.
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3.3.3.2 Data Subsetting, Reprojection and Format Change

The ART toolbox had a functionality that accesses the functions of MODIS re-

projection tool (MRT) which can read files in HDF format and re-project. The original 

HDF format MODIS data were in Sinusoidal projection. The MODIS red and infrared 

bands were extracted and re-projected to UTM projection, Zone 20S, WGS 84 and then 

subsetted utilizing the MRT application through ART encompassing the soybean field 

sites selected for our study. The HDF files were then converted to Geographic Tagged 

Image File Format (geoTIFF) files. Then, the subsetted images were utilized by ART 

toolkit to simulate images with the spectral and spatial resolution of VIIRS imageries.

3.3.3.3 VIIRS Simulation

The VIIRS images were simulated using the ART software. The algorithm 

requires the input of imagery with higher spectral resolution than the desired resolution of 

the simulated image (Zanoni et al., 2002). In this study, the desired simulated image was 

from VIIRS. VIIRS is planned to have a spatial resolution of 400 m and will contain 

visible and infrared bands. The MOD09GQK is the surface reflectance daily level 2G 

global 250 m datasets that were used to simulate VIIRS red and infrared bands. The main 

purpose was to assess the NDVI values of MODIS at 250 m for regional yield 

productivity monitoring and test the same with simulated VIIRS NDVI at 400 m

resolution. The ART toolbox uses MATLAB functions and utilizes a MATLAB script to 

handle all file input and output paths as well as different configuration settings required 

for the simulations (Figure 3.2).
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Figure 3.2 Simulated VIIRS NDVI (400 m) from MODIS data (250 m) using 
Application Research Toolbox (ART).

3.3.3.4 NDVI Calculation

The MODIS and VIIRS (obtained from simulation using the ART toolbox) 

imageries were then converted to NDVI images. The NDVI was calculated using the

following relationship:

NDVI = NIR-R/NIR+R (3.1)

where NDVI = Normalized Difference Vegetation Index, NIR = Near Infrared Band, R= 

Red Band. The NDVI value ranges from -1 to +1; the value increases from -1 to +1 with 

the increase in vegetation.

3.3.3.5 Zonal Value Extraction

The NDVI values were extracted using an Arc-aml script with batch processing 

capability that was created by O’Hara (2008). First, the NDVI files which were in 

GeoTiff format were converted to Arc grid format. The fields selected in Argentina from 
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where field data were collected were digitized into polygon zones from the GPS points 

collected in the fields (Figure 3.3).

These fields were considered as zones that were used to extract the NDVI values 

for each day of the growing season for soybean in Argentina. Each zone or field site was 

given a specific code which was used for zonal function within ArcGIS. The zonal 

function created a separate text output file for each zonal NDVI value for each day. These 

were rearranged into a spreadsheet for analysis using script for database manipulation 

written in Matlab by Shrestha (2008). Table 3.2 shows the field zones used for the 

analysis and the code names given for zonal extraction.

3.3.3.6 Large Data Size and Volume Handling with Batch Processing

Since the time frame for the analysis consisted of multiple sources of data per day 

for a complete crop growing season for soybean, a large number of datasets had to be 

processed before it could be analyzed. For all the processing steps, batch processing was 

applied. The MODIS data were collected daily for both AQUA and TERRA MODIS. 

The data were processed starting from August 26, 2006 to July 15, 2007 based on the 

soybean growing time frame in Argentina. A flowchart of the pre-processing steps is 

given in the Figure 3.4.
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Figure 3.3 Flowchart of the geo-processing methodology used for the analysis.
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Table 3.2 Soybean fields for the year 2006/2007 in Argentina.

Area Name Zone ID (Field No.) Crop Rotation

Rio Segundo 101 Soybean over Soybean

Rio Segundo 102 Soybean over Wheat

Rio Segundo 104 Soybean over Maize

Marcos Juarez 501 Soybean over Maize

Marcos Juarez 503 Soybean over Wheat

Venado Tuerto 601 Soybean over Wheat

Venado Tuerto 602 Soybean over Maize

Venado Tuerto 604 Soybean over Soybean

Pergamino 703 Soybean over Soybean

Pergamino 704 Soybean over Maize

Pergamino 705 Soybean over Wheat

Rosario 801 Soybean over Soybean

Rosario 803 Soybean over Maize

Rosario 804 Soybean over Soybean

The planting dates in Argentina, for soybean farming, start from October till 

December and the harvest time is from March until May. A few months of data before 

and after the growing season were also added for studying the NDVI changes before 

planting and after harvest. Therefore, for the purpose of analysis, 324 images for AQUA 

MODIS and another 324 images for TERRA MODIS were required. These images were 

then used to simulate VIIRS images for both AQUA and TERRA MODIS datasets. 

Hence, a total of at least 1296 images were processed before the final analysis could be 
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performed. For decreasing computational time required for processing a large number of 

images, a 64 bit computer was used to store the data and process using ART/MRT tool 

for MODIS preprocessing and VIIRS simulation.

Figure 3.4 Flowchart of the pre-processing steps performed before analysis.
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3.4 Analysis and Results

3.4.1 Comparison between MODIS and simulated VIIRS

3.4.1.1 Comparison using scatter plot

Scatter plots were created for 324 days of extracted MODIS and simulated VIIRS 

NDVI values (from both AQUA and TERRA MODIS), for the fourteen selected soybean 

field sites in Argentina. The extracted simulated VIIRS from both AQUA and TERRA 

MODIS showed similar characteristics for the fields which seemed to imply that the 

NDVI values from AQUA and TERRA MODIS were similar. The NDVI values from 

MODIS and simulated VIIRS complemented each other and demonstrated a linear 

relationship (See Figures 3.5 and 3.6). The squared correlation coefficient (R2) values 

between the two datasets were high. In majority of the fields the R2 was found to be 0.9 

or higher except for the field 704 in Pergamino in which the R2 was 0.86 for TERRA 

MODIS and 0.81 for AQUA MODIS. The exact reason for the lower values of the 

squared correlation coefficient (R2) for this particular field is not known; however, the 

lower value for the field does point out that the simulation of VIIRS from MODIS does 

not always produce a nearly similar NDVI product of lower resolution at all times. The 

reason could also be due to some internal algorithm configuration of the ART toolkit for 

VIIRS simulation.
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Figure 3.5 TERRA MODIS NDVI and simulated VIIRS NDVI scatter plots for 14 
fields in the area for 2006-2007 soybean growing season.
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Figure 3.5 (Continued)
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Figure 3.6 AQUA MODIS NDVI and simulated VIIRS NDVI scatter plots for 14 fields 
in the area for 2006-2007 soybean growing season.
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Figure 3.6 (Continued)
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3.4.1.2 Validation of VIIRS simulation

The research design required VIIRS simulated from MODIS to be compared with 

MODIS. The simulated VIIRS from MODIS was compared against the VIIRS simulation 

from AWiFS imagery. The objective was to validate the simulated VIIRS from a

different sensor of a higher resolution and radiometric properties.  This validation process 

was required to reduce any bias in the comparison of NDVI from VIIRS simulated from 

MODIS with NDVI from MODIS. 

AWiFS has a spatial resolution of 56 m. For the comparison, a cloud free AWiFS 

imagery was selected. The imagery on the acquisition date of December 26, 2006 was 

found to have no cloud cover. The simulations from AWiFS to VIIRS were provided by 

SSAI, Stennis Space Center, MS. Similarly, the VIIRS simulation from MODIS using 

MOD02 dataset for the same date was also provided by SSAI, Stennis Space Center.  The 

NDVI values were calculated from the simulated images. Both the simulated VIIRS from 

MODIS and from AWiFS were projected in the same projection and subsetted to an area 

(552x476 pixels) with common coverage. Before comparison, one image was co-

registered with the other image using image to image registration using ground control 

points. Thus, co-registered images were then compared using simple statistics and image 

to image correlation. The table below (Table 3.3) shows the statistics calculated between 

the two images:
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Table 3.3 Statistical differences between VIIRS images simulated from MODIS and 
AWiFS.

Image Min NDVI Max NDVI Mean NDVI
Standard

Deviation

VIIRS 
simulated 

from MODIS 
(MOD02)

-0.38531 0.8563 0.5624 0.1851

VIIRS 
simulated 

from AWiFS
-0.5923 0.8741 0.5899 0.1937

VIIRS simulated from MODIS (MOD02) and VIIRS simulated with AWiFS was 

found to have a very high value of correlation coefficient (r) at 0.91.  The statistical 

output (Table 3.3) and the correlation coefficient show a good agreement between the 

AWiFS simulated VIIRS and MODIS (MOD02) simulated VIIRS. Both of the compared 

simulated VIIRS were of 375 m in resolution and not 400 m resolution, the resolution 

that were used for the analysis. Since, the comparison was radiometric in nature and did 

not have a spatial aspect to it, the resolution difference of 25 m for the validation of the 

product was assumed to be not so significant with respect to the focus of the validation 

criteria. The simulated VIIRS from MOD02 were not atmospherically corrected. 

Similarly, AWiFS imagery was also not atmospherically corrected. 

Therefore, the MOD02 NDVI product was compared with MOD09 NDVI product 

(atmospherically corrected). Any difference in the NDVI value could be considered as 

the difference due to atmospheric correction. For the comparison, four scenes of 

calculated NDVI from MOD02 reflectance values and MOD09 reflectance values were 

chosen within the days of soybean growing season in Argentina. The dates chosen were: 

Dec 26, 2006; Feb 17, 2007; Feb 2, 2007; and Jan 14, 2007. The images were subsetted 
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to a smaller subset of 639 pixels by 597 pixels. Image to image correlation was calculated 

between the MOD02 NDVI and MOD09 NDVI imageries. The correlation coefficient in 

all the test dates were found to be higher than 0.8 (Table 3.4). The MOD09 

atmospherically corrected NDVI had higher values than MOD02 NDVI which were not 

atmospherically corrected, which is a valid result as the atmospheric constituents are 

expected to reduce the reflectance values from the target. From this small test, we can 

infer that the atmospheric interference reduces the NDVI values by approximately 0.2.

Table 3.4 Correlation coefficient value between image to image comparison between 
MOD02 (atmospherically uncorrected level 1 image) vs. MOD09 
(atmospherically corrected level 2 image).

Image Date Correlation Coefficient

2006_Dec 26 0.81

2007_Feb 17 0.81

2007_Feb 2 0.88

2007_Jan 14 0.97

3.4.1.3 Validation of time-series curves based on daily NDVI with respect to Soybean 

Phenology for MODIS and simulated VIIRS

In order to specifically test the effectiveness of the MODIS NDVI time-series data 

to monitor specific crop growth stages and to test the ability of VIIRS NDVI for its 

ability to replace MODIS data, time-series curves from both MODIS and VIIRS NDVI 

were created for selected soybean fields and compared with specific phenology dates for 

those fields. Among the dates of specific phenological stage required for the study, only 
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the planting dates could be obtained from the farmers. The rest of the specific time value 

for the phenological stages such as emergence, reproductive stages, maturation etc. had to 

be computed as well as simulated from soybean growth simulation model called Sinclair.

3.4.1.4 NDVI time-series depicting soybean growth

NDVI time-series curves were created for both daily MODIS NDVI and VIIRS 

NDVI. Since the zonal extracted NDVI values were from images without any filtering or 

compositing process for different fields for the soybean growing season, cloudy pixels 

were also present. NDVI values are sensitive to water and presence of clouds in the 

images lowers the NDVI values. Therefore, in order to remove the NDVI values that 

were affected by cloud reflectance a macro language was created in Excel to select only 

the maximum NDVI values within a five-day period. This resulted in smoother NDVI 

time-series curves. The five-day maximum NDVI values from August 26, 2006 to July 

15, 2007 were plotted for AQUA MODIS, TERRA MODIS, AQUA simulated VIIRS 

and TERRA simulated VIIRS.  Still some values with low NDVI compared to days 

before and after were detected. These values were the result of presence of cloud cover 

remaining for more than 5 days. These values were considered as outliers, thus removed. 

Outliers were identified as values that had significantly different values than the values of 

the neighboring days. Some values less than 0.001 were detected at a point in the time-

series when all the neighboring values were in the range of 0.9, thus were removed. And 

some ‘NODATA’ values (-9999) as well as values that were out of NDVI range of ‘-1’ 

were also detected and removed. Other than these removals, the data was not filtered or 

smoothed and the raw NDVI values were used for analysis and for the creation of NDVI 
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time-series curves. The time-series plots thus created, depicted the growth pattern of 

soybean growth in Argentina. The time-series plots also showed similarities between 

MODIS NDVI temporal curve and VIIRS temporal curve. Both the MODIS and 

simulated VIIRS curves were able to show phenological characteristics of the soybean 

crop growth stages (See figures 3.7 a,b,c,d).
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Figure 3.7 NDVI curves depicting soybean growth characteristics for the fourteen 
soybean test fields in Argentina from AQUA MODIS (a), VIIRS simulated 
from AQUA MODIS (b), TERRA MODIS (c), VIIRS simulated from 
TERRA MODIS (d).
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Figure 3.7 (Continued)
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Figure 3.7 (Continued)

In the figures (3.7 a,b,c,d), the time-series curves for the 14 fields were able to 

depict the soybean growth curve for the Argentine soybean growing season. The planting 

time frame for soybeans is from October until mid-December. In that time frame all the 

soybean fields, from which the NDVI values were extracted, showed a clear decrease and 

then a significant linear increase in NDVI values and then reached a plateau stage around 

January. At the time of mid-March, the NDVI values start to decrease again. This 

behavior of time-series NDVI values corresponded with the soybean growth and 

maturation time in Argentina.

The NDVI time-series curves for the soybean fields also showed similarities to 

the metrics characterizing vegetation phenology developed by Reed et al. (1994). The 

time-series curve could be related to the temporal metrics and the NDVI-value metrics 
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demonstrated by Kastens et al. (1998) after Reed et al. (1994). The four major stages in 

temporal metrics can be related to specific time of soybean phenological stages which is

as given in the table (3.5) below:

Table 3.5 “Temporal Metrics” (Reed et al. 1994) and the corresponding phenological 
stages.

Temporal metrics Phenological Stages

1. Time of onset of greenness Emergence

2. Time of end of greenness Maturity

3. Duration of greenness Emergence to Maturity

4. Time of maximum greenness Time of optimum growth after which no 

leaf development occurs can be considered the time 

up to the termination of leaf growth starts.

3.4.1.5 Cross Validation Approach 

A cross validation approach was implemented to compare the MODIS and VIIRS 

NDVI time-series curve with the Sinclair model simulated crop growth stages and vice 

versa. Planting date, emergence date, termination of leaf growth and maturity dates were 

chosen as specific growth stages at the specific area in time-series curves based upon the 

temporal metrics developed by Reed et al. (1998) (See table 3.5).

Since planting dates were the only specific dates obtained from the farmers for the 

selected soybean fields; based on the planting date, the emergence dates were estimated 

using growing-degree-day (GDD) concept. The value of 150 GDD was considered as an 

optimum value of degree days required for soybeans to emerge after planting, based upon 

personal consultation with Dr. Thomas Sinclair (author of the Sinclair model). The GDD 
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values were calculated from the day of planting for each field separately from the 

minimum and maximum temperature value obtained from the data from the local weather 

station and the base temperature of 8ºC. The following formula was used for calculating 

the GDD: 

GDD per day = (min temp + max temp/2) - 8ºC (3.2)

The calculated GDD values for each day after planting were then cumulated until 

it reached 150, and that day was considered the day of emergence for the particular 

soybean field (See Table 3.6 for the calculated emergence values).

From the simulation of the Sinclair model, specific dates for the time of first 

reproductive stage (R1), termination of leaf growth (TLG) and maturation (Mat) were 

obtained. For the simulation of the Sinclair model, daily values on minimum temperature, 

maximum temperature, solar radiation and precipitation were obtained for each field site. 

These are the input variables required for the model to simulate the daily water balance 

and biomass and finally yield. The model also calculates development rate based on day 

length and is able to simulate phases such as time of  R1 reproductive stage, the time of 

termination of leaf growth and the time of maturity for the soybean plant (See Table 3.7 

for the simulated times for R1, TLG and Mat dates).

Thus, the obtained dates for various phenological stages of soybean growth were 

plotted against the NDVI time-series curves to see whether the time-series curves actually 

depicted the soybean growth stages. In all the cases of  11 soybean fields studied, it was 

consistently observed that the dates of various phenological stages matched well with the 
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“temporal metrics” as defined by Reed et al. (1994) (See Table 3.5) that can be observed 

in a time-series NDVI curve. It was found that after the date of calculated emergence, a 

time lag occurred before a genuine increase in NDVI could be detected that could be 

considered as the onset of greenness. This was observed in most of the cases. The model-

predictions for time of termination of leaf growth seemed to be stage that best 

corresponded with the observation or simulation derived time-series NDVI curves. In 

most of the cases, the TLG dates were at the plateau of the NDVI curve and in some 

cases the NDVI values seemed to start to decrease from the point of TLG. 

The NDVI time-series from the 400 m resolution VIIRS dataset matched well 

with the NDVI time-series from 250 m MODIS dataset. Both the MODIS and simulated 

VIIRS time-series NDVI curves depicted the soybean growth characteristics (See Figure 

3.8). At the same time, for soybean planted after wheat, it was observed that the NDVI 

values were higher before plantings which showed that the crop rotations could also be 

detected from both MODIS and VIIRS NDVI time-series curve.
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Table 3.6 Values of various phenological stages for the soybean fields and the 
corresponding representative NDVI value from Terra MODIS and LAI values 
simulated from Sinclair Model.

Field Site Planting Date (PD)

MODIS

NDVI

Simulated

LAI Emergence Date (EMG)
MODIS 

NDVI

Simulated

LAI

Marcos Juarez 501 31-Oct-06 0.4 0 13-Nov-06 0.3 0.33

Marcos Juarez 503 24-Nov-06 0.24 0 4-Dec-06 0.4 0.30

Magiolo 604 3-Nov-06 0.26 0 15-Nov-06 0.32 0.32

Magiolo 602 3-Nov-06 0.29 0 15-Nov-06 0.38 0.32

Magiolo 601 13-Dec-06 0.4 0 23-Dec-06 0.64 0.33

Pergamino 703 3-Nov-06 0.3 0 16-Nov-06 0.31 0.45

Pergamino 705 15-Dec-06 0.42 0 25-Dec-06 0.66 0.38

Pergamino 704 3-Nov-06 0.4 0 16-Nov-06 0.34 0.45

Rosario 801 10-Oct-06 0.46 0 21-Oct-06 0.47 0.31

Rio Segundo 101 10-Oct-06 0.37 0 22-Oct-06 0.39 0.31

Rio Segundo 104 11-Oct-06 0.26 0 23-Oct-06 0.28 0.32
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Table 3.7 Values of various phenological stages for the soybean fields and the 
corresponding representative NDVI value from Terra MODIS and LAI values 
simulated from Sinclair Model.

Field Site
Date of 

Reproductive 
Stage 1 (R1)

NDVI LAI

Date of 
Termination of 
Leaf Growth 

(TLG)

NDVI LAI
Date of 

Maturity 
Stage (Mat)

NDVI LAI

Marcos 
Juarez 501 10-Dec-06 0.69 1.09 2-Feb-07 0.9 7.079 15-Mar-07 0.6 0.09

Marcos 
Juarez 503 30-Dec-06 0.77 1.28 10-Feb-07 0.93 7.104 25-Mar-07 0.21 0.09

Magiolo 
604 14-Dec-06 0.58 1.01 4-Feb-07 0.92 7.126 16-Mar-07 0.6 0.08

Magiolo 
602 14-Dec-06 0.56 1.01 4-Feb-07 0.9 7.030 16-Mar-07 0.61 0.09

Magiolo
601 18-Jan-07 0.85 1.08 19-Feb-07 0.88 4.973 6-Apr-07 0.53 0.09

Pergamino 
703 11-Dec-06 0.54 1.2 3-Feb-07 0.93 7.144 14-Mar-07 0.5 0.09

Pergamino 
705 18-Jan-07 0.86 1.11 16-Feb-07 0.89 4.942 4-Apr-07 0.47 0.09

Pergamino 
704 11-Dec-06 0.51 1.24 3-Feb-07 0.91 7.059 13-Mar-07 0.65 0.09

Rosario 801 15-Nov-06 0.4 0.82 14-Jan-07 0.86 7.158 17-Feb-07 0.6 0.08

Rio 
Segundo 

101
24-Nov-06 0.54 1.10 22-Jan-07 0.91 7.007 9-Mar-07 0.6 0.09

Rio 
Segundo 

104
25-Nov-06 0.52 1.11 23-Jan-07 0.88 7.020 10-Mar-07 0.42 0.09
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Figure 3.8 Charts showing the NDVI curves for various selected soybean fields in 
Argentina from TERRA MODIS and VIIRS simulated from TERRA MODIS 
and specific phenological stages for each field.

TERRA MODIS AQUA MODIS
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TERRA MODIS AQUA MODIS

Figure 3.8 (Continued).
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Figure 3.8 (Continued).

TERRA MODIS AQUA MODIS
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Figure 3.8 (Continued).

TERRA MODIS AQUA MODIS
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Figure 3.8 (Continued).

TERRA MODIS AQUA MODIS
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Figure 3.8 (Continued).

3.5 Results and Discussions

MODIS time-series for soybean fields were tested for their effectiveness in 

monitoring growth and productivity. The NDVI time-series curves created from MODIS 

and simulated VIIRS depicted the growth curve of soybean based upon the metrics 

developed by Reed et al. (1994). The validation of simulated VIIRS from MODIS 

comparing it with simulated VIIRS from AWiFS, both atmospherically uncorrected, 

showed good agreement between the simulated VIIRS from two different simulation 

sources. Since our analysis was performed with atmospherically corrected gridded 

MOD09, comparisons were done between MOD09 and MOD02 datasets. The agreement 

was high, with 0.8 or higher image to image correlation. The NDVI for atmospherically 

corrected imageries have higher values than the NDVI from non-atmospherically 

corrected imageries.

Specific dates for various phenological stages were simulated from the Sinclair 

model based upon the planting dates obtained from the farmer. The emergence dates were 

TERRA MODIS AQUA MODIS
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calculated based on the growing-degree-day concept using the daily min and max 

temperature values for each fields studied. The other phenological stages were simulated 

from the Sinclair model. Thus, obtained dates were compared with the NDVI values for 

the same dates in the time-series curves obtained from MODIS and simulated VIIRS.  In 

all the cases, the NDVI values showed good agreement with the specific phenology dates 

for both MODIS and simulated VIIRS. For both cases, the NDVI values increased and 

decreased depending on crop condition or specific growth stage.  The correlation between 

MODIS and VIIRS NDVI were 0.9 and higher in the majority of cases, and no significant 

differences were found in the NDVI time-series between AQUA MODIS NDVI and 

TERRA MODIS NDVI. Therefore, representative values of NDVI selected from TERRA 

MODIS was used to compare with the specific phenology dates and the LAI simulated 

from the Sinclair model. In this study, for the emergence dates, the NDVI values ranged 

from 0.28 to 0.66. The NDVI values seem to be slightly higher at this point. These higher 

NDVI values may be due to the presence of crop residue and weeds and because of crop 

rotations and no-till agricultural practices adopted in Argentina (Sinclair et al., 2007). 

The NDVI values of 0.6 during emergence for two of the fields were for soybeans 

planted after winter wheat. The fresh crop residue of winter wheat may have resulted in 

the higher NDVI values for these two fields. However, these fields with soybean over 

wheat also had the lowest simulated LAI values at 4.9 from the Sinclair model. Both of 

these fields have planting dates in mid-December, therefore the result could be due to the 

lesser amount of  growth time required for the cultivar to mature causing the simulation 

model to predict lower LAI values. However, even if the LAI values for these fields were 

low, the NDVI values were found be at 0.8. 
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For the R1 reproductive stage, the values ranged from 0.4 to 0.8. At the stage of 

the termination of leaf growth (TLG), the NDVI values ranges from 0.88 to 0.92, this is 

also the range of the maximum NDVI as well as the maximum LAI for the plants during 

growth simulation from Sinclair model. At the crop maturity stage, the NDVI values 

were in the range of 0.2 to 0.6.

The research was unable to find a correlative relationship between the NDVI at 

various growth stages and the simulated LAI from Sinclair model. However, for all the 

stages, irrespective of the simulated LAI and the NDVI value at emergence, the NDVI 

values seem to increase up to the point of TLG and then start to decrease from that point. 

The well known fact on the limitations of MODIS and VIIRS imageries for

providing highly accurate crop-based data due to their resolution was observed. However, 

the benefits of large area coverage in a single scene and the ability to monitor vegetation 

growth  at the farm level albeit with less accuracy as shown in this research results 

provides encouraging pointers to their use for regional level application.

3.6 Conclusions

The results obtained seem to point that, even though the NDVI values from these 

sensors could not provide the accuracy at canopy level LAI simulations for the field, the 

overall monitoring capability of both MODIS at 250 m and VIIRS at 400 m can be 

considered acceptable for analysis at the field level. Furthermore, both MODIS and 

VIIRS resolutions seem quite sensitive to crop residue on the ground as well as to crop 

growth. The background reflectance of crop residue seemed to have affected the crop 

reflectance. However, for soybean planted after winter wheat, both MODIS and 
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simulated VIIRS NDVI time-series were sensitive to the reflectance of winter wheat 

before soybean planting dates. Thus, both MODIS and VIIRS resolution showed good 

application potential for crop rotation monitoring as well. Therefore, considering the 

regional applicability of these sensors, the ability of both MODIS and VIIRS to provide 

large coverage and high temporal resolution enables deliverance of data and data 

products well suited for regional or large area agricultural monitoring.
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CHAPTER IV

IMPROVEMENT IN PLANTING DATE ESTIMATION THROUGH THE USE OF 

NDVI DERIVED FROM SATELLITE IMAGERY

4.1 Abstract

In this chapter, a method of estimating soybean crop planting date is evaluated 

using daily fused composited Moderate Resolution Imaging Spectroradiometer (MODIS) 

Normalized Difference Vegetation Index (NDVI) temporal curves depicting farm level 

soybean growth patterns. Planting date is an important initializing variable within a crop 

model. Accurate planting dates can greatly increase the accuracy of crop yield 

estimations. A cross-platform sensor data fusion method was used to combine MODIS 

data from AQUA and TERRA platforms to obtain daily cloud-free composited NDVI 

values. The analysis showed that the NDVI time-series curves of late-season soybean

varieties (double cropped soybeans planted right after wheat harvests) do not provide a 

clear NDVI increase after emergence, as the no-till method was used predominantly in 

Argentina and the pre-crop growth causes these non-crop signals to be mixed with actual 

crop growth signals. Therefore, the estimation of planting date using the NDVI was 

limited to early season soybeans. With the obtained actual planting dates, it was possible 

to verify that actual plant emergence [as predicted by 150 cumulative growing degree
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days (CGDD)] was not detectable and at least approximately 2 weeks of subsequent 

growth was required for detection of a “jump” in the greenness value on the phenology

curve. Analysis of 10 field trials resulted in an estimated CGDD of 356 prior to observed 

jump. Comparing this estimation method to actual planting dates, the analysis was able to 

predict planting date in average of ±3.4 days. Further studies and refinements to the 

analysis are required to develop quantitative analysis methods for validated estimations 

of planting date as detection of greenness increase will likely vary among sensor systems, 

crop varieties, and potentially geographic locale and, as the analysis has shown, even 

within the crop planting seasons.

4.2 Background and Introduction

Most crop yield models require various initializing values for different parameters 

and variables in addition to the driving variables which are mostly daily weather values, 

for crop growth simulation process (Bouman et al., 1992; Mass, 1988). Accurate 

estimations of these initializing parameters are needed for reliable yield estimation and 

thus minimizing errors in the simulation results. For regional yield predictions, a lot of 

these initializing variables are given values derived from approximation based upon 

previous years’ data, or utilizing a default value or through trial and error (Dorigo et al., 

2007; Hansen and Jones, 2000). However, this method creates uncertainty and causes 

error in the model output (Dorigo et al., 2007). Planting date is one such variable that 

most crop models require for initialization of the model (Sinclair et al., 2007; Fang et al., 

2008; Moen et al., 1994). Planting date is also an important variable since other variable 
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values are also initialized for the day of planting such as initializing values of soil water 

content.

Soybean development is sensitive to temperature as well as day length; therefore 

planting of the seeds at the right time is important for obtaining optimum yield (Sinclair 

et al., 2007; Zhang et al., 2001). Hence, planting date is related to the maturity group and 

has an effect on the development rate and phenological growth stages of the plant

(Loomis and Connor, 1992).

In the field level, the actual dates of planting depend mostly on the farmer’s 

decision that is based upon the weather and other local conditions. And as an initializing 

variable for crop yield modeling, dates for planting that has been determined at the local 

level is a difficult estimate.

The effects of planting date on various fields in Argentina were observed during 

simulation analysis of soybean from Sinclair soybean yield model. The simulation results 

for predicted phenological stages of soybean showed [see Fig. 4.1] that earlier plantings 

resulted in a longer duration between reproductive stage 1 and stage of termination of leaf 

growth. The duration between reproductive stage 1 and stage of termination of leaf 

growth is lessened in late plantings. If the planting date occurred in early to late October, 

the time period between the R1 stage and the TLG stage was higher compared to planting 

dates occurring in late November and early December. The duration between the R1 and 

TLG stages were significantly less in fields where late planting in December occurred, 

compared to the duration between these stages for early October plantings.

This result demonstrated the effect of planting date on the crop development 

phases. Similarly, for the Sinclair soybean yield model LAI growth is highly sensitive to 
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sowing and an earlier sowing date resulted in the peak LAI resulting earlier in the season 

(Sinclair et al., 2007). Various crop models have been found to be sensitive to planting 

dates. A sensitivity analysis on the various initializing variables for corn yield estimation 

for CERES maize model showed planting date as the second most sensitive variable after 

nitrogen application (Fang et al., 2008). These results show that accurate planting date is 

important for crop development, growth and yield. A study by Moen et al. (1993) showed 

that planting dates affected regional yield predictions and using a single planting date 

resulted in less accuracy of maize simulation model than utilizing seven planting dates 

within the area.

For regional level analysis, planting date estimation becomes very important 

because it is almost impossible to correctly obtain the exact planting dates for a large area 

of interest. Operationally, for regional analysis at the USDA FAS/PECAD, the planting 

date is calculated based on crop reports which are subjective and can deviate up to 30 

days (Doorn, B., personal communication, 2005).
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Figure 4.1 Time chart of various phenological stages for the soybean fields as calculated 
by the Sinclair crop model.

These deviations result in increased inaccuracies in crop yield estimations that 

FAS/PECAD provides to the end users, which are government agencies and national 

policy makers that are involved in making decisions on local, national and global food 

trade and commodity pricings (Doorn, B., personal communication, 2005; NASA, 2003).

These subjective estimations are possible only in situations where crop reports are 

available and an infrastructure to collect reports from farmers already exists.

Therefore in this chapter, an alternate method utilizing remote sensing for 

planting date estimation is investigated. Vegetation indices from remote sensing 

imageries can provide values that are representative to the vegetation cover on the ground 
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(Hatfield et al., 2008). NDVI is the most commonly used index for monitoring crop 

growth and also an easily available product through various data archiving and 

distributing agencies. For the objective of estimating planting date, the temporal 

resolution of imageries is critical, since the required variable is a time value. Time-series 

vegetation index values, which can be obtained from low resolution imageries with high 

temporal visits such as AVHRR and MODIS, can be utilized to obtain vegetation index 

temporal curve with information on phenological characteristics (Reed et al., 1994). The 

temporal curves can provide the ability to detect the onset of greenness that can be related 

to crop emergence. The detection of emergence can be used as an indicator to estimate 

the planting date. The main problem in utilizing high temporal resolution data such as 

AVHRR and MODIS is the presence of cloud cover. A compositing process is used to 

select highest NDVI values for a given time range, since pixels on days with clouds have 

low NDVI values. The time period for AVHRR composites ranges from bi-weekly to 

monthly datasets, which is an insufficient level of temporal coverage for detecting the 

subtle changes in greenness.  A fusion-based vegetation index compositing as described 

in Shrestha et al. (2008) and O’Hara et al. (2008) utilizes both AQUA and TERRA 

MODIS NDVI values to obtain near-daily NDVI values. The ability to detect the NDVI 

changes daily can provide an efficient method for detecting the onset of greenness and for 

estimating a more accurate planting date. Therefore, in this research the methodology for 

processing AQUA and TERRA MODIS NDVI values to obtain near daily cloud free 

NDVI values is discussed and the relative success with which these data were used for 

estimating planting date and the potential advantage of such products for crop growth 

monitoring and yield modeling is demonstrated.
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4.3 Methodology

4.3.1 Data Collection and Preprocessing

The study is performed with imageries from MODIS sensors which are onboard 

both TERRA and AQUA Earth Observation System (EOS) satellites. MODIS has 36 

spectral channels. Among the spectral channels within MODIS imagery, near infrared 

and red channels have a spatial resolution of 250 m (Huete et al., 2002, Justice et al.,

1998). The next five channels have resolution of 500 m and the remaining channels have 

resolution of 1000 m. MODIS AQUA and TERRA satellites are able to provide global 

coverage of the earth two times a day.  The datasets were collected for two different

study areas. A preliminary test was performed for the Mississippi-Arkansas area for 

MODIS image compositing. Then, for the planting date estimation study, the Pampas in 

Argentina was chosen. A number of soybean fields in the Pampas were selected for field

verification and planting dates.

For the preliminary testing, MODIS AQUA level 2G datasets with 250 m 

resolution were downloaded from Land Processes – Distributed Active Archive Center 

(LP-DAAC) website for a month for the area encompassing Mississippi and Arkansas. 

MODIS AQUA reflectance datasets (MYD09GQK), quality datasets (MYD09GGK) and 

angle datasets (MYD09GGAD) were collected. These, MODIS level 2G, images 

downloaded from LP-DAAC were already processed for radiometric, atmospheric and 

geometric corrections. The projection for the images was converted from World 

Sinusoidal to Universal Transverse Mercator (UTM) projection, Zone 15, WGS 84 

Datum. The projected images were then subsetted to the boundaries of Mississippi and 
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Arkansas. A tool called HEG (HDF-EOS to GIS Format Conversion Tool) was used for 

the preprocessing of these imageries.

For the estimation of planting dates, the MODIS reflectance datasets 

(MOD/MYD09GQK), quality datasets (MOD/MYD09GGK) and angle datasets 

(MOD/MYD09GGAD) were collected for both AQUA and TERRA MODIS through 

NASA-Stennis-based Institute for Technology Development (ITD). The study time 

period for our study was 2006/2007 soybean growing period in Argentina. The images 

for this time period were processed using the ART toolbox that had a functionality that 

accesses the functions of MODIS re-projection tool (MRT) which can read files in HDF 

format and re-project. The original HDF format MODIS data were in Sinusoidal 

projection. The MODIS red and infrared bands were extracted and re-projected to UTM 

projection, Zone 20 S, WGS 84 and then subsetted utilizing the MRT application through 

ART encompassing the soybean field sites selected for our study. The HDF files were 

then converted to Geographic Tagged Image File Format (GeoTIFF).

4.3.1.1 Field Boundary Verification

Through a field expert and research collaborator in Argentina (Dr. Luis Salado 

Navarro), GPS points for corners of soybean fields were obtained. These points were 

used to delineate and demarcate field boundaries. Google Earth’s high resolution 

imageries were used to place these GPS points in the correct field corners. At the same 

time, Advanced Wide Field Sensor (AWiFS) imagery for the location was also used for 

properly delineating the soybean fields. These points were then digitized as an ArcGIS 

polygon shape file. The digitized fields were then verified using land parcel maps 
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obtained from farmers for each field and as well as from the first hand knowledge of the

field expert (Chapter 2, Figure 2.3).

4.3.1.2 Field Based Datasets Collected

Planting dates for the selected soybean fields were obtained from the farmers 

through the help of local crop scientist Dr. Luis Salado Navarro. Similarly, 

meteorological datasets required for this study (daily minimum and maximum 

temperatures) were also obtained.

4.3.2 Analysis and Results

4.3.2.1 NDVI Calculation and Fusion Based Compositing

The re-projected and subsetted MODIS images were then converted to NDVI 

images. The NDVI was calculated using the following equation:

NDVI = NIR-R/NIR+R (4.1)

where NDVI = Normalized Difference Vegetation Index, NIR = Near Infrared Band, R= 

Red Band.

The NDVI value ranges from -1 to +1; the value increases from -1 to +1 with the 

increase in vegetation. The clouds are in the lower end of the NDVI value range. Since 

the images had cloud coverage, although daily data were obtained, daily NDVI values 

could not be obtained. Therefore, vegetation index compositing was performed to remove 
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the cloud cover. However, traditional maximum value compositing process usually can 

provide only data for 8-10 periods. Therefore, a fusion based vegetation index 

compositing as described by Shrestha et al. (2008) and O’Hara et al. (2008) that utilizes 

both AQUA and TERRA MODIS NDVI was used. This method is able to provide near 

daily NDVI values.

In the compositing process, the reflectance datasets (MOD09GQK) were used in 

conjunction to quality datasets (MOD09GGK) as well as angle dataset (MOD09GGAD).  

The surface reflectance quality cube has been derived from the quality image datasets 

obtained from LP-DAAC. The information content from the original quality dataset was 

re-coded to represent various cover types which are cloud, land, water, snow and no data 

values. In the algorithm, land pixels were given the first preference while choosing the 

NDVI values during the compositing process.

In the maximum value compositing process, off nadir pixels are more likely to be 

selected as these pixels tend to have higher NDVI values (Zhu and Yang, 2003). 

Therefore removing the pixels with large angle values is required. For testing the 

optimum view angle for compositing process, a test was performed for the imageries 

from Mississippi and Arkansas area. At first, the NDVI values with view zenith angle 

lesser than 55º were selected in the compositing process. However, the resultant images 

showed striping effects (Mali et al., 2005). Therefore, a comparative analysis was 

performed to find the best view zenith angle for the compositing process.  On visual 

comparison of composited images using zenith angle of 55º degrees to 42º, it was found 

that at around the view zenith angle of 48º, the striping effect was removed. The best 

visual was obtained at 42º. However, in order to obtain an optimum zenith angle so that a 
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majority of pixels will be considered while compositing, correlation coefficient between 

composited NDVI imageries for angles of 55º to 42º and the composited imagery of 42º

were calculated (Figure 4.2). At the zenith angle of 48º, the correlation coefficient

crossed 0.99. Therefore, the zenith angle of 48º was considered as a cutoff point and used

for angle constraints in the compositing process.

Figure 4.2 Comparison between various zenith angle constraints for compositing 
process. The zenith angle of 48º provided a good cutoff point.
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4.3.2.2 Difference between AQUA and TERRA MODIS mean NDVI values

The cross-platform fusion algorithm utilizes both AQUA and TERRA MODIS 

data.  Since AQUA and TERRA satellites orbit a location on Earth at different times in a 

day, a preliminary test for our study site was performed to test if there were any 

significant differences between the AQUA and TERRA MODIS NDVI values.  For the 

testing, two sampled t-test at 95% confidence interval was performed for the AQUA and 

TERRA zonal NDVI mean values for nine locations for the time period of total 32 days 

for our selected area of interest in Mississippi and Arkansas. At 95% confidence interval, 

the p value for all the zones were greater than 0.05, thus the null hypothesis that for all 

the zones there is no significant difference between the means of AQUA and TERRA 

NDVI values was accepted.

4.3.2.3 Cross Platform Fusion and Composite Creation

The details of the algorithm are described in O’Hara et al. (2008) and Shrestha et 

al. (2008). The cross platform fusion and compositing was performed for the selected 

area of interest in the Argentine Pampas that consisted of soybean fields selected for our 

field verification purposes. The fusion process utilizes rule-based approach for selecting 

pixels and creating a subset of observations that meet view angle and quality criteria. The 

rule-based algorithm is based on the fact that pixels with lower zenith angles contains less 

noise, and also utilizes the associated metadata that can differentiate between land, water, 

cloud and snow observations to mask out the pixels that doesn’t represent land 

observations. Then, a temporal filtering is used to find the pixels that fulfill the required 

criteria. The criteria that that were enforced were that NDVI value is the maximum and 
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the zenith angle for the pixel must be less than 48o and also that the underlying pixel is a 

classified land pixel based on the associated image metadata. 

A six-day temporal window was considered for compositing using filtering and 

fusion good observations, i.e., the application first checked the current day data; and if it 

did not fulfill the constraints, checked up to five days of NDVI data for the pixel under 

consideration for both AQUA and TERRA MODIS NDVI. Fusion Quality Confidence 

Codes (FQCC) values were calculated for each pixel of the fused image to quantify the 

quality and confidence of the pixel under consideration. Higher confidence codes were 

given for NDVI chosen on the day of interest that matches the view zenith and quality 

code criteria and less confidence is given to NDVI values chosen away from the day of 

interest. If no pixels match the zenith angle and quality control, then the pixel with 

highest NDVI is chosen. The chosen pixel could be from either AQUA or TERRA 

MODIS. Using these criteria, the algorithm was able to create cloud free NDVI images 

for each day that could be within six days of interest.

4.3.2.4 Zonal Processing

The zonal processing was done in ArcGIS environment utilizing Arc-aml 

functions with batch processing capability that was created by O’Hara (2008). The daily 

fused NDVI composite images for 2006/2007 soybean growing season were utilized as a 

time-series data cube and using the soybean fields as zones, the NDVI values were 

extracted for each day. The extracted time-series NDVI values for each field were then 

used to detect the onset of greenness (See Figure 4.3).
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Figure 4.3 Flowchart of the geo-processing methodology used for the analysis.

4.3.2.5 Planting Date Estimation Process

Once the daily NDVI values are calculated, the planting date can be estimated 

from an easy method utilizing daily minimum and maximum temperature values for each 

field studied. Utilizing these daily temperature values obtained from the local weather 

stations, growing degree day (GDD) values were calculated. The GDD values were 

cumulated to obtain cumulative GDD values. In the time-series NDVI values, the start of 

the continuous increase of NDVI was determined by observation of the steady rise of 

NDVI values greater than 0.3 in the beginning of the soybean growth per field. This point 

was considered as the tentative emergence date. Utilizing this emergence date the 

planting date was estimated by back propagating the cumulative growing degree days.
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The emergence date was also calculated based on the planting date observed from the 

farmers. This emergence date was considered the actual emergence date and was used to 

compare with the estimated emergence date detected from the daily NDVI values (Figure 

4.4).

Figure 4.4 Planting date estimation using Vegetation Index and Temporal map algebra
(Mali et al., 2006).

4.4 Results and Discussion

The planting dates were estimated based on the relationship between the growing 

degree days (GDD) and the soybean phenology. The GDD values were calculated for 

each field using minimum and maximum temperature values for each day and the base 

temperature of 8oC. Figures 4.5 and 4.6 show the NDVI phenology curve for the soybean 

fields. In the field of soybean planted over soybean (Fig. 4.5), the maturity of the soybean 

corresponds to the GDD.  However, for the field with soybean planted over winter wheat 

(Fig. 4.6), where the soybean planting is late for a late maturing variety, the GDD does 

not correspond with the maturation as observed from the phenology curve although the 
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increase in initial phases of soybean growth corresponds with the increasing GDD. 

Therefore, even though the planting date may be related with the GDD for the soybean 

growing season, the other phenology stages may not produce the required results based 

solely on the relationship between GDD and soybean phenology. This observation is in 

agreement with a similar conclusion by Daubenmire (1947) that the “heat unit” 

requirement of a given process is constant only for that range within which a direct 

proportionality exists between the growth rate and temperature (Wang, 1960, pp. 787).

Soybean Phenology with Growing Degree Days 
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Soybean Phenology with Growing Degree Days 
MonteBuey (Soy/Wheat)
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Figure 4.6 Graph showing soybean phenology and growing degree days for soybean 
planted over wheat field in MonteBuey.

The analysis revealed a clear difference in the NDVI values for early-season

soybeans and late-season soybeans at the beginning of the growing season. The analysis 

found that, in the case of early-season soybeans which are planted on early October to 

early November, the start of NDVI increase could be easily detected. The time-series 

NDVI for early plantings showed a clear demarcation of pre-planting NDVI and post-

planting NDVI values, and a value of NDVI 0.3 and higher could be considered as the 

point of possible onset of greenness. In the case of fields where plantings took place in 

late November to late December, the clear demarcation between the pre-planting NDVI 

and post-planting NDVI was not found. It could be inferred that the unclear demarcation 

of the point of rise of NDVI values (for late planting varieties of soybeans) for the early 
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growing phase of the plant is due to the presence of mulch on the ground. A majority of 

farmers in Argentina practice no-till agriculture along with intensive crop rotations 

(Salado-Navarro and Sinclair, 2009). The late soybean plantings are done in areas where 

a crop has recently been harvested before the current soybean plantings. Due to no-till 

practice the mulch remaining on the ground resulted in a higher NDVI values before and 

after plantings which resulted in unclear demarcation of possible point of emergence 

date. Therefore, the planting date estimations were limited for the soybean fields with 

early plantings.

The results (Table 4.1) showed that start of continuous linear increase in NDVI 

values did not occur from the actual plant emergence date, but in an average of two 

weeks later and in some cases it was up to 3 weeks. From the calculated emergence date 

it was observed that, based on the concept of 150 CGDD days, the climatic factors in 

Argentina (particularly temperature) caused the emergence to occur in an average of 12 

days for the early planting soybean varieties. Since the observed NDVI increase occurs 

approximately 2 weeks later and in some case 3 weeks, it can be inferred that the MODIS 

NDVI detects the start of the vegetative growth around the various vegetative growth 

stages probably from V2 to V4. The CGDD values for the date when the NDVI jump was 

detected for the various fields were found to range from 289 to 406, the average of which 

is 356 CGGD. This average value of 356 CGGD was used for predicting the planting 

dates for back propagating the cumulative CGDD after the NDVI increase detection.
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Table 4.1 Estimated planting dates of early planted (October to early November) 
soybeans.

Field 
Locations 

Crop 
Rotation 

Actual 
Planting 

date 

Emergence 
Date (150 

CGDD) 

NDVI 
Jump 

Detection 

Corresponding 
CGDD 

Days of 
NDVI jump 

after 
emergence 

NDVI 
jump 
after 

planting 

Predicted 
Planting 

date based 
on NDVI 

jump and 
CGDD 

Difference 
between 

actual and 
predicted 
planting 

dates 
Rio 

Segundo 
Soybean/ 
Soybean 

 10-Oct-
06 

22-Oct-06 13-Nov-06 406 22 34 13-Oct-06 3 

Rio 
Segundo 

Soybean/ 
Maize 

11-Oct-
06 

23-Oct-06 17-Nov-06 451 25 37 19-Oct-06 8 

Maggiolo 
Soybean/ 

Wheat 
3-Nov-06 15-Nov-06 27-Nov-06 289 12 24 27-Oct-06 -7 

Maggiolo 
Soybean/ 

Maize 
3-Nov-06 15-Nov-06 29-Nov-06 312 14 26 29-Oct-06 -5 

Marcos 
Juarez 

Soybean/ 
Maize 

31-Oct-
06 

13-Nov-06 25-Nov-06 338 12 25 29-Oct-06 -2 

Rosario 
Soybean/ 
Soybean 

10-Oct-
06 

21-Oct-06 7-Nov-06 377 17 28 11-Oct-06 1 

Monte 
Buey 

Soybean/ 
Wheat 

7-Nov-06 18-Nov-06 3-Dec-06 366 15 26 08-Nov-06 1 

Pergamino 
Soybean/ 

Maize 
3-Nov-06 16-Nov-06 2-Dec-06 351 16 29 02-Nov-06 -1 

Pergamino 
Soybean/ 
Soybean 

3-Nov-06 16-Nov-06 29-Nov-06 306 13 26 29-Oct-06 -5 

Monte 
Buey 

Soybean/ 
Wheat 

7-Nov-06 18-Nov 3-Dec-06 366 15 26 08-Nov-06 1 

Average +/- 3.4 days 

From the results obtained it could be concluded that the NDVI “increase detection 

day” is only later in the vegetative stage rather than sooner. The estimation of the 

planting date based on the methodology described previously resulted in estimation of 

planting dates as close as one day for some fields. Overall, the method was able to predict 

planting date within an average of ±3.4 days.
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4.5 Conclusions

A new method is described for providing an alternate method of estimating crop 

planting date utilizing time-series vegetation index curves for crop growth modeling. The 

day of planting is a sensitive factor that can affect the growth rate of the plant and 

phenological dates, but is highly subjective to field conditions and a difficult model input 

parameter to obtain.  Historically, it is estimated by using crop calendars and previous 

crop reports, but this often is inaccurate. Our analysis showed that the date of termination 

of leaf growth increased or decreased from the R1 reproductive stage based upon the 

planting date. The changing environmental patterns cause the field level decisions by the 

farmers to be dynamic in nature, which makes the estimation of such field level variables 

more difficult. 

The utilization of daily fused NDVI from MODIS AQUA and TERRA images 

provided the required temporal resolution for the estimation of planting date. A small test 

was performed to determine significant differences in the mean value of selected zones 

for a test site in Mississippi and Arkansas. The t-test results showed no significant 

differences between the mean NDVI values. The NDVI values are sensitive to the sensor 

geometry. Since each MODIS scene provides sensor geometry information, the test 

described above revealed that for obtaining the best possible NDVI values during the 

pixel selection criteria, the values is best chosen from the pixels with the zenith angle of 

48o which is optimum during the compositing process. For the early planting varieties, 

ten fields were tested using the method, out of which in four of the fields the estimated 

planting dates were within a day of the actual planting date. On average, the estimated 

planting dates were within ± 3.4 days. The results are encouraging, although for 
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conditions where the previous crop mulch exists, the detection of NDVI increase after 

emergence becomes difficult. The method used is still qualitative and dependent upon 

some pre-existing knowledge of field conditions. A mathematical model-based analysis 

that can extract a change in the NDVI trajectory to demark increases may provide an 

efficient alternative quantitative process.  The daily NDVI values provided from the 

cross-platform fusion compositing method was important, as it provided the daily 

temporal resolution that tremendously helped in selecting NDVI values for any date as 

the analysis required. The lack of daily values would have changed the methodology 

through which the detection process would be performed and obviously decrease the 

accuracy of the method as well. Overall, the method described has provided encouraging 

results although further refinements and more research are required.
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CHAPTER V

FINAL SUMMARY AND RECOMMENDATIONS

The objectives of this study were defined for grid-based meteorological datasets 

and utilizing remote sensing for providing an efficient and improved regional soybean 

yield modeling and growth monitoring. For enhanced regionalization of crop modeling 

the research tested various data sources to provide inputs, especially those that required 

ground-based data collection, with a broader objective of enabling the Sinclair model for 

regional level use. In chapter one of this dissertation, methods were employed to replace 

ground-based meteorological data sources to provide 1) forcings from daily SALDAS 

meteorological datasets and 2) initializing conditions via SALDAS soil moisture values 

used to initialize the water content value for the water balance module in the Sinclair 

model. In chapter two of the dissertation, MODIS data and simulated VIIRS were tested 

for plant growth monitoring through geoprocessing and analysis that compared extracted 

growth curves to crop model growth stage predictions. In chapter three, remote sensing 

data streams from AQUA and TERRA MODIS were employed along with grid-based 

meteorological datasets to develop a semi-empirical method for detecting and refining 

planting date, a critical variable in crop modeling. The outcome of the research suggests 

that the combination of remote sensing data and grid-based meteorological datasets
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provide data streams of high utility for improved regional soybean crop modeling and 

growth monitoring. 

In the case of utilization of SALDAS type datasets, the availability of various 

crop yield modeling methodologies and models with different level of input requirements 

creates uncertainty in the utilization of such datasets for crop yield models as a major 

data source. Therefore, the applicability of SALDAS type grid-based meteorological 

datasets for crop modeling will depend upon the utilization of model type and various 

parameters within the model. 

The study area chosen for this research, Argentina, provided both complexity as 

well as opportunities for this research. The multi-crop rotation patterns and no-till 

agriculture for most part of Argentina resulted in mixed signals of NDVI values. The 

sensitivity of the NDVI to background reflectance due to previous crop mulch caused 

NDVI values to differ from the actual plant-based values especially during early crop 

growth periods. The study found sensitivities in the time-series NDVI curves in the areas 

where previous crop harvest had shortly preceded soybean plantings. This resulted in 

difficulty in detecting planting dates for fields where wheat harvest had immediately 

preceded the soybean crop. Despite the complexity resulting from the intensive crop 

rotation and no-till agriculture, the MODIS and VIIRS NDVI time-series curves were 

able to provide monitoring capabilities even at the field level. Therefore, in areas with 

simpler crop management systems, MODIS and VIIRS NDVI time-series data might be 

expected to fare better. 
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Following are some recommendations:

1. The current research was performed with 1/8th degree resolution SALDAS 

datasets in which each variable was tested separately as well as combined as 

inputs to the soybean yield model. The soil moisture datasets were also tested for 

providing initialization values to the model. Given the low resolution, the results 

could be considered as encouraging for utilizing SALDAS and similar gridded 

meteorological datasets for improving crop modeling methods. Gridded datasets 

are available for even higher resolution up to 1 km. Utilizing higher resolution 

gridded data may provide better results. Therefore, future studies with the 

utilization of higher resolution of gridded data are recommended. 

2. Further research is also recommended for testing SALDAS and similar gridded 

meteorological datasets for other yield prediction models, as well as for other crop 

types. Testing of gridded data such as SALDAS for various other crop models for 

different crop types can provide more validity for such datasets to be used so that 

integrated use of remote sensing and gridded data can be used with greater 

confidence for the benefit of regional yield estimation. 

3. In this research, both MODIS and VIIRS were sensitive to crop growth patterns.

If the prevalent crop rotation patterns are known, time-series MODIS and VIIRS 

NDVI data seemed to have the potential to provide information on multi-year 

crop rotation patterns.  MODIS and VIIRS resolutions were sensitive to crop 

residue on ground. Thus, both MODIS and VIIRS resolution showed good 

application potential for crop rotation monitoring. For Argentina and similar 

places where no-till agriculture along with double cropping is the predominant 
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agricultural method, information on previous cropping patterns is important to 

estimate the amount of reduced water loss in evapo-transpiration which is 

important for water balancing in crop yield models. In Sinclair model, this 

reduction in evapo-transpiration is represented by CSEVP value. A value of 0.3 

CSEVP is given when previous crop mulch exists and the crop has been identified 

as maize. The value of 0.3 indicates a 70% reduction in evapo-transpiration due to 

maize stubbles in relation to having no crop stubbles in the field.  The research 

results show that MODIS time-series NDVI value has potential for classifying 

crop types using multi-year crop time-series NDVI and for also detecting crop 

mulch. Further research on the applicability of these time-series datasets for 

providing multi-year crop rotation based information and for detection of crop 

mulch is recommended.

4. The research utilized daily fused time-series NDVI for the study and found NDVI 

to be sensitive to crop mulch. Further research on other types of vegetation 

indices that are less sensitive to crop mulch and more sensitive to the vegetation 

are recommended. This might help in finding better onset of greenness.

5. For the planting date estimation, the method used is still qualitative and dependent 

upon some pre-existing knowledge of field conditions. A mathematical or 

quantitative approach based upon the change in trajectory or slope of the NDVI 

values during the growing period of the soybean as future work is recommended.

6. Finally, further research on the utilization of Enhanced Vegetation Index (EVI) to 

obtain daily time-series values are also recommended.
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