
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

12-14-2013 

Multilevel Design Optimization Under Uncertainty with Application Multilevel Design Optimization Under Uncertainty with Application 

to Product-Material Systems to Product-Material Systems 

Saber DorMohammadi 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
DorMohammadi, Saber, "Multilevel Design Optimization Under Uncertainty with Application to Product-
Material Systems" (2013). Theses and Dissertations. 3229. 
https://scholarsjunction.msstate.edu/td/3229 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3229?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Automated Template B: Created by James Nail 2011V2.1 

Multilevel design optimization under uncertainty  

with application to product-material systems 

By 

 

Saber DorMohammadi 

 A Dissertation 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in Computational Engineering 

in the Bagley College of Engineering 

Mississippi State, Mississippi 

December 2013 



 

 

Copyright by 

 

Saber DorMohammadi 

 

2013 



 

 

Multilevel design optimization under uncertainty  

with application to product-material systems 

 

By 

 

Saber DorMohammadi 

 

Approved: 

 ____________________________________ 

Masoud Rais-Rohani 

(Director of Dissertation) 

 ____________________________________ 

Christopher D. Eamon 

(Committee Member) 

 ____________________________________ 

Tomasz Haupt 

(Committee Member) 

 ____________________________________ 

Douglas J. Bammann  

(Committee Member) 

 ____________________________________ 

Seth F. Oppenheimer 

(Committee Member) 

 ____________________________________   

Roger L. King 

(Graduate Coordinator) 

 ____________________________________ 

Achille Messac 

Dean 

Bagley College of Engineering 



 

 

Name: Saber DorMohammadi 

 

Date of Degree: December 14, 2013 

 

Institution: Mississippi State University 

 

Major Field: Computational Engineering 

 

Major Professor: Masoud Rais-Rohani 

 

Title of Study: Multilevel design optimization under uncertainty with application to 

product-material systems 

 

Pages in Study: 172 

 

Candidate for Degree of Doctor of Philosophy 

The main objective of this research is to develop a computational design tool for 

multilevel optimization of product-material systems under uncertainty. To accomplish 

this goal, an exponential penalty function (EPF) formulation based on method of 

multipliers is developed for solving multilevel optimization problems within the 

framework of Analytical Target Cascading (ATC). The original all-at-once constrained 

optimization problem is decomposed into a hierarchical system with consistency 

constraints enforcing the target-response coupling in the connected elements. The 

objective function is combined with the consistency constraints in each element to 

formulate an augmented Lagrangian with EPF. The EPF formulation is implemented 

using double-loop (EPF I) and single-loop (EPF II) coordination strategies and two 

penalty-parameter-updating schemes. The computational characteristics of the proposed 

approaches are investigated using different nonlinear convex and non-convex 

optimization problems.  

An efficient reliability-based design optimization method, Single Loop Single 

Vector (SLSV), is integrated with Augmented Lagrangian (AL) formulation of ATC for 



 

 

solution of hierarchical multilevel optimization problems under uncertainty. In the 

proposed SLSV+AL approach, the uncertainties are propagated by matching the required 

moments of connecting responses/targets and linking variables present in the decomposed 

system. The accuracy and computational efficiency of SLSV+AL are demonstrated 

through the solution of different benchmark problems and comparison of results with 

those from other optimization methods. 

Finally, the developed computational design optimization tool is used for design 

optimization of hybrid multiscale composite sandwich plates with/without uncertainty. 

Both carbon nanofiber (CNF) waviness and CNF-matrix interphase properties are 

included in the model. By decomposing the sandwich plate, structural and material 

designs are combined and treated as a multilevel optimization problem. The application 

problem considers the minimum-weight design of an in-plane loaded sandwich plate with 

a honeycomb core and laminated composite face sheets that are reinforced by both 

conventional continuous fibers and CNF-enhanced polymer matrix. Besides global 

buckling, shear crimping, intracell buckling, and face sheet wrinkling are also treated as 

design constraints. 
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1 

CHAPTER I 

INTRODUCTION 

Multilevel Design Optimization 

The design of complex engineered systems may be decomposed into two or more 

subsystems with each tied to a different discipline or part of the system with smaller set 

of design variables, separate objective functions and design constraints. The decomposed 

system can be expanded to include several levels with each containing multiple elements. 

The multilevel architecture offers autonomy to each element to optimize a separate 

objective function subject to element-specific set of constraints based on information 

provided by the lower-level elements and design targets imposed by the connecting 

upper-level element. By reducing dimensionality of each element optimization problem, 

the system becomes more manageable as each element represents only a fraction of the 

total set.  

In mathematical programming problems, the decomposition is based on 

functionality of objective and constraint functions, which results in a set of smaller 

problems. In multidisciplinary (MDO) design problems, decomposition partitioning can 

be done as object- or discipline-based (Kim 2001). For example, the structure consists of 

two or more members that can be decomposed into structural and material subsystems, 

then each member can be treated as a separate element.  
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In the field of structural optimization, early works in multilevel decomposition 

and optimization of hierarchical systems can be traced to those of (Kirsch 1975) and 

(Sobieszczanski-Sobieski 1974). (Kirsch 1975) used model coordination and goal 

coordination methods to formulate a general multilevel decomposition whereas 

(Sobieszczanski-Sobieski 1982) developed multilevel optimization by linear 

decomposition (MOLD) with applications to two- and three-level systems 

(Sobieszczanski-Sobieski et al. 1985) (Sobieszczanski-Sobieski et al. 1987). (Haftka 

1984), (Thareja and Haftka 1986), and (Renaud and Gabriele 1989) explored various 

options to offset the numerical difficulties occasionally encountered in MOLD. As an 

alternative to MOLD, (Vanderplaats et al. 1990) developed a reformulated decomposition 

method by including all variables and constraints at the system level and using a 

sequential linearization method.  

More modern approaches include that of (Michelena et al. 1999) who introduced 

analytical target cascading (ATC) for sequential optimization of hierarchical systems. 

The main premise of ATC is the use of level-by-level cascading whereby the upper-level 

design targets are propagated down to lower-level elements while outputs of individual 

elements are transferred upward as inputs to higher-level elements. A coordination 

strategy is used to ensure that the separately optimized subsystems satisfy the optimality 

conditions at the system level (Michelena et al. 2003). In the initial formulation of ATC 

(Kim et al. 2000), (Kim 2001), (Kim et al. 2002), deviation tolerances were defined for 

the responses as well as the linking (or shared design) variables. The goal was the 

minimization of the deviation tolerances subject to system design constraints and 

deviation constraints that coordinate subsystem responses and subsystem linking 
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variables. The commonly used ATC formulations (Tzevelekos et al. 2003), (Michalek 

and Papalambros 2005a), and (Michalek and Papalambros 2005b) are based on quadratic 

penalty functions. The quadratic penalty functions minimize the consistency constraints 

(equality or inequality) to force targets and responses to match. Ideally, these consistency 

constraints have to be relaxed, allowing inconsistencies between targets and responses 

that are gradually eliminated in the iterative solution process. In proposing the separable 

ordinary Lagrangian function, (Lassiter et al. 2005) considered a large-scale convex 

nonlinear programming problem and decomposed it according to the scheme of ATC. 

They also developed a Lagrangian duality-based coordination approach in which the 

solutions of the resulting subproblems converge to the solution of the original problem. 

By combining the classical Lagrangian Duality (LD) and the Augmented Lagrangian 

Duality (ALD), (Blouin et al. 2005) provided a simple method for decomposition without 

imposing restrictive conditions to alleviate the difficulty of convexity requirement. They 

updated two parameters that have the same role as the weight factors. The modified 

Lagrangian dual formulation and coordination for ATC (Kim et al. 2006) enhances the 

formulation and coordination proposed earlier in the literature, with a guideline to set the 

step size for sub-gradient optimization when solving the Lagrangian dual problem. 

(Tosserams et al. 2006) proposed and investigated ATC problem relaxation with an 

augmented Lagrangian penalty (ALP) function using the method of multipliers (AL) and 

the alternating direction method of multipliers (AL-AD). By means of the augmented 

Lagrangian function relaxation, ill-conditioning is reduced for the ATC problem of the 

inner loop because accurate solutions can be obtained for smaller weight factors. This 

formulation was later adopted by (Li et al. 2008) who used Diagonal Quadratic 
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Approximation (DQA) for parallelization of ATC. Similarly, (Wang et al. 2010) also 

applied this formulation but used three different methods for updating in the outer loop. 

A new convergent strategy for ATC (Chan 2008), (Han 2008), (Han and Papalambros 

2010) coordinates interactions among subproblems using sequential linearizations. The 

linearity of subproblems is maintained using infinity norms to measure deviations 

between targets and responses. Since all subsystems are linear, they can be solved with 

high efficiency. 

It is important to note that in all of the efforts cited above the design optimization 

problem is treated as deterministic with no uncertainty. More recently, (Kokkolaras et al. 

2006) formally introduced the issues of uncertainty and risk into the design optimization 

of hierarchically decomposed multilevel systems by developing a probabilistic version of 

ATC methodology. We believe this is a very powerful methodology and intend to adopt 

it in this research with some enhancements as will be noted later in the dissertation. 

Reliability-Based Design Optimization 

In design optimization of structural systems, uncertainty is commonly introduced 

as random variability in controllable and/or uncontrollable parameters (e.g., loading, 

material properties, geometry, boundary condition). The mathematical representation and 

propagation of uncertainty help quantify variability in responses that depend on such 

random variables. Probability theory is one of the most common approaches for 

uncertainty quantification. Reliability-based design optimization (RBDO) is a 

combination of probabilistic modeling and mathematical design optimization. 

There are two generic ways of formulating and solving an RBDO problem. In the 

double-loop structure methods, a nested optimization problem or sub-optimization 
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problem is required to estimate the reliability index or the most probable point (MPP) of 

failure. Reliability index approach (RIA) (Nikolaidis and Burdisso 1988;Enevoldsen and 

Sørensen 1994) and performance measure approach (PMA) (Tu et al. 1999) are based on 

reliability analysis.  

The computational cost of the double-loop approaches can be prohibitive when 

the problem involves computationally expensive function evaluations or a large number 

of probabilistic constraints. As a result, many approximate RBDO methods have been 

presented to convert the double-loop structure to single or serial loop to improve 

computational efficiency. The approximate methods include but are not limited to the 

traditional approximation method (TAM), single-loop single-vector (SLSV), safety-factor 

approach (SFA), and sequential optimization and reliability assessment (SORA).  

Grandhi and Wang (1998) computed the structural reliability with a two-point 

adaptive non-linear approximation while using FORM for reaching the constraint 

boundary. Kirjner-Neto et al. (1998) implemented outer approximations algorithms to 

minimize the initial cost of a structure considering the reliability requirement. Yu et al. 

(1997) proposed a mixed design approach in which a FORM-based RBDO is performed 

only if the probability of the failure of the deterministic optimum solution is acceptable. 

Koch and Kodiyalam (1999) proposed a variable-complexity technique in which the 

accuracy of FORM solutions and the efficiency of Mean-Value First-Order Reliability 

Method (MVFORM) are put together for more efficient RBDO. Lee and Kwak (1995) 

suggested using the Neumann expansion technique to reduce the computational cost of 

obtaining the MPP. Papadrakakis and Lagaros (2002) examined the combination of 

neural networks and evolution strategies using Monte Carlo simulation (MCS) method 
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exploiting the importance sampling technique to estimate both deterministic and 

probabilistic constraints. Kharmanda et al. (2002) developed a technique to combine the 

design and random variables into a single albeit more complex Hybrid Design Space 

(HDS) for a simultaneous (single-loop) solution of the reliability and optimisation 

problems. The proposed HDS-based method is shown to be much more computationally 

efficient when compared with the traditional double-loop procedure. Mohsine et al. 

(2004) proposed a modification to the HDS-based method called the Improved Hybrid 

Method (IHM) by minimizing the standard deviations as optimization variables, and 

showed more minimized objective function can be obtained than HDS method. 

Kharmanda et al. (2004) introduced a new methodology called the Safety Factor (SF) 

approach based on the sensitivity study of the limit state function for the reliability 

evaluation at a reduced computational cost. The SF approach was later applied to 

problems involving highly non-linear and non-normal random variables (Kharmanda and 

Olhoff, 2007). Choi et al. (2001) introduced a general Design Potential Concept (DPC) 

for RBDO with smooth and non-smooth probabilistic constraints. The second-order 

reliability method (SORM) and the extreme case probability analysis are used to obtain 

the design potential surfaces in the unified system space. They also provided the 

extension of DPC for extreme cases, for instance the structures with very small 

probability of failure. Youn and Choi (2004a) compared three different approaches, the 

approximate moment, reliability index, and performance measure, to evaluate 

probabilistic constraints in RBDO and suggest that the PMA is more efficient than the 

other two approaches while providing more accurate and stable solutions for non-linear 

limit-state functions. Yang and Gu (2004) found that the Single-Loop-Single-Vector 
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(SLSV) approach of Chen et al. (1997) provides the best solution in terms of accuracy 

and efficiency compared to traditional approximation method (TAM), safety-factor 

approach (SFA) of Wu and Wang (1998) and Wu et al. (2001), and sequential 

optimization and reliability assessment (SORA) of Du and Chen (2002). Wang and 

Kodiyalam (2002) proposed a single-level approach for probabilistic and robust design 

with non-normal distributions. This is the same as SLSV and the normal tail 

transformation is used to find the equivalent means and standard deviations for non-

normally distributed variables. It is shown that the single-level approach is very efficient 

and robust. Zou and Mahadevan (2006) proposed a decoupled approach to solve an 

RBDO problem by using direct reliability analysis which allows the use of simulation-

based methods for highly nonlinear reliability constraints. The reliability analysis is 

performed only for the potentially active reliability constraints which improves the 

efficiency of the proposed approach. Agarwal et al. (2007) have replaced the inverse 

FORM in PMA by its first-order KKT necessary optimality conditions at the upper-level 

optimization problem and show that the new approach provides improved robustness and 

better convergence characteristics as compared to a unilevel variant given by Kuschel and 

Rackwitz (2000). 

Design Optimization of Hierarchically Decomposed Multilevel Systems under 

Uncertainty 

Kokkolaras et al. (2006) formally introduced the notion of uncertainty and risk 

into the design optimization of hierarchically decomposed multilevel systems by 

developing a probabilistic version of ATC methodology, which they refer to as PATC. 

They assume that standard deviations of random variables are available only at the 
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bottom level of the hierarchy, and use a bottom-up coordination strategy that requires 

uncertainty propagation. The objective function in each element is expressed in terms of 

deviation from target values cascaded down from the corresponding element immediately 

above it. To reduce error in uncertainty propagation, they use the advanced mean value 

(AMV) method (Wu et al. 1990) in evaluating the probability of violating a design 

constraint under the presence of uncertainty. Recently, Liu et al. (2006) suggested a more 

general formulation of PATC whereby the interrelated random variables may be 

described by general probabilistic characteristics. In this research, the general framework 

of ATC methodology is adopted with several enhancements to prior approaches (e.g., 

Kokkolaras et al. 2006) as noted later in this section. As for uncertainty propagation and 

associated constraints, the current approaches in PATC address the consistency of the 

first two statistical moments (i.e., mean and variance) of random linking variables and 

shared random responses, while using AMV method for probabilistic design optimization 

in each element. 

 In the current research, we propose a more efficient formulation of the 

augmented Lagrangian based on exponential method of multipliers, which is then 

integrated with an efficient method for probabilistic design optimization. Moreover, with 

development and availability of process integration software, different simulation codes 

are integrated into a computational design tool. 

The goal of this research is to develop a computational design tool that is capable 

of optimizing hierarchically decomposed multiscale product-material systems under 

uncertainty. To achieve this goal, the following activities are pursued: 
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Activity 1 – Explore capabilities of current ATC formulations; this activity is 

focused on an empirical investigation of the numerical behavior of ATC in solving 

multilevel optimization of hierarchical systems based on the Augmented Lagrangian 

Penalty formulation and four different solution strategies. It also includes examination of 

the solution accuracy and efficiency depending on how a problem is decomposed, and 

establishing general guidelines on the role of coordination strategy and influence of 

selected parameters on the solution of the ATC problem. 

Activity 2 – Propose a new ATC formulation and solution strategy; this activity is 

aimed at developing a more efficient approach for solving multilevel optimization 

problems based on the exponential method of multipliers within the framework of ATC. 

In each element, the consistency constraints are combined with the objective function to 

formulate an augmented Lagrangian with an exponential penalty function.  

Activity 3 – Develop a new approach for probabilistic ATC; this activity explores 

different approaches for solving a probabilistic design optimization problem. More 

specifically, it examines the use of efficient single loop single vector approach for 

reliability-based design optimization with normal and non-normal distributions and its 

integration with Augmented Lagrangian (AL) formulation of ATC for solution of 

hierarchical multilevel optimization problems under uncertainty. 

Activity 4 – Develop a computational framework for coupled hierarchical 

material-product simulations; this activity focuses primarily on development of a 

prototype design tool that can solve problems involving multiple simulation software and 

codes. The application of this tool is demonstrated in design optimization of a product-

material system using all-at-once and ATC approaches. 
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Activity 5 – Apply the developed approaches to analytical and engineering design 

problems; multiple analytical problems with different number of design variables, design 

constraints, and decomposition models are solved as part of this activity. In addition, the 

application of deterministic and probabilistic ATC for multilevel optimization of a 

product-material system is investigated. 

The primary contribution of this research is the development of exponential 

penalty function in ATC framework and its integration with an efficient reliability-based 

design optimization approach to improve the computational efficiency of probabilistic 

ATC. The secondary accomplishments are the development of the computational design 

tool that can implement the proposed formulation and solution techniques and its 

application to multilevel optimization of product-material systems under uncertainty. 

The remaining portion of this dissertation is organized as follows: Chapter 2 

discusses the numerical behavior of ATC using augmented-Lagrangian penalty function 

with four different coordination strategies. Chapter 3 provides details of the integration of 

reliability-based design optimization method in ATC framework. Chapter 4 presents new 

approach in ATC using exponential method of multipliers. Chapter 5 gives details of the 

design optimization of a material-product system. The optimization of the material-

product system in Chapter 5 under uncertainty is described in Chapter 6. Chapter 7 

discusses the computational design framework developed for material-product simulation 

and optimization. Chapter 8 summarizes the research findings and suggests some insights 

for future work. 
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CHAPTER II 

COMPARISON OF ALTERNATIVE STRATEGIES FOR MULTILEVEL 

OPTIMIZATION OF HIERARCHICAL SYSTEMS 

Analytical target cascading (ATC) (Michelena et al. 1999; Kim et al. 2003) was 

developed for systems such as that shown in figure 2.1. In the initial formulation of ATC 

(Kim et al. 2000, 2001, 2002, 2003), deviation tolerances are defined for the responses 

and targets as well as the linking (or shared design) variables. The multilevel 

optimization problem is solved while minimizing the deviation tolerances and satisfying 

the design constraints. 

ATC solution has been shown to converge to a point that satisfies the necessary 

optimality conditions of the original design optimization problem (Michelena et al. 

2003). Using a formulation of ATC with similarities to that in (Kim et al. 2000), the 

inequality constraints on deviation tolerances were brought into the objective function to 

form an augmented objective function; this formulation included the addition of weight 

factors to the deviation tolerances. The scaled tolerance formulation (Kim et al. 2000) 

was used by Tzevelekos et al. (2003) to investigate the numerical behavior of the ATC 

methodology and the local convergence properties of different coordination strategies. 

They examined the effects of linking variables, subproblem solution accuracy, and the 

number of significant digits on numerical stability. 
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Figure 2.1 An illustrative model of a hierarchically decomposed multilevel system 

 

The commonly used ATC formulations are based on quadratic penalty (QP) 

functions (Tzevelekos et al. 2003), (Michalek and Papalambros 2005a), (Michalek and 

Papalambros 2005b), (Tosserams 2004). Numerical experiments with these formulations 

show significant computational effort to obtain accurate solutions. The QP functions 

minimize the consistency constraints (equality or inequality) to force targets and 

responses to match. Ideally, these consistency constraints have to be relaxed, allowing 

inconsistencies between targets and responses that are gradually eliminated in the 

iterative solution process. For the QP function, in general, large weight factors are 

required to find accurate solutions (Bertsekas 1999). Due to lack of a mathematical 

relationship between weight factors and solution accuracy, the weight factors are given 

arbitrarily large values that may cause computational difficulties (Michalek and 

Papalambros 2005,2005a; Tosserams 2004). 

An iterative method was presented by Michalek and Papalambros (2005) for 

finding the minimal penalty weight factors that provide converged solutions within user-

specified inconsistency tolerances, and its effectiveness was demonstrated through 

several examples. This method contains an inner and an outer loop. The inner loop solves 
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the decomposed ATC problem with a coordination scheme. The outer loop updates the 

penalty weight factors based on information obtained from the inner loop. The iterative 

method calculates the Lagrange multipliers and derivatives of the response function to 

update the weight factors. 

In the separable ordinary Lagrangian (OL) approach, a large-scale convex 

nonlinear programming problem is formulated and decomposed using the ATC (Lassiter 

et al. 2005). By combining the classical Lagrangian duality and the augmented 

Lagrangian duality, a simple method was proposed in (Blouin et al. 2005) for 

decomposition without imposing restrictive conditions to alleviate the difficulty of 

convexity requirement. The modified Lagrangian dual formulation and coordination 

enhances the ATC performance (Kim et al. 2006) over those proposed earlier in the 

literature. ATC problem relaxation with an augmented Lagrangian penalty (ALP) 

function using the method of multipliers (AL) and the alternating direction method of 

multipliers (AL-AD) was proposed and investigated by Tosserams et al. (2006). By 

means of the ALP relaxation, ill-conditioning is reduced in the inner loop because 

accurate solutions can be obtained for smaller weight factors. This formulation was later 

adopted in (Li et al. 2008) that used Diagonal Quadratic Approximation (DQA) and 

Truncated DQA (TDQA) for parallelization of ATC. Similarly, the ALP formulation was 

also applied in (Wang et al. 2010), but three different updating methods were used in the 

outer loop.  

In this chapter, the (ALP) function using the method of multipliers with four 

different coordination strategies (i.e., AL, AL-AD, DQA, and TDQA) is used to study the 

numerical behavior of ATC. Moreover, the role of two penalty parameters that can have 
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large influence on solution accuracy and computational cost is investigated. The effects 

of the penalty parameter updating coefficient in the outer loop and the initial guessed 

values for the decision variables to start the multilevel optimization process are examined 

by solving three example problems. 

 Overview of ATC 

For a decomposed system with   levels and   elements, as shown in figure 2.2, 

the subscripts    denote the  th element in the  th level (Tosserams et al. 2006). 

  

Figure 2.2 Variable allocation in a hierarchical system 

 

The vector of local variables is denoted by     with     as the vector of target 

variables shared by element    and its parent at level    ;    is the set of elements at 

level   (e.g.,            in figure 2.2);                 is the set of children of 

element    (e.g.,          );     is the local objective;     is the vector of local 

inequality constraints; and     is the vector of local equality constraints. Hence, an all-in-

one (AIO) problem of such a system is defined as 
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     (2.1) 

                                                        
    

               

In the ATC formulation adopted from Tosserams et al. (2006), response copies 

    are introduced to make the objective function and constraints separable, which leads 

to the addition of consistency constraints expressed as              , where     is a 

measure of inconsistency between the targets and the corresponding responses in element 

  . Moreover, the objective function is augmented by the addition of a penalty term   that 

leads to the relaxed form of the AIO problem formulated as   

                                       
 
    

                            

                            (2.2) 

                    

                                             
  

               

where               in the hierarchy.  

It is now possible to decompose the relaxed AIO problem in equation (2.2) into 

separate subproblems (e.g.,     for element   ) involving only a subset of decision 

variables      given by 
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                   (2.3) 

                     

                                         
  

In QP, OL, and ALP, the penalty term takes the form  

                   
 
 (2.4) 

            
     (2.5) 

             
               

 
 (2.6) 

 

The ALP method contains two loops. In the inner loop, the decomposed ATC 

problem is solved for fixed penalty parameters (  and  ) whereas in the outer loop, an 

algorithm is applied to update both   and   as 

                              (2.7) 

              (2.8) 

 

where the penalty parameter updating coefficient   is required to be    for convex 

objective functions (Tosserams et al. 2006). 

The double-loop approach in AL avoids setting arbitrarily large weight factors 

that can often cause ill-conditioning in the solution. The weight factors are updated using 

the information obtained from the inner loop. Whereas the inner loop is very 

computationally expensive, the outer loop is very inexpensive. It has been shown in the 
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literature that the AL method can significantly reduce the computational cost of solving a 

problem with ATC without loss of accuracy. 

Alternative Coordination Strategies 

For the ALP formulation, the four alternative coordination strategies are described 

by the algorithms outlined in figures 2.3 and 2.4. 

 

   
 

                     (a)                                                                      (b) 

Figure 2.3 Flowcharts of (a) AL and (b) AL-AD algorithms 

 

For AL and AL-AD in figure 2.3, the outer-loop convergence criterion is satisfied 

when the reduction of inconsistencies in two successive solutions is sufficiently small 
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(i.e.,                , where k denotes the outer loop counter and   is a user-defined 

termination tolerance). The inner loop convergence criterion is reached when the 

difference in the objective function values in two consecutive inner loop iterations is less 

than          .  

     

                                      (a)                                                       (b) 

Figure 2.4 Flowcharts of (a) DQA and (b) TDQA algorithms 

 

In the DQA and TDQA algorithms in figure 2.4, the convergence criteria are 

defined as 

                                                      (2.9) 

                                       (2.10) 
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where     and      are the inner and outer loop termination tolerances with     

        and        . 

Illustrative Example Problems 

The effect of   on the accuracy and computational cost has not been addressed in 

the literature. Although it has been mentioned that   can take a wide range of values, it is 

unclear what value must be chosen with respect to the desired levels of accuracy and 

computational cost as well as the selected ATC solution methodology and coordination 

strategy. Furthermore, since in ATC the initial values for response/target and linking 

variables are selected at random, it is unclear what effects these values would have on the 

ATC results. 

To examine these effects, three different example problems are solved using the 

four different methods of ATC described in the previous section. For each method, the 

solution starts from different initial guessed values (IGV) that correspond to different 

randomly selected design points relative to the optimum point. The solution is repeated 

for 20 different values of   and every IGV.  

Two performance metrics are considered: the computational cost that is captured 

by the number of function evaluations, and the error, which is defined as 

 

              (2.11) 

 

where    is the exact optimum design point and      is the solution found by ATC. All 

of the ATC formulations cited were developed into separate MATLAB codes and used to 

solve the following example problems. 
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Problem 1 

This is a 7-variable geometric programming problem with the AIO formulation 

expressed as 

               
    

  (2.12) 

                                  
  
     

 

  
      

                               
  
    

  

  
      

                                                
    

    
     

    

                                             
    

    
    

    

              

where the point of optimum is at     [2.15, 2.06, 1.32, 0.76, 1.07, 1.0, 1.47] with all 

four constraints active.  

This problem is decomposed into a two-level hierarchy (Tosserams 2004) with a 

single element at the top level and another element at the bottom level. Local variables in 

the top element are              along with      
  as the objective function subject to 

the inequality constraint    and equality constraint   . Variables              are the 

local design variables for the bottom element with the objective function      
  and 

constraints          . The response/target variable for the two elements is   . The initial 

values for the penalty parameters are defined as  
      and       . The starting 

design point is                      for all the formulations. The ten initial guessed 

values (IGV), i.e., IGV #1, … #10 for    are chosen as {0, 2, 4, 6, 8, 10, 20, 40, 70, 100}. 

For AL and DQA,   is given different values in the range of                    , 

whereas for AL-AD and TDQA,    . The IGV for    and   are chosen arbitrarily to 
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simply diversify the iterative solution process. The termination tolerance is chosen as 

                  . 

 

    (a)                                             (b)                                           (c) 

Figure 2.5 Cost trends for AL-based solution of Problem 1 using (a)       , (b) 

      , and (c)        

 

 

    (a)                                             (b)                                           (c) 

Figure 2.6 Cost trends for DQA-based solution of Problem 1 using (a)       , (b) 

      , and (c)        

 

Figures 2.5 and 2.6 show the plots of function evaluations number (cost) versus   

for AL and DQA, respectively, using different IGV for   . These figures show that the 

cost is affected by the choice of  . The optimum   value to minimize cost depends on the 
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termination tolerance used, but it appears to be near 1.5 or 2.3 for most cases. For 

different IGV, the relationship between cost and   is similar, but it is not necessarily 

monotonic. Due to this similarity, only the upper and lower bounds are shown for each 

case using the corresponding IGV numbers. It appears that the value of   also has an 

influence on the error, especially for larger tolerances as shown in figure 2.7. 

 

                                            (a)                                                                      (b)  

Figure 2.7 Error trends for (a) AL and (b) DQA solutions of Problem 1 using x5 = 6 

with                    

 

Figure 2.8 Cost and error trends from different solutions of Problem 1 using     for 

AL and DQA with (a)       , (b)       , and (c)        
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The solution error trends for different IGV are identical; hence, the plot of error 

from equation (2.11) versus   is shown for only one case. Figure 2.8 is used to further 

highlight the effect of IGV on both function evaluations and error under different solution 

strategies and convergence tolerances. The plots are shown only for     case with 

three convergence tolerance values. The dependency of error on IGV for AL-AD and 

TDQA is very high at       , but minimal or nonexistent at        and     . Thus, 

TDQA and AL-AD are much more dependent on IGV than DQA and AL. The efficiency 

of AL and DQA methods changes drastically with tighter termination tolerance, while 

solution error for AL and DQA does not change very much. Hence, for larger  , AL and 

DQA are less costly, whereas for smaller  , AL-AD and TDQA are more efficient. 

Problem 2 

This is a 14-variable geometric programming problem with the AIO formulation 

expressed as (Kim et al. 2001)
 

    
           

       
    

  (2.13) 
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The global optimum is located at     [2.84, 3.09, 2.36, 0.76, 0.87, 2.81, 0.94, 0.97, 0.87, 

0.80, 1.30, 0.84, 1.76, 1.55] with         and all constraints active. 

The decomposition model selected for this problem (Tosserams et al. 2006) has 

five elements in three levels: a top-level element (1) with two children (2 and 3) at level 

2, each with one child (4 and 5, respectively) at the bottom level. Local variables in 

elements 2, 3, 4, and 5 are                                          with design 

constraints being        ,        ,           , and           , respectively. The 

parameters           and    are the responses/targets between elements 1-2, 1-3, 2-4, and 

3-5, respectively, whereas            are the linking variables between elements 2-3 and 

4-5, respectively, both of which are coordinated in element 1. 

The initial values for the penalty parameters in all the formulations are taken as 

       and       .  The initial design point is      [5, 5, 2.76, 0.25, 1.26, 4.64, 

1.39, 0.67, 0.76, 1.7, 2.26, 1.41, 2.71, 2.66] for all the formulations, which is the same as 

that used in the previous studies cited. The IGV for                 and     are 

randomly selected in the design domain with a relative distance of 

                            from the optimum point with the corresponding values 



 

25 

shown in Table 2.1. These variables need to have predefined values to start the ATC 

solution sequence. For example in AL, it is necessary to guess values for response/linking 

variables                   from the lower level elements to solve element 1, response 

value for    from element 4 to solve element 2 and response value for    from element 5 

to solve element 3. For AL and DQA,   {1.1, 1.2, 1.3, …, 2.9, 3}, whereas for AL-AD 

and TDQA,    . The termination tolerances were set to    {10
-2

, 10
-3

, 10
-4

}. 

Computational cost in AL and DQA is affected by   values but it follows a non-

monotonic manner. It has the minimum computational cost near     and it generally 

increases with higher   values as shown in figures 2.9 and 2.10. 

Table 2.2 List of IGV for response/target and linking variables in Problem 2. 

IGV                      

1                                       

2                                       

3                                       

4                                       

5                                       

6                                        

7                                         

8                                          

9                                           

10                                           
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The plots in figure 2.11 show that error in both AL and DQA depends on the   

value, especially with       , and this is very critical for the DQA method. The error 

in AL is nearly uniform for       while in DQA it has an ascending mode. 

 

    (a)                                           (b)                                             (c) 

Figure 2.9 Cost trends for AL-based solution of Problem 2 using (a)       , (b) 

      , and (c)        

 

 

    (a)                                           (b)                                             (c) 

Figure 2.10 Cost trends for DQA-based solution of Problem 2 using (a)       , (b) 

      , and (c)        
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                (a)                                                                     (b) 

Figure 2.11 Error trends for (a) AL and (b) DQA solutions of Problem 2 using IGV #4 

with                    

 

Figure 2.12 indicates that the dependency of error on IGV for AL-AD and DQA 

is observable at       , diminishes slightly for TDQA at       , and vanishes at 

      . It can be concluded that TDQA and, to some extent, AL-AD are much more 

dependent on the IGV than DQA and AL. The computational costs of AL and DQA 

drastically change with tighter termination tolerance, while solution errors in AL and 

DQA do not change very much. In contrast to AL and DQA, the error in AL-AD and 

TDQA changes with different   values while the computational costs are nearly similar. 

Hence, for larger  , AL and DQA are better choices, whereas for tighter  , AL-AD and 

TDQA are more efficient. 
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   (a)                                           (b)                                            (c) 

Figure 2.12 Cost and error trends from different solutions of Problem 2 using     for 

AL and DQA with (a)       , (b)       , and (c)        

 

Problem 3 

This is a seven-variable geometric programming problem with only inequality 

constraints. The corresponding AIO problem is expressed as 

              
              

                
     

    
  

                (2.14) 
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where     [2.3305, 1.9513, -0.4775, 4.3657, -0.6245, 1.0371, 1.5942] is the unique 

optimal solution. The problem is decomposed into three elements in two levels: a top-

level element with elements 2 and 3 at level 2. There is no local variable or constraint at 

the top level. Local variables of element 2 are           along with constraints 

         . Local variables of element 3 are           with inequality constraints 

         . There is no target variable in this decomposed structure. The linking variables 

  ,     and    are shared between elements 2 and 3 and coordinated in element 1. 

The starting design point is                      for all the formulations. The 

IGV for              are randomly selected in design domain at a distance nearly equal 

to                from the optimum point with the corresponding values shown in 

Table 2.2. 

 

Table 2.3 List of IGV for linking variables in Problem 3. 

IGV            

1                         

2                         

3                         

4                          

5                        

6                         
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For AL and DQA,                        , whereas for AL-AD and TDQA, 

   . The termination tolerances were set to                   . 

Figures 2.13 and 2.14 show that the computational cost changes greatly with 

variations in   value and that the fluctuations are more pronounced for the smaller   

values. Figure 2.15 shows that error in AL is slightly dependent on   just for        

and it nearly disappears for               . The error in DQA is more dependent on 

  than AL. 

Figure 2.16 indicates that the computational cost dependency on IGV is 

negligible; the changes in computational cost are lower than 5% for all the methods. The 

computational cost for AL and DQA, especially for DQA, changes significantly while the 

error is nearly identical for tighter tolerances. Also, dependency of the error on IGV in 

AL-AD and TDQA is observable at        and vanishes for tighter tolerances. 

 

     (a)                                             (b)                                            (c) 

Figure 2.13 Cost trends for AL-based solution of Problem 3 using (a)       , (b) 

      , and (c)        
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     (a)                                             (b)                                            (c) 

Figure 2.14 Cost trends for DQA-based solution of Problem 3 using (a)       , (b) 

      , and (c)        

 

 

                  (a)                                                                     (b) 

Figure 2.15 Error trends for (a) AL and (b) DQA solutions of Problem 3 using IGV #3 

with                    

 

Conclusion 

The numerical behavior of the analytical target cascading (ATC) method was 

investigated for multilevel optimization of hierarchical systems based on different 

solution strategies. The strategies considered included Augmented Lagrangian with 

method of multipliers (AL), Augmented Lagrangian with Alternating Direction method 

of multipliers (AL-AD), Diagonal Quadratic Approximation (DQA), and Truncated 
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Diagonal Quadratic Approximation (TDQA). Three example problems were used to 

examine the effects of penalty parameter updating coefficient   and convergence 

tolerance   on the computational cost and solution accuracy. In addition, the effect of 

initial guessed values (IGV) for the response/target and linking variables was also 

investigated.  

The results showed that although the computational cost in the AL and DQA 

methods is influenced by the value of  , it does not follow a specific 

ascending/descending pattern. The computational cost dependency on   is generally 

higher with increasing the convergence tolerance. Although previous studies recommend 

    and      , the results found here indicate that       is also acceptable 

and that no single value of   can be suggested to reduce the computational cost in all the 

ATC-based optimization problems and solution strategies. The results also showed that 

the relationship between the computational cost and   is not dependent on the IGV as 

best noted in the results of the DQA method. 

In terms of solution accuracy, AL and DQA results depend on the   value 

irrespective of the selected IGV. With higher   values, better accuracy is obtained with 

AL while the behavior is different for DQA. The dependency of solution accuracy on   is 

reduced with tighter tolerance values. Comparison of the DQA and AL results indicate 

that AL is more stable in terms of accuracy whereas DQA needs to have a tighter 

tolerance to obtain reasonable accuracy, although a tighter tolerance causes significant 

changes in the computational cost. In the absence of optimum   for computational cost 

and accuracy, the AL method appears to be more reliable than DQA. 
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By moving the IGV farther away from the corresponding values at the point of 

optimum, all methods required more function calls, as expected. While the solution 

accuracy in AL and DQA was not influenced by the choice of IGV, the trend was quite 

the opposite for AL-AD and TDQA as they both had great dependency on IGV. The 

inner loop convergence requirement is more costly for AL and DQA than TDQA and 

AL-AD. Furthermore, the increase in computational cost for AL-AD and TDQA is much 

greater than AL and DQA when IGV is farther away from the optimum, but TDQA and 

AL-AD still show better performance. AL-AD and TDQA need tighter termination 

tolerances to have better accuracy.  

In summary, the   and   values have greater effect on AL and DQA solutions 

than the other two coordination strategies and they are not influenced by IGV. Hence, in 

using AL and DQA, appropriate values for these two parameters can enhance both 

solution accuracy and computational cost. In contrast, the computational cost and 

accuracy of AL-AD and TDQA are greatly dependent on the IGV. 
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CHAPTER III 

RELIABILITY-BASED DESIGN OPTIMIZATION WITHIN ANALYTICAL TARGET 

CASCADING FRAMEWORK 

The ATC formulation and coordination strategies have also been extended to 

design problems that include the presence and effects of uncertainties. There are, 

however, very few publications related to non-deterministic ATC formulations and 

applications. Liu et al. (2006) presented a particular probabilistic ATC (PATC) 

formulation that matches the first two moments of interrelated responses and linking 

variables whereas Kokkolaras et al. (2006) extended the deterministic ATC formulation 

using both probabilistic and interval analysis approaches. They considered representation 

of uncertain quantities as optimization variables with specific probability distributions, 

and propagated uncertainty through the decomposed system. In the area of reliability-

based design optimization (RBDO), a large body of work is available. One of the 

principal challenges in RBDO is the evaluation of non-deterministic constraint functions 

that tend to be very computationally intensive, especially in presence of highly nonlinear 

limit state functions. Various approaches have been proposed to improve the 

computational efficiency of RBDO problems.  

In this chapter, the SLSV approach (Chen et al. 1997) for RBDO is integrated 

with ALP formulation (Tosserams et al. 2006) of ATC for solution of multilevel 

hierarchical systems under uncertainty. The proposed SLSV+AL formulation matches the 



 

35 

required moments of connecting responses/targets and linking variables. This method 

requires only a modest increase in computational cost over the deterministic ATC while 

the double-loop methods require significantly higher computational efforts. The RBDO 

with focus on SLSV and ALP methods along with SLSV+AL formulation are discussed. 

This is followed by the presentation of numerical example problems, associated results, 

and conclusions. 

Reliability-Based Design Optimization 

A general statement of the deterministic optimization can be typically presented 

as follows: 

         (3.1) 

                             

         

where      is the objective function,   is the design vector,       is the  th constraint 

that models the failure of the system, and    and    are the lower and upper limit of the 

vector of design variables. In deterministic optimization, the designs are obtained without 

considering uncertainties in the design variables. The resulting optimum based on 

deterministic optimization is usually associated with a high probability of failure due to 

little or no latitude for uncertain bounds especially for active constraints. 

When the design variables are random with probabilistic constraints, a 

deterministic optimization problem is replaced with a formulation of RBDO as follows: 

         (3.2) 
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where      is the objective function,   is the design vector which assumed to be the 

mean of the random variable vector  ,         is the safe region of the  th constraint, 

            is the fail probability,      
   is the upper limit of fail probability for  th 

constraint,   
  is the target reliability,      is the standard cumulative distribution 

function of the normal variable, and    and    are the lower and upper limits of the 

vector of design variables, respectively. 

Researchers have proposed a variety of formulations for performing RBDO under 

the double-loop structure like reliability index approach (RIA) and performance measure 

approach (PMA) or better efficiency single/serial loop structure like single-loop single-

vector (SLSV) and sequential optimization and reliability assessment (SORA). Double-

loop structures are performed by nesting two subproblems: Deterministic optimization 

problem and reliability analysis. 

The formulation based on RIA is presented as follows: 

         (3.3) 

               
             

         

The reliability index    is determined by solving the minimization problem in the 

standard normal space ( -space) of random variables 

           (3.4) 
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where   is the vector of random variables in the standard normal space corresponding to 

the random variable vector  . The limit state function       is the image of       in the 

physical space. The double-loop structure formulation based on PMA can be formulated 

as follows 

         (3.5) 

                          

         

where    is determined by maximization problem for the evaluation of reliability as  

             (3.6) 

                        
             

The sub-optimization problem can be solved by simulation-based methods such as 

direct Monte Carlo Simulation (MCS) (Rubinstein, 1981), Importance Sampling 

(Melchers, 1989), Adaptive Importance Sampling (Wu, 1994) or approximate analytical 

methods which include Hasofer and Lind (1974), Advanced Mean Value method (AMV) 

(Wu and Burnside, 1988), and Hybrid Mean Value method (HMV) (Youn and Choi 

2004). 

The solution in traditional double-loop approaches for RBDO is carried out in two 

separate spaces, causing the number of function calls to dramatically increase, especially 

for systems with a large number of constraints. The enormous computational time makes 

these approaches impractical. 
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A more efficient method for probabilistic design optimization is the SLSV 

approach which provides the same level of accuracy as the previous double-loop methods 

at a fraction of computational cost. The cost of RBDO based on SLSV increases by less 

than a factor of two or less as compared to solving the corresponding deterministic design 

optimization problem. 

Single-Loop Single-Vector Method 

An RBDO problem with a deterministic objective function and   probabilistic 

design constraints can be formulated by expanding equation (3.2) as 

            (3.7) 

                             
             

   
       

            

where     is the mean of  , and p is the vector of deterministic parameters. The total 

number of design variables is denoted by   . 

For normal random variables, the SLSV formulation (Chen et al. 1997) of the 

RBDO problem in equation (3.7) is stated as 

        
       (3.8) 
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where    is the vector of standard deviations of  , and   
  is the target value of safety 

factor associated with the  th constraint. In SLSV, there is no need to calculate the safety 

index,    for the  th constraint. Instead a search is conducted to find    such that    is 

located on the limit state surface at      representing the MPP.    can be determined 

directly from    as noted in equation (3.8). The parameter k in equation (3.8) is an 

iteration counter. Equation (3.8) is essentially a deterministic representation of the RBDO 

problem in equation (3.7). 

The SLSV method requires an iterative solution with an algorithm that is as 

follows: 

1. Select an arbitrary initial point in the random space denoted by     . 

Evaluate the normalized constraint gradient vectors,   
   

 for the m 

potentially active constraints and calculate the resultant unit vector,      

as 

   
    

        
    

         
     

 (3.9) 

      
   

   
 

    
   

  
 (3.10) 

2. Find the initial estimate of the mean vector   
   

 using  

   
              

    (3.11) 

3. For the subsequent iterations (i.e., k ≥ 1), the updated vector   
   

 is found 

by solving the optimization problem defined as 
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  (3.12) 

                   

                      
      

     
     

 

   
      

       
     

 

        
     

  
 

   
    

      
  

4. After obtaining   
   

, the constraint gradient vectors are recalculated at 

  
   

 for input to the next iteration. Meanwhile,    is updated using the 

new constraint derivatives for the next computation of   . The vectors    

and    are alternately updated until the computations converge to a final 

probabilistic design at coordinates defined by   , and a set of final vectors 

         that describe the MPP for each of the active constraints. 

The SLSV can also be applied to RBDO problems with non-normal random 

variables. For a normal distribution, the relation between design variables,   
   

 and the 

MPP point,      is defined as  

   
             

      (3.13) 

However, in case of non-normal distribution, this relation is implicit and more 

complex. 

For non-normal random variables, the equivalent normal means and standard 

deviations are calculated first. Suppose that a particular non-normal random variable   

with mean    and standard deviation    is described by a cumulative distribution 
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function       and a probability density function      . The equivalent mean   
  and 

standard deviation   
  are computed at    on the limit state function presented by    , 

where the CDF and PDF of the actual function are equal to the normalized CDF and PDF 

stated as (Nowak and Collins 2000) 

     
     

     
 

  
   (3.14) 

       
 

  
   

     
 

  
   (3.15) 

where   is the CDF and   is the PDF of the standard normal distribution. The   
  

and   
  can be obtained as  

   
       

          
     (3.16) 

   
  

 

      
          

     (3.17) 

Thus, the SLSV with non-normal distributions can be reformulated as 

        
       (3.18) 

                     

   
      

  

      
       

   
   

     
 

               
            

              
        

The step-by-step algorithm for SLSV with non-normal distribution is described as 

follows: 
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1. Set the initial design   
   

, and the initial estimate for MPP     , where   

is set to 0. 

2. Find the design   
     

 by solving the following optimization problem 

        
         (3.19) 

                     

   
      

  

   
      

 
 

    
    

          
       

        
              

             
       

         
         

   
        

   
 

       
          

            
      

3. The random vector (MPP) is updated as follows 

          
         

   
        

   
 (3.20) 

4. Check the convergence criterion; if it is satisfied,   
     

 is considered the 

optimum solution. Otherwise, set   to    , and go back to step (2) for 

continuing the algorithm. 

Augmented Lagrangian Penalty Method 

Using the notational system in Tosserams et al. (2006) for a decomposed system 

with   levels and   elements, the subscripts    denote the  th element of the system in 

the  th level. The vector of local variables in element    is denoted by     with     as the 
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vector of target variables shared by element    and its parent at level    ;    is the set of 

elements at level   (e.g.,           );                 is the set of children of 

element    (e.g.,          );     is the local objective function, with     and     as the 

vectors of local inequality and equality constraints, respectively. 

The subproblem for element    (   ) involves only a subset of decision variables 

     and it is formulated as 

                                    (3.21) 

                      

                        

where                                    
  and   represents the penalty term on the 

inconsistency constraints              , with the response copies     introduced to 

make the objective function and constraints separable. 

In the Augmented Lagrangian Penalty (ALP) formulation of ATC, the penalty 

term is defined as  

                 
                           

 
 (3.22) 

where     and     are the penalty parameters. 

The AL method contains two loops. In the inner loop, the decomposed ATC 

problem is solved for fixed penalty parameters while in the outer loop, an algorithm is 

applied to update the parameters   and   as 

                              (3.23) 
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              (3.24) 

where the penalty parameter updating coefficient     for convex objective functions.  

The outer-loop convergence criterion is satisfied when the reduction of 

inconsistencies in two successive solution estimates is sufficiently small (i.e.,       

          , where      denotes the vector of all inconsistencies in the outer loop 

iteration  , and   is a user-defined termination tolerance). 

 

Single Loop Single Vector + Augmented Lagrangian Approach 

In integrating SLSV and AL, the uncertain parameters are defined as random 

variables and denoted by upper case Latin symbols. The mean values of the random 

variables are treated as design variables and the corresponding standard deviations are 

either held fixed (Kokkolaras et al. 2006) or included as design variables (Liu et al. 

2006). Thus, the general optimization subproblem     takes the form 

             
               

                               

 

  

    
                               

 

 (3.25) 
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where   is the number of constraints in the current subproblem and    is the random 

variable vector corresponding to the local design constraints    
 . In equation (3.25), the 

inconsistency between the target mean and the corresponding response mean as well as 

that for the standard deviations are brought into the penalty term forcing the target and 

response moments to match (Liu et al. 2006). 

The algorithm for solving SLSV+AL is presented below; there are two loops for 

the ATC procedure and one loop for solving the RBDO problem in each element using 

the SLSV approach. 

 

1. At the initial stage (   ), the decomposed problem is defined with the 

initial estimates     ,   
   

,   
   

 and penalty parameters      and     . 

2. Inner loop (solve the ATC problem under uncertainty): Since the 

efficiency of SLSV depends highly on the initial design point, first solve 

each element as a deterministic problem to determine the initial point for 

the SLSV approach to solve the probabilistic problem in each element. 

There are several loops for each probabilistic optimization problem. Solve 

the decomposed problem with fixed      and      and obtain new solution 

estimates       ,   
     

, and   
     

. 

3. Check convergence: When the outer loop has converged, set     and 

stop; otherwise       and proceed to step 4. 

4. Outer loop (update the penalty parameters): Update   and   to        and 

       using equations (3.23) and (3.24) and the results from step 2, and 

return to step 2. 
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Figure 3.1 Flowchart for SLSV+AL Approach 

 

Figure 3.1 shows the flowchart of the prescribed algorithm for a 3-level problem 

where DOPT and DELM represent the deterministic optimization and deterministic 

elements, respectively. The SLSV+AL approach was implemented into a MATLAB code 

as part of this study and used in the solution of the example problems described next. 

Numerical Example Problems 

In order to verify the accuracy of the presented SLSV+AL approach, three 

example problems are solved with the results compared to those for the all-at-once 

(AAO) formulation found using RIA, PMA, SLSV, and SORA provided in the literature 
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(Cho et al. 2011). The standard deviations of the random variables are known for 

problems 1 and 2 and treated as design variables in problem 3. 

Problem 1 

The first RBDO example problem (Cho et al. 2011) has ten random variables 

defined by vector X and eight probabilistic design constraints.  The AAO problem 

optimizes a nonlinear objective function that depends on the design variable vector 

                                  
  that represents the mean values of the random 

variables and it is formulated as 

             
    

                                    

                     
                                  

                           
 
        (3.26) 
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All random variables are assumed to be independent and follow normal 

probability density function with standard deviation of 0.02. The selected initial design 

point is the same as that reported in the literature (Cho et al. 2011).  

The decomposition model consists of three elements at two levels: a top-level 

element (1) with two children (2 and 3) at level 2. Elements 2 and 3 are coupled through 

   and   , which serve as the linking variables and are coordinated by element 1. The 

remaining eight variables              ,        , and          are the local design 

variables of elements 1, 2, and 3, respectively. The probabilistic design constraints on 

             ,        , and         are allocated to elements 1, 2, and 3, respectively. 

Termination tolerances are set to       . The initial values of the penalty parameters 

are set to        and        with    . 

Table 3.1 shows the results obtained by the multilevel SLSV+AL approach as 

well as those for the AAO RBDO problem solved
21

 using four separate approaches. The 

last column shows the maximum relative difference between the value found by 

SLSV+AL and that by any of the other four methods listed. 
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Table 3.2 Comparison of results for the RBDO Problem 1 

Solution Method 

 RIA PMA SORA SLSV SLSV+AL %diff 

     27.749 27.749 27.750 27.751 27.656 -0.34 

   2.131 2.133 2.135 2.138 2.131 -0.33 

   2.340 2.336 2.330 2.323 2.342 0.81 

   8.711 8.710 8.709 8.705 8.714 0.10 

   5.101 5.099 5.101 5.094 5.115 0.41 

   0.934 0.931 0.930 0.922 0.925 0.28 

   1.467 1.463 1.464 1.449 1.445 -0.29 

   1.382 1.384 1.389 1.395 1.380 -1.11 

   9.804 9.806 9.810 9.815 9.802 -0.13 

   8.147 8.146 8.152 8.154 8.152 -0.02 

    8.477 8.466 8.463 8.452 8.478 0.31 

 

The results of SLSV+AL in Table 3.1 compare fairly well in terms of solution 

accuracy. The optimum objective function values are nearly identical while the maximum 

percent difference among the design variable values is less than 1.2, which is negligible.  

In terms of computational cost, it is difficult to have a direct comparison as no 

cost data was provided for the other methods in the literature. However, SLSV+AL is 

expected to have better performance than PATC (Liu et al. 2006, Kokkolaras et al. 2006) 

due to efficiencies in both the SLSV and AL portions of the solution algorithm. The 



 

50 

overall computational cost and the number of subproblem optimizations can be reduced 

by large orders of magnitude using an augmented Lagrangian relaxation approach in 

place of quadratic penalty function method (Han 2008) used in PATC. Also, SLSV is 

more efficient than AMV or MCS in solving the RBDO problem in each element of the 

hierarchy (Yang and Gu 2004). In this problem, the SLSV+AL solution converged in 12 

inner loop and 6 outer loop iterations using the stopping criterion of       . 

Problem 2 

This is a gear reducer optimization problem (Cho et al. 2011). It has seven 

random variables and 11 probabilistic constraints. The objective function is the volume 

(surrogate for weight) of the system. The physical quantities such as bending stress in the 

gear tooth, contact stress in the gear tooth, longitudinal displacement of the shaft, stress 

in the shaft, and dimensional restriction are treated as probabilistic constraints. The 

random design variables are:    (gear width),    (gear module),    (the number of pinion 

teeth)        (distances between bearings), and         (diameters of the two shafts). All 

random variables have normal distribution and are statistically independent. The design 

variables represent the mean values of the random variables, 

                        
  and the initial design point for the RBDO problem is 

selected as the result of the corresponding deterministic optimization problem. The AAO 

RBDO problem of the speed reducer is formulated as 

                    
          

                               
    

   

        
    

              
      

    (3.27) 
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The decomposition model consists of three elements at two levels: a top-level 

element (1) with two children (2 and 3) at level 2. Elements 2 and 3 are coupled through 

the linking variables   ,   , and    which are coordinated by element 1. The other four 

variables        ,        , are treated as the local design variables of elements 2 and 3, 

respectively. The probabilistic design constraints on                 ,            , and 

            are allocated to elements 1, 2, and 3, respectively. Termination tolerances 
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are set to       . The initial values of the penalty parameters are set to        and 

       with    . 

Table 3.3 Comparison of results for the RBDO Problem 2 

Solution Method 

 RIA PMA SORA SLSV SLSV+AL %diff 

     
3464.4 3465.5 3465.5 3472.5 3436.0 -1.05 

   
3.58 3.58 3.58 3.59 3.58 -0.35 

   
0.70 0.70 0.70 0.70 0.70 0.00 

   
17.0 17.0 17.0 17.0 17.0 0.00 

   
7.30 7.30 7.30 7.30 7.30 0.00 

   
7.75 7.76 7.76 7.78 7.75 -0.38 

   
3.37 3.37 3.37 3.37 3.36 -0.16 

   
5.30 5.30 5.30 5.31 5.30 -0.11 

 

The RBDO results of the multilevel SLSV+AL approach are shown in Table 3.2 

and compared with those for the AAO RBDO problem solved (Yi et al. 2008) using four 

separate approaches. The results of SLSV+AL appear to be fairly consistent with the 

others listed in Table 3.2. As in Table 3.1, the last column shows the relative difference in 

the values found by SLSV+AL and those by any of the other four methods. The 

SLSV+AL solution converges after only 8 inner loop and 3 outer loop iterations with a 

stopping criterion of       . 
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Problem 3 

This problem is more complex than the previous two. There are 8 deterministic 

                              and 6 random                      variables. The 

standard deviations for four of the random variables are not known and treated as 

decision variables. The other two are independent and normally distributed with constant 

standard deviations. Given                             , the probabilistic AAO 

(PAIO) (Liu et al. 2006) problem is to find                                       to 

              
 
           

 
           

 
           

 
 

                          
 
    

 
           (3.28) 
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In this problem,                   and                  .    and     are 

normally distributed with standard deviations equal to 0.1. The decomposition model 
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selected for this problem consists of three elements at two levels: a top-level element (1) 

with two children (2 and 3) at level 2. The response/target variable for elements 1 and 2 is 

   and that for elements 1 and 3 is   . Elements 2 and 3 are coupled through variable 

   , which is coordinated by element 1. The variables                 ,            , 

and               are local variables of elements 1, 2, and 3, respectively. The 

probabilistic constraints on        ,        , and         are allocated to elements 1, 2, 

and 3, respectively. Termination tolerances are set to       . The initial values of the 

penalty parameters are set to        and        with    . 

Table 3.4 Comparison of results for the RBDO Problem 3 

 Solution Method  

 PAIO PATC SLSV SLSV+AL %diff 

   
0.7599 0.7597 0.7598 0.7598 0.00 

   
0.8676 0.8659 0.8496 0.8493 -0.03 

   
0.9208 0.9209 0.8963 0.8963 0.00 

    
1.1984 1.2013 1.0330 1.0333 0.03 

   
0.8098 0.7912 0.7800 0.7728 -0.92 

    
0.7350 0.7229 0.8116 0.8058 -0.71 

     
1.4931 1.4737 1.6526 1.6488 -0.23 

    
0.8409 0.8419 0.8409 0.8409 0.00 

    
2.1333 2.1080 2.1724 2.1686 -0.18 

    
1.9606 1.9344 2.0281 2.0240 -0.20 
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For this problem also there is a good consistency between the ATC and AAO 

approaches. The maximum percentage difference is 0.92. The SLSV+AL solution 

converges after 76 inner loop and 7 outer loop iterations with a stopping criterion of 

      . 

Problem 4 

This problem is similar to problem 1, but the design variables,          , follow 

three different types of random distributions: normal, lognormal, and Gumbel with 

standard deviation 0.5. The target reliability indices are set equal to 2.0. 

            
    

                                          

             
                                  

                           
 
        (3.29) 
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The same decomposition model as that in problem 1 is used with three elements at 

two levels. The optimum results are presented in Table 3.4. For every distribution type 

(normal, lognormal, and Gumbel), the results for SLSV+AL and SLSV are nearly 

identical. Through this problem, it is shown that the SLSV+AL approach can be used in 

the case of non-normal random distribution. 

Table 3.5 Comparison of results for RBDO problem 4 

 normal lognormal Gumbel 

 SLSV SLSV+AL SLSV SLSV+AL SLSV SLSV+AL 

     256.5175 256.5160 176.9965 176.7921 164.1902 164.8615 

   1.1258 1.1247 1.1332 1.1311 1.1693 1.1644 

   3.2135 3.2217 2.9353 2.9479 2.8829 2.9114 

   6.3549 6.3542 6.5438 6.5438 6.6643 6.6681 

   7.3109 7.3052 6.6180 6.6154 6.3797 6.3835 

   0.0160 0.0159 0.2841 0.2835 0.0821 0.0827 

   5.2911 5.2406 3.8001 3.7741 3.4887 3.4983 

   1.6477 1.6417 1.5130 1.5053 1.5064 1.4870 

   8.4042 8.4008 8.7748 8.7694 8.7037 8.6904 

   7.5551 7.5449 7.6565 7.6471 7.3780 7.3617 

    17.5074 17.4888 15.8903 15.8941 15.1844 15.2131 
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Conclusion 

In this study, the capabilities of the single loop single vector (SLSV) methodology 

were integrated with those of the augmented Lagrangian penalty (ALP) formulation of 

analytical target cascading (ATC) for efficient and accurate solution of hierarchically 

decomposed reliability-based design optimization (RBDO) problems. The proposed 

SLSV+AL approach can be used to solve problems of varying degrees of complexity 

where the uncertainties are propagated from one element to another by matching one or 

two statistical moments of the responses of interest with those of the corresponding 

targets. The method can be applied to problems with both normal and non-normal 

probability density functions. The main feature of SLSV+AL is its ability to efficiently 

solve the RBDO problem in each element of the hierarchical system.  

The SLSV+AL approach was successfully applied to the solution of three diverse 

RBDO problems reported in the literature. The results obtained here were in excellent 

agreement with those found using the other methods. Due to the unavailability of the 

computational cost information associated with the other RBDO methods used as 

reference in this study, no direct cost comparison can be made. However, the proposed 

method with its use of SLSV approach offers more efficient solution of RBDO problem 

in each element than those that rely on the double-loop approach (i.e., reliability-index 

approach). Similarly, the use of AL within the ATC framework offers a more efficient 

and accurate decomposition and coordination strategy compared with the others reported 

in the literature. Hence, the overall computational efficiency of SLSV+AL is expected to 

be similar or better than those used for comparison. 
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CHAPTER IV 

EXPONENTIAL PENALTY FUNCTION FORMULATION FOR MULTILEVEL 

OPTIMIZATION  

In this chapter, a penalty function formulation based on the exponential method of 

multipliers (Kort and Bertsekas 1972) is presented for solving multilevel optimization 

problems within the framework of ATC. Both single- and double-loop coordination 

strategies are considered. By means of the exponential penalty function (EPF) relaxation, 

ill-conditioning is reduced in the inner loop because accurate solutions can be obtained 

for even small fixed weights without using any parameter adjusting scheme. An overview 

of ATC is provided and the previous formulations and coordination strategies are briefly 

described. The EPF I and II approaches are discussed. Four benchmark problems are 

presented with solution accuracy and computational efficiency of the proposed 

approaches compared with those from four other techniques presented in the literature.  

An all-in-one (AIO) problem according to the notation and problem structure 

described in Chapter 2 is defined as 

                                
 
    (4.1) 
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where                                
 . 

To make the objective functions and constraints in equation (4.1) separable, 

response copies     are introduced, which leads to the modified AIO formulation with 

addition of consistency constraints               to equation (4.1), where     is the 

vector of known targets. Using method of multipliers with elimination of consistency 

constraints results in the relaxed AIO problem expressed as 

                                       
 
    (4.2) 

                      

             

               

where                                    
  and                is the vector of 

inconsistencies. 

For a general relaxing function  , the AIO problem can be decomposed into a 

hierarchical system with the general problem for element ij, named    , given by 

                         (4.3) 

                      

             

where                                    
  represents the vector of local decision 

variables. 
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Within the ATC framework, three different formulations have been proposed, i.e., 

the quadratic penalty (QP), ordinary Lagrangian (OL), and augmented Lagrangian (AL) 

penalty. These formulations differ only in the way the relaxing function   is defined such 

that 

                    
 
 (4.4) 

             
     (4.5) 

             
               

 
 (4.6) 

where     is a vector product found by multiplication of terms with identical indices in 

vectors   and  . 

The variety of approaches used for defining and updating the weight factor     

diversifies the QP and AL formulations (Kim et al. 2003; Michalek and Papalambros 

2005).  Similarly, different approaches have been suggested for updating the parameter 

   . 

Generally, the procedure of solving an AL formulated decomposed problem is 

divided into two parts. In the first part, the decomposed problem (hierarchical or parallel 

structure) is solved with parameters         held fixed, whereas in the second part, the 

values of         are updated.  

In the double-loop coordination strategy, the decomposed problem is solved until 

convergence is reached in the inner loop before updating the parameters in the outer loop 

to arrive at the solution with a prescribed inconsistency tolerance. However, in the single-

loop coordination strategy, the decomposed problem is solved while the parameters are 

updated in the same loop.  
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The inner-loop elemental structure in the double-loop strategy can be either 

hierarchical called AL (Tosserams et al. 2006) or parallel called DQA for diagonal 

quadratic approximation (Li et al. 2008). The hierarchical structure uses the difference in 

the objective function values between two consecutive iterations as the inner-loop 

convergence criterion while in DQA, the inner-loop convergence is based on improving 

linearization. 

In the single-loop strategy, structural elements are either in a two-level order, 

named alternative direction method of multipliers (AL-AD), (Tosserams et al. 2006) or 

parallel order, named truncated DQA (TDQA), (Li et al. 2008). The two-level order 

contains elements of odd levels of hierarchical structure in one level and elements of even 

levels in the other level. 

The parameters   and   are updated as 

                              (4.7) 

              (4.8) 

where k represents the iteration number and     for convex objective functions 

(Tosserams et al. 2006). 

The AL formulation avoids setting arbitrarily large weight factors that can often 

cause ill-conditioning of the ATC problem. The first part of AL solution tends to be very 

computationally expensive in comparison to the second part. It has been shown in the 

literature (Tosserams et al. 2006, Li et al. 2008) that AL can reduce the computational 

cost of solving a decomposed optimization problem without loss of accuracy. 
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Exponential Penalty Function Formulation 

 

For an all-at-once (AAO) constrained optimization problem of the form 

         (4.9) 

                         

an equivalent unconstrained optimization problem using method of multipliers is 

expressed as (Kort and Bertsekas 1972)  

    
  
       

  
 

  
     

       
 
    (4.10) 

where   
  and   

  are the multiplier and penalty parameters for constraint  , respectively. 

For second-order solution methods, the penalty function   must be at least twice 

differentiable with the following properties:                              

                                                     Satisfying the 

above properties is exponential penalty function (EPF) of the form          .  

Analysis and convergence proof of this method was presented by Tseng and 

Bertsekas (1993) for the AAO problems. Based on observations by Kort and Bertsekas 

(1972) for problems cast in the form of equation (4.10), the advantage of exponential 

method of multipliers is expected to be greater for convex rather than non-convex 

optimization problems.  

For ATC application of EPF, consistency constraints are converted into inequality 

form such that 

                      
         

         
  (4.11) 
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which results in     to be formulated as 

                   
   

   
                   

   

   
                    

  
       

       
                               

       

       
                                    

 (4.12) 

                      

             

where                                     
. 

The initial values for multipliers    
  and    

  are set equal to arbitrary positive 

numbers and updated using 

    
       

    
     

     
     

     
  

 (4.13) 

    
       

     
     

     
     

     
  

 (4.14) 

There are two ways of choosing the penalty parameters     and    . One way is to 

set    
              

        or    
        

     
  and    

        
     

     with 

no dependence on values of the multipliers, whereas in the alternative way, the penalty 

parameters depend on values of the multipliers at the kth iteration such that    
  

   
     

     and    
     

     
    , where    

       
  and    

       
 .  

As part of this research, both the dependent and independent approaches were 

examined for one example problem. The results presented in Appendix I indicate that for 

the same level of accuracy, the number of function evaluations and computational time 

are generally reduced when the penalty parameters are kept independent of the 

multipliers.  Also, by allowing the penalty parameters to be updated during the 
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optimization process, solution efficiency improves. Although the results for the updating 

approach is slightly better than the one holding the penalty parameters fixed, in all the 

benchmark problems presented in the next section, the penalty parameters are held fixed 

(              ). Merit of the EPF formulation can be more accurately measured by 

making the solution independent of a particular choice of updating formula. 

The EPF formulation is combined with two coordination and updating strategies 

as shown in figure 4.3. EPF I uses a double-loop approach (i.e., inner-loop coordination 

and outer-loop parameter updating) whereas in EPF II, coordination and parameter 

updating are both performed in a single loop.  

  

EPF I Approach: 

0. Decompose the problem and select an initial design point    . Set     

and choose values for    and   . 

1. (Inner loop) Set      and solve element problems in hierarchical order 

with fixed    and   . By solving each element, the targets and the upper 

values of linking variables for the corresponding children are found. 

Responses and the lower values of linking variables are determined at the 

end of hierarchy. Set         and continue the iterative process until 

the inner loop converges. 

2. If the outer loop has converged, set     and stop; otherwise, proceed to 

step 3. 

3. (Outer loop) Find the updated parameters      and      using equations 

(4.13) and (4.14), and return to step 1. 
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EPF II Approach: 

0. Decompose the problem and select an initial design point    . Set     

and choose values for    and   . 

1. Solve element problems in hierarchical order with fixed    and   .  

2. If the convergence criterion is satisfied, set     and stop; otherwise, 

proceed to step 3. 

3. (Outer loop) Find the updated parameters      and      using equations 

(4.13) and (4.14), and return to step 1. 

 

 
 

Figure 4.1 Flowcharts of EPF I (left) and EPF II approaches 

 

The convergence criteria and coordination strategy used for EPF I are similar to 

those of AL (Tosserams et al. 2006). The inner loop convergence in EPF I is reached 
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when reduction in the augmented objective function of the relaxed problem between two 

consecutive inner loop iterations is less than the termination tolerance          . The 

outer loop convergence criterion in EPF I and EPF II is defined based on reduction of the 

inconsistencies in two successive solutions as  

              
 
   (4.15) 

Performance is measured using three quantities: solution error, total number of 

function evaluations, and the total CPU time required to solve the decomposed 

optimization problem. Solution error   is defined as (Tosserams et al. 2006) 

             (4.16) 

where    is the known optimal solution and      is the solution found by the particular 

ATC formulation.  

Solution error can be controlled by changing the termination tolerance . The 

computational efficiency is measured by the CPU time and the total number of function 

evaluations reported by the fmincon solver in MATLAB1. 

Unlike the penalty parameter   in equations (4.7) and (4.8), the EPF parameters 

        in equation (4.12) can be given arbitrary values. According to Kort and 

Bertsekas (1972), for AAO problems cast in the form of equation (4.10), the exponential 

method of multipliers converges from any starting point, it does not require any 

parameter adjusting scheme, and the subsequent sequence of unconstrained 

minimizations of equation (4.10) does not become ill-conditioned during the solution 

                                                 

1
 MATLAB Version 7.12.0.635 (R2011a); OS: XP SP3; Processor: Intel(R) Core(TM)2 Duo CPU E8400 

@ 3 GHz and 3.25 GB RAM. 
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process. Moreover, when converting the AAO problem in equation (4.9) to an equivalent 

unconstrained minimization problem, EPF provides greater efficiency than AL if the 

AAO is a convex programming problem (Kort and Bertsekas 1972). These advantages 

are the motivating factors for the application of EPF to the ATC framework. 

In the next section, four benchmark (one convex and three non-convex) 

optimization problems are presented with the solution to each problem obtained using the 

proposed EPF I and EPF II approaches as well as four other approaches (i.e., AL, AL-

AD, DQA, TDQA) found in the literature. 

Benchmark Problems 

Problem 1 

A ten-variable nonlinear constrained optimization problem is formulated as 

(Montes and Coello 2005) 

  

   
        

           
    

                                      

                    
                               (4.17) 
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This is a convex programming problem since the objective function and all design 

constraints have positive definite Hessians. The unique global optimum is located at    = 

[2.172, 2.364, 8.774, 5.095, 0.991, 1.431, 1.322, 9.829, 8.280, 8.376], where       = 

24.306 and constraints    through    are active. 

The decomposition selected for this problem consists of four elements in two 

levels, element 1 at the top level and elements 2 through 4 at the bottom as shown in 

figure 4.4. The linking variables    and    are shared among elements 2 through 4 and 

coordinated by element 1. The objective function is also decomposed to four parts based 

on the local variables in each element. The corresponding EPF formulation is also shown 

in figure 4.4. 

The relaxed AIO formulation of the decomposed problem is stated as 

    
                                

              
      

                            

                                      
            

        
            

                                                                 (4.18) 
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The relaxed AIO problem using AL and EPF formulations is solved with the 

results shown in Table 4.1.  Although both EPF and AL have the same level of accuracy, 

AL appears to be more computationally efficient in solving the AIO problem. 

 
 

Figure 4.2 Hierarchical decomposition of Problem 1 
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For an AIO problem such as the one considered here, the AL and EPF 

formulations only augment the objective function with the consistency constraints while 

the other design constraints are kept intact. Consequently, the superiority of EPF over AL 

for the AAO problems (Kort and Bertsekas 1972) is not observed here. However, the 

same cannot be said when solving the decomposed multilevel system as noted below.  

Figure 4.5 shows the plots of function evaluation and the CPU time versus the 

absolute solution error e from equation (4.16) for the six different approaches at 

termination tolerances τ = 10
−2

, 10
−3

, 10
−4

, 10
−5

 (shown from left to right). The initial 

values for the penalty parameters in AL, AL-AD, DQA and TDQA are set to        

and       ; in EPF I and EPF II,        and       . The starting design point is 

                           for all the formulations. For AL and DQA,    , and for 

AL-AD and TDQA,    .          

Table 4.1 Comparison of AL and EPF results for the relaxed AIO of Problem 1 

Formulation Error,   No. of Function 

Evaluations 

No. of Iterations    

AL 4.44E-04 2440 127 24.306 

EPF 5.98E-04 3593 195 24.306 

 

Given the analytical nature of the benchmark problems considered, the CPU time 

for all the solution schemes is very small. However, relatively speaking, the results show 

EPF to be more efficient than AL as τ value is reduced for increasing the solution 

accuracy. More importantly, EPF II requires much fewer function calls (noting the log 

scale of figure 4.5) than all the others, while EPF I offers better performance than the 
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double-loop approaches (AL and DQA). As an example, for τ = 10
−2

, EPF II requires 

23% fewer function evaluations than the next best approach (i.e., AL-AD) and nearly 

88% less than that required by DQA. The difference grows even wider as τ value is 

reduced. 

 

                (a)                                                                     (b) 

Figure 4.3 Function evaluations (a) and CPU time (b) versus solution error in Problem 

1 

 

 

                (a)                                                                     (b) 

Figure 4.4 Number of Outer Loop (a) and Overall (b) iterations versus solution error 

in Problem 1 
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A closer look at the results in Table 4.1 and figure 4.5 led to examination of the 

numbers of outer-loop iterations (i.e., AL-AD, TDQA, EPF II) and overall (inner- plus 

outer-loop) iterations (i.e., AL, DQA, EPF I) among the six approaches considered. The 

plotted data in figure 4.6 show that DQA has the lowest number of outer-loop iterations 

but the highest overall number of iterations. In comparison, EPF II requires the fewest 

overall number of iterations among all six approaches, but it falls in the middle of the 

pack when considering the number of outer-loop iterations.  

These results indicate that all single-loop approaches are more computationally 

efficient than their double-loop counterparts, and that the EPF II approach requires fewer 

function evaluations than AL-AD and TDQA. 

Problem 2 

A seven-variable nonlinear constrained optimization problem is formulated as 

                      
    

  (4.19) 

             
  
     

 

  
      

              
  
    

  

  
      

                                
    

    
     

    

                              
    

    
    

    

           

where at the point of optimum                                               , 

        and all the constraints are active. Although the objective function is convex, 
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the constraint set is not, as can be easily noted by presence of nonlinear equality 

constraints. Hence, this is a non-convex optimization problem. 

The problem is decomposed into a two-level hierarchy (Tosserams 2004) with 

one element at each level as shown in figure 4.7. The EPF formulation, objective 

function, design constraints, and local variables in each element are also shown. The 

target variable in this problem is   . 

 

Figure 4.5 Hierarchical decomposition of Problem 2 

 

Besides the formulation in figure 4.7, the decomposed problem is also solved 

using AL, AL-AD, DQA, and TDQA formulations of ATC. The initial values for the 

penalty parameters in AL, AL-AD, DQA and TDQA are chosen as        and      

  whereas in EPF I and EPF II,        and       . The starting design point is 
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chosen as                      for all the formulations. For AL and DQA,    , and 

for AL-AD and TDQA,    . 

Figure 4.8 shows the plots of the number of function evaluations and CPU time 

versus the absolute solution error   for the six different approaches at termination 

tolerances                       . 

 

                (a)                                                                     (b) 

Figure 4.6 Function evaluations (a) and CPU time (b) versus solution error in Problem 

2 

 

In terms of the number of function evaluations, EPF II appears to be the most 

efficient followed by TDQA and AL-AD, with the latter two requiring, on average, at 

least 57% more function evaluations than EPF II. In terms of CPU time, TDQA is the 

most efficient with EPF II closely behind. In terms of CPU time, both TDQA and EPF II 

are, on average, at least 40% more efficient than the other approaches considered. In 

terms of function evaluation, EPF II is 40% more efficient than TDQA and much more 

efficient than the others. 
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Problem 3 

A fourteen-variable nonlinear constrained optimization problem is formulated as 

    
        

       
    

  (4.20) 

              
  
     

 

  
      

               
  
    

  

  
      

             
  
    

 

   
      

                
  
      

 

   
      

                
   
     

  

   
      

               
   
     

 

   
      

                                   
     

    
     

     

                                 
     

    
    

     

                                               
     

    
      

      
     

                                               
      

     
     

     
     

            

where at the point of optimum     [2.835, 3.090, 2.356, 0.760, 0.870, 2.812, 0.940, 

0.972, 0.865, 0.796, 1.301, 0.841, 1.763, 1.549],          and all the constraints are 

active. The nonlinear equality constraints make this a non-convex optimization problem. 

The problem is decomposed into a three-level hierarchy (Kim 2001) with five 

elements, one element at the top and two elements each at levels two and three as shown 

in figure 4.9. 
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Figure 4.7 Hierarchical decomposition of Problem 3 

 

The EPF formulation, local variables and design constraints in each element are 

also identified in figure 4.9. The target variables    and    link element 1 and its 

(children) elements 2 and 3, respectively. Similarly, element 2 is linked to element 4 via 

   while element 3 is linked to element 5 through   . The linking variable    is a shared 

variable in elements 2 and 3 whereas     is a shared variable in elements 4 and 5. The 

values of    
and     are coordinated in element 1. Because elements 34 and 35 do not 

share the same parent, the linking variable     is coordinated at the common grandparent 

element. 
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                (a)                                                                     (b) 

Figure 4.8 Function evaluations (a) and CPU time (b) versus solution error in Problem 

3 

 

Besides the formulation in figure 4.9, the decomposed problem is also solved 

using AL, AL-AD, DQA, and TDQA formulations. In AL, AL-AD, DQA and TDQA, the 

penalty parameters are initialized as        and       ; in EPF I and EPF II, 

       and       . The starting point is       [5.0, 5.0, 2.76, 0.25, 1.26, 4.64, 1.39, 

0.67, 0.76, 1.7, 2.26, 1.41, 2.71, 2.66] for all the formulations. For AL and DQA,    , 

and for AL-AD and TDQA,    . 

Figure 4.10 shows the plots of the number of function evaluations and CPU time 

versus the absolute solution error   for the six different approaches at termination 

tolerances                      . 

Similar to the previous problem, EPF II appears to be the most efficient approach 

in terms of the number of function evaluations followed by TDQA and AL-AD, with the 

latter two requiring, on average, at least 45% more function evaluations than EPF II. In 
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terms of CPU time, unlike the previous problem, EPF II is the most efficient with TDQA 

and AL-AD behind. EPF II is, on average, at least 40% more efficient than the rest.  

In Appendix II, Problem 3 is solved using EPF I and EPF II for two other 

decompositions with the results compared with those in figure 4.9. 

Problem 4 

A seven-variable nonlinear constrained optimization problem is formulated as 

(Montes and Coello 2005) 

    
       

                          
                

     
    

  

                (4.21) 

                     
     

        
        

                               
          

                  
     

        

                    
    

           
             

                   

where at the optimum point                                                 , 

          and constraints    and    are active. This is not a convex programming 

problem since Hessian of the objective function is indefinite. 

The decomposed problem and the corresponding EPF formulations are shown in 

figure 4.11. There is no local design variable or design constraint in element 1. The 

linking variables   ,    and    are shared between elements 2 and 3 and coordinated in 

element 1. 
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Figure 4.9 Hierarchical decomposition of Problem 4 

 

Besides the formulations in figure 4.11, the decomposed problem is also solved 

using AL, AL-AD, DQA, and TDQA formulations of ATC. In AL, AL-AD, DQA and 

TDQA the initial parameters are set as        and       . In EPF I and EPF II, 

       and       . The starting point is                      for all the 

formulations. For AL and DQA,    , and for AL-AD and TDQA,    . 

Figure 4.12 shows the plots of the number of function evaluations and CPU time 

versus the absolute solution error   for the six different approaches at termination 

tolerances                      . 
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                (a)                                                                     (b) 

Figure 4.10 Function evaluations (a) and CPU time (b) versus solution error in Problem 

4 

 

In this problem, the EPF II approach offers significant advantage over the other 

approaches, both with respect to the number of function evaluations and CPU time. EPF 

II, on average, has 70% less function evaluations than the best among the other 

approaches. In terms of CPU time, EPF II is at least 105% more efficient than the rest. 

 

Summary and Conclusions 

This chapter presented an exponential penalty function (EPF) formulation based 

on method of multipliers for solution of hierarchically decomposed optimization 

problems within the analytical target cascading (ATC) framework. The EPF formulation 

was combined with double-loop (EPF I) and single-loop (EPF II) coordination strategies 

and two penalty parameter updating schemes. Four benchmark (convex and non-convex) 

optimization problems were solved using the proposed approaches with different 

termination tolerance, τ values. These problems were all nonlinear but diverse in terms of 

the number of design variables and associated side constraints, number of design 
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constraints, and inclusion of inequality and equality constraints. Performance metrics 

included the number of function evaluations and CPU time. The results were compared 

with those obtained using four other techniques (i.e., AL, AL-AD, DQA, TDQA) 

presented in the literature.  Other characteristics, such as sensitivity to the penalty 

parameter updating methodology and alternative problem decompositions were also 

investigated. 

The results showed that when a convex programming problem was decomposed 

into a multilevel system but solved as an all-in-one (AIO) optimization problem, EPF was 

less computationally efficient than AL by using 53% more iterations and 47% more 

function evaluations. However, when the same problem was solved as a decomposed 

multilevel system using ATC, the single-loop EPF II approach was more efficient than all 

the other approaches by requiring 23% fewer function evaluations than AL-AD and 88% 

less than DQA for τ = 10
−2

. For smaller τ values, the difference was even greater. For the 

non-convex benchmark problems, EPF II approach required on average 40% to 70% 

fewer function evaluations than all the rest in solving the decomposed multilevel systems. 

Generally, EPF I had better performance than the other double-loop methods (AL and 

DQA), whereas EPF II was found to be more efficient than TDQA and AL-AD. 

The proposed approach overcomes the convergence difficulties and ill 

conditioning that exist in some of the other approaches. Also, while an iterative 

formulation was employed in AL to update the weight factor, the EPF-based calculations 

were done using a fixed weight factor.  

In regard to the penalty parameters, both dependent and independent approaches 

were examined, and the results indicated that for the same level of accuracy, the number 
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of function evaluations is generally reduced when the penalty parameters are kept 

independent of the multipliers. Moreover, updating the penalty parameters during the 

solution process provides greater computational efficiency than keeping them fixed. 
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CHAPTER V 

HIERARCHICAL ANALYSIS AND OPTIMIZATION OF NANO-ENHANCED 

COMPOSITE SANDWICH PLATES 

Advances in nanoscale materials (e.g., carbon nanotube) have led to the creation 

of multiscale composite materials with enhanced properties that can be designed for 

specific applications. Through proper tailoring of the constituents, it is possible to greatly 

enhance both the stiffness and strength characteristics of the composite materials. In the 

case of hybrid multiscale composite materials, where conventional reinforcing fibers are 

combined with a nano-enhanced matrix, the nanoreinforcements can improve the 

interfacial shear strength (ISS) properties between the conventional fibers and the nano-

enhanced matrix (Thostenson et al., 2002; Garg et al., 2008). In addition, nano-

enhancements may improve the overall mechanical properties of the hybrid composite 

material (Chisholm et al., 2005; Gojny et al., 2005; Zhou et al., 2008). 

 The hierarchical nature of the nano-enhanced composite materials and the 

structural components built using such materials provide an opportunity to expand the 

design problem by considering the mechanical attributes of interest at different length 

scales. 

In this chapter, recent advances in optimization of decomposed multilevel systems 

(DorMohammadi and Rais-Rohani 2012; 2013) presented in Chapters 3 and 4 are applied 

to design of composite structures. The particular example considered is that of a simply-
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supported rectangular sandwich plate, where the thin-walled honeycomb core is 

supported by two identical laminated face sheets with multiple unidirectional layers that 

consist of continuous fibers at different orientation angles and CNF-enhanced polymer 

matrix. The overall hierarchy is shown in figure 5.1. A key element in this hierarchy is 

the modeling of the three-dimensional interphase that surround the CNF inside the matrix 

as well as the waviness observed in the CNF.  These elements are included in both the 

analysis and design optimization of the composite sandwich plate. 

 

Figure 5.1 Decomposed hierarchy of nano-enhanced composite sandwich plate 

(Courtesy of M. Rais-Rohani) 
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Figure 5.2 Decomposed multilevel optimization framework for the nano-enhanced 

composite sandwich plate (Courtesy of M. Rais-Rohani) 

 

Following the decomposition strategy presented in Chapters 2 and 4, the 

multilevel sandwich plate optimization problem follows the arrangement shown in figure 

5.2. At the bottom level in element 33, the enhanced matrix properties are optimized 

based on the neat matrix and CNF properties. The local design variable is principally the 

volume fraction of the randomly distributed CNFs given the interphase properties and 

waviness characteristics. The enhanced matrix properties calculated at this level are 

treated as input to the mid-level element 22 where the macro-level material modeling and 

design are performed.  Key design variables in this level are the thickness and orientation 
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angle of the individual plies that make up the face sheets of the sandwich plate. At this 

level the target value(s) for the bottom level are defined such that together with the local 

design variables, the face sheet properties are optimized.  Similarly, the capabilities at the 

mid-level are passed up to the top-level element 11 where the overall system requirement 

are met while minimizing the weight or any other performance characteristic of the plate.  

Specific details of this problem are described later in discussion of the optimization 

problem. 

Multilevel Composite Sandwich Plate Analysis 

Sandwich plates appear in many engineering systems including automotive and 

aerospace structures. The plate consists of laminated composite face sheets (with 

symmetric or unsymmetric ply patterns) and a cellular core as shown in figure 5.1. 

Besides the conventional continuous (e.g., carbon) fibers, each unidirectional face-sheet 

ply is further stiffened by inclusion of carbon nanofibers (CNFs) mixed with the neat 

polymer matrix (e.g., vinyl ester, epoxy). The resulting multiscale composite material in 

the face sheets can be designed by controlling not only the fiber orientation and thickness 

of the individual plies but also the properties and composition of the constituent materials 

(e.g., volume fractions of fibers and CNFs, mean aspect ratio of CNFs, etc.). 

 

Micro-level material model 

Mori-Tanaka homogenization based on Eshelby’s ellipsoidal inclusion model is 

often used for micromechanical approximation of stiffness properties based on mean field 

theory. In this approach, the prevailing assumptions include weak interaction among the 
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inclusions (inhomogeneities) and perfect interface between inhomogeneity and the 

surrounding matrix (no interphase). Ellipsoidal model can be manipulated to produce 

various shapes (e.g., elliptic or circular platelets, spherical particles, cylindrical fibers) 

including voids. Due to problems associated with agglomeration of the inhomogeneities, 

Mori-Tanaka is used for dilute to semi-dilute matrix-inclusion mixture with volume 

fraction below 30%. Under these assumptions, it is possible to analyze the effect of CNF 

inclusions on the enhanced matrix properties. For example, Rouhi et al. (2010) used 

CNF-reinforced vinyl-ester  (          ,       ,           , and       ) 

with randomly oriented/distributed ellipsoidal CNF to examine the effect of CNF volume 

fraction        and aspect ratio (AR) on effective modulus       of the enhanced matrix 

as shown in figure 5.3. 

 

              (a)                                                                      (b) 

Figure 5.3 Effect of CNF on enhanced matrix properties as a function of (a) aspect 

ratio and (b) volume fraction (Rouhi et al. 2010) 

 

Following the procedure presented by Rouhi et al. (2010)
 
and Rouhi (2011), the 

effect of three-dimensional inhomogeneous interphase on enhanced matrix properties is 
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modeled using the multi-inclusion approach (Nemat-Nasser and Hori 1993). In this case, 

the interphase is treated as a functionally graded (piecewise homogeneous) material 

whose effective properties can be calculated using the multi-inclusion (MI) model. 

Using the functionally graded representation of the interphase as shown in figure 

5.4, each elastic property (e.g., Young’s modulus, Poisson’s ratio) from the surface of the 

inclusion (x = 0) to the outermost layer of the interphase is approximated as (Rouhi 2011) 

                  
 

 
 
 

                
   

 
 
 

 (5.1) 

where   represents the interphase property, n is the interphase variation parameter, with 

  varying in the range of 1 to N+1. 

 

Figure 5.4 CNF-interphase modeled as multi-inclusion with functionally graded 

properties (Rouhi and Rais-Rohani, 2013) 

 

For example, using CNF-reinforced vinyl-ester  (          ,       , 

          , and       ) with randomly oriented/distributed ellipsoidal CNF at AR 

= 100 and         and assuming a homogeneous interphase (N = 1), variation of 

effective modulus       can be seen in figure 5.5(a) (Rouhi and Rais-Rohani 2013). The 
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no interphase case is denoted by No-INP, whereas the other two cases consider an 

interphase with modulus higher (i.e., High-INP,              or      ) or lower 

(i.e., Low-INP,            or       ) than that of the matrix. ITR represents the ratio 

of interphase thickness to CNF radius 
    

     . As indicated in figure 5.5(a), for the 

High-INP case,     can improve by as much as 15% while for the Low-INP case, it 

reduces by 1.4%. 

Using the same CNF-reinforced vinyl-ester material properties but with    

      and treating the interphase as inhomogeneous (piecewise homogeneous) would 

result in the    variation as shown in figure 5.5(b) (Rouhi and Rais-Rohani 2013).  In 

this case, the interphase is divided into 20 separate regions (   to    ) such that the 

effective volume fraction of the interphase is kept constant while the interphase variation 

parameter n is allowed to vary from 0.1 to 5 (see figure 5.4). E-Ratio represents the ratio 

of moduli in interphase region 1 to that in region N = 20.  It is worth noting that ITR is 

not constant from one case to the other because of the intent to keep the effective volume 

fraction of the interphase fixed.  Based on the results shown in figure 5.5(b) it can be 

concluded that the overall interphase modulus is more important than its distribution.  
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Figure 5.5 Variation of effective modulus for (a) homogeneous and (b) non-

homogeneous interphase (Rouhi and Rais-Rohani, 2013) 

 

For modeling the effect of CNF waviness on enhanced matrix properties, the 

approach taken by Fisher (2002) is used such that the wavy CNF is assumed to follow a 

sine wave with specified amplitude and wavelength.  Using the strain energy formulation 

and Castigliano’s second theorem, the equivalent modulus of straight ellipsoidal CNF is 

calculated and used in the micromechanical analysis. 

The final outcome of this analysis is that, given the CNF material properties, 

aspect ratio, volume fraction, and waviness together with the interphase model and neat 

matrix properties, the effective modulus of the nano-enhanced matrix can be calculated 

for use in evaluation of ply-level properties. For micromechanical material model, a 

MATLAB code developed by Rouhi (2011) is adopted to calculate the stiffness and 

strength properties of the nano-enhanced matrix as described later. 

Macro-level material model 

For a lamina consisting of continuous fibers and nano-enhanced polymer matrix 

of known volume fractions, the self-consistent field model or the variational bounding 

method may be used for a more accurate prediction of the transverse modulus (Daniel 
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and Ishai 1994); however, here the simplified mechanics of materials approach through 

rule of mixtures is applied for finding all the in-plane elastic properties (i.e., 

             ) of a lamina, where the fiber can be anisotropic but the nano-enhanced 

matrix is assumed isotropic with homogenized properties. With the ply properties of a 

unidirectional lamina known, the transformed elastic constants at any orientation angle 

can be found and integrated over the thickness direction to find either the macroscopic 

properties of the resulting laminate. Furthermore, through the application of classical 

lamination theory and Kirchhoff hypothesis together with Hooke’s law and equilibrium 

equations, the force-deformation and moment-deformation relationships can be found, 

which in a combined form relate the in-plane resultant forces (N) and moments (M) to 

the mid-plane strains ( ) and curvatures ( ) as 

  
 
 
   

  
  

  
 
 
  (5.2) 

where the extensional, coupling, and bending stiffness matrices (i.e., A, B, D) are found 

as 

          
          

  
    (5.3) 

     
 

 
     

    
      

  
  
    

     
 

 
     

    
      

  
  
    

In equations (5.3),     
  represents the transformed stiffness matrix of the  th lamina with 

  measuring the distance through thickness from the mid-plane surface.  
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Macro-level structural model 

The geometric layout and structural parameters of a rectangular sandwich plate 

are shown in figure 5.6.  The parameters consist of the planform dimensions a and b, ply 

thickness (  ) and orientation angle (  ), face sheet thickness (  ), core cell size ( ), core 

foil thickness (  ), and overall core thickness (  ). 

 

Figure 5.6 General layout of the sandwich plate with laminated face sheets and 

honeycomb core (Clements 1997) 

 

The sandwich plate analysis is based on the general small-deflection theory for 

rectangular orthotropic sandwich plates developed by Libove and Batdorf (1948), and 

subsequently extended by Rao (1985) for buckling analysis of simply-supported 

sandwich plates with anisotropic face sheets. In this theory, the plate’s curvatures are 

expressed in terms of lateral deflection of the plate and transverse shear strains in the 

core.  While the bending stiffness is provided mainly by the face sheets, the transverse 
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shear stiffness is due to the core, which is assumed to have infinite transverse normal 

rigidity with insignificant its in-plane rigidities compared to those of the face sheets. 

Hence, together with equation (5.2), the transverse shear forces are found as 

  
  
  
   

   
   

  
   
   

  (5.3) 

where transverse shear rigidities are defined as          and         . According 

to the theory used, the core’s out-of-plane shear moduli contribute to the transverse shear 

rigidity while only the face sheets contribute to the A, B, and D matrices. 

Through the application of Rayleigh-Ritz method, the strain energy stored in the 

face sheets and the core, along with the potential energy associated with the external in-

plane reaction forces are calculated for the entire plate. Using the principle of minimum 

total potential energy, the resulting eigenvalue problem is solved for the in-plane 

buckling loads are found as described by Rais-Rohani and Marcellier (1999) and 

Clements (1997). Once the resultant buckling force components (                 are 

found, the corresponding buckling stresses are found as 

      
    

   
        

    

   
         

     

   
 (5.4) 

The second mode of instability of sandwich panels is shear crimping, which is 

considered a degenerate case of plate buckling. This core dominated instability is caused 

by excessively low core shear modulus resulting in localized buckling of the core. The 

shear crimping stress components are found as (Bruhn 1973; Vinson and Sierakowski 

1986)  
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 (5.5) 

The honeycomb core ribbon direction is responsible for the difference in the 

coefficients of the normal shear crimping stresses. Vinson and Sierakowski (1986) define 

four parameters to help make a distinction between the likelihood of global buckling and 

shear crimping (local instability). Those parameters are considered in this analysis to 

identify the principal instability mode. 

For a sandwich plate with a cellular core, another mode of instability is that 

associated with intracell buckling, otherwise known as face sheet dimpling.  This 

instability occurs when the face sheet becomes too thin relative to the cell size causing 

the local buckling of the face sheet inside the core cell cavity. 

    
      

    
        

           
  

  

 
 
 

 (5.6) 

where the in-plane elastic properties denoted as   represent the effective laminate 

properties that are functions of only the A matrix and face sheet thickness (Daniel and 

Ishai 1994). 

The last sandwich failure mode considered is that of face sheet wrinkling. This 

instability occurs when the face sheets are too thin relative to the core taking a similar 

form of instability as a thin plate on an elastic foundation. It is calculated as (Vinson and 

Sierakowski  1986) 

    
     

   
               

                 
 (5.7) 
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where    represents the core’s Young’s modulus in the plate thickness direction. 

Multilevel Material-Product Optimization Problem 

The sandwich plate optimization problem decomposed according to the three-

level hierarchy in figure 5.2 consists of three separate elements: micro-level material 

design at the bottom level, macro-level material design in the middle, and structural-level 

component (i.e., sandwich plate) design at the top. 

At the micro-level material design (element 33), target and response variables are 

the mechanical properties, i.e., Young’s modulus (   ) and Poisson’s ratio (   ) of the 

nano-enhanced matrix with volume fraction of CNF (      as the only local design 

variable. Previous studies have shown that addition of small amount of CNF (     < 3%) 

to a polymer matrix can enhance its mechanical properties without compromising 

manufacturability of the resulting composite material due to excessive viscosity. 

Therefore, the objective function of this element is the inconsistency between enhanced 

matrix properties and their target values from the macro-level element above. The 

element optimization problem based on the EFP formulation is expressed as 

            
   

   
                   

   

   
                    (5.8) 

                      

where, 

         
     

                      
     

                          

The superscripts T and R denote target and response, respectively. 
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At the macro-level material design (element 22), macroscopic properties of the 

composite material include both the nano-enhanced matrix and continuous fiber 

reinforcements. This element design is mostly aimed at the face sheets including their 

geometric and material properties. The rule of mixtures is used to determine the 

mechanical properties of the nano-enhanced orthotropic ply (             ).  

Assuming identical face sheets, the macro-level design problem has a composite 

objective function consisting of     and inconsistencies between the targets and responses 

associated with both the top and bottom elements in levels 1 and 3, respectively. The     

term consists of the normalized weight of each face sheet (   ), normalized Young’s 

modulus of the nano-enhanced matrix (   ), and volume fraction of the continuous 

fibers (  ). Non-dimensionalization of the weight and modulus terms ensures proper 

scaling of the different objectives. For both the weight and Young’s modulus, separate 

minimum and maximum values are defined. The term with the normalized     and    

serves as surrogate for the upper bound on manufacturing cost of the nano-enhanced 

laminated face sheets, which is an important consideration. The coefficients    through 

   are the weight factors signifying the importance of weight, material enhancement and 

cost. 

There are two sets of targets and responses in this element;     and     include 

Young’s modulus and Poisson’s ratio of the nano-enhanced matrix (       ), whereas 

    and     consist of the stiffness properties of the face sheets, together with core 

thickness and face sheet thickness. The local design variables include volume fraction 

(  ) of the continuous fibers, as well as the orientation angle (  ) and thickness (  ) of 

each ply in the laminate sub-stack. Besides the local design variables, the decision 
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variable vector      also includes the stiffness matrices (A, B, D), enhanced matrix 

properties (       ), total face sheet thickness (  ), and core thickness (  ). The side 

constraints in this element follow manufacturing limitations. It should be noted that due 

to matrix symmetry, each stiffness matrix consists of six separate terms. Similar to the 

micro-level material problem, the element optimization problem at the macro-level is 

formulated as 

             
   

   
                   

   

   
                     

   
   

   
                   

   

   
                    (5.9) 

                                                                     

where 

         
       

   

   
       

        
   
     

   

   
       

           

                 
    

                   
    

   

                                       

         
     

           
     

                          
           

The total plate thickness is       . The core material properties (        ), and 

panel dimensions are the parameters provided as input to this element problem and are 

held fixed.  

At the structural-level design (element 11), the stiffness and strength properties of 

a rectangular sandwich plate of specified planform dimensions and boundary conditions 

under a single or combined in-plane load are optimized. For buckling consideration, the 
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applied loads in the x and y directions are compressive (i.e.,     and    ). In this 

element, the face sheet is treated as a single layer of thickness    and stiffness properties 

given by A, B, and D matrices. The design constraints consist of global buckling (   ), 

shear crimping (   ), intracell buckling (   ), and face sheet wrinkling (  ) with the 

corresponding analyses performed using a sandwich plate design and analysis tool 

developed through previous research and modified for the product-material problem in 

figure 5.2. The local design variables for this optimization problem are the honeycomb 

core cell size (S) and cell wall or foil thickness (  ). With the overall weight of the 

sandwich plate (   ) together with target-response inconsistencies treated as the 

objective function, the element optimization problem is given as 

                 
   

   
                   

   

   
                    (5.10) 

                                                                

        

where 

         

                 
    

                   
    

                               

All the individual computer tools were modified to fit the description of the 

material-product design problem in figure 5.2. The functionality of each tool based on the 

individual input parameters has been tested and verified. 
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Discussion of Results 

Based on results from the prior studies (Rouhi et al., 2010; Rouhi 2011), the CNF 

waviness parameters (                  ) along with interphase thickness ratio 

(       ) and interphase variation parameter (   ) are all held fixed. Different 

combinations of loading conditions, plate aspect ratio, and material systems were 

examined with summary of the results presented herein.  

The properties used for the various materials are as follows: CNF (     

             ,         ); continuous carbon fiber (             ,       ); 

vinyl-ester matrix (                ,       ); and Hexcel 2024 aluminum alloy 

honeycomb core (             ,       ). 

All the plate examples have the same number of face sheet plies (i.e., 32). The 

laminate lay-up follows two stacks of eight plies on either side of the face sheet mid-

plane to form a symmetric face sheet. The upper and lower face sheets are identical in 

every aspect. There are 21 design variables as shown in Table 5.1. Given the non-convex 

nature of the design problem, each optimization problem is solved three different times 

using alternative initial design points. The solution reported in each case is the best 

among the three found for each set. All the multilevel optimization problems are solved 

using the coordination scheme II of EPF approach.  

The results in Table 5.1 are for a square sandwich plate under bi-axial 

compression with the face-sheet material being CNF-enhanced carbon-vinyl ester 

composite. In this case,             ; it is important to note that although the 

plate weight and nano-enhanced Young’s modulus are normalized, the difference in the 

max and min values can still create some disparity in the two normalized terms.  This is 
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reflected in the value of     shown in Table 5.1 as well as the subsequent tables. Given 

the low effective density of the honeycomb core, the optimum sandwich plate is one with 

relatively large core thickness and fairly thin face sheets. The dominance of the large core 

thickness reduces the involvement of both CNF and carbon fiber reinforcement as 

reflected by their optimum volume fractions. The ply lay-up favors a cross-ply laminate 

with more zero than ninety degree plies. The difference in the number of plies in each 

direction is due to the difference in the core properties in the two principal directions as 

noted previously. To eliminate the possibility of intracell buckling given the small face 

sheet thickness, the core cell size is pushed to its lower bound while the foil thickness has 

reached its upper bound. For manufacturability considerations, a simplified form of the 

optimum design is provided in the last column of each table. 

To examine the influence of the weight factors in the objective function on the 

optimum design, different combinations are considered. The results in Table 5.2 are for 

the same material system, loading conditions, and plate dimensions as those in Table 5.1. 

However, in this case,              ; The difference in the selected weight 

factors affects the value of    , but it does not have any significant influence on the 

optimum design point, which is not surprising given the dominance of the core thickness. 
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Table 5.1 Sandwich plate properties for      ,       and             

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0001 0.0001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0138 0.0150 

      0.006 0.1515 0.6 0.0215 0.0225 

      0.006 0.1515 0.6 0.0411 0.0450 

      0.006 0.1515 0.6 0.0064 0.0075 

      0.006 0.1515 0.6 0.0130 0.0150 

      0.006 0.1515 0.6 0.0176 0.0225 

      0.006 0.1515 0.6 0.0127 0.0150 

      0.006 0.1515 0.6 0.0140 0.0150 

    -90 0.0 90 -1.0469 0.0 

    -90 45.0 90 -0.4847 0.0 

    -90 -45.0 90 -90.0 90.0 

    -90 90.0 90 -0.4600 0.0 

    -90 90.0 90 -0.4036 0.0 

    -90 -45.0 90 -90.0 90.0 

    -90 45.0 90 -0.1759 0.0 

    -90 0.0 90 -0.1733 0.0 

      0.1 1.275 5.0 3.8889 3.9 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 12.73 13.48 

         250 828.36 2750 304.21 311.14 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

              ,       
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A significant change in the weight factors is used next with the results for 

                     as shown in Table 5.3. To focus on this effect, the other 

problem parameters are held fixed. Although the optimum core thickness is the same as 

those in Tables 1 and 2, we note a significant change in both the CNF and continuous 

carbon fiber volume fractions, with the latter moving closer to its upper bound. The larger 

emphasis on weight has reduced the optimum thickness of each face sheet ply with 

compensation through higher carbon volume faction and to a lesser extent increase in 

optimum volume fraction of CNFs. As the loading condition and plate aspect ratio has 

not changed, it appears that the preferred stacking sequence and ply orientation angles 

remain unchanged as compared to the previous two cases. The optimum plate in Table 

5.3 is about 12% lighter than those shown in Tables 1 and 2. 

For comparison purposes, one case was tested using both the multilevel approach 

as well as the all-at-once (AAO) formulation where all the design variables, constraints, 

and objectives are defined in a single optimization problem.  The results in Table 5.4 are 

for the AAO problem with a slightly different weight factors than those in Tables 5.1 

through 5.3. The major finding is that while each of the multilevel optimization problems 

took nearly 6 CPU hoursa to complete, the AAO problem took nearly 5 CPU days. This 

clearly shows the advantage of multilevel approach in practical material-product design 

optimization problems where the cost of analysis is highly dependent on the 

computational time associated with each function evaluation. Another important 

distinction is the difference in the ply angles with two at -67 degrees as opposed to 90 

degrees found in the multilevel problems for the same loading condition. 

                                                 

a
OS: XP SP3; Processor: Intel Core 2 Duo CPU E8400 @ 3 GHz and 4.0 GB RAM. 
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In gradient-based optimization methods, it is necessary to calculate the gradients 

of the objective and constraint functions to find the search vector at each design point. 

Optimization software commonly use forward finite difference scheme to determine the 

gradient of the objective and constraint functions as  

       
            

  
 (5.11) 

where   is an arbitrary function,       is the derivative of   respect to  , and    is a 

small increment in  . 

For the sandwich plate design, the AAO optimization problem is described as  

              (5.12) 

                                    

where the   term consists of the normalized weight of the sandwich plate ( ), volume 

fraction of the continuous fibers (  ), and volume fraction of nano-enhanced matrix CNF 

(     .   is evaluated by Fortran code. To evaluate the constraint functions, optimizer 

calls both Fortran and MATLAB codes. While the MATLAB code is the most 

computationally expensive code in our problem, it governs the overall computational cost 

of the optimization problem. Assuming    and    are the computational costs for 

executing the MATLAB and Fortran codes, respectively, for AAO optimization, the 

computational cost for each iteration is approximately       as      . 

In ATC, the optimization problem is decomposed into multiple elements. The 

element optimization problems based on the EFP formulation are expressed as  
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      (5.13) 
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      (5.15) 

                 
   

   
                   

   

   
                    

                                                                

        

         

                 
    

                   
    

                               

The computational costs for evaluation of functional derivatives in elements 11, 

22, and 33 are equal to           ,           , and   , respectively, where 

       and        are number of design variables in elements 11 and 22. 
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Therefore, the computational cost for one iteration of ATC is equal to            

              which is much less than       for AAO optimization. 
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Table 5.2 Sandwich plate properties for      ,       and             

  

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0001 0.0001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0129 0.0150 

      0.006 0.1515 0.6 0.0236 0.0225 

      0.006 0.1515 0.6 0.0368 0.0375 

      0.006 0.1515 0.6 0.0085 0.0150 

      0.006 0.1515 0.6 0.0108 0.0150 

      0.006 0.1515 0.6 0.0222 0.0225 

      0.006 0.1515 0.6 0.0124 0.0150 

      0.006 0.1515 0.6 0.0129 0.0150 

    -90 0.0 90 -0.6066 0.0 

    -90 45.0 90 -0.2870 0.0 

    -90 -45.0 90 -90.0 90.0 

    -90 90.0 90 -0.2870 0.0 

    -90 90.0 90 -0.2595 0.0 

    -90 -45.0 90 -89.9430 90.0 

    -90 45.0 90 -0.1166 0.0 

    -90 0.0 90 -0.1091 0.0 

      0.1 1.275 5.0 3.8886 3.9 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 12.73 13.48 

         250 6033.68 20750 792.14 861.44 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

              ,         
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Table 5.3 Sandwich plate properties for      ,       and            

         

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0047 0.005 

   0.25 0.25 0.75 0.6671 0.70 

      0.006 0.1515 0.6 0.0148 0.0150 

      0.006 0.1515 0.6 0.0139 0.0150 

      0.006 0.1515 0.6 0.0269 0.0300 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0146 0.0150 

      0.006 0.1515 0.6 0.0142 0.0150 

      0.006 0.1515 0.6 0.0066 0.0075 

    -90 0.0 90 -0.0967 0.0 

    -90 45.0 90 0.4882 0.0 

    -90 -45.0 90 -90.0 90 

    -90 90.0 90 -0.1164 0.0 

    -90 90.0 90 4.1346 0.0 

    -90 -45.0 90 -90.0 90 

    -90 45.0 90 0.0600 0.0 

    -90 0.0 90 -0.1366 0.0 

      0.1 1.275 5.0 3.8852 3.9 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 11.19 11.61 

    0.25 244.89 1000.85 47.98 49.09 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

              ,           
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Table 5.4 Comparison of initial and AAO optimum designs for       and       

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.30 0.0371 0.04 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0094 0.0150 

      0.006 0.1515 0.6 0.0094 0.0150 

      0.006 0.1515 0.6 0.0165 0.0225 

      0.006 0.1515 0.6 0.0094 0.0150 

      0.006 0.1515 0.6 0.0094 0.0150 

      0.006 0.1515 0.6 0.0332 0.0300 

      0.006 0.1515 0.6 0.0131 0.0150 

      0.006 0.1515 0.6 0.0437 0.0450 

    -90 0.0 90 -0.1276 0.0 

    -90 45.0 90 -0.0190 0.0 

    -90 -45.0 90 -67.32 -67.0 

    -90 90.0 90 -0.2109 0.0 

    -90 90.0 90 -0.2109 0.0 

    -90 -45.0 90 -67.32 -67.0 

    -90 45.0 90 -0.1238 0.0 

    -90 0.0 90 -0.0548 0.0 

      0.1 1.275 5.0 4.2993 4.3 

     0.0625 1.265 2.5 0.0625 0.0625 

      0.0007 0.00535 0.01 0.0091 0.009 

Weight, lb 2.024 50.5 200.2 12.91 14.05 

         2.5 247.44 1008.5 57.73 64.52 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

              ,           
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In Table 5.5 the results for a square sandwich plate under uniaxial compression in 

the x direction are shown. The optimum design yields a cross-ply laminated face sheet 

with equal number of zero- and ninety-degree plies with different thicknesses. Given the 

load magnitude and direction, both CNF and carbon fiber volume fractions are at or near 

their lower bounds due to sensitivity of the objective function to these two design 

variables. 

The results in Table 5.6 are for a square sandwich plate under uni-axial 

compression in the y direction. Although the load magnitude is the same as that in Table 

5.5, the core thickness has increased by over 50%. The core is orthotropic due to different 

properties in the x (the ribbon direction) and y (the perpendicular) directions; thus, the 

transverse shear stiffnesses of the core are different in the x and y directions. Under 

uniaxial compression in the y direction, the weight of the plate is higher than the weight 

of the sandwich plate under uniaxial compression in the x direction since the transverse 

shear stiffness in the x direction is higher than the transverse shear stiffness in the y 

direction (Harris 1995). There is not much difference in the face sheet ply patterns 

between Table 5.5 and 6, although there are some differences in the ply thicknesses. The 

overall plate thickness in Table 5.6 is about 32% higher than that in Table 5.5. 

The optimum design for a square sandwich plate under pure in-plane shear 

loading is presented in Table 5.7. The load magnitude is the same as those in Tables 5.5 

and 5.6; also, as in the previous two cases, the CNF and carbon fiber volume fractions are 

at their respective lower bounds. This, of course, has to do with the magnitude of the 

applied load. By increasing the load, one or both volume fractions will increase to 
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enhance the plate stiffness. There is very little difference between the core thickness in 

this case and that in Table 5.5 with the overall weight being slightly higher. 

The results in Tables 5.5 through 5.7 indicate that although the loading direction 

affects the sizing variables such as ply or core thickness, it does not alter the preferred ply 

orientation angles or the volume fractions of the reinforcing materials. For the remaining 

tables,           
       

   

   
       

         
   
     

   

   
       

           . 
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Table 5.5 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0001 0.0001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0139 0.0150 

      0.006 0.1515 0.6 0.0072 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0065 0.0075 

      0.006 0.1515 0.6 0.0065 0.0075 

      0.006 0.1515 0.6 0.0068 0.0075 

      0.006 0.1515 0.6 0.0103 0.0150 

      0.006 0.1515 0.6 0.0103 0.0150 

    -90 0.0 90 -1.2966 0.0 

    -90 45.0 90 89.0428 90 

    -90 -45.0 90 -88.8615 90 

    -90 90.0 90 2.3553 0.0 

    -90 90.0 90 2.3553 0.0 

    -90 -45.0 90 -88.8615 90 

    -90 45.0 90 89.0428 90 

    -90 0.0 90 -1.2966 0.0 

      0.1 1.275 5.0 1.0888 1.10 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0083 0.01 

Weight, lb 2.024 50.5 200.2 4.42 5.38 

    25 302.99 1175 37.46 42.27 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    
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Table 5.6 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0001 0.0001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0098 0.0150 

      0.006 0.1515 0.6 0.0066 0.0075 

      0.006 0.1515 0.6 0.0128 0.0150 

      0.006 0.1515 0.6 0.0093 0.0150 

      0.006 0.1515 0.6 0.0065 0.0075 

      0.006 0.1515 0.6 0.0094 0.0150 

      0.006 0.1515 0.6 0.0081 0.0075 

      0.006 0.1515 0.6 0.0099 0.0150 

    -90 0.0 90 -0.0875 0.0 

    -90 45.0 90 88,2174 90 

    -90 -45.0 90 -88.7213 90 

    -90 90.0 90 0.9704 0.0 

    -90 90.0 90 6.6224 0.0 

    -90 -45.0 90 -88.8194 90 

    -90 45.0 90 88.2174 90 

    -90 0.0 90 -0.0750 0.0 

      0.1 1.275 5.0 1.5989 1.60 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 5.85 6.89 

    25 302.99 1175 44.70 49.90 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    
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Table 5.7 Comparison of initial and optimum designs for       and     

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.0001 0.0001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0086 0.0150 

      0.006 0.1515 0.6 0.0073 0.0075 

      0.006 0.1515 0.6 0.0080 0.0075 

      0.006 0.1515 0.6 0.0113 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0076 0.0075 

      0.006 0.1515 0.6 0.0065 0.0075 

      0.006 0.1515 0.6 0.0078 0.0075 

    -90 0.0 90 -0.0816 0.0 

    -90 45.0 90 86.1665 90 

    -90 -45.0 90 -86.0826 90 

    -90 90.0 90 0.1777 0.0 

    -90 90.0 90 3.3875 0.0 

    -90 -45.0 90 -86.0826 90 

    -90 45.0 90 86.1665 90 

    -90 0.0 90 0.0400 0.0 

      0.1 1.275 5.0 1.0536 1.10 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 4.50 5.07 

    25 302.99 1175 37.82 40.70 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and     
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Table 5.8 Comparison of initial and optimum designs for       and       

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0070 0.0075 

      0.006 0.1515 0.6 0.0087 0.0075 

      0.006 0.1515 0.6 0.0089 0.0075 

      0.006 0.1515 0.6 0.0200 0.0225 

      0.006 0.1515 0.6 0.0119 0.015 

      0.006 0.1515 0.6 0.0089 0.0075 

      0.006 0.1515 0.6 0.0092 0.0075 

      0.006 0.1515 0.6 0.0070 0.0075 

    -90 0.0 90 -0.1343 0 

    -90 45.0 90 -0.0625 0 

    -90 -45.0 90 -87.0870 -90 

    -90 90.0 90 86.5823 90 

    -90 90.0 90 -0.0925 0 

    -90 -45.0 90 -86.6493 -90 

    -90 45.0 90 -0.0625 0 

    -90 0.0 90 -0.1239 0 

      0.1 1.275 5.0 2.2918 2.3 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 7.4670 7.518 

    25 302.99 1175 52.5628 52.8211 

CNF-enhanced carbon-vinyl ester sandwich plate with           and       
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Table 5.9 Comparison of initial and optimum designs for       and       

    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0204 0.0225 

      0.006 0.1515 0.6 0.0205 0.0225 

      0.006 0.1515 0.6 0.0137 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0089 0.0075 

      0.006 0.1515 0.6 0.0357 0.03 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.1320 0 

    -90 45.0 90 -0.0877 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0675 0 

    -90 90.0 90 89.6135 90 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 0.5884 0 

    -90 0.0 90 -0.0877 0 

      0.1 1.275 5.0 2.5988 2.6 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 9.4850 9.607 

    25 302.99 1175 62.7818 63.3996 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    
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Table 5.10 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0100 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0121 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0134 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.3040 0 

    -90 45.0 90 -0.0350 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0550 0 

    -90 90.0 90 -0.0700 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.0750 0 

    -90 0.0 90 -0.5055 0 

      0.1 1.275 5.0 1.0561 1.1 

     0.0625 1.265 2.0 0.2682 0.27 

      0.0007 0.00535 0.01 0.0099 0.01 

Weight, lb 4.048 101 400.4 8.8380 10.4 

    25 302.99 1175 59.4902 67.4152 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.11 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0088 0.0075 

      0.006 0.1515 0.6 0.0270 0.03 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0067 0.0075 

      0.006 0.1515 0.6 0.0110 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.7166 0 

    -90 45.0 90 -0.0987 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0987 0 

    -90 90.0 90 -0.0987 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.0987 0 

    -90 0.0 90 -0.5589 0 

      0.1 1.275 5.0 1.8558 1.9 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0094 0.01 

Weight, lb 4.048 101 400.4 12.6700 14.23 

    25 302.99 1175 78.7584 86.8100 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.12 Comparison of initial and optimum designs for       and     

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0164 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0125 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 0.0000 0 

    -90 45.0 90 -0.0200 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0200 0 

    -90 90.0 90 -0.0200 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.0200 0 

    -90 0.0 90 0.0000 0 

      0.1 1.275 5.0 1.1509 1.2 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 9.4830 10.49 

    25 302.99 1175 62.7717 67.8710 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.13 Comparison of initial and optimum designs for       and       

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0086 0.0075 

      0.006 0.1515 0.6 0.0086 0.0075 

      0.006 0.1515 0.6 0.0300 0.03 

      0.006 0.1515 0.6 0.0086 0.0075 

      0.006 0.1515 0.6 0.0079 0.0075 

      0.006 0.1515 0.6 0.0077 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.0938 0 

    -90 45.0 90 -0.0750 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0750 0 

    -90 90.0 90 -0.0750 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.0750 0 

    -90 0.0 90 -0.0938 0 

      0.1 1.275 5.0 2.4501 2.5 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 15.6400 15.75 

    25 302.99 1175 93.9502 94.5071 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.14 Comparison of initial and optimum designs for       and           

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0201 0.0225 

      0.006 0.1515 0.6 0.0063 0.0075 

      0.006 0.1515 0.6 0.0336 0.03 

      0.006 0.1515 0.6 0.0070 0.0075 

      0.006 0.1515 0.6 0.0070 0.0075 

      0.006 0.1515 0.6 0.0124 0.0150 

      0.006 0.1515 0.6 0.0219 0.0225 

      0.006 0.1515 0.6 0.0114 0.0150 

    -90 0.0 90 -0.0841 0 

    -90 45.0 90 0.9116 0 

    -90 -45.0 90 -88.1505 -90 

    -90 90.0 90 81.6309 81 

    -90 90.0 90 81.6309 81 

    -90 -45.0 90 -85.6879 -85 

    -90 45.0 90 -0.0741 0 

    -90 0.0 90 -0.0841 0 

      0.1 1.275 5.0 2.7668 2.8 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 19.7900 20.55 

    25 302.99 1175 114.9654 118.8139 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.15 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0226 0.0225 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.3098 0 

    -90 45.0 90 -0.0564 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0450 0 

    -90 90.0 90 -0.1163 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.0362 0 

    -90 0.0 90 -2.1642 0 

      0.1 1.275 5.0 1.0097 1.0 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0089 0.01 

Weight, lb 4.048 101 400.4 21.4100 24.46 

    25 302.99 1175 123.1689 138.6138 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.16 Comparison of initial and optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0121 0.0150 

      0.006 0.1515 0.6 0.0069 0.0075 

      0.006 0.1515 0.6 0.0290 0.03 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0071 0.0075 

      0.006 0.1515 0.6 0.0180 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0082 0.0075 

    -90 0.0 90 -0.6566 0 

    -90 45.0 90 -0.0556 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0756 0 

    -90 90.0 90 -0.0756 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 5.2195 5 

    -90 0.0 90 -0.2434 0 

      0.1 1.275 5.0 2.5255 2.5 

     0.0625 1.265 2.0 0.3256 0.33 

      0.0007 0.00535 0.01 0.0098 0.01 

Weight, lb 4.048 101 400.4 35.8800 36.74 

    25 302.99 1175 196.4436 200.7985 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.17 Comparison of initial and optimum designs for       and     

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0168 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0096 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -2.3040 0 

    -90 45.0 90 -0.1600 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.1600 0 

    -90 90.0 90 -0.1600 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.1600 0 

    -90 0.0 90 -2.3040 0 

      0.1 1.275 5.0 1.0187 1.0 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 22.0200 22.9 

    25 302.99 1175 126.2579 130.7141 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.18 Comparison of initial and optimum designs for       and       

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0071 0.0075 

      0.006 0.1515 0.6 0.0071 0.0075 

      0.006 0.1515 0.6 0.0362 0.03 

      0.006 0.1515 0.6 0.0067 0.0075 

      0.006 0.1515 0.6 0.0067 0.0075 

      0.006 0.1515 0.6 0.0066 0.0075 

      0.006 0.1515 0.6 0.0066 0.0075 

      0.006 0.1515 0.6 0.0067 0.0075 

    -90 0.0 90 -0.0312 0 

    -90 45.0 90 -0.3375 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.3375 0 

    -90 90.0 90 -0.3375 0 

    -90 -45.0 90 -90.0000 -90 

    -90 45.0 90 -0.3375 0 

    -90 0.0 90 -0.4081 0 

      0.1 1.275 5.0 2.4992 2.5 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 39.6400 39.37 

    25 302.99 1175 215.4839 214.1166 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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Table 5.19 Comparison of initial and optimum designs for       and           

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

     0.0 0.01 0.03 0.001 0.001 

   0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0061 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0311 0.03 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0100 0.0075 

      0.006 0.1515 0.6 0.0148 0.0150 

      0.006 0.1515 0.6 0.0061 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.8977 0 

    -90 45.0 90 0.0675 0 

    -90 -45.0 90 -90.0000 -90 

    -90 90.0 90 -0.0803 0 

    -90 90.0 90 -0.0675 0 

    -90 -45.0 90 -89.7750 -90 

    -90 45.0 90 -0.0675 0 

    -90 0.0 90 -0.8977 0 

      0.1 1.275 5.0 2.5031 2.5 

     0.0625 1.265 2.0 0.0625 0.06 

      0.0007 0.00535 0.01 0.0100 0.01 

Weight, lb 4.048 101 400.4 40.1500 40.92 

    25 302.99 1175 218.0660 221.9657 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with              and 
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The results in Tables 5.10 through 5.14 are for a rectangular sandwich plate with 

dimension in the   direction being twice as long as that in the   direction (     ). The 

plates are subject to single and combined loading conditions similar to those in Tables 5.5 

through 5.9.  

In Table 5.10, the ply pattern consists 0 and 90 degree angles. Similar to the 

sandwich plate in Table 5.5, the plate has roughly a one-inch core with the core cell size 

at its lower bound. 

The ply pattern in Table 5.11 is similar to that in Table 5.6 with layers consisting 

of 0 and 90 degree angles. As in the case of the square sandwich plate, the change in the 

loading axis increases the core as well as the honeycomb foil thickness. The overall plate 

weight in Table 5.11 is about 67% higher than that in Table 5.10, mainly because of 

thicker core and face sheets. This change in weight is due to different transverse shear 

stiffness of the core in the x and y directions, which is more obvious in the sandwich 

plate with higher aspect ratio. 

With the exception of one layer in the 8-ply sub-stack, the others are at or near the 

lower bound thickness for the pure shear case in Table 5.12. The plate weighs about same 

weight that in Table 5.10. As was the case for the square sandwich plates, the optimum 

weight for the rectangular plates depends on the loading direction. 

As in the previous three cases, the CNF and carbon fiber volume fractions for the 

rectangular sandwich plates (Tables 5.10 through 5.14) are at their respective lower 

bounds. 

In all of the deterministic multilevel optimization example problems, convergence 

was reached in approximately 6 CPU hours with the number of inner and outer loops 
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varying slightly from one case to another. The most expensive part of the solution is the 

micro-level analysis because of consideration of randomly oriented CNFs and the 

micromechanics approach used. Changes in the weight factors in     had an impact on 

the optimization results.  The optimum ply angles in the face sheets generally varied 

between 0 and 90 degrees, with generally more zero than ninety-degree plies. In nearly 

all the cases, the constraints for global buckling/shear crimping and face sheet wrinkling 

are active within tolerance 0.001.  

In summary, the analytical target cascading with exponential method of 

multipliers has been adopted to solve two analytical problems and material-product 

system. The material-product system was decomposed into a three-level hierarchy. In this 

study, pre-developed simulations and analysis models is used to determine CNF material 

properties, stiffness matrices (A, B, D) for sandwich plates and face sheets, and various 

failure modes consist of global buckling (   ), shear crimping (   ), intracell buckling 

(   ), and face sheet wrinkling (  ). Thus, sandwich plate design objectives are 

transformed into individual system design specifications. It is shown that each subsystem 

with different expertise can work independently to design and optimize the system using 

appropriate optimization algorithm (possibly similar) for each problem. It can be 

concluded that the main outcome of the exponential method of multipliers in analytical 

target cascading framework could be reduction in computational cost by decreasing the 

number of function calls for the most computationally expensive analysis model. 
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CHAPTER VI 

MULTILEVEL OPTIMIZATION OF NANO-ENHANCED COMPOSITE SANDWICH 

PLATES UNDER UNCERTAINTY 

Uncertainty modeling and reliability analysis 

The composite sandwich plate problem presented in Chapter 5 is studied for 

uncertainty analysis and RBDO. The aleatory uncertainties that exist in the material 

properties, geometry, and loading conditions are considered in different levels and 

propagated to the product design problem at the top level. The random variables in the 

bottom level are the effective (fully dispersed and distributed) volume fraction of the 

nanofibers, the aspect ratio of the nanofibers, the thickness and properties of the 

interphase region surrounding the nanofibers inside the matrix, and the waviness of the 

nanofibers of long aspect ratio. The objective of this study is to show the extended 

capabilities of ATC framework developed here in solving non-deterministic multilevel 

material-product optimization problems. For simplicity of implementation, the volume 

fraction of the nanofibers in the bottom level and the fiber volume fraction in middle 

level are treated as random variables with known probability distribution function (PDF). 

The first two moments of interrelated targets/responses and linking variables are 

matched in propagating the uncertainty through different levels of hierarchy. To estimate 

the mean and standard deviation, an approximate method is used for a general function. 
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Suppose the performance function   be a general nonlinear function of the 

random variables             . Mathematically, 

                 (6.1) 

The mean and standard deviation of   can be calculated using a first-order Taylor 

series expansion which linearize the performance function as 

       
    

      
           

  
  

   
  

   
   
    

      
  

 (6.2) 

where the   
  values (deterministic values) are “design point values” of the random 

variables   , that is, the values about which the function   is linearized. The choice of the 

design point values of the random vector     is very important in structural reliability 

analysis. (Nowak and Collins 2000) 

 

Figure 6.1 Decomposed multilevel hierarchy of the material-product design problem 

(Courtesy of M. Rais-Rohani) 
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Three separate computer codes are used in solving the optimization problem in 

figure 6.1. Besides the micromechanics code developed by Rouhi (2011), a laminate 

analysis code based on the classical lamination theory will be used to find the effective 

laminate properties at the middle level and a sandwich analysis code at the top level that 

is used for evaluating the global buckling and local failure modes associated with thin 

laminated face sheets and cellular core (Harris 1995). All the analysis codes have been 

tested individually and are capable of performing the necessary performance analysis. 

The RBDO formulation SLSV+EPF presented in Chapter 5 is used to solve the 

probabilistic multilevel optimization problem. 

A composite sandwich plate with honeycomb core and laminated face-sheets is to 

be optimized for minimum weight subject to multiple failure constraints. The hierarchical 

system with the individual components of the plate structure is shown in figure 6.1.  

The problem is decomposed into a material-product design optimization problem. 

At the bottom level, the modulus of elasticity and Poisson’s ratio of the nano-enhanced 

polymer matrix and associated uncertainties are calculated using the approach developed 

by Rouhi and Rais-Rohani (2013). The modulus of elasticity and Poisson’s ratio are 

related to volume fraction of nanofibers, elastic modulus of nanofibers, elastic modulus 

of the interphase at the vicinity of the nanofiber, interphase thickness ratio, as well as the 

wavelength and amplitude of the wavy nanofibers.  

At the middle level, the effective properties of the enhanced matrix are used 

together with properties of the long fibers to calculate the lamina properties in the 

principal material directions using the rule of mixtures. Depending on the ply orientation 
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and thickness of the individual layers in the laminate stack, the mechanical properties of 

the face sheet can be altered. 

At the top level, the face sheet properties are combined with those of the core 

(i.e., cell size, foil thickness, core thickness) to calculate the in-plane properties and 

weight of the panel. In the system level design optimization problem, the laminate weight 

is minimized subject to buckling strength and sandwich failure criteria such as face sheet 

wrinkling, shear crimping and intercell buckling. The necessary stiffness properties of the 

face sheets are treated as part of the decision variables being optimized with the 

calculated values sent down to the middle level as response targets. The local design 

variables at the top level include the geometric properties of the core. 

 With the face sheet target values specified, the subsystem in the middle searches 

for the optimum orientation angle and thickness of each ply in the laminated stack.  The 

required values for the effective matrix properties are treated as decision variables. The 

laminate requirements of product design cascade down from the top level and determine 

the target for the macro-level material design. Then, requirements for these new targets 

cascade down to nano-level design to change the nano-enhanced matrix design.  

Through an iterative procedure, the capabilities at the lower level are transferred 

upward while the target values are cascaded downward in repeated solutions of multiple 

optimization problems. Convergence is reached when the top-level performance targets 

are met for a minimum-weight sandwich plate. 

Uncertainties are introduced at the micro-level and macro-level of the three-level 

hierarchy. While the objective function in each element of the non-deterministic 
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framework remains the same as that in the deterministic problem shown previously, 

design variables as well as the target and response variables change as discussed below. 

Problem Decomposition 

Element 33 

 

            
   

   
                   

   

   
                    (6.3) 

                      

where 

                                         
      

      
      

   

                                                                         
      

      
      

   

            

                        

Assuming a normal distribution for      and the corresponding responses, chain 

rule of differentiation is used to estimate the standard deviation of         as 
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Element 22 
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where 

          
       

   

   
       

          
   
     

   

   
       

            

        
    

    
    

    
    

    
    

           
    

    
    

    
    

    
    

   

                                       

          
      

      
      

            
      

      
      

   

                         
           

Assuming normal distribution for            and the corresponding responses 

with           along with following the chain rule estimation of standard deviation 

gives 

                                  (6.6) 
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Element 11 
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where, 

         

        
    

    
    

    
    

    
    

    
    

          
    

    
    

    
    

    
    

   

                            

The target reliability index used in this problem is  = 3.0 corresponding to 

reliability of 0.99865. 

Table 6.1 gives the optimum design for a square sandwich plate under axial 

compression in the x direction with the weight factors being               

   . With focus on the uncertainty associated with the CNF and the continuous fiber 

volume fractions, the difference between the results in Table 6.1 and those in Table 5.6 is 

fairly modest. Although the computational design tool developed can accommodate a 

much larger set of uncertain variables, for the demonstration purposes, the number was 

kept low to reduce the computational cost. While a deterministic multilevel material-

product design optimization problem takes approximately 6 CPU hours to solve, the non-

deterministic counterpart considered here takes approximately 10 CPU hours on the same 

computer. 
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The results in Table 6.2 are for the square sandwich plate under axial compression 

in the y direction. As was seen in the deterministic case, the overall plate weight 

increases compared to the axial compression in the x direction. A similar trend is also 

seen in Table 6.3 for the pure shear loading case. 

The results in Table 6.4 through 6.6 repeat those in Tables 6.1 through 6.3 for a 

rectangular plate. A similar trend as in the case of deterministic designs is observed with 

the heaviest plate being the one under axial compression in the y direction. 

The results in Table 6.7 are for a bi-axial compression with the weight factors 

being different from those of the other cases. These results are the non-deterministic 

counterpart of those shown in Table 5.3. Again, a limited difference is found due to the 

modest effect of uncertainty in the volume fractions of the CNF and the continuous 

carbon fibers. 
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Table 6.1 Non-deterministic optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 
CV 10%

 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0145 

      0.006 0.1515 0.6 0.0070 0.0122 

      0.006 0.1515 0.6 0.0086 0.0067 

      0.006 0.1515 0.6 0.0082 0.0095 

      0.006 0.1515 0.6 0.0163 0.0076 

      0.006 0.1515 0.6 0.0060 0.0072 

      0.006 0.1515 0.6 0.0075 0.0067 

      0.006 0.1515 0.6 0.0060 0.0065 

    -90 0.0 90 -1.4140 -0.0700 

    -90 45.0 90 89.0443 89.4384 

    -90 -45.0 90 -90.0000 -88.8750 

    -90 90.0 90 -0.0654 -0.0806 

    -90 90.0 90 -0.0162 -0.0806 

    -90 -45.0 90 -90.0000 -88.8750 

    -90 45.0 90 89.0443 89.4384 

    -90 0.0 90 -2.1974 -1.5999 

      0.1 1.275 5.0 1.0564 1.0547 

     0.0625 1.265 2.5 0.0625 0.0625 

      0.0007 0.00535 0.01 0.0092 0.0094 

Weight, lb 2.024 50.5 200.2 4.4440 4.7110 

    0.25 244.89 1000.85 37.2547 38.6067 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

           ,            
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Table 6.2 Non-deterministic optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0140 0.0150 

      0.006 0.1515 0.6 0.0075 0.0075 

      0.006 0.1515 0.6 0.0147 0.0150 

      0.006 0.1515 0.6 0.0068 0.0075 

      0.006 0.1515 0.6 0.0065 0.0075 

      0.006 0.1515 0.6 0.0075 0.0075 

      0.006 0.1515 0.6 0.0071 0.0075 

      0.006 0.1515 0.6 0.0074 0.0075 

    -90 0.0 90 -0.5475 0.0 

    -90 45.0 90 87.5392 0.0 

    -90 -45.0 90 -88.4731 90.0 

    -90 90.0 90 0.0121 0.0 

    -90 90.0 90 1.4716 0.0 

    -90 -45.0 90 -88.4731 90.0 

    -90 45.0 90 87.5392 0.0 

    -90 0.0 90 -0.4596 0.0 

      0.1 1.275 5.0 1.5988 1.60 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 5.82 5.96 

    0.25 244.89 1000.85 44.20 45.19 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and    

           ,            
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Table 6.3 Non-deterministic optimum designs for       and     

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0061 0.0075 

      0.006 0.1515 0.6 0.0102 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0129 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0091 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -0.1142 0.0 

    -90 45.0 90 90.0 90 

    -90 -45.0 90 -90.0 90 

    -90 90.0 90 0.1066 0.0 

    -90 90.0 90 2.0325 0.0 

    -90 -45.0 90 -90.0 90 

    -90 45.0 90 90.0 90 

    -90 0.0 90 -0.056 0.0 

      0.1 1.275 5.0 1.0538 1.00 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 4.46 5.2 

    0.25 244.89 1000.85 37.34 41.36 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with           and     

          ,            
       

   

   
       

           
   
     

   

   
       

              



 

139 

Table 6.4 Non-deterministic optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0121 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0064 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -1.3544 0.0 

    -90 45.0 90 -1.4278 0.0 

    -90 -45.0 90 -0.4092 0.0 

    -90 90.0 90 -0.6561 0.0 

    -90 90.0 90 -1.1547 0.0 

    -90 -45.0 90 -0.6169 0.0 

    -90 45.0 90 -1.1547 0.0 

    -90 0.0 90 -1.3077 0.0 

      0.1 1.275 5.0 1.0256 1.00 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.0065 0.007 

Weight, lb 4.048 101 400.4 6.91 8.09 

    25 302.99 1175 32.55 35.54 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with        ,        , and 

              ,            
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Table 6.5 Non-deterministic optimum designs for       and    

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0078 0.0075 

      0.006 0.1515 0.6 0.0063 0.0075 

      0.006 0.1515 0.6 0.0135 0.0150 

      0.006 0.1515 0.6 0.0087 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0143 0.0150 

      0.006 0.1515 0.6 0.0060 0.0075 

    -90 0.0 90 -1.6680 0.0 

    -90 45.0 90 88.0587 90 

    -90 -45.0 90 -89.5392 90 

    -90 90.0 90 -0.2292 0.0 

    -90 90.0 90 -0.2795 0.0 

    -90 -45.0 90 -89.5392 90 

    -90 45.0 90 89.0587 90 

    -90 0.0 90 -1.1178 0.0 

      0.1 1.275 5.0 1.3681 1.40 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.0097 0.01 

Weight, lb 4.048 101 400.4 10.4 11.83 

    25 302.99 1175 41.36 44.97 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with        ,        , and 

              ,            
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Table 6.6 Non-deterministic optimum designs for       and     

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0001 0.0001 

    0.25 0.25 0.75 0.25 0.25 

      0.006 0.1515 0.6 0.0070 0.0075 

      0.006 0.1515 0.6 0.0060 0.0075 

      0.006 0.1515 0.6 0.0112 0.0150 

      0.006 0.1515 0.6 0.0076 0.0075 

      0.006 0.1515 0.6 0.0070 0.0075 

      0.006 0.1515 0.6 0.0073 0.0075 

      0.006 0.1515 0.6 0.0088 0.0150 

      0.006 0.1515 0.6 0.0061 0.0075 

    -90 0.0 90 -0.7329 0.0 

    -90 45.0 90 -0.8923 0.0 

    -90 -45.0 90 -88.5675 90 

    -90 90.0 90 -0.3229 0.0 

    -90 90.0 90 -0.4969 0.0 

    -90 -45.0 90 -88.5675 90 

    -90 45.0 90 87.1595 90 

    -90 0.0 90 -0.8353 0.0 

      0.1 1.275 5.0 0.9904 1.00 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 4.048 101 400.4 8.59 9.78 

    25 302.99 1175 36.79 39.80 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with        ,        , and 

              ,            
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Table 6.7 Comparison of initial and non-deterministic optimum designs 

Design 

Variables 

Lower 

Bound 

Initial 

Design 

Upper 

Bound 

Optimum 

Design 

Optimum 

Simplified
 

      0.0 0.01 0.03 0.0032 0.0032 

    0.25 0.25 0.75 0.6661 0.70 

      0.006 0.1515 0.6 0.0115 0.0150 

      0.006 0.1515 0.6 0.0109 0.0150 

      0.006 0.1515 0.6 0.0313 0.0300 

      0.006 0.1515 0.6 0.0061 0.0075 

      0.006 0.1515 0.6 0.0061 0.0075 

      0.006 0.1515 0.6 0.0188 0.0225 

      0.006 0.1515 0.6 0.0111 0.0150 

      0.006 0.1515 0.6 0.0063 0.0075 

    -90 0.0 90 -0.0739 0.0 

    -90 45.0 90 0.4929 0.0 

    -90 -45.0 90 -90.0 90.0 

    -90 90.0 90 -0.0968 0.0 

    -90 90.0 90 4.1343 0.0 

    -90 -45.0 90 -90.0 90.0 

    -90 45.0 90 0.0828 0.0 

    -90 0.0 90 -0.1199 0.0 

      0.1 1.275 5.0 3.8863 3.90 

     0.0625 1.265 2.5 0.0625 0.06 

      0.0007 0.00535 0.01 0.01 0.01 

Weight, lb 2.024 50.5 200.2 11.16 11.92 

    0.25 244.89 1000.85 46.94 50.65 

Note: CNF-enhanced carbon-vinyl ester sandwich plate with          . and 

                 ,            
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CHAPTER VII 

COMPUTATIONAL FRAMEWORK 

A computational framework has been developed to implement the analytical 

target cascading approach with multiple computer codes working together. The 

mechanical modeling of nano-enhanced composite materials, failure analysis of 

composite sandwich plates under in-plane loading conditions, uncertainty propagation, 

deterministic and nondeterministic design optimization are embedded into the 

computational framework. The computational framework was used to obtain the results 

presented in the previous chapters. 

All-at-once design optimization strategy 

The all-at-once design optimization for product-material system relies on coupled 

simulations. Since the responses of a simulation analysis serve as input for another 

simulation, the simulations should be executed in sequence to obtain the final responses 

that represent the objective and constraints values. Therefore, a set of design variables is 

provided by the optimization tool as input to the computational framework, and objective 

and constraints values are determined as output set. Figure 7.1 illustrates the overview of 

the computational tool. 
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Figure 7.1 Overview of computational design framework for AAO approach 

 

The computational framework is decomposed into three major segments:, 

preprocessing, simulation, and post-processing. In preprocessing, the input models for 

each simulation are created using file/table input component. Simulations are based on 

MATLAB, Python, and Fortran codes that are executed in hierarchical order, and post-

processing provides the values of objective and constraint functions for the optimization 

tool. 

Preprocessing 

The set of design variables generated by the optimization tool is used to prepare 

the input models for the simulation and analysis codes. A set of design variables contains 
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twenty-one elements                        .      and    are the input parameters to 

MATLAB and Python codes which feed into the corresponding simulations using table 

input component.               are the design variables related to sandwich plate analysis 

code written in Fortran. The file input component modifies the comp1.txt, which is one of 

the input .txt format files for Fortran code based on the input values. 

Coupled hierarchical simulations 

Once the input models are created, the coupled simulation is executed by starting 

the Mori-Tanaka method simulation written in MATLAB (Rouhi, 2011). To calculate the 

elastic properties of the nanofiber-reinforced matrix, the material modeling code is used. 

The MATLAB code (Mori-Tanaka.m) is developed for the model that does not include 

an interphase. The properties of the constituent materials such as the neat polymer matrix 

properties (     ), CNF properties (         ), as well as the geometric properties of 

the nanofiber such as geometric parameters of an ellipsoid representing a CNF 

(        ), the wavelength of the wavy nanofibers (  ), the amplitude of the wavy 

nanofibers (  ), the interphase thickness ratio (ITR), and the degradation factor (n) 

(Rouhi et al., 2010, Rouhi 2011), are input parameters to the code to determine Young’s 

modulus (   ) and Poisson’s ratio (   ) of the nano-enhanced matrix as outputs. 

After the micro-level material analysis, rule of mixtures analysis model written in 

Python is performed to find the Young’s modulus in the fiber direction, transverse to the 

fibers, Poisson’s ratio, and the transverse Young’s modulus. The main purpose of the 

micro-level material and rule of mixture analysis is to determine the mechanical 

properties of the nano-enhanced orthotropic ply (             ). 
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The structural analysis of sandwich plate has two input files in .txt format 

(material.txt and comp1.txt). Once the material properties are found, the file input 

component alters the material.txt accordingly. In analysis of composite sandwich plates, 

numerical techniques are used to determine the dominant modes of instability associated 

with sandwich plates under in-plane loading. The Classical Lamination Theory (CLT) is 

used to analyze the anisotropic composite face sheets and the resulting effective 

properties are used in the calculation of the modes of instability of the sandwich plate. 

The global buckling instability is calculated using the Rayleigh-Ritz energy method, and 

the remaining plate instabilities, wrinkling, shear crimping, and intracell buckling, are 

calculated using closed-form equations. The analysis of composite sandwich plates is 

applied by a code written in Fortran called structural analysis of sandwich plate code, 

which uses two input files; the file called “comp1.txt” stores information about the 

geometry of the sandwich plate including the number of layers, thickness of each layer, 

orientation of each ply, and core geometries. The second file called “material.txt” 

contains face sheet and core material properties, boundary conditions, and panel 

dimension. 

Post-processing 

In general, extracting the results is performed using VisualScript in post-

processing section. The objective and constraint function values are the output required 

by the optimization tool at each function call. 
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Analytical Target Cascading Framework 

All the individual computer tools used for each element-level analysis were 

modified to fit the description of the material-product design problem in figure 7.2. The 

functionality of each tool based on the individual input parameters was tested and 

verified through solution of a set of example problems. The multilevel computational 

framework for the sandwich plate design problem was set up and implemented using 

VisualDOC, a design, optimization, and process integration software. The flow diagram 

in figure 7.2 provides a general overview of the computational design tool. 
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Figure 7.2  Flow diagram for integration of computer programs for multilevel product-

material design. 

 

Using the DOT design optimization library inside VisualDOC, we chose the 

modified method of feasible directions (MMFD) for solution of element 11 and 

sequential linear programming (SLP) for solution of elements 22 and 33. The 

optimization solver parameters were kept at their default values.  Since the exponential 
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terms in the augmented Lagrangian function can be very large due to the order of some 

design variable values, the optimization solver can fail. To alleviate this problem, the 

values of response/target variables are normalized before implementing the EPF 

formulation.  

We chose the double-loop strategy (EPF I) in this study. The two possible 

coordination strategies for the three-level hierarchy are shown in Figure 3. In scheme I, 

the number of ATC iterations for all three elements are identical, which is not desirable 

as the computational cost is considerably different among the three elements. The 

optimization problem in element 11 is very computationally expensive. The scheme II is 

preferable to avoid extraneous solutions of element 11 due to discrepancies between 

target/responses of elements 22 and 33. In this scheme, convergence between levels two 

and three is obtained first before communicating with element 11. The inner loop 

convergence is reached when reduction in the objective function of the relaxed problem 

between two consecutive inner loop iterations is less than the termination tolerance 

           . The outer loop convergence criterion is defined based on reduction of the 

inconsistencies in two successive solutions with tolerance of           . 
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                              (a)             (b) 

Figure 7.3  Multilevel coordination scheme (a) I and (b) II. 

 

Bottom level element 

The input parameters to this optimization problem are target values for nano-

enhanced matrix material properties. Beside this input parameters, which is the part of 

ATC method, the preprocessing section discussed in previous is applicable here. This 

level optimization problem is designed similar to what is described about the nano-

enhanced matrix properties in micro-level material model and design. Based on equation 

(5.8), the only design variable is volume fraction of CNF (    ). The constituent material 

properties are held fixed as well as the geometric properties of the nanofiber. In this 

optimization problem, the objective function is minimization of the inconsistency 

between Young’s modulus (   ) and Poisson’s ratio (   ) of the nano-enhanced matrix 

and its targets from the upper level element     
     

  . The         corresponding to 

optimum design variables are extracted and sent to the top level element. 

Level 3

Level 2

Level 1
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Figure 7.4 Micro-level material model and design computational element 

 

Middle level element 

In this element, the responses    
     

  come from the lower level element, which 

is part of the ATC approach. The design variables of this optimization problem are as 

follows:                      . The rule of mixtures, and the orthotropic ply, face sheet 

laminate, and sandwich plate stiffness properties calculations are performed sequentially. 

The conventional fiber properties represent the Young’s modulus and Poisson’s ratio 

(     ). 

 

Conventional fiber properties + 

                                             

Number of layers in each face sheet +                                    

          ). 
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The optimum values for        are send up to the top level element with the 

corresponding values for       extracted from the output of structural sandwich plate 

simulation. Also, optimum values for         are provided to the lower level element as 

target values. 

 

 

Figure 7.5 Macro-level material model and design computational element 

 

Top level element 

At the structural-level model and design, the overall dimensions of the sandwich 

plate and the boundary conditions, the applied in-plane loads (         ) along with the 
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core material properties (        ) are fixed input parameters to the analysis code. The 

design variables                  are the input values for the analysis in this section. 

The information flow at this level is given as: 

                                                 . 

 

 

 

Figure 7.6 Structural level model and design computational element 

 

The flowchart presented in Figure 7.2, is for deterministic problems. To consider 

the uncertainty in ATC framework, we alter each deterministic problem which converts 

the non-deterministic problem in a way that our deterministic framework faces minimum 

changes. In figure 7.7, the non-deterministic version of the top optimization problem 

presented in figure 7.6 is shown. 
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Figure 7.7 Non-deterministic structural level model and design computational element 
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CHAPTER VIII 

SUMMARY AND FUTURE WORK 

The augmented Lagrangian penalty formulation and four different coordination 

strategies were used to examine the numerical behavior of Analytical Target Cascading 

(ATC) for multilevel optimization of hierarchical systems. The coordination strategies 

considered include augmented Lagrangian using the method of multipliers and alternating 

direction method of multipliers, diagonal quadratic approximation, and truncated 

diagonal quadratic approximation. Properties examined include computational cost and 

solution accuracy based on the selected values for the different parameters that appear in 

each formulation. The different strategies were implemented using two- and three-level 

decomposed example problems. While the results showed the interaction between the 

selected ATC formulation and the values of associated parameters, they clearly 

highlighted the impact they could have on both the solution accuracy and computational 

cost. 

The Single Loop Single Vector (SLSV) approach for reliability-based design 

optimization (RBDO) was integrated with Augmented Lagrangian (AL) formulation of 

analytical target cascading for solution of hierarchical multilevel optimization problems 

under uncertainty. In the proposed SLSV+AL approach, the uncertainties were 

propagated by matching the required moments of connecting responses/targets and 

linking variables present in the decomposed system. The accuracy and computational 
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efficiency of SLSV+AL were demonstrated through the solution of four benchmark 

problems and comparison of results with those from other optimization methods reported 

in the literature. 

An exponential penalty function (EPF) formulation based on method of 

multipliers was presented for solving multilevel optimization problems within the 

framework of analytical target cascading. The original all-at-once constrained 

optimization problem was decomposed into a hierarchical system with consistency 

constraints enforcing the target-response coupling in the connected elements. The 

objective function was combined with the consistency constraints in each element to 

formulate an augmented Lagrangian with EPF. The EPF formulation was implemented 

using double-loop (EPF I) and single-loop (EPF II) coordination strategies and two 

penalty-parameter-updating schemes. Four benchmark problems representing nonlinear 

convex and non-convex optimization problems with different number of design variables 

and design constraints were used to evaluate the computational characteristics of the 

proposed approaches. The same problems were also solved using four other approaches 

suggested in the literature, and the overall computational efficiency characteristics were 

compared and discussed. 

Through micromechanical modeling of a carbon nanofiber (CNF) enhanced 

thermoset polymer material and macromechanical modeling of laminated plates, a 

hierarchical analysis framework was developed and used in design optimization of hybrid 

multiscale composite sandwich plates. Both CNF waviness and CNF-matrix interphase 

properties were included in the model. By decomposing the sandwich plate, structural 

and material designs were combined and treated as a multilevel optimization problem. 
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The application problem considered the minimum-weight design of an in-plane loaded 

sandwich plate with a honeycomb core and laminated composite face sheets that were 

reinforced by both conventional continuous fibers and CNF-enhanced polymer matrix. 

Besides global buckling, shear crimping, intracell buckling, and face sheet wrinkling 

were also treated as design constraints. The results of the multilevel sandwich plate 

optimization problem were presented and discussed. 

Several topics can be considered for further investigation as part of future work. 

For example, convergence of the method is demonstrated by example, but it would 

strengthen the proposed approach to include mathematically rigorous discussion of 

convergence properties. Also, the feasibility of implementing the exponential method of 

multipliers in non-hierarchical system can be studied. In this study, aleatory uncertainty 

was considered and just the first two moments of each target/response distribution were 

matched. In future work, the possibility of matching more distribution characteristics 

with comparable computational cost can be investigated. The probabilistic ATC can be 

extended to reliability-based design optimization under epistemic uncertainty.
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APPENDIX A 

DIFFERENT PARAMETER UPDATING APPROACHES
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Alternative approaches for choosing the penalty parameters are considered, where 

   
            

         or    
        

     
  and    

        
     

     with no 

dependence on values of the multipliers. For this case,           or    
    

    
         

        
  with    . For the updating approach with dependence on values 

of the multipliers,    
            and    

       as well as    
        

  and 

   
        

  with    . These approaches were applied in the solution to Problem 2 of 

Chapter IV according to EPF I approach. Same initial design point                      

was selected for all approaches with        and       . 

Table A.1 Comparison of results in Problem 2 of Chapter 4 with different parameter 

updating approaches 

  
No. of 

Func. Evals 
  

CPU 

Time, s 
  

W
it

h
o
u
t 

D
ep

en
d
en

cy
 

Fixed     

3830 0.00622 2.12 0.01 

5745 0.00042 3.02 0.001 

7462 0.00005 3.81 0.0001 

10101 0.00002 5.03 0.00001 

Updating     

3939 0.00048 2.17 0.01 

5317 0.00006 2.84 0.001 

7257 0.00001 3.84 0.0001 

9047 0.00002 4.72 0.00001 

W
it

h
 D

ep
en

d
en

cy
 

Fixed     

4881 0.03387 2.56 0.01 

8853 0.00318 4.35 0.001 

13119 0.00028 6.32 0.0001 

17189 0.00002 8.17 0.00001 

Updating     

4235 0.00100 2.26 0.01 

5909 0.00009 3.07 0.001 

8180 0.00002 4.15 0.0001 

10053 0.00002 5.05 0.00001 
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Results in Table A.1 show that for the same level of accuracy, the number of 

function evaluations and CPU time are generally reduced when the penalty parameters 

are kept independent of the multipliers.  Also, by allowing the penalty parameters to be 

updated during the optimization process, solution efficiency improves.
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APPENDIX B 

EFFECT OF DECOMPOSITION
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Problem 3 of Chapter IV is solved using three different decompositions. 

Decomposition 1, as shown in figure B.1(a), consists of two elements, element 1 at the 

top level and element 2 at the bottom. The target/response variables are    and   , 

                 are the local variables for element 1 and                             

are the local variables for elements 2. The objective function is assigned to element 1. 

The constraints   ,   ,   ,    are allocated to elements 1 and the others to element 2. 

Decomposition 2 shown in figure B.1(b) also consists of two elements as in the previous 

case, but the target/response variables are    and    ,                      are the local 

variables for element 1 and                        are the local variables for elements 2. 

The objective function is decomposed into two parts,   
  assigned to element 1 and   

  to 

element 2. The constraints   ,   ,   ,   ,    are allocated to elements 1 and the others to 

element 2. Decomposition 3 is the three-level hierarchy presented in figure (4.9).  

Figure B.2 displays the number of function evaluations and the CPU time versus 

the absolute solution error e for termination tolerances τ = 10
−2

, 10
−3

, 10
−4

, 10
−5

. The 

initial values for the penalty parameters in EPF I and EPF II are set to        and 

      . The starting point for all decompositions is 

                                                                         .  
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Figure B.1 Hierarchical decompositions 1 and 2 of Problem 3 of Chapter IV 

 

The results show that the form of decomposition affects computational efficiency. 

For all the cases considered, decomposition 1 is more efficient than the other two. 

Moreover, EPF II (single-loop) is more computationally efficient than EPF I regardless of 

the decomposition used. In particular, EPF II for decomposition 1 requires the least 

number of function evaluations and CPU time whereas EPF I for decomposition 3 

requires the most.  Comparing the two-level decompositions 1 and 2, it appears that EPF 

I_1 requires 61% less function evaluations than EPF I_2, whereas EPF II_1 requires 32% 

less function evaluations than EPF II_2. In terms of CPU time, EPF I_1 is 78% faster 

than EPF I_2, whereas EPF II_1 is 16% faster than EPF II_2. 
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           (a)                                                                        (b) 

Figure B.2 Function evaluations (a) and CPU time (b) versus solution error in 

Problem 3 of Chapter 4 for decompositions 1, 2, and 3 
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