
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-12-2016

PGNME: A Domain Decomposition Algorithm for Distributed PGNME: A Domain Decomposition Algorithm for Distributed

Power System Dynamic Simulation on High Performance Power System Dynamic Simulation on High Performance

Computing Platforms Computing Platforms

Brian Shane Sullivan

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Sullivan, Brian Shane, "PGNME: A Domain Decomposition Algorithm for Distributed Power System
Dynamic Simulation on High Performance Computing Platforms" (2016). Theses and Dissertations. 3521.
https://scholarsjunction.msstate.edu/td/3521

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3521?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v3.0 (beta): Created by J. Nail 06/2015

PGNME: A domain decomposition algorithm for distributed power system dynamic

simulation on high performance computing platforms

By
TITLE PAGE

Brian Shane Sullivan

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical and Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2016

Copyright by
COPYRIGHT PAGE
Brian Shane Sullivan

2016

PGNME: A domain decomposition algorithm for distributed power system dynamic

simulation on high performance computing platforms

By
APPROVAL PAGE
Brian Shane Sullivan

Approved:

Michael Mazzola
(Major Professor)

Tomasz A Haupt

(Committee Member)

Yong Fu

(Committee Member)

James E Fowler

(Graduate Coordinator)

Jason M Keith

Dean
Bagley College of Engineering

Name: Brian Shane Sullivan
ABSTRACT

Date of Degree: August 12, 2016

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Michael Mazzola

Title of Study: PGNME: A domain decomposition algorithm for distributed power
system dynamic simulation on high performance computing platforms

Pages in Study 83

Candidate for Degree of Master of Science

Dynamic simulation of a large-scale electric power system involves solving a

large number of differential algebraic equations (DAEs) every simulation time-step. With

the ever-growing size and complexity of power grid, dynamic simulation becomes more

and more time-consuming and computationally difficult using conventional sequential

simulation techniques. This thesis presents a fully distributed approach intended for

implementation on High Performance Computer (HPC) clusters. A novel, relaxation-

based domain decomposition algorithm known as Parallel-General-Norton with Multiple-

port Equivalent (PGNME) is proposed as the core technique of a two-stage

decomposition approach to divide the overall dynamic simulation problem into a set of

sub problems that can be solved concurrently. While the convergence property has

traditionally been a concern for relaxation-based decomposition, an estimation

mechanism based on multiple-port network equivalent is adopted as the preconditioner to

enhance the convergence of the proposed algorithm. The algorithm is presented in detail

and validated both in terms of accuracy and capability.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Michael Mazzola, my major professor, for his guidance

and help throughout my time as a master’s student. I thank him for his guidance in all of

the technical material documented in this thesis. I would like to thank my wife Lauren for

her continuous support throughout the time of the master’s program. I would also like to

thank Jian Shi, Uttam Adhikari, Babak Saravi, and Tomasz Haupt for their support and

the roles they played in developing the knowledge and technical expertise I have obtained

during the master’s program, and their direct contributions to the material presented in

this thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

I. INTRODUCTION AND BACKGROUND ..1

1.1 Dynamics/Transient Stability ..1
1.2 Domain Decomposition ...6
1.3 Problem Formulation ...9

1.3.1 ASM/Partitioned Approach ...10
1.3.2 Network Formulation ..12

1.4 Existing Method for Linear Network Solution ..13
1.4.1 Direct/SuperLU ...13
1.4.2 Iterative methods ...14
1.4.3 Define W ...16

1.4.4 Specific Methods ...17
1.4.5 PGN ...20

1.4.5.1 Derive W ...23
1.4.5.2 Discussion ..24

1.5 Contribution and organization of this thesis ..25

II. ALGORITHMS FOR IMPROVING EXISTING METHODS TO THE
LINEAR NETWORK SOLUTION ..27

2.1 Algorithm Outline ...27

2.2 Derivation of W ...30
2.2.1 Two Partition Example ..30

2.2.2 N Partition Example ..32
2.3 Introduction of MultiPort modeling techniques36
2.4 Numerical Approach to Analyze the W matrix36
2.5 Complexity Analysis ...37

2.5.1 Factorization ..38

2.5.2 Solving ...38
2.6 Discussion ..40

iv

III. IMPLEMENTATION IN SOFTWARE ..42

3.1 Program Structure ..42
3.2 Graph generation ...43
3.3 Partitioning ..44
3.4 Simulation ..45

IV. RESULTS ..49

4.1 Large scale results on speed and scale ..49
4.1.1 Original PUR vs PGNME ...50
4.1.2 Increasing Number of Partitions ..51
4.1.3 Repartitioning the same system ...54
4.1.4 Scalability of the simulator ..56

4.2 Dynamic Simulation ..58
4.3 Matlab results on accuracy and different models60

V. CONCLUSION AND FUTURE WORKS ..62

REFERENCES ... 64

APPENDIX

A. W MATRIX DERIVATIONS ...67

A.1 Two Partition Example ..68
A.2 Three Partition Example ..70

A.3 Explicit W Validation of the Three Partition Example81

v

LIST OF TABLES

 4.1 Comparing PUR and PGNME performance ..50

 A.1 Parameters for W matrix verification ...82

vi

LIST OF FIGURES

 1.1 Gauss Seidel and Jacobi iteration ...7

 1.2 Four bus example decomposed into two subgraphs each terminated by
a dummy bus(d1 and) ..9

 1.3 ASM solution procedure...11

 1.4 Iterative method algorithm ...15

 1.5 PGN original system...20

 1.6 PGN updating strategy ...21

 1.7 PGN Jacobi based updating strategy ..22

 1.8 PGN Gauss-Seidel based updating strategy ...23

 1.9 Schematic representation of PGN ..24

 2.1 ASM approach combined with PGNME ..28

 2.2 Three Partition System ...33

 2.3 Decomposed system with added dummy buses ...34

 2.4 Relaxed equivalent representation of a 3 partition system35

 3.1 Original IEEE 118 graph ..43

 3.2 Level two, three times scale of original IEEE 118 system44

 3.3 Gephi Partitioned graph visualization ..45

 3.4 Simulation Flowchart ...46

 3.5 Intel MPI Trace Analyzer ...47

 3.6 Zoom in Trace Analyzer Simulation ..48

 4.1 Speedup of 1062 bus system ..52

vii

 4.2 Speedup curve of 258,066 bus system ...53

 4.3 Effect of increasing partitions ..54

 4.4 Repartitioning the 3186 bus system ...55

 4.5 Cumulative distribution of iterations from partitioning56

 4.6 Scalability of the simulator ...58

 4.7 Speedup curve using classical generator models in the Eastern
Interconnect scale system ...59

 4.8 Generator speed response during an event ...60

 4.9 Bus Voltage response during an event ...61

 A.1 Two Partition Equivalent Description ..68

 A.2 Subcircuit 1 and 2 ...70

 A.3 Subcircuit 3 and 4 ...71

 A.4 1-2-1 System Verifying Explicit W ..81

1

CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Dynamics/Transient Stability

Dynamic simulation has been a huge area of research focus in electrical

engineering for a very long time, stability was first noted as a problem for the power

system in 1920[Kundur]. In the early 1950s initial simulations were performed on

computers and since then the effort has been nonstop to improve the performance

[Kundur]. There has always been interest in obtaining faster, more accurate simulation

results. In recent trends the interest is focused on obtaining very fast results on large scale

systems. In the interest of pursuing the ability for wide area monitoring and control,

maintaining stability in the system, and better forecasting demands, simulations of

extremely large system models such as the Eastern interconnect or the entire

interconnected North American power grid need to be performed, in which detailed

models could contain hundreds of thousands of buses. The complexity of the system is

also rapidly growing with the introduction of renewables and smart grid technologies.

Transient stability simulation is an integral part of power system simulation

studies as it obtains the necessary information to capture relevant system operating

conditions, determine the dynamic system response subject to disturbances or damages,

and identify the corrective actions. It is critical for various types of power system analysis

such as Dynamic contingency analysis, look-ahead dynamic simulation, dynamic state

2

estimation, online stability analysis, etc. Solving the interactive electrical and mechanical

dynamics, especially for a large-scale power grid, involves setting up and solving

thousands or tens of thousands of system equations in the time-domain which is typically

time consuming and computationally intensive. Accurate assessment of the system

dynamic behaviors of interest, without excessive computational overhead, has become a

serious concern and challenge for practical application of electrical power system design,

analysis, optimization and control.

Computer simulation of power systems has been long developed and serial

techniques have been the focus of the simulations, but as serial processing has reached its

limitations, the need for parallel and distributed processing for future development has

been noticed, and advances have been made in multi-processor multi-threaded

applications and architectures. Realistically, for this ability to simulate such large systems

in real time or faster than real time, there has to be a move onto a suitable architecture. In

recent attempts by national labs, large shared memory machines have been used to

perform dynamic simulation, but they are limited in scalability and are very costly

[PNNL]. Distributed memory architectures scale much better and come at a lower cost

but have an added cost of inter node communication. Parallel and distributed simulation

is a big area of research interest especially in the power system area. Many fields of

science and engineering have a need to accomplish parallel or distributed simulation.

Most existing simulators cannot perform in real time on large systems. There is a large

effort to achieve real time simulation for large scale power systems, and this will only be

possible in a parallel/distributed computing environment [DOE].

3

Most simulation tools that can work in real time are limited to smaller system

models or to extremely expensive, customized, shared memory machines. Some

examples come from Opal-RT [OpalRT], RTDS [RTDS], and the Pacific Northwest

National Laboratory (PNNL) [PNNL]. Opal-RT and RTDS have power system specific

programs and create specialized shared memory hardware for customers, but these

simulations are limited in terms of how large system models can be. PNNL has done

extensive work towards the goal of real time simulation on very large, powerful, shared

memory general use machines. These machines are expensive compared to distributed

memory machines, and they also do not scale as well. In the future, as the grid continues

to grow, the shared memory machine will not be adequate.

There are also other applications of parallel/distributed simulation to the power

system (i.e. State Estimation, Optimal Power Flow, Security Constrained Unit

Commitment (SCUC), and Security Constrained Economic Dispatch (SCED)).

Specifically, this thesis focuses on dynamic simulation, in particular, the solution of the

network equations and how this calculation can be separated to obtain faster overall

performance. In order to perform dynamic simulation in a distributed fashion, one must

partition the system into subsystems, find some way to represent the rest of the system at

the cut of the partition, and iteratively solve for the system states at each time step.

Some parallel simulations use data parallel methods to gain speedup. Data parallel

solution methods are straight forward and do not need special considerations for

coupling. Task oriented parallel simulation requires a coupling method. Where and how a

system is decoupled greatly affects the parallel runtime and performance [QHuang]. If a

decoupling point is not chosen well for partitioning, the algorithm could take a very long

4

time to converge or may not converge at all. Speed and accuracy are desired from

simulations but usually some middle ground must be found.

Papers exist on ways to couple subsystems for different purposes. Some methods

are faster, some more accurate, some are too unstable. In general there are three types of

methods, V, I, and I-V coupling. An I-V variant is used in [JWu] for distributed

simulation. In [WRen] various algorithms are compared in Power Hardware-in-the-Loop

simulation which requires decoupling for simulation.

The existing papers present different methods, in [Russian] there is an attempt to

quantitatively analyze the methods presented, but the paper does not provide a well

detailed comparison. The results in [Russian] show runtime of simulations using different

coupling methods, but only the runtimes and a very brief analysis are presented. In

[WRen] the methods are analyzed in greater detail, but the methods are applied to

hardware in the loop simulation. As well as not giving detail in the analysis, the typical

paper that discusses the coupling mechanism does not focus solely on the coupling

mechanism, but instead are focused on the simulation implementation.

Existing commercial software does not aim at the scale that this thesis will

demonstrate, the existing tools are not intended for wide area monitoring type studies and

can only handle local studies or simplified models of large areas. Many simulators do not

attempt to test the limits of their software, and they do not promote scalability. Very few

tools give limitations in number of buses or models. The existing tools, where limitations

of system sizes are given, are: PSSE, PowerWorld, and PSLF. Some academic creations

exhibit large test systems. Among the documented test systems, the largest available are

from PNNL [PNNL], OpalRT [VOparlRT], and in [Chinese2].

5

Commercial software limits are very high. PSLF limitation is 60,000 buses. PSSE

is limited to 150,000 buses and was the leader in size until PowerWorld came about.

PowerWorld claims a limitation of 250,000 buses, and that is the largest available for

commercial software. The existing research oriented simulators do not boast limitations

but the test system sizes are reported. At PNNL in [PNNL] a 16,000 bus model is used on

a shared memory machine and real time simulation is performed. At OpalRT [VOpalRT]

a 9984 bus model is used but cannot be simulated in real time on their hardware, but a

7020 bus system is used and simulated in real time. In [Chinese2] an 18,000 bus system

is used. These are all pure power system simulators.

Recently hybrid simulation has become a new trend by simulating a discrete

communication system along with the continuous dynamic power system. The

communication system often being the SCADA system or other sensor networks. These

are typically much larger simulations because of the detailed models. In [PNNL2] a

2,063,494 node model is used, however the number of physical components vs number of

communication components are not clear. This model includes many elements such as

substation models, battery storage models, wind generation, solar generation, and

distributed generation models.

The hybrid simulation tools are often used to study the effects of the interactions

between controls, communications, and the continuous electro-mechanical dynamics of

the power system. [THYME] is a hybrid simulation toolkit which contains simple

machine models with simple controls, and a framework for modeling discrete sensors. It

is a fairly well developed library, but it is poorly documented. It has built in line loss,

load loss, and generator loss methods.

6

1.2 Domain Decomposition

The electric power industry has traditionally been a computer oriented industry.

As a large-scale, geographically distributed system, the design and analysis of power

system is computationally-intensive. Especially with the increasing system size and

complexity, the ever-growing amount of data, and the greater need for resilience

enhancement to handle fast dynamic phenomena that could lead to cascading system

failures and blackouts, the transition to a smart future electric power system inevitably

involves large scale computation, modeling, and data handling. However, the current

power system design, analysis and software tools are developed heavily based on single

processor architecture. The power system community is aware of the need to use the

latest advances in computation techniques, and to develop visionary approaches to re-

evaluate the legacy power system analysis methods and shift from the traditional off-line,

steady-state based analysis to a faster, on-line, dynamic and robust platform [DOE]. To

achieve this objective, a key design element is the concept of domain decomposition

(DD).

DD methods were originally proposed as a numerical analysis approach to solve a

problem (esp. boundary value problems) defined over a domain by decomposing the

original problem into smaller problems on sub-domains and coordinating the solution

among subdomains normally iteratively to derive a globally converged result [DKeyes]

[VDolean]. The DD method is inherently suitable and adaptable for parallel computing

architectures as it can effectively handle the type of problem that does not fit into

available memory space, and by splitting the original problem into sub-problems,

concurrency and parallelism can be gained. The guiding principle of applying DD on

7

power system analysis is to develop a DD algorithm specifically tailored in accordance to

the unique physical properties of power systems and the state-of-art parallel computing

architecture to realize the overall enhanced large-scale parallelism. Although a general

DD technique can be applied in various aspects of power system analysis, this thesis will

particularly focus on the application of parallel dynamic simulation.

The DD techniques presented in this thesis focus on decomposition of a system

with linear behavior. There are two ways to solve the problem using these methods, serial

or parallel. The serial version is based on the Gauss-Seidel method, and the parallel

version based on the Jacobi method. The two versions are depicted in Figure 1.1.

Figure 1.1 Gauss Seidel and Jacobi iteration

8

It is always true that the Jacobi method requires more iterations than the Gauss

Seidel method. The way an iteration is defined for the methods is fundamentally

different. In the Gauss-Seidel method, each subsystem is solved in sequential order, the

updated states from each solution are used during the current iteration. One iteration

involves solving each system one time, but using the advantage of using the most updated

states from the other systems. In the Jacobi method, each subsystem is solved

simultaneously in parallel, and then the information is used only on the next iteration.

While Jacobi method requires more iterations the fundamental definition of an iteration is

the root, and the Jacobi method is usually faster if all of the sub problems can be run

concurrently.

With these methods the concept of a boundary bus must be introduced, also

known as a dummy bus. With all of these iterative methods, there is a topological

description of the system and the method. When the original system is decomposed n

subsystems remain. To obtain a self-consistent solution, the rest of the system must

influence each sub problem. This can be done with a variety of types of terminations, and

they can be mixed or symmetrical as well. These terminations are what are called dummy

buses. It can be shown in Figure 1.2, if one four bus system is decomposed into two sub

systems, then there must be an added bus to represent the behavior of the rest of the

system.

9

Figure 1.2 Four bus example decomposed into two subgraphs each terminated by a
dummy bus(d1 and)

This dummy bus is described schematically different for the different methods

and it is updated in a unique way corresponding to the iterative method.

1.3 Problem Formulation

In power system dynamic simulation the problem is formed in different ways

depending on the study. In general, the continuous power system dynamics can be

mathematically described by a set of first-order Differential Algebraic Equations (DAEs)

in the form of:

 �̇� = 𝑓(𝑥, 𝑦) (1.1)

 0 = 𝑔(𝑥, 𝑦) (1.2)

where x represents a vector of dynamic state variables, such as rotating machine

variables, and y represents a vector of the algebraic state variables, such as network

variables where no derivatives are present.

Once the DAEs are constructed, two approaches can be applied to solve the DAE:

either the Alternating Solution Method (ASM) or the Direct Solution Method (DSM)

10

[CFu]. With ASM, the new set of algebraic equations from discretization of the ODEs in

Equation 1.1 are solved separately from the algebraic network equations within the DAE

in Equation 1.2. In contrast, with DSM, all of the algebraic equations representing the

dynamic components and the network are solved simultaneously [BStott] [HDommel]. It

has been pointed out in literature that the ASM approach, combined with the explicit

integration method, has various advantages over the DSM approach mainly in that the

components dynamics are solved separately from the linear algebraic network equations

[CFu]. Thus in the network equations, the dynamic devices such as generators are

represented as constant current sources, and their admittances can be combined and

considered within the network admittance matrix. By doing so, the system can be solved

efficiently with the use of a sparse linear algebraic solver such as SuperLU, UMFpack, or

PETsc.

It is known that the network calculations become a limiting factor at large scale

[JWu]. For this reason it is best to use ASM and use Domain Decomposition to solve the

problem of dynamic simulation at a large scale. This means all machine dynamics will be

solved separately from the network equations. The models of the generators and loads

can be replaced with more complicated or more simplified models depending on the

study. A common approach is to use detailed models near events under study and to use

simplified models for equipment far away from the event.

1.3.1 ASM/Partitioned Approach

In phasor based simulation, the power system formulation is that of Equation 1.1

and Equation 1.2, which consist of sets of differential algebraic equations that are

coupled to each other through a set of linear algebraic network equations. While there are

11

different ways to solve this set of DAE’s, a common approach is to use the partitioned

approach, also known as Alternating Solution Method (ASM), that is to iteratively solve

the differential equations and solve the linear algebraic equations separately. There are

other methods such as the simultaneous solution approach where the differential

equations are discretized into a set of algebraic equations and these equations are lumped

together with the network equations to be solved simultaneously.

Figure 1.3 ASM solution procedure

As shown in Figure 1.3 the ASM approach applies as a general treatment to

DAEs. The stages shown in the algorithm represent stages for multi stage numerical

integration techniques such as Runge Kutta methods or other multi stage methods. ∆t can

12

be fixed or variable depending on the numerical integration technique. Variable time step

methods are usually preferred as they try to optimize the speed of the simulation with a

given error tolerance, so if a large time step can be used with acceptable error the variable

step method will select the largest possible time step, but when an event such as a fault

occurs and the error would be large with a large time step, the variable rate methods will

reset the time step to a short enough value to maintain the error within a bound.

1.3.2 Network Formulation

In the power system network formulation traditional nodal analysis is used. Based

on the power system description the nodal analysis can be simplified as the system can be

represented as a mesh network of impedances with current injections at each node. Lines

are modeled as an impedance between nodes. Loads, generators, and shunt

compensations are modeled as a shunt impedance at the node. This model leads to the

formulation of the power system admittance matrix. The admittance matrix formulation

can be shown as in Equation 1.3.

 [
𝐼1
⋮
𝐼𝑛

] = [
𝑌11 ⋯ 𝑌1𝑛

⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛

] [
𝑉1

⋮
𝑉𝑛

] (1.3)

 𝑌𝑖𝑖 = ∑ 𝑌𝑖𝑗
𝑗
1 (1.4)

 𝑌𝑖𝑗 = −𝑌𝑖𝑗 (1.5)

The bus injection current is calculated from the changed dynamic state variables.

The generator admittance is hard to determine for large scale systems and is often

predicted rather than known [Thyme]. Loads are often modeled as constant impedance

and the admittance value is calculated from the initial bus voltage and power from power

13

flow information. If any topological changes happen, the admittance matrix must be

modified. The diagonal elements of the admittance matrix are the sum of all admittances

connected to that node as in Equation 1.4, and off diagonal elements are the negative of

the mutual admittance between the two nodes as in Equation 1.5.

1.4 Existing Method for Linear Network Solution

There are two distinct classes of methods to solve the large set of linear equations

that form the network equation, Direct and Indirect methods. Direct methods solve

directly either by factorization or direct inversion of the Y matrix. There are parallel and

serial direct methods, which all have a long history of development. Indirect methods

usually are iterative and do not operate directly on the original matrix. Iterative methods,

in general, have a long history of development in the mathematics community. The

iterative methods are based on relaxation theory.

1.4.1 Direct/SuperLU

Popular direct methods include Gaussian elimination, Cholesky decomposition,

and LU factorization. As far as direct methods for large sparse matrices the leader in

performance is LU factorization and many commercial tools exist to solve the problem.

Most leading simulation software uses LU factorization to solve their linear matrix

calculations. SuperLU is a well-developed library created in 1999 for a PhD thesis at

University of California Berkeley [SUPERLU] add reference. SuperLU now receives

federal support from the DoE, NSF, and DARPA. The software is maintained by its

creator at Lawrence Berkley National Lab.

14

There are several versions of SuperLU that work on different computer

architectures. The original version is sequential SuperLU used with sequential

computing. SuperLU_MT is optimized for multithreaded environments for newer

architectures with multiple cores. SuperLU_DIST is optimized to run on distributed

memory machines such as general purpose cluster computers.

The main attraction to SuperLU and LU factorization is that non-zero entries can

be indexed and efficiently stored. Many other commercial software tools exist, both old

and new such as Portable, Extensible Toolkit for Scientific Computation (PETSc) which

is somewhat harder to use, but has built in capability for LU factorization, ILU

factorization, SOR, Jacobi methods, and other methods. PETSc is a newer tool, older

tools exist such as Linear Algebra Package (LAPACK) which is a considered a standard

software library and was initially released in 1992.

1.4.2 Iterative methods

Popular iterative methods include Richardson’s method, Jacobi method, Gauss-

Siedel method, successive over-relaxation (SOR), and symmetric successive over-

relaxation (SSOR). Many relaxation based methods have been presented in literature.

Some relaxation techniques show huge promise although some exhibit poor performance.

Some relaxation techniques have been shown to be unstable and inaccurate [WRen]

[Russian]. With many iterative techniques, performance directly depends on the quality

of partitioning. Coarseness of the partitioning affects all methods and some methods need

special attention to certain parameters. For all methods considered in this thesis, if tightly

coupled vertices are not lumped together then the algorithm may converge very slowly,

on the contrary if too many vertices are lumped together the benefits of using these

15

methods is lost[Russian]. From this knowledge, it is easy to see that some systems will

not benefit from these methods especially systems which are tightly coupled.

The idea of iterative methods applied to solving circuit problems is generic and

can easily be shown algorithmically at a high level. The details will change depending on

the method used.

Figure 1.4 Iterative method algorithm

The detailed algorithms for each method vary. But in general the methods are

used to solve an equation in the form of

 𝐴𝑥 = 𝑏 (1.6)

16

where A is an n × n nonsingular matrix and x and b are n × 1 column vectors.

1.4.3 Define W

In iterative methods general form, all state variables are a function of other state

variables at the previous iteration. It is defined that

 𝑥𝑖+1 = 𝑊𝑥𝑖 + 𝐶 (1.7)

where W is known as the iteration matrix and C is a column vector of constants. To

guarantee convergence for any iterative method, the spectral radius of W must be less

than one [LHageman]. That is

 𝜌(𝑊) = lim
𝑘→∞

|𝑊𝑘|
1

𝑘 (1.8)

(1.8) can also be defined as

 𝜌(𝑊) = max {|𝜆1|, |𝜆2|, … . , |𝜆𝑛|} (1.9)

The methods considered in this thesis are considered linear stationary iterative

methods of first degree. First degree meaning that 𝒙𝑖+1 depends only on 𝒙𝑖 and no other

previous states. Linear meaning that W and C are not dependent on x, and stationary

meaning that W and C are also not dependent on the iteration count. Many iterative

method books refer to these methods as basic iterative methods [LHageman] [KELLEY]

[SAAD].

It is interesting to note that the smaller the spectral radius, the smaller the iteration

count. While there are ways to predict the performance, there is no way to predict the

exact number of iterations.

Formulation exist to predict convergence rate in [Hageman]

17

 𝑅∞(𝑊) = lim
𝑛→∞

𝑅𝑛(𝐺) = − log𝜌(𝑊) (1.10)

where 𝑅∞(𝑾) is the asymptotic rate of convergence, and where 𝑅𝑛(𝑾) is defined as the

average rate of convergence and can be defined as

 𝑅𝑛(𝑊) = −𝑛−1 log‖𝑊𝑛‖𝛽 (1.11)

Convergence rate can be predicted, but if and only if the basic criteria is satisfied

for convergence, that is 𝜌(𝑊) < 1. If this condition is satisfied, then an approximation

can be found to reduce the norm of the initial error vector by a factor of 휁

 𝑛 ≅ −(log 휁)/𝑅∞(𝑊) (1.12)

However, using the average rate of convergence in this formula leads to a more

accurate estimation, but is often not obtainable [Hageman].

1.4.4 Specific Methods

[Russian] presents three generic iterative linear methods for boundary value

reconciliation: V, I, V-I. These techniques were first implemented in circuit simulators in

early seventies [Russian]. Relaxation techniques such as these still remain promising

areas of research. Zdorov points out that there are some instances where direct methods

cannot be used, such as when there is a need for parallel computation and simulation time

is critical. He also points out that these methods give flexibility in the model descriptions,

and that these methods allow models to scale more efficiently when memory

requirements cannot be met with the unpartitioned system.

According to all of these derivations, larger line impedance between subsystems

leads to smaller spectral radii. This is very important to acknowledge during partitioning.

The impedance information can be used to improve the convergence rate. According to

18

the V derivation smaller 𝑍𝑎 , 𝑍𝑏 lead to a smaller spectral radius. Using other method-

specific information for partitioning can be extremely beneficial to the performance of

these methods.

These methods are interesting, but they were not derived with the power system in

mind. Out of these methods, the V method is the most stable and is used often in VLSI

studies. Zdorov concludes that of these methods I-V is the best for a general approach as

it can be modified to behave similar to the V or I method. These approaches look good at

first glance, but the need for asymmetrical boundary adds complexity. At a generic scale,

the V method seems to be more suitable since it is stable and symmetric. The VI method

would require a complex evaluation of the partitioning to determine what the value of Z*

should be, and the convergence would still rely on the slowest converging component of

the partitioned system which could void all benefit of using the VI method. It seems that

V is the only scalable solution of these methods. The partitioning of the system directly

determines the performance. The downside of all of these methods is that they do not fit

into the traditional power system network description such as that of Equation 1.3. If they

are to be used in an existing simulator, the solver must now take the more generic form of

Equation 1.6.

In [WRen] Ren presents several existing methods. The methods he presents are:

Ideal Transformer Model (ITM), Time-variant First-order Approximation (TFA),

Transmission Line Model (TLM), Partial Circuit Duplication (PCD), and Damping

Impedance Method (DIM). These methods are used in Hardware in the Loop (HIL)

simulation, but they can also be used in a pure software implementation. In fact, Ren

presents the PCD method which is the V method as presented by Dmitriev-Zdorov in

19

[Russian]. He also presents the DIM method which looks like the I-V method presented

by Dmitriev-Zdorov. The ITM method looks similar to the I method presented by

Zdorov.

According to Ren, the TFA method is too complex and limited. He says special

care must be taken during solving as the matrix can easily become ill conditioned. He

also claims it is unstable and inaccurate. Ren also claims that the TLM algorithm is

highly stable, along with the PCD method.

Overall, these methods provide multiple ways to solve the network. They still lack

the symmetry that is necessary for scaled simulation. TLM and PCD are both symmetric,

but the remainder are not. The recommendations provided by Ren are not intended for

simulation, but for hardware in the loop simulation. For scalable simulations, it seems

that TLM and PCD are both plausible options with PCD being the better choice. PCD is

the most attractive method of all of the methods presented by Ren. This is interesting as it

is also the most attractive method presented by Zdorov in his comparison. Because his

paper is focused on Hardware in the Loop simulation, he does not give good analysis or

insight into the scalability of the algorithms for simulation on high-performance

computers

All of these methods are based on solid relaxation theory and have solid

backgrounds. But they were not intended for power system simulation, where the unique

form of the network allows a unique way to mathematically model the network, and this

model does not allow any vertex to be represented by anything other than a Norton

Equivalent lumped model.

20

1.4.5 PGN

PGN is a method documented by Jian Wu and Noel Schulz and shows promise

applied to power system analysis from existing literature [JWu]. It is a specifically useful

form for the power system dynamic problem, as it takes advantage of the fact that the

power system network formulation consists of Norton Equivalent circuits linked together

through transmission lines. If using an existing software which is developed specifically

for power system simulation then it is likely difficult to change the network formulation

which takes the form of Equation 1.3. This form strictly depends on each vertex being

represented as a Norton equivalent. If the form changes the solver will need to be

changed accordingly into a more general form.

The general system description of PGN can be depicted as two portions of the

transmission system tied together by one linking transmission line, such as that of Figure

1.5. Existing literature only addresses a two partition example and does not show a

method to scale to more partitions.

Figure 1.5 PGN original system

21

Figure 1.6 PGN updating strategy

The partitioned version is shown in the schematic of Figure 1.6. As shown, the

dummy circuit represents the other portion of the system, and it is controlled by the other

system during the iterative updating strategy. Two strategies can be used, the Gauss-

Seidel or Jacobi strategy as presented in Figure 1.1. The details of the procedure are

shown in Figure 1.7 and Figure 1.8.

22

Figure 1.7 PGN Jacobi based updating strategy

23

Figure 1.8 PGN Gauss-Seidel based updating strategy

1.4.5.1 Derive W

The iterative matrix for the PGN method can be obtained for any system but in

studies presented by Schulz and Wu [JWu] there are only studies on two partition

systems. For the two partition system, it can be shown as an equivalent reduced system

such as that of Figure 1.9.

24

Figure 1.9 Schematic representation of PGN

For this simplified system W can easily be obtained by for both the Gauss Seidel

version and Jacobi version. The resulting spectral radii are that of Equation 1.13 and

Equation 1.14.

 𝜌(𝑊) =
(𝑍𝑑1−𝑍𝑎)(𝑍𝑑2−𝑍𝑏)

(𝑍𝑑2+𝑍𝑎+𝑍𝑎𝑏)(𝑍𝑑1+𝑍𝑎𝑏+𝑍𝑏)
 (1.13)

 𝜌(𝑊) = √
(𝑍𝑑1−𝑍𝑎)(𝑍𝑑2−𝑍𝑏)

(𝑍𝑑2+𝑍𝑎+𝑍𝑎𝑏)(𝑍𝑑1+𝑍𝑎𝑏+𝑍𝑏)
 (1.14)

It is very important to note that when 𝜌(𝑾) ≈ 0, convergence is very fast making

the iteration count less and the gain from parallelization more. In this original work by

Wu it is easy to see for the two partition system a dummy bus parameter can be selected

to make 𝜌(𝑾) ≈ 0 by setting 𝑍𝑑1 = 𝑍𝑎 and/or setting 𝑍𝑑2 = 𝑍𝑏. For larger systems with

many partitions, the PGN equations do not represent the equivalent at each cut line.

Meaning the only indication from these equations that can be used to partition is finding

large 𝑍𝑎𝑏 which will not lead to optimal performance with most systems.

1.4.5.2 Discussion

This method seems very attractive for use in power system distributed simulation.

It uses a Norton Equivalent representation and was created with power system simulation

25

in mind. It seems better for power system analysis use than all of the methods presented

by Ren and Zdorov. However, this method has not been used in large studies and has

only been shown to be used in two partition examples. The limitations at scale need to be

resolved. There are limitations in using this method at scale because of the iterative

process. According to Equation 1.9, spectral radius depends on the largest eigenvalue of

the iteration matrix. When moving to more partitions, the size of W grows and there is no

way to set the dummy bus with current literature to improve the convergence rate.

Looking forward to future size power systems, where detailed models are required

to accurately predict the behavior of the system, convergence rate must be controlled.

Future simulation will need to consider solar models, wind turbines, distributed

generation, sensor networks and controllers, etc. With the existing literature, it seems that

scalability of large simulations on HPC with PGN is limited. This thesis will provide a

novel contribution to enhance the performance of PGN when applied to multiple partition

examples.

In other papers produced by Wu and Schulz, they discuss different options of

simulation. They also present an algorithm to update the dummy node impedance, but

this algorithm is not numerically stable as it uses a difference in state variables in the

denominator of the updating equations. This causes instability when the states become

close to their final converged value.

1.5 Contribution and organization of this thesis

The main contribution presented in this thesis will focus on greatly improving the

method presented by J.Wu and N.Schulz to be suitable for large scale simulation by

introducing a novel approach to enhance its performance which shall be called Parallel

26

General Norton with Multiport Equivalent (PGNME). There is also a smaller contribution

of creating scalable testing systems.

Chapter 1 has given adequate introductory and background information to follow

the remainder of this thesis. Chapter 2 will provide detail of the contributions presented

in this work, namely the PGNME method. Chapter 3 will provide specifics of the

implementation used to obtain the results in Chapter 4. Chapter 4 will present simulation

results using the solver detailed in Chapter 3 and provide a comprehensive evaluation of

the PGNME method presented in Chapter 3. Chapter 5 will conclude the thesis.

27

CHAPTER II

ALGORITHMS FOR IMPROVING EXISTING METHODS TO THE LINEAR

NETWORK SOLUTION

2.1 Algorithm Outline

From Chapter 1, it is shown that a common approach to dynamic simulation is the

phasor based ASM approach. To reiterate, ASM separates the DAE posed in Equation 1.1

and Equation 1.2 into three distinct subsets for the power system problem. Subset 1

contains the first order differential equations which model the dynamic behavior of

generators and loads. Subset 2 contains all algebraic equations which model the behavior

of generators and loads. Subset 3 is the linear algebraic network equation. This can be

illustrated in Figure 2.1. Subset 1 and 2 are combined but solved completely independent

of each other in the general case. Each generator and load is connected through subset 3.

With large systems, subset 1 and 2 can easily be distributed to CPU’s to gain speedup

using the ASM strategy, but as the system grows subset 3 becomes a burden and needs to

be decomposed for efficient parallel/distributed implementation, this is done by using

PGN and is improved using the multiport equivalent information. The resulting method is

PGNME, which is described in this chapter.

28

Figure 2.1 ASM approach combined with PGNME

Two approaches exist to solve the sparse linear set of equations constituting the

network, iterative and direct. From existing literature, it seems common for iterative

methods to be explored, and in this thesis, the particular iterative method is Parallel

Updated Relaxation (PUR). This allows for a graph based / topology based

decomposition which is natural and straightforward. The PUR method has not been

explored on large systems or in many partitions. In the implementation results shown in

this thesis, it can be seen that this method performs worse when more partitions are

created making this method infeasible to scale. However, with appropriate selection of

the boundary dummy impedances, the impedance can be set such that iteration is

minimized.

To do this, the details of iterative methods and relaxation theory must be

examined. The PGNME algorithm uses a relaxation based approach to relax the network

solution allowing for parallel solving of subsystems. The relaxation based method holds

the form of general linear iterative methods. After examining exactly what is happening,

29

MultiPort modeling techniques can be used, which are well known to model the

subsystems and approximately satisfy the conditions necessary for optimal performance

of this method, with certain limitations.

While the PUR method is one of the best methods available in applying the ASM

relaxation based technique from existing literature, it still has its flaws. With a parallel

architecture, iteration adds not only more computation, it also adds inter processor

communication. High iteration counts are unacceptable and will significantly reduce the

gains obtained from the parallelization. Without a decent initial guess at the boundary

state variable and without properly selecting the boundary equivalent impedance, the

method may not give much gain in performance, and in fact may make performance

worse under certain conditions.

After partitioning the original system many partitions remain which require a

boundary equivalent that represents the remaining portion of the system that has been

removed. Conceptually, it is logical that if this boundary equivalent accurately represents

the missing system then faster or more accurate results can be obtained. Since existing

literature does not explain what happens to performance at larger scale, this thesis will

attempt to add to the existing literature and give insight on large scale system

performance.

Before understanding the method, it is important to understand exactly what is

happening when the method is introduced to more than two partitions. It is also important

to understand the background of multiport modeling techniques.

30

2.2 Derivation of W

To derive the W matrix on a scaled system it is important to first define a generic

way to obtain the W matrix. This section will derive the W matrix in detail of a two

partition example and show how the derivation extends to multiple partitions. First, each

system must be represented as an equivalent. For the two partition example, this is

straightforward, calculate the Norton Equivalent for each system. When more partitions

are involved, multiport modeling techniques are used to derive the system equivalents.

When this process is applied to the two partition single line cut example, the resulting

process is known as PGN.

2.2.1 Two Partition Example

First, it is important to see that the W matrix, as traditionally described, is not a

diagonal matrix for the PGN method, so using the traditional derivation leads to

complicated calculations of the eigenvalues of a non-diagonal matrix. This generic

derivation will instead find a diagonal form for an equivalent of the W matrix. The

generic iterative form is shown in Equation 1.7, and it can be shown further into the

derivation that a completely diagonal form for the two partition example if 𝑾2 is

found. Using Equation 1.7 a simple derivation of 𝑾2 can be found.

 𝑥𝑖+2 = 𝑊𝑥𝑖+1 + 𝐶 (2.1)

 𝑥𝑖+2 = 𝑊(𝑊𝑥𝑖 + 𝐶) + 𝐶 (2.2)

 𝑥𝑖+2 = 𝑊2𝑥𝑖 + (𝑊 + 𝐼)𝐶 (2.3)

31

This representation still holds valid in the iterative form as a future state depends

on the update of the current state. The difference is that in the generic derivation, 𝑾2 is

in diagonal form and the eigenvalues can be observed more easily. The eigenvalues of a

diagonal matrix are the diagonal entries, so to find the original W matrix, each eigenvalue

of W is the square root of the eigenvalues of 𝑾2. What an iteration is can be defined

arbitrarily in different ways. Since this method is Jacobi inspired, iterations should be

counted in a similar way to the Jacobi method.

For this specific problem, it is necessary to show the reduced schematic after

finding the Norton Equivalent of each partition. This can be shown in Figure A.1 in the

appendix. The derivation of the explicit W matrix is shown in Appendix section A.1.

Now to have an equation in the form of Equation 2.3, the explicit W matrix in the

appendix is squared, and will take the form of Equation 2.4 with eigenvalues in the form

of Equation 2.5. For this simple case, the 𝑾2 matrix is completely diagonal, and the

eigenvalues are a repeated real set. The eigenvalues of W can then directly be found by

taking the square root of the diagonal elements of the 𝑾2 matrix.

 [
𝐼𝑎(𝑖 + 2)
𝐼𝑏(𝑖 + 2)

] = [
𝜆1

2 0

0 𝜆2
2] [

𝐼𝑎(𝑖)
𝐼𝑏(𝑖)

] + [
𝐶1

𝐶2
] (2.4)

 𝜆1
2 = 𝜆2

2 =
(

1

𝑌1
−

1

𝑌𝑏
)(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)(

1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)
 (2.5)

This explicitly shows that the value of the spectral radius can be controlled

directly by setting the dummy bus impedance equal to the neighboring systems Norton

equivalent impedance. If set exactly, then the spectral radius is zero. From the literature

32

this means that this will induce the best possible performance that the particular system

can have, making the Rate of Convergence ideal.

2.2.2 N Partition Example

This method poses a challenge for more than two partitions. For the simple two

partition example, the Norton equivalent is easy and straightforward to find. When

moving to multiple partitions, multiport modeling techniques will extend the generic

approach to multiple partitions.

In an N partition example with M ports, the W matrix, which has more

dependencies and can be extremely hard and time consuming to find, must be found.

Therefore, an estimate of the W matrix can be formed called 𝑾𝐸 . This estimation is

based on the idea of relaxing the inter port dependencies. If the system remains relatively

small, then an explicit form of W could be obtained by solving symbolic linear equations

to find the roots of the eigenvalues of the W matrix with respect to the dummy bus

impedances. By setting the dummy impedance correctly to make the eigenvalues of W

explicitly equal to zero, one can minimize the iteration to theoretically instantaneous.

For large systems with many partitions, this calculation could be extremely

cumbersome and computationally expensive. Since the W matrix changes when the

topology changes, there needs to be a way to quickly reset the boundary admittance in

case of a network change which degrades performance drastically. Using an estimated W

by relaxing other port dependencies, an explicit fully diagonal form of W can be

obtained. 𝑾𝐸 is generic in terms that the eigenvalues will repeat in a similar form which

is equal to the form of the two port example in Equation 2.5. While this method is much

faster and more efficient than finding an explicit form of the W matrix, it suffers from

33

some inaccuracies under certain partitioning. However, even in the worst cases, there is

still improvement over PUR without multiport equivalent information. Partitioning

optimization should be considered to keep ports distanced from one another to prevent

this performance flaw.

Figure 2.2 Three Partition System

For the derivation of the W matrix, the system in Figure 2.2 is used. This system

is decomposed into three subsystems by cutting two transmission lines. The new

schematic is represented in Figure 2.3 with the boundary buses added.

34

Figure 2.3 Decomposed system with added dummy buses

At this point, either the explicit W can be calculated, which is a complex

calculation, and is shown in Appendix section A.2 , or 𝑊𝐸 can be calculated and is shown

in Equation 2.6, the coefficients approximate the appendix coefficients to within a

residue. In this work, 𝑾𝐸 is considered to be more advantageous because of its ease of

calculation and scalability. Ignoring the residual component allows PGNME to scale with

limitations. Those limitations can be addressed in a variety of ways. To calculate the 𝑾𝐸

matrix, the port dependencies are ignored. When calculating the dependencies, each

connection can be viewed as a two port network as shown in Figure 2.4, where the other

ports are held constant and do not influence the updating process. In the 𝑾𝐸 matrix, 2

sets of eigenvalues are obtained, the eigenvalues take the general form of Equation 2.5. In

the generic case, this approach creates a purely block diagonal form of the W matrix, this

block diagonal form creates blocks which equal the two partition W matrix, the

eigenvalues can be found simply by taking the square root of the 𝑾𝐸
2 matrix.

35

Figure 2.4 Relaxed equivalent representation of a 3 partition system

 𝑊𝐸 = [

0 𝛼 0 0
𝛾
0
0

0
0
0

0
0
𝜅

0
휂
0

] (2.6)

 𝑊𝐸
2 = [

𝜆1
2 0 0 0

0
0
0

𝜆2
2

0
0

0
𝜆3

2

0

0
0
𝜆4

2

] (2.7)

With this derivation, one can see that the entries in the explicit W matrix consist

of difference equations and residual equations. The difference equations are set to zero by

setting the dummy bus admittance parameters equal to the multiport equivalent. The

remaining residuals are directly dependent on the coupling between multiple systems. It

so happens that for the case in the appendix, if all dummy bus admittance properties are

set correctly, then all eigenvalues are zero no matter the magnitude of the residual. But

36

this special case will not hold with even one higher degree of generality, this it is possible

to hypothesize that in more complex cases the residue will play a role in the eigenvalues

at some point, especially if a partitioning strategy leaves no single port partitions.

2.3 Introduction of MultiPort modeling techniques

These subsystem parameters must be derived before this method can be

beneficial. To do this, the existing multiport modeling techniques are used. It can be

shown that each partition can be modeled with a multiport equivalent reducing the overall

Y matrix of the partition into a smaller equivalent form. This reduction can be shown in

Equation 2.8, where m is the number of ports.

 [
I1
⋮

𝐼𝑚

] = [
𝑌11 ⋯ 𝑌1𝑚

⋮ ⋱ ⋮
𝑌𝑚1 ⋯ 𝑌𝑚𝑚

] [
𝑉1

⋮
𝑉𝑚

] + [
𝐶1

⋮
𝐶𝑚

] (2.8)

Several techniques exist to find these parameters. The most typical way is to short

all ports to calculate the constant vector, then find all of the remaining elements by

applying a test voltage at each port while the other ports remain shorted then finding the

relation between V and I with a known constant. In application to this method the off

diagonal elements are irrelevant and do not need to be calculated.

 𝑌𝑖𝑖 = (𝐼𝑖|𝑉𝑖=𝑉𝑡𝑒𝑠𝑡 𝑎𝑛𝑑 𝑉𝑗=0 − 𝐶𝑖)/𝑉𝑡𝑒𝑠𝑡 (2.9)

2.4 Numerical Approach to Analyze the W matrix

Since the entire approach is based around a linear system model with a linear

updating strategy, the W matrix as defined in Equation 1.7 can be derived numerically by

Multivariate Linear Regression. After partitioning and running one simulation step the

values of the line current can be obtained, sorted, and analyzed. For each set of line

37

current multiple linear regression can be performed with respect to all of the previous

iteration data for the other line currents. Explicitly this can be shown as

 𝐼𝑙𝑖𝑛𝑒𝑖 (𝑖 + 1) = 𝛼𝐼𝑙𝑖𝑛𝑒𝑎 (𝑖) + 𝛽𝐼𝑙𝑖𝑛𝑒𝑏 (𝑖) ……+ 휂𝐼𝑙𝑖𝑛𝑒𝑥 (𝑖) + 𝐶 (2.10)

for all i. Using multiple linear regression for each of the line currents, the coefficients can

be found numerically within some tolerance of accuracy for each row in the W matrix.

These rows can be combined into a large matrix which can be analyzed numerically. The

spectral radius and rate of convergence can be determined, thus verifying if the multiport

equivalent approximation is accurate or if the system should be repartitioned. This could

lead to a simple Monte Carlo type partitioning optimization, which seems tractable on

small scale systems, but for large systems, or systems which may change topology

frequently, a more sophisticated partitioning optimization scheme may be required.

After running the simulator, the validity of the PGNME method to that exact

partition can be evaluated through this process. If the coupling is relatively weak between

subsystems, then the multiport equivalent should approximately force the W matrix to

equal zero. If there is strong coupling, at the worst case, PGNME performance could

degrade and no longer be beneficial depending on the system.

2.5 Complexity Analysis

Complexity analysis is performed to analytically show the benefit of this method.

During the simulation, there are four distinct portions; initialization, factorization, solving

the network equation, and solving DAE’s posed by the network components.

Initialization is not as important; it is a one time cost and doesn’t need to be analyzed in

detail as it could be considered a small portion of the simulation.

38

2.5.1 Factorization

Traditional LU decomposition has the complexity of 2𝑛3

3
, where n is the number

of buses in the input. The PGNME method effectively breaks the factorization

completely among all subsystems. The complexity of the PGNME method is described

as:

 𝑐𝐹 =
2

3
(
𝑛

𝑝
+

𝑑

𝑝
)
3

 (2.11)

where p is number of partitions used, and d is the number of dummy buses in all of the

subsystems combined. With this new complexity figure of merit, the theoretical speedup

of factorization can be derived by the traditional formulation of

 𝑆 =
𝑡𝑠

𝑡𝑝
 (2.12)

Where ts is the serial algorithm run time, and tp is the parallel algorithm runtime.

Runtime and complexity have a direct relationship; therefore, complexity and time are

interchangeable in the speedup formula. The total speedup given by the PGNME method

to factorization is

 𝑆𝐹 =
𝑛3𝑝3

(𝑛+𝑑)3
 (2.13)

If only very large problems where n ≫ d are considered, then the speedup formula

can be further simplified to be 𝑝3.

2.5.2 Solving

The decomposition strategy leaves two unique portions left to solve, the DAE

representing the components and the network iterative method. The DAE solutions are

39

completely parallelizable. The original complexity can be described by complexity 𝑞n,

where q is the average complexity of the DAE across all components. The new

complexity for the PGNME method can be shown to be

 𝑐𝑠1 =
𝑞𝑛

𝑝
 (2.14)

The new speedup formula can then be shown to simply be

 𝑆𝑠1 = 𝑝 (2.15)

For the network solution, LU method solving complexity can be shown to be 2𝑛2.

For PGNME this is the heart of the problem of partitioning and solving. This large

network equation puts a constraint on the overall solution. The PGNME method

effectively breaks this network into small pieces but also adds an iterative component and

required message passing. The complexity of solving the network equation using

PGNME can be shown to be

 𝑐𝑠2 = 2𝑘 (
𝑛

𝑝
+

𝑑

𝑝
)
2
+ 2𝑘𝑡𝑐(

2𝑑

𝑝
) (2.16)

where k is the number of iterations required to converge within the tolerance region and

𝑡𝑐 is the complexity of the MPI communication to send the boundary state data. The

overall speedup against the original algorithm can be shown to be

 𝑆𝑠2 =
2𝑛2

2𝑘(
𝑛

𝑝
)
2
+2𝑘𝑡𝑐(

2𝑑

𝑝
)
 (2.17)

For very large problems where n >> d the speedup can be shown to be 𝑝
2

𝑘
.

40

2.6 Discussion

This method provides a way to enhance the performance of the existing

technique, making this method more attractive to scaling and solving larger systems with

many partitions. Rather than randomly selecting the boundary equivalents, an insightful

way to select appropriate boundary equivalent parameters is presented which will boost

performance, making this method extremely viable for large scale power system dynamic

simulation. In existing literature this method has only been shown to work with two

partitions and it is not clear if there were dynamics implemented or not.

It is also important to note, that the factorization or inversion of the Y matrix is a

very complex operation especially for large Y matrices. This method not only allows

parallel solving of the network equations, it also permits the inversion to be broken into p

smaller inversions. If there is a scenario where the topological structure of the network

often changes then this method can give much more gain. Such scenarios include: Load

Shedding, cascading failures, preventative and corrective relaying, etc.

This method not only provides significant gains in parallel computing but it also

allows for distributed computing of the power system dynamic problem. The results in

Chapter IV will show that this method does give significant gains, and in the interest of

future wide area monitoring this algorithm could be used for distributed simulation.

Different entities which are in charge of controlling the separate portions of a grid could

have their own portion of the system model stored and do not need to share those detailed

models with the rest of the system using this method. Each independent entity only needs

to know the current boundary state. This could lead to imbalance if some entity is

extremely small compared to another, but the large system could be split into smaller

41

subsystems on different resources or the small systems could be aggregated. This type of

analysis has been attempted in previous work in 2 different geographical locations. The

results were not too promising [KGRavikumar]. The delay in communications was too

significant as they were using the internet connection, and packets took too long for fast

analysis. But as technology advances speeds will get faster and if dedicated

communication lines were installed for use only between the power system control

centers, then this method could become an extremely beneficial tool for distributed

simulation.

42

CHAPTER III

IMPLEMENTATION IN SOFTWARE

3.1 Program Structure

The simulation software is constructed in C++ with a generic graph simulator as

the frame of the constructed simulator. The simulation has a manager that controls

convergence and counts which partitions have converged. All written code is optimized

to run on Shadow II at the High Performance Computing Collaboratory at Mississippi

State University. Shadow II consists of 110 nodes, each node containing 512 GB of RAM

and 2 Intel E5-2680 v2 Ivy Bridge processors, which are each 10 core and operate at 2.8

GHz. The communication system is FDR InfiniBand. Systems of scale are created by

duplicating base systems and making arbitrary connections between those systems. The

topological structure of the system to be simulated is sent to hMETIS1 [hMETIS], and the

results are reformatted to a text format description of the system. Upon execution, the text

file is read, and the system is initialized. Additional files tell the software manager which

buses to monitor and which state variables to monitor. There are also separate files to

define the generator parameters. The entire operation can be separated into three distinct

phases: system generation, partitioning, and simulation.

1 hMETIS is a graph partitioning tool created by George Karypis at the University of Minnesota and is one
of the most popular graph partitioning tools.

43

3.2 Graph generation

System models are created from existing base models. Two sets of data are used;

one constructed from an IEEE 118 bus model, and one set constructed from a model of

the Eastern Interconnect (45,552 bus model). The data sets used in Chapter IV consist of

these two models. The 118 systems are scaled three times on every level. The Eastern

Interconnect systems are scaled five times on every level. Figure 3.1 shows the base

IEEE 118 model in graph form, while Figure 3.2 shows Level 2, a 3× scale of level 1.

Figure 3.1 Original IEEE 118 graph

44

Figure 3.2 Level two, three times scale of original IEEE 118 system

3.3 Partitioning

The raw data describing the system is converted to an input format for hMETIS,

hMETIS is then called to partition the data. The partitioning used in this thesis is random,

meaning there is no optimization other than what hMETIS uses internally. Geographical

and system specific information can be used to better cluster the partitions and create

higher quality partitions; this should improve the performance of the simulation.

45

An example output of the 118 system partitioned can be visualized in Figure 3.3

using Gephi2 [GEHPI].

Figure 3.3 Gephi Partitioned graph visualization

3.4 Simulation

The simulation process can be shown in Figure 3.4. The simulation manager reads

all of the data from file and distributes the relevant data to the corresponding process. The

manager then signals the beginning of the simulation to all of the processes. All of the

processes solve their local problem then begin to iteratively solve the network equations.

2 Gephi is an open source graph based visualization tool

46

Each process will send its boundary states to the manager, the manager will share these

states with the neighboring systems and check if the systems have converged. This

process of updating the local states and iteratively

Figure 3.4 Simulation Flowchart

A short sample using the Intel MPI Trace Analyzer tool is shown in Figure 3.5.

There are clearly distinct portions of the simulation: initialization, data reading,

calculating multiport equivalents, simulation, and cleanup. First, there are background

tasks necessary for the environment to be initialized. Second, the manager is continually

reading in data while the other processes wait to receive this data. Third, the manager is

47

waiting, and each process is calculating its own multiport equivalents then exchanging

those equivalents with the neighboring processes. After the simulation has begun, the

manager is mostly communicating between all of the processes, controlling the

convergence checking. Finally, each process has some memory cleanup and other

background tasks, and some statistics reporting to file and the environment is terminated.

Figure 3.5 Intel MPI Trace Analyzer

In Figure 3.6 a portion of the simulation is shown. There are four time steps

shown in this figure. First the DAE describing the nodes are solved. Then the iterative

PGNME process begins, each process is sending its local convergence state to the

manager, and the manager makes a decision to continue the iterative process or stop it. In

48

this particular portion, it is easy to see that the first two time steps shown have taken three

iterations, and the last two time steps take four iterations.

Figure 3.6 Zoom in Trace Analyzer Simulation

49

CHAPTER IV

RESULTS

The results presented in this section are created by using the simulator described

in Chapter III.

4.1 Large scale results on speed and scale

In this section the PGNME method is subjected to extreme testing and monitored

for its worst performance. In these large scale results an arbitrary excitation is injected at

every bus in the system to intentionally impose iterations into the PGNME method. This

effectively allows the worst case analysis of PGNME to be compared against PUR

without multiport equivalent. This arbitrary excitation removes the solving of dynamic

equations which would add to the total speedup. It also forces all of the dummy

boundaries off at every iteration. The final solution at every time step would be close to

the initial solution if real dynamics were injected, but a poor method can still take many

iterations to converge, especially if the event is near a boundary port. The arbitrary

excitation is done because the DAE portion, which excludes the network equation, is

completely parallelizable, adding extremely detailed models would only add to the

speedup and this section’s intent is to put the network equation iterative portion to the

test.

50

4.1.1 Original PUR vs PGNME

In this section the original PUR method is strictly compared against PGNME on

the IEEE 118 system and the set created around it using the graph generation detailed in

Chapter 3. The systems, from level 1 to level 9, or 118 bus to 774198 bus, were

partitioned in a variety of ways depending on the specific system size. The average gain

and minimum and maximum gain were calculated among the partitions.

Table 4.1 Comparing PUR and PGNME performance

Number
of Buses

Max
iterations
saved per

step

Min
iterations
saved per

step

Avg
iterations
saved per

step

Max
speedup
over non
multiport

Min
speedup
over non
multiport

Avg speedup
over non
multiport Level

118 10.4817 0.1816 4.680575 2.384768 1.169799 1.758652868 1
354 10.1753 2.0865 5.6309 2.45075 1.524763 2.048176138 2

1062 10.5036 2.0261 4.952067 4.162261 1.432271 2.278644841 3
3186 4.8656 0.4218 2.048767 2.579835 1.153845 1.505306275 4
9558 13.1688 2.5233 5.85 3.283138 1.576421 2.126766216 5

28674 15.9006 8.4218 12.06052 5.197137 3.183372 4.131277935 6
86022 16.1188 6.1277 10.27393 5.130228 3.095462 4.156629679 7

258066 17.1107 8.5457 12.38565 5.322544 2.670353 4.107596802 8
774198 16.9997 5.6635 12.0799 5.334542 2.792362 4.286615856 9

As seen in the results, there is always improvement over the original PUR

method, while it is sometimes minimal, especially in smaller systems such as the 1.17

51

times speedup on the 118 system and the 1.15 on the 3,186 bus system. This fluctuation

is believed to be caused by the estimation of the W matrix. If the W matrix

approximation can be maintained, the results should be optimal and iterations should be

minimized completely. With larger systems, the improvement is fairly significant, with

over five times speedup on the systems above 28,000 buses. This testing shows the clear

advantage of PGNME and its contribution to the solution of the network equation in the

model. Parallel computing may not be necessary for the small systems, but the systems of

significant size all benefit greatly. Overall the addition of the multiport equivalent

method gives more than 3.1 times speedup to simulations, on average PGNME needs 3.5

iterations to converge versus the 11.8 required for PUR. This method drastically

improves the previous implementation and creates a faster and more efficient parallel

implementation. If combined with optimal partitioning, the method could be improved

even further.

4.1.2 Increasing Number of Partitions

With all parallel algorithms, increasing the number of partitions does not always

lead to an increase in performance. Depending on the application, more partitions

eventually leads to worse performance. The granularity of the specific problem plays a

huge role in this characteristic of the problem. As the problem is broken into smaller

pieces, the overhead cost of parallelization eventually overwhelms the benefit. Very

small problems will not benefit from utilization of HPC resources.

In Figure 4.1 a 1062 bus system is shown. It is apparent that the problem is so

small that parallelizing it using this method gives a mere 3.3 maximum speed up. While

in the large problem of the 258k bus system of Figure 4.2, there is a maximum of over

52

100x speedup. For any given particular problem, this curve can be created, and based on

the curve, an appropriate number of partitions can be selected. After this number is

selected, optimal partitioning can be done to ensure that the iteration will be controlled

when applying the PGNME method.

Figure 4.1 Speedup of 1062 bus system

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

Partitions

S
pe

ed
up

53

Figure 4.2 Speedup curve of 258,066 bus system

The curves presented in Figure 4.1 and Figure 4.2 are created using the curve

fitting tool in matlab. To create the smoothed curves, the bad performers are also

neglected in these curves. Bad performers are defined as partitioning schemes where the

PGNME approximation is invalid, or the residuals dominate the approximation due to

port coupling, and iteration becomes significantly larger. In Figure 4.3 the real data is

graphed for a 28k system. As seen in the figure, iteration is slightly different between

different partitioning runs leading to load imbalances. There are also other small factors

which affect the imbalance such as: load imbalance if the number of nodes aren’t equally

distributed, usage of the computer at the run time, OS housekeeping duties and

background threads, and other related factors such as these.

0 50 100 150 200 250 300 350
-20

0

20

40

60

80

100

120

Partitions

S
pe

ed
up

54

Figure 4.3 Effect of increasing partitions

4.1.3 Repartitioning the same system

This section shows the effect of repartitioning the same systems and the resulting

performance. In this section the level 4 system of the 118 bus class was selected and 30

hMETIS runs were run to partition the system into 40 partitions. From this random run of

hMETIS, it is clear that partitioning still plays a role in the performance of the method.

This effect can be minimized if an appropriate algorithm is implemented to prevent the

ports from being “electrically close” to each other. Other types of optimization can be

used as well such as a Monte Carlo type optimization, which is essentially what is shown

here. In this very small sample of 30 hMETIS runs, it is shown that the average iteration

varies between less than 6 to above 12. If a larger sample size is used, the iteration could

possibly be reduced even further.

0 10 20 30 40 50 60 70
0

5

10

15

20

Partitions

S
pe

ed
up

55

From the 30 random hMETIS runs, it is clear that some of the partitions created

are relatively poor performers compared to the others. Even if one iteration can be saved

on every time step, it can lead to huge gains over the course of an entire simulation.

If the partitions are held constant and the DAE describing the components are

balanced between different partitions, then iteration has a linear relationship to the time

required for simulations. Iteration is seen as the main bottleneck of this algorithm. As

shown in Figure 4.4, 12 iterations leads to a 9s simulation while half as many iterations

leads to half the required simulation time. This relationship will remain true with simple

DAE’s describing the components. When the generator and load models to be solved at

each vertex become very complex, then the time required for the solution of the network

equation will be an overall smaller portion of the simulation.

Figure 4.4 Repartitioning the 3186 bus system

5 6 7 8 9 10 11 12 13
4

5

6

7

8

9

10

Iterations Per Time Step

Ti
m

e(
s)

56

Figure 4.5 Cumulative distribution of iterations from partitioning

Figure 4.5 shows the cumulative probability distribution of iterations. For this

particular system the majority of partitioning schemes need an average of 6 iterations to

converge. A figure such as this could be created for an arbitrary system to determine if

this particular number of partitions is feasible or if partition number should change

4.1.4 Scalability of the simulator

In this section the data is shown from many levels of graphs to show the

scalability of the simulator. For every parallel computing problem, a speedup curve can

be created. At some point on the curve, due to the nature of the problem, the curve will

reach a maximum. After the maximum, the cost associated with the parallelization of the

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Cumulative Distribution

Number of Average Relaxation Iterations

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

57

problem (communication , added computation, etc) becomes a bottleneck. After this

point, the problem cannot be made smaller without penalty.

A particular algorithm is scalable if for an increase in input size there is a

corresponding increase in speedup. As shown in Figure 4.5, the small 118 bus system

does not benefit much from parallelization with a maximum of around 2× speedup

obtained. As the input is increased, the benefit of parallelization steadily increases. This

shows that the algorithm is scalable, and as the input continues to grow then the gain

from parallel computing will also continue to grow, at least until some portion of the

algorithm becomes a bottleneck. The simulator is shown to be scalable up to a 774,198

bus system, and there are also data points from larger systems overlaid here. It is

important to note that these curves are estimated from data and that all of the partitions

which were bad performers(i.e. high iteration) were removed from the data set, in effect

simulating the action of a partitioning optimizer which was not available during this

work. These graphs assume that partitioning produces a relatively high quality set of

partitions which converge on average in very few iterations.

58

Figure 4.6 Scalability of the simulator

4.2 Dynamic Simulation

For this section transient stability simulation is performed using the classical

generator model. The model includes Equations 4.1 – 4.4 in addition to the network

equation of Equation 1.3.

 �̇� =
𝑓𝜋

𝐻
(𝑃𝑚 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔0)) (4.1)

 �̇� = 𝜔 − 𝜔0 (4.2)

 𝑃𝑒 =
|𝑉||𝐸𝑞|

𝑋𝑑
sin (𝛿 − 휃) (4.3)

 𝐼 =
|𝐸𝑞|𝑒𝑗𝛿

𝑗𝑋𝑑
′ (4.4)

0 100 200 300 400 500 600 700
-50

0

50

100

150

200

250

300

350

Partitions

S
pe

ed
up

1,062
3,186
9,558
28,674
86,022
258,066
774,198
142,235,000
711,750,000

59

This model is used in [PNNL] for look ahead dynamic simulation. For a large

area multi-machine study, this implementation shows great promise. In this section a 1ms

time step is used with Forward Euler to solve Equation 4.1 and Equation 4.2. The results

from a model of the Eastern Interconnect (45k bus) are shown in Figure 4.6. The best

performance comes from 160 partitions and gives a speedup of 60. The 5s simulation

takes 145s in the serial version while taking only 2.38s on 160 CPU.

This results in a faster than real time simulation of a system the size of the Eastern

Interconnec. Depending on the intent of the simulation, an efficient varying time step

implicit method could be implemented to incorporate a much larger time step as the

dynamics permit. If this is done the simulation would be even faster. On top of this,

different compilers could be tested to find the optimal combination of MPI libraries and

compilers for the given hardware.

Figure 4.7 Speedup curve using classical generator models in the Eastern Interconnect
scale system

0 50 100 150 200 250
0

10

20

30

40

50

60

70

Partitions/CPU Cores

S
pe

ed
up

Speedup
fitted curve

60

4.3 Matlab results on accuracy and different models

In this section, the PGNME method is compared against an existing trusted

software tool known as MatDyn to ensure accuracy. The MatDyn implementation is of a

nine-bus system, which consists of two different generator models(classical model, and a

fourth order model), a turbine governor model and an excitation system model. The

PGNME method is implemented in Matlab by modifying the source code of MatDyn for

this specific case. In this specific case, one line was cut in the nine-bus system, forming

two subsystems which are connected by The purpose of this test is to reassure that this

method will be convergent on a more realistic model. RK45 is used and the reconciliation

tolerance is 10−4. It is shown in Figure 4.8 and 4.9 that the decoupled response overalys

to within a tolerance of the original, verifying that the algorithm can handle robust

dynamic events.

Figure 4.8 Generator speed response during an event

61

Figure 4.9 Bus Voltage response during an event

62

CHAPTER V

CONCLUSION AND FUTURE WORKS

This thesis has considered a novel methodology for solving large scale systems of

DAE, such as the model of a large power transmission system, on a high performance

cluster computer. The treatment was in the form of the ASM approach. It has also

presented a novel approach to evolve an existing technique called PGN, resulting in a

new technique called PGNME that scales to large system simulation with many partitions

as shown by the results from running the solver on a large HPC cluster computer.

The overall result of this method is very impressive compared to other iterative

methods and other relaxation methods which do not have the same form. Other methods

show very small speedup on hundreds of processors making them very unattractive. This

method shows fairly efficient utilization of HPC resources. High fidelity dynamic models

will lead to much more efficient implementation as the solution of the differential

equations in the ASM process is extremely parallelizable. When higher fidelity models

are used the speedup will increase dramatically. Also if simulations were run where the Y

matrix changed often this method would excel even more, as the factorization portion is

completely parallel and does not have an iterative component.

While this method shows to be very useful in progress towards look ahead and

real time simulation, more work can be done to further enhance its performance. These

future works include: optimizing the initialization process, continuing to search for ways

63

to make the code more efficient, partitioning optimization, developing more advanced

models especially for the other physical components and control systems that need to be

modeled, implementing more integration techniques such as RK45 and Trapezoidal rule,

and exploring advanced integration techniques such as multigrid and parareal.

Immediately, partitioning optimization would appear to be a high priority to extend the

potential benefit of PGNME to the limits of the HPC machinese the simulation runs on.

64

REFERENCES

[BStott] B. Stott, “Power system dynamic response calculations,” Proceedings of the
IEEE, vol. 67, no. 2, pp. 219–241, 1979.

 [CFu] C. Fu, J. McCalley, and J. Tong, “A numerical solver design for extended-term
time-domain simulation,” Power Systems, IEEE Trans- actions on, vol. 28, pp.
4926–4935, Nov 2013

 [PNNL] Shuangshuang Jin, Zhenyu Huang, Ruisheng Diao, Di Wu and Yousu Chen,
'Parallel implementation of power system dynamic simulation', 2013 IEEE Power
& Energy Society General Meeting, 2013.

[OpalRT] Opal-rt.com, 'RTS HIL PHIL RCP | OPAL-RT, World simulation technology
leader', 2015. [Online]. Available: http://www.opal-rt.com/. [Accessed: 04- Aug-
2015].

[RTDS] RTDS Technologies Inc., 'RTDS Technologies Inc. | Real Time Digital Power
System Simulation', 2013. [Online]. Available: http://rtds.com. [Accessed: 04-
Aug-2015].

[QHuang] Qinghua Huang, Jian Wu, Jimena Bastos And Noel N. Schulz, “Distributed
Simulation Applied to Shipboard Power Systems,” Proceedings Of The IEEE
Electric Ship Technologies Sympoisum (ESTS 07), Arlington, Virginia, May
2007.

[JWu] J. Wu and N. N. Schulz, “Generalized three phase coupling method for
distributed simulation,” in Proc. 37th Annual North American Power Symp.,
Ames, IA, Oct. 23–25, 2005, pp. 441–447.

[WRen] Wei Ren; Steurer, M.; Baldwin, T.L. "Improve the Stability and the Accuracy of
Power Hardware-in-the-Loop Simulation by Selecting Appropriate Interface
Algorithms", Industry Applications, IEEE Transactions on, On page(s): 1286 -
1294 Volume: 44, Issue: 4, July-aug. 2008

[Russian] V. B. Dmitriev-Zdorov, “Generalized coupling as a way to improve the
convergence in relaxation-based solvers,” in Proc. EURO-DAC/ EUROVHDL
Exhib., Geneva, Switzerland, Sep. 1996.

65

[YFu] A. Kargarian, Y. Fu and Z. Li, 'Distributed Security-Constrained Unit
Commitment for Large-Scale Power Systems', IEEE Trans. Power Syst., vol. 30,
no. 4, pp. 1925-1936, 2015.

[DOE] “Computational needs for the next generation electric grid,” The U.S. Department
Of Energy, April 2011.

[DKeyes] D. E. Keyes, Domain Decomposition Methods for Partial Differential
Equations. No. 55, Siam, 1992.

[VDolean] V. Dolean, P. Jolivet, and F. Nataf, “An introduction to domain de-
composition methods: algorithms, theory and parallel implementation,” 2015.

[LHageman] L.A. Hageman, D.M. young, Applied iterative methods, Academy press,
NY. 1981

[HDommel] Dommel and N. Sato, “Fast transient stability soultions,” Power Apparatus
and Systems, IEEE Transactions on, no. 4, pp. 1643–1650, 1972.

[Thyme] Web.ornl.gov, "Toolkit for HYbrid Modeling of Electric power systems", 2016.
[Online]. Available: http://web.ornl.gov/~1qn/thyme/docs/. [Accessed: 23- Feb-
2016].

[PNNL2] O. Villa, A. Tumeo, S. Ciraci, J. A. Daily and J. C. Fuller, "A High
Performance Computing Network and System Simulator for the Power Grid:
NGNS^2," High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, Salt Lake City, UT, 2012, pp. 313-322.

[VOpalRT] V. Jalili-Marandi, E. Robert, V. Lapointe and J. Bélanger, "A real-time
transient stability simulation tool for large-scale power systems," Power and
Energy Society General Meeting, 2012 IEEE, San Diego, CA, 2012, pp. 1-7.

[Chinese2] Z. Min, X. Dechao, L. Yalou and A. Ning, "Algorithm research on parallel
topology of large-scale power system on-line simulation," Power System
Technology (POWERCON), 2014 International Conference on, Chengdu, 2014,
pp. 55-60.

[Kundur] P. Kundur, N. Balu and M. Lauby, Power system stability and control. New
York: McGraw-Hill, 1994.

[SUPERLU] Lawrence Berkeley National Laboratory, "SuperLU Users' Guide", 1999.

[KELLEY] C. Kelley, Iterative methods for linear and nonlinear equations. Philadelphia:
Society for Industrial and Applied Mathematics, 1995.

[SAAD] Y. Saad, Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.

66

[KGRavikumar] K. G. Ravikumar, N. N. Schulz and A. K. Srivastava, "Distributed
simulation of power systems using real-time digital simulator," Power Systems
Conference and Exposition, 2009. PSCE '09. IEEE/PES, Seattle, WA, 2009, pp.
1-6.

[VDolean] V. Dolean, P. Jolivet, and F. Nataf, “An introduction to domain de-
composition methods: algorithms, theory and parallel implementation,” 2015.

[hMETIS] “hMETIS - Hypergraph & Circuit Partitioning | Karypis Lab",
Glaros.dtc.umn.edu, 2016. [Online]. Available:
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview. [Accessed: 03- Jun-
2016].

[GEPHI] "Gephi - The Open Graph Viz Platform", Gephi.org, 2016. [Online]. Available:
https://gephi.org/. [Accessed: 03- Jun- 2016].

67

W MATRIX DERIVATIONS

68

This appendix is dedicated to explicitly deriving the W matrix for the PGNME

iterative method strategy .

A.1 Two Partition Example

Figure A.1 Two Partition Equivalent Description

For the explicit derivation it is important to first define all physical laws

controlling the system then to define the iterative updating method.

 𝐼𝑎(𝑘) = (𝑉1(𝑘) − 𝑉𝑑1(𝑘))𝑌𝑎𝑏 (A.1)

 𝐼𝑏(𝑘) = (𝑉𝑑2(𝑘) − 𝑉2(𝑘))𝑌𝑎𝑏 (A.2)

 𝑉1(𝑘) =
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
 (A.3)

 𝑉𝑑1(𝑘) =
𝑆1(𝑘)+𝐼𝑎(𝑘)

𝑌1
 (A.4)

 𝑉2(𝑘) =
𝐼2+𝐼𝑏(𝑘)

𝑌𝑏
 (A.5)

 𝑉𝑑2(𝑘) =
𝑆2(𝑘)−𝐼𝑏(𝑘)

𝑌2
 (A.6)

 𝑆1(𝑘 + 1) = 𝑉2(𝑘)𝑌1 − 𝐼𝑏(𝑘) (A.7)

 𝑆2(𝑘 + 1) = 𝑉1(𝑘)𝑌2 + 𝐼𝑎(𝑘) (A.8)

69

Using all of tfhe previous equations the W matrix can be derived by solving for

the updated states.

 𝐼𝑎(𝑘 + 1) = (𝑉1(𝑘 + 1) − 𝑉𝑑1(𝑘 + 1))𝑌𝑎𝑏 (A.9)

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑆1(𝑘+1)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.10)

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑉2(𝑘)𝑌1−𝐼𝑏(𝑘)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.11)

 𝐼𝑎(𝑘 + 1) = (
𝐼1

𝑌𝑎
−

𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝐼2+𝐼𝑏(𝑘)

𝑌𝑏
+

𝐼𝑏(𝑘)

𝑌1
−

𝐼𝑎(𝑘+1)

𝑌1
) 𝑌𝑎𝑏 (A.12)

 𝐼𝑎(𝑘 + 1) = (
𝐼1

𝑌𝑎
−

𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝐼2

𝑌𝐵
−

𝐼𝑏(𝑘)

𝑌𝑏
+

𝐼𝑏(𝑘)

𝑌1
−

𝐼𝑎(𝑘+1)

𝑌1
) 𝑌𝑎𝑏 (A.13)

 𝐼𝑎(𝑘 + 1) =
𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
−

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌𝑏
+

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌1
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌1
 (A.14)

 𝐼𝑎(𝑘 + 1) = −
𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌1
−

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌𝑏
+

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌1
+

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.15)

 𝐼𝑎(𝑘 + 1) = 𝐼𝑎(𝑘 + 1) (−
𝑌𝑎𝑏

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
) + 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.16)

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) = 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.17)

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) = 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) + 𝐶 (A.18)

 𝐼𝑎(𝑘 + 1) = 𝐼𝑏(𝑘)
(−

𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌1

)

(1+
𝑌𝑎𝑏
𝑌𝑎

+
𝑌𝑎𝑏
𝑌1

)
+ 𝐶 (A.19)

 𝐼𝑎(𝑘 + 1) = 𝐼𝑏(𝑘)
(

1

𝑌1
−

1

𝑌𝑏
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)
+ 𝐶 (A.20)

 𝐼𝑏(𝑘 + 1) = (𝑉𝑑2(𝑘 + 1) − 𝑉2(𝑘 + 1))𝑌𝑎𝑏 (A.21)

 𝐼𝑏(𝑘 + 1) = (
𝑆2(𝑘+1)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
)𝑌𝑎𝑏 (A.22)

 𝐼𝑏(𝑘 + 1) = (
𝑉1(𝑘)𝑌2+𝐼𝑎(𝑘)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
) 𝑌𝑎𝑏 (A.23)

70

 𝐼𝑏(𝑘 + 1) = (
(
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
)𝑌2+𝐼𝑎(𝑘)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
)𝑌𝑎𝑏 (A.24)

 𝐼𝑏(𝑘 + 1) =
𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘)𝑌𝑎𝑏

𝑌𝑎
+

𝐼𝑎(𝑘)𝑌𝑎𝑏

𝑌2
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌𝑏
 (A.25)

 𝐼𝑏(𝑘 + 1) = 𝐼𝑏(𝑘 + 1) (−
𝑌𝑎𝑏

𝑌𝑏
−

𝑌𝑎𝑏

𝑌2
) + 𝐼𝑎(𝑘) (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
 (A.26)

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌2
) = 𝐼𝑎(𝑘) (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
 (A.27)

 𝐼𝑏(𝑘 + 1) = 𝐼𝑎(𝑘)
(
𝑌𝑎𝑏
𝑌2

−
𝑌𝑎𝑏
𝑌𝑎

)

(1+
𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌2

)
+

𝐼1𝑌𝑎𝑏
𝑌𝑎

−
𝐼2𝑌𝑎𝑏

𝑌𝑏

(1+
𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌2

)
 (A.28)

 𝐼𝑏(𝑘 + 1) = 𝐼𝑎(𝑘)
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)
+ 𝐶 (A.29)

This derivation can be written in the form used mostly in literature as in Equation

1.7.

 [
𝐼𝑎(𝑘 + 1)

𝐼𝑏(𝑘 + 1)
] =

[

 0

(
1

𝑌1
−

1

𝑌𝑏
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

(
1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)

0
]

[
𝐼𝑎(𝑘)

𝐼𝑏(𝑘)
] (A.30)

A.2 Three Partition Example

Figure A.2 Subcircuit 1 and 2

71

Figure A.3 Subcircuit 3 and 4

A similar approach should be taken for the three partition example. All physical

laws and updating equations should be derived first.

 𝐼𝑎(𝑘) = (𝑉𝑎(𝑘) − 𝑉𝑑1(𝑘))𝑌𝑎𝑏 (A.31)

 𝐼𝑏(𝑘) = (𝑉𝑑2(𝑘) − 𝑉1(𝑘))𝑌𝑎𝑏 (A.32)

 𝐼𝑐(𝑘) = (𝑉2(𝑘) − 𝑉𝑑3(𝑘))𝑌𝑏𝑐 (A.33)

 𝐼𝑑(𝑘) = (𝑉𝑑4(𝑘) − 𝑉𝑐(𝑘))𝑌𝑏𝑐 (A.34)

 𝑉𝑎(𝑘) =
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
 (A.35)

 𝑉𝑑1(𝑘) =
𝑆1(𝑘)+𝐼𝑎(𝑘)

𝑌1
 (A.36)

 𝑉𝑑2(𝑘) =
𝑆2(𝑘)−𝐼𝑏(𝑘)

𝑌2
 (A.37)

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
 (A.38)

 𝑉2(𝑘) =
ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.39)

 𝑉𝑑3(𝑘) =
𝑆3(𝑘)+𝐼𝑐(𝑘)

𝑌3
 (A.40)

 𝑉𝑑4(𝑘) =
𝑆4(𝑘)−𝐼𝑑(𝑘)

𝑌4
 (A.41)

 𝑉𝑐(𝑘) =
𝐼3+𝐼𝑑(𝑘)

𝑌𝑐
 (A.42)

72

 𝑆1(𝑘 + 1) = 𝑉1(𝑘)𝑌1 − 𝐼𝑏(𝑘) (A.43)

 𝑆2(𝑘 + 1) = 𝑉𝑎(𝑘)𝑌2 + 𝐼𝑎(𝑘) (A.44)

 𝑆3(𝑘 + 1) = 𝑉𝑐(𝑘)𝑌3 − 𝐼𝑑(𝑘) (A.45)

 𝑆4(𝑘 + 1) = 𝑉2(𝑘)𝑌4 + 𝐼𝑐(𝑘) (A.46)

 𝐼𝑎(𝑘 + 1) = (𝑉𝑎(𝑘 + 1) − 𝑉𝑑1(𝑘 + 1))𝑌𝑎𝑏 (A.47)

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑆1(𝑘+1)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.48)

 𝐼𝑎(𝑘 + 1) =
𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌𝑎
𝐼𝑎(𝑘 + 1) −

𝑌𝑎𝑏

𝑌1
𝑆1(𝑘 + 1) − 𝐼𝑎(𝑘 + 1)

𝑌𝑎𝑏

𝑌1
 (A.49)

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
𝑆1(𝑘 + 1) (A.50)

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
((

ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
)𝑌1 − 𝐼𝑏(𝑘)) (A.51)

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
− 𝑌𝑎𝑏(

ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
) + 𝐼𝑏(𝑘)

𝑌𝑎𝑏

𝑌1
 (A.52)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21𝑉2(𝑘)

𝑌11
−

𝐼𝑏(𝑘)

𝑌11
+ 𝐼𝑏(𝑘)

1

𝑌1
 (A.53)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
𝑉2(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
) (A.54)

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
, 𝑉2(𝑘) =

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.55)

 𝑉2(𝑘) =
ℎ12

𝑌22
𝑉1(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.56)

 𝑉2(𝑘) =
ℎ12

𝑌22
(
ℎ21

𝑌11
𝑉2(𝑘) +

𝐼𝑏(𝑘)

𝑌11
) −

𝐼𝑐(𝑘)

𝑌22
 (A.57)

 𝑉2(𝑘) =
ℎ12ℎ21

𝑌11𝑌22
𝑉2(𝑘) +

ℎ12

𝑌11𝑌22
𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.58)

 𝑉2(𝑘)(1 −
ℎ12ℎ21

𝑌11𝑌22
) =

ℎ12

𝑌11𝑌22
𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.59)

 𝑉2(𝑘) =

ℎ12
𝑌11𝑌22

1−
ℎ12ℎ21
𝑌11𝑌22

𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22

1−
ℎ12ℎ21
𝑌11𝑌22

 (A.60)

73

 𝑉2(𝑘) =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.61)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
𝑉2(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
) (A.62)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘)) +

𝐼𝑏(𝑘)(
1

𝑌1
−

1

𝑌11
) (A.63)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ12ℎ21

𝑌11(𝑌11𝑌22−ℎ12ℎ21)
𝐼𝑏(𝑘) +

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)(
1

𝑌1
−

1

𝑌11
) (A.64)

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
+

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21

𝑌11(𝑌11𝑌22−ℎ12ℎ21)
) (A.65)

If MPE is set correctly, then the terms become 0 plus residual which is completely

dependent on the electrical coupling of the subsystems.

 𝐼𝑎(𝑘 + 1) =

𝐼1
𝑌𝑎

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)
+

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)
(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21
𝑌11(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

 (A.66)

 𝐼𝑏(𝑘 + 1) = (𝑉𝑑2(𝑘 + 1) − 𝑉1(𝑘 + 1))𝑌𝑎𝑏 (A.67)

 𝐼𝑏(𝑘 + 1) = 𝑉𝑑2(𝑘 + 1)𝑌𝑎𝑏 − 𝑉1(𝑘 + 1)𝑌𝑎𝑏 (A.68)

 𝐼𝑏(𝑘 + 1) =
𝑆2(𝑘+1)𝑌𝑎𝑏−𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏+𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.69)

 𝐼𝑏(𝑘 + 1) =
𝑆2(𝑘+1)𝑌𝑎𝑏

𝑌2
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏

𝑌11
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.70)

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑆2(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.71)

74

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝑆2(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11
𝑉2(𝑘 + 1) (A.72)

 𝑉2(𝑘) =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.73)

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
(𝑉𝑎(𝑘)𝑌2 + 𝐼𝑎(𝑘)) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.74)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝐼𝑎(𝑘) + 𝑌𝑎𝑏𝑉𝑎(𝑘) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.75)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝐼𝑎(𝑘) + 𝑌𝑎𝑏(

𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 +

1) −
ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.76)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 +

1) −
ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.77)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
+

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.78)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
−

𝑌𝑎𝑏

𝑌11
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.79)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.80)

75

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.81)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) (A.82)

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1)) (A.83)

 𝐼𝑏(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼1

𝑌𝑎
−

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1)) (A.84)

 𝐼𝑐(𝑘 + 1) = (𝑉2(𝑘 + 1) − 𝑉𝑑3(𝑘 + 1))𝑌𝑏𝑐 (A.85)

 𝐼𝑐(𝑘 + 1) = 𝑌𝑏𝑐𝑉2(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑑3(𝑘 + 1) (A.86)

 𝐼𝑐(𝑘 + 1) = 𝑌𝑏𝑐(
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) −

𝑌𝑏𝑐(
𝑆3(𝑘+1)+𝐼𝑐(𝑘+1)

𝑌3
) (A.87)

 𝐼𝑐(𝑘 + 1) =
𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑆3(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝐼𝑐(𝑘 + 1) (A.88)

 𝐼𝑐(𝑘 + 1)(1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑆3(𝑘 +

1) (A.89)

 𝐼𝑐(𝑘 + 1)(1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
(𝑉𝑐(𝑘)𝑌3 −

𝐼𝑑(𝑘)) (A.90)

76

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑉𝑐(𝑘)𝑌3 +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘)) (A.91)

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑐(𝑘) +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘) (A.92)

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐(

𝐼3+𝐼𝑑(𝑘)

𝑌𝑐
) +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘) (A.93)

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐

𝐼3

𝑌𝑐
− 𝑌𝑏𝑐

𝐼𝑑(𝑘)

𝑌𝑐
+

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘) (A.94)

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
−

𝐼𝑑(𝑘)

𝑌𝑐
+

1

𝑌3
𝐼𝑑(𝑘) (A.95)

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
+ 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) (A.96)

 𝐼𝑑(𝑘 + 1) = (𝑉𝑑4(𝑘 + 1) − 𝑉𝑐(𝑘 + 1))𝑌𝑏𝑐 (A.97)

 𝐼𝑑(𝑘 + 1) = 𝑌𝑏𝑐𝑉𝑑4(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑐(𝑘 + 1) (A.98)

 𝐼𝑑(𝑘 + 1) = 𝑌𝑏𝑐(
𝑆4(𝑘+1)−𝐼𝑑(𝑘+1)

𝑌4
) − 𝑌𝑏𝑐(

𝐼3+𝐼𝑑(𝑘+1)

𝑌𝑐
) (A.99)

 𝐼𝑑(𝑘 + 1) =
𝑌𝑏𝑐𝑆4(𝑘+1)

𝑌4
−

𝑌𝑏𝑐𝐼𝑑(𝑘+1)

𝑌4
−

𝑌𝑏𝑐𝐼3

𝑌𝑐
−

𝐼𝑑(𝑘+1)𝑌𝑏𝑐

𝑌𝑐
 (A.100)

 𝐼𝑑(𝑘 + 1)(1 +
𝑌𝑏𝑐

𝑌𝑐
+

𝑌𝑏𝑐

𝑌4
) =

𝑌𝑏𝑐

𝑌4
𝑆4(𝑘 + 1) −

𝑌𝑏𝑐𝐼3

𝑌𝑐
 (A.101)

 𝐼𝑑(𝑘 + 1)(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

1

𝑌4
𝑆4(𝑘 + 1) −

𝐼3

𝑌𝑐
 (A.102)

77

 𝐼𝑑(𝑘 + 1)(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

1

𝑌4
((

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
)𝑌4 + 𝐼𝑐(𝑘)) −

𝐼3

𝑌𝑐
 (A.103)

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
𝑉1(𝑘) −

1

𝑌22
𝐼𝑐(𝑘) +

1

𝑌4
𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.104)

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
, 𝑉2(𝑘) =

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.105)

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
 (A.106)

 𝑉1(𝑘) =
ℎ21

𝑌11
𝑉2(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.107)

 𝑉1(𝑘) =
ℎ21

𝑌11
(
ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
) +

𝐼𝑏(𝑘)

𝑌11
 (A.108)

 𝑉1(𝑘) =
ℎ21

𝑌11
(
ℎ12𝑉1(𝑘)

𝑌22
−

𝐼𝑐(𝑘)

𝑌22
) +

𝐼𝑏(𝑘)

𝑌11
 (A.109)

 𝑉1(𝑘) =
ℎ12ℎ21

𝑌22𝑌11
𝑉1(𝑘) −

ℎ21

𝑌11𝑌22
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.110)

 𝑉1(𝑘)(1 −
ℎ12ℎ21

𝑌22𝑌11
) = −

ℎ21

𝑌11𝑌22
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.111)

 𝑉1(𝑘) = −

ℎ21
𝑌11𝑌22

(1−
ℎ12ℎ21
𝑌22𝑌11

)
𝐼𝑐(𝑘) +

1

𝑌11

(1−
ℎ12ℎ21
𝑌22𝑌11

)
𝐼𝑏(𝑘) (A.112)

 𝑉1(𝑘) =
𝑌22

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.113)

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
𝑉1(𝑘) −

1

𝑌22
𝐼𝑐(𝑘) +

1

𝑌4
𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.114)

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
(

𝑌22

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘)) + (

1

𝑌4
−

1

𝑌22
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.115)

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ12ℎ21

𝑌22(𝑌11𝑌22−ℎ12ℎ21)
𝐼𝑐(𝑘) + (

1

𝑌4
−

1

𝑌22
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.116)

78

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) + (

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21

𝑌22(𝑌11𝑌22−ℎ12ℎ21)
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.117)

If MPE is set correctly, then the terms become 0 plus residual which is completely

dependent on the electrical coupling of the subsystems.

 𝐼𝑑(𝑘 + 1) =

ℎ12
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

𝐼𝑏(𝑘) +
(

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21
𝑌22(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

𝐼𝑐(𝑘) −

𝐼3
𝑌𝑐

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)
 (A.118)

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
+ 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) (A.119)

 𝐼𝑏(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼1

𝑌𝑎
−

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1)) (A.120)

 𝑥 = (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) (A.121)

 𝑦 =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
 (A.122)

 𝑧 = (
1

𝑌3
−

1

𝑌𝑐
) (A.123)

 𝑞 =
𝐼3

𝑌𝑐
 (A.124)

 𝑎 = (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) (A.125)

 𝑏 = (
1

𝑌2
−

1

𝑌𝑎
) (A.126)

 𝑑 =
𝐼1

𝑌𝑎
 (A.127)

79

 𝑒 =
ℎ21

𝑌11𝑌22−ℎ12ℎ21
 (A.128)

 𝐼𝑐(𝑘 + 1)𝑥 = 𝑦𝐼𝑏(𝑘 + 1) − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.129)

 𝐼𝑏(𝑘 + 1)𝑎 = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝐼𝑐(𝑘 + 1) (A.130)

 𝐼𝑏(𝑘 + 1)𝑎 = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝑦𝐼𝑏(𝑘 + 1) − 𝑒𝑞 + 𝐼𝑑(𝑘)𝑧𝑒 (A.131)

 𝐼𝑐(𝑘 + 1)𝑥 = 𝑦𝑏𝐼𝑎(𝑘) + 𝑑𝑦 − 𝑒𝑦𝐼𝑐(𝑘 + 1) − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.132)

 𝐼𝑏(𝑘 + 1)(𝑎 + 𝑒𝑦) = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝑞 + 𝐼𝑑(𝑘)𝑧𝑒 (A.133)

 𝐼𝑐(𝑘 + 1)(𝑥 + 𝑒𝑦) = 𝑦𝑏𝐼𝑎(𝑘) + 𝑑𝑦 − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.134)

 𝐼𝑏(𝑘 + 1)(𝑎 + 𝑒𝑦) = 𝑏𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)𝑧𝑒 + 𝑑 − 𝑒𝑞 (A.135)

 𝐼𝑐(𝑘 + 1)(𝑥 + 𝑒𝑦) = 𝑦𝑏𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)𝑧 + 𝑑𝑦 − 𝑞 (A.136)

 𝐼𝑏(𝑘 + 1)((
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) + (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)(
1

𝑌3
−

1

𝑌𝑐
)(

ℎ21

𝑌11𝑌22−ℎ12ℎ21
) +

𝐼1

𝑌𝑎
− (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

𝐼3

𝑌𝑐
) (A.137)

 𝐼𝑐(𝑘 + 1)((
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) + (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) =

(
ℎ12

𝑌11𝑌22−ℎ12ℎ21
)(

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) + (

𝐼1

𝑌𝑎
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
) −

𝐼3

𝑌𝑐
 (A.138)

 𝐼𝑏(𝑘 + 1)((
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) + (

ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21

𝑌11𝑌22−ℎ12ℎ21
) +

𝐼1

𝑌𝑎
− (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

𝐼3

𝑌𝑐
)(A.139)

 𝐼𝑐(𝑘 + 1)((
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) + (

ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)) = (

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)(

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) + (

𝐼1

𝑌𝑎
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
) −

𝐼3

𝑌𝑐
 (A.140)

80

 𝐼𝑏(𝑘 + 1) =
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)
𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)
(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)
) + 𝐶 (A.141)

 𝐼𝑐(𝑘 + 1) =
(

ℎ12
𝑌11𝑌22−ℎ12ℎ21

)(
1

𝑌2
−

1

𝑌𝑎
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2

𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)
(

1

𝑌3
−

1

𝑌𝑐
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2

+ 𝐶 (A.142)

The above derivations can be combined to conform to the standard representation

in literature of the form Equation 1.7.

[

𝐼𝑎(𝑘 + 1)

𝐼𝑏(𝑘 + 1)

𝐼𝑐(𝑘 + 1)

𝐼𝑑(𝑘 + 1)]

= [

0 𝛼 𝛽 0
𝛾
휀
0

0
0
휃

0
0
𝜅

𝛿
휂
0

]

[

𝐼𝑎(𝑘)

𝐼𝑏(𝑘)

𝐼𝑏(𝑘)

𝐼𝑏(𝑘)]

+ 𝐶 (A.143)

 𝛼 =
(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21
𝑌11(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

 (A.144)

 𝛽 =

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

 (A.145)

 𝛾 =
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)
 (A.146)

 𝛿 =
(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21
𝑌11𝑌22−ℎ12ℎ21

)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2
)
 (A.147)

 휀 =
(

ℎ12
𝑌11𝑌22−ℎ12ℎ21

)(
1

𝑌2
−

1

𝑌𝑎
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2

 (A.148)

 휂 =
(

1

𝑌3
−

1

𝑌𝑐
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2

 (A.149)

81

 휃 =

ℎ12
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

 (A.150)

 𝜅 =
(

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21
𝑌22(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

 (A.151)

A.3 Explicit W Validation of the Three Partition Example

The explicit W matrix derived in A.2 can be validated for the 1-2-1 case. The

system in Fig A.4 is used, to avoid instant convergence the dummy admittance

parameters are set off ideal to force a non-zero spectral radius. For simplicity non-

complex values are used but the theory expands to complex values as well.

Figure A.4 1-2-1 System Verifying Explicit W

The system in Fig A.4 can be represented in the equivalent form of the appendix

figure A.2 and A.3 and the parameters can be derived as:

82

Table A.1 Parameters for W matrix verification

Parameter Value
Y11 6.0143
Y22 6.0143
Y1 6.3150
Y2 2.6250
Y3 3
Y4 6.3150
h12 5.0969
h21 5.0969
Ya 2.5
Yab 10
Ybc 10
Yc

Through linear regression the W matrix is found within a 95% confidence bound.

The regression confidence bound explains the non-zero entries in the regression.

−0.0044 −0.6488 0.7562 −0.0061
−0.0217
−0.0086
0.0091

−0.0009
0.0013
0.8145

0.0005
−0.0005
−0.7058

−0.0080
−0.0177
0.0125

 (A.152)

From the explicit derivation the equivalent W is:

0.0000 −0.6557 0.7595 0.0000
−0.0144
−0.0075
0.0000

0.0000
0.0000
0.8219

0.0000
0.0000

−0.7096

−0.0063
−0.0131
0.0000

 (A.153)

This calculation verifies the explicit form of W derived for this case. It is assumed

that, as the system complexity and number of partitions grow, there will be a similar

form. The trend is expected to continue of many zero entries with some non zero residual

entries in the W matrix. These residual entries are a direct reflection of the electrical

coupling between multiple port dependencies. If there is a case where the electrical

83

coupling is strong between the ports of a two or more port system, then the performance

is expected to degrade, even with the additional help of the Multiport Equivalent

information to set the boundary admittance.

	PGNME: A Domain Decomposition Algorithm for Distributed Power System Dynamic Simulation on High Performance Computing Platforms
	Recommended Citation

	tmp.1625165283.pdf.RLh7E

