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Dynamic simulation of a large-scale electric power system involves solving a 

large number of differential algebraic equations (DAEs) every simulation time-step. With 

the ever-growing size and complexity of power grid, dynamic simulation becomes more 

and more time-consuming and computationally difficult using conventional sequential 

simulation techniques. This thesis presents a fully distributed approach intended for 

implementation on High Performance Computer (HPC) clusters. A novel, relaxation-

based domain decomposition algorithm known as Parallel-General-Norton with Multiple-

port Equivalent (PGNME) is proposed as the core technique of a two-stage 

decomposition approach to divide the overall dynamic simulation problem into a set of 

sub problems that can be solved concurrently. While the convergence property has 

traditionally been a concern for relaxation-based decomposition, an estimation 

mechanism based on multiple-port network equivalent is adopted as the preconditioner to 

enhance the convergence of the proposed algorithm. The algorithm is presented in detail 

and validated both in terms of accuracy and capability. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

1.1 Dynamics/Transient Stability 

Dynamic simulation has been a huge area of research focus in electrical 

engineering for a very long time, stability was first noted as a problem for the power 

system in 1920[Kundur]. In the early 1950s initial simulations were performed on 

computers and since then the effort has been nonstop to improve the performance 

[Kundur]. There has always been interest in obtaining faster, more accurate simulation 

results. In recent trends the interest is focused on obtaining very fast results on large scale 

systems. In the interest of pursuing the ability for wide area monitoring and control, 

maintaining stability in the system, and better forecasting demands, simulations of 

extremely large system models such as the Eastern interconnect or the entire 

interconnected North American power grid need to be performed, in which detailed 

models could contain hundreds of thousands of buses. The complexity of the system is 

also rapidly growing with the introduction of renewables and smart grid technologies. 

Transient stability simulation is an integral part of power system simulation 

studies as it obtains the necessary information to capture relevant system operating 

conditions, determine the dynamic system response subject to disturbances or damages, 

and identify the corrective actions. It is critical for various types of power system analysis 

such as Dynamic contingency analysis, look-ahead dynamic simulation, dynamic state 
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estimation, online stability analysis, etc. Solving the interactive electrical and mechanical 

dynamics, especially for a large-scale power grid, involves setting up and solving 

thousands or tens of thousands of system equations in the time-domain which is typically 

time consuming and computationally intensive. Accurate assessment of the system 

dynamic behaviors of interest, without excessive computational overhead, has become a 

serious concern and challenge for practical application of electrical power system design, 

analysis, optimization and control. 

Computer simulation of power systems has been long developed and serial 

techniques have been the focus of the simulations, but as serial processing has reached its 

limitations, the need for parallel and distributed processing for future development has 

been noticed, and advances have been made in multi-processor multi-threaded 

applications and architectures. Realistically, for this ability to simulate such large systems 

in real time or faster than real time, there has to be a move onto a suitable architecture. In 

recent attempts by national labs, large shared memory machines have been used to 

perform dynamic simulation, but they are limited in scalability and are very costly 

[PNNL]. Distributed memory architectures scale much better and come at a lower cost 

but have an added cost of inter node communication. Parallel and distributed simulation 

is a big area of research interest especially in the power system area. Many fields of 

science and engineering have a need to accomplish parallel or distributed simulation. 

Most existing simulators cannot perform in real time on large systems. There is a large 

effort to achieve real time simulation for large scale power systems, and this will only be 

possible in a parallel/distributed computing environment [DOE]. 
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Most simulation tools that can work in real time are limited to smaller system 

models or to extremely expensive, customized, shared memory machines. Some 

examples come from Opal-RT [OpalRT], RTDS [RTDS], and the Pacific Northwest 

National Laboratory (PNNL) [PNNL]. Opal-RT and RTDS have power system specific 

programs and create specialized shared memory hardware for customers, but these 

simulations are limited in terms of how large system models can be. PNNL has done 

extensive work towards the goal of real time simulation on very large, powerful, shared 

memory general use machines. These machines are expensive compared to distributed 

memory machines, and they also do not scale as well. In the future, as the grid continues 

to grow, the shared memory machine will not be adequate. 

There are also other applications of parallel/distributed simulation to the power 

system (i.e. State Estimation, Optimal Power Flow, Security Constrained Unit 

Commitment (SCUC), and Security Constrained Economic Dispatch (SCED)). 

Specifically, this thesis focuses on dynamic simulation, in particular, the solution of the 

network equations and how this calculation can be separated to obtain faster overall 

performance. In order to perform dynamic simulation in a distributed fashion, one must 

partition the system into subsystems, find some way to represent the rest of the system at 

the cut of the partition, and iteratively solve for the system states at each time step. 

Some parallel simulations use data parallel methods to gain speedup. Data parallel 

solution methods are straight forward and do not need special considerations for 

coupling. Task oriented parallel simulation requires a coupling method. Where and how a 

system is decoupled greatly affects the parallel runtime and performance [QHuang]. If a 

decoupling point is not chosen well for partitioning, the algorithm could take a very long 
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time to converge or may not converge at all. Speed and accuracy are desired from 

simulations but usually some middle ground must be found.  

Papers exist on ways to couple subsystems for different purposes. Some methods 

are faster, some more accurate, some are too unstable. In general there are three types of 

methods, V, I, and I-V coupling. An I-V variant is used in [JWu] for distributed 

simulation. In [WRen] various algorithms are compared in Power Hardware-in-the-Loop 

simulation which requires decoupling for simulation.  

The existing papers present different methods, in [Russian] there is an attempt to 

quantitatively analyze the methods presented, but the paper does not provide a well 

detailed comparison. The results in [Russian] show runtime of simulations using different 

coupling methods, but only the runtimes and a very brief analysis are presented. In 

[WRen] the methods are analyzed in greater detail, but the methods are applied to 

hardware in the loop simulation. As well as not giving detail in the analysis, the typical 

paper that discusses the coupling mechanism does not focus solely on the coupling 

mechanism, but instead are focused on the simulation implementation. 

Existing commercial software does not aim at the scale that this thesis will 

demonstrate, the existing tools are not intended for wide area monitoring type studies and 

can only handle local studies or simplified models of large areas. Many simulators do not 

attempt to test the limits of their software, and they do not promote scalability. Very few 

tools give limitations in number of buses or models. The existing tools, where limitations 

of system sizes are given, are: PSSE, PowerWorld, and PSLF. Some academic creations 

exhibit large test systems. Among the documented test systems, the largest available are 

from PNNL [PNNL], OpalRT [VOparlRT], and in [Chinese2]. 
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Commercial software limits are very high. PSLF limitation is 60,000 buses. PSSE 

is limited to 150,000 buses and was the leader in size until PowerWorld came about. 

PowerWorld claims a limitation of 250,000 buses, and that is the largest available for 

commercial software. The existing research oriented simulators do not boast limitations 

but the test system sizes are reported. At PNNL in [PNNL] a 16,000 bus model is used on 

a shared memory machine and real time simulation is performed. At OpalRT [VOpalRT] 

a 9984 bus model is used but cannot be simulated in real time on their hardware, but a 

7020 bus system is used and simulated in real time. In [Chinese2] an 18,000 bus system 

is used. These are all pure power system simulators. 

Recently hybrid simulation has become a new trend by simulating a discrete 

communication system along with the continuous dynamic power system. The 

communication system often being the SCADA system or other sensor networks. These 

are typically much larger simulations because of the detailed models. In [PNNL2] a 

2,063,494 node model is used, however the number of physical components vs number of 

communication components are not clear. This model includes many elements such as 

substation models, battery storage models, wind generation, solar generation, and 

distributed generation models. 

The hybrid simulation tools are often used to study the effects of the interactions 

between controls, communications, and the continuous electro-mechanical dynamics of 

the power system. [THYME] is a hybrid simulation toolkit which contains simple 

machine models with simple controls, and a framework for modeling discrete sensors. It 

is a fairly well developed library, but it is poorly documented. It has built in line loss, 

load loss, and generator loss methods.  
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1.2 Domain Decomposition 

The electric power industry has traditionally been a computer oriented industry. 

As a large-scale, geographically distributed system, the design and analysis of power 

system is computationally-intensive. Especially with the increasing system size and 

complexity, the ever-growing amount of data, and the greater need for resilience 

enhancement to handle fast dynamic phenomena that could lead to cascading system 

failures and blackouts, the transition to a smart future electric power system inevitably 

involves large scale computation, modeling, and data handling. However, the current 

power system design, analysis and software tools are developed heavily based on single 

processor architecture. The power system community is aware of the need to use the 

latest advances in computation techniques, and to develop visionary approaches to re-

evaluate the legacy power system analysis methods and shift from the traditional off-line, 

steady-state based analysis to a faster, on-line, dynamic and robust platform [DOE]. To 

achieve this objective, a key design element is the concept of domain decomposition   

(DD). 

DD methods were originally proposed as a numerical analysis approach to solve a 

problem (esp. boundary value problems) defined over a domain by decomposing the   

original problem into smaller problems on sub-domains and coordinating the solution 

among subdomains normally iteratively to derive a globally converged result [DKeyes] 

[VDolean]. The DD method is inherently suitable and adaptable for parallel computing 

architectures as it can effectively handle the type of problem that does not fit into 

available memory space, and by splitting the original problem into sub-problems, 

concurrency and parallelism can be gained. The guiding principle of applying DD on 
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power system analysis is to develop a DD algorithm specifically tailored in accordance to 

the unique physical properties of power systems and the state-of-art parallel computing 

architecture to realize the overall enhanced large-scale parallelism. Although a general 

DD technique can be applied in various aspects of power system analysis, this thesis will 

particularly focus on the application of parallel dynamic simulation. 

The DD techniques presented in this thesis focus on decomposition of a system 

with linear behavior. There are two ways to solve the problem using these methods, serial 

or parallel. The serial version is based on the Gauss-Seidel method, and the parallel 

version based on the Jacobi method. The two versions are depicted in Figure 1.1. 

 

Figure 1.1 Gauss Seidel and Jacobi iteration 
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It is always true that the Jacobi method requires more iterations than the Gauss 

Seidel method. The way an iteration is defined for the methods is fundamentally 

different. In the Gauss-Seidel method, each subsystem is solved in sequential order, the 

updated states from each solution are used during the current iteration. One iteration 

involves solving each system one time, but using the advantage of using the most updated 

states from the other systems. In the Jacobi method, each subsystem is solved 

simultaneously in parallel, and then the information is used only on the next iteration. 

While Jacobi method requires more iterations the fundamental definition of an iteration is 

the root, and the Jacobi method is usually faster if all of the sub problems can be run 

concurrently. 

With these methods the concept of a boundary bus must be introduced, also 

known as a dummy bus. With all of these iterative methods, there is a topological 

description of the system and the method. When the original system is decomposed n 

subsystems remain. To obtain a self-consistent solution, the rest of the system must 

influence each sub problem. This can be done with a variety of types of terminations, and 

they can be mixed or symmetrical as well. These terminations are what are called dummy 

buses. It can be shown in Figure 1.2, if one four bus system is decomposed into two sub 

systems, then there must be an added bus to represent the behavior of the rest of the 

system. 
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Figure 1.2 Four bus example decomposed into two subgraphs each terminated by a 
dummy bus(d1 and ) 

 

This dummy bus is described schematically different for the different methods 

and it is updated in a unique way corresponding to the iterative method. 

1.3 Problem Formulation 

In power system dynamic simulation the problem is formed in different ways 

depending on the study. In general, the continuous power system dynamics can be 

mathematically described by a set of first-order Differential Algebraic Equations (DAEs) 

in the form of: 

 �̇� = 𝑓(𝑥, 𝑦) (1.1) 

 0 = 𝑔(𝑥, 𝑦) (1.2) 

where x represents a vector of dynamic state variables, such as rotating machine 

variables, and y represents a vector of the algebraic state variables, such as network 

variables where no derivatives are present. 

Once the DAEs are constructed, two approaches can be applied to solve the DAE: 

either the Alternating Solution Method (ASM) or the Direct Solution Method (DSM) 
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[CFu]. With ASM, the new set of algebraic equations from discretization of the ODEs in 

Equation 1.1 are solved separately from the algebraic network equations within the DAE 

in Equation 1.2. In contrast, with DSM, all of the algebraic equations representing the 

dynamic components and the network are solved simultaneously [BStott] [HDommel]. It 

has been pointed out in literature that the ASM approach, combined with the explicit 

integration method, has various advantages over the DSM approach mainly in that the 

components dynamics are solved separately from the linear algebraic network equations 

[CFu]. Thus in the network equations, the dynamic devices such as generators are 

represented as constant current sources, and their admittances can be combined and 

considered within the network admittance matrix. By doing so, the system can be solved 

efficiently with the use of a sparse linear algebraic solver such as SuperLU, UMFpack, or 

PETsc. 

It is known that the network calculations become a limiting factor at large scale 

[JWu]. For this reason it is best to use ASM and use Domain Decomposition to solve the 

problem of dynamic simulation at a large scale. This means all machine dynamics will be 

solved separately from the network equations. The models of the generators and loads 

can be replaced with more complicated or more simplified models depending on the 

study. A common approach is to use detailed models near events under study and to use 

simplified models for equipment far away from the event. 

1.3.1 ASM/Partitioned Approach 

In phasor based simulation, the power system formulation is that of Equation 1.1 

and Equation 1.2, which consist of sets of differential algebraic equations that are 

coupled to each other through a set of linear algebraic network equations. While there are 
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different ways to solve this set of DAE’s, a common approach is to use the partitioned 

approach, also known as Alternating Solution Method (ASM), that is to iteratively solve 

the differential equations and solve the linear algebraic equations separately. There are 

other methods such as the simultaneous solution approach where the differential 

equations are discretized into a set of algebraic equations and these equations are lumped 

together with the network equations to be solved simultaneously. 

 

Figure 1.3 ASM solution procedure 

 

As shown in Figure 1.3 the ASM approach applies as a general treatment to 

DAEs. The stages shown in the algorithm represent stages for multi stage numerical 

integration techniques such as Runge Kutta methods or other multi stage methods. ∆t can 
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be fixed or variable depending on the numerical integration technique. Variable time step 

methods are usually preferred as they try to optimize the speed of the simulation with a 

given error tolerance, so if a large time step can be used with acceptable error the variable 

step method will select the largest possible time step, but when an event such as a fault 

occurs and the error would be large with a large time step, the variable rate methods will 

reset the time step to a short enough value to maintain the error within a bound. 

1.3.2 Network Formulation 

In the power system network formulation traditional nodal analysis is used. Based 

on the power system description the nodal analysis can be simplified as the system can be 

represented as a mesh network of impedances with current injections at each node. Lines 

are modeled as an impedance between nodes. Loads, generators, and shunt 

compensations are modeled as a shunt impedance at the node. This model leads to the 

formulation of the power system admittance matrix. The admittance matrix formulation 

can be shown as in Equation 1.3. 

 [
𝐼1
⋮
𝐼𝑛

] =  [
𝑌11 ⋯ 𝑌1𝑛

⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛

] [
𝑉1

⋮
𝑉𝑛

] (1.3) 

 𝑌𝑖𝑖 = ∑ 𝑌𝑖𝑗
𝑗
1  (1.4) 

 𝑌𝑖𝑗 = −𝑌𝑖𝑗 (1.5) 

The bus injection current is calculated from the changed dynamic state variables. 

The generator admittance is hard to determine for large scale systems and is often 

predicted rather than known [Thyme]. Loads are often modeled as constant impedance 

and the admittance value is calculated from the initial bus voltage and power from power 
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flow information. If any topological changes happen, the admittance matrix must be 

modified. The diagonal elements of the admittance matrix are the sum of all admittances 

connected to that node as in Equation 1.4, and off diagonal elements are the negative of 

the mutual admittance between the two nodes as in Equation 1.5. 

1.4 Existing Method for Linear Network Solution 

There are two distinct classes of methods to solve the large set of linear equations 

that form the network equation, Direct and Indirect methods. Direct methods solve 

directly either by factorization or direct inversion of the Y matrix. There are parallel and 

serial direct methods, which all have a long history of development. Indirect methods 

usually are iterative and do not operate directly on the original matrix. Iterative methods, 

in general, have a long history of development in the mathematics community. The 

iterative methods are based on relaxation theory. 

1.4.1 Direct/SuperLU 

Popular direct methods include Gaussian elimination, Cholesky decomposition, 

and LU factorization. As far as direct methods for large sparse matrices the leader in 

performance is LU factorization and many commercial tools exist to solve the problem. 

Most leading simulation software uses LU factorization to solve their linear matrix 

calculations. SuperLU is a well-developed library created in 1999 for a PhD thesis at 

University of California Berkeley [SUPERLU] add reference. SuperLU now receives 

federal support from the DoE, NSF, and DARPA. The software is maintained by its 

creator at Lawrence Berkley National Lab. 



 

14 

There are several versions of SuperLU that work on different computer 

architectures. The original version is sequential SuperLU used with sequential 

computing. SuperLU_MT is optimized for multithreaded environments for newer 

architectures with multiple cores. SuperLU_DIST is optimized to run on distributed 

memory machines such as general purpose cluster computers. 

The main attraction to SuperLU and LU factorization is that non-zero entries can 

be indexed and efficiently stored.  Many other commercial software tools exist, both old 

and new such as Portable, Extensible Toolkit for Scientific Computation (PETSc) which 

is somewhat harder to use, but has built in capability for LU factorization, ILU 

factorization, SOR, Jacobi methods, and other methods. PETSc is a newer tool, older 

tools exist such as Linear Algebra Package (LAPACK) which is a considered a standard 

software library and was initially released in 1992. 

1.4.2 Iterative methods 

Popular iterative methods include Richardson’s method, Jacobi method, Gauss-

Siedel method, successive over-relaxation (SOR), and symmetric successive over-

relaxation (SSOR). Many relaxation based methods have been presented in literature. 

Some relaxation techniques show huge promise although some exhibit poor performance. 

Some relaxation techniques have been shown to be unstable and inaccurate [WRen] 

[Russian]. With many iterative techniques, performance directly depends on the quality 

of partitioning. Coarseness of the partitioning affects all methods and some methods need 

special attention to certain parameters. For all methods considered in this thesis, if tightly 

coupled vertices are not lumped together then the algorithm may converge very slowly, 

on the contrary if too many vertices are lumped together the benefits of using these 



 

15 

methods is lost[Russian]. From this knowledge, it is easy to see that some systems will 

not benefit from these methods especially systems which are tightly coupled. 

The idea of iterative methods applied to solving circuit problems is generic and 

can easily be shown algorithmically at a high level. The details will change depending on 

the method used. 

 

Figure 1.4 Iterative method algorithm 

 

The detailed algorithms for each method vary. But in general the methods are 

used to solve an equation in the form of 

 𝐴𝑥 = 𝑏 (1.6) 
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where A is an n × n nonsingular matrix and x and b are n × 1 column vectors.  

1.4.3 Define W 

In iterative methods general form, all state variables are a function of other state 

variables at the previous iteration. It is defined that 

 𝑥𝑖+1 = 𝑊𝑥𝑖 + 𝐶 (1.7) 

where W is known as the iteration matrix and C is a column vector of constants. To 

guarantee convergence for any iterative method, the spectral radius of W must be less 

than one [LHageman]. That is 

 𝜌(𝑊) = lim
𝑘→∞

|𝑊𝑘|
1

𝑘 (1.8) 

(1.8) can also be defined as 

 𝜌(𝑊) = max {|𝜆1|, |𝜆2|, … . , |𝜆𝑛|} (1.9) 

The methods considered in this thesis are considered linear stationary iterative 

methods of first degree. First degree meaning that 𝒙𝑖+1  depends only on 𝒙𝑖 and no other 

previous states. Linear meaning that W and C are not dependent on x, and stationary 

meaning that W and C are also not dependent on the iteration count. Many iterative 

method books refer to these methods as basic iterative methods [LHageman] [KELLEY] 

[SAAD]. 

It is interesting to note that the smaller the spectral radius, the smaller the iteration 

count. While there are ways to predict the performance, there is no way to predict the 

exact number of iterations.  

Formulation exist to predict convergence rate in [Hageman] 
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 𝑅∞(𝑊) =  lim
𝑛→∞

𝑅𝑛(𝐺) = − log𝜌(𝑊) (1.10) 

where 𝑅∞(𝑾) is the asymptotic rate of convergence, and where 𝑅𝑛(𝑾) is defined as the 

average rate of convergence and can be defined as 

 𝑅𝑛(𝑊) =  −𝑛−1 log‖𝑊𝑛‖𝛽 (1.11) 

Convergence rate can be predicted, but if and only if the basic criteria is satisfied 

for convergence, that is 𝜌(𝑊) < 1. If this condition is satisfied, then an approximation 

can be found to reduce the norm of the initial error vector by a factor of 휁   

 𝑛 ≅ −(log 휁)/𝑅∞(𝑊) (1.12) 

However, using the average rate of convergence in this formula leads to a more 

accurate estimation, but is often not obtainable [Hageman]. 

1.4.4 Specific Methods 

[Russian] presents three generic iterative linear methods for boundary value 

reconciliation: V, I, V-I. These techniques were first implemented in circuit simulators in 

early seventies [Russian]. Relaxation techniques such as these still remain promising 

areas of research. Zdorov points out that there are some instances where direct methods 

cannot be used, such as when there is a need for parallel computation and simulation time 

is critical. He also points out that these methods give flexibility in the model descriptions, 

and that these methods allow models to scale more efficiently when memory 

requirements cannot be met with the unpartitioned system. 

According to all of these derivations, larger line impedance between subsystems 

leads to smaller spectral radii. This is very important to acknowledge during partitioning. 

The impedance information can be used to improve the convergence rate. According to 
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the V derivation smaller 𝑍𝑎 , 𝑍𝑏 lead to a smaller spectral radius. Using other method-

specific information for partitioning can be extremely beneficial to the performance of 

these methods. 

These methods are interesting, but they were not derived with the power system in 

mind. Out of these methods, the V method is the most stable and is used often in VLSI 

studies. Zdorov concludes that of these methods I-V is the best for a general approach as 

it can be modified to behave similar to the V or I method. These approaches look good at 

first glance, but the need for asymmetrical boundary adds complexity. At a generic scale, 

the V method seems to be more suitable since it is stable and symmetric. The VI method 

would require a complex evaluation of the partitioning to determine what the value of Z* 

should be, and the convergence would still rely on the slowest converging component of 

the partitioned system which could void all benefit of using the VI method. It seems that 

V is the only scalable solution of these methods. The partitioning of the system directly 

determines the performance. The downside of all of these methods is that they do not fit 

into the traditional power system network description such as that of Equation 1.3. If they 

are to be used in an existing simulator, the solver must now take the more generic form of 

Equation 1.6. 

In [WRen] Ren presents several existing methods. The methods he presents are: 

Ideal Transformer Model (ITM), Time-variant First-order Approximation (TFA), 

Transmission Line Model (TLM), Partial Circuit Duplication (PCD), and Damping 

Impedance Method (DIM). These methods are used in Hardware in the Loop (HIL) 

simulation, but they can also be used in a pure software implementation. In fact, Ren 

presents the PCD method which is the V method as presented by Dmitriev-Zdorov in 
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[Russian]. He also presents the DIM method which looks like the I-V method presented 

by Dmitriev-Zdorov. The ITM method looks similar to the I method presented by 

Zdorov. 

According to Ren, the TFA method is too complex and limited. He says special 

care must be taken during solving as the matrix can easily become ill conditioned. He 

also claims it is unstable and inaccurate. Ren also claims that the TLM algorithm is 

highly stable, along with the PCD method. 

Overall, these methods provide multiple ways to solve the network. They still lack 

the symmetry that is necessary for scaled simulation. TLM and PCD are both symmetric, 

but the remainder are not. The recommendations provided by Ren are not intended for 

simulation, but for hardware in the loop simulation. For scalable simulations, it seems 

that TLM and PCD are both plausible options with PCD being the better choice. PCD is 

the most attractive method of all of the methods presented by Ren. This is interesting as it 

is also the most attractive method presented by Zdorov in his comparison. Because his 

paper is focused on Hardware in the Loop simulation, he does not give good analysis or 

insight into the scalability of the algorithms for simulation on high-performance 

computers 

All of these methods are based on solid relaxation theory and have solid 

backgrounds. But they were not intended for power system simulation, where the unique 

form of the network allows a unique way to mathematically model the network, and this 

model does not allow any vertex to be represented by anything other than a Norton 

Equivalent lumped model. 
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1.4.5 PGN 

PGN is a method documented by Jian Wu and Noel Schulz and shows promise 

applied to power system analysis from existing literature [JWu]. It is a specifically useful 

form for the power system dynamic problem, as it takes advantage of the fact that the 

power system network formulation consists of Norton Equivalent circuits linked together 

through transmission lines. If using an existing software which is developed specifically 

for power system simulation then it is likely difficult to change the network formulation 

which takes the form of Equation 1.3. This form strictly depends on each vertex being 

represented as a Norton equivalent. If the form changes the solver will need to be 

changed accordingly into a more general form. 

The general system description of PGN can be depicted as two portions of the 

transmission system tied together by one linking transmission line, such as that of Figure 

1.5. Existing literature only addresses a two partition example and does not show a 

method to scale to more partitions. 

 

Figure 1.5 PGN original system 

 



 

21 

 

Figure 1.6 PGN updating strategy 

 

The partitioned version is shown in the schematic of Figure 1.6. As shown, the 

dummy circuit represents the other portion of the system, and it is controlled by the other 

system during the iterative updating strategy. Two strategies can be used, the Gauss-

Seidel or Jacobi strategy as presented in Figure 1.1. The details of the procedure are 

shown in Figure 1.7 and Figure 1.8. 
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Figure 1.7 PGN Jacobi based updating strategy 
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Figure 1.8 PGN Gauss-Seidel based updating strategy 

 

1.4.5.1 Derive W 

The iterative matrix for the PGN method can be obtained for any system but in 

studies presented by Schulz and Wu [JWu] there are only studies on two partition 

systems. For the two partition system, it can be shown as an equivalent reduced system 

such as that of Figure 1.9. 
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Figure 1.9 Schematic representation of PGN 

 

For this simplified system W can easily be obtained by for both the Gauss Seidel 

version and Jacobi version. The resulting spectral radii are that of Equation 1.13 and 

Equation 1.14. 

 𝜌(𝑊) =
(𝑍𝑑1−𝑍𝑎)(𝑍𝑑2−𝑍𝑏)

(𝑍𝑑2+𝑍𝑎+𝑍𝑎𝑏)(𝑍𝑑1+𝑍𝑎𝑏+𝑍𝑏)
 (1.13) 

 𝜌(𝑊) = √
(𝑍𝑑1−𝑍𝑎)(𝑍𝑑2−𝑍𝑏)

(𝑍𝑑2+𝑍𝑎+𝑍𝑎𝑏)(𝑍𝑑1+𝑍𝑎𝑏+𝑍𝑏)
 (1.14) 

It is very important to note that when 𝜌(𝑾) ≈ 0, convergence is very fast making 

the iteration count less and the gain from parallelization more. In this original work by 

Wu it is easy to see for the two partition system a dummy bus parameter can be selected 

to make 𝜌(𝑾) ≈ 0 by setting 𝑍𝑑1 = 𝑍𝑎 and/or setting 𝑍𝑑2 = 𝑍𝑏. For larger systems with 

many partitions, the PGN equations do not represent the equivalent at each cut line. 

Meaning the only indication from these equations that can be used to partition is finding 

large 𝑍𝑎𝑏 which will not lead to optimal performance with most systems. 

1.4.5.2 Discussion 

This method seems very attractive for use in power system distributed simulation. 

It uses a Norton Equivalent representation and was created with power system simulation 
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in mind. It seems better for power system analysis use than all of the methods presented 

by Ren and Zdorov. However, this method has not been used in large studies and has 

only been shown to be used in two partition examples. The limitations at scale need to be 

resolved. There are limitations in using this method at scale because of the iterative 

process. According to Equation 1.9, spectral radius depends on the largest eigenvalue of 

the iteration matrix. When moving to more partitions, the size of W grows and there is no 

way to set the dummy bus with current literature to improve the convergence rate. 

Looking forward to future size power systems, where detailed models are required 

to accurately predict the behavior of the system, convergence rate must be controlled. 

Future simulation will need to consider solar models, wind turbines, distributed 

generation, sensor networks and controllers, etc. With the existing literature, it seems that 

scalability of large simulations on HPC with PGN is limited. This thesis will provide a 

novel contribution to enhance the performance of PGN when applied to multiple partition 

examples. 

In other papers produced by Wu and Schulz, they discuss different options of 

simulation. They also present an algorithm to update the dummy node impedance, but 

this algorithm is not numerically stable as it uses a difference in state variables in the 

denominator of the updating equations. This causes instability when the states become 

close to their final converged value. 

1.5 Contribution and organization of this thesis 

The main contribution presented in this thesis will focus on greatly improving the 

method presented by J.Wu and N.Schulz to be suitable for large scale simulation by 

introducing a novel approach to enhance its performance which shall be called Parallel 
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General Norton with Multiport Equivalent (PGNME). There is also a smaller contribution 

of creating scalable testing systems. 

Chapter 1 has given adequate introductory and background information to follow 

the remainder of this thesis. Chapter 2 will provide detail of the contributions presented 

in this work, namely the PGNME method. Chapter 3 will provide specifics of the 

implementation used to obtain the results in Chapter 4. Chapter 4 will present simulation 

results using the solver detailed in Chapter 3 and provide a comprehensive evaluation of 

the PGNME method presented in Chapter 3. Chapter 5 will conclude the thesis. 
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CHAPTER II 

ALGORITHMS FOR IMPROVING EXISTING METHODS TO THE LINEAR 

NETWORK SOLUTION 

2.1 Algorithm Outline 

From Chapter 1, it is shown that a common approach to dynamic simulation is the 

phasor based ASM approach. To reiterate, ASM separates the DAE posed in Equation 1.1 

and Equation 1.2 into three distinct subsets for the power system problem. Subset 1 

contains the first order differential equations which model the dynamic behavior of 

generators and loads. Subset 2 contains all algebraic equations which model the behavior 

of generators and loads. Subset 3 is the linear algebraic network equation. This can be 

illustrated in Figure 2.1. Subset 1 and 2 are combined but solved completely independent 

of each other in the general case. Each generator and load is connected through subset 3. 

With large systems, subset 1 and 2 can easily be distributed to CPU’s to gain speedup 

using the ASM strategy, but as the system grows subset 3 becomes a burden and needs to 

be decomposed for efficient parallel/distributed implementation,  this is done by using 

PGN and is improved using the multiport equivalent information. The resulting method is 

PGNME, which is described in this chapter. 
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Figure 2.1 ASM approach combined with PGNME 

 

Two approaches exist to solve the sparse linear set of equations constituting the 

network, iterative and direct. From existing literature, it seems common for iterative 

methods to be explored, and in this thesis, the particular iterative method is Parallel 

Updated Relaxation (PUR). This allows for a graph based / topology based 

decomposition which is natural and straightforward.  The PUR method has not been 

explored on large systems or in many partitions. In the implementation results shown in 

this thesis, it can be seen that this method performs worse when more partitions are 

created making this method infeasible to scale. However, with appropriate selection of 

the boundary dummy impedances, the impedance can be set such that iteration is 

minimized. 

To do this, the details of iterative methods and relaxation theory must be 

examined. The PGNME algorithm uses a relaxation based approach to relax the network 

solution allowing for parallel solving of subsystems. The relaxation based method holds 

the form of general linear iterative methods. After examining exactly what is happening, 
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MultiPort modeling techniques can be used, which are well known to model the 

subsystems and approximately satisfy the conditions necessary for optimal performance 

of this method, with certain limitations. 

While the PUR method is one of the best methods available in applying the ASM 

relaxation based technique from existing literature, it still has its flaws. With a parallel 

architecture, iteration adds not only more computation, it also adds inter processor 

communication. High iteration counts are unacceptable and will significantly reduce the 

gains obtained from the parallelization. Without a decent initial guess at the boundary 

state variable and without properly selecting the boundary equivalent impedance, the 

method may not give much gain in performance, and in fact may make performance 

worse under certain conditions. 

After partitioning the original system many partitions remain which require a 

boundary equivalent that represents the remaining portion of the system that has been 

removed. Conceptually, it is logical that if this boundary equivalent accurately represents 

the missing system then faster or more accurate results can be obtained. Since existing 

literature does not explain what happens to performance at larger scale, this thesis will 

attempt to add to the existing literature and give insight on large scale system 

performance. 

Before understanding the method, it is important to understand exactly what is 

happening when the method is introduced to more than two partitions. It is also important 

to understand the background of multiport modeling techniques. 
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2.2 Derivation of W 

To derive the W matrix on a scaled system it is important to first define a generic 

way to obtain the W matrix. This section will derive the W matrix in detail of a two 

partition example and show how the derivation extends to multiple partitions. First, each 

system must be represented as an equivalent. For the two partition example, this is 

straightforward, calculate the Norton Equivalent for each system. When more partitions 

are involved, multiport modeling techniques are used to derive the system equivalents. 

When this process is applied to the two partition single line cut example, the resulting 

process is known as PGN. 

2.2.1 Two Partition Example 

First, it is important to see that the W matrix, as traditionally described, is not a 

diagonal matrix for the PGN method, so using the traditional derivation leads to 

complicated calculations of the eigenvalues of a non-diagonal matrix. This generic 

derivation will instead find a diagonal form for an equivalent of the W matrix. The 

generic iterative form is shown in Equation 1.7, and it can be shown further into the 

derivation that a completely diagonal form for the two partition example if  𝑾2 is 

found. Using Equation 1.7 a simple derivation of 𝑾2 can be found. 

 𝑥𝑖+2 = 𝑊𝑥𝑖+1 + 𝐶 (2.1) 

 𝑥𝑖+2 = 𝑊(𝑊𝑥𝑖 + 𝐶) + 𝐶 (2.2) 

 𝑥𝑖+2 = 𝑊2𝑥𝑖 + (𝑊 + 𝐼)𝐶 (2.3) 
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This representation still holds valid in the iterative form as a future state depends 

on the update of the current state. The difference is that in the generic derivation, 𝑾2 is 

in diagonal form and the eigenvalues can be observed more easily. The eigenvalues of a 

diagonal matrix are the diagonal entries, so to find the original W matrix, each eigenvalue 

of W is the square root of the eigenvalues of 𝑾2. What an iteration is can be defined 

arbitrarily in different ways. Since this method is Jacobi inspired, iterations should be 

counted in a similar way to the Jacobi method.  

For this specific problem, it is necessary to show the reduced schematic after 

finding the Norton Equivalent of each partition. This can be shown in Figure A.1 in the 

appendix. The derivation of the explicit W matrix is shown in Appendix section A.1. 

Now to have an equation in the form of Equation 2.3, the explicit W matrix in the 

appendix is squared, and will take the form of Equation 2.4 with eigenvalues in the form 

of Equation 2.5. For this simple case, the 𝑾2 matrix is completely diagonal, and the 

eigenvalues are a repeated real set. The eigenvalues of W can then directly be found by 

taking the square root of the diagonal elements of the 𝑾2 matrix.   

 [
𝐼𝑎(𝑖 + 2)
𝐼𝑏(𝑖 + 2)

] = [
𝜆1

2 0

0 𝜆2
2] [

𝐼𝑎(𝑖)
𝐼𝑏(𝑖)

] + [
𝐶1

𝐶2
] (2.4) 
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(

1

𝑌1
−

1

𝑌𝑏
)(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)(

1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)
 (2.5) 

This explicitly shows that the value of the spectral radius can be controlled 

directly by setting the dummy bus impedance equal to the neighboring systems Norton 

equivalent impedance. If set exactly, then the spectral radius is zero. From the literature 
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this means that this will induce the best possible performance that the particular system 

can have, making the Rate of Convergence ideal.  

2.2.2 N Partition Example 

This method poses a challenge for more than two partitions. For the simple two 

partition example, the Norton equivalent is easy and straightforward to find. When 

moving to multiple partitions, multiport modeling techniques will extend the generic 

approach to multiple partitions. 

In an N partition example with M ports, the W matrix, which has more 

dependencies and can be extremely hard and time consuming to find, must be found. 

Therefore, an estimate of the W matrix can be formed called 𝑾𝐸 . This estimation is 

based on the idea of relaxing the inter port dependencies. If the system remains relatively 

small, then an explicit form of W could be obtained by solving symbolic linear equations 

to find the roots of the eigenvalues of the W matrix with respect to the dummy bus 

impedances. By setting the dummy impedance correctly to make the eigenvalues of W 

explicitly equal to zero, one can minimize the iteration to theoretically instantaneous. 

For large systems with many partitions, this calculation could be extremely 

cumbersome and computationally expensive. Since the W matrix changes when the 

topology changes, there needs to be a way to quickly reset the boundary admittance in 

case of a network change which degrades performance drastically. Using an estimated W 

by relaxing other port dependencies, an explicit fully diagonal form of W can be 

obtained. 𝑾𝐸  is generic in terms that the eigenvalues will repeat in a similar form which 

is equal to the form of the two port example in Equation 2.5. While this method is much 

faster and more efficient than finding an explicit form of the W matrix, it suffers from 
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some inaccuracies under certain partitioning. However, even in the worst cases, there is 

still improvement over PUR without multiport equivalent information. Partitioning 

optimization should be considered to keep ports distanced from one another to prevent 

this performance flaw. 

 

Figure 2.2 Three Partition System 

 

For the derivation of the W matrix, the system in Figure 2.2 is used. This system 

is decomposed into three subsystems by cutting two transmission lines. The new 

schematic is represented in Figure 2.3 with the boundary buses added. 
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Figure 2.3 Decomposed system with added dummy buses 

 

At this point, either the explicit W can be calculated, which is a complex 

calculation, and is shown in Appendix section A.2 , or 𝑊𝐸 can be calculated and is shown 

in Equation 2.6, the coefficients approximate the appendix coefficients to within a 

residue. In this work, 𝑾𝐸  is considered to be more advantageous because of its ease of 

calculation and scalability. Ignoring the residual component allows PGNME to scale with 

limitations. Those limitations can be addressed in a variety of ways. To calculate the  𝑾𝐸  

matrix, the port dependencies are ignored. When calculating the dependencies, each 

connection can be viewed as a two port network as shown in Figure 2.4, where the other 

ports are held constant and do not influence the updating process. In the 𝑾𝐸  matrix, 2 

sets of eigenvalues are obtained, the eigenvalues take the general form of Equation 2.5. In 

the generic case, this approach creates a purely block diagonal form of the W matrix, this 

block diagonal form creates blocks which equal the two partition W matrix, the 

eigenvalues can be found simply by taking the square root of the 𝑾𝐸
2  matrix. 



 

35 

 

Figure 2.4 Relaxed equivalent representation of a 3 partition system 

 

 𝑊𝐸 = [

0 𝛼 0 0
𝛾
0
0

0
0
0

0
0
𝜅

0
휂
0

] (2.6) 

 𝑊𝐸
2 = [

𝜆1
2 0 0 0

0
0
0

𝜆2
2

0
0

0
𝜆3

2

0

0
0
𝜆4

2

] (2.7) 

With this derivation, one can see that the entries in the explicit W matrix consist 

of difference equations and residual equations. The difference equations are set to zero by 

setting the dummy bus admittance parameters equal to the multiport equivalent. The 

remaining residuals are directly dependent on the coupling between multiple systems. It 

so happens that for the case in the appendix, if all dummy bus admittance properties are 

set correctly, then all eigenvalues are zero no matter the magnitude of the residual. But 
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this special case will not hold with even one higher degree of generality, this it is possible 

to hypothesize that in more complex cases the residue will play a role in the eigenvalues 

at some point, especially if a partitioning strategy leaves no single port partitions. 

2.3 Introduction of MultiPort modeling techniques 

These subsystem parameters must be derived before this method can be 

beneficial. To do this, the existing multiport modeling techniques are used. It can be 

shown that each partition can be modeled with a multiport equivalent reducing the overall 

Y matrix of the partition into a smaller equivalent form. This reduction can be shown in 

Equation 2.8, where m is the number of ports. 

 [
I1
⋮

𝐼𝑚

] = [
𝑌11 ⋯ 𝑌1𝑚

⋮ ⋱ ⋮
𝑌𝑚1 ⋯ 𝑌𝑚𝑚

] [
𝑉1

⋮
𝑉𝑚

] + [
𝐶1

⋮
𝐶𝑚

] (2.8) 

Several techniques exist to find these parameters. The most typical way is to short 

all ports to calculate the constant vector, then find all of the remaining elements by 

applying a test voltage at each port while the other ports remain shorted then finding the 

relation between V and I with a known constant. In application to this method the off 

diagonal elements are irrelevant and do not need to be calculated. 

 𝑌𝑖𝑖 = (𝐼𝑖|𝑉𝑖=𝑉𝑡𝑒𝑠𝑡 𝑎𝑛𝑑 𝑉𝑗=0 − 𝐶𝑖)/𝑉𝑡𝑒𝑠𝑡 (2.9) 

2.4 Numerical Approach to Analyze the W matrix 

Since the entire approach is based around a linear system model with a linear 

updating strategy, the W matrix as defined in Equation 1.7 can be derived numerically by 

Multivariate Linear Regression. After partitioning and running one simulation step the 

values of the line current can be obtained, sorted, and analyzed. For each set of line 
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current multiple linear regression can be performed with respect to all of the previous 

iteration data for the other line currents. Explicitly this can be shown as 

 𝐼𝑙𝑖𝑛𝑒𝑖 (𝑖 + 1) = 𝛼𝐼𝑙𝑖𝑛𝑒𝑎 (𝑖) + 𝛽𝐼𝑙𝑖𝑛𝑒𝑏 (𝑖) ……+ 휂𝐼𝑙𝑖𝑛𝑒𝑥 (𝑖) + 𝐶 (2.10) 

for all i. Using multiple linear regression for each of the line currents, the coefficients can 

be found numerically within some tolerance of accuracy for each row in the W matrix. 

These rows can be combined into a large matrix which can be analyzed numerically. The 

spectral radius and rate of convergence can be determined, thus verifying if the multiport 

equivalent approximation is accurate or if the system should be repartitioned. This could 

lead to a simple Monte Carlo type partitioning optimization, which seems tractable on 

small scale systems, but for large systems, or systems which may change topology 

frequently, a more sophisticated partitioning optimization scheme may be required. 

After running the simulator, the validity of the PGNME method to that exact 

partition can be evaluated through this process. If the coupling is relatively weak between 

subsystems, then the multiport equivalent should approximately force the W matrix to 

equal zero. If there is strong coupling, at the worst case, PGNME performance could 

degrade and no longer be beneficial depending on the system.  

2.5 Complexity Analysis 

Complexity analysis is performed to analytically show the benefit of this method. 

During the simulation, there are four distinct portions; initialization, factorization, solving 

the network equation, and solving DAE’s posed by the network components. 

Initialization is not as important; it is a one time cost and doesn’t need to be analyzed in 

detail as it could be considered a small portion of the simulation. 
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2.5.1 Factorization 

Traditional LU decomposition has the complexity of  2𝑛3

3
, where n is the number 

of buses in the input. The PGNME method effectively breaks the factorization 

completely among all subsystems. The complexity of the PGNME method is described 

as: 

 𝑐𝐹 =
2

3
(
𝑛

𝑝
+

𝑑

𝑝
)
3

 (2.11) 

where p is number of partitions used, and d is the number of dummy buses in all of the 

subsystems combined. With this new complexity figure of merit, the theoretical speedup 

of factorization can be derived by the traditional formulation of 

 𝑆 =  
𝑡𝑠

𝑡𝑝
 (2.12) 

Where ts is the serial algorithm run time, and tp is the parallel algorithm runtime. 

Runtime and complexity have a direct relationship; therefore, complexity and time are 

interchangeable in the speedup formula. The total speedup given by the PGNME method 

to factorization is 

 𝑆𝐹 =
𝑛3𝑝3

(𝑛+𝑑)3
 (2.13) 

If only very large problems where n ≫ d are considered, then the speedup formula 

can be further simplified to be 𝑝3. 

2.5.2 Solving 

The decomposition strategy leaves two unique portions left to solve, the DAE 

representing the components and the network iterative method. The DAE solutions are 
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completely parallelizable. The original complexity can be described by complexity 𝑞n, 

where q is the average complexity of the DAE across all components. The new 

complexity for the PGNME method can be shown to be 

 𝑐𝑠1 =
𝑞𝑛

𝑝
 (2.14) 

The new speedup formula can then be shown to simply be 

 𝑆𝑠1 = 𝑝 (2.15) 

For the network solution, LU method solving complexity can be shown to be 2𝑛2. 

For PGNME this is the heart of the problem of partitioning and solving. This large 

network equation puts a constraint on the overall solution. The PGNME method 

effectively breaks this network into small pieces but also adds an iterative component and 

required message passing. The complexity of solving the network equation using 

PGNME can be shown to be 

 𝑐𝑠2 = 2𝑘 (
𝑛

𝑝
+

𝑑

𝑝
)
2
+ 2𝑘𝑡𝑐(

2𝑑

𝑝
) (2.16) 

where k is the number of iterations required to converge within the tolerance region and 

𝑡𝑐 is the complexity of the MPI communication to send the boundary state data. The 

overall speedup against the original algorithm can be shown to be 

 𝑆𝑠2 =
2𝑛2

2𝑘(
𝑛

𝑝
)
2
+2𝑘𝑡𝑐(

2𝑑

𝑝
)
 (2.17) 

For very large problems where n >> d the speedup can be shown to be 𝑝
2

𝑘
. 
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2.6 Discussion 

This method provides a way to enhance the performance of the existing 

technique, making this method more attractive to scaling and solving larger systems with 

many partitions. Rather than randomly selecting the boundary equivalents, an insightful 

way to select appropriate boundary equivalent parameters is presented which will boost 

performance, making this method extremely viable for large scale power system dynamic 

simulation. In existing literature this method has only been shown to work with two 

partitions and it is not clear if there were dynamics implemented or not. 

It is also important to note, that the factorization or inversion of the Y matrix is a 

very complex operation especially for large Y matrices. This method not only allows 

parallel solving of the network equations, it also permits the inversion to be broken into p 

smaller inversions. If there is a scenario where the topological structure of the network 

often changes then this method can give much more gain. Such scenarios include: Load 

Shedding, cascading failures, preventative and corrective relaying, etc. 

This method not only provides significant gains in parallel computing but it also 

allows for distributed computing of the power system dynamic problem. The results in 

Chapter IV will show that this method does give significant gains, and in the interest of 

future wide area monitoring this algorithm could be used for distributed simulation. 

Different entities which are in charge of controlling the separate portions of a grid could 

have their own portion of the system model stored and do not need to share those detailed 

models with the rest of the system using this method. Each independent entity only needs 

to know the current boundary state. This could lead to imbalance if some entity is 

extremely small compared to another, but the large system could be split into smaller 
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subsystems on different resources or the small systems could be aggregated. This type of 

analysis has been attempted in previous work in 2 different geographical locations. The 

results were not too promising [KGRavikumar]. The delay in communications was too 

significant as they were using the internet connection, and packets took too long for fast 

analysis. But as technology advances speeds will get faster and if dedicated 

communication lines were installed for use only between the power system control 

centers, then this method could become an extremely beneficial tool for distributed 

simulation. 
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CHAPTER III 

IMPLEMENTATION IN SOFTWARE 

3.1 Program Structure 

The simulation software is constructed in C++ with a generic graph simulator as 

the frame of the constructed simulator. The simulation has a manager that controls 

convergence and counts which partitions have converged. All written code is optimized 

to run on Shadow II at the High Performance Computing Collaboratory at Mississippi 

State University. Shadow II consists of 110 nodes, each node containing 512 GB of RAM 

and 2 Intel E5-2680 v2 Ivy Bridge processors, which are each 10 core and operate at 2.8 

GHz. The communication system is FDR InfiniBand. Systems of scale are created by 

duplicating base systems and making arbitrary connections between those systems. The 

topological structure of the system to be simulated is sent to hMETIS1 [hMETIS], and the 

results are reformatted to a text format description of the system. Upon execution, the text 

file is read, and the system is initialized. Additional files tell the software manager which 

buses to monitor and which state variables to monitor.  There are also separate files to 

define the generator parameters. The entire operation can be separated into three distinct 

phases: system generation, partitioning, and simulation. 

                                                 
1 hMETIS is a graph partitioning tool created by George Karypis at the University of Minnesota and is one 
of the most popular graph partitioning tools. 
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3.2 Graph generation 

System models are created from existing base models. Two sets of data are used; 

one constructed from an IEEE 118 bus model, and one set constructed from a model of 

the Eastern Interconnect (45,552 bus model). The data sets used in Chapter IV consist of 

these two models. The 118 systems are scaled three times on every level. The Eastern 

Interconnect systems are scaled five times on every level. Figure 3.1 shows the base 

IEEE 118 model in graph form, while Figure 3.2 shows Level 2, a 3× scale of level 1. 

 

Figure 3.1 Original IEEE 118 graph 
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Figure 3.2 Level two, three times scale of original IEEE 118 system 

 

3.3 Partitioning 

The raw data describing the system is converted to an input format for hMETIS, 

hMETIS is then called to partition the data. The partitioning used in this thesis is random, 

meaning there is no optimization other than what hMETIS uses internally. Geographical 

and system specific information can be used to better cluster the partitions and create 

higher quality partitions; this should improve the performance of the simulation. 
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An example output of the 118 system partitioned can be visualized in Figure 3.3 

using Gephi2 [GEHPI].  

 

Figure 3.3 Gephi Partitioned graph visualization 

 

3.4 Simulation 

The simulation process can be shown in Figure 3.4. The simulation manager reads 

all of the data from file and distributes the relevant data to the corresponding process. The 

manager then signals the beginning of the simulation to all of the processes. All of the 

processes solve their local problem then begin to iteratively solve the network equations. 

                                                 
2 Gephi is an open source graph based visualization tool 



 

46 

Each process will send its boundary states to the manager, the manager will share these 

states with the neighboring systems and check if the systems have converged. This 

process of updating the local states and iteratively 

 

Figure 3.4 Simulation Flowchart 

 

A short sample using the Intel MPI Trace Analyzer tool is shown in Figure 3.5. 

There are clearly distinct portions of the simulation: initialization, data reading, 

calculating multiport equivalents, simulation, and cleanup. First, there are background 

tasks necessary for the environment to be initialized. Second, the manager is continually 

reading in data while the other processes wait to receive this data. Third, the manager is 
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waiting, and each process is calculating its own multiport equivalents then exchanging 

those equivalents with the neighboring processes. After the simulation has begun, the 

manager is mostly communicating between all of the processes, controlling the 

convergence checking. Finally, each process has some memory cleanup and other 

background tasks, and some statistics reporting to file and the environment is terminated. 

 

Figure 3.5 Intel MPI Trace Analyzer 

 

In Figure 3.6 a portion of the simulation is shown. There are four time steps 

shown in this figure. First the DAE describing the nodes are solved. Then the iterative 

PGNME process begins, each process is sending its local convergence state to the 

manager, and the manager makes a decision to continue the iterative process or stop it. In 
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this particular portion, it is easy to see that the first two time steps shown have taken three 

iterations, and the last two time steps take four iterations. 

 

Figure 3.6 Zoom in Trace Analyzer Simulation 
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CHAPTER IV 

RESULTS 

The results presented in this section are created by using the simulator described 

in Chapter III.  

4.1 Large scale results on speed and scale 

In this section the PGNME method is subjected to extreme testing and monitored 

for its worst performance. In these large scale results an arbitrary excitation is injected at 

every bus in the system to intentionally impose iterations into the PGNME method. This 

effectively allows the worst case analysis of PGNME to be compared against PUR 

without multiport equivalent. This arbitrary excitation removes the solving of dynamic 

equations which would add to the total speedup. It also forces all of the dummy 

boundaries off at every iteration. The final solution at every time step would be close to 

the initial solution if real dynamics were injected, but a poor method can still take many 

iterations to converge, especially if the event is near a boundary port. The arbitrary 

excitation is done because the DAE portion, which excludes the network equation, is 

completely parallelizable, adding extremely detailed models would only add to the 

speedup and this section’s intent is to put the network equation iterative portion to the 

test. 



 

50 

4.1.1 Original PUR vs PGNME 

In this section the original PUR method is strictly compared against PGNME on 

the IEEE 118 system and the set created around it using the graph generation detailed in 

Chapter 3. The systems, from level 1 to level 9, or 118 bus to 774198 bus, were 

partitioned in a variety of ways depending on the specific system size. The average gain 

and minimum and maximum gain were calculated among the partitions. 

Table 4.1 Comparing PUR and PGNME performance 

Number 
of Buses 

Max 
iterations 
saved per 

step 

Min 
iterations 
saved per 

step 

Avg 
iterations 
saved per 

step 

Max 
speedup 
over non 
multiport 

Min 
speedup 
over non 
multiport 

Avg speedup 
over non 
multiport Level 

118 10.4817 0.1816 4.680575 2.384768 1.169799 1.758652868 1 
354 10.1753 2.0865 5.6309 2.45075 1.524763 2.048176138 2 

1062 10.5036 2.0261 4.952067 4.162261 1.432271 2.278644841 3 
3186 4.8656 0.4218 2.048767 2.579835 1.153845 1.505306275 4 
9558 13.1688 2.5233 5.85 3.283138 1.576421 2.126766216 5 

28674 15.9006 8.4218 12.06052 5.197137 3.183372 4.131277935 6 
86022 16.1188 6.1277 10.27393 5.130228 3.095462 4.156629679 7 

258066 17.1107 8.5457 12.38565 5.322544 2.670353 4.107596802 8 
774198 16.9997 5.6635 12.0799 5.334542 2.792362 4.286615856 9 

 

As seen in the results, there is always improvement over the original PUR 

method, while it is sometimes minimal, especially in smaller systems such as the 1.17 
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times speedup on the 118 system and the 1.15 on the 3,186 bus system. This fluctuation 

is believed to be caused by the estimation of the W matrix. If the W matrix 

approximation can be maintained, the results should be optimal and iterations should be 

minimized completely. With larger systems, the improvement is fairly significant, with 

over five times speedup on the systems above 28,000 buses. This testing shows the clear 

advantage of PGNME and its contribution to the solution of the network equation in the 

model. Parallel computing may not be necessary for the small systems, but the systems of 

significant size all benefit greatly. Overall the addition of the multiport equivalent 

method gives more than 3.1 times speedup to simulations, on average PGNME needs 3.5 

iterations to converge versus the 11.8 required for PUR. This method drastically 

improves the previous implementation and creates a faster and more efficient parallel 

implementation. If combined with optimal partitioning, the method could be improved 

even further. 

4.1.2 Increasing Number of Partitions 

With all parallel algorithms, increasing the number of partitions does not always 

lead to an increase in performance. Depending on the application, more partitions 

eventually leads to worse performance. The granularity of the specific problem plays a 

huge role in this characteristic of the problem. As the problem is broken into smaller 

pieces, the overhead cost of parallelization eventually overwhelms the benefit. Very 

small problems will not benefit from utilization of HPC resources.  

In Figure 4.1 a 1062 bus system is shown. It is apparent that the problem is so 

small that parallelizing it using this method gives a mere 3.3 maximum speed up. While 

in the large problem of the 258k bus system of Figure 4.2, there is a maximum of over 



 

52 

100x speedup. For any given particular problem, this curve can be created, and based on 

the curve, an appropriate number of partitions can be selected. After this number is 

selected, optimal partitioning can be done to ensure that the iteration will be controlled 

when applying the PGNME method. 

 

Figure 4.1 Speedup of 1062 bus system 
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Figure 4.2 Speedup curve of 258,066 bus system 

 

The curves presented in Figure 4.1 and Figure 4.2 are created using the curve 

fitting tool in matlab. To create the smoothed curves, the bad performers are also 

neglected in these curves. Bad performers are defined as partitioning schemes where the 

PGNME approximation is invalid, or the residuals dominate the approximation due to 

port coupling, and iteration becomes significantly larger. In Figure 4.3 the real data is 

graphed for a 28k system. As seen in the figure, iteration is slightly different between 

different partitioning runs leading to load imbalances. There are also other small factors 

which affect the imbalance such as: load imbalance if the number of nodes aren’t equally 

distributed, usage of the computer at the run time, OS housekeeping duties and 

background threads, and other related factors such as these. 
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Figure 4.3 Effect of increasing partitions 

 

4.1.3 Repartitioning the same system 

This section shows the effect of repartitioning the same systems and the resulting 

performance. In this section the level 4 system of the 118 bus class was selected and 30 

hMETIS runs were run to partition the system into 40 partitions. From this random run of 

hMETIS, it is clear that partitioning still plays a role in the performance of the method. 

This effect can be minimized if an appropriate algorithm is implemented to prevent the 

ports from being “electrically close” to each other. Other types of optimization can be 

used as well such as a Monte Carlo type optimization, which is essentially what is shown 

here. In this very small sample of 30 hMETIS runs, it is shown that the average iteration 

varies between less than 6 to above 12. If a larger sample size is used, the iteration could 

possibly be reduced even further. 
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From the 30 random hMETIS runs, it is clear that some of the partitions created 

are relatively poor performers compared to the others. Even if one iteration can be saved 

on every time step, it can lead to huge gains over the course of an entire simulation.  

If the partitions are held constant and the DAE describing the components are 

balanced between different partitions, then iteration has a linear relationship to the time 

required for simulations. Iteration is seen as the main bottleneck of this algorithm. As 

shown in Figure 4.4, 12 iterations leads to a 9s simulation while half as many iterations 

leads to half the required simulation time. This relationship will remain true with simple 

DAE’s describing the components. When the generator and load models to be solved at 

each vertex become very complex, then the time required for the solution of the network 

equation will be an overall smaller portion of the simulation. 

 

Figure 4.4 Repartitioning the 3186 bus system 
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Figure 4.5 Cumulative distribution of iterations from partitioning 

 

Figure 4.5 shows the cumulative probability distribution of iterations. For this 

particular system the majority of partitioning schemes need an average of 6 iterations to 

converge. A figure such as this could be created for an arbitrary system to determine if 

this particular number of partitions is feasible or if partition number should change  

4.1.4 Scalability of the simulator 

In this section the data is shown from many levels of graphs to show the 

scalability of the simulator. For every parallel computing problem, a speedup curve can 

be created. At some point on the curve, due to the nature of the problem, the curve will 

reach a maximum. After the maximum, the cost associated with the parallelization of the 
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problem (communication , added computation, etc) becomes  a bottleneck. After this 

point, the problem cannot be made smaller without penalty. 

A particular algorithm is scalable if for an increase in input size there is a 

corresponding increase in speedup. As shown in Figure 4.5, the small 118 bus system 

does not benefit much from parallelization with a maximum of around 2× speedup 

obtained. As the input is increased, the benefit of parallelization steadily increases. This 

shows that the algorithm is scalable, and as the input continues to grow then the gain 

from parallel computing will also continue to grow, at least until some portion of the 

algorithm becomes a bottleneck. The simulator is shown to be scalable up to a 774,198 

bus system, and there are also data points from larger systems overlaid here. It is 

important to note that these curves are estimated from data and that all of the partitions 

which were bad performers(i.e. high iteration) were removed from the data set, in effect 

simulating the action of a partitioning optimizer which was not available during this 

work. These graphs assume that partitioning produces a relatively high quality set of 

partitions which converge on average in very few iterations. 
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Figure 4.6 Scalability of the simulator 

 

4.2 Dynamic Simulation 

For this section transient stability simulation is performed using the classical 

generator model. The model includes Equations 4.1 – 4.4 in addition to the network 

equation of Equation 1.3. 

 �̇� =
𝑓𝜋

𝐻
(𝑃𝑚 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔0)) (4.1) 

 �̇� = 𝜔 − 𝜔0 (4.2) 

 𝑃𝑒 =
|𝑉||𝐸𝑞|

𝑋𝑑
sin (𝛿 − 휃) (4.3) 

 𝐼 =
|𝐸𝑞|𝑒𝑗𝛿

𝑗𝑋𝑑
′  (4.4) 

0 100 200 300 400 500 600 700
-50

0

50

100

150

200

250

300

350

Partitions

S
pe

ed
up

 

 

1,062
3,186
9,558
28,674
86,022
258,066
774,198
142,235,000
711,750,000



 

59 

This model is used in [PNNL] for look ahead dynamic simulation. For a large 

area multi-machine study, this implementation shows great promise. In this section a 1ms 

time step is used with Forward Euler to solve Equation 4.1 and Equation 4.2. The results 

from a model of the Eastern Interconnect (45k bus) are shown in Figure 4.6. The best 

performance comes from 160 partitions and gives a speedup of 60. The 5s simulation 

takes 145s in the serial version while taking only 2.38s on 160 CPU. 

This results in a faster than real time simulation of a system the size of the Eastern 

Interconnec. Depending on the intent of the simulation, an efficient varying time step 

implicit method could be implemented to incorporate a much larger time step as the 

dynamics permit. If this is done the simulation would be even faster. On top of this, 

different compilers could be tested to find the optimal combination of MPI libraries and 

compilers for the given hardware. 

 

Figure 4.7 Speedup curve using classical generator models in the Eastern Interconnect 
scale system 
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4.3 Matlab results on accuracy and different models 

In this section, the PGNME method is compared against an existing trusted 

software tool known as MatDyn to ensure accuracy. The MatDyn implementation is of a 

nine-bus system, which consists of two different generator models(classical model, and a 

fourth order model), a turbine governor model and an excitation system model. The 

PGNME method is implemented in Matlab by modifying the source code of MatDyn for 

this specific case. In this specific case, one line was cut in the nine-bus system, forming 

two subsystems which are connected by The purpose of this test is to reassure that this 

method will be convergent on a more realistic model. RK45 is used and the reconciliation 

tolerance is 10−4.  It is shown in Figure 4.8 and 4.9 that the decoupled response overalys 

to within a tolerance of the original, verifying that the algorithm can handle robust 

dynamic events. 

 

Figure 4.8 Generator speed response during an event 



 

61 

 

 

Figure 4.9 Bus Voltage response during an event 
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CHAPTER V 

CONCLUSION AND FUTURE WORKS 

This thesis has considered a novel methodology for solving large scale systems of 

DAE, such as the model of a large power transmission system, on a high performance 

cluster computer. The treatment was in the form of the ASM approach. It has also 

presented a novel approach to evolve an existing technique called PGN, resulting in a 

new technique called PGNME that scales to large system simulation with many partitions 

as shown by the results from running the solver on a large HPC cluster computer. 

The overall result of this method is very impressive compared to other iterative 

methods and other relaxation methods which do not have the same form. Other methods 

show very small speedup on hundreds of processors making them very unattractive. This 

method shows fairly efficient utilization of HPC resources. High fidelity dynamic models 

will lead to much more efficient implementation as the solution of the differential 

equations in the ASM process is extremely parallelizable. When higher fidelity models 

are used the speedup will increase dramatically. Also if simulations were run where the Y 

matrix changed often this method would excel even more, as the factorization portion is 

completely parallel and does not have an iterative component. 

While this method shows to be very useful in progress towards look ahead and 

real time simulation, more work can be done to further enhance its performance. These 

future works include: optimizing the initialization process, continuing to search for ways 
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to make the code more efficient, partitioning optimization, developing more advanced 

models especially for the other physical components and control systems that need to be 

modeled, implementing more integration techniques such as RK45 and Trapezoidal rule, 

and exploring advanced integration techniques such as multigrid and parareal. 

Immediately, partitioning optimization would appear to be a high priority to extend the 

potential benefit of PGNME to the limits of the HPC machinese the simulation runs on. 
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W MATRIX DERIVATIONS 
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This appendix is dedicated to explicitly deriving the W matrix for the PGNME 

iterative method strategy . 

A.1 Two Partition Example 

 

Figure A.1 Two Partition Equivalent Description 

 

For the explicit derivation it is important to first define all physical laws 

controlling the system then to define the iterative updating method. 

 𝐼𝑎(𝑘) = (𝑉1(𝑘) − 𝑉𝑑1(𝑘))𝑌𝑎𝑏 (A.1) 

 𝐼𝑏(𝑘) = (𝑉𝑑2(𝑘) − 𝑉2(𝑘))𝑌𝑎𝑏 (A.2) 

 𝑉1(𝑘) =
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
 (A.3) 

 𝑉𝑑1(𝑘) =
𝑆1(𝑘)+𝐼𝑎(𝑘)

𝑌1
 (A.4) 

 𝑉2(𝑘) =
𝐼2+𝐼𝑏(𝑘)

𝑌𝑏
 (A.5) 

 𝑉𝑑2(𝑘) =
𝑆2(𝑘)−𝐼𝑏(𝑘)

𝑌2
 (A.6) 

 𝑆1(𝑘 + 1) = 𝑉2(𝑘)𝑌1 − 𝐼𝑏(𝑘) (A.7) 

 𝑆2(𝑘 + 1) = 𝑉1(𝑘)𝑌2 + 𝐼𝑎(𝑘) (A.8) 
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Using all of tfhe previous equations the W matrix can be derived by solving for 

the updated states. 

 𝐼𝑎(𝑘 + 1) = (𝑉1(𝑘 + 1) − 𝑉𝑑1(𝑘 + 1))𝑌𝑎𝑏 (A.9) 

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑆1(𝑘+1)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.10) 

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑉2(𝑘)𝑌1−𝐼𝑏(𝑘)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.11) 

 𝐼𝑎(𝑘 + 1) = (
𝐼1

𝑌𝑎
−

𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝐼2+𝐼𝑏(𝑘)

𝑌𝑏
+

𝐼𝑏(𝑘)

𝑌1
−

𝐼𝑎(𝑘+1)

𝑌1
) 𝑌𝑎𝑏 (A.12) 

 𝐼𝑎(𝑘 + 1) = (
𝐼1

𝑌𝑎
−

𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝐼2

𝑌𝐵
−

𝐼𝑏(𝑘)

𝑌𝑏
+

𝐼𝑏(𝑘)

𝑌1
−

𝐼𝑎(𝑘+1)

𝑌1
) 𝑌𝑎𝑏 (A.13) 

 𝐼𝑎(𝑘 + 1) =
𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
−

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌𝑏
+

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌1
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌1
 (A.14) 

 𝐼𝑎(𝑘 + 1) = −
𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘+1)𝑌𝑎𝑏

𝑌1
−

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌𝑏
+

𝐼𝑏(𝑘)𝑌𝑎𝑏

𝑌1
+

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.15) 

 𝐼𝑎(𝑘 + 1) = 𝐼𝑎(𝑘 + 1) (−
𝑌𝑎𝑏

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
) + 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.16) 

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) = 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝐵
 (A.17) 

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) = 𝐼𝑏(𝑘)(−

𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌1
) + 𝐶 (A.18) 

 𝐼𝑎(𝑘 + 1) = 𝐼𝑏(𝑘)
(−

𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌1

)

(1+
𝑌𝑎𝑏
𝑌𝑎

+
𝑌𝑎𝑏
𝑌1

)
+ 𝐶 (A.19) 

 𝐼𝑎(𝑘 + 1) = 𝐼𝑏(𝑘)
(

1

𝑌1
−

1

𝑌𝑏
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)
+ 𝐶 (A.20) 

 𝐼𝑏(𝑘 + 1) = (𝑉𝑑2(𝑘 + 1) − 𝑉2(𝑘 + 1))𝑌𝑎𝑏 (A.21) 

 𝐼𝑏(𝑘 + 1) = (
𝑆2(𝑘+1)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
)𝑌𝑎𝑏 (A.22) 

 𝐼𝑏(𝑘 + 1) = (
𝑉1(𝑘)𝑌2+𝐼𝑎(𝑘)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
) 𝑌𝑎𝑏 (A.23) 
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 𝐼𝑏(𝑘 + 1) = (
(
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
)𝑌2+𝐼𝑎(𝑘)−𝐼𝑏(𝑘+1)

𝑌2
−

𝐼2+𝐼𝑏(𝑘+1)

𝑌𝑏
)𝑌𝑎𝑏 (A.24) 

 𝐼𝑏(𝑘 + 1) =
𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼𝑎(𝑘)𝑌𝑎𝑏

𝑌𝑎
+

𝐼𝑎(𝑘)𝑌𝑎𝑏

𝑌2
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌𝑏
 (A.25) 

 𝐼𝑏(𝑘 + 1) = 𝐼𝑏(𝑘 + 1) (−
𝑌𝑎𝑏

𝑌𝑏
−

𝑌𝑎𝑏

𝑌2
) + 𝐼𝑎(𝑘) (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
 (A.26) 

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑏
+

𝑌𝑎𝑏

𝑌2
) = 𝐼𝑎(𝑘) (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
) +

𝐼1𝑌𝑎𝑏

𝑌𝑎
−

𝐼2𝑌𝑎𝑏

𝑌𝑏
 (A.27) 

 𝐼𝑏(𝑘 + 1) = 𝐼𝑎(𝑘)
(
𝑌𝑎𝑏
𝑌2

−
𝑌𝑎𝑏
𝑌𝑎

)

(1+
𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌2

)
+

𝐼1𝑌𝑎𝑏
𝑌𝑎

−
𝐼2𝑌𝑎𝑏

𝑌𝑏

(1+
𝑌𝑎𝑏
𝑌𝑏

+
𝑌𝑎𝑏
𝑌2

)
 (A.28) 

 𝐼𝑏(𝑘 + 1) = 𝐼𝑎(𝑘)
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)
+ 𝐶 (A.29) 

This derivation can be written in the form used mostly in literature as in Equation 

1.7. 

 [
𝐼𝑎(𝑘 + 1)

𝐼𝑏(𝑘 + 1)
] =

[
 
 
 
 0

(
1

𝑌1
−

1

𝑌𝑏
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

(
1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑏
+

1

𝑌2
)

0
]
 
 
 
 

[
𝐼𝑎(𝑘)

𝐼𝑏(𝑘)
] (A.30) 

A.2 Three Partition Example 

 

Figure A.2 Subcircuit 1 and 2 
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Figure A.3 Subcircuit 3 and 4 

 

A similar approach should be taken for the three partition example. All physical 

laws and updating equations should be derived first. 

 𝐼𝑎(𝑘) = (𝑉𝑎(𝑘) − 𝑉𝑑1(𝑘))𝑌𝑎𝑏 (A.31) 

 𝐼𝑏(𝑘) = (𝑉𝑑2(𝑘) − 𝑉1(𝑘))𝑌𝑎𝑏 (A.32) 

 𝐼𝑐(𝑘) = (𝑉2(𝑘) − 𝑉𝑑3(𝑘))𝑌𝑏𝑐 (A.33) 

 𝐼𝑑(𝑘) = (𝑉𝑑4(𝑘) − 𝑉𝑐(𝑘))𝑌𝑏𝑐 (A.34) 

 𝑉𝑎(𝑘) =
𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
 (A.35) 

 𝑉𝑑1(𝑘) =
𝑆1(𝑘)+𝐼𝑎(𝑘)

𝑌1
 (A.36) 

 𝑉𝑑2(𝑘) =
𝑆2(𝑘)−𝐼𝑏(𝑘)

𝑌2
 (A.37) 

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
 (A.38) 

 𝑉2(𝑘) =
ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.39) 

 𝑉𝑑3(𝑘) =
𝑆3(𝑘)+𝐼𝑐(𝑘)

𝑌3
 (A.40) 

 𝑉𝑑4(𝑘) =
𝑆4(𝑘)−𝐼𝑑(𝑘)

𝑌4
 (A.41) 

 𝑉𝑐(𝑘) =
𝐼3+𝐼𝑑(𝑘)

𝑌𝑐
 (A.42) 
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 𝑆1(𝑘 + 1) = 𝑉1(𝑘)𝑌1 − 𝐼𝑏(𝑘) (A.43) 

 𝑆2(𝑘 + 1) = 𝑉𝑎(𝑘)𝑌2 + 𝐼𝑎(𝑘) (A.44) 

 𝑆3(𝑘 + 1) = 𝑉𝑐(𝑘)𝑌3 − 𝐼𝑑(𝑘) (A.45) 

 𝑆4(𝑘 + 1) = 𝑉2(𝑘)𝑌4 + 𝐼𝑐(𝑘) (A.46) 

 𝐼𝑎(𝑘 + 1) = (𝑉𝑎(𝑘 + 1) − 𝑉𝑑1(𝑘 + 1))𝑌𝑎𝑏 (A.47) 

 𝐼𝑎(𝑘 + 1) = (
𝐼1−𝐼𝑎(𝑘+1)

𝑌𝑎
−

𝑆1(𝑘+1)+𝐼𝑎(𝑘+1)

𝑌1
)𝑌𝑎𝑏 (A.48) 

 𝐼𝑎(𝑘 + 1) =
𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌𝑎
𝐼𝑎(𝑘 + 1) −

𝑌𝑎𝑏

𝑌1
𝑆1(𝑘 + 1) − 𝐼𝑎(𝑘 + 1)

𝑌𝑎𝑏

𝑌1
 (A.49) 

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
𝑆1(𝑘 + 1) (A.50) 

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
−

𝑌𝑎𝑏

𝑌1
((

ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
)𝑌1 − 𝐼𝑏(𝑘)) (A.51) 

 𝐼𝑎(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌𝑎
+

𝑌𝑎𝑏

𝑌1
) =

𝑌𝑎𝑏𝐼1

𝑌𝑎
− 𝑌𝑎𝑏(

ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
) + 𝐼𝑏(𝑘)

𝑌𝑎𝑏

𝑌1
 (A.52) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21𝑉2(𝑘)

𝑌11
−

𝐼𝑏(𝑘)

𝑌11
+ 𝐼𝑏(𝑘)

1

𝑌1
 (A.53) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
𝑉2(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
) (A.54) 

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
, 𝑉2(𝑘) =

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.55) 

 𝑉2(𝑘) =
ℎ12

𝑌22
𝑉1(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.56) 

 𝑉2(𝑘) =
ℎ12

𝑌22
(
ℎ21

𝑌11
𝑉2(𝑘) +

𝐼𝑏(𝑘)

𝑌11
) −

𝐼𝑐(𝑘)

𝑌22
 (A.57) 

 𝑉2(𝑘) =
ℎ12ℎ21

𝑌11𝑌22
𝑉2(𝑘) +

ℎ12

𝑌11𝑌22
𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.58) 

 𝑉2(𝑘)(1 −
ℎ12ℎ21

𝑌11𝑌22
) =

ℎ12

𝑌11𝑌22
𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22
 (A.59) 

 𝑉2(𝑘) =

ℎ12
𝑌11𝑌22

1−
ℎ12ℎ21
𝑌11𝑌22

𝐼𝑏(𝑘) −

𝐼𝑐(𝑘)

𝑌22

1−
ℎ12ℎ21
𝑌11𝑌22

 (A.60) 
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 𝑉2(𝑘) =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.61) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
𝑉2(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
) (A.62) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ21

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘)) +

𝐼𝑏(𝑘)(
1

𝑌1
−

1

𝑌11
)  (A.63) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
−

ℎ12ℎ21

𝑌11(𝑌11𝑌22−ℎ12ℎ21)
𝐼𝑏(𝑘) +

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)(
1

𝑌1
−

1

𝑌11
)  (A.64) 

 𝐼𝑎(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
) =

𝐼1

𝑌𝑎
+

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) + 𝐼𝑏(𝑘)(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21

𝑌11(𝑌11𝑌22−ℎ12ℎ21)
)  (A.65) 

If MPE is set correctly, then the terms become 0 plus residual which is completely 

dependent on the electrical coupling of the subsystems. 

 𝐼𝑎(𝑘 + 1) =

𝐼1
𝑌𝑎

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)
+

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)
(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21
𝑌11(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

  (A.66) 

 𝐼𝑏(𝑘 + 1) = (𝑉𝑑2(𝑘 + 1) − 𝑉1(𝑘 + 1))𝑌𝑎𝑏 (A.67) 

 𝐼𝑏(𝑘 + 1) = 𝑉𝑑2(𝑘 + 1)𝑌𝑎𝑏 − 𝑉1(𝑘 + 1)𝑌𝑎𝑏 (A.68) 

 𝐼𝑏(𝑘 + 1) =
𝑆2(𝑘+1)𝑌𝑎𝑏−𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏+𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.69) 

 𝐼𝑏(𝑘 + 1) =
𝑆2(𝑘+1)𝑌𝑎𝑏

𝑌2
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏

𝑌11
−

𝐼𝑏(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.70) 

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑆2(𝑘+1)𝑌𝑎𝑏

𝑌2
−

ℎ21𝑉2(𝑘+1)𝑌𝑎𝑏

𝑌11
 (A.71) 
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 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝑆2(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11
𝑉2(𝑘 + 1) (A.72) 

 𝑉2(𝑘) =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.73) 

 𝐼𝑏(𝑘 + 1)(1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
(𝑉𝑎(𝑘)𝑌2 + 𝐼𝑎(𝑘)) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.74) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝐼𝑎(𝑘) + 𝑌𝑎𝑏𝑉𝑎(𝑘) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 + 1) −

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.75) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) =

𝑌𝑎𝑏

𝑌2
𝐼𝑎(𝑘) + 𝑌𝑎𝑏(

𝐼1−𝐼𝑎(𝑘)

𝑌𝑎
) −

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 +

1) −
ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.76) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)𝐼𝑏(𝑘 +

1) −
ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.77) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
+

ℎ21𝑌𝑎𝑏

𝑌11
(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.78) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌11
+

𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
−

𝑌𝑎𝑏

𝑌11
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.79) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.80) 
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 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.81) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1))  (A.82) 

 𝐼𝑏(𝑘 + 1) (1 +
𝑌𝑎𝑏

𝑌2
+

𝑌22𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
) = (

𝑌𝑎𝑏

𝑌2
−

𝑌𝑎𝑏

𝑌𝑎
)𝐼𝑎(𝑘) + 𝑌𝑎𝑏

𝐼1

𝑌𝑎
−

ℎ21𝑌𝑎𝑏

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1))  (A.83) 

 𝐼𝑏(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼1

𝑌𝑎
−

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1))  (A.84) 

 𝐼𝑐(𝑘 + 1) = (𝑉2(𝑘 + 1) − 𝑉𝑑3(𝑘 + 1))𝑌𝑏𝑐 (A.85) 

 𝐼𝑐(𝑘 + 1) = 𝑌𝑏𝑐𝑉2(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑑3(𝑘 + 1) (A.86) 

 𝐼𝑐(𝑘 + 1) = 𝑌𝑏𝑐(
ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1)) −

𝑌𝑏𝑐(
𝑆3(𝑘+1)+𝐼𝑐(𝑘+1)

𝑌3
)  (A.87) 

 𝐼𝑐(𝑘 + 1) =
𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑆3(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝐼𝑐(𝑘 + 1)  (A.88) 

 𝐼𝑐(𝑘 + 1)(1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑆3(𝑘 +

1)  (A.89) 

 𝐼𝑐(𝑘 + 1)(1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
(𝑉𝑐(𝑘)𝑌3 −

𝐼𝑑(𝑘))  (A.90) 



 

76 

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝑌𝑏𝑐

𝑌3
𝑉𝑐(𝑘)𝑌3 +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘))  (A.91) 

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑐(𝑘) +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘)  (A.92) 

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐(

𝐼3+𝐼𝑑(𝑘)

𝑌𝑐
) +

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘)  (A.93) 

 𝐼𝑐(𝑘 + 1) (1 +
𝑌𝑏𝑐𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

𝑌𝑏𝑐

𝑌3
) =

𝑌𝑏𝑐ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) − 𝑌𝑏𝑐

𝐼3

𝑌𝑐
− 𝑌𝑏𝑐

𝐼𝑑(𝑘)

𝑌𝑐
+

𝑌𝑏𝑐

𝑌3
𝐼𝑑(𝑘)  (A.94) 

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
−

𝐼𝑑(𝑘)

𝑌𝑐
+

1

𝑌3
𝐼𝑑(𝑘)  (A.95) 

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
+ 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
)  (A.96) 

 𝐼𝑑(𝑘 + 1) = (𝑉𝑑4(𝑘 + 1) − 𝑉𝑐(𝑘 + 1))𝑌𝑏𝑐 (A.97) 

 𝐼𝑑(𝑘 + 1) = 𝑌𝑏𝑐𝑉𝑑4(𝑘 + 1) − 𝑌𝑏𝑐𝑉𝑐(𝑘 + 1) (A.98) 

 𝐼𝑑(𝑘 + 1) = 𝑌𝑏𝑐(
𝑆4(𝑘+1)−𝐼𝑑(𝑘+1)

𝑌4
) − 𝑌𝑏𝑐(

𝐼3+𝐼𝑑(𝑘+1)

𝑌𝑐
) (A.99) 

 𝐼𝑑(𝑘 + 1) =
𝑌𝑏𝑐𝑆4(𝑘+1)

𝑌4
−

𝑌𝑏𝑐𝐼𝑑(𝑘+1)

𝑌4
−

𝑌𝑏𝑐𝐼3

𝑌𝑐
−

𝐼𝑑(𝑘+1)𝑌𝑏𝑐

𝑌𝑐
 (A.100) 

 𝐼𝑑(𝑘 + 1)(1 +
𝑌𝑏𝑐

𝑌𝑐
+

𝑌𝑏𝑐

𝑌4
) =

𝑌𝑏𝑐

𝑌4
𝑆4(𝑘 + 1) −

𝑌𝑏𝑐𝐼3

𝑌𝑐
 (A.101) 

 𝐼𝑑(𝑘 + 1)(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

1

𝑌4
𝑆4(𝑘 + 1) −

𝐼3

𝑌𝑐
 (A.102) 
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 𝐼𝑑(𝑘 + 1)(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

1

𝑌4
((

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
)𝑌4 + 𝐼𝑐(𝑘)) −

𝐼3

𝑌𝑐
 (A.103) 

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
𝑉1(𝑘) −

1

𝑌22
𝐼𝑐(𝑘) +

1

𝑌4
𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.104) 

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
, 𝑉2(𝑘) =

ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
 (A.105) 

 𝑉1(𝑘) =
ℎ21𝑉2(𝑘)+𝐼𝑏(𝑘)

𝑌11
 (A.106) 

 𝑉1(𝑘) =
ℎ21

𝑌11
𝑉2(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.107) 

 𝑉1(𝑘) =
ℎ21

𝑌11
(
ℎ12𝑉1(𝑘)−𝐼𝑐(𝑘)

𝑌22
) +

𝐼𝑏(𝑘)

𝑌11
 (A.108) 

 𝑉1(𝑘) =
ℎ21

𝑌11
(
ℎ12𝑉1(𝑘)

𝑌22
−

𝐼𝑐(𝑘)

𝑌22
) +

𝐼𝑏(𝑘)

𝑌11
 (A.109) 

 𝑉1(𝑘) =
ℎ12ℎ21

𝑌22𝑌11
𝑉1(𝑘) −

ℎ21

𝑌11𝑌22
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.110) 

 𝑉1(𝑘)(1 −
ℎ12ℎ21

𝑌22𝑌11
) = −

ℎ21

𝑌11𝑌22
𝐼𝑐(𝑘) +

𝐼𝑏(𝑘)

𝑌11
 (A.111) 

 𝑉1(𝑘) = −

ℎ21
𝑌11𝑌22

(1−
ℎ12ℎ21
𝑌22𝑌11

)
𝐼𝑐(𝑘) +

1

𝑌11

(1−
ℎ12ℎ21
𝑌22𝑌11

)
𝐼𝑏(𝑘) (A.112) 

 𝑉1(𝑘) =
𝑌22

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘) (A.113) 

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
𝑉1(𝑘) −

1

𝑌22
𝐼𝑐(𝑘) +

1

𝑌4
𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
 (A.114) 

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌22
(

𝑌22

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘)) + (

1

𝑌4
−

1

𝑌22
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
  (A.115) 

 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) −

ℎ12ℎ21

𝑌22(𝑌11𝑌22−ℎ12ℎ21)
𝐼𝑐(𝑘) + (

1

𝑌4
−

1

𝑌22
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
  (A.116) 
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 𝐼𝑑(𝑘 + 1) (
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘) + (

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21

𝑌22(𝑌11𝑌22−ℎ12ℎ21)
)𝐼𝑐(𝑘) −

𝐼3

𝑌𝑐
  (A.117) 

If MPE is set correctly, then the terms become 0 plus residual which is completely 

dependent on the electrical coupling of the subsystems. 

 𝐼𝑑(𝑘 + 1) =

ℎ12
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

𝐼𝑏(𝑘) +
(

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21
𝑌22(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

𝐼𝑐(𝑘) −

𝐼3
𝑌𝑐

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)
  (A.118) 

 𝐼𝑐(𝑘 + 1) (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) =

ℎ12

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑏(𝑘 + 1) −

𝐼3

𝑌𝑐
+ 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
)  (A.119) 

 𝐼𝑏(𝑘 + 1) (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼1

𝑌𝑎
−

ℎ21

𝑌11𝑌22−ℎ12ℎ21
𝐼𝑐(𝑘 +

1))  (A.120) 

 𝑥 = (
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) (A.121) 

 𝑦 =
ℎ12

𝑌11𝑌22−ℎ12ℎ21
 (A.122) 

 𝑧 = (
1

𝑌3
−

1

𝑌𝑐
) (A.123) 

 𝑞 =
𝐼3

𝑌𝑐
 (A.124) 

 𝑎 = (
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) (A.125) 

 𝑏 = (
1

𝑌2
−

1

𝑌𝑎
) (A.126) 

 𝑑 =
𝐼1

𝑌𝑎
 (A.127) 
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 𝑒 =
ℎ21

𝑌11𝑌22−ℎ12ℎ21
 (A.128) 

 𝐼𝑐(𝑘 + 1)𝑥 = 𝑦𝐼𝑏(𝑘 + 1) − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.129) 

 𝐼𝑏(𝑘 + 1)𝑎 = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝐼𝑐(𝑘 + 1) (A.130) 

 𝐼𝑏(𝑘 + 1)𝑎 = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝑦𝐼𝑏(𝑘 + 1) − 𝑒𝑞 + 𝐼𝑑(𝑘)𝑧𝑒 (A.131) 

 𝐼𝑐(𝑘 + 1)𝑥 = 𝑦𝑏𝐼𝑎(𝑘) + 𝑑𝑦 − 𝑒𝑦𝐼𝑐(𝑘 + 1) − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.132) 

 𝐼𝑏(𝑘 + 1)(𝑎 + 𝑒𝑦) = 𝑏𝐼𝑎(𝑘) + 𝑑 − 𝑒𝑞 + 𝐼𝑑(𝑘)𝑧𝑒 (A.133) 

 𝐼𝑐(𝑘 + 1)(𝑥 + 𝑒𝑦) = 𝑦𝑏𝐼𝑎(𝑘) + 𝑑𝑦 − 𝑞 + 𝐼𝑑(𝑘)𝑧 (A.134) 

 𝐼𝑏(𝑘 + 1)(𝑎 + 𝑒𝑦) = 𝑏𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)𝑧𝑒 + 𝑑 − 𝑒𝑞 (A.135) 

 𝐼𝑐(𝑘 + 1)(𝑥 + 𝑒𝑦) = 𝑦𝑏𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)𝑧 + 𝑑𝑦 − 𝑞 (A.136) 

 𝐼𝑏(𝑘 + 1)((
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) + (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)(
1

𝑌3
−

1

𝑌𝑐
)(

ℎ21

𝑌11𝑌22−ℎ12ℎ21
) +

𝐼1

𝑌𝑎
− (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

𝐼3

𝑌𝑐
) (A.137) 

 𝐼𝑐(𝑘 + 1)((
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) + (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)) =

(
ℎ12

𝑌11𝑌22−ℎ12ℎ21
)(

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) + (

𝐼1

𝑌𝑎
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
) −

𝐼3

𝑌𝑐
 (A.138) 

 𝐼𝑏(𝑘 + 1)((
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22

𝑌11𝑌22−ℎ12ℎ21
) + (

ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)) = (

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21

𝑌11𝑌22−ℎ12ℎ21
) +

𝐼1

𝑌𝑎
− (

ℎ21

𝑌11𝑌22−ℎ12ℎ21
)(

𝐼3

𝑌𝑐
)(A.139) 

 𝐼𝑐(𝑘 + 1)((
1

𝑌𝑏𝑐
+

𝑌11

𝑌11𝑌22−ℎ12ℎ21
+

1

𝑌3
) + (

ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)) = (

ℎ12

𝑌11𝑌22−ℎ12ℎ21
)(

1

𝑌2
−

1

𝑌𝑎
)𝐼𝑎(𝑘) + 𝐼𝑑(𝑘)(

1

𝑌3
−

1

𝑌𝑐
) + (

𝐼1

𝑌𝑎
)(

ℎ12

𝑌11𝑌22−ℎ12ℎ21
) −

𝐼3

𝑌𝑐
 (A.140) 
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 𝐼𝑏(𝑘 + 1) =
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)
𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)
(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)
) + 𝐶 (A.141) 

 𝐼𝑐(𝑘 + 1) =
(

ℎ12
𝑌11𝑌22−ℎ12ℎ21

)(
1

𝑌2
−

1

𝑌𝑎
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2 

𝐼𝑎(𝑘) +

𝐼𝑑(𝑘)
(

1

𝑌3
−

1

𝑌𝑐
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2 

+ 𝐶 (A.142) 

The above derivations can be combined to conform to the standard representation 

in literature of the form Equation 1.7.  

 

[
 
 
 
𝐼𝑎(𝑘 + 1)

𝐼𝑏(𝑘 + 1)

𝐼𝑐(𝑘 + 1)

𝐼𝑑(𝑘 + 1)]
 
 
 

= [

0 𝛼 𝛽 0
𝛾
휀
0

0
0
휃

0
0
𝜅

𝛿
휂
0

]

[
 
 
 
𝐼𝑎(𝑘)

𝐼𝑏(𝑘)

𝐼𝑏(𝑘)

𝐼𝑏(𝑘)]
 
 
 

+ 𝐶 (A.143) 

 𝛼 =
(

1

𝑌1
−

1

𝑌11
−

ℎ12ℎ21
𝑌11(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

 (A.144) 

 𝛽 =

ℎ21
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑎𝑏
+

1

𝑌𝑎
+

1

𝑌1
)

 (A.145) 

 𝛾 =
(

1

𝑌2
−

1

𝑌𝑎
)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)
 (A.146) 

 𝛿 =
(

1

𝑌3
−

1

𝑌𝑐
)(

ℎ21
𝑌11𝑌22−ℎ12ℎ21

)

(
1

𝑌𝑎𝑏
+

1

𝑌2
+

𝑌22
𝑌11𝑌22−ℎ12ℎ21

+
ℎ21ℎ12

(𝑌11𝑌22−ℎ12ℎ21)2 
)
 (A.147) 

 휀 =
(

ℎ12
𝑌11𝑌22−ℎ12ℎ21

)(
1

𝑌2
−

1

𝑌𝑎
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2 

 (A.148) 

 휂 =
(

1

𝑌3
−

1

𝑌𝑐
)

1

𝑌𝑏𝑐
+

𝑌11
𝑌11𝑌22−ℎ12ℎ21

+
1

𝑌3
+

ℎ21ℎ12
(𝑌11𝑌22−ℎ12ℎ21)2 

 (A.149) 



 

81 

 휃 =

ℎ12
𝑌11𝑌22−ℎ12ℎ21

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

 (A.150) 

 𝜅 =
(

1

𝑌4
−

1

𝑌22
−

ℎ12ℎ21
𝑌22(𝑌11𝑌22−ℎ12ℎ21)

)

(
1

𝑌𝑏𝑐
+

1

𝑌𝑐
+

1

𝑌4
)

 (A.151) 

A.3 Explicit W Validation of the Three Partition Example 

The explicit W matrix derived in A.2 can be validated for the 1-2-1 case.  The 

system in Fig A.4 is used, to avoid instant convergence the dummy admittance 

parameters are set off ideal to force a non-zero spectral radius. For simplicity non-

complex values are used but the theory expands to complex values as well. 

 

Figure A.4 1-2-1 System Verifying Explicit W 

 

The system in Fig A.4 can be represented in the equivalent form of the appendix 

figure A.2 and A.3 and the parameters can be derived as: 
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Table A.1 Parameters for W matrix verification 

Parameter Value 
Y11 6.0143 
Y22 6.0143 
Y1 6.3150 
Y2 2.6250 
Y3 3 
Y4 6.3150 
h12 5.0969 
h21 5.0969 
Ya 2.5 
Yab 10 
Ybc 10 
Yc  

 

Through linear regression the W matrix is found within a 95% confidence bound. 

The regression confidence bound explains the non-zero entries in the regression. 

 

−0.0044 −0.6488 0.7562 −0.0061
−0.0217
−0.0086
0.0091

−0.0009
0.0013
0.8145

0.0005
−0.0005
−0.7058

−0.0080
−0.0177
0.0125

 (A.152) 

From the explicit derivation the equivalent W is: 

 

0.0000 −0.6557 0.7595 0.0000
−0.0144
−0.0075
0.0000

0.0000
0.0000
0.8219

0.0000
0.0000

−0.7096

−0.0063
−0.0131
0.0000

 (A.153) 

This calculation verifies the explicit form of W derived for this case. It is assumed 

that, as the system complexity and number of partitions grow, there will be a similar 

form. The trend is expected to continue of many zero entries with some non zero residual 

entries in the W matrix. These residual entries are a direct reflection of the electrical 

coupling between multiple port dependencies. If there is a case where the electrical 
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coupling is strong between the ports of a two or more port system, then the performance 

is expected to degrade, even with the additional help of the Multiport Equivalent 

information to set the boundary admittance. 
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