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Affine term structure models (ATSMs) are one set of popular models for yield 

curve modeling. Given that the models forecast yields based on the speed of mean 

reversion, under what circumstances can we distinguish one ATSM from another?  The 

objective of my dissertation is to quantify the benefit of knowing the “true” model as well 

as the cost of being wrong when choosing between ATSMs. In particular, I detail the 

power of out-of-sample forecasts to statistically distinguish one ATSM from another 

given that we only know the data are generated from an ATSM and are observed without 

errors. My study analyzes the power and size of affine term structure models (ATSMs) 

by evaluating their relative out-of-sample performance. 

Essay one focuses on the study of the one-factor ATSMs. I find that the model’s 

predictive ability is closely related to the bias of mean reversion estimates no matter what 

the true model is. The smaller the bias of the estimate of the mean reversion speed, the 

better the out-of-sample forecasts. In addition, my finding shows that the models' 

forecasting accuracy can be improved, in contrast, the power to distinguish between 



 

 

 

 

  

 

  

 

different ATSMs will be reduced if the data are simulated from a high mean reversion 

process with a large sample size and with a high sampling frequency. 

In the second essay, I extend the question of interest to the multi-factor ATSMs. 

My finding shows that adding more factors in the ATSMs does not improve models' 

predictive ability. But it increases the models' power to distinguish between each other. 

The multi-factor ATSMs with larger sample size and longer time span will have more 

predictive ability and stronger power to differentiate between models.  
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CHAPTER I 

LITERATURE REVIEW 

The term structure of interest rates, or called yield curve, describes the 

relationship between the yields-to-maturity (YTM) of a set of zero-coupon bonds and 

their time-to-maturity. How to model the yield curve and forecast their future movements 

are widely discussed in the finance literature. Affine term structure models (ATSMs) are 

one set of popular models for yield curve modeling. 

ATSMs have been used since the early 1980s. One big advantage of ATSMs is its 

tractability because: a) ATSMs hypothesize that the interest rates are a linear function of 

a set of observed/latent factors; b) ATSMs have less computational burden, comparing 

with Monte Carlo methods or solution methods for partial differential equations. 

The rest of this chapter will give the background of ATSMs. Starting with the 

statement of some basic definitions and notations, I will first introduce one-factor 

ATSMs, followed by the Multifactor ATSMs. 

1.1 Definitions and notations 

Consider a zero coupon bond sold at time t and due to mature at time T > t. 

Denote τ = (T - t) as the time to maturity. Suppose the bond has the market value P(t, T) 

at time t and has a unit payoff at maturity, i.e., P(T, T) =1. At time t, the yield to maturity 

1 



 

 

 

 

   

  

   

  

 

   

 

    

  

  

 

 

  

 

    

 

𝑅(𝑡, 𝑇) is the continuously compounded rate of return on a zero-coupon bond with unit 

value at time T. 

𝑃(𝑡, 𝑇) = 𝑒−𝑅(𝑡,𝑇)(𝑇−𝑡) (1.1) 

⇕ 

ln 𝑃(𝑡,𝑇) ln 𝑃(𝑡,𝑡+𝜏)
𝑅(t, T) = − = − (1.2)

𝑇−𝑡 𝜏 

Restricted to a continuous time process, the formulation of the instantaneous short 

rate is 

ln 𝑃(𝑡,𝑡+𝜏)
𝑟(𝑡) = lim 𝑅(𝑡, 𝑇) = lim − (1.3)

𝑇→𝑡 𝜏→0 𝜏 

If the dynamics of the instantaneous short rate are known, the price of the zero-

coupon bond, P(t, T),  may be written as a function of  𝑟(𝑡), 

𝑟(𝑢)𝑑𝑢𝑃(𝑡, 𝑇, 𝑟(𝑡)) = 𝐸𝑡[Present Value] = 𝐸𝑡 [𝑒
−∫𝑡

𝑇 
] (1.4) 

1.2 Single-factor ATSMs 

Before considering the complex multi-factor ASTMs, it is necessary to introduce 

relatively simple models: one-factor affine term structure models. Just like the name 

implies, there is only one factor deciding the dynamics of the entire term structure. That 

factor is the instantaneous short rate 𝑟(𝑡), written as 𝑟𝑡 for simplicity. One-factor ATSMs 

assume that the instantaneous short rate follows a continuous Markov process. This 

means that, given all the information up to and including time s, the conditional 

probability distribution of 𝑟𝑡 at time s is completely determined by the value of  𝑟𝑠. 

Or 
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𝑝𝑟( 𝑟𝑡 | 𝑟𝑠, 𝑟𝑢, 0 ≤ 𝑢 < 𝑠 < 𝑡) = 𝑝𝑟( 𝑟𝑡 | 𝑟𝑠 ) (1.5) 

where 𝑝𝑟(∙ | ∙ ) is the conditional probability of the process 𝑟(𝑡). 

A continuous Markov process is called the diffusion process. It can be described 

by a stochastic differential equation (SDE). So the instantaneous short rate can be 

expressed as the form 

𝑑𝑟𝑡 = 𝑓(𝑟𝑡, 𝑡)𝑑𝑡 + 𝜌(𝑟𝑡, 𝑡)𝑑𝑊𝑡 (1.6) 

where 𝑊𝑡 is a Wiener process with incremental variance 𝑑𝑡. So 𝑑𝑊𝑡~𝑁(0, 𝑑𝑡). 𝑓(𝑟𝑡, 𝑡) 

and 𝜌(𝑟𝑡, 𝑡) are the drift and diffusion terms of  𝑟𝑡, respectively. 

Application of Ito’s theorem yields that the bond price P satisfies a SDE 

𝑑𝑃 = 𝑃𝜇(𝑡, 𝑇, 𝑟𝑡)𝑑𝑡 + 𝑃𝜎(𝑡, 𝑇, 𝑟𝑡)𝑑𝑊𝑡 (1.7) 

where parameters 𝜇(𝑡, 𝑇, 𝑟𝑡) and 𝜎(𝑡, 𝑇, 𝑟𝑡) are given by 

1 𝜕𝑃 𝜕𝑃 1 
𝜌2 𝜕

2𝑃
𝜇(𝑡, 𝑇, 𝑟𝑡) = [ + 𝑓 + ] (1.8) 

𝑃 𝜕𝑡 𝜕𝑟 2 𝜕𝑟2

1 𝜕𝑃
𝜎(𝑡, 𝑇, 𝑟𝑡) = 𝜌 (1.9) 

𝑃 𝜕𝑟 

To formulate the fair values of zero coupon bonds, I assume an arbitrage-free 

market and construct a risk-free portfolio. The idea of this approach is to continuously 

adjust the portfolio weights to replicate the unexpected movements in the bond. This 

eliminates all the risk from the portfolio. 

Consider two zero coupon bonds, 1 and 2, with maturity time T1 and T2, 

respectively. Suppose an investor issues an amount of B1 of bond 1 and simultaneously 

buys an amount of B2 of bond 2 at time t. Then the value of the portfolio is B = B2 - B1 
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and the increment of the portfolio is dB = dB2 - dB1 . Assume the instantaneous short rate 

satisfies equation (1.6). According to Ito’s differentiation rule, 

𝑑𝐵1 = 𝐵1𝜇1(𝑟𝑡, 𝑡)𝑑𝑡 + 𝐵1𝜎1(𝑟𝑡, 𝑡) 𝑑𝑊𝑡 (1.10) 

𝑑𝐵2 = 𝐵2𝜇2(𝑟𝑡, 𝑡)𝑑𝑡 + 𝐵2𝜎2(𝑟𝑡, 𝑡) 𝑑𝑊𝑡 (1.11) 

then 

𝑑𝐵 = (𝐵2𝜇2(𝑟𝑡, 𝑡) − 𝐵1𝜇1(𝑟𝑡, 𝑡))𝑑𝑡 + (𝐵2𝜎2(𝑟𝑡, 𝑡) − 𝐵1𝜎1(𝑟𝑡, 𝑡)) 𝑑𝑊𝑡 (1.12) 

To simplify the writing, let 𝜇1 ≡ 𝜇1(𝑟𝑡, 𝑡), 𝜇2 ≡ 𝜇2(𝑟𝑡, 𝑡), 𝜎1 ≡ 𝜎1(𝑟𝑡, 𝑡), 𝜎2 ≡ 

𝜎2(𝑟𝑡, 𝑡), the above equation can be written as 

𝑑𝐵 = (𝐵2𝜇2 − 𝐵1𝜇1)𝑑𝑡 + (𝐵2𝜎2 − 𝐵1𝜎1) 𝑑𝑊𝑡 (1.13) 

In order to eliminate the risk, choose B1 and B2 as 

𝐵1 = (𝐵2 − 𝐵1) 
𝜎2 (1.14) 

𝜎1−𝜎2 

𝐵2 = (𝐵2 − 𝐵1) 
𝜎1 (1.15) 

𝜎1−𝜎2 

Substituting Eqs. (1.14) and (1.15) into (1.13) obtains 

𝜎1𝜇2−𝜎2𝜇1𝑑𝐵 = (𝐵2 − 𝐵1) 𝑑𝑡 (1.16) 
𝜎1−𝜎2 

Therefore, the diffusion term in Eq. (1.13) is eliminated, 𝐵2𝜎2 − 𝐵1𝜎1 = 0. This 

means the unexpected component of the portfolio has been removed and the portfolio is 

completely predictable all the time. So the portfolio B is risk-free. Since the market is 

assumed to be no arbitrage, the portfolio 𝐵 has to appreciate at the risk free rate 𝑟𝑡 over a 

time interval, dt. So the increment of B, dB, over dt is expressed as 

𝑑𝐵 = 𝐵𝑟𝑡𝑑𝑡 = (𝐵2 − 𝐵1)𝑟𝑡𝑑𝑡 (1.17) 
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Combination of Eq. (1.16) and (1.17) yields 

𝜎1𝜇2−𝜎2𝜇1(𝐵2 − 𝐵1) 𝑑𝑡 = (𝐵2 − 𝐵1)𝑟𝑡𝑑𝑡 (1.18)
𝜎1−𝜎2 

Rearranging the above equation gets, 

𝜎1𝜇2−𝜎2𝜇1 = 𝑟𝑡 (1.19)
𝜎1−𝜎2 

or equivalently, 

𝜇1(𝑟𝑡,𝑡)−𝑟𝑡 𝜇2(𝑟𝑡,𝑡)−𝑟𝑡 = ≜ Λ (1.20) 
𝜎1(𝑟𝑡,𝑡) 𝜎2(𝑟𝑡,𝑡) 

𝛬 is named as the market price of risk and it represents the standardized excess 

return for holding a zero-coupon bond. We know a zero-coupon bond pays its face value 

with certainty at maturity. However, the instantaneous short rate always changes as the 

bond approaches maturity. So 𝛬 is introduced to account for the uncertainty of the change 

of the instantaneous short rate. The detail description on the market price of risk will be 

given in Section 1.4. 

If I substitute Eqs. (1.8) and (1.9) into Eq. (1.20), the price of a zero-coupon bond 

has a partial differential equation with the form 

𝜕𝑃 𝜕𝑃 𝜌2 𝜕2𝑃 
+ (𝑓 + 𝜌Λ) + − 𝑟𝑃 = 0 (1.21) 

𝜕𝑡 𝜕𝑟 2 𝜕𝑟2 

and is subject to the boundary condition P(𝑇, T) = 1. Once the processes of 𝑟𝑡 and 𝛬 are 

specified, the bond prices can be obtained by solving Eq. (1.21). 

There are two well-defined one-factor affine term structure models, which are the 

Vasicek model and Cox, Ingersoll and Ross model. The following two sections will 

describe these two models in detail. 
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1.2.1 Vasicek model (1977) 

Assuming the instantaneous short rate follows a mean-reverting Gaussian process, 

Vasicek (1977) obtains the explicit forms of 𝑅(𝑡, 𝑇) and P(t, T) of a zero-coupon bond. 

Specifically, Vasicek assumes 𝑟𝑡 follows an Ornstein-Uhlenbeck process, with the choice 

𝑓(𝑟𝑡, 𝑡) = 𝜅(𝜃 − 𝑟𝑡) and 𝜌(𝑟𝑡, 𝑡) = 𝜎 in equation (1.6). So the Vasicek model has the 

expression 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (1.22) 

where θ is the long-run mean, 𝜅 is the speed of mean reversion, and 𝑊𝑡 is a Wiener process. 

Based on the process of equation (1.22), the transition density function of 𝑟𝑡 can 

be derived explicitly, which is a conditional normal distribution. Given the value of the 

instantaneous short rate at time s, 𝑟𝑠, the transition density function of 𝑟𝑡 (t > s > 0) is 

𝑟𝑡|𝑟𝑠 ~ 𝑁(𝜃(1 − 𝑒−𝜅(𝑡−𝑠)) + 𝑒−𝜅(𝑡−𝑠)𝑟𝑠 , 
𝜎2 
(1 − 𝑒−2𝜅(𝑡−𝑠))) (1.23) 

2𝜅 

Equations (1.22) and (1.23) imply that the Vasicek model allows the existence of 

negative interest rates, which is not feasible in the real world. 

One advantage of the Ornstein-Uhlenbeck process is that the bond price can be 

expressed as a closed-form, i.e., given the current instantaneous rate, 𝑟𝑡 ≡ 𝑟, the zero-

coupon bond price {𝑃(𝑡, 𝑇, 𝑟) ≡ 𝑃(𝑡, 𝑇), 𝑡 ∈ [0, 𝑇]} has the form: 

𝑃(𝑡, 𝑇) = 𝑒𝐴(𝑡,𝑇)−𝐵(𝑡,𝑇)𝑟 (1.24) 

where 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are deterministic functions. So equation (1.24) is termed as an 

affine term structure model. If thinking T is a fixed parameter, 𝑃(𝑡, 𝑇), 𝐴(𝑡, 𝑇) and 

𝐵(𝑡, 𝑇) are only functions of t. We can then denote 𝑃(𝜏) ≡ 𝑃(𝑡, 𝑇), 𝐴(𝜏) ≡ 𝐴(𝑡, 𝑇) and 
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𝐵(𝜏) ≡ 𝐵(𝑡, 𝑇) for notational simplicity. Thus, I can rewrite equation (1.24) in the 

following form: 

𝑃(𝜏) = 𝑒𝐴(𝜏)−𝐵(𝜏)𝑟 (1.25) 

where 

𝜎𝜆 𝜎2 𝜎2𝐵2(𝜏)
𝐴(𝜏) = (𝜃 − − ) (𝐵(𝜏) − 𝜏) − (1.26)

𝜅 2𝜅2 4𝜅 

1
𝐵(𝜏) = (1 − 𝑒−𝜅𝜏) (1.27) 

𝜅 

The zero bond yields have the expression 

𝐴(𝜏)−𝐵(𝜏)𝑟
𝑅(𝑡, 𝑇) ≡ 𝑅(𝜏) = − (1.28) 

𝜏 

with the 𝐴(𝜏) and 𝐵(𝜏) the same definitions as those in Eq. (1.25). 

In Eqs. (1.25) and (1.28), I introduce a new parameter 𝜆, which is the market price 

of risk. 𝜆 is the specific definition to Λ and is a constant in the Vasicek model. 

1.2.2 Cox, Ingersoll, and Ross model (1985) 

In the Vasicek model, the conditional volatility of the instantaneous short rate is 

constant and independent of the level of the interest rate. Different from the Vasicek 

model, Cox, Ingersoll, and Ross (1985) (hereafter CIR) assume that the conditional 

volatility is proportional to the square root of the instantaneous short rate. So the CIR 

model is a mean-reverting square root process. The dynamics of the instantaneous short 

rate of the CIR model can be expressed as: 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎√𝑟𝑡𝑑𝑊𝑡 (1.29) 

where 𝜅 and 𝜃 have the same interpretations as those in the Vasicek model. Imposing the 
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restriction 2𝜅𝜃 ≥ 𝜎2 makes sure that the instantaneous short rate cannot reach zero. The 

model structure implies that the instantaneous short rate process is always nonnegative. 

In this model, 𝑟𝑡 has a conditional non-central chi-square distribution. Conditional 

on the value at time s, the transition density function of 𝑟𝑡 (t > s > 0) is 

𝑞 
1𝜐 2

𝑓(𝑟𝑡|𝑟𝑠) = 𝑐𝑒−𝑢−𝜐 ( ) 𝐼𝑞 (2(𝑢𝜐)2))𝑢

 (1.30) 
∼ 𝑁𝑜𝑛 − 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2(2𝑐𝑟𝑡; 2𝑞 + 2, 2𝑢) 

where 𝐼𝑞(∙) is the modified Bessel function of the first kind of order q, and 

2𝜅 
𝑐 = (1.31)

𝜎2(1−𝑒−𝜅(𝑡−𝑠)) 

𝑢 = 𝑐𝑟𝑠𝑒−𝜅(𝑡−𝑠) (1.32) 

𝜐 =  𝑐𝑟𝑡 (1.33) 

2𝜅𝜃 
𝑞 = 

𝜎2 − 1 (1.34) 

The conditional first and second moment of 𝑟𝑡 are: 

𝐸(𝑟𝑡|𝑟𝑠) = 𝑟𝑠𝑒−𝜅(𝑡−𝑠) + 𝜃(1 − 𝑒−𝜅(𝑡−𝑠)) (1.35) 

𝜎2 𝜎2 2 
VAR(𝑟𝑡|𝑟𝑠) = 𝑟𝑠 ( ) (𝑒−𝜅(𝑡−𝑠)−𝑒−2𝜅(𝑡−𝑠)) + 𝜃 ( ) (1 − 𝑒−𝜅(𝑡−𝑠)) (1.36)

𝜅 2𝜅

As t and T (t < T) become large, the conditional distribution will approach a 

Gamma distribution. The transition density function becomes: 

𝑟𝜈−1𝑒−𝜔𝑟 𝑓(𝑟∞|𝑟𝑠) = 𝜔
𝜈 

(1.37)
Γ(𝜈) 

2𝜅 2𝜅𝜃 where 𝜔 = and 𝜈 = . 
𝜎2 𝜎2 
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In the CIR model, the market price of risk, denoted as 𝛬(𝑟𝑡), is assumed to be an 

affine function of 𝑟𝑡, 

Λ(𝑟𝑡) = 𝜆𝑟𝑡 , 𝜆 is constant (1.38) 

The price and yield of a zero-bond have the same forms as those of Vasicek 

model 

𝐴(𝜏)−𝐵(𝜏)𝑟
𝑃(𝜏) = 𝑒𝐴(𝜏)−𝐵(𝜏)𝑟 or 𝑅(𝜏) = − (1.39) 

𝜏 

but with different 𝐴(𝜏) and 𝐵(𝜏): 

𝜏
(𝜅+𝜆+𝛾)

2𝜅𝜃 2𝛾𝑒 2
𝐴(𝜏) = 𝑙𝑛[ ] (1.40)I 

𝜎2 (𝜅+𝜆+𝛾)(eγτ−1)+2γ

2(eγτ−1) 
𝐵(𝜏) = (1.41)

(𝜅+𝜆+𝛾)(eγτ−1)+2γ 

𝛾 = √(𝜅 + 𝜆)2 + 2𝜎2 (1.42) 

1.3 Multifactor Affine Term Structure Models 

One-factor ASTMs are the first step in modeling the dynamic term structure of 

interest rates. In such models, the instantaneous short rate is the only factor. However, 

they are too simple to describe the complete movement of the entire yield curve. 

Therefore, it is necessary to introduce multifactor models. The multifactor ATSMs 

consider bond yields as functions of a few factors, latent or observable. For example, the 

factors can be macroeconomic and/or financial variables. Same as the Vasicek and CIR 

models, the factors in the multifactor ATSMs are assumed to follow continuous Markov 

processes. 
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In the single-factor model, the no-arbitrage approach is used to price a zero 

coupon bond. An alternative approach to formulate the value of a zero coupon bond is to 

find an equivalent martingale measure (or risk-neutral measure) Q such that the risk can 

be removed under this measure. Although the first approach is pricing the bond assuming 

no arbitrage and the second one is applied under an equivalent risk-neutral measure, two 

approaches are equivalent. 

The key idea of the second approach is to find a risk-neutral measure Q such that 

under this measure discounting a zero coupon bond by risk free rates gets a martingale1,2, 

which is expressed in a mathematical form as 

𝑡 + 𝜏 𝑡 + 𝜏 𝑄 
𝑡 𝑟(𝑢)𝑑𝑢 𝑡 𝑟(𝑢)𝑑𝑢𝑃(𝑡, 𝑇, 𝑟(𝑡)) = 𝐸𝑡 [𝑒

−∫ ] = 𝐸𝑡
𝑃 [𝑒−∫ ] (1.43) 

Duffie and Kan (1996) use the risk-neutral measure and formulate multifactor 

term structure models. They assume that the future movement of the instantaneous short 

rate 𝑟𝑡 is a function3, F(𝑿𝒕), of a vector of factors 𝑿𝒕 = (𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑁(𝑡))⊺. They 

prove that a multifactor term structure model has an affine representation (i.e., Eq. (1.24) 

in the one-factor ATSMs) if and only if two requirements are satisfied. 

(1) F(Xt) is assumed to be affine, which is defined by 

𝑟(𝑡) = 𝐹(𝑿𝒕) = 𝛿0 + 𝜹𝒙⊺ 𝑿𝒕 (1.44) 

1 A process {Pt , t > 0} is a martingale if 𝐸𝑡[𝑃𝑡] = 𝑃𝑠, for all 𝑡 > 𝑠, given all the information up to 
and including time s. That is, the best forecast of unobserved future values is the last observation on 𝑃𝑡. 

2 To find a risk-neutral measure Q means to find a probability distribution Q such that 
𝑄𝐸𝑡 [𝑒

−𝑟𝑡𝑃𝑢+𝑡] = 𝑃𝑢, for all 𝑡 > 0. 
3 In this paper, bold symbols are vectors or matrices. Others are scalars. 
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(2) Xt has an affine diffusion process under a risk-neutral probability measure Q. 

This means Xt is assumed to satisfy a stochastic differential equation on the given 

probability space Q, 

𝑸
𝒅𝑿𝒕 = 𝝁𝑸(𝑿𝒕)𝒅𝒕 + 𝝈𝑸(𝑿𝒕)𝒅𝑾𝒕 (1.45) 

where 𝑾𝒕
𝑸 is a standard N-dimensional Brownian motion under Q, with both the drifts and 

the conditional variances of Xt are affine and have expressions: 

𝝁𝑸(𝑿𝒕) = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) (1.46) 

𝝈𝑸(𝑿𝒕) = 𝚺√𝑺(𝑿𝒕) (1.47) 

where 𝜽𝑸 ∈ ℝ𝑁×1and 𝜿𝑸, 𝚺 ∈ ℝ𝑁×𝑁 .  𝑺(𝑿𝒕) is a diagonal 𝑁 × 𝑁 matrix with the i-th 

diagonal element given by 

𝛼𝑖 + 𝜷𝒊⊺𝑿𝒕 ,  ∀ 𝑖 = 𝑗; 
[𝑺(𝑿𝒕)]𝑖𝑗 = { (1.48)

0,         ∀ 𝑖 ≠ 𝑗. 

∈ ℝ𝑁×1 where 𝛼𝑖 ∈ ℝ and 𝜷𝒊 . 

In general, the dynamics of state variables of the multifactor ATSMs has the form 

√𝑆1(𝑿𝒕) ⋯ 0 
𝑸

𝒅𝑿𝒕 = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) 𝒅𝒕 + 𝚺 ( ⋮ ⋱ ⋮ ) 𝒅𝑾𝒕 (1.49) 
0 ⋯ √𝑆𝑛(𝑿𝒕) 

with 𝑆𝑖(𝑿𝒕) = 𝛼𝑖 + 𝜷𝒊⊺𝑿𝒕 
To make sure the solution for Eq. (1.44) exists and is unique, the necessary 

condition to Eq. (1.49) is 

For all i: 

(1) For all x such that 𝑣𝑖(𝑿𝒕) = 0, 𝜷𝒊⊺(𝑎𝑥 + 𝑏) > 𝜷𝒊⊺𝜮𝜮⊺𝜷𝒊/2. 
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(2) For all j, if (𝜷𝒊⊺𝜮)𝑗 ≠ 0, 𝑡ℎ𝑒𝑛 𝑣𝑖 = 𝑣𝑗. 

The conditions ensure that 𝑣𝑖(𝑿𝒕) is nonnegative for all i and t. A special case is 

that 𝜷𝒊 is zero, which means the factors have constant volatility. This case is what the 

Vasicek model assumes. So there is no condition required for the existence of unique 

solutions if 𝜷𝒊 is zero. 

When Eqs. (1.44) and (1.49) are satisfied, Duffie and Kan (1996) derive that the 

zero-coupon bond price has an exponential affine form that can be expressed as 

𝑃(𝑿𝒕, 𝜏) = 𝑒𝐴(𝜏)−𝑩(𝝉)⊺𝑿𝒕 (1.50) 

where 

𝑑𝐴(𝜏) 1 𝑛= −𝛿0 − (𝜽𝑸)⊺(𝜿𝑸)⊺𝑩(𝝉) + ∑ [𝚺⊺𝑩(𝝉)]𝑖
2𝛼𝑖 (1.51)𝑖=1 𝑑𝜏 2 

𝑑𝑩(𝝉) 1 𝑛= 𝜹𝒙 + (𝜿𝑸)⊺𝑩(𝝉) − ∑ [𝚺⊺𝑩(𝝉)]𝑖
2𝜷𝑖 (1.52)𝑖=1 𝑑𝜏 2 

with initial conditions 𝐴(0) = 0 and 𝐵(𝟎) = 𝟎𝑁×1. These are known as Ricatti 

equations. 

1.4 The market price of risk 

As stated in the above section, the multifactor affine term structure models 

derived by Duffie and Kan are based on the risk-neutral probability measure Q. The Q 

measure is a constructed measure, such that the fair value of a zero coupon bond can be 

obtained through discounting the future value of the bond by the risk free rate under the 

Q measure, or 

𝑡 + 𝜏 𝑄 
𝑡 𝑟(𝑢)𝑑𝑢𝑃(𝑡, 𝑇) = 𝐸𝑡 [𝑒

−∫ ] (1.53) 
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This means, the uncertainty of the future yield changes can be removed under the 

Q measure. Since arbitrage free pricing has been built on the Q, the measure Q is often 

referred as the risk-neutral measure. On the contrary, the probability measure in the real 

world is named as the physical measure P. Under the P, we cannot ignore the interest rate 

risk. So the question is how to find a bridge connecting the risk-neutral world and the real 

world. In the literature, this connection is called the price of uncertainty, often referred to 

as the market price of risk. In the multifactor models, the market price of risk is a 

function of 𝑿𝒕 , denoted as 𝜦(𝑿𝒕). 

With the market price of risk connecting Q and P, the dynamics of factors under 

two measures with respect to the 𝑿𝒕 have the forms: 

𝑸
𝒅𝑿𝒕 = 𝝁𝑸(𝑿𝒕)𝒅𝒕 + 𝝈(𝑿𝒕)𝒅𝑾𝒕 

𝑷= 𝝁𝑷(𝑿𝒕)𝒅𝒕 + 𝝈(𝑿𝒕)𝒅𝑾𝒕 (1.54) 

where 𝑾𝒕
𝑷 is a N-dimensional Wiener process under the P and 𝑾𝒕

𝑸 is a N-dimensional 

Wiener process under the Q. 

In terms of diffusion processes, Girsanov’s theorem provides us the machinery to 

write 

𝑸
𝒅𝑾𝒕 = 𝒅𝑾𝒕

𝑷 + 𝚲(𝑿𝒕)𝒅𝒕 (1.55) 

for any process 𝚲(𝑿𝒕) ∈ ℝ𝑁×𝑁 . 

In general, 

𝝁𝑷(𝑿𝒕) = 𝝁𝑸(𝑿𝒕) + 𝝈(𝑿𝒕)𝚲(𝑿𝒕) (1.56) 

Given the affine forms of the drifts and the conditional variances of Xt, which are 
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𝝁𝑸(𝑿𝒕) = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) (1.57) 

𝝈(𝑿𝒕) = 𝚺√𝑺(𝑿𝒕) (1.58) 

The dynamics of 𝑿𝒕 under the risk-neutral measure Q is 

𝑸
𝒅𝑿𝒕 = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) 𝒅𝒕 + 𝚺√𝑺(𝑿𝒕)𝒅𝑾𝒕 (1.59) 

Once specifying a structure of the market price of risk 𝜦(𝑿𝒕), we can derive the 

form of Xt under P, which is 

𝑷𝒅𝑿𝒕 = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕)𝒅𝒕 + 𝚺 √𝑺(𝑿𝒕)𝚲(𝑿𝒕)𝒅𝒕 + 𝚺√𝑺(𝑿𝒕)𝒅𝑾𝒕 (1.60) 

Eqs. (1.59) and (1.60) are equivalent but under different probability measures. 

There are different ways to model the market price of risk. In the recent literature 

there are three main classes: completely affine models, essentially affine models, and 

semi-affine models, defining three different structures of the market prices of risk. These 

classes are all affine under the risk-neutral measure. 

1.4.1 Completely affine models 

Dai and Singleton (2000) assume that 𝜦(𝑿𝒕) is proportional to the conditional 

standard deviation of Xt, which is given by 

𝜦(𝑿𝒕) = √𝑺(𝑿𝒕)𝝀𝟏 , 𝝀𝟏 ∈ ℝ𝑁×1 (1.61) 

Then √𝑺(𝑿𝒕) 𝜦 = 𝑺(𝑿𝒕)𝝀𝟏 , and it is affine in 𝑿𝒕. 

In completely affine models, the drift and diffusion processes under both the P 

and Q measures are affine. So this class of models is widely used and nests many other 

models, e.g., multifactor versions of the Vasicek and CIR models. 
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The specification of 𝜦(𝑿𝒕) imposes two limitations. First, the variation in 𝜦(𝑿𝒕) 

is entirely determined by the variation in 𝑺(𝑿𝒕). So the temporal variation in expected 

excess returns on bonds is driven by the volatility of the factors through 𝑺(𝑿𝒕). Second, 

the sign of each element of 𝜦(𝑿𝒕) is fixed and the same as that of the element of 𝝀𝟏. 

1.4.2 Essentially affine models 

Duffee (2002) describes a broad class of models - Essentially affine models, 

which allows that the bond yields vary independently of the volatility of 𝑿𝒕. Thus, the 

sign of any element of the market price of risk vector can be changed. In particular, the 

𝚲(𝑿𝒕) is defined as 

𝚲(𝑿𝒕) = √𝑺(𝑿𝒕)𝝀𝟏 + √𝑺−(𝑿𝒕)𝝀𝟐𝑿𝒕 (1.62) 

Or 

𝚲(𝑿𝒕) = √𝑺(𝑿𝒕)(𝝀𝟏 + 𝑺(𝑿𝒕)−𝟏𝑰−𝝀𝟐𝑿𝒕) (1.63) 

where 𝝀𝟏 ∈ ℝ𝑁×1 , 𝝀𝟐 ∈ ℝ𝑁×𝑁, and √𝑺−(𝑿𝒕) is a diagonal 𝑁 × 𝑁 matrix with the i-th 

diagonal element given by 

⊺𝑿𝒕)
−1/2(𝛼𝑖 + 𝜷𝒊 , if inf(𝛼𝑖 + 𝜷⊺𝒊𝑿𝒕) > 0; 

[√𝑺−(𝑿𝒕)]𝑖𝑖 = { (1.64)
0,     otherwise. 

and the diagonal matrix 𝑰− with the i-th element given by 

1 if inf(𝛼𝑖 + 𝜷𝒊⊺𝑿𝒕) > 0; 𝑰𝒊𝒊
− = { (1.65)

0   otherwise. 

In the essential affine models, √𝑺(𝑿𝒕)𝚲(𝑿𝒕) = 𝑺(𝑿𝒕)𝝀𝟏 + 𝑰−𝝀𝟐𝑿𝒕 is affine in 𝑿𝒕. 

So the dynamics of 𝑿𝒕 is affine both under the Q and the P. So the dynamics of 𝑿𝒕 under 

P is 
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𝑷𝒅𝑿𝒕 = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕)𝒅𝒕 + 𝚺 (𝑺(𝑿𝒕)𝝀𝟏 + 𝑰−𝝀𝟐𝑿𝒕)𝒅𝒕 + 𝚺√𝑺(𝑿𝒕)𝒅𝑾𝒕 (1.66) 

1.4.3 Semi-affine models 

Duarte (2004) proposes the semi-affine models. The specification of the market 

prices of risk has the form 

𝚲(𝑿𝒕) = 𝚺−𝟏𝝀𝟎 + √𝑺(𝑿𝒕)𝝀𝟏 + √𝑺−(𝑿𝒕)𝝀𝟐𝑿𝒕 (1.67) 

where 𝝀𝟎, 𝝀𝟏 ∈ ℝ𝑁×1 and  𝝀𝟐 ∈ ℝ𝑁×𝑁. When the vector 𝝀𝟎 and the 𝝀𝟐 matrix are null, 

𝜦(𝑿𝒕) has the form of completely affine models. Essentially affine models are affine 

when the vector 𝝀𝟎 is null. 

Comparing with the essentially affine models, the additional term, 𝚺−𝟏𝝀𝟎 , in 

semi-affine models offers additional sign changing flexibility without limiting the 

volatility dynamics. Unfortunately, the introduction of 𝚺−𝟏𝝀𝟎 makes the drift process of 

the state variables under the P is not the affine function of 𝑿𝒕. This is because 

𝝁𝑷(𝑿𝒕) = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) + 𝚺√𝑺(𝑿𝒕)𝚲(𝑿𝒕)

  = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) +  𝚺√𝑺(𝑿𝒕)(𝚺−𝟏𝝀𝟎 + √𝑺(𝑿𝒕)𝝀𝟏 + √𝑺−(𝑿𝒕)𝝀𝟐𝑿𝒕)

  = 𝜿𝑸(𝜽𝑸 − 𝑿𝒕) + 𝚺√𝑺(𝑿𝒕)𝚺−𝟏𝝀𝟎 + 𝚺 (𝑺(𝑿𝒕)𝝀𝟏 + 𝑰−𝝀𝟐𝑿𝒕)  (1.68) 

Obviously, the term 𝚺√𝑺(𝑿𝒕)𝚺−𝟏𝝀𝟎 is not affine in 𝑿𝒕, and for this reason the 

model is called “semi-affine”. 

1.5 Classification of ATSMs 

Based on the discussion of Section 1.4, we can see the diffusion term is affine in 

both the risk-neutral measure and the physical measure if the models are either 
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completely affine or essentially affine. Dai and Singleton (2000) analyze the 

classification of ATSMs assuming the models are essentially affine. 

Dai and Singleton (2000) classify ATSMs based on the number of state factors 

and make sure that all models in each class are “admissible”. The model is “admissible”, 

meaning a specification of an affine model can well define bond yields. In particular, the 

model is admissible if the conditional variances of factors (denoted as [𝑺(𝑿𝒕)]𝑖𝑖) are 

strictly positive. In each “admissible” class, the paper proves that there exists a 

“maximal” model that can nest econometrically all other models within the same class. A 

maximal model is a model that is sufficiently flexible to describe the cross-section 

movements in short- and long-term bond yields. 

Define 𝑿𝒕 is a N-dimensional factor vector4, i.e. 𝑿𝒕 = (𝑋1, 𝑋2, … , 𝑋𝑁)⊺. A general 

specification of a multi-factor affine model under P is 

𝑷𝒅𝑿𝒕 = 𝜿𝑷(𝜽𝑷 − 𝑿𝒕) 𝒅𝒕 + 𝚺√𝑺(𝑿𝒕)𝒅𝑾𝒕 (1.69) 

and thus, the instantaneous short rate is defined as 

𝑟𝑡 = 𝛿0 + 𝜹𝒙⊺ 𝑿𝒕 (1.70) 

where 𝜽 ∈ ℝ𝑵×𝟏and 𝜿, 𝚺 ∈ ℝ𝑵×𝑵. 𝑺(𝑿𝒕) is a diagonal 𝑁 × 𝑁 matrix with the element 

given by 

𝛼𝑖 + 𝜷𝒊⊺𝑿𝒕, 𝑖 = 𝑗 
[𝑺(𝑿𝒕)]𝑖𝑗 = { (1.71)

0, 𝑖 ≠ 𝑗 

∈ ℝ𝑵×𝟏 where 𝛼𝑖 ∈ ℝ and 𝜷𝒊 . 

4 To distinguish a scale variable and a vector variable, vector variables are in bold. 
17 



 

 

 

  

                                                       
 

 

 

 
                  

 

   

 

 

 

   

 

 

 

 

 

 

Expand equation (1.69) in a matrix form, 

𝑑𝑋1 (𝜃1 − 𝑋1)𝑑𝑡𝜅11 ⋯ 𝜅1𝑁 𝑑𝑋2 (𝜃2 − 𝑋2)𝑑𝑡( ⋮ ) = (
⋮ ⋱ ⋮ )( ⋮ ) 

⋯𝜅𝑁1 𝜅𝑁𝑁𝑑𝑋𝑁 (𝜃𝑁 − 𝑋𝑁)𝑑𝑡 

√𝛼1+∑
𝑁 𝑑𝑊1𝑖=1 𝛽𝑖1𝑋𝑖 

𝜎11 ⋯ 𝜎1𝑁 
√𝛼2+∑

𝑁 𝛽𝑖2𝑋𝑖𝑑𝑊2+( ⋮ ⋱ ⋮ ) 𝑖=1 (1.72) 
𝜎𝑁1 ⋯ 𝜎𝑁𝑁 

⋮ 
𝑁√𝛼𝑁+∑𝑖=1 𝛽𝑖𝑁𝑋𝑖𝑑𝑊𝑁 

( ) 

The general form of Eq. (1.69) is complex and difficult to do a specific analysis. 

So Dai and Singleton (2000) formalize the family of the admissible N-factor ATSMs, 

denoted as 𝐴𝑚(𝑁). 𝑚 = 𝑟𝑎𝑛𝑘(ℬ), where ℬ = (𝛽1, 𝛽2, … , 𝛽𝑁), represents the degrees of 

the dependence of the conditional variances on the number of factors. Based on the value 

of m, the family of the admissible N-factor ATSMs can be classified into (N+1) 

subfamilies. Those (N+1) admissible ATSMs subfamilies have notations: 

𝐴0(𝑁), 𝐴1(𝑁), … , 𝐴𝑚(𝑁), … , 𝐴𝑁(𝑁). 

In a matrix form, the Canonical Representations of 𝐴𝑚(𝑁) can be written as 
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𝑑𝑋1 𝜅11 ⋯ 𝜅1𝑚 0 ⋯ 0 (𝜃1−𝑋1)𝑑𝑡 
𝑑𝑋2 
⋮ ⋮ ⋱ ⋮ 

| ⋮ ⋱ ⋮ (𝜃2−𝑋2)𝑑𝑡 
⋮ 

𝑑𝑋𝑚 
𝑑𝑋𝑚+1 
𝑑𝑋𝑚+2 
⋮ 

= 𝜅𝑚1 
𝜅𝑚+1,1 
⋮ 

⋯ 
⋯ 
⋱ 

𝜅𝑚𝑚 0 
𝜅𝑚+1,𝑚 𝜅𝑚+1,𝑚+1 |
⋮ ⋮ 

⋯ 
⋯ 
⋱ 

0 
𝜅𝑚+1,𝑁 
⋮ 

(𝜃𝑚−𝑋𝑚)𝑑𝑡 
−𝑋𝑚+1𝑑𝑡 
−𝑋𝑚+2𝑑𝑡 

⋮ 
( 𝑑𝑋𝑁 ) ( 𝜅𝑁1 ⋯ 𝜅𝑁𝑚 𝜅𝑁,𝑚+1 ⋯ 𝜅𝑁𝑁 ) ( −𝑋𝑁𝑑𝑡 )

√𝑋1𝑑𝑊1 
√𝑋2𝑑𝑊2 

⋮ 
√𝑋𝑚𝑑𝑊𝑚+ (1.73) 

√1+∑𝑚 𝑑𝑊𝑚+1 𝑖=1 𝛽𝑖,𝑚+1𝑋𝑖 

√1+∑𝑚 𝑑𝑊𝑚+2 𝑖=1 𝛽𝑖,𝑚+2𝑋𝑖 

⋮ 

√1+∑𝑚 𝑑𝑊𝑁𝑖=1 𝛽𝑖,𝑁𝑋𝑖( ) 

with the restrictions: 

(1) 𝛿𝑖 ≥ 0,       𝑚 + 1 ≤ 𝑖 ≤ 𝑛 

𝑚(2) ∑𝑗=1 𝜅𝑖𝑗𝜃𝑗 > 0,  1 ≤ 𝑖 ≤ 𝑚 

(3) 𝜅𝑖𝑗 ≤ 0, 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ≠ 𝑖 

(4) 𝜃𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚 

(5) ℬ𝑖𝑗 ≥ 0,                   1 ≤ 𝑖 ≤ 𝑚, 𝑚 + 1 ≤ 𝑗 ≤ 𝑛 

The sign restriction of ℬ𝑖𝑗 in (5) assures that the conditional variances of state 

factors are positive. In order to have (𝑋1, 𝑋2, … , 𝑋𝑚)⊺ strictly positive, restrictions (2), (3) 

and (4) are imposed. The form of Eq. (1.73) plus five restrictions (1 - 5) make sure that 

any ATSM satisfying the canonical representation of 𝐴𝑚(𝑁) is admissible. In addition, 

the canonical representation is also maximal. 

If m = 0 or an 𝐴0(𝑁) subfamily, there is no factor affecting the volatility of the 

state factors at all. In this case, the state factors are homoskedastic and follow Gaussian 
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diffusion processes. A typical example of such a case is the Vasicek model when N = 1. 

The state factors in the 𝐴0(𝑁) models are perfectly correlated either conditionally or 

unconditionally at the cost of constant conditional variances (m = 0). Another extreme 

case is when m = N so that all state factors determine the volatility structures. The CIR 

model, 𝐴1(1), is a one-factor example in this subfamily. Since all state factors contribute 

to the conditional volatility structures in the 𝐴𝑁(𝑁) models, the dynamics of yield curves 

have maximal flexibility at the cost of the null conditional correlations of the state factors 

and the non-negative unconditional correlations. Between the 𝐴0(𝑁) and 𝐴𝑁(𝑁) lie the 

(N-1) subfamilies of ATSMs with time-varying conditional volatilities of the state factors 

(1 ≤ 𝑚 ≤ 𝑁 − 1) and admissible non-zero conditional correlations of state factors. 

Therefore, there is an important trade-off within the family of ATSMs between the 

flexibility in specifying conditional volatilities of state factors and the flexibility in 

modeling conditional correlations of state factors. 

Taking the 3-factor ATSMs as an example, there are four subfamilies: 

𝐴0(3), 𝐴1(3), 𝐴2(3), 𝐴3(3). The Vasicek, BDFS, Chen and CIR models are one example 

of those four subfamilies, respectively. Comparing four extant models with their maximal 

counterparts in their own subfamilies, Dai and Singleton (2000) find that except for the 

Vasicek model, the other three all impose overidentifying restrictions. 
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CHAPTER II 

THE VALUE OF KNOWING THE TRUTH AND THE COST OF BEING WRONG: 

AN APPLICATION TO ONE-FACTOR AFFINE TERM 

STRUCTURE MODELS 

2.1 Introduction 

Modeling the evolvement of yield curves over time is an important issue in the 

finance literature because the term structure of interest rates can help people determine 

the prices of interest rate contingent claims such as interest rate options, callable bonds, 

and interest rate futures. Affine term structure models (ATSMs) are one set of popular 

models for yield curve modeling. These models assume that the dynamics of the term 

structure of interest rates are a linear function of a set of observed and/or latent factors 

(Duffie and Kan, 1996). In this chapter, I focus on two well-defined one-factor ATSMs: 

Vasicek model (Vasicek, 1977) and Cox, Ingersoll and Ross (CIR hereafter) model (Cox, 

Ingersoll, and Ross, 1985). 

To test and/or compare different models, scholars generally calibrate models 

using historical treasury yields and then check how far the predicted values are away 

from the real data. While much of the prior literature focuses on estimating and 

evaluating these cross-sectional pricing errors for different ATSMs, little is known about 
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the data’s power to distinguish one ATSM from another5. Given that the models forecast 

yields based on the speed of mean reversion, under what circumstances can we 

distinguish one ATSM from another?  The objective of this chapter is to quantify the 

benefit of knowing the “true” model as well as the cost of being wrong when choosing 

between ATSMs. In particular, I detail the power of out-of-sample forecasts to 

statistically distinguish one ATSM from another given that we only know the data are 

generated from an ATSM and are observed without errors. 

To explore the question of interest, I use a parsimonious Monte Carlo study to 

simulate six-month zero-coupon data from both the Vasicek and CIR models and then, in 

turn, estimate both the CIR and Vasicek models using that simulated data. In addition, I 

add a non-linear diffusion model (Aït-Sahalia, 1996), a first-order autoregressive model 

(AR(1)), and a Martingale model as three alternative estimation approaches. Then, I 

construct out-of-sample forecasts for all estimation models over 1-, 6-, and 12-month 

horizons. The model's forecasting accuracy is measured by the mean squared error 

(MSE). Last, I use the Giacomini and White (2006) test to examine the models’ relative 

predictive ability as well as the model's power to statistically distinguish between 

different ATSMs. The test statistic is the standardized difference of two models' MSEs. If 

the test statistic is different from zero at the 5% significance level, we say that the two 

competing models can be statistically differentiated. The larger the absolute value of the 

5 In order for a K-factor model to fit the M bonds (K > M), an auxiliary error model is introduced. 
Most studies evaluate the ATSM based on the size of this error, though Duffee (2002) and Cheridito et al 
(2005) evaluate the models’ (estimated with the auxiliary error) ability to forecast out-of-sample.  
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test statistics, the stronger the power to distinguish one model from another, and the 

higher the relative predictive ability of the model with the smaller MSE.   

In this chapter, I use the maximum likelihood approach to estimate the ATSMs. 

Because of the high persistence of finite bond samples (Bauer, Rudebusch and Wu, 

2012), bias in the parameter estimates, particularly the mean reversion estimate, can be 

exhibited by all estimation approaches, including the maximum likelihood estimation 

(Tang and Chen, 2009). When the mean reversion is near the unit root, the problem 

becomes even more serious. Duffee and Stanton (2012) investigate the maximum 

likelihood estimation under the circumstances that the ATSMs include complex forms of 

the price of risk. They find that the maximum likelihood estimation produces a strong 

bias in the mean reversion estimates when the price of risk has a flexible specification. 

That is, the maximum likelihood estimators based on the highly persistent bond samples 

differ largely from their true values, and then the corresponding bond yield forecasts have 

little precision. To increase the forecast precision, I need a technique to correct the 

estimator biases. The literature proposes several methods (Andrews, 1993; Smith, 1993; 

Phillips and Yu, 2009; Tang and Chen, 2009). In this chapter, I follow the bootstrap bias 

correction process proposed by Tang and Chen (2009). My study shows that the bootstrap 

process can largely reduce the parameter biases, particularly the bias of the mean 

reversion estimate. 

Considering the historical bond data are highly persistent, I simulate the data from 

the ATSMs whose mean reversion parameters are near the unit root with an 

autoregressive coefficient 𝜌 of 0.99. The autoregressive coefficient 𝜌 is defined as 𝜌 = 

𝑒−𝜅𝛥𝑡, where 𝜅 is the mean reversion parameter and 𝛥𝑡 is the time interval in years. 
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Comparing the affine term structure models’ forecasting performance based on the 

estimates of the Vasicek model and CIR models, both before and after running the 

bootstrap bias correction processes, I find the model’s relative predictive ability is closely 

related to the size of mean reversion bias no matter what the data-generating model is. 

The smaller the bias in the estimate of the mean reversion, the better out-of-sample 

forecasts the model produces. The probability that the true models are distinguished from 

the non-data-generating ATSMs, or the "wrong" models, is over 80% at the 1-month 

ahead horizon, over 65% at the 6-month ahead horizon, and over 55% at the 12-month 

ahead horizon. The reason that the power to differentiate between models is decreasing as 

the increase of the forecast horizons is that ATSMs are the mean-reversion processes. 

That is, the models will approach their long-run means as long as the time horizon is. In 

addition, the ATSMs generally have the higher predictive ability than three alternative 

models. The martingale model has the least forecasting accuracy over all models. 

Since the ATSMs' predictive ability is related to the mean reversion parameters, a 

variety of experiments are conducted to explore how the predictive ability varies with the 

change of the ATSMs’ mean reversion parameters. The first experiment (Setting A) is 

designed to push the mean reversion parameter far away from the unit root. In particular, 

I simulate the data with the new model whose half life of a shock to the interest rate is 1/6 

of that of the old model whose mean reversion parameter is near the unit root. The half 

life of a shock is defined as the time horizon at which the effect of the shock is one-half. 

In the Vasicek and CIR models, the half life is calculated as −ln0.5/𝜅, which gives us 

important information about how quickly the instantaneous short rates converge to their 

long-run mean after a shock. The new model refers to a high speed mean reversion 
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process and the autoregressive coefficient of the new model is 0.93. Then I repeat the 

same estimation, forecasting and testing processes as the above. My finding shows that 

the new models' predictive ability is generally higher than the old models'. However, the 

new model's power to distinguish between different ATSMs is largely reduced since the 

probabilities to differentiate the true models from the wrong models are below 30%, 

below 25% and below 20% at the 1-, 6- and 12-month ahead horizon, respectively. The 

possible explanation is that the faster mean reversion means that the model forecasts are 

simply equal to the long-run mean. 

Tang and Chen (2009) conclude that the bias of the mean reversion estimator is 

not a function of the number of observations but a decreasing function of the time span. 

This implies that the number of observations and the time span in an estimation window 

may influence the estimator of the mean reversion parameter. Therefore, I design two 

experiments to investigate the sensitivity of the model's predictive ability to the sample 

size and to the time span of the sample, respectively. 

In my second experiment (Setting B), I change the sampling frequency of the data 

from the monthly basis (∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365), while keeping the 

time span and other parameters the same as those of the initial model's. Accordingly, the 

sample size rises over a fixed time span. The latter corresponds to the high frequency 

data. The results show the increase of the sample size by the way of increasing the 

sampling frequency has little influence on the size of the mean reversion bias. However, 

the larger sample size improves the model's predictive ability. In contrast, the probability 

of the model's power to distinguish between different ATSMs drops by about 50%. 
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My third experiment (Setting C) studies the impact of the sample's time span on 

the model's predictive ability. I change the sampling frequency of the data from a 

monthly basis to a daily basis but keep the sample size and other parameters unchanged. 

The new model corresponds to a shorter time span but maintains the same sample size in 

comparison with the initial model. My findings are consistent with Tang and Chen. That 

is, the bias of the mean reversion estimate of the new model is larger than the 

corresponding value of the initial model. The shorter time span with the same sample size 

slightly increases the models' predictive ability. But the power to differentiate the true 

model from the wrong models is reduced by more than 10%. In addition, the comparison 

between the results from Setting B and Setting C shows that the larger sample size with 

the same sampling frequency improves the model's predictive ability but decreases the 

model's power to distinguish between different models. 

In summary, I find that the a mean reversion process with a higher speed, the 

larger sample size, and the higher sampling frequency can improve ATSMs' predictive 

ability in contrast with the decrease of the models' power to differentiate between 

different ATSMs. 

The rest of this chapter is organized as follows: Section 2.2 describes the 

parameter estimation methods and the Giacomini and White test. The detail data 

simulation procedure is described in Section 2.3. Section 2.4 examines the ATSMs' out-

of-sample performance when the models are near the unit root. In addition, Section 2.4 

discusses the role of the mean reversion parameter, the sample size, and the sample's time 

span on the models’ predictive ability. Section 2.5 concludes the paper and discusses the 

possible extensions to this research. 
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2.2 Model estimation and inference 

This section introduces the estimation models for the affine term structure models. 

Maximum likelihood is my first choice because of its asymptotic efficiency. In addition, I 

can invert the pricing equations to infer the state factors and express the likelihood 

function as the equations of the bond prices. This is the approach used by Pearson and 

Sun (1994). I also outline three alternative forecast techniques which I compare to the 

ATSMs: Non-Linear diffusion model (ND), First-order autoregressive model (AR(1)), 

and Martingale model. After that, this section describes the bootstrap bias correction 

process of Tang and Chen (2009) because the maximum likelihood estimation exhibits a 

bias in the mean reversion estimator. Lastly, I introduce the Giacomini and White test to 

examine and compare the models' predictive ability. 

2.2.1 Maximum likelihood estimation of Vasicek model (MLE-Vasicek) 

This section states the process of zero yields estimation using the maximum 

likelihood function of the Vasicek model. The Vasicek model is a one-factor ATSM and 

derived by Vasicek in 1977. The model has the expression: 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (2.1) 

where 𝑟𝑡 is the instantaneous short rate, θ is the long-run mean, 𝜅 is the speed of mean 

reversion, and 𝑊𝑡 is a Wiener process. One advantage of the Vasicek model is that its 

transition density is explicitly expressed, which is a Gaussian model. So we can form a 

log-likelihood function of the instantaneous short rate and apply the MLE method. 

Usually the instantaneous short rates are not observable in the market, while zero bond 

yields at different maturities are observed. Therefore, we have to find a way to derive a 
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log-likelihood function of zero bond prices. In this section I show how to transform the 

instantaneous short rate’s log-likelihood function to a log-likelihood function of 

observable zero-coupon bond prices. 

The probability density function for 𝑟𝑡 conditional on 𝑟𝑡−1, with a Δ𝑡 time step 

between them, is given by 

[𝑟𝑡−(𝜃+(𝑟𝑡−1−𝜃)𝑒
−𝜅Δ𝑡)]2 

2𝜎𝑡ℎ𝑉(𝑟𝑡|𝑟𝑡−1) = 1 
2 𝑒

− 2 (2.2)
√2𝜋𝜎𝑡 

𝜎2 
(1 − 𝑒−2𝜅Δ𝑡)with 𝜎𝑡

2 = 𝜎𝑡2(𝑟𝑡|𝑟𝑡−1) = (2.3)
2𝜅 

Thus, given the initial short rate 𝑟1, the log-likelihood function of a set of (n - 1) 

observations on the short rate, {𝑟2 , ⋯ 𝑟𝑛−1, 𝑟𝑛}, is given by 

𝑛 𝑛 

ℒ(𝜅, 𝜃, 𝜎𝑡) = ln∏ℎ𝑉(𝑟𝑖|𝑟𝑖−1) = ∑ln ℎ𝑉(𝑟𝑖|𝑟𝑖−1) 
𝑖=2 𝑖=2 

𝑛 − 1 
= − ln(2𝜋) −(𝑛 − 1) ln(𝜎𝑡)2 

1 𝑛 [(𝑟𝑖 − 𝜃) − (𝑟𝑖−1 − 𝜃)𝑒−𝜅Δ𝑡]2− ∑ (2.4) 
2𝜎𝑡

2 𝑖=2 

Define 𝛼 = 𝑒−𝜅Δ𝑡 , then Equation (2.4) can be written as 

𝑛 − 1 
ℒ(𝛼, 𝜃, 𝜎𝑡) = − ln(2𝜋)−(𝑛 − 1) ln(𝜎𝑡)2 

1 𝑛− ∑ [(𝑟𝑖 − 𝜃) − (𝑟𝑖−1 − 𝜃)𝛼]2 (2.5) 2 𝑖=2 2𝜎𝑡 

Eq. (2.5) specifies the log-likelihood function of the short rate. So we can estimate 

three parameters, 𝜃 , 𝜅, and 𝜎, based on iterating log-likelihood maximization process, 

which are the numerical parameter estimates. Also, we can use the differential calculus to 
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derive the analytical maximum likelihood estimates of parameters 𝜃 , 𝜅, and 𝜎. Brigo and 

Mercurio (1974, PP62) provide the calculations and equations: 

𝑛 𝑛 𝑛−∑ ∑(𝑛−1) ∑ 𝑖=2 𝑟𝑖𝑟𝑖−1 𝑖=2 𝑟𝑖 𝑖=2 𝑟𝑖−1 �̂� = 2 (2.6)
𝑛 𝑛(𝑛−1) ∑ 2 −(∑ )𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖−1 

∑𝑛 [𝑟𝑖−�̂�𝑟𝑖−1]̂ = 𝑖=2 𝜃 (2.7)
(𝑛−1)(1−�̂�) 

1 𝑛𝜎𝑡
2 = ∑ [𝑟𝑖 − �̂� 𝑟𝑖−1 − 𝜃(1 − �̂�)]2 (2.8)𝑖=2 𝑛−1 

Rearranging the above equations gives 

𝑛 𝑛 2 𝑛 𝑛∑ 𝑟𝑖 ∑ −∑ ∑𝑖=2 𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖𝑟𝑖−1 𝜃 = 2 (2.9)
𝑛 2 𝑛 𝑛 𝑛 𝑛(𝑛−1)(∑ −∑ )−((∑ ) −∑ ∑ )𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖𝑟𝑖−1 𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖 𝑖=2 𝑟𝑖−1 

𝑛 𝑛 𝑛 ̂21 ∑𝑖=2 𝑟𝑖𝑟𝑖−1 −�̂� ∑𝑖=2 𝑟𝑖−1 −�̂� ∑𝑖=2 𝑟𝑖+(𝑛−1)𝜃�̂� = − ln [ ] (2.10)𝑛 2 𝑛Δ𝑡 ∑ −2�̂� ∑ +(𝑛−1)�̂�2 
𝑖=2 𝑟𝑖−1 𝑖=2 𝑟𝑖−1 

̂Δ𝑡 �̂� = 𝑒−𝜅 (2.11) 

𝑛 𝑛 𝑛1
2̂ 2 2𝜎𝑡 = (∑ 𝑟𝑖 − 2�̂� ∑ 𝑟𝑖𝑟𝑖−1 + �̂�2 ∑ 𝑟𝑖−1 𝑛 − 1 𝑖=2 𝑖=2 𝑖=2

2𝑛 𝑛  −2𝜃(1 − �̂�)(∑ 𝑖=2 𝑟𝑖 − �̂� ∑𝑖=2 𝑟𝑖−1 ) + (𝑛 − 1)[𝜃(1 − �̂�)] ) (2.12) 

2�̂�2𝜎2 = 𝜎𝑡 (2.13) 
1−�̂�2 

The above process is based on the transition density function of the instantaneous 

short rates. However, the usual case is that the instantaneous short rates are not 

observable in the market and the available data are bond prices.  So it is necessary to find 

a way to derive the log-likelihood function of the zero bond prices. Pearson and Sun 

(2004) provide a process to derive the transition density function of the zero bond prices 

by re-writing the factors as a function of the bond prices. I follow the method of Pearson 
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and Sun (2004) in this paper. Equation (2.14) enables us to infer the instantaneous short 

rates from the zero coupon prices. 

𝑃𝑡(𝜏) = 𝑒𝐴(𝜏)−𝐵(𝜏)𝑟𝑡 (2.14) 

where 𝜏 is the time to maturity6 and: 

𝜎2 𝜎2𝐵2(𝜏)
𝐴(𝜏) = (𝜃 − ) (𝐵(𝜏) − 𝜏) − (2.15)

2𝜅2 4𝜅 

1
𝐵(𝜏) = (1 − 𝑒−𝜅𝜏) (2.16)

𝜅 

Fixing 𝜏 and simplifying 𝑃𝑡(𝜏) as 𝑃𝑡 for convenience, the factor 𝑟𝑡 can be written 

as: 

𝐴(𝜏)−𝑙𝑛𝑃𝑡𝑟𝑡 = (2.17) 
𝐵(𝜏) 

Taking the derivatives of 𝑟𝑡 with respect to 𝑃𝑡, we can get the Jacobian of the 

transformation, which is 

𝑑𝑟𝑡 1
𝐽 = = − (2.18) 

𝑑𝑃𝑡 𝑃𝑡𝐵(𝜏) 

By dividing the time interval [0, T] into n subintervals of equal width and letting 

𝑡0 = 0 and 𝑡𝑛 = 𝑇, we have n time knots 𝑡1, 𝑡2 , ⋯ 𝑡𝑛−1, 𝑡𝑛, and Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 

1,2, … , 𝑛. Assume the zero bond prices at each time knot are 𝑃1, 𝑃2, ⋯ , 𝑃𝑛. At each time 

knot 𝑡𝑖, the Jacobian can be written as 

𝑑𝑟𝑡𝑖 1
𝐽 = = − (2.19) 

𝑑𝑃𝑖 𝑃𝑖𝐵(𝜏) 

𝜎𝜆 𝜎2 𝜎2𝐵2(𝜏)6 The full definition is 𝐴(𝜏) = (𝜃 − − ) (𝐵(𝜏) − 𝜏) − , where 𝜆 is the market price 
𝜅 2𝜅2 4𝜅 

of risk. 𝜆 is set as zero for convenience. 
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Therefore, the transition density function of bond prices is obtained by 

multiplying the transition density of the short rates with the Jacobian. 

2
𝐴(𝜏)−𝑙𝑛𝑃𝑖( −𝜇) 
𝐵(𝜏)1 1 − 
2𝜎𝑡

2 
ℎ𝑉(𝑃𝑖|𝑃𝑖−1) = |𝐽|ℎ𝑉(𝑟𝑡𝑖 ) = |− | 𝑒|𝑟𝑡𝑖−1 2𝑃𝑖𝐵(𝜏) √2𝜋𝜎𝑡 

𝐴(𝜏)−𝑙𝑛𝑃𝑖( −𝜇)2 
𝐵(𝜏)

−1 22𝜎𝑡= 𝑒 (2.20) 
√2𝜋𝜎𝑡

2𝑃𝑖|𝐵(𝜏)| 

𝐴(𝜏)−𝑙𝑛𝑃𝑖−1 2 𝜎2 
(1 − 𝑒−2𝜅Δ𝑡).where 𝜇 = 𝜃 + ( − 𝜃) 𝑒−𝜅Δ𝑡 and 𝜎𝑡 = 

𝐵(𝜏) 2𝜅 

Taking the natural logarithm of Eq. (2.20) gets 

𝐴(𝜏)−𝑙𝑛𝑃𝑖 
2 

( −𝜇) 1 𝐵(𝜏)lnℎ𝑉(𝑃𝑖|𝑃𝑖−1) = ln( ) − 2 (2.21) 
√2𝜋𝜎𝑡

2𝑃𝑖|𝐵(𝜏)| 2𝜎𝑡 

Replace 𝜇 in Eq. (2.21) with the full expression and get, 

1 
lnℎ𝑉(𝑃𝑖|𝑃𝑖−1) = ln( ) 

√2𝜋𝜎𝑡
2𝑃𝑖|𝐵(𝜏)| 

𝐴(𝜏)−𝑙𝑛𝑃𝑖 𝐴(𝜏)−𝑙𝑛𝑃𝑖−1 
2 

( −𝜃−( −𝜃)𝑒−𝜅Δ𝑡)
𝐵(𝜏) 𝐵(𝜏)− 2 (2.22) 

2𝜎𝑡 

The log-likelihood function of zero coupon bond prices, 𝑃1, 𝑃2, ⋯ , 𝑃𝑛, is thus 

ℒ(𝜅, 𝜃, 𝜎) = lnℎ𝑉(𝑃𝑛, 𝑃𝑛−1, ⋯ , 𝑃2|𝑃1) 

𝑛 

= ln∏ℎ𝑉(𝑃𝑖|𝑃𝑖−1) 
𝑖=2 

𝑛= ∑ ln ℎ𝑉(𝑃𝑖|𝑃𝑖−1) (2.23) 𝑖=2 

Substituting Eq. (2.22) into Eq. (2.23) gets 
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𝑛 
1 

ℒ(𝜅, 𝜃, 𝜎) = ∑ ln( ) 
√2𝜋𝜎𝑡

2𝑃𝑖|𝐵(𝜏)|𝑖=2 

2
𝐴(𝜏) − 𝑙𝑛𝑃𝑖 𝐴(𝜏) − 𝑙𝑛𝑃𝑖−1 𝑛 ( − 𝜃 − ( − 𝜃) 𝑒−𝜅Δ𝑡)
𝐵(𝜏) 𝐵(𝜏)

−∑ 22𝜎𝑡𝑖=2 

𝑛 
1 1 

= (n − 1) ln( ) +∑ln( ) 
√2𝜋𝜎𝑡

2|𝐵(𝜏)| 𝑃𝑖
𝑖=2 

2 
𝑛 𝐴(𝜏) − 𝑙𝑛𝑃𝑖 𝐴(𝜏) − 𝑙𝑛𝑃𝑖−1 ( − 𝜃 − ( − 𝜃) 𝑒−𝜅Δ𝑡)

𝐵(𝜏) 𝐵(𝜏)
−∑ 22𝜎𝑡𝑖=2

𝑛 

   = −(n − 1) ln( √2𝜋𝜎𝑡2|𝐵(𝜏)|) −∑ln(𝑃𝑖) 
𝑖=2 

21 𝐴(𝜏)−𝑙𝑛𝑃𝑖 𝐴(𝜏)−𝑙𝑛𝑃𝑖−1 𝑛− 2 ( − 𝜃 − ( − 𝜃) 𝑒−𝜅Δ𝑡) (2.24)
2𝜎𝑡 

∑𝑖=2 𝐵(𝜏) 𝐵(𝜏) 

Equation (2.24) is the final equation of the log-likelihood function based on prices 

for the zero-coupon bond maturing at time 𝜏. Knowing Eq. (2.24), we can iterate the 

MLE process and estimate the parameters of the Vasicek model: 𝜅, 𝜃, 𝜎. 

Once we get the parameter estimators: �̂�, 𝜃, and �̂�, we can forecast 1-step ahead 

or h-step ahead instantaneous short rates based on 

̂∆𝑡𝑟𝑡𝐸(𝑟𝑡+1|𝑟𝑡) = 𝜃(1 − 𝑒−�̂�∆𝑡) + 𝑒−𝜅 (2.25) 

̂ℎ∆𝑡𝑟𝑡𝐸(𝑟𝑡+ℎ∆𝑡|𝑟𝑡) = 𝜃(1 − 𝑒−�̂�ℎ∆𝑡) + 𝑒−𝜅 (2.26) 

Thus, the corresponding forecasts of zero-coupon bond yields can be expressed as 

�̂�(𝜏)−𝐵 ̂̂(𝜏)𝑟𝑡+1 �̂�𝑡+1(𝜏) = − 
𝜏 

(2.27) 
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�̂�(𝜏)−�̂�(𝜏)�̂�𝑡+ℎ∆𝑡 �̂�𝑡+ℎ∆𝑡(𝜏) = − (2.28) 
𝜏 

where 

�̂�2 �̂�2�̂�2(𝜏)
�̂�(𝜏) = (𝜃 − ) (�̂�(𝜏) − 𝜏) − (2.29)

2�̂�2 4�̂� 

1 ̂𝜏)�̂�(𝜏) = (1 − 𝑒−𝜅 (2.30)
�̂� 

Fixing 𝜏 and simplifying �̂�𝑡+1(𝜏) and �̂�𝑡+ℎ∆𝑡(𝜏) as �̂�𝑡+1 and �̂�𝑡+ℎ∆𝑡, respectively, for 

convenience. Note that the fact that the yields are linear in the factor means that our yield 

forecasts, which are based on the factor forecasts, will not suffer from Jensen’s 

inequality. 

2.2.2 Maximum likelihood estimation of CIR model (MLE-CIR) 

In the Vasicek model, the conditional volatility of the instantaneous short rate is 

constant and independent of the level of the rate. Different from the Vasicek model, the 

CIR model assumes that the conditional volatility of the instantaneous short rates is 

proportional to the square root of the rate itself. So the CIR model is a mean-reverting 

square root process. The dynamics of the instantaneous short rate can be expressed as: 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎√𝑟𝑡𝑑𝑊𝑡 (2.31) 

Conditional on the value at time s, the transition density function of 𝑟𝑡 (t > s > 0) 

is 
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𝑞 
𝜐 2 1 

ℎ𝐶𝐼𝑅(𝑟𝑡|𝑟𝑠) = 𝑐𝑒−𝑢−𝜐 ( ) 𝐼𝑞 (2(𝑢𝜐)2)𝑢

= 2𝑐 ∙ 𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2(2𝑐𝑟𝑡; 2𝑞 + 2, 2𝑢) 

𝑟𝑡 
𝑞 

= 𝑐𝑒−𝑐(𝑟𝑡+𝑟𝑠𝑒−𝜅(𝑡−𝑠))( )2𝐼𝑞 (2𝑐√𝑟𝑡𝑟𝑠𝑒
−𝜅(𝑡−𝑠)) (2.32)  

𝑟𝑠𝑒
−𝜅(𝑡−𝑠)

where 

2𝜅 
𝑐 = (2.33)

𝜎2(1−𝑒−𝜅(𝑡−𝑠)) 

𝑢 = 𝑐𝑟𝑠𝑒−𝜅(𝑡−𝑠) (2.34) 

𝜐 =  𝑐𝑟𝑡 (2.35) 

2𝜅𝜃 
𝑞 = 

𝜎2 − 1 (2.36) 

and 𝐼𝑞(∙) is the modified Bessel function of the first kind of order q. 

In this model, the transition density for 𝑟𝑡 is a noncentral chi-square distribution 

with (2𝑞 + 2) degrees of freedom and noncentrality parameter 2𝑢. 

Because of the same reason as that stated in the Vasicek model, I use Pearson and 

Sun (2004) method to derive the log-likelihood function of zero-coupon bond prices 

based on the transition density function of the CIR model. The following states the 

details. 

If dividing the time interval [0, T] into n subintervals of equal width and letting 

𝑡0 = 0 and 𝑡𝑛 = 𝑇, we have n time knots 𝑡1, 𝑡2 , ⋯ 𝑡𝑛−1, 𝑡𝑛, and Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 

1,2, … , 𝑛. Conditional on 𝑟𝑡𝑖−1 , the transition density distribution of 𝑟𝑡𝑖 can be written as: 
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ℎ𝐶𝐼𝑅(𝑟𝑡𝑖 ) = 2𝑐 ∙ 𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2(2𝑐𝑟𝑡𝑖; 2𝑞 + 2, 2𝑢) |𝑟𝑡𝑖−1 

4𝜅𝜃 
𝑒−𝜅Δ𝑡)= 2𝑐 ∙ 𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 𝜎2 

𝑒−𝜅Δ𝑡) 𝑟𝑡𝑖= 𝑐𝑒−𝑐(𝑟𝑡𝑖+𝑟𝑡𝑖−1 ( 
𝑒−𝜅Δ𝑡

)
𝑞

2𝐼𝑞 (2𝑐√𝑟𝑡𝑖𝑟𝑡𝑖−1 𝑒
−𝜅Δ𝑡) (2.37)

𝑟𝑡𝑖−1 

where 

2𝜅 
𝑐 = (2.38)

𝜎2(1−𝑒−𝜅Δ𝑡) 

𝑒−𝜅Δ𝑡 𝑢 = 𝑐𝑟𝑡𝑖−1 (2.39) 

𝜐 =  𝑐𝑟𝑡𝑖 (2.40) 

2𝜅𝜃 
𝑞 = 

𝜎2 − 1 (2.41) 

and 𝐼𝑞(∙) is the modified Bessel function of the first kind of order q. 

Same as with the Vasicek model, I set the market price of risk of the CIR model 

to zero to simplify the calculations. Denote the zero bond prices at 𝑡1, 𝑡2 , ⋯ 𝑡𝑛−1, 𝑡𝑛, as 

𝑃1, 𝑃2, ⋯ , 𝑃𝑛. Then the price 𝑃𝑖 of a zero bond with maturity 𝜏 at time 𝑡𝑖, (𝑖 = 1,2, … , 𝑛), 

has the expression: 

𝑃𝑖 = 𝑒𝐴(𝜏)−𝐵(𝜏)𝑟𝑡𝑖 (2.42) 

with 

𝜏
(𝜅+𝛾)

2𝜅𝜃 2𝛾𝑒 2
𝐴(𝜏) = 𝑙𝑛[ ] (2.43)

𝜎2 (𝜅+𝛾)(eγτ−1)+2γ

2(eγτ−1) 
𝐵(𝜏) = (2.44)

(𝜅+𝛾)(eγτ−1)+2γ 

𝛾 = √𝜅2 + 2𝜎2 (2.45) 
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From Equation (2.42), we can obtain the short rate 𝑟𝑡𝑖 : 

𝐴(𝜏)−𝑙𝑛𝑃𝑖𝑟𝑡𝑖 = (2.46) 
𝐵(𝜏) 

Then the Jacobian of the transformation from the instantaneous short rate to the zero-

coupon bond price is: 

𝑑𝑟𝑡𝑖 1
𝐽 = = − (2.47) 

𝑑𝑃𝑖 𝑃𝑖𝐵(𝜏) 

Therefore, the transition density function of 𝑃𝑖 conditional on 𝑃𝑖−1 is 

ℎ𝐶𝐼𝑅(𝑃𝑖|𝑃𝑖−1) = |𝐽|ℎ𝐶𝐼𝑅(𝑟𝑡𝑖|𝑟𝑡𝑖−1 ) 

1 4𝜅𝜃 
𝑒−𝜅Δ𝑡)= |− | ∙ 2𝑐 ∙ 𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 𝑃𝑖𝐵(𝜏) 𝜎2 

2𝑐 4𝜅𝜃 
𝑒−𝜅Δ𝑡)= ∙ 𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 (2.48) 

𝑃𝑖|𝐵(𝜏)| 𝜎2 

The natural logarithm of Eq. (2.48) is expressed as: 

2𝑐 4𝜅𝜃 
𝑒−𝜅Δ𝑡)) lnℎ𝐶𝐼𝑅(𝑃𝑖|𝑃𝑖−1) = ln( ) + ln (𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 𝑃𝑖|𝐵(𝜏)| 𝜎2 

= ln( 2𝑐) − ln(|𝐵(𝜏)|) − ln(𝑃𝑖) 

4𝜅𝜃 
𝑒−𝜅Δ𝑡)) + ln (𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 (2.49) 

𝜎2 

So, the logarithm of the likelihood function of zero-coupon bond prices 𝑃1, 𝑃2, ⋯ , 𝑃𝑛 is 
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ℒ(𝜅, 𝜃, 𝜎) = lnℎ𝐶𝐼𝑅(𝑃𝑛, 𝑃𝑛−1,⋯ , 𝑃2|𝑃1) 

𝑛 

= (𝑛 − 1)ln( 2𝑐) − (𝑛 − 1)ln(|𝐵(𝜏)|) −∑ln(𝑃𝑖) 
𝑖=2 

4𝜅𝜃 𝑛 𝑒−𝜅Δ𝑡)) +∑ ln (𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡𝑖; , 2𝑐𝑟𝑡𝑖−1 (2.50) 𝑖=2 𝜎2 

Given Eq. (2.50), we can apply the method of maximum likelihood and estimate 

the parameters of the CIR model: 𝜅, 𝜃, 𝜎. In addition, we can get the 1- or h-step ahead 

short rate forecasts. 

̂∆𝑡𝑟𝑡𝐸(𝑟𝑡+1|𝑟𝑡) = 𝜃(1 − 𝑒−�̂�∆𝑡) + 𝑒−𝜅 (2.51) 

̂ℎ∆𝑡𝑟𝑡𝐸(𝑟𝑡+ℎ∆𝑡|𝑟𝑡) = 𝜃(1 − 𝑒−�̂�ℎ∆𝑡) + 𝑒−𝜅 (2.52) 

Then the corresponding forecasts of the zero-coupon bond yields have the 

expressions 

�̂�(𝜏)−�̂�(𝜏)�̂�
�̂�𝑡+1(𝜏) = − 𝑡+1 (2.53)

𝜏 

�̂�(𝜏)−�̂�(𝜏)�̂�𝑡+ℎ∆𝑡 �̂�𝑡+ℎ∆𝑡(𝜏) = − (2.54) 
𝜏 

with 

𝜏
(�̂�+�̂�) 

2�̂��̂� 2�̂�𝑒2
�̂�(𝜏) = 𝑙𝑛[ ] (2.55)

�̂�2 (�̂�+�̂�)(eγ̂τ−1)+2γ̂

2(eγ̂τ−1) 
�̂�(𝜏) = (2.56)

(�̂�+�̂�)(eγ̂τ−1)+2γ̂ 

�̂� = √�̂�2 + 2�̂�2 (2.57) 

Fixing 𝜏 and simplifying �̂�𝑡+1(𝜏) and �̂�𝑡+ℎ∆𝑡(𝜏) as �̂�𝑡+1 and �̂�𝑡+ℎ∆𝑡, respectively, 

for convenience. 

38 

http:�����(2.52
http:�����(2.51


 

 

  

 

 

   

       

   

  

   

   

   

  

 

 

   

    

  

   

   

2.2.3 Non-linear diffusion model (ND) 

Ait-Sahalia (1996) proposes a non-linear diffusion estimation process for the zero 

bond yields. The model has the form: 

1
Δ𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡 + 𝛼2𝑦𝑡2 + 𝛼3 (2.58) 

𝑦𝑡 

where 𝑦t is the level of the yield at time t and Δ𝑦t is the expected yield change from t to 

t + 1. 

We can use the historical yield data to estimate parameters 𝛼0, 𝛼1, 𝛼2 and 𝛼3, and 

then use those estimates to forecast the change in the bond yield, Δ�̂�𝑡, as well as the 

expected bond yield, �̂�𝑡+1. The formulas for Δ�̂�𝑡 and �̂�𝑡+1 are: 

1
Δ�̂�𝑡 = �̂�0 + �̂�1𝑦𝑡 + �̂�2𝑦𝑡2 + �̂�3 (2.59)

𝑦𝑡 

�̂�𝑡+1 = 𝑦𝑡 + Δ�̂�𝑡 (2.60) 

2.2.4 Autoregressive process of order one (AR(1)) 

The autoregressive process specifies that a time-series variable linearly depends 

on its previous values. The simplest form of an autoregressive process is a first-order 

autoregressive process, AR(1), which has the form: 

𝑦𝑡 = 𝛼 + 𝛽𝑦𝑡−1 + 𝜀𝑡 (2.61) 

where 𝑦𝑡 and 𝑦𝑡−1 are the outputs at time t and t-1, respectively. The AR(1) model shows 

that the future output can be described by its own one-lag behind value. In this paper 𝑦t 

and 𝑦𝑡−1 are the level of the zero bond yield at time t and t-1, respectively. And 

𝜀𝑡 ~ 𝑁(0, 𝜎
2) is a white noise process. Assumption | 𝛽| < 1 makes the process AR(1) 

stationary. 
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In this paper I regress 𝑦𝑡 on the yield at the previous time point, 𝑦𝑡−1, and get 

estimates of 𝛼 and 𝛽. Then I use those estimates to forecast the future bond yields,  which 

means �̂�𝑡+1 = �̂� + �̂�𝑦𝑡. 

2.2.5 Martingale model 

A martingale process specifies that the expected value of the next output is equal 

to the current observation, given all prior observed values.  The mathematical expression 

is 

𝐸(𝑦𝑡+1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = 𝑦𝑡 (2.62) 

In this paper, 𝑦𝑡, 𝑦𝑡−1,..., 𝑦1 are the zero bond yield at time t, t-1,...,1, respectively. 

2.2.6 Bootstrap bias correction process 

The prior literature shows that the empirical estimation of the mean reversion 

parameter 𝜅 can incur large bias (Yu and Phillips (2001)). The bias can be encountered 

by all the estimation approaches, including the maximum likelihood estimation (Tang and 

Chen (2009)). When 𝜅 is small and approaching zero, the problem becomes more serious. 

To reduce the bias in 𝜅, current literature proposes three main methods: the median 

unbiased estimator (Andrews(1993)), the indirect inference method (Smith (1993), 

Phillips and Yu (2009)), and the bootstrap method (Tang and Chen (2009)). Specifically, 

Tang and Chen (2009) derive a simple bias correction formula for the Vasicek and CIR 

4processes, which is 𝜅�̂� = �̂�𝐵 − , where 𝜅𝐴̂ and �̂�𝐵 are the estimator after and before the 
𝑇

bias correction processes, respectively, and T is the data span in years. In this paper, the 

estimates calculated before the bootstrap bias correction are denoted as estimates with the 
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subscript "B". Correspondingly, the estimates corrected after the bias correction process 

are denoted as values after the bias correction and signed as a subscript "A". 

The following describes the bootstrap bias correction process of Tang and Chen 

(2009) to reduce the bias in estimating𝜅. Let �̂�𝐵 = [�̂�𝐵, 𝜃𝐵, �̂�𝐵] be the parameter 

estimates before the bias correction process. First, generate a bootstrap sample path with 

the parameter estimates �̂�𝐵 and the same sampling interval from the ATSM. Second, 

utilize the same estimation approach (in this case, MLE) and obtain new intermediate 

estimators �̂�∗ = [�̂�∗, 𝜃∗, �̂�∗]. Third, repeat the first two steps m number of times and 

∗obtain m sets of intermediate parameter estimates �̂�1∗, �̂�2∗, �̂�3∗, … , �̂�𝑚. Let 

1 𝑁𝑆 ∗𝛼 ∑ (2.63) ̅̂̅ ∗̅ = 𝛼𝑚=1 ̂𝑚𝑁𝑆 

Then the estimated bias is (�̂̅̅� ∗̅ − �̂�𝐵) and so the bootstrap bias correction estimator is 

�̂�𝐴 = �̂�𝐵 − (�̂̅̅�∗̅ − �̂�𝐵) (2.64) 

and the bootstrap estimator for the variance of �̂�𝐵 is 

1 𝑁𝑆 ∗ ̅̂̅ ∗̅ ∗𝑉𝑎�̂� (�̂�𝐵) = ∑ (�̂�𝑚 − 𝛼 )(�̂�𝑚 − �̂̅̅� ∗̅)′ (2.65) 𝑚=1 𝑁𝑆 

To fully understand the bootstrap bias correction process, I replicate the results of 

Tang and Chen (2009). In my simulations, the true parameter values for the Vasicek 

model are 𝜅=0.140, 𝜃=0.0891, 𝜎=0.0173, and the true values for the CIR model are 

𝜅=0.148, 𝜃=0.09, 𝜎=0.0707. Since my paper tests the performance of parameter 

estimation in the situation of near unit root, the three parameter values are chosen to 

make sure the autoregressive correlation, 𝜌, of the model is 0.99. The autoregressive 

correlation 𝜌 is equal to 𝑒−𝜅𝛥𝑡, where 𝜅 is the mean reversion parameter and 𝛥𝑡 is the 
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time interval in years.  All other conditions are the same for two models: the time 

increment ∆𝑡 is 1/12 corresponding to monthly observations; the size of one sample path 

n is 300; the sample paths repeats N = 5,000 times and the number of the bootstrap 

resample m is 1,000. 

The comparison between my replication results and Tang and Chen’s is in Table 

2.1. Checking the Vasicek model, we can see that the result from Tang and Chen shows 

that the bias of 𝜅 of is 0.190 and the relative bias is 133.046% before running the bias 

correction process. After the bias correction process, the bias of 𝜅 is reduced to 0.010 and 

the relative bias is reduced to 6.713%. My replication results show that the bias of 𝜅 is 

0.183 and the relative bias is 130.714% before the bias correction. After running the 

bootstrap bias correction, the bias of 𝜅 is reduced to 0.012 and the relative bias becomes 

8.571%. This shows that my replication results are close to Tang and Chen's. It is also 

true for the CIR model. The bias of 𝜅 of Tang and Chen’s and mine for the CIR model 

are 0.192 and 0.203, respectively, before running the bootstrap process.  After the bias 

correction, the corresponding biases are reduced to 0.007 and -0.0006, respectively. So 

my process to replicate the boot strap bias correction process is reliable. 

2.2.7 Giacomini and White test 

One way to compare term structure models is to examine the models’ forecasting 

power. I use the Giacomini and White (2006) test to examine the models’ predictive 

ability. The loss functions I examine are the mean squared error (MSE) and the absolute 

error (MAE), though other loss functions could be used. Suppose we want to compare the 

predictive ability of two models, Model #1 and Model #2. Let n be the sample size of the 
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estimation window and let p be the number of out-of-sample forecasts. If we do h-step-

ahead forecasts, model #1 and model #2 will have predicted values 

1 1 1 1 2 2 2 2�̂�𝑛+ℎ+1 , �̂�𝑛+ℎ+2 , … , �̂�𝑛+ℎ+𝑝−1 , �̂�𝑛+ℎ+𝑝 , and �̂�𝑛+ℎ+1 , �̂�𝑛+ℎ+2 , … , �̂�𝑛+ℎ+𝑝−1 , �̂�𝑛+ℎ+𝑝 , 

respectively. If the true values are 𝑦𝑛+ℎ+1, 𝑦𝑛+ℎ+2, … , 𝑦𝑛+ℎ+𝑝−1, 𝑦𝑛+ℎ+𝑝, we compute the 

squared errors at 𝑖 = 𝑛 + ℎ + 1,… , 𝑛 + ℎ + 𝑝 as 

𝐿1𝑖 = 𝐿(�̂�𝑖
1|𝑦1, 𝑦2, … , 𝑦𝑛) = (�̂�𝑖

1 − 𝑦𝑖)
2 (2.66) 

𝐿2𝑖 = 𝐿(�̂�𝑖
2|𝑦1, 𝑦2, … , 𝑦𝑛) = (�̂�𝑖

2 − 𝑦𝑖)
2 (2.67) 

The difference between 𝐿1𝑖 and 𝐿2𝑖 is the test function denoted as 

2𝑍𝑖 = 𝐿1𝑖 − 𝐿𝑖 (2.68) 

Define 

1 𝑛+ℎ+𝑝 
�̅� = ∑ 𝑍𝑖 (2.69) 𝑖=𝑛+ℎ+1 𝑝 

Then the test statistic of the Giacomini and White test is 

𝑍
𝑇 = (2.70)

Ω̂/√𝑝 

where �̂� is a covariance matrix constructed by the Newey-West method.  

To examine whether model #1 and model #2 have equal predictive ability, the 

null hypothesis is a test of equal predictive ability of model #1 and model #2, 𝐻0: 𝐸[𝑍𝑖] = 

0 against the alternative hypothesis 𝐻𝑎1: 𝐸[𝑍𝑖] ≠ 0. A level-𝛼 test can be conducted by 

rejecting the null hypothesis of equal predictive ability whenever |𝑇| > 𝑧𝛼/2, where 𝑧𝛼/2 

is the (1 − 𝛼/2) quantile of a standard normal distribution. When 𝛼 is 0.05, the critical 

value 𝑧𝛼/2 is 1.96. 
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To examine whether model #1 has greater predictive ability than model #2, the 

null hypothesis is a test of 𝐻0: 𝐸[𝑍𝑖] = 0 against 𝐻𝑎2: 𝐸[𝑍𝑖] < 0. A level-𝛼 test can be 

conducted by rejecting the null hypothesis whenever 𝑇 < 𝑧𝛼, where 𝑧𝛼 is the 𝛼 quantile 

of a standard normal distribution. When 𝛼 is 0.025, the critical value 𝑧𝛼 is -1.96. 

2.3 Data simulation processes 

To study the power and size of the Gaussian diffusion model of Vasicek and the 

square-root diffusion model of CIR, I simulate 10,000 paths of the instantaneous short 

rates based on the dynamics of the two one-factor ATSMs and then compute the zero 

bond prices and yields according to the corresponding ATSMs pricing equations. For 

each set of simulated data I then estimate yield forecasts using all models. 

2.3.1 Vasicek data simulation process 

The one-factor Vasicek model is tractable from a mathematical point of view. 

Given a spot rate 𝑟𝑠 at time s, one can derive an explicit expression for the instantaneous 

short rate 𝑟𝑡 at any time t (t > s) by Ito’s Formula (Arnold (1974, PP130), Phillips (1972), 

Phillips and Yu (2009)), 

𝑡 𝑡 
𝑟𝑡 = 𝑒−𝜅(𝑡−𝑠)𝑟𝑠 + ∫ 𝜅𝜃𝑒−𝜅(𝑡−𝑢)𝑑𝑢 + ∫ 𝑒−𝜅(𝑡−𝑢)𝜎𝑑𝑊𝑡 

𝑠 𝑠 

𝑡 
= 𝑒−𝜅(𝑡−𝑠)𝑟𝑠 + 𝜃(1 − 𝑒−𝜅(𝑡−𝑠)) + 𝜎 ∫ 𝑒−𝜅(𝑡−𝑢)𝑑𝑊𝑡 (2.71) 

𝑠 

The last integral in Eq. (2.71) is the only stochastic element. Arnold (1974, PP77) 

shows that the integral is a normally distributed stochastic variable since it is independent 

of 𝑟𝑡 . So 𝑟𝑡 has a conditional normal distribution with the conditional mean and the 

variance (Vasicek (1977), Dixit and Pindyck (1994, PP76)): 
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𝜇(𝑟𝑡|𝑟𝑠) = 𝑟𝑠𝑒−𝜅(𝑡−𝑠) + 𝜃(1 − 𝑒−𝜅(𝑡−𝑠))       ∀ 𝑠 ≤ 𝑡 (2.72) 

𝜎𝑡
2(𝑟𝑡|𝑟𝑠) = 𝜎

2 
(1 − 𝑒−2𝜅(𝑡−𝑠)), ∀ 𝑠 ≤ 𝑡 (2.73) 

2𝜅 

So the process of 𝑟𝑡 can be written as an autoregressive form: 

𝑟𝑡 = 𝑟𝑠𝑒−𝜅(𝑡−𝑠) + 𝜃(1 − 𝑒−𝜅(𝑡−𝑠)) + 𝜀𝑡  ,  𝑡 > 𝑠 (2.74) 

2where 𝜀𝑡 is normally distributed with mean zero and variance 𝜎𝜀 = 𝜎
2 
(1 − 𝑒−2𝜅(𝑡−𝑠)). 

2𝜅 

The equivalent first-order autoregressive process, AR(1), is 

𝑟𝑡 = 𝑟𝑡−1𝑒−𝜅Δ𝑡 + 𝜃(1 − 𝑒−𝜅Δ𝑡) + 𝜀𝑡1 (2.75) 

with 𝜀𝑡1|ℱ𝑠 ~ 𝑁(0, 
𝜎2 
(1 − 𝑒−2𝜅Δ𝑡)). Specifically, Eq. (2.1) is the limiting case as Δ𝑡 ⟶ 

2𝜅 

0 of the above AR(1) process (Eq. (2.75)). Thus, the sample path of 𝑟𝑡 can be constructed 

by using the exact discrete-time expression:  

1
𝑟𝑡 = 𝑟𝑡−1𝑒−𝜅Δ𝑡 + 𝜃𝑄(1 − 𝑒−𝜅Δ𝑡) + 𝜎√ (1 − 𝑒−2𝜅Δ𝑡)𝑍𝑡 ,  𝑍𝑡 ~ 𝑁(0,1) (2.76) 

2𝜅 

In this chapter, I will use Eq. (2.76) to generate Vasicek-simulated short rates and 

then substitute those short rates into Eq. (2.14) to generate Vasicek-simulated zero bond 

yields. To simulate a series of short rates that are close to a unit root, I use the parameter 

values: 𝜃 = 0.0891, 𝜅 = 0.140, and 𝜎 = 0.0173.7 The autoregressive coefficient of the 

corresponding discrete time series data is 0.99. The size of a sample path n is 300 

corresponding to monthly data series over a 25-year horizon (T=25 years). The time 

1increment Δ𝑡 = . The initial value of the short rate is set equal to the long-run mean, or 
12

7 The parameter values come from Tang and Chen (2009). 
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𝑟0 = 0.0891. The data simulation path repeats N=10,000 times and the number of 

bootstrap resample is m = 500. Figure 2.1 presents the plot of one sample path of the 

Vasicek simulated short rate. The dashed line represents 𝐸(𝑟𝑡), the unconditional 

expected value, and the solid bold line represents 𝐸(𝑟𝑡) ± 2𝜎, two standard deviations 

above and below the mean.  

2.3.2 CIR data simulation process 

Given Eq. (2.37), the natural logarithm of the likelihood function of the short rates 

of the CIR model has the expression: 

4𝜅𝜃 
lnℎ𝐶𝐼𝑅(𝑟𝑡|𝑟𝑡−1) = ln( 2𝑐) + ln (𝑁𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝜒2 (2𝑐𝑟𝑡; 𝜎2 , 2𝑐𝑟𝑡−1𝑒

−𝜅Δ𝑡)) (2.77) 

To simulate factors from the CIR model, we need to sample the random variables 

from the non-central chi-square distribution. Broadie and Kaya (2006) suggest a method 

of sampling directly from a non-central chi-square distribution. 

Let 𝑋′(𝑥; 𝑑, 𝜙) denote a non-central chi-squared random variable with d (d > 1) 

degrees of freedom and non-centrality parameter 𝜙. We can generate an ordinary chi-

square distribution with (d-1) degrees of freedom, 𝑋(𝑥; 𝑑 − 1), and an independent 

standard normal random variable Z. For any d > 1, the following representation is valid: 

𝑋′(𝑥; 𝑑, 𝜙) = 𝑋(𝑥; 𝑑 − 1) + (𝑍 + √𝜙)2 (2.78) 

So if we can generate a series of standard normal random variables Z1, Z2, Z3,…, 

Zn, then we can simulate CIR short rates based on the density in Eq. (2.37), 

24𝜅𝜃 4𝜅𝜃 
𝑋′ (2𝑐𝑟𝑡; , 2𝑐𝑟𝑡−1𝑒

−𝜅Δ𝑡) =  𝑋 (2𝑐𝑟𝑡; − 1) + (𝑍𝑡 + √2𝑐𝑟𝑡−1𝑒
−𝜅Δ𝑡) (2.79) 

𝜎2 𝜎2 
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I use Eq. (2.79) to generate CIR-simulated short rates and then substitute those 

short rates into Eq. (1.39) to generate CIR-simulated zero bond yields. 

The parameter values used are 𝜃 = 0.09, 𝜅 = 0.148, and 𝜎 = 0.07078. The 

autoregressive coefficient of the corresponding discrete time model is 0.99. Such settings 

are for the examination of ATSMs when the parameters are near the unit root. A sample 

size n contains 300 months of zero bond yields (T=25 years) with maturity of 6 months 

1and Δ𝑡 = corresponds to monthly observations in an annualized basis. The Monte 
12 

Carlo simulation repeats N = 10,000 times. The initial value 𝑟0 equals the long run mean 

of the process. The bootstrap bias correction process is based on m = 500 resamples. The 

plot of one sample path of the CIR-simulated short rates with a dashed line representing 

the expected value 𝐸(𝑟𝑡) and solid bond lines representing 𝐸(𝑟𝑡) ± 2 × 𝑠. 𝑑. presents in 

Figure 2.2. 

2.3.3 Robustness checks 

To determine the sensitivity of the power to distinguish different ATSMs to 

variations in the models' parameters, I conduct a variety of experiments. 

Setting A: Change the model parameters: for the Vasicek model (𝜅, 𝜃, 𝜎) = 

(0.858, 0.0891, 0.0173), and for the CIR model  (𝜅, 𝜃, 𝜎) = (0.892, 0.09, 0.0707). The 

mean reversion parameters of Setting A are 6 times the 𝜅 of the ones in Section 2.3.1 and 

2.3.2. This implies that data series with Setting A have 1/6 of the half life of an interest 

rate shock of the data with the settings in the above two sections. In the Vasicek and CIR 

8 The parameter values come from Tang and Chen (2009). 
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models, the half life is calculated as −ln0.5/𝜅, which gives us important information 

about how quickly the instantaneous short rates would converge to their long-run mean 

after a shock. Setting A is designed to place the parameters far away from the unit root 

situation and the autoregressive coefficient of the new models is 0.93. 

Setting B: Change the sampling frequency of the data from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. 

Thus, the sample size is increased from n = 300 to n' = 9,125. The latter corresponds to 

high frequency data.  

Setting C: Change the sampling frequency of the data from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365) while keeping the sample size n = 300. 

Correspondingly, the time span is reduced from 𝑇 = 25 years to T' = 𝑛 × ∆𝑡 ′ = 300 × 

1 
= 0.82 years. 

365 

The aim of Setting B and C is to examine the sensitivity of the power to 

distinguish different ATSMs to the sample size and to the time span of the sample. 

2.4 Results 

To explore whether two ATSMs can be distinguished from each other, I perform a 

Monte Carlo study. The study investigates the power and size of ATSMs by evaluating 

their out-of-sample performance. I simulate data from different ATSMs and then use the 

data set to estimate each model, including those not used to generate the data. For ease of 

exposition, I consider a simple case when two one-factor ATSMs: Vasicek and CIR 

model, are investigated. Besides the two ATSMs, I add a nonparametric diffusion model 

(ND), an AR(1), and a martingale model as alternative forecasting models. 
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There are four subsections in this section. The first subsection states the results of 

the model estimation. Section 2.4.2 shows the models' out-of-sample forecast 

performance and Section 2.4.3 is the results on the evaluation of the models' forecasts 

given the simulated data are near the unit root. The last subsection discusses the power 

and size of the models' to distinguish between different ATSMs. 

2.4.1 Model estimation results 

This section presents model estimation and forecasting results. I use both 

Vasicek-simulated and CIR-simulated 6-month zero bond yields to estimate the ND, 

AR(1), Martingale, Vasicek, and CIR models. Since the parameter estimators of the 

Vasicek and CIR models have a bias problem, I apply the bootstrap bias correction 

process to those two models. This provides two sets of parameter estimates for the 

Vasicek and CIR models. Adding the other three forecasting models, in total, there are 

seven sets of parameter estimates. I then use those sets of estimates to forecast 1-, 6-, and 

12-month ahead zero bond yields. 

2.4.1.1 MLE of ATSMs based on simulated short rates 

Table 2.2 presents the parameter estimates of the Vasicek and CIR model when 

the data are simulated instantaneous short rates. Panel A shows the Vasicek estimate 

statistics of analytical ML process before bias correction (Part 1), numeric ML before and 

after the bias correction (Parts 2 and 3, respectively). Since the bias correction process is 

based on the numeric iteration of MLE process, it is not possible to run the bias 

correction to the analytical ML process and then there is only before-bias-correction 
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analytical ML estimates. Panel B presents the statistics of the CIR estimates of the 

numeric MLE before and after bias correction (Parts 1 and 2, respectively). 

Checking the values in Part 1 of Panel A, we can see that the bias of the mean-

reversion speed, �̂�𝐵,𝐴𝑀𝐿, is 0.1283 or about 153% of the true value, while the biases of 

𝜃𝐵,𝐴𝑀𝐿and �̂�𝐵,𝐴𝑀𝐿 are 0.0017 and 0.00098, respectively. This shows that the mean 

reversion estimate has more bias than the estimates of the long-run mean and volatility, 

which is consistent with the result of Tang and Chen (2009). The same results can be 

found in Part 1 of Panel B. In addition, the statistics of estimates in Part 2 of Panel A that 

are based on the numeric MLE  are close to those in Part 1, which are based on the 

analytical MLE. This means that the numerical estimation is reliable. Part 3 of Panel A 

and Part 2 of Panel B show the estimates after applying the bias correction process. 

Comparing the mean reversion bias in Part 2 and Part 3 in Panel A, the mean reversion 

speed is reduced from 0.128 before the bias correction to 0.048 after the bias correction, 

while the biases of 𝜃 and 𝜎 before and after the bias correction are not bigger than those 

of the mean reversion parameter. Similar results can be found in Panel B for CIR. I also 

find that the mean reversion biases in Table 2.2 differ from the corresponding values in 

Table 2.1. Although the two tables use the same data simulating process, the different 

number of data simulating paths and the different number of bootstrap resamples can 

cause the difference in the final values. 

To check the convergence of the parameters, I estimate both the Vasicek and CIR 

models using 3-month, 10-year, and 20-year zero coupon yields. The results are in Table 

2.3. The parameter estimates in Table 2.3 are very close to the corresponding values in 
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Table 2.2. This means that the sample size used to estimate the models are large enough 

and the parameter estimates converge. 

2.4.1.2 MLE of ATSMs based on simulated bond prices 

Because the short rate is not observed in practice, I estimate the Vasicek and CIR 

models using the zero yields constructed from the simulated instantaneous short rates. 

Table 2.4 reports the statistics for the Vasicek and CIR models when the MLE is applied 

to the zero yields. Panel A represents results for the Vasicek simulated data and Panel B 

for CIR. When applying the MLE to the Vasicek data and without running the bias 

correction, the difference between the estimate and the true value of the mean reversion 

parameter is 0.1283, the relative bias of �̂�𝐵,𝑉𝑎𝑠 is 91.64%, and the root mean square error 

(RMSE) of �̂�𝐵,𝑉𝑎𝑠 is 0.2446. After running the bootstrap bias correction process, the bias 

of �̂� ̂𝐴,𝑉𝑎𝑠 is reduced to 0.0483, the relative bias is 34.5%, and the RMSE of 𝜅𝐴,𝑉𝑎𝑠 is also 

reduced to 0.1999. Checking the differences between the true values and estimated values 

of the long-run mean and the volatility, we can see that the bias of 𝜃𝐵,𝑉𝑎𝑠 and �̂�𝐵,𝑉𝑎𝑠 are 

0.0017 and 0.0010, respectively, before bias correction, while the bias of 𝜃𝐴,𝑉𝑎𝑠 and 

�̂�𝐴,𝑉𝑎𝑠 is reduced to -0.0008 and 0.0002, respectively, after the correction. Obviously, the 

reduction of the biases of the long-run mean and the volatility is smaller than that of the 

mean reversion parameter. This result shows that the mean reversion parameter exhibits 

more substantial estimation bias than the other two parameters. This is consistent with 

Tang and Chen (2009) that the main objective of the bootstrap bias correction process is 

to reduce the bias of the mean-reversion parameter estimate. When the CIR MLE is 

applied to the Vasicek-simulated data, the RMSE of the estimates both before and after 
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the bias correction are larger than the corresponding values based on the Vasicek MLE. 

In particular, the order of the bias of the mean reversion estimates is �̂�𝐴,𝑉𝑎𝑠 < �̂�𝐴,𝐶𝐼𝑅 < 

�̂�𝐵,𝑉𝑎𝑠 < �̂�𝐵,𝐶𝐼𝑅. 

Panel B of Table 2.4 presents the corresponding statistics based on the CIR-

simulated data, both before and after running the bias correction process. Similar to the 

results in Panel A, the bootstrap bias correction decreases more bias of the mean 

reversion estimate than the biases of estimates of the long-run mean and the volatility. 

Since the data are simulated from the CIR model, the RMSEs of parameter estimates 

based on the Vasicek MLE are larger than the RMSEs based on the CIR MLE. The order 

of the bias of the mean reversion estimates is �̂� ̂ ̂ ̂𝐴,𝐶𝐼𝑅 < 𝜅𝐴,𝑉𝑎𝑠 < 𝜅𝐵,𝐶𝐼𝑅 < 𝜅𝐵,𝑉𝑎𝑠. 

2.4.1.3 Non-linear diffusion and AR(1) estimation 

To compare the ATSMs to alternative models, I estimate the ND model and 

AR(1) using the Vasicek and CIR-simulated zero bonds, and then use the ND and AR(1) 

estimates to forecast the 1-, 6-, and 12-month ahead zero bond yields. 

Table 2.5 reports the estimation results. The simulated data are Vasicek-simulated 

zero bond yields whose parameter values are given in the first row of Table 2.5. ND 

model has four parameters that capture the level, slope, and curvature of the zero bond 

yields, while AR(1) model has only two parameters, which capture the level and slope of 

the zero bond yields.  

2.4.2 Models' out-of-sample forecasts 

To compare the predictive ability of the models, I use the MLE parameter 

estimates summarized in Table 2.4 to compute the 1-month, 6-month, and 12-month out-
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of-sample zero yield forecasts using Eqs. (2.25), (2.26), (2.27) and Eq. (2.28) for the 

Vasicek model and Eqs. (2.51), (2.52), (2.53) and Eq. (2.54) for the CIR model. The 

purpose is to analyze the data’s ability to distinguish one factor Vasicek from CIR 

models. 

The forecasting short rates and zero bond yields are in Table 2.6. Panel A reports 

the forecasts when the data are simulated from the Vasicek model and Panel B are the 

results when the data are simulated from the CIR model. “Vasicek-B” and “Vasicek- A” 

represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias 

correction and “A” indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” 

are the corresponding sets of estimates for the MLE-CIR. The results show that for any 

model, the RMSEs of the forecasting short rates and zero bond yields increase when the 

forecasting time horizon increases from 1 month to 6 months, and up to 12 months, while 

the standard deviations of the forecasting short rates and zero bond yields are decreasing 

with the increase of the forecasting time horizon. Comparing the four models in Panel A, 

we can see that Vasicek-A has the smallest forecast RMSE and CIR-B has the largest 

forecast RMSE, when fixing the forecasting time horizon. For example, the RMSE of 12-

month ahead forecasting short rate of Vasicek-A is 0.0189 and the RMSE of the 12-

month ahead short rate of CIR-B is 0.0319, while the RMSEs of the 12-month ahead 

short rates of Vasicek-B and CIR-A are 0.0294 and 0.0211, respectively. Similar results 

apply to the forecasting zero bond yields. If we rank the RMSEs of the forecasts from the 

smallest to the largest, we can see the order is the same as that of the mean reversion bias, 

although the true model is the Vasicek model. 
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If we check the forecasts in Panel B based on the data simulated from CIR, we 

find that the order of the RMSEs of the forecasts of the four models from the smallest to 

the largest are CIR-A < Vasicek-A < CIR-B < Vasicek-B. This order is the same as the 

order of the mean reversion bias. The results show that no matter what the true model is, 

the RMSE is closely related to the mean reversion bias. The smaller the mean reversion 

bias is, the smaller the RMSE of the forecasts is. 

Table 2.7 reports the out-of-sample forecasting results of all seven models, 

including the two ATSMs before and after the bias correction: Vasicek-A, Vasicek-B, 

CIR-A, CIR-B, and three alternative models: ND, AR(1), Martingale model. In Table 2.7, 

I present the root mean square errors (RMSEs) and the mean absolute errors (MAEs) of 

the forecasting zero bond yields over 1-, 6-, and 12-month forecasting duration. Checking 

the 1-month ahead forecasts of zero bond yields in Panel A, we see that Vasicek A has 

the smallest RMSE and CIR B has the largest one among the four ATSMs. The order of 

the RMSEs of the forecasting zero bond yields of the four ATSMs is Vasicek-A < CIR-A 

< Vasicek-B < CIR-B, which is consistent with the order of the biases of the mean 

reversion estimates in Panel A of Table 2.4. Comparing the three alternative models in 

Panel A, the ND has the smallest RMSE, AR(1) is the second, and the Martingale model 

has the largest RMSE of forecasting zero bond yields. 

If we compare the ATSMs with the alternative models in Panel A, the ATSMs 

have smaller forecast errors than the alternative models. In general, the order of the 

RMSEs of �̂�𝑡 from smallest to largest is Vasicek-A < CIR-A < Vasicek-B < CIR-B < ND 

< AR(1) < Martingale. The same result can be found on the 6- and 12-month ahead 

forecasts and can also be applied to the MAE of �̂�𝑡 over 1-, 6-, and 12-month ahead 
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forecasts. Panel B shows the out-of-sample forecasting results based on the CIR 

simulated data. Similar to the results of Panel A, the four ATSMs have smaller RMSEs 

and MAEs of the forecasting zero bond yields than three alternative models. Among the 

four ATSM forecasts, the order of RMSEs or MAEs of �̂�𝑡 is consistent with the biases of 

mean reversion estimates in Panel B of Table 2.4. So the order of the RMSEs of �̂�𝑡 from 

smallest to largest in Panel B is CIR-A < Vasicek-A < CIR-B < Vasicek-B < ND < 

AR(1) < Martingale. Checking the RMSEs of �̂�𝑡 over the forecasting time horizons in 

both panels, we can see that the RMSEs of �̂�𝑡 increase with the increase of the 

forecasting time horizon. The same result can be found on the MAEs of �̂�𝑡 of any model 

in both Panel A and B. 

2.4.3 Evaluation of out-of-sample forecasting performance 

This section discusses how well two ATSMs can be statistically differentiated 

from each other. If the Vasicek model is the data generation process and the CIR model is 

the comparison model, the question becomes whether the Vasicek model’s out-of-sample 

forecast are statistically superior to those from the CIR model. 

To compare models’ out-of-sample forecasts, I use the Giacomini and White 

(2006) test to assess the predictive ability of seven models. The results are reported in 

Table 2.8. The first two columns in Table 2.8 identify a baseline model, labeled as 

"Model #1", and a reference model, labeled "Model #2". I use the Giacomini and White 

(2006) test to examine the null hypothesis that Model #1 and Model #2 have equal 

predictive ability. The third column, titled “% Paths #1 ≠ #2”, reports the proportion of 

sample replications where the null hypothesis has been rejected at the 5% significance 

level. The fourth column, "% Paths #1 Beats #2", reports the proportion of 10,000 sample 
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replications where model #1 has greater predictive ability than the model #2 at the 5% 

significance level. Model #1 outperforms Model #2 in the out-of-sample forecasts if "% 

Paths #1 Beats #2" exceeds 50%. The larger the "% Paths #1 Beats #2" is, the greater 

predictive ability the Model #1 has. 

Take Vasicek-A as Model #1 and CIR-A as Model #2 in Panel A where the data 

have been simulated from the Vasicek model. In the 1-month ahead forecasts, 84.71% of 

the 10,000 replications reject the hypothesis that the forecast errors of Vasicek-A and 

CIR-A have equal values at the 5% significance level. This means that the probability 

that Vasicek-A can be statistically differentiated from CIR-A is 84.71%. In addition, in 

57.54% of the 10,000 replications Vasicek-A has significantly smaller MSE of 

forecasting zero bond yields than CIR-A, which means 5,754 sample paths out of 10,000 

replications accept that Vasicek-A has greater out-of-sample predictive ability than CIR-

A. Over a 6-month ahead forecast horizon, the percentage of the rejection of equal 

predictive ability is reduced to 65.24% and the possibility of Vasicek-A beating CIR-A is 

48.75%. Once the forecasting time horizon increases to 12 months, the percentage of the 

unequal predictive ability of Vasicek-A and CIR-A is reduced to 57.13% and 41.61% 

paths accept that Vasicek-A outperforms CIR-A. 

When checking "% Paths #1 Beats #2" over a fixed forecasting time horizon in 

Panel A, we see that Vasicek-A has the greatest predictive ability, then CIR-A, the third 

is Vasicek-B, and CIR-B has the lowest predictive ability.  This order is consistent with 

the order of the MSE in the forecasts of zero bond yields in Panel A of Table 2.7. This is 

not surprising since the construction of Giacomini and White test statistic is based on the 

MSE of model forecasts. In addition, we see that the order of ATSMs predictive ability is 
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also consistent with the order of the biases of mean reversion estimates in Panel A of 

Table 2.4. The smaller the bias of the mean reversion estimate, the stronger is the 

predictive ability of the model. If we compare the four ATSMs with the three alternative 

models, we see that ATSMs always beat the ND, AR(1) and Martingale models. The 

percentage of rejections of equal forecast ability between any ATSM and  ND, AR(1) and 

Martingale is almost 100%, and the percentage that an ATSM beats ND, AR(1) and 

Martingale is over 99%. Following the same logic, we find that the Martingale model has 

the weakest predictive ability among seven models. In summary, we make an order of the 

relative predictive ability of seven models: Vasicek-A > CIR-A > Vasicek-B > CIR-B > 

ND > AR(1) > Martingale model. This order is consistent with the order of RMSE of 

ATSMs forecasted zero bond yields in Panel A of Table 2.7. 

If we compare seven models based on Column "% Paths #1≠ #2" over a fixed 

time horizon in Panel A, we see that the percentage values are over 80% in 1-month 

forecasting, over 70% in 6-month forecasting, and greater than 60% in 12-month 

forecasting. This means that the probability that four ATSMs can be distinguished is 

above 80% when the forecasting horizon is 1 month. The power to distinguish between 

ATSMs is reduced to about 70% and 60% once the horizon increases up to 6 and 12 

months, respectively. In addition, the probability of distinguishing four ATSMs from 

three alternative models is almost over 95% over 1-, 6-, and 12-month forecasting. 

Panel B of Table 2.8 is the results based on the CIR simulated data. If fixing the 

forecasting time horizon, we can get the similar results to Panel B, which is, no matter 

what the true model is, the smaller the bias of the mean reversion estimate of the model 

is, the stronger is the predictive ability of the model. Also, ATSMs always beat three 
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alternative models and the Martingale model is the worst model in forecasting zero bond 

yields. Therefore, the order of the relative predictive ability in Panel B is CIR-A > 

Vasicek-A > CIR-B > Vasicek-B > ND > AR(1) > Martingale model. Considering the 

power of distinguishing seven models, we see that the probability of differentiating four 

ATSMs is above 95% and the power of distinguishing ATSMs from alternative models is 

almost greater than 99%. 

Another interesting result showed in Table 2.8 is that the power to differentiate 

models becomes weaker as the forecasting horizon becomes longer, because the 

proportion of rejections of equal predictive ability of two models decreases as the 

forecasting horizon increases from 1 month, 6 months to 12 months. The possible reason 

is that models will gradually lose predictive power as the time horizon becomes longer 

since the predicted values of all models will approach the long-run mean of the data. 

The above results are based on the 6-month zero yields simulated from the Vasicek 

model. I rerun the Giacomini and White test using the simulated 20-year zero yields from 

the Vasicek model. The results are in Table 2.9. Comparing the numbers in Tables 2.8 and 

2.9, we see that the choice of the zeros does not change the results of the Giacomini and 

White test. 

2.4.4 Discussion of power and size of the ATSMs 

So far I discuss the out-of-sample performance of the Vasicek and CIR models 

when the simulated data are near the unit root. To understand more about the impact 

factors on models’ out-of-sample performance and their ability to differentiate different 

ATSMs, I study the power and size of ATSMs under different data simulating situations 

in this section. 
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2.4.4.1 The impact of size of 𝜿 on models out-of-sample forecasting performance 

The Monte Carlo study in prior sections examines ATSMs’ relative out-of-sample 

forecasting ability when the mean reversion parameter is close to unit root. The results 

show that the model’s relative predictive ability is closely related to the bias size of mean 

reversion estimates no matter what the true model is. To understand more about of the 

impact of the size of the mean reversion parameter on ATSMs’ out-of-sample forecasting 

performance, this section focuses on the situation that the mean reversion parameter rises 

away from the unit root case. Therefore, I repeat the same Monte Carlo simulation 

process in the prior section but use the parameter sets in Setting A: the Vasicek model 

(𝜅, 𝜃, 𝜎) = (0.858, 0.0891, 0.0173) and the CIR model (𝜅, 𝜃, 𝜎) = (0.892, 0.09, 0.0707). 

Table 2.10 presents estimation results based on Setting A. Comparing Table 2.10 

with Table 2.4, we can see the biases of mean reversion estimates in Table 2.10 are larger 

than the biases of 𝜅 of the corresponding models in Table 2.4. However, the order of the 

bias of mean reversion estimates in Table 2.10 is the same as the order in Table 2.4. If the 

data is simulated from the Vasicek model, the order is �̂�𝐴,𝑉𝑎𝑠 < �̂�𝐴,𝐶𝐼𝑅 < �̂�𝐵,𝑉𝑎𝑠 < 

�̂�𝐵,𝐶𝐼𝑅, while the order of the bias of the mean reversion estimates is 𝜅𝐴,𝐶𝐼𝑅 < �̂�̂ 𝐴,𝑉𝑎𝑠 < 

�̂�𝐵,𝐶𝐼𝑅 < �̂�𝐵,𝑉𝑎𝑠 when the data is generated from the CIR model. 

Table 2.11 reports the summary of models’ forecasting zero yields. Examining 

Table 2.11 and Table 2.7, we see that the RMSEs of forecasting zero yields in Table 2.11 

are smaller than the corresponding values in Table 2.7. This shows the forecast errors 

decrease but the models' predictive ability increases when the speed of the mean 

reversion is 6 times the 𝜅 of the near unit root case. In Table 2.11, the RMSEs of 

forecasting zero bond yields of four ATSMs are close to each other and smaller than the 
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RMSEs of ND, AR(1), and the Martingale model. In addition, the results show that the 

RMSE and MAE of �̂�𝑡 of the Martingale model are close in both tables and larger than 

the RMSEs and MAEs of �̂�𝑡 of the other six models. If ranking the RMSEs based on the 

Vasicek simulated data, the order of the RMSEs of seven models from smallest to the 

largest is Vasicek-A < CIR-A < Vasicek-B < CIR-B < ND < AR(1) < Martingale. The 

order of the RMSEs becomes CIR-A < Vasicek-A < CIR-B < Vasicek-B < ND < AR(1) 

< Martingale if the data are simulated from the CIR model. The same orders can be found 

on MAE of forecasted zero bond yields. 

Since the RMSEs of models' forecasts are smaller in Table 2.11 than in Table 2.7, 

I can predict that the power to differentiate seven models will decrease once the half life 

of a shock to the interest rate is only 1/6 of the original value. This prediction is 

confirmed in Table 2.12. Comparing the values in Table 2.12 with those Table 2.8, we 

see that, except for the Martingale model, the values of "%Paths #1 ≠ #2" and "%Paths 

#1 Beats #2" are smaller in Table 2.12 than the corresponding values in Table 2.8. Take 

Vasicek-A and CIR-A as an example. 84.71% of the 10,000 replications reject the 

hypothesis that CIR-A and Vasicek-A have equal predictive ability in the 1-month ahead 

forecasts in Panel A of Table 2.8, while the rejection percentage is reduced to 19.90% in 

Panel A of Table 2.12 when the data are generated from the Vasicek model. The 

percentage that Vasicek-A beats CIR-A is 57.54% in Panel A of Table 2.8, while the 

corresponding value in Panel A of Table 2.12 is 9.35%. This shows that the probability to 

distinguish Vasicek-A from CIR-A decreases from 84.71% to 19.90% and the probability 

that Vasicek-A beats CIR-A is reduced from 57.54% to 9.5% when the half life of a 

shock to the interest rate is only 1/6 of the original value. However, the order of the 
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models' relative predictive ability in Panel A of Table 2.12 is the same as the order in 

Table 2.8 and is consistent with the order of the RMSEs of the forecasts, no matter what 

the data generating process is. The comparison of results in Table 2.8 and in Table 2.12 

reflects that the situation that the mean reversion parameter is close to the unit root 

lowers the models' predictive ability but increases the power of distinguishing between 

different ATSMs. The possible explanation is that the larger mean reversion speed will 

revert the forecasted values more quickly to model’s unconditional mean. 

Since the value of κ has a big impact on the model's predictive ability as well as 

model's ability to distinguish between each other, I estimate the models using the 

different κ values. I increase κ from the smallest 0.160, to 0.400, then 0.700, and up to 

0.900. Based on those different setting of κ values, I have four settings of parameter 

estimates, which are in Table 2.13. From the results of MLE-Vasicek in Table 2.13, we 

can see that the relative bias of the estimate of 𝜅 has reduced as the κ increases from 

0.160 to 0.900. The model's predictive ability tests are in Table 2.14. Based on the results 

of Table 2.14, we can see that the percentage of Model #1 ≠ #2 as well as the percentage 

of Model #1 Beats #2 are decreasing as κ increases. This means that the increase of the κ 

value reduces the model's power to distinguish between each other. 

2.4.4.2 The impact of sample size 𝒏 on models out-of-sample forecasting 
performance 

To investigate the impact of the sample size on ATSMs' relative predictive ability, 

I increase the size of the estimation window by the way of increasing the sampling 

frequency while keeping the time span unchanged. That is I rerun the same Monte Carlo 

simulation as that in the prior sections but increase the frequency from the monthly basis 
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1 1(∆𝑡 = ) to the daily basis (∆𝑡′ = ). Correspondingly, the sample size n increases 
12 365

from 300 months to 9,125 days when the time span T is 25 years. 

Table 2.15 presents the parameter estimates with the daily frequency. The 

comparison of Table 2.4 and Table 2.15 shows that increasing the sample size without 

changing the time span has no help to reduce the bias of the mean reversion estimates. 

For example, the mean of �̂�𝐵,𝑉𝑎𝑠 is 0.2683 and the RMSE is 0.2446 in Panel A of Table 

2.4, while the corresponding values are 0.3415 and 0.2804, respectively, in Panel A of 

Table 2.15. In general, the biases of mean reversion estimates in Table 2.15 are greater 

than the biases of the corresponding estimates in Table 2.4. Tang and Chen (2009) 

concludes that the bias of the mean reversion estimator is not a function of the number of 

observations, which is consistent with my results. Therefore, increasing the sample size 

by the way of increasing the sampling frequency while keeping the time span unchanged, 

cannot reduce the bias of the mean reversion estimator. In addition, we see that the orders 

of the biases of the mean reversion estimates in Table 2.15 and Table 2.4 are the same. 

Table 2.16 presents the summary of models out-of-sample performance forecasts 

with 1-, 6-, and 12-month horizon when the sampling frequency increases from the 

monthly basis to the daily basis. Comparing the numbers in Table 2.16 to the numbers in 

Table 2.7, we see that the RMSEs and MAEs of forecasting zero bond yields in Table 

2.16 are smaller than those in Table 2.7. But the orders of the RMSEs and MAEs of the 

forecasts from smallest to largest in both tables are the same. This result shows that 

increasing the sample size without changing the time span increases the models' 

predictive ability but may reduce models’ power to distinguish between models. This 

conclusion is proved in Table 2.17. 
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Table 2.17 reports the evaluation results of models out-of-sample forecasting 

performance. The values of "%Paths #1 ≠ #2" in Table 2.17 are smaller than the 

corresponding values in Table 2.8. For example, the percentage of rejecting the 

hypothesis of equal predictive ability between Vasicek-A and CIR-A in the 1-month 

ahead forecasts is 84.71% in Panel A of Table 2.8, while the rejection percentage of the 

two models over the same forecasting time horizon is only 46.67% in Panel A of Table 

2.17. This shows that the probability of the model differentiation is reduced when the 

sample size is increased by the way of increasing the sampling frequency without 

changing the time span. In addition, the power to differentiate the ATSMs from ND and 

AR(1) is also weaker in Table 2.17 than in Table 2.8. Take Vasicek-A and AR(1) in 1-

month ahead forecasts as an example. When the data are from the Vasicek model, the 

rejection percentage of the two models is 99.96% in Panel A of Table 2.8, while the 

corresponding rejection percentage is reduced to 84.72% in Panel A of Table 2.17. If 

ordering the relative predictive ability of the models, we see that the order of the models’ 

predictive ability in Table 2.17 is the same as that in Table 2.8, no matter what the data 

generating process is. Also, the order of the predictive ability of the four ATSMs is 

consistent with the order of the size of the bias of the mean reversion estimates in Table 

2.15, no matter what the true model is. The smaller the bias of the mean reversion 

estimate is, the higher the model’s predictive ability has. 

2.4.4.3 The impact of time span 𝑻 on models out-of-sample forecasting 
performance 

Tang and Chen (2009) states that the bias of the mean reversion estimator is not a 

function of the number of observations but is a decreasing function of the time span. In 
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details, the bias of the mean reversion estimator is a function of 𝑇−1. The results in the 

last section prove the former part of their statement. This section will study the impact of 

the change in the time span T on ATSMs’ relative predictive ability. Therefore, I use the 

same Monte Carlo study but changing the sampling frequency from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365) while keeping the sample size n = 300 

unchanged. Correspondingly, the time span is reduced from 𝑇 = 25 years to T' = 𝑛 × 

1
∆𝑡 ′ = 300 × = 0.82 years. 

365 

Table 2.18, Table 2.19, and Table 2.20 report the statistics of the models' 

estimates, the summary of the out-of-sample forecasting performance, and the results of 

the models' predictive ability tests, respectively. The results of Table 2.18 and Table 2.4 

show that the bias of the mean reversion estimates substantially increases when the time 

span is reduced from 25 years to 0.82 years. This is consistent with Tang and Chen 

(2009). However, the order of the bias of the mean reversion estimates in both tables are 

the same. 

Comparing the values in Table 2.19 to the corresponding values in Table 2.7 and 

Table 2.16, we see that the RMSEs and MAEs of forecasting zero bond yields in Table 

2.19 are larger than the values in Table 2.16 but smaller than the values in Table 2.7. This 

shows that the models' predictive ability is increasing with the increasing of the sampling 

frequency while keeping the sample size unchanged. But when the sampling frequency is 

kept the same, the models' predictive ability is increasing with the increasing of the time 

span. In addition, the orders of RMSEs and MAEs of the forecasting zero bond yields 

from smallest to largest in Table 2.19 are the same as the orders in Table 2.7 and in Table 

2.16. The order of the RMSEs of the forecasts of the ATSMs in Table 2.19 once again 
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proves that the smaller the bias of the mean reversion estimate is, the smaller the RMSE 

and AME of the forecasted values are. 

The comparison of Table 2.20 with Table 2.17 shows that the power to 

differentiate different ATSMs improves with the decreasing of the time span when the 

sampling frequency is the same, although the models' predictive ability is reduced. If 

comparing the values in Table 2.20 and the values in Table 2.8, we see that increasing the 

sampling frequency while keeping the sample size unchanged reduces the power to 

differentiate ATSMs. 

2.5 Conclusion 

A widely discussed issue in yield curve modeling is that ATSMs have performed 

poorly as forecasting tools. This paper discusses that the reason of ATSMs out-of-sample 

poor performance is there is no econometric model accurately describing the true data 

generating process. Therefore, the goal of the paper is to study how well the simulated 

data differentiate between the two affine models if there are no errors in the observed 

data. To explore the question of interest, I use a parsimonious Monte Carlo study to 

simulate six month zero-coupon data from both Vasicek and CIR models and then, in 

turn, estimate both the CIR and Vasicek models using that simulated data.  The results 

show that the ATSMs' predictive ability is related to the mean reversion parameters. The 

smaller the bias of the estimate of the mean reversion is, the better out-of-sample 

forecasts the model has. Also, I find that a mean reversion process with a higher speed, 

the larger sample size, and the higher sampling frequency can improve ATSMs' 

predictive ability in contrast with the decrease of the models' power to differentiate 

between different ATSMs. 
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While we have gained understanding on the power and size of one-factor affine 

term structure models (ATSMs), there is a need to understand more on estimation of 

multifactor ATSMs. Another important issue is to understand how the existence of 

observational errors impact parameter estimates and out-of-sample forecasts since early 

empirical analysis of ATSMs focus primarily on estimation of the ATSMs with the 

auxiliary errors. Therefore, my future research will focus on exploring the ability of out-

of-sample forecasts to statistically distinguish one ATSM from another  a) when the data 

are simulated from multifactor ATSMs, and b) when the data is generated from an ATSM 

observed with errors. 
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Figure 2.1 One sample path of the Vasicek simulated short rate 

The Vasicek-simulated short rate is based on the parameter values of 𝜅=0.140, 𝜃=0.0891, and 𝜎=0.0173. 
The size of a sample path n is 300 corresponding to monthly data series over a 25-year horizon (T=25 

1years). The time increment 𝛥𝑡 = . The initial value of the short rate is set equal to the long-run mean, or 
12

𝑟0 = 0.0891. 

67 



 

 

 

   

    
  

 

  

Figure 2.2 One sample path of the CIR simulated short rate 

The CIR-simulated short rate is based on the parameter values of 𝜅=0.148, 𝜃=0.09, and 𝜎=0.0707. The 
size of a sample path n is 300 corresponding to monthly data series over a 25-year horizon (T=25 years). 

1The time increment 𝛥𝑡 = . The initial value of the short rate is set equal to the long-run mean, or 𝑟0 = 
12

0.09. 
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Table 2.1 The results of replicating Table 3 in Tang and Chen (2009) 

Bias 
R. Bias(%) 
S.D. 

Vasicek Model 
True 𝜅=0.140 

Tang & Chen’s My Replication 
�̂� �̂� �̂� �̂�𝐵,𝑇𝐶 𝐴,𝑇𝐶 𝐵,𝑀𝑌 𝐴,𝑀𝑌 
0.190 0.010 0.183 0.012 

133.046 6.713 130.714 8.571 
0.206 0.213 0.167 0.204 

CIR Model 
True 𝜅=0.148 

Tang & Chen’s My Replication 
�̂� �̂� �̂� �̂�𝐵,𝑇𝐶 𝐴,𝑇𝐶 𝐵,𝑀𝑌 𝐴,𝑀𝑌 
0.192 0.007 0.203 -0.0006 

129.455 4.459 137.162 -0.405 
0.222 0.214 0.208 0.235 

I replicate Table 3 in Tang and Chen (2009) and compare their results with mine. My simulation inputs are 
from Tang and Chen (2009). The true parameter values for the Vasicek model are 𝜅=0.140, 𝜃=0.0891, 
𝜎=0.0173,and for the CIR model are 𝜅=0.148, 𝜃=0.09, 𝜎=0.0707. All other conditions are the same for two 
models: the time increment ∆𝑡 is 1/12 corresponding to monthly observations; the size of one sample path n 
is 300; the sample paths repeats N = 5,000 times and the number of the bootstrap resample m is 1,000. �̂�𝐵 
and �̂�𝐴 represent the 𝜅 estimators before and after the bootstrap bias correction process, respectively. The 
subscript "TC" denotes the results from Tang and Chan (2009) and "MY" means my replication. Bias is 
defined as the estimate minus true value. R. Bias is the relative bias. S.D. is the standard deviation. 
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Table 2.2 Parameter estimates based on Vasicek- and CIR-simulated instantaneous 
short rates 

Panel A: Vasicek Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/12, n=300 
Part 1: Analytical MLE Before Bias Correction 

Estimates �̂�𝐵,𝐴𝑀𝐿 �̂�𝐵,𝐴𝑀𝐿 �̂�𝐵,𝐴𝑀𝐿 
Mean 0.2683 0.09080 0.01828 
S.D. 0.4810 0.06950 0.01341 

Median 0.2267 0.08901 0.01813 
Skewness 1.1177 16. 123 0.2089 
Kurtosis 2. 2290 263.00 1.4475 

Part 2: Numeric MLE Before Bias Correction 
Estimates �̂�𝐵,𝑁𝑀𝐿 �̂�𝐵,𝑁𝑀𝐿 �̂�𝐵,𝑁𝑀𝐿 

Mean 0.2683 0.09080 0.01828 
S.D. 0.2108 0.04695 0.00128 

Median 0.2267 0.08901 0.01813 
Skewness 1.1136 13.991 0.06502 
Kurtosis 1.2122 265.11 0.56679 

Part 3: Numeric MLE After Bias Correction 
Estimates �̂�𝐴,𝑁𝑀𝐿 �̂�𝐴,𝑁𝑀𝐿 �̂�𝐴,𝑁𝑀𝐿 

Mean 0.1883 0.08834 0.01732 
S.D. 0.2043 0.04102 0.00071 

Median 0.1341 0.08745 0.01731 
Skewness 2.2247 16.461 0.08397 
Kurtosis 5.6412 392.47 1.04774 

Panel B: CIR Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/12, n=300 
Part 1: Numeric MLE Before Bias Correction 

Estimates �̂�𝐵,𝑁𝑀𝐿 �̂�𝐵,𝑁𝑀𝐿 �̂�𝐵,𝑁𝑀𝐿 
Mean 0.3475 0.09121 0.07488 
S.D. 0.2035 0.04657 0.00492 

Median 0.3001 0.08632 0.07386 
Skewness 1.0485 11.133 0.64720 
Kurtosis 0.9579 246.20 0.53838 

Part 2: Numeric MLE After Bias Correction 
Estimates �̂�𝐴,𝑁𝑀𝐿 �̂�𝐴,𝑁𝑀𝐿 �̂�𝐴,𝑁𝑀𝐿 

Mean 0.2081 0.09163 0.07143 
S.D. 0.2193 0.04681 0.00590 

Median 0.1327 0.08638 0.07063 
Skewness 1.7311 14.949 1.2565 
Kurtosis 3.0457 346.72 4.1348 

The numeric Vasicek MLE of Eq. (2.5) and the analytical Vasicek MLE of Eqs. (2.9 - 2.13) are applied to 
the Vasicek-simulated short rates. The results are showed in Panel A and the true parameter values are 
given in the first row. In Panel A, Part 1 presents statistics of analytical MLE before bias correction and 
Part 2 and Part 3 present the results of numeric MLE before and after bias correction process, respectively. 
The subscript "B" denotes before the bias correction and the "A" indicates after the bias correction. Since 
the bias correction process is based on the numeric iteration of ML process, it is no possible to find the 
after-bias-correction estimates to the analytical ML process and then there is only before-bias-correction 
analytical ML estimates. The numeric CIR MLE of Eq. (2.37) is applied to the CIR-simulated short rates 
whose true parameter values are given in the first row of Panel B. Panel B reports the results of numeric 
ML before and after bias correction process, respectively, with the subscript "B" and "A" the same meaning 
as those in Panel A. Any MLE process in this table has 300 observations (25 years) and there are 10,000 
replications. The number of bootstrap resampling is 500. 
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Table 2.3 Parameter estimates based on Vasicek- and CIR-simulated zero coupon 
yields with three maturities 

Panel A: Vasicek Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/12, n=300 
After Bias Correction: 3 Month 

Estimates �̂� ̂
𝐴 𝜃𝐴 �̂�𝐴 

Mean 0.1882 0.08487 0.01779 
S.D. 0.2391 0.03619 0.00099 
Median 0.1494 0.08476 0.01773 
Skewness 1.0953 11.216 0.4677 
Kurtosis 1.0024 256.04 1.3299 

After Bias Correction: 10 Year 
Estimates �̂� ̂

𝐴 𝜃𝐴 �̂�𝐴 
Mean 0.1883 0.08475 0.01779 
S.D. 0.2392 0.03618 0.00099 
Median 0.1455 0.08457 0.01772 
Skewness 1.0960 11.199 0.4675 
Kurtosis 1.0046 255.53 1.3283 

After Bias Correction: 20 Year 
Estimates �̂� ̂

𝐴 𝜃𝐴 �̂�𝐴 
Mean 0.1883 0.08466 0.01779 
S.D. 0.2391 0.03611 0.00099 
Median 0.1452 0.08443 0.01773 
Skewness 1.0954 11.273 0.4677 
Kurtosis 1.0026 257.71 1.3292 

Panel B: CIR Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/12, n=300 
After Bias Correction: 3 Month 

Estimates �̂� ̂
𝐴 𝜃𝐴 �̂�𝐴 

Mean 0.2081 0.08961 0.06948 
S.D. 0.2197 0.04221 0.00475 
Median 0.1452 0.08475 0.06964 
Skewness 1.2914 13.407 1.2447 
Kurtosis 3.4181 303.37 4.3012 

After Bias Correction: 10 Year 
Estimates �̂� ̂

𝐴 𝜃𝐴 �̂�𝐴 
Mean 0.2081 0.08963 0.06948 
S.D. 0.2197 0.04220 0.00474 
Median 0.1449 0.08475 0.06960 
Skewness 1.2913 13.411 1.2440 
Kurtosis 3.4145 303.37 4.3011 

After Bias Correction: 20 Year 
Estimates �̂� ̂

𝐴 𝜃𝐴 �̂�𝐴 
Mean 0.2081 0.08966 0.06948 
S.D. 0.2196 0.04221 0.00474 
Median 0.1450 0.08477 0.06966 
Skewness 1.2914 13.404 1.2448 
Kurtosis 3.4180 303.36 4.3012 

The Vasicek-MLE (Eq. (2.24)) and the CIR-MLE (Eq. (2.50)) are applied to both Vasicek-simulated and 
CIR-simulated zero bond yields whose parameter values are given in the first row of Panel A and Panel B, 
respectively. Both panels present the results of numeric MLE after bias correction process, which are 
applied to the 3 month, 10 year, and 20 year zero coupon yields. The subscript "A" indicates after the bias 
correction. Any MLE process in this table has 300 observations (25 years) and there are 10,000 
replications. The number of bootstrap resampling is 500. 
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Table 2.5 Parameter estimates of non-linear diffusion and AR(1) models 

Panel A: Vasicek Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/12, m=300 
ND Parameter Estimates 

Mean S.D. Median Skew. Kurtosis 
Intercept �̂�0 -0.0680 0.1038 -0.0364 -3.3979 18.366 

�̂�1 0.7372 1.0119 0.4472 3.0183 15.412 
�̂�2 -2.7762 3.4497 -1.8274 -2.7287 13.506 
�̂�3 0.0022 0.0037 0.0010 3.9227 23.893 

AR(1) Parameter Estimates 
Mean S.D. Median Skew. Kurtosis 

�̂� 0.0025 0.0017 0.0021 1.4743 3.4578 
�̂� 0.9715 0.0175 0.9753 -1.3379 2.7157 

Panel B: CIR Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/12, m=300 
ND Parameter Estimates 

Mean S.D. Median Skew. Kurtosis 
Intercept �̂�0 -0.0634 0.0929 -0.0342 -3.0372 17.069 

�̂�1 0.6716 1.0499 0.6771 3.0081 21.204 
�̂�2 -2.1932 5.4854 -1.8910 -1.6987 19.029 
�̂�3 0.0028 0.0038 0.0010 3.6593 29.900 

AR(1) Parameter Estimates 
Mean S.D. Median Skew. Kurtosis 

�̂� 0.0026 0.0016 0.0023 1.9037 9.5840 
�̂� 0.9702 0.0173 0.9738 -1.2923 3.4932 

The non-linear diffusion (ND) model of Eq. (2.58) and the autoregressive model with first order (AR(1)) of 
Eq. (2.61) are applied to Vasicek- and CIR-simulated 6-month zero bond yields whose parameter values are 
given in the first row of each panel, respectively. Each estimation process has 300 observations (25 years) 
and there are 10,000 replications. Panel A gives the descriptive statistics of the estimates of ND and AR(1) 
model when the data are simulated from the Vasicek model and Panel B reports the statistics results of the 
same models as in Panel A but the data are from the CIR model. 
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Table 2.7 Comparison of models out-of-sample forecasting performance 

Panel A: Vasicek Simulated Data with Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/12, n=300 
1-month Forecasting 6-month Forecasting 12-month Forecasting 

RMSE of MAE of RMSE of MAE of RMSE of MAE of 
𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Vasicek-B 0.0098 0.0082 0.0154 0.0128 0.0205 0.0164 
Vasicek-A 0.0063 0.0050 0.0134 0.0109 0.0195 0.0154 

CIR-B 0.0110 0.0095 0.0168 0.0142 0.0217 0.0174 
CIR-A 0.0083 0.0070 0.0142 0.0117 0.0200 0.0159 

ND 0.0357 0.0270 0.0390 0.0273 0.0416 0.0266 
AR(1) 0.0396 0.0288 0.0425 0.0301 0.0433 0.0300 

Martingale 0.2882 0.2297 0.7051 0.5639 0.9851 0.7873 
Panel B: CIR Simulated Data with Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/12, n=300 

1-month Forecasting 6-month Forecasting 12-month Forecasting 
RMSE of MAE of RMSE of MAE of RMSE of MAE of 
�̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Vasicek-B 0.0109 0.0089 0.0186 0.0149 0.0234 0.0164 
Vasicek-A 0.0092 0.0077 0.0169 0.0136 0.0217 0.0149 

CIR-B 0.0099 0.0079 0.0181 0.0143 0.0220 0.0152 
CIR-A 0.0072 0.0057 0.0161 0.0128 0.0210 0.0144 

ND 0.0367 0.0279 0.0290 0.0294 0.0432 0.0257 
AR(1) 0.0406 0.0296 0.0308 0.0321 0.0449 0.0291 

Martingale 0.2879 0.2295 0.7050 0.5640 0.9847 0.7870 
Seven alternative estimation techniques are applied to 25 year (300 months) of 6-month zero yields 
simulated from a Vasicek model and a CIR model whose true parameter values are given in the first row of 
Panel A and Panel B, respectively. The corresponding sets of model estimates are used to make out-of-
sample forecasts. There are 10,000 replications. “Vasicek-B” and “Vasicek-A” represent the sets of MLE-
Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. 
“ND” stands for the Non-linear diffusion model. "AR(1)" denotes the autoregressive model with the first 
order. "Martingale" is the martingale model. Denote RMSE as the root mean square error of the forecasted 
zero bond yields and denote MAE as the mean of the absolute error of the forecasted values. 
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Table 2.11 Comparison of models out-of-sample forecasting performance: Setting A 
when the mean reversion parameter is far away the unit root 

Panel A: Vasicek Simulated Data with Parameter Values: 𝜿=0.858, 𝜽=0.0891, 𝝈=0.0173, Δt=1/12, n=300 
1-month Forecasting 6-month Forecasting 12-month Forecasting 

RMSE of MAE of RMSE of MAE of RMSE of MAE of 
𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Vasicek-B 0.0041 0.0033 0.0085 0.0068 0.0101 0.0082 
Vasicek-A 0.0041 0.0033 0.0084 0.0068 0.0099 0.0081 

CIR-B 0.0041 0.0033 0.0085 0.0068 0.0101 0.0082 
CIR-A 0.0041 0.0033 0.0085 0.0068 0.0100 0.0081 

ND 0.0059 0.0041 0.0096 0.0074 0.0112 0.0090 
AR(1) 0.0079 0.0051 0.0112 0.0096 0.0129 0.0109 

Martingale 0.2881 0.2297 0.7050 0.5638 0.9848 0.7871 
Panel B: CIR Simulated Data with Parameter Values: 𝜿=0.892, 𝜽=0.09, 𝝈=0.0707, Δt=1/12, n=300 

1-month Forecasting 6-month Forecasting 12-month Forecasting 
RMSE of MAE of RMSE of MAE of RMSE of MAE of 
�̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Vasicek-B 0.0051 0.0040 0.0104 0.0083 0.0123 0.0098 
Vasicek-A 0.0051 0.0040 0.0104 0.0083 0.0124 0.0098 

CIR-B 0.0051 0.0040 0.0104 0.0083 0.0124 0.0098 
CIR-A 0.0050 0.0040 0.0104 0.0083 0.0123 0.0098 

ND 0.0068 0.0038 0.0121 0.0087 0.0217 0.0115 
AR(1) 0.0081 0.0053 0.0172 0.0112 0.0221 0.0156 

Martingale 0.2879 0.2296 0.7049 0.5635 0.9846 0.7873 
Seven alternative estimation techniques are applied to three settings of 6-month zero yields simulated from 
a Vasicek model (Panel A) and a CIR model (Panel B). The corresponding sets of model estimates are used 
to make out-of-sample forecasts. Setting A: Change the model parameters: for the Vasicek model 
(𝜅, 𝜃, 𝜎) = (0.858, 0.0891, 0.0173), and for the CIR model (𝜅, 𝜃, 𝜎) = (0.892, 0.09, 0.0707). The mean 
reversion parameters of Setting A are 6 times the κ of the setting that the model is approaching the unit 
root. Setting A is designed to place the parameters far away from the unit root situation. There are 10,000 
replications and the number of bootstrap resampling is 500. “Vasicek-B” and “Vasicek-A” represent the sets 
of MLE-Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. 
“ND” stands for the Non-linear diffusion model. "AR(1)" denotes the autoregressive model with the first 
order. "Martingale" is the martingale model. Denote RMSE as the root mean square error of the forecasted 
zero bond yields and denote MAE as the mean of the absolute error of the forecasted values. 
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Table 2.16 Comparison of models out-of-sample forecasting performance: Setting B 
when increasing the sample size 

Panel A: Vasicek Simulated Data with Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/365, n=9,125 
1-month Forecasting 6-month Forecasting 12-month Forecasting 

RMSE of MAE of RMSE of MAE of RMSE of MAE of 
𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Vasicek-B 0.0056 0.0039 0.0114 0.0081 0.0168 0.0121 
Vasicek-A 0.0033 0.0026 0.0074 0.0058 0.0156 0.0088 

CIR-B 0.0060 0.0044 0.0128 0.0101 0.0208 0.0162 
CIR-A 0.0051 0.0033 0.0105 0.0070 0.0160 0.0103 

ND 0.0269 0.0140 0.0349 0.0171 0.0360 0.0242 
AR(1) 0.0324 0.0219 0.0359 0.0297 0.0432 0.0315 

Martingale 0.2871 0.2324 0.6998 0.5611 0.9810 0.7854 
Panel B: CIR Simulated Data with Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/365, n=9,125 

1-month Forecasting 6-month Forecasting 12-month Forecasting 
RMSE of MAE of RMSE of MAE of RMSE of MAE of 
�̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Vasicek-B 0.0051 0.0039 0.0112 0.0089 0.0159 0.0121 
Vasicek-A 0.0044 0.0033 0.0100 0.0077 0.0141 0.0108 

CIR-B 0.0048 0.0037 0.0108 0.0085 0.0155 0.0114 
CIR-A 0.0038 0.0029 0.0089 0.0068 0.0124 0.0103 

ND 0.0253 0.0137 0.0322 0.0188 0.0390 0.0299 
AR(1) 0.0342 0.0219 0.0358 0.0297 0.0421 0.0315 

Martingale 0.2872 0.2326 0.7003 0.5615 0.9807 0.7858 
Seven alternative estimation techniques are applied to three settings of 6-month zero yields simulated from 
a Vasicek model (Panel A) and a CIR model (Panel B). The corresponding sets of model estimates are used 
to make out-of-sample forecasts. Setting B: Change the sampling frequency of the data from the monthly 
basis (∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the 
sample size is increased from n = 300 to n' = 9,125. The latter corresponds to high frequency data. There 
are 10,000 replications and the number of bootstrap resampling is 500. “Vasicek-B” and “Vasicek-A” 
represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias correction and “A” 
indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates 
for the MLE-CIR. “ND” stands for the Non-linear diffusion model. "AR(1)" denotes the autoregressive 
model with the first order. "Martingale" is the martingale model. Denote RMSE as the root mean square 
error of the forecasted zero bond yields and denote MAE as the mean of the absolute error of the forecasted 
values. 
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Table 2.19 Comparison of models out-of-sample forecasting performance: Setting C 
when reducing the time span 

Panel A: Vasicek Simulated Data with Parameter Values: 𝜿=0.140, 𝜽=0.0891, 𝝈=0.0173, Δt=1/365, n=300 
1-month Forecasting 6-month Forecasting 12-month Forecasting 

RMSE of MAE of RMSE of MAE of RMSE of MAE of 
𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Vasicek-B 0.0072 0.0063 0.0151 0.0129 0.0295 0.0243 
Vasicek-A 0.0052 0.0047 0.0132 0.0106 0.0180 0.0143 

CIR-B 0.0148 0.0107 0.0257 0.0234 0.0299 0.0257 
CIR-A 0.0055 0.0053 0.0138 0.0109 0.0185 0.0147 

ND 0.0441 0.0202 0.0633 0.0314 0.0666 0.0448 
AR(1) 0.0552 0.0438 0.0650 0.0528 0.0712 0.0572 

Martingale 0.2861 0.2281 0.7032 0.5623 0.9843 0.7869 
Panel B: CIR Simulated Data with Parameter Values: 𝜿=0.148, 𝜽=0.09, 𝝈=0.0707, Δt=1/365, n=300 

1-month Forecasting 6-month Forecasting 12-month Forecasting 
RMSE of MAE of RMSE of MAE of RMSE of MAE of 
�̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Vasicek-B 0.0066 0.0059 0.0188 0.0153 0.0232 0.0189 
Vasicek-A 0.0065 0.0051 0.0157 0.0124 0.0214 0.0157 

CIR-B 0.0065 0.0056 0.0180 0.0146 0.0229 0.0183 
CIR-A 0.0062 0.0048 0.0153 0.0119 0.0209 0.0141 

ND 0.0239 0.0129 0.0303 0.0234 0.0409 0.0310 
AR(1) 0.0263 0.0150 0.0318 0.0273 0.0413 0.0341 

Martingale 0.2863 0.2283 0.7037 0.5625 0.9847 0.7872 
Seven alternative estimation techniques are applied to three settings of 6-month zero yields simulated from 
a Vasicek model (Panel A) and a CIR model (Panel B). The corresponding sets of model estimates are used 
to make out-of-sample forecasts. Setting C: Change the sampling frequency of the data from the monthly 
basis (∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365) while keeping the sample size n = 300. 

1′Correspondingly, the time span is reduced from 𝑇 = 25 years to T' = 𝑛 × ∆𝑡 = 300 × = 0.82 years. 
365 

There are 10,000 replications and the number of bootstrap resampling is 500. “Vasicek-B” and “Vasicek-A” 
represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias correction and “A” 
indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates 
for the MLE-CIR. “ND” stands for the Non-linear diffusion model. "AR(1)" denotes the autoregressive 
model with the first order. "Martingale" is the martingale model. Denote RMSE as the root mean square 
error of the forecasted zero bond yields and denote MAE as the mean of the absolute error of the forecasted 
values. 
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CHAPTER III 

THE VALUE OF KNOWING THE TRUTH AND THE COST OF BEING WRONG: 

AN APPLICATION TO MULTI-FACTOR AFFINE TERM 

STRUCTURE MODELS 

3.1 Introduction 

The objective of my dissertation is to discuss under what circumstances that we 

can distinguish between different ATSMs, given the data are from a particular type of 

ATSMs and observed without errors. I focus on the discussion of one-factor ATSMs in 

Chapter II. Those results show that if the data are simulated from a high mean reversion 

process with a large sample size and with a high sampling frequency, the models' 

forecasting accuracy can be improved, in contrast, the power to distinguish between 

different ATSMs will be reduced. In this chapter I extend the study of the question to the 

multi-factor ATSMs and examine whether the results based on the one-factor models can 

be applied to the multi-factor models. In particular, I will study under what circumstances 

we can distinguish between different multi-factor ATSMs. Once again I will focus on the 

power and size of the out-of-sample forecasts using Giacomini and White’s test. For 

instance, if the data is generated by a two factor CIR model, is it more likely the data will 

reject a one factor CIR model or a two factor Vasicek model? Similarly, how frequently 

will we reject the two factor CIR model as the correct model? To simplify the data 

simulation process and focus on the questions of interest, I use the two-factor Vasicek 
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and CIR models as a representation of the multi-factor affine models without any loss of 

generality. 

In this chapter I use the same Monte Carlo study as that in the last chapter. That 

is, I simulate the data from both the 2-factor Vasicek and CIR models, and then estimate 

all models using that data, including the 1- and 2-factor Vasicek and CIR models. Same 

as the last chapter, I employ the bootstrap bias correction process to reduce the bias of the 

mean reversion estimates. This means there are two sets of parameter estimates for each 

ATSM. In the following sections, I use "B" to stand for the estimates before the bias 

correction and "A" to represent the estimates after the bias correction. Last, I compare the 

models' performance based on the out-of-sample forecasts over a 12-month horizon. The 

Giacomini and White (2006) test is employed to examine the models’ relative predictive 

ability as well as the model's power to statistically distinguish between different ATSMs. 

The model's forecasting accuracy is measured by the mean squared error (MSE). The 

standardized difference of two models' MSEs measures the model's power to statistically 

distinguish between different ATSMs. The larger the absolute value of the difference of 

two models' MSEs is, the stronger the power to distinguish one model from another one 

is. The smaller MSE represents more accurate forecasts and the higher relative predictive 

ability as well. 

In terms of the model estimation method, I follow Pearson and Sun (1994) to 

derive the likelihood functions for the 1- and 2-factor Vasicek and CIR models and then 

apply the maximum likelihood estimation to all models. Since two series of the bond 

prices with different maturities are needed to estimate the 2-factor ATSMs, I use the two 

simulated factors to construct three groups of bond prices with each group consisting of 
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two bond series with two maturities. Based on the length difference of the time to 

maturities, three groups of the bond series are 2 shorts: 0.5 and 1 year; 2 mediums: 1 and 

20 years; and 2 longs: 20 and 30 years. Such a category is for the study of the influence 

of the time to maturities on the models' predictive ability. 

The basic simulation setting (Base Setting) is the same as the initial setting in 

Chapter II, except for the true parameters, which are point estimates from fitting the 2-

factor Vasicek and CIR models to the month-end price quotes for treasury bonds. 

Comparing the out-of-sample forecasts of the 1- and 2-factor Vasicek and CIR models, I 

find that relative to the one-factor models, the multi-factor models exhibit little 

improvement in the models' predictive ability as well as the models' power to 

differentiate themselves from the one-factor models. The 2-factor counterparts of the true 

models have the least predictive ability and are the most distinguishable from other 1- or 

2-factor models. For example, given the 2-factor Vasicek model is the true model, the 

probability that the 2-factor Vasicek model can be differentiated from 2-factor CIR model 

at the 12-month ahead horizon is over 99%, while the probability to distinguish the true 

model from other 1-factor ATSMs is about 50% and the number is less than 30% in 

differentiating between two 1-factor ATSMs. This means that having more factors in the 

ATSMs increases models' power to distinguish between models. In addition, the MSEs of 

the out-of-sample forecasts of three groups of the bond series have no much difference. 

This implies that the time to maturities of the bond have no much impact on the models' 

out-of-sample performance. 

The conclusion in Chapter II states that the sample size and the time span of the 

sample can influence the one-factor ATSMs' predictive ability and models’ power to 
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distinguish between the one-factor models as well. In this chapter, I want to investigate 

whether the sample size and the sample's time span have the similar impact on multi-

factor ATSMs. Therefore, I simulate the data using the same two alternative settings as 

those in the last chapter and then repeat the estimation, forecasting, and testing processes. 

The two alternative settings are Setting B and Setting C. The former is in correspondence 

with the increase of the sample size by the way of the increase in the sampling frequency 

within a fixed time span. Setting C refers to the shorter time span by the way of an 

increase in the sampling frequency within a fixed sample size. 

The results based on the simulated data from Settings B and C show the similar 

results as those from the Base Setting. That is, adding more factors does not benefit the 

ATSMs in improving models' predictive accuracy. But having more factors in the models 

increases the models' power to distinguish the one from another. If the sample size rises, 

the out-of-sample performance of all models' are generally improved, and the 1-factors 

models cluster together and are difficult to differentiate between each other. The 

probability to differentiate between two one-factor ATSMs drops to below 10% in the 

case of Setting B. However, the two-factor models can be easily distinguishable from the 

one-factor models. The results based on Setting C show that the shorter time span, by the 

way of the increase in the sampling frequency, makes the one-factor models more easily 

distinguishable. The two-factor models, however, become less distinguishable from the 

1-factor models in the case of Setting C. 

In summary, having more factors in the ATSMs does not improve models' 

predictive ability. But it increases the models' power to distinguish between each other. 
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The multi-factor ATSMs with larger sample size and longer time span will have more 

predictive ability and stronger power to differentiate between models. 

The rest of this chapter is organized as follows: Section 3.2 describes the 2-factor 

Vasicek and CIR models and then introduce the estimation methods. The detail data 

simulation procedure is stated in Section 3.3. Section 3.4 examines the models' out-of-

sample performance and investigates the power and size of the two-factor ATSMs as 

well. Section 3.5 concludes the paper. 

3.2 Model description and estimation methods 

In this section, I first introduce the two-factor Vasicek and CIR models, followed 

by the description of the method of the maximum likelihood estimation of those two 

models. 

To simplify the data simulation process and focus on the question of interest, I 

assume the state factors are independent. Accordingly, the dynamics of two-factor 

Vasicek model under the physical measure P are: 

𝑋1𝑡 𝜅1 0 𝜃1 − 𝑋1𝑡 𝜎1 0 𝑑𝑊1𝑡 
𝑃 

𝑑 [ ] = [ ] [ ] 𝑑𝑡 + [ ] [ ] (3.1)𝑃𝑋2𝑡 0 𝜅2 𝜃2 − 𝑋2𝑡 0 𝜎2 𝑑𝑊2𝑡 

The dynamics of two-factor CIR model under the physical measure P are 

𝑃𝑋1𝑡 𝜅1 0 𝜃1 − 𝑋1𝑡 𝜎1√𝑋1𝑡 0 𝑑𝑊1𝑡 𝑑 [ ] = [ ] [ ] 𝑑𝑡 + [ ] [ ] (3.2)
𝑋2𝑡 0 𝜅2 𝜃2 − 𝑋2𝑡 0 𝑑𝑊2𝑡 

𝑃
𝜎2√𝑋2𝑡 

where the parameters are (𝜅1, 𝜃1, 𝜎1, 𝜅2, 𝜃2, 𝜎2), (𝑋1𝑡, 𝑋2𝑡) are two state factors, and 

(𝑊1𝑡 𝑃 , 𝑊2𝑡 𝑃 ) are Wiener processes under the physical measure P. 
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In order to price the bonds based on the state factors, we have to identify the price 

of risk. This paper assumes the price of risk is completed. This means the price of risk 

(𝜆1, 𝜆2) are two constants. Therefore, after adjusting the interest rate risk, the dynamics of 

two models under the equivalent martingale measure Q have the expressions: 

𝜎1𝜆1𝜃1 − − 𝑋1𝑡 𝑄
𝑋1𝑡 𝜅1 0 𝜅1 𝜎1 0 𝑑𝑊1𝑡 𝑑 [ ] = [ ] [ ] 𝑑𝑡 + [ ] [ ] (3.3)

0 𝜅2 𝜎2𝜆2 0 𝜎2 𝑄𝑋2𝑡 𝜃2 − − 𝑋2𝑡 𝑑𝑊2𝑡 
𝜅2 

𝜅1+𝜆1𝜃1 − 𝑋1𝑡 0 𝑑𝑊𝑄
𝑋1𝑡 𝜅1 0 𝜅1 𝜎1√𝑋1𝑡 1𝑡 𝑑 [ ] = [ ] [ ] 𝑑𝑡 + [ ] [ ] (3.4)

𝜅2+𝜆2 𝑄𝑋2𝑡 0 𝜅2 𝜃2 − 𝑋2𝑡 0 𝜎2√𝑋2𝑡 𝑑𝑊2𝑡 
𝜅2 

Based on the dynamics of the state factors, we can explicitly express the zero 

bond prices as 

2 
𝑖=1 𝑃𝑡(𝜏) = 𝑒∑ [𝐴𝑖(𝜏)−𝐵𝑖(𝜏)𝑋𝑖𝑡] (3.5) 

with the Vasicek model’s 

2 2𝜎𝑖𝜆𝑖 𝜎𝑖 𝜎𝑖 𝐵𝑖
2(𝜏)

𝐴𝑖(𝜏) = (𝜃𝑖 − − 2) (𝐵𝑖(𝜏) − 𝜏) − (3.6)
𝜅𝑖 2𝜅𝑖 4𝜅𝑖 

1
𝐵𝑖(𝜏) = (1 − 𝑒−𝜅𝑖𝜏) (3.7)

𝜅𝑖 

and the CIR model’s 

𝜏 
(𝜅𝑖+𝜆𝑖+𝛾𝑖)2𝜅𝑖𝜃𝑖 2𝛾𝑖𝑒𝐴𝑖(𝜏) = 2 𝑙𝑛[ 
2

] (3.8)
𝜎𝑖 (𝜅𝑖+𝜆𝑖+𝛾𝑖)(𝑒

𝛾𝑖𝜏−1)+2𝛾𝑖 

2(e𝛾𝑖𝜏−1) 
𝐵𝑖(𝜏) = (3.9)

(𝜅𝑖+𝜆𝑖+𝛾𝑖)(e
𝛾𝑖τ−1)+2𝛾𝑖 

2𝛾𝑖 = √(𝜅𝑖 + 𝜆𝑖)2 + 2𝜎𝑖 (3.10) 

101 



 

 

  

 

  

 

 

 

 

 

    

 

                                                 

                                                   

                                                     

  

 

  

Since we know the transition density functions of one-factor Vasicek and CIR 

models, it is easy to extend them to the two-factor models when we assume the two 

factors are independent. Still, we use the method of Pearson and Sun (2004) to map the 

state factors to bond prices and then derive the price density functions. 

To derive the transition density functions of the bond prices of the 2-factor 

ATSMs, we need at least two series of bond data with different maturities, among which 

two series of bond prices are assumed to be no measurement errors and the rest can have 

errors. In this chapter we do not consider any measurement errors in order to focus on the 

questions of interest. So only two series of bond prices without errors are considered. 

Denote 𝑃𝑡(𝜏1) and 𝑃𝑡(𝜏2) as two bond prices with maturities 𝜏1 and 𝜏2, 

respectively. Then we can derive the Jacobian as 

𝜕𝑋1𝑡 𝜕𝑋1𝑡 
𝜕𝑃𝑡(𝜏1)𝐽 = | 𝜕𝑋2𝑡 

𝜕𝑃𝑡(𝜏2) 
|𝜕𝑋2𝑡 

𝜕𝑃𝑡(𝜏1) 𝜕𝑃𝑡(𝜏2) 

−𝐵2(𝜏2) 𝐵2(𝜏1) 
1 𝑃𝑡(𝜏1) 𝑃𝑡(𝜏2) = 

[𝐵1(𝜏1)𝐵2(𝜏2) − 𝐵2(𝜏1)𝐵1(𝜏2)]2 | 𝐵1(𝜏2) −𝐵1(𝜏1)
| 

𝑃𝑡(𝜏1) 𝑃𝑡(𝜏2) 

1 
= (3.11) 
[𝐵1(𝜏1)𝐵2(𝜏2)−𝐵2(𝜏1)𝐵1(𝜏2)]𝑃𝑡(𝜏1)𝑃𝑡(𝜏2) 

where the definitions of 𝐵𝑖(𝜏) and 𝐴𝑖(𝜏) of Vasicek and CIR models are referred to Eq. 

(3.5). 

Therefore, the bond price transition density functions of 2-factor ATSMs are 

obtained by multiplying the transition density of the state factors with the absolute value 

of Jacobian. Denote the density functions of the independent state vector as ℎ𝑉(𝑋𝑡|𝑋𝑡−1) 
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for the Vasicek model and ℎ𝐶𝐼𝑅(𝑋𝑡|𝑋𝑡−1) for the CIR model. The density functions of 

bond prices of 2-factor ATSMs are: 

2-factor Vasicek model:

 ℎ𝑉(𝑃𝑡(𝜏1), 𝑃𝑡(𝜏2)|𝑃𝑡−1(𝜏1), 𝑃𝑡−1(𝜏2)) 

= |𝐽| ∙ ℎ𝑉(𝑋1𝑡, 𝑋2𝑡|𝑋1,𝑡−1, 𝑋2,𝑡−1) 

2∏𝑖=1 ℎ𝑉(𝑋𝑖,𝑡|𝑋𝑖,𝑡−1) = (3.12) 
|𝐵1(𝜏1)𝐵2(𝜏2)−𝐵2(𝜏1)𝐵1(𝜏2)|𝑃𝑡(𝜏1)𝑃𝑡(𝜏2) 

2-factor CIR model:

 ℎ𝐶𝐼𝑅(𝑃𝑡(𝜏1), 𝑃𝑡(𝜏2)|𝑃𝑡−1(𝜏1), 𝑃𝑡−1(𝜏2)) 

2∏𝑖=1 ℎ𝐶𝐼𝑅(𝑋𝑖,𝑡|𝑋𝑖,𝑡−1) = (3.13) 
|𝐵1(𝜏1)𝐵2(𝜏2)−𝐵2(𝜏1)𝐵1(𝜏2)|𝑃𝑡(𝜏1)𝑃𝑡(𝜏2) 

By dividing the time interval [0, T] into n subintervals of equal width, we have n 

time knots 𝑡 = 1, 2, … , 𝑛. If denoting Δ𝑡 as the time increment, the time span is 𝑇 = 𝑛∆𝑡. 

Assume the zero bond prices at each time knot are 𝑃1, 𝑃2, ⋯ , 𝑃𝑛. The log-likelihood 

functions of 2-factor Vasicek and CIR models are 

𝑛 

Vasicek:  ℒ(𝜶|𝑷(𝜏1), 𝑷(𝜏2)) = ln∏ℎ𝑉(𝑃𝑡(𝜏1), 𝑃𝑡(𝜏2)|𝑃𝑡−1(𝜏1), 𝑃𝑡−1(𝜏2)) 
𝑡=2 

𝑛= ∑𝑡=2 ln ℎ𝑉(𝑃𝑡(𝜏1), 𝑃𝑡(𝜏2)|𝑃𝑡−1(𝜏1), 𝑃𝑡−1(𝜏2)) (3.14) 

𝑛CIR: ℒ(𝜶|𝑷(𝜏1), 𝑷(𝜏2)) = ∑ ln ℎ𝐶𝐼𝑅(𝑃𝑡(𝜏1), 𝑃𝑡(𝜏2)|𝑃𝑡−1(𝜏1), 𝑃𝑡−1(𝜏2)) (3.15) 𝑡=2 

where 

𝜶 = (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) (3.16) 

and 𝑷(𝜏𝑘) = (𝑃1(𝜏𝑘), 𝑃2(𝜏𝑘),⋯ , 𝑃𝑛(𝜏𝑘))', k = 1, 2. (3.17) 
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Once getting the parameter estimates, �̂� = (�̂�1, 𝜃1, �̂�1, �̂�1, �̂�2, 𝜃2, �̂�2, �̂�2), I can 

forecast the zero bond yields. The h-step ahead zero bond yields forecasts can be 

expressed as: 

𝐸(𝑋𝑗,𝑡+ℎ|𝑋𝑗,𝑡) = 𝜃𝑗(1 − 𝑒−�̂�𝑗ℎ∆𝑡) + 𝑒−�̂�𝑗ℎ∆𝑡𝑋𝑗,𝑡 (3.18) 

2∑ [�̂�𝑗(𝜏)−�̂�𝑗(𝜏)�̂�𝑗,𝑡+ℎ]
�̂�𝑡+ℎ(𝜏) = − 𝑗=1 (3.19) 

𝜏 

3.3 Data simulation procedure 

Since the state factors are assumed to be uncorrelated and each model is an 

independent one-factor ATSM, I can simulate two uncorrelated series of state factors, 

with each one based on the data generating process of the one-factor ATSM. The detail 

simulation processes of one-factor Vasicek and CIR models are described in Chapter II. 

The true parameters used for the 2-factor Vasicek model are 

(𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) = (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045) 

and the parameters for the 2-factor CIR model are (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) = (0.654, 

0.038, 0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Those true parameters are the 

estimates of fitting the models to the month-end price quotes for treasury issues, which 

are taken from the CRSP Government Bond files. The data cover the time span from 

January 1970 to December 1995. Callable bonds and bills under one month to maturity 

are excluded from the sample. 

We know that two series of the bond prices with different maturities are needed to 

estimate the 2-factor ATSMs. So I simulate three groups of the bond data from the two-

factor ATSMs, with each group consisting of two bond series with different maturities. 

Based on the length difference of the time to maturities, three groups of the bond series 
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are 2 shorts: 0.5 and 1 year, 2 mediums: 1 and 20 years, and 2 longs: 20 and 30 years. 

Such a category is for the study of the influence of the time to maturities on the models' 

predictive ability. 

The basic simulation setting (Base Setting) is that each series of the simulated 

1data contains 300 months of zero bond yields (T=25 years).  Δ𝑡 = corresponds to the 
12 

monthly observations in an annualized basis. The Monte Carlo simulation repeats 20,000 

times. The bootstrap bias correction process is based on 500 resamples. The time 

horizons of the out-of-sample forecasts are 1 through 12 months. 

The conclusion in Chapter II states that the sample size and the time span of the 

sample can influence the one-factor ATSMs' predictive ability and the power to 

distinguish between the one-factor models as well. In this chapter, I want to investigate 

whether the sample size and the sample's time span have the similar impact on multi-

factor ATSMs. Therefore, I simulate the data using two same alternative settings as those 

in Chapter II and then repeat the estimation, forecasting and testing processes. The two 

alternative settings are Setting B in correspondence with the increase of the sample size 

and Setting C that refers to the shorter time span. In detail, 

Setting B: Change the sampling frequency of the data from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. 

Thus, the sample size is increased from n = 300 to n' = 9,125. The latter corresponds to 

high frequency data.  

Setting C: Change the sampling frequency of the data from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365) while keeping the sample size n = 300. 
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Correspondingly, the time span is reduced from 𝑇 = 25 years to T' = 𝑛 × ∆𝑡 ′ = 300 × 

1 
= 0.82 years. 

365 

3.4 Results 

This paper studies the 2-factor Vasicek and CIR models. The main purpose is to 

investigate whether the 2-factor ATSMs can be differentiated from each other and 

whether the 2-factor ATSMs can be distinguished from the one-factor ATSMs, given the 

data are simulated from 2-factor models. In terms of the bias of the parameter estimates, I 

apply the bootstrap bias correction process to each ATSM. 

There are four subsections in this section. Section 3.4.1 states the results of the 

model estimation. Section 3.4.2 shows the models' out-of-sample forecast performance 

and Section 2.4.3 reports the results on the evaluation of the models' forecasts. The last 

subsection discusses the power and size of the models' to distinguish between different 

ATSMs. 

3.4.1 Model estimation results 

Table 3.1 shows the statistics of the parameters of the true models. Panel A 

provides the summary of the estimates from the two-factor Vasicek model and Panel B is 

the corresponding results based on the data simulated from the two-factor CIR model. In 

each panel, the first column shows the true parameter values used to generate the data, 

followed by the estimates based on different simulation settings. Since I apply the 

bootstrap bias correction process to each ATSM, there are two sets of estimates for each 

group of the bond series, with the values before the bias correction on the upper part of 

each panel and the values after the bias correction on the lower part. 
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Check the estimates in Panel A, we can see that all estimates are close to the true 

values, except for the mean reversion estimates. Before running the bias correction, the 

biases of (�̂�1, �̂�2) are about 0.053 and 0.011, respectively, and the relative biases of 

(�̂�1, �̂�2) are 11.21% and 25.58%, respectively. After the bias correction process, the 

biases and the relative biases of (�̂�1, �̂�2) are reduced to (0.011, 0.003) and (2.33%, 

6.98%), respectively. The similar results can be found in Panel B. The biases of the mean 

reversion estimates are (0.015, 0.057) before the bias correction and (0.005, 0.002) after 

the bias correction. Accordingly, the relative biases of (�̂�1, �̂�2) are (2.29%, 105.56%) 

before the bias correction and (0.76%, 3.70%) after the bias correction. This result 

implies that the bias of the mean reversion estimates exhibits by the maximum likelihood 

estimation of two-factor models. The bootstrap bias correction process works well in the 

reduction of the mean reversion estimate biases. 

Except for the estimation of the true models, I also estimate those non-data-

generating models using the simulated data. Those estimates report in Table 3.2 and 

Table 3.3. In Tables 3.2 and 3.3, the estimates are not reported directly but showed with 

the values of the long-run yield, the half-life of the shock, and the unconditional standard 

deviation. The aim of such a report is to help the readers better compare the different 

estimates because there are both one- and two-factor Vasicek and CIR models and the 

parameters of all models are not in the same scale. Also, those numbers in Tables 3.2 and 

3.3 can reveal the readers the economic interpretations of the estimates of the models'. 

The long-run yield is the bond yield when the time approaches infinity. The half-life of 

the shock to the interest rate is defined as the −ln0.5/𝜅. The larger the speed of the mean 

reversion is, the shorter the half-life of a shock is, then the faster the model will reach its 
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long-run mean. The unconditional standard deviation is the 𝜎 in the Vasicek model and is 

calculated as 𝜎√ 𝜃 in the CIR model. 
2𝜅 

In Table 3.2, Panel A reports the estimates of 1-year bond-yield data from the 

two-factor Vasicek model and Panel B are the estimates from the two-factor CIR model. 

For each two-factor model, I report two values of the half-life of the shock and two 

unconditional standard deviations. From the Table 3.2, we can see that the estimates of 

the data-generating models are very close to the true values. This is consistent with the 

results in Table 3.1. Another finding is that the estimates of the one-factor models are 

almost the same if the simulation setting is the same, no matter what the group of the 

bond data is. For example, in Panel A, if we compare the values of the one-factor Vasicek 

and CIR models in ‘2 Shorts’ with the corresponding values in ‘2 Mediums’ under Base 

Setting, we can find that the long-run yield, the half-life of the shock, and the 

unconditional standard deviation of the same models in the different group of the bond 

data are almost the same. This result can be found in Panel B. This implies that the one-

factor models are not easily to be differentiated from each other once the data are 

simulated from a two-factor model. Such a result also implies that the time to maturity of 

the bond-yield data have no impact on the estimates of the one-factor models. Table 3.3 

reports the estimates of 20-year bond-yield data from the two-factor Vasicek model 

(Panel A) and from the two-factor CIR model (Panel B). The results in Table 3.3 are the 

same as in Table 3.2. This has again proved that the time to maturity has no influence on 

the estimation of the ATSMs. 
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3.4.2 Models' out-of sample forecasts 

To compare the predictive ability of the models, I construct one-year-ahead bond 

yield forecasts and compute the RMSEs and MAEs (mean absolute errors) of the 

forecasts, which are showed in Tables 3.4 and 3.5. Panel A reports the RMSEs and 

MAEs of the forecasts when the data are simulated from the two-factor Vasicek model 

and Panel B are the results when the data are simulated from the two-factor CIR model. 

“Vasicek-B” and “Vasicek-A” represent the sets of MLE-Vasicek estimates, with “B” 

indicating before the bias correction and “A” indicating after the bias correction. 

Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-

CIR. 

The results in Table 3.4 show that for all models, the RMSEs and MAEs of the 

bond yield forecasts are increasing as the forecasting horizon increases from 1 month to 6 

months, and up to 12 months. In Panel A, although the two-factor Vasicek models are the 

data-generating models, they do not have better out-of-sample performance than other 

non-data-generating models. For example, if we compare the RMSEs and MAEs of all 

models under Base Setting in Panel A, we can see that the RMSEs and MAEs of the two-

factor Vasicek model are very close to the values of the one-factor Vasicek and CIR 

models. As the forecasting horizon becomes longer, the difference of the RMSEs of two 

models becomes larger. Also, the results show that the time to maturities have no impact 

on the out-of-sample performance of the forecasts. An interesting finding in Panel A is 

that the two-factor CIR models have relatively worst forecast performance. This shows 

that adding more factors in ATSMs does not improve the models predictive ability, even 

though it is the true model. If the models are the wrong models, adding more factors 
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reduces models' out-of-sample performance. This same result can be found in Panel B. 

Table 3.5 reports the similar results but for the 20-year bond yield data. The results in 

Table 3.5 have no much big difference from those in Table 3.4. So the time to maturity 

does not impact the ATSMs' performance. 

3.4.3 Evaluation of out-of-sample forecasting performance 

To observe the models out-of-sample performance straightforward, I draw graphs 

based on RMSEs of the one-year-ahead bond yield forecasts. Figures 3.1 and 3.2 show 

the forecasts of 1-year and 20-year bond yields, respectively, when the data are simulated 

from two-factor Vasicek model. Figures 3.3 and 3.4 exhibit the forecasts of 1-year and 

20-year bond yields, respectively, while the data are from two-factor CIR model. Each 

figure have six charts. The charts are arranged by columns. They are results based on 

Base Setting, Setting B and Setting C from left to right. In each column, the chart on the 

top shows the results with a group of bond data with shorter maturities and the chart on 

the bottom is the results with a group of bond data with longer maturities. The results of 

Giacomini and White tests are reported on Tables 3.6 and 3.7. The numbers in those two 

tables are the percentage of sample paths that two competing models (Model #1 and 

Model #2) are not statistically equal at a 12-month ahead horizon. Panel A shows the 

testing results when the data are from the two-factor Vasicek model and Panel B are 

results based on two-factor CIR model. 

Checking the values in both Panels A of Tables 3.6 and 3.7, I find that the two-

factor CIR models, both before and after the bias correction, are the most distinguishable 

models. The probability to differentiate between two-factor Vasicek models and two-

factor CIR models is over 99%. In contrast, the possible differentiation between two-
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factor Vasicek models and one-factor ATSMs is below 60%. Furthermore, the number to 

distinguish a one-factor model from another one-factor model drops below 30%. Those 

numbers tell us that ATSMs with multi-factors do not improve models' relative predictive 

ability, instead making the wrong models more distinguishable. This result is showed in 

the figures. In Figure 3.1 and Figure 3.2, we see that although the two-factor Vasicek 

models are the data-generating models, two-factor Vasicek-A and two-factor Vasicek-B 

do not have better forecast performance than the one-factor Vasicek or CIR models. This 

result shows that relative to the one-factor models, the two-factor models have no much 

advantage to improve the models' predictive ability as well as to increase the models' 

power to differentiate themselves from the one-factor models. In addition, we can see that 

two-factor CIR-A and two-factor CIR-B can be easily distinguished from other models. 

They do the worst in the out-of-sample forecasts among all eight models. This implies 

that having more factors in the ATSMs increases models' power to distinguish between 

different models. If we check the RMSEs of the out-of-sample forecasts of three groups 

of the bond series, we find there are no much difference among three groups. This 

implies that the time to maturities of the bond have no much impact on the models' out-

of-sample performance. 

Figures 3.3 and 3.4 show the out-of-sample forecasts when the data are simulated 

from the two-factor CIR model. The corresponding testing results are in Panels B in 

Tables 3.6 and 3.7. We get the similar results as those in Panels A of the two tables. The 

two-factor Vasicek-A and two-factor Vasicek-B are the worst models to predict the yields 

among all models. But they are the most easily distinguishable models. Given the two-

factor CIR models are true models, it is hard to differentiate between the two-factor CIR 
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models with other one-factor ATSMs in the graphs. Therefore, the multi-factor ATSMs 

do not show benefits in the improvement of the models predictive ability, comparing to 

the one-factor models. However, adding factors can increase models' power to distinguish 

between each other. 

Tables 3.8 and 3.9 report the percentage of the 20,000 replications that Model #1 

has greater predictive ability than Model #2 at a 12-month ahead horizon. The smaller the 

model’s MSE is, the greater predictive ability the model has. If Model #1 has smaller 

MSE than Model #2 at the 5% significance level, then Model #1 beats Model #2 and 

Model #1 has greater predictive ability at the 5% significance level. Panel A shows the 

testing results when the data are from the two-factor Vasicek model and Panel B are 

results based on two-factor CIR model. 

The values in both Panels A of Tables 3.8 and 3.9 tell us that the two-factor CIR 

models, both before and after the bias correction, are the most distinguishable models. 

The probability that the two-factor Vasicek models beat the two-factor CIR models is 

over 99%. In contrast, the probability that the two-factor Vasicek models beat the other 

one-factor ATSMs is below 30%. In addition, the probability that the two-factor CIR 

models beat other one-factor ATSMs is less than 10%. The numbers in Panel B of both 

tables represent the similar results, although the two-factor CIR models are the date-

generating models. Those results show that having more factors in ATSMs makes the 

models’ predictive ability even worse if the models are the wrong models. 

3.4.4 Discussion of power and size of the ATSMs 

The conclusion in Chapter II states that the sample size and the time span of the 

sample can influence the one-factor ATSMs' predictive ability and the power to 
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distinguish between the one-factor models as well. In this section, I want to investigate 

whether the sample size and the sample's time span have the similar impact on multi-

factor ATSMs. Therefore, I simulate the data using two same alternative settings as those 

in the last chapter and then repeat the estimation, forecasting and testing processes. The 

two alternative settings are Setting B in correspondence with the increase of the sample 

size by the way of the increase in the sampling frequency within a fixed time span and 

Setting C that refers to the shorter time span by the way of the increase in the sampling 

frequency within a fixed sample size. 

3.4.4.1 The impact of sample size 𝒏 on models out-of-sample forecasting 
performance 

To investigate the impact of the sample size on ATSMs' relative predictive ability, 

I increase the size of the estimation window by the way of increasing the sampling 

frequency while keeping the time span unchanged. That is, I rerun the same Monte Carlo 

simulation as that in the prior sections but increase the frequency from the monthly basis 

1 1(∆𝑡 = ) to the daily basis (∆𝑡′ = ). Correspondingly, the sample size n increases 
12 365

from 300 months to 9,125 days when the time span T is 25 years. The latter corresponds 

to high frequency data. 

In Table 3.1, the estimates of the true models based on the simulated data from 

Setting B show the similar results as those from Base Setting. The biases of the mean 

reversion estimates are relatively larger than those of other parameter estimates. After 

running the bias correction process, the biases of the mean reversion estimates are 

reduced. Tables 3.2 and 3.3 report the estimates of all eight models. Under Setting B, the 

true models have the estimates closest to the true values. No matter what the time to 
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maturity is, the one-factor models have very close estimates. In Table 3.4 and Table 3.5, 

we see that the RMSEs and MAEs of all models under Setting B are smaller than the 

corresponding values under Base Setting. This finding shows that the models' predictive 

ability can be improved if the sample size rises. 

Checking the Figures 3.1 and 3.2, we find that the one-factors models cluster 

together and it is hardly to differentiate one from another. In Tables 3.6 and 3.7, the 

probability to differentiate one one-factor ATSM from another one-factor ATSM 

decreases from over 20% in Base Setting to below 10% in Setting B. However, the two-

factor CIR models can be easily distinguishable from the one-factor models, and the 

probability to differentiate the two-factor CIR model from the one-factor models is over 

70%. Besides these findings, I get the similar results with those based on Base Setting. 

That is, having more factors in the models increase the models' power to distinguish the 

one from another. 

3.4.4.2 The impact of time span 𝑻 on models out-of-sample forecasting 
performance 

Tang and Chen (2009) states that the bias of the mean reversion estimator is not a 

function of the number of observations but is a decreasing function of the time span. In 

details, the bias of the mean reversion estimator is a function of 𝑇−1. The results in the 

last section prove the former part of their statement. This section will study the impact of 

the change in the time span T on ATSMs relative predictive ability. Therefore, I use the 

same Monte Carlo study but changing the sampling frequency from the monthly basis 

(∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 1/365) while keeping the sample size n = 300 
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unchanged. Correspondingly, the time span is reduced from 𝑇 = 25 years to T' = 𝑛 × 

1
∆𝑡 ′ = 300 × = 0.82 years. 

365 

Comparing the out-of-sample forecast performance based on Setting C with those 

based on Base Setting, we find that the two settings generate very similar results. The 

RMSEs and MAEs of all models based on those two settings are very similar. Therefore, 

the models' predictive ability are almost the same under these two settings. That is, 

adding more factor does not benefit the ATSMs in improving models' predictive 

accuracy. But having more factors in the models increase the models' power to 

distinguish the one from another. 

If comparing the out-of-sample forecast performance based on Setting C with 

those based on Setting B, the results based on Setting C show that the shorter time span 

by the way of the increase in the sampling frequency makes the one-factor models more 

easily distinguishable. But the two-factor models become the less distinguishable from 

the one-factor models in the case of Setting C. 

3.5 Conclusion 

This chapter extends the study of the one-factor ATSMs to the multi-factor 

models. The results show that having more factors in the ATSMs does not improve 

models' predictive ability. But it increase the models' power to distinguish between each 

other. The multi-factor ATSMs with larger sample size and longer time span have more 

predictive ability and stronger power to differentiate between models. 

By far, all the work are based on the model simulated data with no error 

embedded. However, it is necessary to consider data errors, regarding the market are not 
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frictionless and so the market data are observed with errors. Thus, my next step is about 

to investigate the role of data errors on the model's power to distinguish between models. 

In addition, in this paper I only consider the multi-factor ATSMs with a relative simple 

case, which is the state factors are independent and the price of risk is constant. In my 

future research, I will study the change of models' relative predictive ability if relaxing 

the models' assumptions. 
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Table 3.2 Estimates of 1-year zero yields from two-factor ATSMs 

Panel A: Estimates of 1-year yield from the 2-factor Vasicek Model 

Long-run Yield Half life of Shock Unconditional S.D. 

Estimation True Value = Factor 1= Factor 2= Factor 1= Factor 2= 
Models 0.0685 1.47 16.12 0.0870 0.0240 

Base 
Setting 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0697 1.32 12.84 0.0871 0.0264 
2-factor Vasicek-A 0.0685 1.44 15.07 0.0863 0.0248 

2-factor CIR-B 0.0731 1.32 13.49 0.0670 0.0258 
2-factor CIR-A 0.0726 1.26 14.88 0.0651 0.0256 

1-factor Vasick-B 0.0714 1.33 0.0945 
1-factor Vasick-A 0.0701 1.60 0.0920 

1-factor CIR-B 0.0718 1.21 0.0987 
1-factor CIR-A 0.0711 1.51 0.0806 

2-factor Vasicek-B 0.0696 1.32 12.84 0.0876 0.0251 
2-factor Vasicek-A 0.0686 1.44 15.40 0.0882 0.0240 

2-factor CIR-B 0.0730 1.33 13.80 0.0654 0.0289 
2 Mediums 2-factor CIR-A 0.0726 1.30 12.58 0.0668 0.0246 
(𝜏=1&20) 1-factor Vasicek-B 0.0714 1.33 0.0945 

1-factor Vasicek-A 0.0701 1.60 0.0920 
1-factor CIR-B 0.0718 1.21 0.0987 
1-factor CIR-A 0.0711 1.51 0.0806 

Setting B 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0686 1.32 13.08 0.0871 0.0249 
2-factor Vasicek-A 0.0685 1.43 15.75 0.0861 0.0244 

2-factor CIR-B 0.0720 1.47 12.59 0.0628 0.0284 
2-factor CIR-A 0.0717 1.34 15.13 0.0651 0.0249 

1-factor Vasicek-B 0.0701 1.18 0.0970 
1-factor Vasicek-A 0.0693 1.61 0.0895 

1-factor CIR-B 0.0709 1.01 0.0843 
1-factor CIR-A 0.0700 1.10 0.0812 

2-factor Vasicek-B 0.0690 1.32 13.33 0.0869 0.0252 
2-factor Vasicek-A 0.0685 1.44 15.75 0.0870 0.0239 

2-factor CIR-B 0.0721 1.35 13.61 0.0614 0.0262 
2 Mediums 2-factor CIR-A 0.0717 1.34 12.39 0.0671 0.0248 
(𝜏=1&20) 1-factor Vasicek-B 0.0701 1.18 0.0970 

1-factor Vasicek-A 0.0693 1.61 0.0895 
1-factor CIR-B 0.0709 1.01 0.0843 
1-factor CIR-A 0.0700 1.10 0.0812 

Setting C 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0706 1.32 12.84 0.0876 0.0257 
2-factor Vasicek-A 0.0697 1.44 15.07 0.0892 0.0252 

2-factor CIR-B 0.0729 1.44 13.28 0.0639 0.0273 
2-factor CIR-A 0.0722 1.36 14.50 0.0647 0.0252 

1-factor Vasicek-B 0.0709 1.80 0.0991 
1-factor Vasicek-A 0.0703 1.82 0.0872 

1-factor CIR-B 0.0717 1.09 0.0863 
1-factor CIR-A 0.0710 1.13 0.0836 

2-factor Vasicek-B 0.0708 1.32 12.84 0.0882 0.0261 
2-factor Vasicek-A 0.0694 1.44 15.40 0.0877 0.0253 

2-factor CIR-B 0.0732 1.36 13.10 0.0625 0.0331 
2 Mediums 2-factor CIR-A 0.0725 1.30 12.69 0.0681 0.0213 
(𝜏=1&20) 1-factor Vasicek-B 0.0709 1.80 0.0991 

1-factor Vasicek-A 0.0703 1.82 0.0872 
1-factor CIR-B 0.0717 1.09 0.0863 
1-factor CIR-A 0.0710 1.13 0.0836 
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Table 3.2 (Continued) 

Panel B: Estimates of 1-year yield from the 2-factor CIR Model 

Long-run Yield Half life of Shock Unconditional S.D. 

Estimation True Value = Factor 1= Factor 2= Factor 1= Factor 2= 
Models 0.0624 1.06 12.84 0.0256 0.0185 

Base 
Setting 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0672 0.82 11.48 0.0336 0.0041 
2-factor Vasicek-A 0.0666 0.88 13.59 0.0301 0.0139 

2-factor CIR-B 0.0644 1.04 6.24 0.0253 0.0138 
2-factor CIR-A 0.0624 1.05 11.95 0.0255 0.0179 

1-factor Vasicek-B 0.0643 1.07 0.0307 
1-factor Vasicek-A 0.0610 1.19 0.0303 

1-factor CIR-B 0.0650 1.04 0.0249 
1-factor CIR-A 0.0643 1.20 0.0260 

2-factor Vasicek-B 0.0671 0.84 11.93 0.0249 0.0068 
2-factor Vasicek-A 0.0664 0.90 12.08 0.0304 0.0082 

2-factor CIR-B 0.0644 1.04 6.24 0.0250 0.0147 
2 Mediums 2-factor CIR-A 0.0624 1.05 12.38 0.0257 0.0182 
(𝜏=1&20) 1-factor Vasicek-B 0.0643 1.07 0.0307 

1-factor Vasicek-A 0.0610 1.19 0.0303 
1-factor CIR-B 0.0650 1.04 0.0249 
1-factor CIR-A 0.0643 1.20 0.0260 

Setting B 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0659 0.80 12.84 0.0333 0.0041 
2-factor Vasicek-A 0.0652 0.90 14.15 0.0310 0.0120 

2-factor CIR-B 0.0634 1.04 6.24 0.0250 0.0142 
2-factor CIR-A 0.0625 1.05 12.38 0.0255 0.0182 

1-factor Vasicek-B 0.0617 0.94 0.0323 
1-factor Vasicek-A 0.0610 1.19 0.0303 

1-factor CIR-B 0.0643 0.90 0.0263 
1-factor CIR-A 0.0628 0.91 0.0266 

2-factor Vasicek-B 0.0660 0.82 11.82 0.0337 0.0070 
2-factor Vasicek-A 0.0654 0.89 12.29 0.0302 0.0088 

2-factor CIR-B 0.0634 1.04 6.24 0.0244 0.0144 
2 Mediums 2-factor CIR-A 0.0624 1.05 12.16 0.0257 0.0180 
(𝜏=1&20) 1-factor Vasicek-B 0.0617 0.94 0.0323 

1-factor Vasicek-A 0.0610 1.11 0.0305 
1-factor CIR-B 0.0643 0.90 0.0263 
1-factor CIR-A 0.0627 0.91 0.0266 

Setting C 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0678 0.80 11.80 0.0331 0.0041 
2-factor Vasicek-A 0.0668 0.88 13.59 0.0308 0.0104 

2-factor CIR-B 0.0644 1.04 6.19 0.0256 0.0134 
2-factor CIR-A 0.0624 1.05 12.38 0.0258 0.0182 

1-factor Vasicek-B 0.0654 0.81 0.0333 
1-factor Vasicek-A 0.0586 0.85 0.0333 

1-factor CIR-B 0.0662 0.83 0.0354 
1-factor CIR-A 0.0660 0.89 0.0253 

2-factor Vasicek-B 0.0678 0.82 12.67 0.0334 0.0091 
2-factor Vasicek-A 0.0667 0.88 13.49 0.0308 0.0088 

2-factor CIR-B 0.0645 1.04 6.13 0.0260 0.0134 
2 Mediums 2-factor CIR-A 0.0625 1.05 12.38 0.0262 0.0178 
(𝜏=1&20) 1-factor Vasicek-B 0.0654 0.81 0.0333 

1-factor Vasicek-A 0.0587 0.85 0.0333 
1-factor CIR-B 0.0662 0.83 0.0354 
1-factor CIR-A 0.0660 0.90 0.0253 
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Table 3.2 (Continued) 

Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 1-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the 
daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. “Vasicek-B” and “Vasicek-A” 
represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias correction and “A” 
indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates 
for the MLE-CIR. Panel A presents the statistics of estimates based on the two-factor Vasicek-simulated 
data with one year maturity. Panel B presents the corresponding statistics based on the two-factor CIR-
simulated data with one year maturity. 
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Table 3.3 Estimates of 20-year zero yields from two-factor ATSMs 

Panel A: Estimates of 20-year yield from the 2-factor Vasicek Model 

Long-run Yield Half life of Shock Unconditional S.D. 

Estimation True Value = Factor 1= Factor 2= Factor 1= Factor 2= 
Models 0.0705 1.47 16.12 0.0870 0.0240 

Base 
Setting 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0716 1.32 12.84 0.0876 0.0251 
2-factor Vasicek-A 0.0706 1.44 15.40 0.0882 0.0240 

2-factor CIR-B 0.0750 2.91 13.80 0.0454 0.0289 
2-factor CIR-A 0.0746 4.79 12.58 0.0868 0.0246 

1-factor Vasicek-B 0.0734 2.70 0.0990 
1-factor Vasicek-A 0.0720 5.75 0.0528 

1-factor CIR-B 0.0738 2.13 0.0947 
1-factor CIR-A 0.0730 2.80 0.0903 

2-factor Vasicek-B 0.0712 1.32 12.84 0.0876 0.0251 
2-factor Vasicek-A 0.0704 1.44 15.07 0.0882 0.0243 

2-factor CIR-B 0.0747 2.74 19.81 0.0415 0.0423 
2 Longs 2-factor CIR-A 0.0745 4.58 11.14 0.0534 0.0239 

(𝜏=20&30) 1-factor Vasicek-B 0.0734 2.70 0.0990 
1-factor Vasicek-A 0.0720 5.75 0.0528 

1-factor CIR-B 0.0738 2.13 0.0947 
1-factor CIR-A 0.0730 2.80 0.0903 

Setting B 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0709 1.32 13.33 0.0869 0.0252 
2-factor Vasicek-A 0.0705 1.44 15.75 0.0870 0.0239 

2-factor CIR-B 0.0740 2.96 14.10 0.0481 0.0331 
2-factor CIR-A 0.0736 4.47 12.69 0.0842 0.0213 

1-factor Vasicek-B 0.0720 2.85 0.0322 
1-factor Vasicek-A 0.0712 4.77 0.0550 

1-factor CIR-B 0.0728 5.27 0.0147 
1-factor CIR-A 0.0719 2.20 0.0553 

2-factor Vasicek-B 0.0709 1.32 13.08 0.0874 0.0257 
2-factor Vasicek-A 0.0704 1.44 15.40 0.0880 0.0249 

2-factor CIR-B 0.0740 2.05 15.27 0.0459 0.0495 
2 Longs 2-factor CIR-A 0.0736 4.83 13.41 0.0574 0.0235 

(𝜏=20&30) 1-factor Vasicek-B 0.0720 2.85 0.0322 
1-factor Vasicek-A 0.0712 4.77 0.0550 

1-factor CIR-B 0.0728 5.27 0.0147 
1-factor CIR-A 0.0719 2.20 0.0553 

Setting C 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0717 1.32 12.84 0.0882 0.0261 
2-factor Vasicek-A 0.0703 1.44 15.40 0.0877 0.0253 

2-factor CIR-B 0.0751 2.98 13.61 0.0419 0.0362 
2-factor CIR-A 0.0744 4.54 12.39 0.0873 0.0248 

1-factor Vasicek-B 0.0728 2.94 0.0302 
1-factor Vasicek-A 0.0722 3.77 0.0451 

1-factor CIR-B 0.0736 2.55 0.0548 
1-factor CIR-A 0.0729 2.21 0.0543 

2-factor Vasicek-B 0.0715 1.32 12.84 0.0879 0.0246 
2-factor Vasicek-A 0.0705 1.43 15.07 0.0894 0.0251 

2-factor CIR-B 0.0748 2.05 15.86 0.0436 0.0420 
2 Longs 2-factor CIR-A 0.0741 4.44 12.45 0.0561 0.0237 

(𝜏=20&30) 1-factor Vasicek-B 0.0728 2.94 0.0302 
1-factor Vasicek-A 0.0722 3.77 0.0451 

1-factor CIR-B 0.0736 2.55 0.0548 
1-factor CIR-A 0.0729 2.21 0.0543 
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Table 3.3 (Continued) 

Panel B: Forecasts of 20-year yield from the 2-factor CIR Model 

Long-run Yield Half life of Shock Unconditional S.D. 

Estimation True Value = Factor 1= Factor 2= Factor 1= Factor 2= 
Models 0.0744 1.06 12.84 0.0256 0.0185 

Base 
Setting 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0795 0.87 10.93 0.0307 0.0088 
2-factor Vasicek-A 0.0789 0.90 12.08 0.0304 0.0082 

2-factor CIR-B 0.0751 1.04 6.24 0.0250 0.0147 
2-factor CIR-A 0.0742 1.05 12.38 0.0257 0.0182 

1-factor Vasicek-B 0.0774 2.17 0.0358 
1-factor Vasicek-A 0.0765 3.87 0.0200 

1-factor CIR-B 0.0788 2.60 0.0134 
1-factor CIR-A 0.0768 5.27 0.0236 

2-factor Vasicek-B 0.0798 0.89 23.50 0.0396 0.0070 
2-factor Vasicek-A 0.0784 0.92 23.80 0.0389 0.0070 

2-factor CIR-B 0.0751 1.04 6.24 0.0251 0.0141 
2 Longs 2-factor CIR-A 0.0745 1.05 12.16 0.0258 0.0185 

(𝜏=20&30) 1-factor Vasicek-B 0.0774 2.17 0.0358 
1-factor Vasicek-A 0.0765 3.87 0.0200 

1-factor CIR-B 0.0788 2.60 0.0134 
1-factor CIR-A 0.0768 5.27 0.0236 

Setting B 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0789 0.86 11.82 0.0307 0.0090 
2-factor Vasicek-A 0.0774 0.89 12.29 0.0302 0.0088 

2-factor CIR-B 0.0741 1.04 6.24 0.0244 0.0144 
2-factor CIR-A 0.0743 1.05 12.60 0.0257 0.0183 

1-factor Vasicek-B 0.0775 1.63 0.0491 
1-factor Vasicek-A 0.0746 3.65 0.0219 

1-factor CIR-B 0.0778 3.40 0.0211 
1-factor CIR-A 0.0774 3.12 0.0207 

2-factor Vasicek-B 0.0787 0.89 23.51 0.0403 0.0068 
2-factor Vasicek-A 0.0773 0.91 23.44 0.0389 0.0068 

2-factor CIR-B 0.0751 1.04 6.19 0.0250 0.0147 
2 Longs 2-factor CIR-A 0.0743 1.06 12.73 0.0257 0.0184 

(𝜏=20&30) 1-factor Vasicek-B 0.0775 1.63 0.0491 
1-factor Vasicek-A 0.0746 3.65 0.0219 

1-factor CIR-B 0.0778 3.40 0.0211 
1-factor CIR-A 0.0774 3.12 0.0207 

Setting C 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0791 0.82 12.67 0.0304 0.0091 
2-factor Vasicek-A 0.0783 0.84 13.49 0.0308 0.0088 

2-factor CIR-B 0.0747 1.04 6.13 0.0256 0.0134 
2-factor CIR-A 0.0739 1.05 12.38 0.0262 0.0178 

1-factor Vasicek-B 0.0774 0.82 0.0979 
1-factor Vasicek-A 0.0746 0.86 0.0951 

1-factor CIR-B 0.0792 2.40 0.0289 
1-factor CIR-A 0.0780 3.03 0.0253 

2-factor Vasicek-B 0.0792 0.92 23.62 0.0384 0.0069 
2-factor Vasicek-A 0.0780 1.02 23.88 0.0353 0.0068 

2-factor CIR-B 0.0750 1.04 6.19 0.0256 0.0131 
2 Longs 2-factor CIR-A 0.0742 1.05 12.38 0.0256 0.0182 

(𝜏=20&30) 1-factor Vasicek-B 0.0774 0.82 0.0979 
1-factor Vasicek-A 0.0746 0.86 0.0951 

1-factor CIR-B 0.0792 2.40 0.0289 
1-factor CIR-A 0.0780 3.03 0.0253 
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Table 3.3 (Continued) 

Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 20-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. Δt = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆t = 1/12) to the 
daily basis (∆t′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. “Vasicek-B” and “Vasicek-A” 
represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias correction and “A” 
indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates 
for the MLE-CIR. Panel A presents the statistics of estimates based on the two-factor Vasicek-simulated 
data with twenty year maturity. Panel B presents the corresponding statistics based on the two-factor CIR-
simulated data with twenty year maturity.  
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Table 3.4 Comparison of models out-of-sample forecasts of 1-year zero yields 

Panel A: Forecast Errors of 1-year yield from the 2-factor Vasicek Model 

1-month 6-month 12-month 

Estimation RMSE of MAE of RMSE of MAE of RMSE of MAE of 
Models 𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Base 
Setting 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0069 0.0055 0.0157 0.0124 0.0202 0.0161 
2-factor Vasicek-A 0.0069 0.0055 0.0156 0.0123 0.0200 0.0159 

2-factor CIR-B 0.0110 0.0093 0.0196 0.0161 0.0246 0.0202 
2-factor CIR-A 0.0090 0.0073 0.0176 0.0141 0.0226 0.0182 

1-factor Vasicek-B 0.0070 0.0055 0.0163 0.0129 0.0216 0.0173 
1-factor Vasicek-A 0.0069 0.0056 0.0159 0.0127 0.0205 0.0164 

1-factor CIR-B 0.0070 0.0056 0.0166 0.0132 0.0219 0.0176 
1-factor CIR-A 0.0070 0.0056 0.0161 0.0128 0.0210 0.0169 

2-factor Vasicek-B 0.0070 0.0056 0.0158 0.0126 0.0201 0.0160 
2-factor Vasicek-A 0.0070 0.0055 0.0158 0.0125 0.0201 0.0160 

2-factor CIR-B 0.0096 0.0079 0.0191 0.0154 0.0249 0.0202 
2 Mediums 2-factor CIR-A 0.0081 0.0064 0.0176 0.0139 0.0234 0.0187 
(𝜏=1&20) 1-factor Vasicek-B 0.0070 0.0056 0.0166 0.0132 0.0219 0.0176 

1-factor Vasicek-A 0.0070 0.0056 0.0159 0.0127 0.0205 0.0164 
1-factor CIR-B 0.0070 0.0056 0.0167 0.0133 0.0224 0.0181 
1-factor CIR-A 0.0070 0.0056 0.0161 0.0129 0.0211 0.0170 

Setting B 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0058 0.0045 0.0147 0.0116 0.0196 0.0155 
2-factor Vasicek-A 0.0058 0.0044 0.0147 0.0116 0.0196 0.0155 

2-factor CIR-B 0.0095 0.0074 0.0182 0.0143 0.024 0.0192 
2-factor CIR-A 0.0083 0.0062 0.0170 0.0131 0.0231 0.0180 

1-factor Vasicek-B 0.0059 0.0045 0.0156 0.0124 0.0214 0.0171 
1-factor Vasicek-A 0.0058 0.0045 0.0152 0.0120 0.0207 0.0165 

1-factor CIR-B 0.0058 0.0044 0.0155 0.0119 0.0212 0.0162 
1-factor CIR-A 0.0058 0.0044 0.0154 0.0118 0.0211 0.0160 

2-factor Vasicek-B 0.0059 0.0045 0.0148 0.0117 0.0197 0.0156 
2-factor Vasicek-A 0.0058 0.0044 0.0147 0.0116 0.0196 0.0155 

2-factor CIR-B 0.0093 0.0075 0.0181 0.0144 0.0239 0.0190 
2 Mediums 2-factor CIR-A 0.0080 0.0062 0.0168 0.0131 0.0226 0.0177 
(𝜏=1&20) 1-factor Vasicek-B 0.0059 0.0045 0.0156 0.0124 0.0214 0.0171 

1-factor Vasicek-A 0.0059 0.0045 0.0154 0.0122 0.0211 0.0169 
1-factor CIR-B 0.0058 0.0044 0.0158 0.0121 0.0217 0.0167 
1-factor CIR-A 0.0058 0.0044 0.0155 0.0119 0.0212 0.0163 

Setting C 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0070 0.0056 0.0160 0.0128 0.0206 0.0165 
2-factor Vasicek-A 0.0070 0.0056 0.0160 0.0128 0.0205 0.0164 

2-factor CIR-B 0.0087 0.0070 0.0179 0.0146 0.0238 0.0196 
2-factor CIR-A 0.0087 0.0070 0.0176 0.0144 0.0232 0.0191 

1-factor Vasicek-B 0.0070 0.0056 0.0164 0.0131 0.0219 0.0175 
1-factor Vasicek-A 0.0070 0.0056 0.0162 0.0130 0.0216 0.0173 

1-factor CIR-B 0.0070 0.0056 0.0167 0.0134 0.0227 0.0181 
1-factor CIR-A 0.0070 0.0056 0.0166 0.0133 0.0225 0.0179 

2-factor Vasicek-B 0.0070 0.0056 0.0159 0.0127 0.0203 0.0162 
2-factor Vasicek-A 0.0069 0.0056 0.0158 0.0126 0.0202 0.0161 

2-factor CIR-B 0.0089 0.0070 0.0181 0.0141 0.0244 0.0192 
2 Mediums 2-factor CIR-A 0.0085 0.0065 0.0176 0.0136 0.0235 0.0181 
(𝜏=1&20) 1-factor Vasicek-B 0.0070 0.0056 0.0162 0.0130 0.0216 0.0172 

1-factor Vasicek-A 0.0070 0.0056 0.0160 0.0128 0.0210 0.0168 
1-factor CIR-B 0.0069 0.0056 0.0163 0.0130 0.0220 0.0173 
1-factor CIR-A 0.0069 0.0056 0.0162 0.0129 0.0216 0.0172 
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Table 3.4 (Continued) 

Panel B: Forecast Errors of 1-year yield from the 2-factor CIR Model 

1-month 6-month 12-month 

Estimation RMSE of MAE of RMSE of MAE of RMSE of MAE of 
Models �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Base 
Setting 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0083 0.0067 0.0168 0.0127 0.0224 0.0189 
2-factor Vasicek-A 0.0079 0.0064 0.0160 0.0129 0.0205 0.0174 

2-factor CIR-B 0.0066 0.0050 0.0144 0.0110 0.0180 0.0138 
2-factor CIR-A 0.0065 0.0050 0.0144 0.0109 0.0180 0.0137 

1-factor Vasicek-B 0.0065 0.0050 0.0149 0.0114 0.0189 0.0144 
1-factor Vasicek-A 0.0065 0.0050 0.0146 0.0113 0.0182 0.0140 

1-factor CIR-B 0.0066 0.0051 0.0151 0.0117 0.0197 0.0153 
1-factor CIR-A 0.0065 0.0050 0.0148 0.0112 0.0186 0.0140 

2-factor Vasicek-B 0.0099 0.0086 0.0179 0.0151 0.0219 0.0186 
2-factor Vasicek-A 0.0091 0.0078 0.0165 0.0136 0.0199 0.0163 

2-factor CIR-B 0.0066 0.0052 0.0145 0.0114 0.0180 0.0142 
2 Mediums 2-factor CIR-A 0.0065 0.0051 0.0144 0.0112 0.0178 0.0139 
(𝜏=1&20) 1-factor Vasicek-B 0.0065 0.0050 0.0149 0.0114 0.0189 0.0144 

1-factor Vasicek-A 0.0065 0.0050 0.0146 0.0113 0.0182 0.0140 
1-factor CIR-B 0.0066 0.0051 0.0151 0.0117 0.0192 0.0154 
1-factor CIR-A 0.0065 0.0050 0.0148 0.0113 0.0186 0.0140 

Setting B 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0075 0.0064 0.0159 0.0132 0.0220 0.0187 
2-factor Vasicek-A 0.0063 0.0047 0.0147 0.0117 0.0205 0.0171 

2-factor CIR-B 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 
2-factor CIR-A 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 

1-factor Vasicek-B 0.0057 0.0041 0.0139 0.0106 0.0186 0.0143 
1-factor Vasicek-A 0.0057 0.0041 0.0137 0.0104 0.0184 0.0139 

1-factor CIR-B 0.0057 0.0041 0.0140 0.0107 0.0188 0.0146 
1-factor CIR-A 0.0057 0.0041 0.0139 0.0107 0.0188 0.0144 

2-factor Vasicek-B 0.0075 0.0065 0.0158 0.0135 0.0220 0.0188 
2-factor Vasicek-A 0.0063 0.0046 0.0147 0.0117 0.0205 0.0173 

2-factor CIR-B 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 
2 Mediums 2-factor CIR-A 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 
(𝜏=1&20) 1-factor Vasicek-B 0.0057 0.0041 0.0139 0.0106 0.0186 0.0143 

1-factor Vasicek-A 0.0057 0.0041 0.0137 0.0104 0.0184 0.0139 
1-factor CIR-B 0.0057 0.0041 0.0140 0.0107 0.0188 0.0146 
1-factor CIR-A 0.0057 0.0041 0.0139 0.0107 0.0188 0.0144 

Setting C 

2 Shorts 
(𝜏=0.5&1) 

2-factor Vasicek-B 0.0100 0.0086 0.0183 0.0154 0.0233 0.0199 
2-factor Vasicek-A 0.0089 0.0071 0.0172 0.0139 0.0225 0.0179 

2-factor CIR-B 0.0067 0.0051 0.0146 0.0112 0.0180 0.0140 
2-factor CIR-A 0.0066 0.0050 0.0145 0.0111 0.0179 0.0139 

1-factor Vasicek-B 0.0066 0.0050 0.0150 0.0116 0.0196 0.0153 
1-factor Vasicek-A 0.0067 0.0051 0.0149 0.0114 0.0194 0.0149 

1-factor CIR-B 0.0066 0.0051 0.0154 0.0117 0.0198 0.0150 
1-factor CIR-A 0.0067 0.0051 0.0149 0.0115 0.0186 0.0140 

2-factor Vasicek-B 0.0099 0.0086 0.0179 0.0151 0.0219 0.0209 
2-factor Vasicek-A 0.0091 0.0078 0.0172 0.0139 0.0199 0.0179 

2-factor CIR-B 0.0066 0.0051 0.0145 0.0114 0.0180 0.0142 
2 Mediums 2-factor CIR-A 0.0066 0.0050 0.0144 0.0113 0.0180 0.0138 
(𝜏=1&20) 1-factor Vasicek-B 0.0067 0.0051 0.0150 0.0114 0.0196 0.0153 

1-factor Vasicek-A 0.0066 0.0051 0.0149 0.0113 0.0194 0.0149 
1-factor CIR-B 0.0067 0.0051 0.0151 0.0119 0.0197 0.0154 
1-factor CIR-A 0.0067 0.0051 0.0149 0.0115 0.0187 0.0144 
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Table 3.4 (Continued) 

Eight estimation methods are applied to one-year zero yields simulated from a 2-factor Vasicek model and 
a 2-factor CIR model. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek model: 
(0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 0.150, -
0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond prices 

1(T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized basis. 
12 

Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the daily 
basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased from n 
= 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The sets of model estimates are used to make out-of-sample forecasts. There 
are 10,000 replications. “Vasicek-B” and “Vasicek-A” represent the sets of MLE-Vasicek estimates, with 
“B” indicating before the bias correction and “A” indicating after the bias correction. Similarly, “CIR-B” 
and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. Denote RMSE as the root mean 
square error of the zero bond yield forecasts and denote MAE as the mean of the absolute error of the 
forecasts. 
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Table 3.5 Comparison of models out-of-sample forecasts of 20-year zero yields 

Panel A: Forecast Errors of 20-year yield from the 2-factor Vasicek Model 

1-month 6-month 12-month 

Estimation RMSE of MAE of RMSE of MAE of RMSE of MAE of 
Models �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 �̂�𝑡 

Base 
Setting 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0070 0.0057 0.0158 0.0125 0.0201 0.0160 
2-factor Vasicek-A 0.0070 0.0057 0.0158 0.0125 0.0201 0.0160 

2-factor CIR-B 0.0096 0.0079 0.0191 0.0154 0.0249 0.0202 
2-factor CIR-A 0.0081 0.0064 0.0176 0.0139 0.0234 0.0187 

1-factor Vasicek-B 0.0070 0.0056 0.0166 0.0132 0.0219 0.0176 
1-factor Vasicek-A 0.0070 0.0056 0.0159 0.0127 0.0205 0.0164 

1-factor CIR-B 0.0070 0.0056 0.0167 0.0133 0.0225 0.0182 
1-factor CIR-A 0.0070 0.0056 0.0163 0.010 0.0214 0.0173 

2-factor Vasicek-B 0.0069 0.0055 0.0157 0.0124 0.0202 0.0161 
2-factor Vasicek-A 0.0069 0.0055 0.0156 0.0123 0.0200 0.0159 

2-factor CIR-B 0.0110 0.0093 0.0196 0.0161 0.0246 0.0202 
2 Longs 2-factor CIR-A 0.0090 0.0073 0.0176 0.0141 0.0226 0.0182 

(𝜏=20&30) 1-factor Vasicek-B 0.0069 0.0055 0.0163 0.0129 0.0216 0.0173 
1-factor Vasicek-A 0.0069 0.0055 0.0159 0.0127 0.0205 0.0164 

1-factor CIR-B 0.0070 0.0056 0.0167 0.0133 0.0220 0.0177 
1-factor CIR-A 0.0070 0.0056 0.0162 0.0130 0.0213 0.0172 

Setting B 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0059 0.0045 0.0148 0.0117 0.0197 0.0156 
2-factor Vasicek-A 0.0058 0.0044 0.0147 0.0116 0.0196 0.0155 

2-factor CIR-B 0.0093 0.0075 0.0181 0.0144 0.0239 0.0190 
2-factor CIR-A 0.0080 0.0062 0.0168 0.0131 0.0226 0.0177 

1-factor Vasicek-B 0.0059 0.0045 0.0156 0.0124 0.0214 0.0171 
1-factor Vasicek-A 0.0059 0.0045 0.0154 0.0122 0.0211 0.0169 

1-factor CIR-B 0.0058 0.0044 0.0158 0.0122 0.0218 0.0168 
1-factor CIR-A 0.0058 0.0044 0.0156 0.0120 0.0215 0.0166 

2-factor Vasicek-B 0.0058 0.0045 0.0147 0.0116 0.0196 0.0155 
2-factor Vasicek-A 0.0058 0.0045 0.0147 0.0116 0.0196 0.0155 

2-factor CIR-B 0.0095 0.0074 0.0182 0.0143 0.0234 0.0192 
2 Longs 2-factor CIR-A 0.0083 0.0062 0.0170 0.0131 0.0231 0.0180 

(𝜏=20&30) 1-factor Vasicek-B 0.0059 0.0045 0.0156 0.0124 0.0214 0.0171 
1-factor Vasicek-A 0.0059 0.0045 0.0155 0.0123 0.0212 0.0170 

1-factor CIR-B 0.0058 0.0044 0.0156 0.0119 0.0213 0.0163 
1-factor CIR-A 0.0058 0.0044 0.0156 0.0119 0.0213 0.0163 

Setting C 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0071 0.0056 0.0159 0.0127 0.0203 0.0162 
2-factor Vasicek-A 0.0070 0.0055 0.0158 0.0126 0.0202 0.0161 

2-factor CIR-B 0.0089 0.0070 0.0181 0.0141 0.0244 0.0192 
2-factor CIR-A 0.0085 0.0065 0.0176 0.0136 0.0235 0.0181 

1-factor Vasicek-B 0.0070 0.0056 0.0162 0.0130 0.0216 0.0172 
1-factor Vasicek-A 0.0070 0.0056 0.0160 0.0128 0.0210 0.0168 

1-factor CIR-B 0.0070 0.0056 0.0165 0.0132 0.0223 0.0176 
1-factor CIR-A 0.0069 0.0055 0.0164 0.0130 0.0219 0.0175 

2-factor Vasicek-B 0.0070 0.0056 0.0160 0.0128 0.0206 0.0164 
2-factor Vasicek-A 0.0070 0.0056 0.0160 0.0128 0.0205 0.0164 

2-factor CIR-B 0.0087 0.0070 0.0179 0.0146 0.0238 0.0196 
2 Longs 2-factor CIR-A 0.0087 0.0070 0.0176 0.0144 0.0232 0.0191 

(𝜏=20&30) 1-factor Vasicek-B 0.0070 0.0056 0.0164 0.0131 0.0219 0.0175 
1-factor Vasicek-A 0.0070 0.0056 0.0162 0.0130 0.0216 0.0173 

1-factor CIR-B 0.0070 0.0056 0.0167 0.0134 0.0228 0.0182 
1-factor CIR-A 0.0070 0.0056 0.0167 0.0134 0.0228 0.0182 
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Table 3.5 (Continued) 

Panel B: Forecast Errors of 20-year yield from the 2-factor CIR Model 

1-month 6-month 12-month 

Estimation RMSE of MAE of RMSE of MAE of RMSE of MAE of 
Models 𝑦 𝑦 𝑦 𝑦 𝑦 𝑦̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 ̂𝑡 

Base 
Setting 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0100 0.0086 0.0180 0.0152 0.0222 0.0186 
2-factor Vasicek-A 0.0092 0.0078 0.0168 0.0139 0.0206 0.0170 

2-factor CIR-B 0.0066 0.0052 0.0145 0.0114 0.0180 0.0142 
2-factor CIR-A 0.0065 0.0051 0.0144 0.0112 0.0178 0.0139 

1-factor Vasicek-B 0.0065 0.0050 0.0149 0.0114 0.0189 0.0144 
1-factor Vasicek-A 0.0065 0.0050 0.0146 0.0113 0.0182 0.0140 

1-factor CIR-B 0.0066 0.0051 0.0152 0.0120 0.0193 0.0155 
1-factor CIR-A 0.0066 0.0051 0.0151 0.0115 0.0192 0.0146 

2-factor Vasicek-B 0.0101 0.0086 0.0184 0.0156 0.0235 0.0201 
2-factor Vasicek-A 0.0080 0.0062 0.0175 0.0133 0.0231 0.0175 

2-factor CIR-B 0.0066 0.0051 0.0146 0.0113 0.0181 0.0139 
2 Longs 2-factor CIR-A 0.0065 0.0050 0.0145 0.0111 0.0179 0.0137 

(𝜏=20&30) 1-factor Vasicek-B 0.0065 0.0050 0.0149 0.0114 0.0189 0.0144 
1-factor Vasicek-A 0.0065 0.0050 0.0146 0.0113 0.0182 0.0140 

1-factor CIR-B 0.0066 0.0051 0.0154 0.0118 0.0200 0.0151 
1-factor CIR-A 0.0065 0.0051 0.0151 0.0115 0.0192 0.0146 

Setting B 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0084 0.0070 0.0168 0.0140 0.0223 0.0190 
2-factor Vasicek-A 0.0075 0.0061 0.0158 0.0130 0.0212 0.0179 

2-factor CIR-B 0.0056 0.0040 0.0131 0.0100 0.0170 0.0129 
2-factor CIR-A 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 

1-factor Vasicek-B 0.0057 0.0041 0.0139 0.0106 0.0186 0.0143 
1-factor Vasicek-A 0.0057 0.0041 0.0137 0.0104 0.0184 0.0139 

1-factor CIR-B 0.0057 0.0041 0.0140 0.0108 0.0189 0.0147 
1-factor CIR-A 0.0057 0.0041 0.0142 0.0110 0.0194 0.0150 

2-factor Vasicek-B 0.0075 0.0064 0.0161 0.0133 0.0223 0.0190 
2-factor Vasicek-A 0.0063 0.0048 0.0150 0.0120 0.0212 0.0177 

2-factor CIR-B 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 
2 Longs 2-factor CIR-A 0.0056 0.0040 0.0131 0.0099 0.0170 0.0129 

(𝜏=20&30) 1-factor Vasicek-B 0.0057 0.0041 0.0139 0.0106 0.0186 0.0143 
1-factor Vasicek-A 0.0057 0.0041 0.0137 0.0104 0.0184 0.0139 

1-factor CIR-B 0.0057 0.0041 0.0140 0.0108 0.0189 0.0147 
1-factor CIR-A 0.0056 0.0040 0.0135 0.0103 0.0180 0.0136 

Setting C 

2 Mediums 
(𝜏=1&20) 

2-factor Vasicek-B 0.0083 0.0066 0.0172 0.0136 0.0225 0.0180 
2-factor Vasicek-A 0.0075 0.0055 0.0160 0.0119 0.0207 0.0152 

2-factor CIR-B 0.0066 0.0051 0.0144 0.0110 0.0180 0.0138 
2-factor CIR-A 0.0066 0.0050 0.0143 0.0109 0.0180 0.0137 

1-factor Vasicek-B 0.0067 0.0051 0.0150 0.0116 0.0196 0.0152 
1-factor Vasicek-A 0.0067 0.0051 0.0149 0.0114 0.0194 0.0149 

1-factor CIR-B 0.0067 0.0051 0.0151 0.0117 0.0198 0.0154 
1-factor CIR-A 0.0067 0.0051 0.0152 0.0118 0.0199 0.0156 

2-factor Vasicek-B 0.0083 0.0067 0.0169 0.0132 0.0226 0.0174 
2-factor Vasicek-A 0.0079 0.0064 0.0162 0.0128 0.0209 0.0173 

2-factor CIR-B 0.0066 0.0050 0.0144 0.0110 0.0181 0.0138 
2 Longs 2-factor CIR-A 0.0066 0.0050 0.0144 0.0109 0.0180 0.0137 

(𝜏=20&30) 1-factor Vasicek-B 0.0067 0.0051 0.0154 0.0119 0.0203 0.0159 
1-factor Vasicek-A 0.0067 0.0051 0.0150 0.0115 0.0196 0.0151 

1-factor CIR-B 0.0067 0.0051 0.0151 0.0117 0.0198 0.0154 
1-factor CIR-A 0.0067 0.0051 0.0149 0.0114 0.0192 0.0149 
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Table 3.5 (Continued) 

Eight estimation methods are applied to 20-year zero yields simulated from a 2-factor Vasicek model and a 
2-factor CIR model. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek model: (0.473, 
0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 0.150, -0.126, 
0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond prices (T=25 

1years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized basis. Setting B: 
12 

Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the daily basis (∆𝑡′ = 
1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased from n = 300 to n' = 
9,125. The latter corresponds to high frequency data. Setting C: Change the sampling frequency of the data 
from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the sample size n = 300. 
Correspondingly, the time span is reduced from T=25 years to T' = n×∆t'=300×1/365=0.82 years. The sets 
of model estimates are used to make out-of-sample forecasts. There are 10,000 replications. “Vasicek-B” 
and “Vasicek-A” represent the sets of MLE-Vasicek estimates, with “B” indicating before the bias 
correction and “A” indicating after the bias correction. Similarly, “CIR-B” and “CIR-A” are the 
corresponding sets of estimates for the MLE-CIR. Denote RMSE as the root mean square error of the zero 
bond yield forecasts and denote MAE as the mean of the absolute error of the forecasts. 
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Table 3.6 Models' relative predictive ability test of 1-year zero yields 

Panel A: Giacomini and White Test of 1-year yield from the 2-factor Vasicek Model 
(%Path of #1 ≠ #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Shorts 2 Mediums 2 Shorts 2 Mediums 2 Shorts 2 Mediums 
2f-Vas-B 2f-Vas-A 29.91 26.00 16.96 17.31 29.84 20.03 

2f-CIR-B 99.91 99.35 99.64 99.74 99.97 99.63 
2f-CIR-A 99.85 99.32 99.01 99.30 99.59 99.12 
1f-Vas-B 55.35 59.64 54.95 55.57 56.64 55.38 
1f-Vas-A 50.03 52.79 54.80 55.33 54.83 54.75 
1f-CIR-B 58.54 56.29 56.63 56.59 55.81 55.36 
1f-CIR-A 52.95 52.90 56.81 56.45 51.20 53.96 

2f-Vas-A 2f-CIR-B 99.27 99.28 99.65 99.69 99.96 99.80 
2f-CIR-A 99.08 99.02 99.62 99.57 99.91 99.76 
1f-Vas-B 59.11 59.80 54.91 55.35 56.24 56.37 
1f-Vas-A 53.54 51.32 54.63 55.32 54.42 54.89 
1f-CIR-B 58.86 57.32 56.77 56.87 58.14 57.31 
1f-CIR-A 58.90 57.18 56.76 56.57 56.12 56.15 

2f-CIR-B 2f-CIR-A 21.20 27.99 44.54 46.82 41.38 47.78 
1f-Vas-B 76.71 77.89 86.61 88.28 83.64 85.20 
1f-Vas-A 79.68 71.96 86.70 89.08 84.11 87.30 
1f-CIR-B 70.10 73.52 87.38 89.45 85.29 86.70 
1f-CIR-A 75.22 77.12 87.37 89.47 83.04 81.24 

2f-CIR-A 1f-Vas-B 77.40 77.21 76.89 78.12 72.50 77.60 
1f-Vas-A 75.60 72.51 77.33 79.17 73.30 78.15 
1f-CIR-B 71.29 74.81 77.04 77.12 76.00 78.85 
1f-CIR-A 75.93 70.19 77.00 77.13 78.17 74.06 

1f-Vas-B 1f-Vas-A 26.45 24.92 10.64 9.12 29.98 29.98 
1f-CIR-B 27.93 27.65 9.06 9.82 29.41 29.41 
1f-CIR-A 26.77 22.55 9.08 9.83 28.06 28.06 

1f-Vas-A 1f-CIR-B 27.10 27.07 9.27 9.41 26.98 26.98 
1f-CIR-A 28.51 27.31 9.26 9.05 29.44 29.44 

1f-CIR-B 1f-CIR-A 21.18 20.90 8.80 9.81 28.80 28.80 
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Table 3.6 (Continued) 

Panel B: Giacomini and White Test of 1-year yield from the 2-factor CIR Model 
(%Path of #1 ≠ #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Shorts 2 Mediums 2 Shorts 2 Mediums 2 Shorts 2 Mediums 
2f-Vas-B 2f-Vas-A 23.06 29.21 46.49 43.82 48.97 41.28 

2f-CIR-B 99.20 99.72 99.58 99.03 99.43 99.80 
2f-CIR-A 99.95 99.80 99.46 99.03 99.34 99.51 
1f-Vas-B 70.27 73.31 76.11 71.25 79.73 79.60 
1f-Vas-A 70.21 78.55 75.96 71.44 79.40 78.61 
1f-CIR-B 79.74 72.06 76.23 70.73 70.50 73.88 
1f-CIR-A 71.92 75.90 76.11 71.12 79.44 78.87 

2f-Vas-A 2f-CIR-B 99.09 99.13 99.97 99.41 99.06 99.47 
2f-CIR-A 99.52 99.96 99.91 99.39 99.15 99.85 
1f-Vas-B 77.06 79.49 70.87 72.01 79.26 76.62 
1f-Vas-A 71.43 73.34 70.87 71.73 78.44 76.18 
1f-CIR-B 75.84 78.56 70.01 71.72 71.21 74.52 
1f-CIR-A 79.10 71.51 70.53 71.87 77.89 76.48 

2f-CIR-B 2f-CIR-A 25.30 26.10 18.87 18.87 20.25 19.60 
1f-Vas-B 54.73 54.09 55.01 55.13 58.36 53.93 
1f-Vas-A 50.59 59.30 55.11 55.13 58.28 54.73 
1f-CIR-B 53.53 52.81 55.43 55.57 52.57 54.12 
1f-CIR-A 58.07 56.96 55.18 55.47 58.64 54.96 

2f-CIR-A 1f-Vas-B 53.23 54.40 55.09 55.01 53.70 53.16 
1f-Vas-A 58.05 59.77 55.01 55.08 53.95 54.25 
1f-CIR-B 52.10 53.11 55.71 55.49 53.93 53.99 
1f-CIR-A 55.96 57.60 55.41 55.25 53.09 53.91 

1f-Vas-B 1f-Vas-A 20.85 20.85 8.65 9.65 21.58 91.58 
1f-CIR-B 24.43 24.40 9.24 9.24 26.14 26.14 
1f-CIR-A 28.53 28.53 9.21 9.21 21.78 21.78 

1f-Vas-A 1f-CIR-B 21.30 21.30 9.52 9.52 25.06 25.06 
1f-CIR-A 22.63 22.63 9.25 9.25 29.59 29.59 

1f-CIR-B 1f-CIR-A 28.29 28.29 9.27 9.43 25.27 25.27 
Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 1-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the 
daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. The corresponding sets of model 
estimates are used to make 12-month ahead forecasts. “Vas-B” and “Vas-A” represent the sets of MLE-
Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. The 
numbers in cells are the proportion of 20,000 sample replications that the model #1 and the model #2 have 
NO equal predictive ability at the 5% significance level. 
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Table 3.7 Models' relative predictive ability test of 20-year zero yields 

Panel A: Giacomini and White Test of 20-year yield from the 2-factor Vasicek Model 
(%Path of #1 ≠ #2 out of 20,000 simulations over 12-month ahead forecasts) 

Model #1 
2f-Vas-B 

Model #2 
2f-Vas-A 

Base Setting 
2 

Mediums 
27.66 

2 Longs 
28.86 

Setting B 
2 

Mediums 
20.36 

2 Longs 
20.25 

Setting C 

2 Mediums 
24.09 

2 Longs 
20.98 

2f-CIR-B 100.00 99.84 100.00 99.02 100.00 99.12 
2f-CIR-A 100.00 99.45 99.13 99.90 100.00 99.03 
1f-Vas-B 53.04 55.87 57.78 57.89 55.40 52.85 
1f-Vas-A 58.20 50.52 58.44 57.38 55.86 52.90 
1f-CIR-B 54.40 54.53 57.69 57.96 52.87 52.94 
1f-CIR-A 55.13 59.00 54.01 53.30 59.24 56.21 

2f-Vas-A 2f-CIR-B 100.00 99.37 100.00 99.61 100.00 99.26 
2f-CIR-A 100.00 99.22 99.09 99.98 100.00 99.99 
1f-Vas-B 59.72 55.82 57.15 57.35 54.37 52.92 
1f-Vas-A 55.95 50.68 57.07 57.09 54.68 53.03 
1f-CIR-B 54.11 54.18 58.13 58.02 54.80 53.15 
1f-CIR-A 54.88 59.09 53.64 53.22 58.00 56.46 

2f-CIR-B 2f-CIR-A 20.00 23.65 49.99 44.59 40.04 48.53 
1f-Vas-B 76.12 77.02 71.20 72.99 74.53 79.89 
1f-Vas-A 74.70 78.28 79.21 74.85 77.09 79.89 
1f-CIR-B 75.29 74.52 78.15 74.11 79.61 79.86 
1f-CIR-A 72.50 73.60 77.31 79.45 77.78 74.14 

2f-CIR-A 1f-Vas-B 79.14 78.86 74.83 78.49 79.84 70.92 
1f-Vas-A 72.55 74.21 76.27 79.30 78.56 70.74 
1f-CIR-B 73.11 72.13 74.17 77.79 76.74 77.30 
1f-CIR-A 77.17 73.98 75.99 74.71 78.14 78.45 

1f-Vas-B 1f-Vas-A 28.80 28.79 9.56 9.56 28.86 28.86 
1f-CIR-B 28.05 29.49 7.49 9.49 27.06 27.06 
1f-CIR-A 26.97 26.32 8.40 8.40 29.76 29.76 

1f-Vas-A 1f-CIR-B 27.72 28.41 7.72 7.72 27.29 27.29 
1f-CIR-A 28.46 29.11 8.46 8.46 29.81 29.81 

1f-CIR-B 1f-CIR-A 28.14 28.05 9.69 9.69 29.47 29.47 
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Table 3.7 (Continued) 

Panel B: Giacomini and White Test of 20-year yield from the 2-factor CIR Model 
(%Path of #1 ≠ #2 out of 20,000 simulations over 12-month ahead forecasts) 

Model #1 
2f-Vas-B 

Model #2 
2f-Vas-A 

Base Setting 
2 

Mediums 
26.20 

2 Longs 
23.46 

Setting B 
2 

Mediums 
49.10 

2 Longs 
48.67 

Setting C 

2 Mediums 
49.27 

2 Longs 
48.97 

2f-CIR-B 99.71 99.55 99.11 99.22 99.99 99.27 
2f-CIR-A 99.00 99.49 99.11 99.21 100.00 99.49 
1f-Vas-B 71.80 73.27 78.29 77.95 72.40 77.59 
1f-Vas-A 76.99 77.03 77.95 77.99 77.19 70.72 
1f-CIR-B 76.48 79.20 78.07 78.09 74.63 71.25 
1f-CIR-A 76.90 73.40 77.97 78.50 71.53 70.75 

2f-Vas-A 2f-CIR-B 99.17 99.48 99.63 99.59 99.98 99.67 
2f-CIR-A 99.92 99.73 99.68 99.61 100.00 99.24 
1f-Vas-B 73.40 75.07 78.51 76.83 77.62 70.35 
1f-Vas-A 71.59 70.76 78.66 76.85 78.50 76.92 
1f-CIR-B 77.49 75.26 77.75 77.03 70.08 78.64 
1f-CIR-A 79.64 74.06 78.73 76.28 72.30 72.25 

2f-CIR-B 2f-CIR-A 22.43 27.01 17.96 18.35 15.89 12.73 
1f-Vas-B 54.58 55.51 59.03 59.03 52.40 55.66 
1f-Vas-A 56.95 50.89 56.08 55.94 50.73 54.89 
1f-CIR-B 55.59 55.28 56.47 56.46 58.33 55.54 
1f-CIR-A 53.32 53.28 56.64 58.90 59.70 59.68 

2f-CIR-A 1f-Vas-B 59.44 55.44 59.07 59.04 56.73 53.67 
1f-Vas-A 56.48 50.89 56.03 55.97 55.59 52.72 
1f-CIR-B 59.70 55.46 56.48 56.50 59.12 52.84 
1f-CIR-A 53.07 53.19 56.65 58.89 52.74 58.40 

1f-Vas-B 1f-Vas-A 28.88 28.88 5.40 9.40 29.85 29.85 
1f-CIR-B 24.38 24.38 9.75 9.75 25.88 25.88 
1f-CIR-A 20.72 20.72 9.95 9.87 24.44 24.44 

1f-Vas-A 1f-CIR-B 25.75 25.75 6.61 6.61 24.06 24.06 
1f-CIR-A 24.94 24.94 7.58 8.30 25.84 25.84 

1f-CIR-B 1f-CIR-A 24.29 24.29 9.53 28.42 27.76 27.76 
Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 20-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the 
daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. The corresponding sets of model 
estimates are used to make 12-month ahead forecasts. “Vas-B” and “Vas-A” represent the sets of MLE-
Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. The 
numbers in cells are the proportion of 20,000 sample replications that the model #1 and the model #2 have 
NO equal predictive ability at the 5% significance level.  
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Table 3.8 Comparison of models' relative predictive ability test of 1-year zero yields 

Panel A: Giacomini and White Test of 1-year yield from the 2-factor Vasicek Model 
(%Path of #1 Beats #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Shorts 2 Mediums 2 Shorts 2 Mediums 2 Shorts 2 Mediums 
2f-Vas-B 2f-Vas-A 15.18 13.13 8.55 8.70 14.99 10.16 

2f-CIR-B 99.86 99.31 99.60 99.71 99.93 99.59 
2f-CIR-A 99.81 99.28 98.98 99.26 99.55 99.09 
1f-Vas-B 28.18 30.19 27.59 28.14 28.50 28.17 
1f-Vas-A 25.15 26.61 27.74 28.06 27.47 27.86 
1f-CIR-B 29.32 28.69 28.75 28.46 28.31 27.98 
1f-CIR-A 26.62 26.53 28.43 28.68 25.73 27.12 

2f-Vas-A 2f-CIR-B 99.23 99.24 99.61 99.65 99.92 99.77 
2f-CIR-A 99.04 98.99 99.58 99.52 99.87 99.71 
1f-Vas-B 29.95 30.11 27.80 27.85 28.28 28.37 
1f-Vas-A 27.21 25.78 27.69 28.02 27.73 27.86 
1f-CIR-B 29.86 29.02 28.63 28.98 29.55 29.15 
1f-CIR-A 29.57 28.64 28.79 28.55 28.30 28.53 

2f-CIR-B 2f-CIR-A 10.72 14.14 22.38 23.58 20.82 24.05 
1f-Vas-B 8.33 8.17 9.45 9.07 8.54 9.02 
1f-Vas-A 8.63 7.55 8.77 9.22 9.11 9.55 
1f-CIR-B 7.09 7.64 9.60 9.27 8.61 8.95 
1f-CIR-A 8.15 8.40 8.85 9.68 8.67 8.80 

2f-CIR-A 1f-Vas-B 8.10 8.32 7.80 8.02 7.42 7.81 
1f-Vas-A 7.64 7.97 7.89 7.96 7.45 7.90 
1f-CIR-B 7.31 7.79 8.23 8.15 8.04 8.52 
1f-CIR-A 8.00 7.25 8.33 7.96 8.27 7.83 

1f-Vas-B 1f-Vas-A 13.28 12.67 5.42 4.60 15.03 15.26 
1f-CIR-B 14.02 13.98 4.60 5.00 14.86 14.71 
1f-CIR-A 13.41 11.30 4.57 4.97 14.28 14.13 

1f-Vas-A 1f-CIR-B 13.77 13.71 4.64 4.75 13.59 13.59 
1f-CIR-A 14.38 13.76 4.64 4.57 14.73 14.88 

1f-CIR-B 1f-CIR-A 10.61 10.46 4.47 4.98 14.48 14.41 
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Table 3.8 (Continued) 

Panel B: Giacomini and White Test of 1-year yield from the 2-factor CIR Model 
(%Path of #1 Beats #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Shorts 2 Mediums 2 Shorts 2 Mediums 2 Shorts 2 Mediums 
2f-Vas-B 2f-Vas-A 11.66 14.73 23.29 21.99 24.79 20.65 

2f-CIR-B 2.91 2.11 2.18 2.08 2.31 2.47 
2f-CIR-A 2.39 2.77 2.14 2.42 2.59 2.03 
1f-Vas-B 7.64 7.66 7.96 7.24 7.98 8.27 
1f-Vas-A 7.65 8.12 8.33 7.71 8.06 8.10 
1f-CIR-B 8.07 7.77 7.98 7.36 7.29 7.70 
1f-CIR-A 7.66 7.67 7.99 7.80 8.24 8.67 

2f-Vas-A 2f-CIR-B 2.89 2.11 2.22 2.36 2.72 2.15 
2f-CIR-A 2.05 2.42 2.24 2.38 2.53 2.72 
1f-Vas-B 7.89 8.15 7.15 7.42 8.64 7.96 
1f-Vas-A 7.46 7.53 7.17 7.83 7.99 7.93 
1f-CIR-B 8.23 8.08 7.05 7.19 7.55 7.67 
1f-CIR-A 7.98 7.41 7.63 7.27 8.51 8.17 

2f-CIR-B 2f-CIR-A 12.79 13.13 9.51 9.48 10.25 9.98 
1f-Vas-B 27.54 27.09 27.65 27.86 29.27 27.24 
1f-Vas-A 25.31 29.96 27.75 27.74 29.58 27.58 
1f-CIR-B 26.81 26.67 28.07 27.79 26.73 27.24 
1f-CIR-A 29.34 28.71 27.60 28.05 29.36 27.94 

2f-CIR-A 1f-Vas-B 27.02 27.45 27.96 28.02 27.07 26.61 
1f-Vas-A 29.07 30.08 27.95 27.77 27.20 27.22 
1f-CIR-B 26.23 26.98 28.35 28.10 27.41 27.43 
1f-CIR-A 28.22 29.11 28.13 27.89 26.76 27.22 

1f-Vas-B 1f-Vas-A 10.54 10.50 4.33 4.88 10.98 46.42 
1f-CIR-B 12.45 12.36 4.63 4.68 13.28 13.09 
1f-CIR-A 14.28 14.28 4.62 4.63 10.97 10.93 

1f-Vas-A 1f-CIR-B 10.68 10.69 4.78 4.77 12.58 12.65 
1f-CIR-A 11.42 11.44 4.71 4.67 14.89 15.08 

1f-CIR-B 1f-CIR-A 14.28 14.30 4.70 4.80 12.68 12.66 
Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 1-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the 
daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. The corresponding sets of model 
estimates are used to make 12-month ahead forecasts. “Vas-B” and “Vas-A” represent the sets of MLE-
Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. The 
numbers in cells are the proportion of 20,000 sample replications that the model #1 has greater predictive 
ability than the model #2 at the 5% significance level. 
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Table 3.9 Comparison of models' relative predictive ability test of 20-year zero yields 

Panel A: Giacomini and White Test of 20-year yield from the 2-factor Vasicek Model 
(%Path of #1 Beats #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Mediums 2 Longs 2 Mediums 2 Longs 2 Mediums 2 Longs 
2f-Vas-B 2f-Vas-A 13.89 14.49 10.25 10.19 12.17 10.54 

2f-CIR-B 99.97 99.80 99.97 98.99 99.96 99.07 
2f-CIR-A 99.96 99.42 99.09 99.86 99.96 98.98 
1f-Vas-B 26.97 28.46 29.08 29.45 28.02 26.47 
1f-Vas-A 29.32 25.27 29.73 28.90 28.39 26.56 
1f-CIR-B 27.36 27.76 29.08 29.42 26.71 26.68 
1f-CIR-A 27.89 29.58 27.43 27.13 30.15 28.57 

2f-Vas-A 2f-CIR-B 99.96 99.33 99.96 99.56 99.95 99.22 
2f-CIR-A 99.96 99.19 99.04 99.94 99.96 99.95 
1f-Vas-B 30.22 28.27 29.12 28.93 27.45 26.47 
1f-Vas-A 28.04 25.51 28.78 28.55 27.42 26.79 
1f-CIR-B 27.51 27.12 29.53 29.18 27.44 26.89 
1f-CIR-A 27.98 29.77 27.05 26.71 29.24 28.34 

2f-CIR-B 2f-CIR-A 10.12 11.94 25.47 22.57 20.07 24.59 
1f-Vas-B 7.62 8.27 7.71 7.32 7.59 8.27 
1f-Vas-A 7.95 8.46 8.22 7.58 8.42 8.54 
1f-CIR-B 8.09 8.04 8.31 7.89 8.75 8.22 
1f-CIR-A 7.54 7.80 8.01 8.50 7.93 7.55 

2f-CIR-A 1f-Vas-B 8.23 8.12 7.92 8.44 8.59 7.54 
1f-Vas-A 7.52 7.77 7.68 8.14 8.40 7.35 
1f-CIR-B 7.93 7.88 8.11 7.96 8.03 8.37 
1f-CIR-A 8.07 8.04 7.90 8.10 8.41 8.59 

1f-Vas-B 1f-Vas-A 14.62 14.43 4.86 4.87 14.53 14.52 
1f-CIR-B 14.26 14.88 3.78 4.82 13.58 13.73 
1f-CIR-A 13.55 13.18 4.25 4.25 14.91 14.98 

1f-Vas-A 1f-CIR-B 13.98 14.31 3.86 3.88 13.75 13.87 
1f-CIR-A 14.45 14.73 4.30 4.30 15.05 15.08 

1f-CIR-B 1f-CIR-A 14.20 14.09 4.86 4.87 14.85 15.00 
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Table 3.9 (Continued) 

Panel B: Giacomini and White Test of 20-year yield from the 2-factor CIR Model 
(%Path of #1 Beats #2 out of 20,000 simulations over 12-month ahead forecasts) 

Base Setting Setting B Setting C 

Model #1 Model #2 2 Mediums 2 Longs 2 Mediums 2 Longs 2 Mediums 2 Longs 
2f-Vas-B 2f-Vas-A 13.16 11.80 24.77 24.52 24.71 24.68 

2f-CIR-B 2.02 2.77 2.08 2.08 2.81 2.87 
2f-CIR-A 2.06 2.03 2.28 2.55 2.32 2.48 
1f-Vas-B 7.88 7.39 8.10 8.27 7.42 7.96 
1f-Vas-A 7.79 8.25 7.96 8.56 7.77 7.50 
1f-CIR-B 8.26 8.07 7.89 7.83 7.48 7.71 
1f-CIR-A 7.96 8.02 8.55 8.20 7.46 7.24 

2f-Vas-A 2f-CIR-B 2.88 2.51 2.75 2.93 2.55 2.95 
2f-CIR-A 2.39 2.67 2.34 2.61 2.23 2.07 
1f-Vas-B 7.36 7.86 8.55 7.80 7.87 7.44 
1f-Vas-A 7.50 7.08 8.37 7.93 8.26 8.42 
1f-CIR-B 8.38 7.67 8.15 8.05 7.38 8.23 
1f-CIR-A 8.04 8.11 7.98 8.30 7.25 7.26 

2f-CIR-B 2f-CIR-A 11.37 13.77 9.07 9.22 8.03 6.37 
1f-Vas-B 27.82 28.02 29.85 29.98 26.35 28.23 
1f-Vas-A 28.50 25.63 28.17 28.25 25.56 27.67 
1f-CIR-B 27.97 28.07 28.30 28.36 29.70 28.19 
1f-CIR-A 27.00 27.01 28.33 29.91 30.36 29.96 

2f-CIR-A 1f-Vas-B 29.80 28.20 30.10 29.70 28.49 27.19 
1f-Vas-A 28.66 25.64 28.12 28.31 27.81 26.69 
1f-CIR-B 30.07 27.99 28.78 28.40 29.88 26.75 
1f-CIR-A 27.07 26.96 28.88 29.72 26.65 29.66 

1f-Vas-B 1f-Vas-A 14.46 14.64 2.70 4.73 14.96 15.02 
1f-CIR-B 12.43 12.42 4.90 4.88 13.11 12.99 
1f-CIR-A 10.49 10.46 4.98 5.01 12.33 12.24 

1f-Vas-A 1f-CIR-B 13.04 12.95 3.32 3.33 12.11 12.15 
1f-CIR-A 12.51 12.58 3.86 4.18 12.96 13.06 

1f-CIR-B 1f-CIR-A 12.30 12.24 4.81 14.28 13.95 13.96 
Eight estimation models are applied to two-factor Vasicek-simulated and two-factor CIR-simulated 20-year 
zero bond prices, respectively. The true parameters (𝜅1, 𝜃1, 𝜎1, 𝜆1, 𝜅2, 𝜃2, 𝜎2, 𝜆2) are a) 2-factor Vasicek 
model: (0.473, 0.046, 0.087, -0.107, 0.043, 0.019, 0.024, -0.045); b) 2-factor CIR model: (0.654, 0.038, 
0.150, -0.126, 0.054, 0.022, 0.041, -0.048). Base Setting: Each MLE process has 300 months of zero bond 

1prices (T=25 years) with two maturities. 𝛥𝑡 = corresponds to monthly observations in an annualized 
12 

basis. Setting B: Change the sampling frequency of the data from the monthly basis (∆𝑡 = 1/12) to the 
daily basis (∆𝑡′ = 1/365), while keeping the time span 𝑇 = 25 years. Thus, the sample size is increased 
from n = 300 to n' = 9,125. The latter corresponds to high frequency data. Setting C: Change the sampling 
frequency of the data from the monthly basis (∆t=1/12) to the daily basis (∆t'=1/365) while keeping the 
sample size n = 300. Correspondingly, the time span is reduced from T=25 years to T' = 
n×∆t'=300×1/365=0.82 years. The bootstrap bias correction process is applied to each set of estimates. 
There are 20,000 replications. The number of bootstrap resampling is 500. The corresponding sets of model 
estimates are used to make 12-month ahead forecasts. “Vas-B” and “Vas-A” represent the sets of MLE-
Vasicek estimates, with “B” indicating before the bias correction and “A” indicating after the bias 
correction. Similarly, “CIR-B” and “CIR-A” are the corresponding sets of estimates for the MLE-CIR. The 
numbers in cells are the proportion of 20,000 sample replications that the model #1 has greater predictive 
ability than the model #2 at the 5% significance level.  
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