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Collision avoidance is an essential capability for autonomous and assisted-driving 

ground vehicles. In this work, we developed a novel model predictive control based 

intelligent collision avoidance (CA) algorithm for a multi-trailer industrial ground vehicle 

implemented on a General Purpose Graphical Processing Unit (GPGPU). The CA 

problem is formulated as a multi-objective optimal control problem and solved using a 

limited look-ahead control scheme in real-time. Through hardware-in-the-loop-

simulations and experimental results obtained in this work, we have demonstrated that 

the proposed algorithm, using NVIDA’s CUDA framework and the NVIDIA Jetson TX2 

development platform, is capable of dynamically assisting drivers and maintaining the 

vehicle a safe distance from the detected obstacles on-the-fly. We have demonstrated that 

a GPGPU, paired with an appropriate algorithm, can be the key enabler in relieving the 

computational burden that is commonly associated with model-based control problems 

and thus make them suitable for real-time applications. 
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CHAPTER I 

INTRODUCTION 

1.1 Vehicular Collision Avoidance System 

It is evident that vehicles can be very dangerous, resulting in nearly 37,000 deaths 

in 2016 alone [1]. While full-autonomy may be several years from realizing its full 

potential, Advanced Driver Assistance Systems (ADAS) may be an interim solution [2]. 

ADAS describe a vast range of various systems, one of which being ways of improving 

driver safety. Modern cars offer systems such as adaptive cruise control, which is capable 

of maintaining a pre-determined gap based on distance to the car in front and affecting 

the speed of the vehicle to maintain this gap, and lane departure warning, which alerts the 

driver when the vehicle begins to drift out of a road lane [3]. We extend this idea by 

creating a Collision Avoidance System (CAS). Due to the complexity of the task, 

simplistic reactive controllers are not well-suited to for this and so a more intelligent 

control approach is used. 

1.2 Vehicular Collision Avoidance System 

A Model Predictive Control (MPC) technique describes a method of control 

where future states are predicted based on current system states, environment 

disturbances and potential future control inputs to the system. Fundamental elements of 

this approach include a numerical model that is able to estimate the future state of the 

system, constraints that represent practical design limitations, and physical constraints 
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that the system needs to be operated within. A cost function that describes the ideal 

outcome that the system is steered into and a solution engine to solve the resulted 

numerical optimization problem and determine the optimal control solution are used [4]. 

For the CA system we developed, we used a Model Predictive Control approach 

that utilizes a tree-search paradigm to find the optimal control solution as described in 

[5]. The MPC algorithm works by evaluating all of the possible outcomes over a set 

period of time given the current system operating conditions and a set of input variables 

known as the control inputs. These sequences of inputs are known as input sequences. 

Following the evaluation of all possible input sequences, a cost function is computed for 

each sequence and based on the determined validity of each sequence, the sequence with 

the most optimal cost is chosen and actuated. Due to the rapidly changing environment, 

the control solution must be recalculated every control interval. 

In the scope of a MPC algorithm, the computational complexity is the main 

limiting factor for real-time use. To help circumvent these struggles, alternative means to 

traditional homogeneous computing environments are explored in the following section. 

1.3 Utilizing a Heterogeneous Computing Environment 

MPC algorithms can be computationally taxing on a processor. When the 

processor is placed in an embedded environment, with limited resources, the problem 

becomes even more challenging. Alternatives to traditional CPU computation of an MPC 

algorithm have been explored, utilizing devices such as FPGAs, or Field Programmable 

Gate Array, and GPUs, or Graphical Processing Unit [6, 7]. The concept of using 

multiple processors in tandem, specifically processors of different types, creates a system 
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known as a Heterogeneous Computing Environment. In particular, GPUs are an 

appealing alternative to conventional CPUs due to their high floating-point performance 

as well as the massive amount of parallelism. GPUs are also popular due to the fact that 

many computers have GPUs either built-in with the CPU itself or have a dedicated GPU 

that works in tandem with the CPU, albeit mostly for graphical computations. Due to the 

great potential that GPUs show, much research has been done in the field of GPGPU 

computing, or General Purpose GPU Computing [8, 9, 10]. 

1.4 Existing Work 

1.4.1 Application of MPC in CAS Design  

MPC algorithms have proven to be useful in a variety of contexts of control 

problems. For example, diesel engines are equipped with special hardware to help keep 

their emissions in check and within government regulated limits [11]. In a regular diesel-

powered vehicle, the engine control unit (ECU) would handle the control of such devices 

using a rather simplistic approach ignoring key features such as the fact that these devices 

are tightly coupled functionally as they are both controlled by exhaust gasses. In order to 

take better advantage of such devices, Ferreau et al. used an MPC algorithm to better 

control these devices are achieve better emissions from the engine. The MPC algorithm 

was computed on a single Autobox by dSpace, which is powered by a 480MHz IBM 

Power PC processor, a homogenous computing environment. They were able to achieve a 

control horizon of 250 milliseconds and a prediction horizon of 5 seconds. The control 

horizon was determined to be 250 milliseconds due to having 5 control intervals lasting 

50 milliseconds each. Due to limitations in the model, they came to the conclusion that 

the full potential of the MPC algorithm could not be fully realized, but their results 
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showed great promise [11]. It is important to note that without a proper model, the 

performance of the MPC algorithm is bound to suffer. The performance of the model is 

directly hinged on the quality of the model [12]. 

Alrifaee, Maczijewski, and Abel used an MPC algorithm to affect the steering 

angle of a vehicle on a pre-defined path to avoid a detected object on the path. A 

dynamics model is used to predict future positions of the vehicle and uses the current 

steering angle of the vehicle as the input into the MPC algorithm. They tuned the 

algorithm so that it favors no steering change, but if a collision is imminent, the most 

minimal amount of steering change is applied to avoid the collision. This method does 

not address the possibility of detecting objects at varying distances and does not account 

for speed changes. In addition, it assumes that the vehicle will stay absolutely true to the 

predefined path. This could become problematic if this algorithm was used in an 

environment where the vehicle could not be trusted to follow the pre-defined path, for 

example the situation of a human operator driving a vehicle [13]. While it appears that 

this algorithm works very well in a static environment, given a changing environment, 

with obstacles that may move, vehicles that change speed, and other parts of the 

environment that may change, the algorithm may not perform as well. 

 To address the concern of real-time computation, Zhou, Wang, Bandyopadhyay, 

and Schwager demonstrate an on-line collision avoidance algorithm, but it requires that 

all vehicles are aware of the relative position of all vehicles. In contrast of other existing 

methods, this method only requires position while others require more detailed 

information such as position in addition to velocity. The relative position is used to create 
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what they have called Buffered Voronoi Cells, or BVC. They differ from regular Voronoi 

Cells in that their edges do not touch, but instead of a distance between each other such 

that if a vehicle, in this case a robot, has its center in the Voronoi Cell, the entire robot 

will be inside the BVC. When calculating the future BVCs for each robot, they used a 

receding horizon approach [14] as did our MPC algorithm. For applications in 

environments such as vehicular traffic, creating a communication network so that all 

vehicles are aware of the relative position of others could prove to be challenging. 

Further, this method does not account for obstacles other than other robots. The algorithm 

does not account for static, or dynamic, obstacles in the environment, only other robots 

that can communicate their current position. 

To address the issue of collision avoidance in terrestrial vehicles, Liu et al 

demonstrate their use of a model predictive control algorithm to operate an unmanned 

vehicle through a field of obstacles, minimizing travel time while maximizing vehicle 

safety. They utilize a LIDAR sensor to detect potential obstacles. Because the algorithm 

will have full control of the vehicle, one concern is tire lift off. While tuning the 

algorithm to minimize travel to get to the destination, it may be optimal to allow the 

vehicle to travel at a high speed and turn very sharply to avoid an obstacle. This could 

have consequences that would compromise the safety of the vehicle, such as tire-lift. To 

help predict when such a condition may occur, and to, in turn, prevent such an event, a 

model of vehicle dynamics is used. To help with the computational burden of the MPC 

algorithm a much simpler two DoF model is used in the MPC algorithm with a fourteen 

DoF model being used offline to create look-up tables for the MPC algorithm to use [15]. 

In a real-world implementation, multiple stages of the system will introduce latency into 
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the system to varying degrees. Latency could be introduced in communication channels 

between various controllers, computational time of the MPC algorithm, computational 

time of the LIDAR, etc. To account for these in their simulation, all types of delays were 

grouped into two different categories, sensing or control delay. Sensing delays mean that 

the LIDAR data is from some specified time previously and control delays mean that the 

solution that is calculated at a given time will not be actuated until some time in the 

future [15]. Their results show when the control latency exceeds 0.2s or the sensor 

latency exceeds 0.4s, the algorithm is no longer capable of safely avoiding the detected 

obstacle(s). However, if such delays are compensated for in the algorithm, the algorithm 

never fails to successfully prevent a collision [15]. 

Anderson, Peters, Pilutti, and Iagnemma demonstrate a method of collision 

avoidance that operates in real-time by computing a model predictive control algorithm 

using radar, LIDAR, vision-based lane-recognition systems along with various methods 

of sensor fusion to sense the environment and provide inputs to the control algorithm. 

Utilizing a finite-horizon approach to solve for the optimal control solution, the physical 

limitations of the vehicle are used as constraints for the path planning algorithm. The 

dynamic vehicle model ensures that the paths that are planned by the MPC algorithm 

keep the tires from losing traction. A method of threat detection is used to determine how 

much control should be given to the driver, ranging from full control to full autonomy. 

As threats become greater, the control gradually changes to the controller, removing 

control from the user. This is a valuable feature because it can be jarring to have control 

removed suddenly [16]. While very promising results were demonstrated, with their 

system proving capable of assisting a human operator to avoid a collision by altering the 
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angle of the vehicle’s trajectory, no testing was done to modify the speed of the vehicle. 

The vehicle was kept at a relatively constant 50km/h. In addition, the algorithm was 

computed in real-time by a dSPACE processor, instead of utilizing the parallel 

capabilities of a GPU [16]. 

1.4.2 Hardware: GPGPU 

Moore’s Law, which states that the number of transistors on an integrated circuit 

must double every two years to match the performance demands of modern computer 

users. Throughout the lifetime of Moore’s law, many have speculated the imminent doom 

of the law, but the law continues to remain valid. Currently, researchers and scientists are 

discovering new ways to ensure the continuation of Moore’s law, but at some point, 

innovations in the current technology will begin to produce only marginal returns [17]. 

Currently, photolithography is predicted to reach a practical limitation by the 2020s [18]. 

This essentially leaves the industry with two options, either find a breakthrough in the 

development of manufacturing integrated circuits or look for an alternative to packing 

more transistors on an IC. Enter heterogeneous computing environments. The idea is to 

use multiple processors, particularly different types of processors, and have them work in 

tandem instead of making one single processor more efficient. In this sense, the total 

performance of the system is valued over the performance of a single processor. 

Traditionally, this has been a difficult task due to the difficulty in developing for both a 

traditional CPU and a less-traditional FPGA or GPU and spreading the workload among 

the devices [19]. 



 

8 

Routers require fast processing of packets, with modern hardware achieving rates 

of up to 100 Gbps [20]. The alternative is to use software, but current processors cannot 

match the speeds of the hardware alternative. This would allow routers to handle more 

complex packet routing and manufacturers to offer updates on routers that would add 

functionality. In simple terms, a router is used to determine which port a specific packet 

should be sent out on given information in the packet. Given that a GPU is a SIMD 

device, they are very well suited for packet routing in a router [20]. To test the potential 

benefits of such an architecture, Mukerjee, et al. created a software router framework that 

can either be executed using only the CPU or both the CPU and GPU of a laptop. After 

several iterations of optimizations, the results were somewhat underwhelming. They 

explain that the CPU+GPU router architecture only achieves “meager gains” over the 

CPU-only architecture [20]. They go on to explain that they discovered this was due to a 

bottle-neck in their packet generation. They re-tested the system, using a new method of 

packet generation that emulated instantaneous I/O (impossible under real-world 

conditions) and showed that the GPU+CPU router architecture achieved three times the 

bandwidth and one fifth of the latency of the CPU only version. Even after they 

refactored the CPU-only version to utilize multiple cores, the GPU+CPU version still 

performed nearly 20% faster [20].  

In the past few years, there has been a surge in GPGPU development in embedded 

applications, more specifically applications that stray away from using ultra-high end 

GPUs to acceleration the computations and use much lower-power GPUs instead [21]. To 

examine how far the embedded GPGPU development has progressed recently, Maghazeh 

et al. tested five benchmarks to measure relative performance increases. The five they 
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chose were the following: Rijndael algorithm bitcount, genetic programming, and 

convolution and pattern matching. Using an NVIDIA Tesla M2050, they were able to 

achieve a speedup of 19.1 over a single-core ARM Cortex A9 processor. They noted that 

they tested two versions, using two different memory access paradigms, and 

demonstrated that a naïve approach to memory access in GPGPU programming could 

yield a 9.2 speedup while an efficient, although not always intuitive, approach yielded the 

aforementioned 19.1 speedup. Similar results were shown for the remaining benchmarks 

as well [21]. Perhaps one of the most intriguing conclusions they drew was despite the 

speedup they achieved, an inefficient or naïve implementation can severely degrade 

performance.  

1.4.3 Real-time MPC with GPU 

MPC algorithms can be computationally intensive to calculate, especially with an 

increasing number of look ahead steps. In the case of an exhaustive tree search, the 

number of look ahead steps as well as the number of possible control solutions causes the 

size of the tree to grow exponentially. In an offline simulation, computation time is much 

less of a concern than in a real-time system. Real-time systems, as their name suggests, 

operate under real-world time constraints. In fact, in many control environments, a real-

time system must operate faster than real-time so as to give other devices, such as 

actuators in the system, time to respond. In addition to the time that the actuators may 

need, additional latencies are introduced in communication delays and sensor processing. 

A real-time algorithm must be highly optimized as there is often little margin for overrun. 

The type of algorithm that is used is also an important factor that must be considered.  
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Automotive, as well as aerospace, factory automation, and robotics are all fields 

that have seen a rising amount of MPC applications and require computation of quickly 

changing dynamics models as well as high demand to keep costs low. In these fields, 

latency of the algorithm trumps the throughput of the as the outputs that are needed tend 

to be fewer but must be re-computed more often [22]. Yu et al. demonstrate a potential 

solution to this hurdle—the use of GPUs [22]. The incredible throughput of a GPU could 

be used to off-set the relatively higher latency compared to its single- or few-threaded 

relative, the CPU. To compare how much the use of GPUs actually improves their 

performance, they implement a single-threaded, as well as quad-threaded, application to 

be executed on an ARM A57 processor as well as a massively-parallel application to be 

executed on an NVIDIA Tegra X1 GPU, utilizing the numerous cores of the GPU. It has 

been shown that the GPU implementation of a generic MPC problem, with problem size 

greater than 300 variables, can achieve over 40x speedup compared with the single-

threaded CPU version. It is also reported that GPU platform is better suited with MPC 

problems with slow system dynamics and larger problem sizes to meet the requirement of 

real-time operation. The paper concluded that "significant work on the deterministic 

scheduling of real-time GPU applications" is still to be done in order to leverage GPU for 

real-time control applications [22].   

1.5 Organization 

This thesis is organized as follows: the methodology of the tree-search based 

MPC algorithm used is explained in detail in Chapter II. Chapter III discusses the 

development of MPC algorithm in a parallel environment and how the algorithm was 

modified to utilize the parallel capabilities of a GPU. The implementation of the 
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algorithm on an actual vehicle is discussed in Chapter IV, including various 

optimizations and methods used to improve performance given real-world uncertainties 

and disturbances, such as latency in communication between processing units. Chapter V 

discusses the overall performance of the completed system and Chapter VI explores 

future work. 
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CHAPTER II 

MODEL PREDICTIVE CONTROL ALGORITHM FOR A  

COLLISION AVOIDANCE SYSTEM 

2.1 Model Predictive Control 

2.1.1 The Control Inputs 

Crucial to the operation of the MPC algorithm is the control inputs. This is not to 

be confused with the environmental inputs, which include parameters such as current 

vehicle speed, heading, acceleration, and detected objects. The control inputs are discrete 

values that are actions that the MPC algorithm can command of the VAC. In our system, 

these take the form of different acceleration rates. Four discrete control inputs were used, 

one that allows the operator to accelerate the vehicle at a maximum rate of 1m/s2 which is 

limited by the VAC, one that allowed the operator to maintain the vehicle’s current speed 

but not accelerate (acceleration must remain at or below zero), or two different negative 

acceleration rates that were dependent upon the vehicles current speed. The two dynamic 

inputs are further explored in chapter 4. 

 Using these four control inputs, control input sequences are created. The MPC 

system operates with five lookahead steps, so there are a total of 1,024 possible input 

sequences. Each input sequence is evaluated and the resulting position of the vehicle after 

the last timestep determines if that specific input sequence is a viable choice to use. A 
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cost function is used to determine the most optimal sequence given multiple viable 

sequences. 

2.1.2 The Control Inputs 

Given a list of 1,024 input sequences, each sequence must be evaluated to 

determine if a collision occurs with any detected object given the vehicle’s heading. This 

is accomplished by applying the given input to the current speed of the vehicle and 

evaluating the resulting position of the vehicle in relation to the detected object. This 

process is repeated for each timestep. Because the MPC algorithm operates by simulation 

of future vehicle actions, it is impossible to know what actions the operator will perform 

in regards to heading changes. To solve this problem, a method of calculating the worst 

path is used.  

2.1.2.1 Worst Path Planning 

The nature of the CA system is to prevent collisions with detected objects. If a 

hypothetical situation is considered where an adversarial operator is operating the 

vehicle, the worst action that can be taken is the to drive directly at an object and at 

maximum speed. For simplicity in the evaluation of the MPC algorithm, the concept of 

this adversarial operator is used. For example, when an input that allows the vehicle to 

accelerate is evaluated, the maximum acceleration rate that is allowed by the VAC is 

assumed and it is assumed that the speed will remain constant if an input of zero 

acceleration is applied, rather than considering the chance that the operator will allow the 

vehicle to coast to a slower speed. Further, the heading of the vehicle will become such 
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that the vehicle is placed on a direct collision course with the detected object. The 

algorithm used to calculate the worst path is demonstrated below: 

 

Figure 2.1 Algorithm to calculate next heading 

 

  

Figure 2.2 Algorithm that returns the sign of a given number 

 

In figure 2.1, φ represents the heading while WheelBase and MaxTurningRadius are 

assumed to be known when the algorithm is executed. 
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2.1.3 Determining the Optimal Control Solution 

After all input sequences have been evaluated, a cost function is calculated for 

each input sequence to determine the optimal input sequence. The cost function is 

computed as follows: 

 

Figure 2.3 Algorithm to compute the cost of each control input sequence 

 

In this manner, the optimal input sequence will be the sequence that achieves the smallest 

cost at the end of the control horizon. Because the actual input values may change 

between evaluations of the MPC algorithm due to the speed-dependent input values, the 

cost function must be re-evaluated every time the algorithm is computed.  

 Once the input sequence that has the optimal cost has been determined, the first 

input of the input sequence is applied to the system and the rest are discarded for this 

current time instant. The algorithm that is implemented in the realization of the CA 

System is closely based on the work of Bai and Abdelwahed in [5]. 

2.2 Collision Avoidance System 

The CAS is capable of affecting the speed of the vehicle, but it is not capable of 

changing the trajectory of the vehicle by means of any method such as differential 
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braking or steering wheel control. At a high level, the CAS system will detect potential 

obstacles, then attempt to prevent a collision with these objects by means of requiring 

increasingly slower vehicle speeds until the vehicle is brought to a stop. To allow some 

margin for error, the CAS attempts to stop the vehicle approximately three or seven 

meters from the detected object, depending on which mode the system is operating in, 

namely Beacon Collision Avoidance (BCA) or Front Guard Collision Avoidance 

(FGCA). This distance is referred to as the Keep Out Distance (KOD). In addition to 

changing the KOD, the different modes are designed to detect specific objects and utilize 

different sensor approaches.  

2.2.1 Beacon Collision Avoidance 

In BCA mode, the sensor package is used to detect beacons (see figure 2.4). Due 

to the position of the LiDAR sensor that is used by the sensor package, objects that are 

135° to the right and left of the front of the vehicle can be detected, with 0° being directly 

in front of the vehicle. Beacons that exist beyond that range are not able to be detected. 

Techniques to mitigate this blind spot are explored in section 4.3.1. When a beacon is 

detected, the MPC algorithm will assume the operator will drive directly at the beacon, 

assuming a worst-case trajectory, and will attempt to stop the vehicle approximately three 

meters from the beacon. The detection and subsequent collision avoidance of these 

beacons outside of the FoV that is directly in front of the vehicle is unique to this mode of 

operation as FGCA does not utilize this wider FoV. 
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Figure 2.4 An example of a beacon used in BCA mode 

 

2.2.2 Front Guard Collision Avoidance 

In FGCA mode, the sensor package is used to detect objects only if they exist 

directly in front of the vehicle. Further, unlike BCA mode, any object that is detected by 

the sensor package is considered an object that must be avoided by the MPC algorithm, 

such as boxes, chocks, and people. It is important to note that FGCA will continue to 

prevent the driver from colliding with beacons as well, as long as they are in front of the 
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vehicle. Because of this tunnel-vision-like FoV, severe blind spots are created for the 

CAS on either side of the vehicle. Consider a scenario where the vehicle approaches an 

object on the right side of the vehicle, as shown in 2.5. If the operator of the vehicle were 

to quickly turn the vehicle so that the object is now in the FoV of the CAS, the CAS 

would respond by quickly applying the brakes rather forcefully. This quick change could 

upset the balance of the vehicle and cause the vehicle to lose traction. This problem is 

exacerbated when the vehicle is towing several trailers. To mitigate the effects of the 

blind spots created by the FGCA mode, a method of a dynamic FoV was created and 

explored in section 4.3.2. 

 

Figure 2.5 Vehicle abruptly turning towards a detected object 
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2.3 The Kinematics Model 

Essential to the successful execution of the model predictive control algorithm is a 

model. The model must accurately represent the environment and the system that is 

attempting to be controlled. In the case of a collision avoidance system for a vehicle, a 

model of the vehicle must be employed. A highly detailed model can greatly improve the 

performance of such an algorithm. Some have modeled the suspension system of vehicles 

and using this information, the algorithm is capable of preventing events such as tire lift 

off under hard turning. Tire physics can help predict stopping distance as well as 

maximum lateral load which would indicate the projected maximum speed the vehicle 

can be turned at before losing traction [23]. A requirement that is unique to our CAS is 

that collisions with the lead vehicle must be prevented as well as any number of towed 

trailers. As such, without the possibility of using sensors to know the position of the 

towed trailers, the development of a model that would accurately predict the location of 

the trailers given known inputs such as heading and speed was an essential part of the 

success of the system as a whole. 

2.3.1 Predicting the Location of the Lead Vehicle 

The vehicle that the CAS was implemented on turns about the center of the rear 

axle, so it is convenient to have the model begin with the center of the rear axle located at 

the origin of a cartesian plane. Given the current velocity, acceleration, the change in 

heading, and time since the model was last calculated, the new location of the rear axle is 

determined by simple use of basic kinematics equations.  

 𝑣𝑥 = 𝑣𝑡 ∗ sin(Δ𝜙) (1.1) 
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  𝑎𝑥 = 𝑎𝑡 ∗ sin(Δ𝜙) (1.2) 

 𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑥𝑡 +
1

2
𝑎𝑥𝑡2 (1.3) 

 Equations 2.1, 2.2, and 2.3 can be similarly applied to the y-axis as well, except the 

equations would use cosine instead. 

 

 Now that the position of the rear axle is known, the rest of the relevant positions 

of the vehicle itself can be calculated. Depending on the relation to the rear axle, the 

distance is either added or subtracted. For example, to calculate the position of the center 

of the rear bumper, the distance calculated is subtracted from the position of the rear axle, 

whereas the center of the front bumper is calculated by adding the known distance 

between the rear axle and the front bumper to the new position of the rear axle. Equation 

2.4 demonstrates how to calculate the position of the rear bumper’s x coordinate. 

 

 𝐵𝑅𝑒𝑎𝑟𝑛+1𝑥
= 𝐴𝑅𝑒𝑎𝑟𝑛𝑥

− 𝑑𝐴𝑅𝑒𝑎𝑟𝐵𝑅𝑒𝑎𝑟
∗ sin(Δ𝜙) (1.4) 

 

Here, n represents the current object being calculated, with n+1 representing the object in 

front. As was the case with equations 2.1-3, equation 2.4 can be modified to calculate the 

y-coordinate of the rear axle by substituting cosine into the equation. It is important to 

point out that the position of the front axle or the bumpers is ultimately inconsequential in 

the computation of the kinematics model for the purpose of the CA system, the 
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calculation of these intermediate points makes the calculation of the corners of the 

vehicle easier, and it is possible that these vehicle points could be used in future 

functionalities of the system. 

Using the method demonstrated in equations 2.1-4, it is trivial to calculate the rest 

of the points of the vehicle such as the four corners of the vehicle as well as the location 

of the hitch, which is crucial in the calculation of the location of the towed trailers. 

2.3.2 Predicting the Location of the Towed Trailers 

To predict the location of the towed trailers, the most important value to 

determine is the angle at which the trailer has been rotated. A towed trailer will follow a 

tighter path around a corner than the lead vehicle. This effect is known as off-tracking. 

With more trailers, each subsequent trailer follows increasingly tighter paths than the 

object directly in front of it [24]. To be able to accurately predict the location of the 

trailers as they are being towed, it is essential that the angle between the lead vehicle’s 

hitch and the trailer’s previous rear axle position are known. This method of solving for 

the angle difference is the main factor that enables the high accuracy of the model.  

 

Figure 2.6 Calculation of the angle of rotation of the towed object, denoted by Δθd1 
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 The first time that the model is calculated, the position of the axle of the rear axle 

at the previous timestep of any given towed object must be initialized, given there are no 

previous time steps. Initially, this position is determined as follows:  

 𝐴𝑅𝑒𝑎𝑟𝑛𝑥𝑡−1
= 𝐻𝑛+1𝑥𝑡

− (𝑑𝐻𝐴𝑅𝑒𝑎𝑟
∗ sin(Δ𝜙)) (2.5) 

  

In equation 2.5, n indicates the body, with n+1 being in front of n and t represents the 

timestep. A indicates an axle, and the subscript indicates which axle, front or rear. H is the 

position of the hitch, and dHA is the distance between the hitch and axle. Following this 

initialization, the angle of rotation of the trailer is calculated as follows: 

 𝜃 = arctan 2 ((𝐻𝑛+1𝑥𝑡
− 𝐴𝑅𝑒𝑎𝑟𝑛𝑥𝑡−1

) , (𝐻𝑛+1𝑦𝑡
− 𝐴𝑅𝑒𝑎𝑟𝑛𝑥𝑡−1

)) (1.6)  

 

 In equation 2.6, arctan2 computes the inverse tangent of the first parameter, divided by 

the second and determines the correct quadrant depending on the signs of the arguments 

[25]. Once this angle is computed, the determination of the location of the trailer is 

carried out in a similar manner to the way that the location of the corners of the lead 

vehicle was calculated, however, this new angle is used instead of the change in heading.  

 Once the location of the rear axle of the towed object is determined, that location 

is saved to be used in the next computation of the model. In this way, the initialization 

step is only necessary for the first time that the model is computed. 
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2.3.3 Maintaining a Relative Frame of Reference 

The sensor package reports detections using polar coordinates, in the form of an 

angle in meters possibly ranging from -180° to +180° (although the actual angles that are 

reported are in a smaller range, due to the position of the sensor), and a distance in 

meters, centered about the center of the front bumper of the vehicle. To prevent the 

positions of the vehicle from theoretically approaching +/- infinity, due to the vehicle 

travelling very far from the original location, and to simplify the arithmetic needed to 

compare the location of the vehicle and trailers to a detected object, various methods are 

used to maintain a local relative frame of reference, placing the vehicle’s rear axle at the 

origin of the cartesian plane. 

 The model works by allowing the lead vehicle to propagate through space and 

measuring the new angle of the towed trailers given the change in heading of the lead 

vehicle. As such, during the computation of the model, the vehicle’s position deviates 

from the starting position of (0, 0), but will be translated back to that position at the 

conclusion of the computation of the model. To translate the vehicle back, the distance 

traveled from the starting location is calculated. In practice, this is simply a calculation of 

the Pythagorean distance between the origin and the current location of the vehicle’s rear 

axle. Because the starting position can be assumed to always be (0, 0), the Pythagorean 

distance calculation is not necessary. All positions of all vehicles are translated by this 

amount, so that the entire system is translated correctly as shown in figures 2.7-9.  

 For simplicity of calculation, the vehicle model uses locations based on a 

cartesian plane. To maintain consistency, the location of detected objects are converted 
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into cartesian coordinates and placed in the cartesian plane along with the vehicle and 

trailers. Due to the naivety of the sensor package, it becomes imperative that the model 

not only be translated to the origin, but more importantly be rotated so that it faces along 

the positive y-axis of the cartesian plane. This ensures that the locations of the detected 

objects are placed correctly in the cartesian plane relative to the full vehicle system. As 

was previously stated, it is essential to the model that the vehicle and all of the trailers 

propagate through the plane before being translated back to the origin, and the rotation is 

no special case. It too must occur after all positions of the vehicle and trailers are 

determined. The following expression demonstrates how the rotation is performed: 

 𝑥′ = (𝑥 ∗ cos(Δ𝜙)) − (𝑦 ∗ sin(Δ𝜙)) (1.7) 

 𝑦′ = (𝑦 ∗ sin(Δ𝜙)) + (𝑦 ∗ cos(Δ𝜙)) (1.8) 
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Figure 2.7 Image of vehicle with four trailers before the system has been centered and 

rotated 
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Figure 2.8 Image of the vehicle with four trailers before the system has been rotated 

but after the system has been centered 
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Figure 2.9 Image of the vehicle with four trailers after the system has been rotated and 

centered 
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CHAPTER III 

PARALLEL MPC ALGORITHM DEVELOPMENT 

3.1 Background on Graphical Processing Units 

Graphical Processing Units were developed due to the need of a greater 

computational power demanded by consumers of their computers. The first computers 

that supported a graphical interface used the Central Processing Unit, or CPU, to render 

both the graphics as well as perform the complex calculations that are expected of a 

computer. As time went on, graphics became more demanding but CPUs were typically 

able to keep up. At some point, the duty of graphics rendering was off-loaded to a 

specialized processor known as a GPU. The purpose of a GPU is solely to render 

graphics, and to do it quickly. With this new architecture, the CPU could continue its 

normal operation and the GPU would handle all of the graphical operations. Many 

modern computers offer CPUs that have graphics rendering capabilities built-in to the 

CPU, meaning a discrete GPU is not necessary, however optimal performance is only 

achieved when the two devices are separated.  

 1984 marks the year in which IBM first developed a processor-based video card 

for the PC. This meant that the processor on the video card could handle all video-related 

tasks allowing the CPU more computational power [26]. 
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 GPUs attain their unique performance advantages over CPU by virtue of their 

vastly different underlying architecture. Firstly, it is important to note that GPUs have 

been developed with different goals in mind than a CPU, namely they are developed to 

favor throughput over latency, whereas CPUs tend to favor the opposite. While both 

processors utilize forms of pipelining, they do so in different fashions. Given a stream of 

data that must go through several different stages of computations, the CPU would 

operate on the data by executing the first stage of the pipeline using the first element of 

data, then feeding the output of that data into the next stage of the pipeline. GPUs 

accomplish the same effect of parallelism by performing the same operation of the first 

pipeline stage on all elements at once before continuing onto the next stage of the 

pipeline. The overall result is a high throughput, with the CPU operations taking many 

fewer clocks to finish the calculations but outputting data in small chunks, or even single 

elements, at a time, whereas the GPU may take many more clock cycles to run but 

outputting all elements of the data simultaneously [27]. 

 Given the huge potential for high-throughput computing, the idea of a 

programmable GPU was very appealing. In 1999, NVIDIA introduced the first GPU that 

was programmable using DirectX7 and OpenGL. The problem was that programmers 

were required to learn a graphics programming language instead of C/C++ in order to 

program the GPU [28]. In 2006, NVIDIA changed all of this when they released the 

GeForce 8800 which was the first GPU to support C and CUDA. This meant that 

programmers no longer needed to learn programming languages unique to graphics 

development, to take advantage of the GPU’s horsepower as a computational platform 

[28]. 
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3.1.1 NVIDIA CUDA 

Since the introduction of the GeForce 8800, the most efficient way to utilize the 

parallelism offered by GPUs was to use NVIDIA’s CUDA. The programmer writes 

kernels which look like conventional single-threaded CPU functions. The difference is 

that the kernels are executed across many threads in parallel using the SIMD paradigm. 

These threads can be further organized into blocks, each block having up to three 

different dimensions of organizational structure. Moving further beyond blocks, blocks 

are then organized into structures known as grids, which also offer up to three 

dimensions of organization. The specific sizes of threads per block, threads per block 

dimension, blocks per grid dimension, etc. is fully dependent on the specific architecture 

of the. The GPU that is used in this system is capable of executing 1,024 threads per 

block with four blocks simultaneously. Figure 3.1 shows the organization of threads, 

inside a block, inside a grid, all of which are of two dimensions. 
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Figure 3.1 Organization of grids, blocks, and threads in CUDA [29] 

 

When the kernel is declared, the programmer specifies how many blocks should be used 

and how many threads should be in each block. Each thread executes an instance of the 

kernel and is given its own unique thread ID so that individual threads can be identified 

in the kernel. In our development, we noticed that memory allocation can be a time-

consuming operation so it is very beneficial that special attention is payed to this area 
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during the development phase to ensure that memory allocation occurs as sparingly as 

possible. 

3.1.2 CUDA Memory Model 

One of the most important concepts to remember when developing in CUDA is 

the memory model. Global memory is accessible by all threads across all blocks and is 

even accessible by the CPU, through memory transfers. This memory can have 

excessively long latencies and can be very detrimental to the performance of the program 

if the kernel must read and write to this memory space frequently. It is the duty of the 

programmer to ensure that global memory accesses are limited, favoring shared memory 

access where appropriate [30].  

While all threads have access to global memory, only threads in the same block 

have access to shared memory. Shared memory is expected to be very low-latency and 

close to each processor core. Because it is visible to all threads in a block, special 

attention must be paid to prevent race conditions [30].  

Finally, each thread has its own set of memory that is only accessible by that 

specific thread, known as local memory. Data that is declared in the kernel is considered 

local memory. The compiler will decide whether to allocate the memory into registers or 

into the local memory space, which is the same memory space as global memory and so 

latency can be very high with low bandwidth [30]. 

Regarding memory accesses, when threads must access global memory, ensuring 

that consecutive elements of an array are accessed can significantly improve performance 
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as this allows the GPU to coalesce the memory reads which reduces the total number of 

memory access operations, improving the overall performance [29]. Figure 3.2 

demonstrates the relationship between the different scopes of memory in CUDA. 

 

Figure 3.2 Illustration of the organization and scope of memory in CUDA [30] 
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3.1.3 Types of Memory in CUDA 

Making intelligent design decisions on the type of memory that should be used is 

critical for optimizing performance. This section is not meant to be an exhaustive 

description of the various types of memory that are available to a CUDA developer, 

rather it serves to explain some of the nuances of the types of memory and aims to 

explain why certain types of memory were chosen over other types in the implementation 

of the MPC algorithm. 

 Page-locked host memory is memory that is guaranteed to not be available to the 

system for paging. In other words, this memory is guaranteed to not be swapped out, 

ensuring faster memory transfers. Page-locked memory makes concurrent kernel 

execution and memory transfers possible, whereas pageable memory does not offer this 

advantage. Allocating memory as page-locked decreases the amount of memory that the 

system has for paging. Decreasing the total amount of pageable memory can have 

detrimental effects on the performance and memory allocations for page-locked memory 

can start to fail much sooner than memory allocations for pageable memory.  

 NVIDIA GPUs utilize the SIMD paradigm to execute threads in parallel. This 

means that optimal efficiency is achieved when the threads in a warp all execute the same 

instruction. If any conditional branches cause some threads to execute different 

instructions than another thread in the same warp, parallelism is broken. The SM must 

then execute one branch and then execute the next branch. This phenomenon is known as 

thread divergence and can have severe consequences on the performance of GPU 

applications.  
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3.2 Implementing the MPC Algorithm using the GPU 

In order to ensure that the CAS algorithm is executed in time, efficiency is very 

critical. The nature of the tree search algorithm lends itself to a parallel execution idea as 

all input sequences can be executed independently of each other. Each branch of the tree 

will represent the evaluation of one input sequence and will be executed by one thread of 

a thread block. Each detected object will have its own set of 1,024 input sequences, so 

each detected object will utilize one thread block, each utilizing the maximum 1,024 

threads of the block. This section explains the details of how the MPC algorithm was 

developed to utilize the parallel processing capabilities of the GPU. 

To determine the number of threads per block, the limitation of the GPU is 

considered. For our system, we are using NVIDIA’s Jetson TX2 platform, which allows a 

maximum of 1,024 threads per block. In formula 3.1, the number of branches of each tree 

is found using the following expression where N is the number of lookahead steps and U 

is the number of inputs: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = 𝑁𝑈 (2.1) 

 

When the algorithm was first developed on the GPU, it generated a two-

dimensional array of input sequences and copied this array to the GPU and each thread 

would need to access this global memory. All of these memory transactions caused a 

severe degradation in performance and so a new method was developed so that each 

thread could dynamically calculate the appropriate control input. 
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Each thread in each block relates to a specific input sequence. To simplify the 

execution of the MPC algorithm, an array of the control inputs is created. Using the 

current thread’s index, the current timestep that is being evaluated, and the following 

expression, a number between zero and the number of control inputs minus one is 

returned. This is then used to index the array of control inputs. 

 𝑓𝑙𝑜𝑜𝑟 (
𝑖

𝑈𝑁−𝑛−1) % 𝑈 (2.2) 

 

 In equation 3.2, n represents the current timestep, i is the index of the current thread, the 

% represents the modulo operation, floor rounds the result of the expression inside the 

parenthesis to the down to the nearest integer. 

 Each thread utilizes a for-loop that loops the number of look ahead steps that have 

been specified. The control solution that pertains to that thread and that timestep is 

determined and using the current speed and heading (local to that thread), the kinematics 

model is calculated. After the model is finished, four corners of each body are compared 

to the detected object. If any corner of any body is inside the KOD, that specific input 

sequence is considered invalid.  

3.2.1 Optimizing the MPC Algorithm 

Because the algorithm must be computed in real-time, efficiency and computation 

time are of the upmost importance. As such, special attention to detail has been paid to 

implement optimizations which seek to minimize the execution time of the MPC 

algorithm as a whole.  
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The method used to determine the optimal control solution after all threads have 

been evaluated was developed using two different approaches. The first approach was 

used as a benchmark and was known as the naïve approach due to its naivety in its 

method of processing large arrays. The second approach utilizes NVIDIA’s Thrust library 

which offers GPU-accelerated performance to common operations such as finding the 

largest element in an array. 

3.2.1.1 The Naïve Approach 

Figure 3.3 demonstrates the naïve algorithm that was developed as a bench mark 

to compare the performance improvement of using NVIDIA’s Thrust library. 
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Figure 3.3 MPC Algorithm using the naïve approach 
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 The naïve approach created a multi-dimensional* array of booleans, with the 

number of rows equal to the number of detected objects, or the number of thread blocks, 

and the number of columns equal to the number of control solutions to be evaluated. In 

the case of four inputs and five lookahead steps, there are 1024 input sequences. If a 

certain index of the array is true, the input sequence that relates to that index is 

considered valid whereas an index that is false indicates that that input sequence is 

invalid. The so-called validity of an input sequence is somewhat dependent on the current 

mode of operation of the system as the KOD for each mode can differ, but in general, it 

indicates that given the vehicle parameters, i.e. given the current speed, the current 

heading, and the speed-dependent control solutions (with an absolute maximum of -

0.5m/s2), the vehicle will not be able to stop without passing the KOD.  

Following the execution of the GPU kernel, the multi-dimensional array must be 

transferred from the GPU’s memory to the CPU’s memory, or from the device to the 

host. To help with this, page-locked memory was allocated which allows the host and 

device to directly access device memory, meaning explicit memory transfers between the 

host and device are not necessary. Due to the relatively small size of the array being 

allocated, it is safe to use this method of memory allocation, however, with larger 

memory allocations, the overall performance may degrade as the overall memory that is 

available to the system for paging is reduced [30]. Following the memory transfer, each 

row of the array was searched. If the array element was true and it passed the pruning 

filter, the utility of the input sequence was iteratively calculated. The pruning filter will 

be discussed in greater detail in in a later section of this chapter. The index that produced 

the maximum utility was saved for each row of the array. Due to the pruning filter, the 
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optimal input sequence may not always be the lowest indexed input sequence. Once the 

entire array had been processed, a number of input sequence indices would result, equal 

to the number of blocks, or beacons processed by the GPU kernel. The utility of the 

resulting indices was then compared against each other and the optimal utility is chosen. 

This time, however, the index that produces the worst utility is the most important, as this 

indicates the worst-case scenario. Each row represents the path to a detected object. If the 

vehicles speed must be limited to a greater degree if the vehicle’s path turns towards a 

specific beacon, the controller must abide by this control routine, even if no planned 

trajectory would require such a control response. 

3.2.1.2 Using NVIDIA’s Thrust Library 

Figure 3.4 illustrates the improved algorithm that utilized the Thrust library. 
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Figure 3.4 The MPC algorithm using the Thrust library 

 

  To utilize NVIDIA’s Thrust library, the MPC algorithm must be slightly 

modified. The main algorithm need not be changed, however. The array which indicates 
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the validity of each index of the input sequences is now an array of floating point 

numbers rather than boolean values. Further, the method that determines whether the 

input sequence is valid or invalid must no longer set the index of the array to true or 

false, rather it has the ability to set the current index to negative infinity in the event of 

the input sequence being invalid. The specifics of this algorithm, including our 

techniques to optimize its performance and avoid thread divergence are explored in this 

chapter and in chapter 4. 

 After all lookahead steps have been evaluated by a thread, if the index of the 

array, which is unique to the thread, is not negative infinity, then the utility of the input 

sequence is computed and stored in the array.  

 Following the completed execution of the MPC algorithm on the GPU, an 

algorithm that follows the same basic idea of the naïve approach is executed. The goal is 

still to find the optimal control solution for each column of the array, or for each block or 

beacon, then to find the worst control solution of those. Instead of explicitly transferring 

the memory from the device to the host and then performing an exhaustive search on the 

array, NVIDIA’s thrust library offers a method called max_element which takes a pointer 

to the beginning of an array in device memory and a pointer to the end of an array in 

device memory and returns a data type that can be used to resolve the index that had the 

best utility. This is performed on each row of the array. The resulting optimal input 

sequence indices are then compared, and the worst index is chosen as the control 

solution. The results of utilizing thrust over the naïve approach are examined in chapter 

5.  
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3.2.2 The Pruning Filter 

The concept of the MPC Tree Search algorithm is to examine every possible 

combination of inputs, even ones that are infeasible or impossible. Due to the way that 

the MPC algorithm is executed on the GPU, it is not feasible to apply this pruning filter 

on the tree before execution, but it is beneficial to prune the tree after execution when 

determining the optimal control solution given the current environmental parameters. 

 A simplistic filter was developed and applied. A more complex filter may be more 

beneficial and may offer better performance, this is explored further in section 6. Figure 

3.5 demonstrates the pruning filter algorithm. 

 

Figure 3.5 Pruning filter algorithm 

 

The effect is to restrict valid input sequences to only those that have only positive 

control solutions and control solutions equal to zero for all timesteps or input sequences 
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that have only negative control solutions and control solutions equal to zero for all 

timesteps. This prevents the MPC algorithm from being able to choose an input sequence 

that allows the vehicle to accelerate for the first timestep, or first few timesteps, but then 

requires the vehicle to suddenly decelerate in the next timestep, or later timesteps. This 

type of input sequence proves to be problematic as the MPC algorithm must be re-

computed before the control solution for the next timestep is executed due to the quickly 

changing, and often unpredictable, environment.  

3.2.3 Avoiding Thread Divergence 

After a single lookahead step has been evaluated and executed in the MPC 

algorithm, the current distance to the detected object is computed. If the distance is less 

than the currently determined threshold, the sequence of inputs is considered invalid. 

Thread divergence occurs when two threads “diverge” due to the control path changing 

due to a conditional branch. To avoid the possibility of thread divergence, each thread 

continues to execute the remaining time steps even if it has already been determined that 

that specific sequence is considered invalid.  

 The method which computes the distance to the detected object and determines 

the validity of the input sequence is structured in such a way that it is only able to modify 

the validity variable if the validity goes from true to false. In this way, it becomes trivial 

to ensure that the algorithm begins with the assumption that all input sequences are valid, 

and hence can only become invalid or remain valid. By doing this, no conditional 

branching is needed in the method which determines the validity of a sequence of inputs 

and thread divergence is avoided.  
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CHAPTER IV 

IMPLEMENTATION OF THE CA SYSTEM ON A VEHICLE 

4.1 The Sensor Package 

For the CA system to function appropriately, an accurate system of sensors is 

imperative. For our system, a combination of sensors along with sensor fusion is utilized 

to improve the sensing capabilities.  

4.1.1 LiDAR 

Of the two types of sensors that are used, the first type that will be discussed is the 

Light Detection and Ranging, LiDAR, sensor. LiDAR sensors have been used 

extensively in autonomous vehicle research and have proven to be very accurate in object 

detection. The specific LiDAR used is the Quanergy M8, offering eight evenly spaced 

vertical beams. While the sensor performs very well in object detection, it often fails to 

show similar performance in object classification. Furthermore, short objects can 

sometimes prove to be difficult to detect due to the sparse resolution of the sensor. 

 The LiDAR sensor utilizes a Support Vector Machine, SVM, to identify the 

objects it detects, most notably beacons. When clusters of points are returned from the 

LiDAR, the SVM is used to determine whether the detected object is a beacon based on a 

set of features that can be extracted from the cluster of points. The threshold of the SVM 

can be tuned to be conservative, thus accepting more false positives in exchange for 
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minimizing false negative. Conversely, it can be tuned to be more aggressive, rejecting 

false positives, but potentially also introducing false negatives. If the SVM is tuned to be 

very aggressive, thus rejecting most false positives, the likelihood that a true positive will 

be rejected becomes higher. In this scenario, the CA system is doomed to fail. As such, in 

the presence of only a LiDAR sensor, it is better to have the SVM tuned much more 

conservatively. 

4.1.2 Monocular Cameras 

In addition to the LiDAR, two monocular RGB cameras are used. Unlike the 

LiDAR, the cameras offer much higher resolution images as well as color images, which 

greatly improve the classification abilities. Unlike the LiDAR, however, the cameras are 

not able to accurately measure distance as well. In some cases, if the size of the object is 

known, the distance to the object can be inferred. This is based on the fact that distant 

objects appear smaller than objects that are closer. For many objects, such as people, size 

may vary significantly, rendering this distance estimation method useless. 

4.1.3 Sensor Fusion 

These sensors are used in tandem to improve the overall performance of the 

sensor package. This method of cooperatively using a heterogeneous set of sensors is 

known as sensor fusion. For the area where the FoV of the LiDAR and the cameras 

intersect, the decision threshold of the SVM for the LiDAR can be made to be much 

more aggressive, as the cameras are able to help identify beacons and other objects and 

reject false positives. For the rest of the FoV of the LiDAR, a much more conservative 

decision threshold is used for the SVM so as to prevent false negatives. 
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4.2 Mitigating the Granularity Problem 

The number of input sequences is correlated with the number of inputs and the 

number of lookahead steps. Because only a limited number of threads could be run on the 

GPU at one time, the optimal number of lookahead steps and inputs must be determined. 

We chose five lookahead steps and four inputs as this gave us the most lookahead steps 

while allowing us enough inputs to operate efficiently. However, with so few inputs, we 

experienced a problem that we called the ‘granularity’ problem.  

The MPC algorithm could be computed with a maximum of four discrete inputs, 

meaning the control solution could be one of four different values. It was determined that 

one of the solutions should be to allow the vehicle to accelerate, otherwise the operator 

could be put in such a state that the MPC algorithm would never let them accelerate. 

Another should be a control solution that instructed the VAC to not force the driver to 

decelerate but not let the driver accelerate, effectively limiting the vehicle to a maximum 

acceleration of 0m/s2. In this case, the driver could either hold their current speed, or 

decelerate by use of allowing the vehicle to coast or applying the brakes. Given these 

conditions, the MPC was limited to only two solutions that would command the vehicle 

to decelerate. This made it difficult for the MPC to smoothly control the vehicle. The 

following sections explain how we attempted to improve the performance of the CA 

system with the limited number of inputs. 
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4.2.1 Dynamic Control Solutions 

To mitigate the effects of the so-called ‘granularity’ problem, control solutions 

that varied according to the current speed of the vehicle were developed. The following 

expressions represent the formula that is used to calculate the possible control solutions: 

 𝑢 = (𝑢𝑚𝑎𝑥  ∗ (
𝑣0

𝑣𝑚𝑎𝑥 
)

2

) (3.1) 

 

In equation 4.1, u is the control input of the current timestep and umax is the maximum 

value this input value should achieve given that v0, which is the current velocity of the 

vehicle, is equal to vmax, which is the maximum attainable speed of the vehicle. In our 

system, vmax is determined by the VAC. Figure 4.1 demonstrates the effect that different 

umax values have on the resulting control inputs. 

 

Figure 4.1 This chart demonstrates how the umax parameter can affect the control input 

values 
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As the current speed of the vehicle increases, the aggressiveness of the control solutions 

becomes exponentially greater. This allows the VAC to apply a gradual amount of 

braking that will decrease at an quadratic rate as the vehicle speed slows down. Given a 

constant amount of mass and a decreasing rate of deceleration, the force required to slow 

the vehicle down becomes increasingly less. When towing several trailers, or under poor 

road conditions, this gradual slow down becomes imperative as an abrupt stop can cause 

the vehicle to lose traction and the driver could be seriously injured.  

4.2.1.1 Creating a Floor for the Control Inputs 

Adding more complexity to the formula used to calculate the input values allows 

finer control over the performance of the overall CA system. The following expressions 

show the addition of a new parameter, the inputmin. 

 𝑢 = (𝑢𝑚𝑎𝑥 ∗ (
𝑣0

𝑣𝑚𝑎𝑥
)

2

+ 𝑢𝑚𝑖𝑛 (3.2) 

 

The umin is a very useful parameter and is simplistic in nature. While the speed-

dependent control solutions do help to mitigate abrupt stopping, at sufficiently low 

speeds the control solutions become so small that the VAC is not capable of achieving 

such deceleration rates. To alleviate this problem, a constant scalar value is added to the 

control solution. This creates a so-called floor for the control solutions as no control 

solution will be able to achieve a deceleration rate less than the floor value. Further 

tuning could be implemented by applying some logical expression to the floor value, 

making it variably dependent on the current speed of the vehicle. Such an expression 

could be developed so that no scalar factor is applied while the vehicle is above a certain 
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speed, and the scalar factor is only applied when the vehicle’s speed falls below a certain 

threshold which would cause the control solutions to become a value such that the VAC 

could no longer achieve the requested deceleration rates. Figure 4.2 demonstrates the 

concept of utilizing a floor value, showing that setting umin equal to 0.25 prevents a 

control solution that is less than 0.25m/s2. In practice, the umin must be less than zero, as 

the control solution itself is negative, however it makes more sense intuitively to use 

positive values for the umin. 

 

Figure 4.2 Comparison of speed based control inputs where there is a non-zero umin 

 

4.2.2 Gain Factors 

There are many factors of the environment that are unmeasurable with our system 

but have a great effect on the overall response of the system such as the number of towed 

trailers, which significantly affects the stopping distance of the vehicle. As such, it 

quickly became apparent that control inputs that were optimal when the vehicle was 

towing no trailers proved to be not aggressive enough when towing multiple trailers. To 
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aid in the tuning and development of different control inputs for different environments, 

the concept of gain factors was developed. A gain factor was applied to the control inputs 

that the MPC algorithm used and a separate and independently-tuned gain factor was 

applied to the control inputs that were sent to the VAC. These two values allow greater 

control over tuning of the system and each affect the system in a different manner. In 

addition, and perhaps most importantly, it allowed us to tune the system to feel more 

natural to the driver and mitigate locking the brakes under heavy loads. Equation 4.3 and 

figure 4 demonstrate the effect that different gain factors have on the control inputs as 

well as how the control inputs are calculated. 

 𝑢 = (𝑢𝑚𝑖𝑛 ∗ (
𝑣0

𝑣𝑚𝑎𝑥
) ∗ 𝑔) + 𝑢𝑚𝑖𝑛 (3.3) 

 

 

Figure 4.3 Comparison of speed based control inputs with varying values of g 
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4.2.2.1 MPC Gain Factor 

As described in [16], suddenly removing control from the operator of a vehicle 

can be disturbing and may unnerve the driver. In our system, the revocation of control 

from the operator is done in the form of applying the brakes and ignoring the operators 

throttle input. Under certain conditions, the application of brakes may be rather 

aggressive. Given unknowns such as road conditions and towed mass, it may be 

dangerous to suddenly and forcefully apply the brakes. Therefore, it becomes imperative 

to blend driver control with control from the MPC algorithm.  

The gain factor applied to the MPC algorithm is known as the MPC-GF. In 

essence, the MPC algorithm is “tricked” into believing that the vehicle is capable of 

greater deceleration rates, or, as the case may be, only capable of much smaller 

deceleration rates than it actually is. The MPC-GF effectively changes the timing of the 

application of the control solution, controlling whether the control solution should be 

applied earlier or later. 

 To fully understand the effect that the MPC-GF has on the overall system 

performance, the difference between the MPC-GF and the VAC-GF must be examined. 

For the purposes of this section, the VAC-GF will be assumed to be unity, for simplicity 

sake.  

 If a very high MPC-GF is used, the MPC algorithm will assume that the vehicle is 

capable of greater deceleration rates than are actually possible approaching instantaneous 

deceleration rates at the limit. As the MPC algorithm attempts to allow the driver to travel 

as fast as possible for as long as possible, the MPC algorithm will allow the vehicle to 
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travel at a greater velocity for longer and attempt to slow down the vehicle much later 

than if the MPC-GF was at unity or less. This may have detrimental consequences as the 

MPC-GF approaches increasingly large values, infinity at the extreme limit. In this 

extreme case, the MPC algorithm will believe instantaneous decelerations are possible, 

and so it is not necessary to request a deceleration before the vehicle has crossed the 

KOD. Under virtually no conditions in the real-world is instantaneous stopping possible, 

so it is nearly impossible to imagine a scenario where the MPC algorithm will 

successfully be able to bring the vehicle to a full stop safely before breaching the KOD.  

 The alternative to a very high value for the MPC-GF is a very low MPC-GF. 

Similar to the way that high values change the behavior of the MPC algorithm, 

sufficiently low values of the MPC-GF will cause the MPC algorithm to attempt to slow 

the vehicle down excessively early. This too can have detrimental consequences as the 

MPC-GF value approaches a lower limit, zero. The actual response of the vehicle with 

very low values of the MPC-GF is very dependent on how aggressively the VAC 

decelerates the vehicle, which is defined to some extent by the VAC-GF, which is 

assumed to be unity in this case. Assuming a relatively aggressive reaction from the 

VAC, the vehicle will slow down very quickly when the MPC algorithm requests a 

deceleration rate. Due to the large mismatch in requested speed and actual speed, the 

MPC algorithm may allow the vehicle to accelerate. A rapid acceleration of the vehicle 

may cause the MPC algorithm to again request a deceleration quickly after allowing the 

vehicle to accelerate. This cycle continues, causing a “bucking” sensation. In an extreme 

case, with large amounts of latency in the system, it is possible that the vehicle could 

breach KOD as it allows the vehicle to accelerate before it requests the vehicle 
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decelerate. If the KOD is not large enough, it is even possible that the vehicle could 

collide with the detected object. 

4.2.2.2 VAC Gain Factor 

While the MPC-GF directly affects the performance and response of the MPC 

algorithm and can be considered to affect the timing of the actuation of the control 

solution, the VAC-GF has a direct effect on the response and the aggressiveness of the 

VAC. For the purposes of explaining the behavior of various values of the VAC-GF, the 

MPC-GF is assumed to be unity. 

 The VAC-GF is applied to the input values in the exact same way the MPC-GF is, 

except the VAC-GF is applied to the input values that are sent to the VAC. As such, these 

gain factors have a direct impact on the behavior of the VAC and an indirect impact on 

the performance of the MPC algorithm.  

 Sufficiently high values of the VAC-GF have a fairly intuitive effect on the 

overall performance of the CA system—a high value will allow very aggressive 

decelerations. When the MPC algorithm calculates the optimal control solution given the 

set of environmental variables, the VAC-GF will effectively scale the control solution 

upwards, requesting a much more aggressive deceleration rate. In turn, the MPC 

algorithm may allow the vehicle to accelerate after slowing down quickly and abruptly, 

as was the case with a sufficiently small MPC-GF. Again the “bucking” sensation may 

occur and under certain conditions a collision may even occur. 
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Sufficiently low values of the VAC-GF will force the vehicle to decelerate slower 

than the MPC algorithm requests. Given this scenario, the MPC algorithm should 

continually increase the aggressiveness of its requests until the maximum deceleration 

rate is requested. However, given the limited number of control inputs, the most 

aggressive solution the MPC algorithm is able to request is limited. It is likely that the 

MPC algorithm will quickly saturate by requesting the maximum deceleration rate 

possible, given the current speed of the vehicle and assuming dynamic control inputs are 

being used. Like the case of a very high MPC-GF, it is possible that the vehicle will 

never slow down enough to stop before breaching the KOD. 

 It quickly becomes clear that gain factors that approach either upper or lower 

bounds exacerbate the negative effects of the granularity problem. Only when the 

relationship between the VAC-GF and MPC-GF is optimized do the gain factors 

successfully mitigate the effects of the granularity problem. It is important to realize that 

the specific values of the gain factors are less important than the discrepancy between the 

MPC-GF and the VAC-GF.  

4.3 Extending Beyond Sensor Performance Limitations 

The proper execution of the proposed control system is dependent on an effective 

sensor package to provide accurate and on-time measurements. Due to limitations based 

on the physical placement of the sensors, attaining optimal performance can be 

challenging. In the following section, we have introduced a few methods used in the 

MPC controller that can help alleviate these problems.  
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4.3.1 Beacon Persistence 

Due to the position of the LiDAR sensor on the vehicle, the actual visible 

spectrum of the sensor was limited to approximately 270°. This became problematic 

when the vehicle was towing several trailers as the trailer would be able to collide with 

the beacon, but the MPC algorithm was unaware of such an event occurring as the sensor 

was no longer able to see the beacon and so the MPC algorithm did not know that the 

trailer was in danger of hitting a beacon. To solve this problem, detected beacons were 

persisted by the MPC algorithm. There were two methods of persistence that were 

applied, depending on where the beacon was detected in space. The first method is based 

on time and the second method is based on area.  

4.3.1.1 Time-Based Persistence 

Any detection of a beacon that was inside of a certain angular threshold would be 

persisted by time. The optimal angular threshold for this type of persistence was 

determined, empirically, to be +/-125°. If the angle of the detected beacon was within that 

range, it would be persisted by time. For 500 milliseconds, the position of the beacon 

would be approximated by utilizing the current heading of the vehicle along with the 

speed and acceleration. When the sensors returned a new set of detections, the new 

detections were compared to the persisted beacons. If a persisted beacon is within one 

meter of a newly detected beacon, it is assumed to be the same detection and the newly 

detected beacon’s position is saved and the previously persisted beacon is forgotten. A 

margin of error of one meter was introduced to account for inaccuracies in predicted 

beacon location. If, after 500 milliseconds, no beacon has been detected in nearly the 

same position of a persisted beacon, it is assumed to have been a false-positive and the 
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beacon is no longer persisted. This method works well to filter false positives and prevent 

the list of detected objects from growing too large too quickly, however, it does not help 

with the problem of persisting beacons when they go beyond the range of sensors because 

they will not return to the vision of the sensors before the 500 millisecond life of the 

persisted beacon expires. To solve this, area-based persistence was used. 

4.3.1.2 Area-Based Persistence 

If a detected beacon is outside of the angular threshold of +/-125°, the type of 

persistence is switched to area-based. The beacon’s new position is still predicted in the 

same way as time-based persistence, but the beacon is not “forgotten” when 500 

milliseconds have elapsed and no beacon has been detected near the persisted beacon. 

Instead, once the beacon’s distance to the rear axle of the vehicle is greater than twenty-

five meters, the beacon is no longer persisted. Twenty-five meters was chosen as this is 

the length of the vehicle plus four trailers. Using this distance ensures that all trailers 

must be completely clear of the beacon before it is no longer persisted. This allows the 

MPC algorithm to prevent collisions with the dollies and beacons. 
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Figure 4.4 Area-based beacon persistence 

 

Figure 4.4 demonstrates the concept of area-based persistence, where the detected 

beacon, signified by the orange dot, with 3 concentric circles around it, one red, one 

orange, and one green, is beyond the FoV of the LiDAR but the MPC algorithm has 

persisted it. While the current speed of 0m/s, as shown in the top left corner of the figure, 

the requested speed of 2.5m/s signifies that the operator is allowed to accelerate up to a 

maximum of 2.5m/s. Given the current heading of the vehicle and the current orientation 

and position of the vehicle and towed trailers, it is very unlikely that the vehicle or any of 

the trailers will collide with the beacon, so the MPC algorithm does not need to limit the 

speed of the driver beyond the current maximum allowable speed of 2.5m/s as the 

algorithm is currently operating in BCA mode. 
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4.3.2 Dynamic Field of View for Front Guard Collision Avoidance Mode 

When the CAS is operating in FGCA mode, the sensors are designed to detect 

objects only directly in front of the vehicle. The effective FoV is demonstrated in figure 

4.5. 

 

Figure 4.5 Static FoV for FGCA mode 

 

The shape of the FoV is essential to the correct operation of the CA system as this 

specific shape will allow the vehicle to travel without being limited unless an object is 

directly in front of the vehicle. It is undesirable to limit the vehicle’s speed if there are 

objects around the vehicle, but not directly in front. An example of such a scenario is 

demonstrated in figure 4.6.  
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Figure 4.6 A realistic example demonstrating the necessity of the shape of the FoV for 

FGCA 

 

As demonstrated in figure 4.6, if the FoV of the CA system while in FGCA mode was 

any wider or was not rectangular, the vehicles would be limited and potentially even 

prevented from passing each other, depending on how close the two vehicles were to 

each other.  

Given the rectangular FoV of the CA system in FGCA mode, if the operator 

turned sharply and an object was then directly in the path of the vehicle, the MPC 

algorithm would react very abruptly, which could create a dangerous situation. Given 

poor road conditions, tires with less-than-optimal amounts of lateral grip due to tire wear 

over time, large amounts of towed mass, or a number of any other variables, the vehicle 

could quickly lose control which could make the situation worse. To help prevent such a 

situation, FoV of the sensors changes dynamically with the current angular velocity of the 

vehicle. A rectangular FoV that is directly in front of the vehicle is always present, but it 

may be expanded to the left or the right if the vehicle is turning. As the vehicle turns to 

the right, the FoV is expanded to look further to the right, and the FoV expands in a 

similar manner when the vehicle turns to the left. This effect is demonstrated in figures 

4.8-4.10. This gives the MPC more time to process and calculate a control solution and 
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bring the vehicle to a safe and controlled stop in time. Figure 4.7 shows the algorithm 

used for the dynamic FoV.  

 

Figure 4.7 Algorithm to expand the FoV based on angular velocity 

 

In practice, this proved to greatly improve the performance of front guard in the 

described situations. The operator was still able to travel next to the object without being 

impeded by the MPC algorithm. As soon as the operator changed the trajectory of the 

vehicle towards the object, the MPC algorithm brought the vehicle to a stop. A more 

realistic image demonstrating the effect of the dynamic FoV is demonstrated in 4.10. 
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Figure 4.8 Dynamic FoV when the vehicle is turning to the right 

 

 

Figure 4.9 Dynamic FoV when the vehicle is turning to the left 
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Figure 4.10 Realistic example of dynamic FoV when the vehicle is operating in FGCA 

mode 

 

4.4 Mitigating Latency 

As we observed, and as is pointed out in [15], real-world applications usher in 

several places for latency to be injected into the system. In our system, we experienced 

significant latency in the processing time of the sensors, the computational time of the 

MPC algorithm, as well as the vehicle actuators, not to be confused with the vehicle 

actuation controller. Under the worst conditions, the total latency could be as much as 

several hundred milliseconds. Latency can have extremely detrimental consequences. 

The algorithm that Liu, et al developed fails when the control latency, which is the 

summation of the MPC computational time and the vehicle actuator latency, exceeds 200 

milliseconds and when the sensor latency, which is the processing time of the sensor 
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platform, exceeds 400 milliseconds [15]. Unlike the authors of [15] the latency of our 

system is not known and is prone to varying due to many different factors.  

Sensor latency can be very detrimental to the overall system, as such, we 

developed a system to mitigate the effects. When the sensor package reports a beacon to 

the CA system, using the current speed and heading and an empirically tuned time-based 

parameter, the beacon was moved a certain distance closer to the vehicle. This simulated 

the object being detected later and attempted to approximate the actual location of the 

object when the VAC would be applying the commanded control solution. This constant 

was known as the Latency Correction Factor (LCF) and was tuned empirically due to the 

fact that the latency varied so much and there were so many different places where 

latency could present itself. The most optimal value of LCF that we found was 400 

milliseconds. At 400 milliseconds, the MPC algorithm appeared to perform the most 

accurately and successfully.  
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CHAPTER V 

RESULTS AND PERFORMANCE EVALUATION 

5.1 Hardware Implementation 

To test the viability of the algorithm, utilizing an embedded GPU, the algorithm 

was implemented and ran on an NVIDIA Jetson TX2 development platform, shown in 

figure 5.1. 

 

Figure 5.1 NVIDIA Jetson TX2 Embedded GPU Development Platform [31] 

 

The Jetson TX2 development board features an NVIDIA GPU based on 

NVIDIA’s Pascal architecture utilizing 256 CUDA cores. In the realm of processors with 

fewer threads, the development board has two CPUs, a Denver 2 and a Quad ARM A57. 
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The Denver 2 is a new addition to the Jetson family as the Jetson TX1 made do with only 

a Quad ARM A57. The Jetson TX2 doubles the amount of RAM from its predecessor, 

raising from 4 gigabytes up to 8 gigabytes of LPDDR4. In addition to the additional 

RAM, the total on board data storage has been increased from 16 gigabytes to 32 

gigabytes [32]. 

5.2 The Vehicle 

The vehicle that the CA system was implemented on was a Tug Inc cargo tractor, 

pictured in figure 5.2. 

 

Figure 5.2 Tug Inc cargo tractor, model Tug MA 

 

At the front of the vehicle, the black cylindrical object is the LiDAR sensor and 

the two cameras were installed behind the front grill of the vehicle, with the lenses 
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peering through the holes in the grill. By installing the cameras in this fashion, they are 

protected from people or objects accidentally bumping into them and affecting the angle 

at which they are installed, which would render the computer vision methods that are 

employed ineffective.  

 

Figure 5.3 The weather-proof housing of the Jetson TX2 development boards and the 

custom designed power-conditioning board installed on the vehicle 
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The white box shown in figure 5.3 is the weather-proof housing which contains 

three separate Jetson TX2 platforms, two of which are used for sensing processing and 

the third which is used for the MPC computation. The VAC is housed under the floor 

board on the passenger side.  

5.3 Optimizing the Control Solution Search 

As was described in chapter 3, two methods of determining the optimal control 

solution were tested in order to compare performance improvements when NVIDIA’s 

Thrust library was used. In figure 5.4 and 5.5, the relative performance difference is 

demonstrated.  

 

Figure 5.4 Execution time using the naïve implementation of the MPC algorithm 
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Figure 5.5 Execution time using the Thrust library 

 

Figure 5.3 shows that the majority of the execution time is spent during memory 

transfers between the device and host and searching for the optimal control solution. In 

fact, up to 80% of the execution time may be spent during this part of the execution of the 

algorithm. In contrast, using NVIDIA’s Thrust library, the percentage of execution time 

that finding the optimal control solution occupies is as low as just under 3%. Further, it is 

important to note that the relative difference between the execution time of only the MPC 

algorithm is statistically irrelevant.  

5.4 Comparison with a serial implementation 

The algorithm was re-written in a serial manner to compare the performance 

advantage the GPU has over the few-threaded CPU. From figure 5.5, it is very evident of 

the performance advantage of the GPU over the CPU. For fifteen beacons, the average 

execution time averaged over twenty iterations for the PUG was approximately 8.3ms 
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where as the execution time of the CPU under the same test conditions was a stagger 

1,022.86ms.  

 

Figure 5.6 Time comparison between CPU and GPU 
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Figure 5.7 CPU execution time given a varying number of beacons 

 

 

Figure 5.8 GPU execution time given a varying number of beacons 

 

In addition to comparing the execution time of the CPU and GPU with varying 

numbers of beacons, a comparison of GPU and CPU execution time with varying 
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numbers of control inputs is illustrated in figures 5.9 and 5.10. In this figure, the 

execution time is in fact exponential which is explained by equation 3.1. Further, this test 

was run with five lookahead steps, which means that the GPU is only capable of 

executing the MPC with up to four control inputs, as was discussed in chapter 3. 

 

Figure 5.9 GPU execution time with a varying number of control inputs 
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Figure 5.10 CPU execution time with a varying number of control inputs 

 

  

  Figures 5.9 and 5.10 demonstrate the effect that an increasing number of control 

inputs has on the execution time of the algorithm. While both methods produce 

exponential results, it is clear that the CPU implementation produces results that increase 

at a much faster rate than does the GPU.  
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Figure 5.11 CPU execution time with varying number of lookahead steps 

 

 

Figure 5.12 GPU execution time with varying number of lookahead steps 

 

Again, the rapid exponential increase in execution time of the CPU is 

demonstrated in figures 5.11 and 5.12 which show how increasing the prediction horizon 

affects the computation time. The GPU takes significantly longer to execute given one 
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lookahead step than it does for two, three, or even four lookahead steps because the 

number of threads being executed is very sparse and therefore the total occupancy is low. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusion 

Considering the inherent danger of vehicles given the statistics on vehicle-related 

casualties in recent years [1], the need for some type of augmented safety device in 

vehicles is apparent. The efficacy of a predictive controller and the advantages over a 

more simplistic reactive controller are clear with the major downside of a predictive 

controller being the computational power required to process such a control problem in 

real-time, which is necessitated by the vehicular application. Given the imminent demise 

of Moore’s Law, it quickly becomes apparent that an alternative to traditional computing 

platforms must be explored to achieve the computational power necessary. 

Heterogeneous computing is one such alternative [17, 18, 19].  

We have developed and implemented such a system that uses a predictive control 

algorithm that is computed in real-time using a GPU in tandem with a CPU on an 

embedded platform for a collision avoidance system on an industrial vehicle. In addition, 

it has been shown that the computational time of the CPU is exponentially greater than 

the computational time of the GPU and increases at a faster rate as the problem space 

becomes larger. 

 



 

77 

6.2 Future Work 

Future work should include further development and refinement of the system as 

a whole. While further refinements can be made from a variety of different perspectives, 

the focus of this chapter will be on improvements to the controls of the system. More 

specifically, no problems that are directly related to the successful operation of the 

system for the proposed task have been left unsolved.  

Through various tests that have been performed on the system, we have noticed 

that sufficiently small KoDs can sometimes result in undetected collisions due to the 

sparse number of points in which a collision is detected. Increasing this could improve 

the system’s performance given a different vehicular system.  

Improvements to the system include methods of improving the prediction horizon 

while not sacrificing computational simplicity by utilizing a Monte Carlo Tree Search 

approach and improving the control response by use of a dynamic timestep length. The 

control response could further be improved by perhaps investigating more complex 

methods of calculating dynamic control inputs.  

6.2.1 Finer Grained Collision Detection 

The CA system that we developed only considers collisions between the corners 

of each body and the detected object. If this system were to be used with a vehicle that 

was significantly longer, or trailers that were significantly longer, it is possible that 

collisions could occur without the corners entering a certain radius around the beacon as 

demonstrated in the following figure. 



 

78 

 

Figure 6.1 Collision with only corner detection 

 

As shown in figure 6.1, using the current CA system, it is possible to the towed object to 

enter the indicated radius around the detected object without triggering an emergency 

stop from the CA system because no corner is close enough to the detected object. This 

could be mitigated by not only monitoring the corners of the object, but also monitoring 

intermediate points along each edge of the object as shown in the following figure. 
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Figure 6.2 Collision detection with more points of detection 

 

6.2.2 Finer Grained Control Input Creation 

We showed that the use of control inputs that dynamically changed with the 

velocity of the vehicle significantly improved overall performance of the system. The 

actual formula that was used could be considered, to some extent, naïve and could 

potentially benefit from a more complex expression. Further, the use of a minimum input 

value to create a floor could be further explored. Using a non-constant value for the floor 

could create even finer grained control and response from the overall system. 

6.2.3 Monte Carlo Tree Search 

Monte Carlo Tree Search (MCTS) is a modification of the traditional exhaustive 

tree search where every branch of the tree must be evaluated before a decision is made. In 

machine learning and other fields of artificial intelligence (AI), this method is also known 
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as minimax. MCTS allows only part of the tree to be evaluated, using previous 

experiences to predict the most optimal branches to continue evaluating. Using this 

method, it may be possible to evaluate either more lookahead steps or more control 

inputs, though it would likely be more beneficial to evaluate more lookahead steps due to 

the improvements that dynamic control solutions made to the system. 

6.2.4 Dynamic Timestep Length 

As the speed of the vehicle increases, the distance the vehicle travels between 

calculations of the MPC algorithm increases. As such, it becomes more critical to look 

further ahead than have fine-grained timesteps. At higher speeds, it is desirable to have 

timesteps that are longer, sacrificing granularity for a further prediction horizon and at 

lower speeds, such granularity is more important whereas a distant prediction horizon is 

less important as the distance travelled over the course of n timesteps will decrease. 

Developing an expression to relate the current velocity of the vehicle to the length of the 

timestep could possibly help improve the performance of the system. 
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