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This study uses numerical design optimization with advanced metamodeling 

techniques to investigate the effects of material substitution and dummy models on 

crashworthiness characteristics of automotive structures. A full-scale Dodge Neon LS-

DYNA finite element model is used in all structural analysis and optimization 

calculations. Optimization is performed using vehicle-based responses for multiple crash 

scenarios and occupant-based responses for one crash scenario. An AZ31 magnesium 

alloy is substituted for the baseline steel in twenty-two vehicle parts. Five base 

metamodels and an Optimized Ensemble metamodel are used to develop global surrogate 

models of crash-induced responses. Magnesium alloy is found to maintain or improve 

vehicle crashworthiness with an approximate 50% reduction in selected part mass using 

vehicle-based responses while dummy-based designs show less percentage decrease in 

weight. Vehicle-based responses selected to approximate dummy injury metrics do not 

show the same relative change compared to dummy-based responses. 
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CHAPTER I  

 

INTRODUCTION 

 

 

Stricter automotive regulations on fuel economy and growing concerns for 

emissions have created challenges for design engineers. Some motivations for improving 

fuel economy are to save money filling up the gas tank, reduce carbon dioxide emissions, 

reduce oil dependence, and increase energy sustainability. This study considers only 

structural approaches to meeting these demands and does not consider improvements to 

other aspects of vehicle design such as the engine.  

One way of improving fuel economy is by reducing vehicle weight. This can be 

accomplished using substitution of lighter weight materials, optimization of existing 

designs, or a combination of the two. Fuel savings, however, should not come at a cost of 

occupant safety in a crash situation. See Figure 1.1, this study explores this problem by 

Figure 1.1   Considerations for a Lighter Weight Design 
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combining design optimization techniques and material substitutions to reduce vehicle 

weight while maintaining the vehicles crash performance or its crashworthiness. 

 

Lightweight Magnesium Alloys 

The U.S. Department of Energy has sponsored many studies in the area of 

Automotive Lightweighting Materials
1
 under the Vehicle Technologies Program. This 

effort investigates the application of lightweight materials such as magnesium alloys and 

improvements in structural design and manufacturing for lightweighting of vehicle 

structures. “Magnesium Vision 2020: A North American Automotive Strategic Vision for 

Magnesium”
2
 proposes strategies for researching and incorporating more magnesium 

alloy parts into automobile design. It says magnesium is a good candidate material to 

replace steel due to magnesium‟s high strength-to-weight ratio, fewer parts due to larger 

castings, and the ability to tune magnesium parts to frequencies related to Noise, 

Vibration, and Harshness (NVH). Magnesium, however, requires more research to 

address corrosion and manufacturing issues as well as brittle fracture at high strain rates 

before it is ready for widespread use. 

 

Design Optimization 

Design optimization is another method that can be used to reduce vehicle weight 

by improving the existing design. Design optimization uses mathematical techniques to 

find values of the design variables that maximize or minimize an objective or merit 

function without violating any of the specified design constraints. These techniques 

require a number of function evaluations to search for the optimum design. The general 
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optimization problem in this study is one that minimizes weight while maintaining or 

improving crashworthiness relative to the baseline or initial design. 

Three methods of structure lightweighting optimization are shape, sizing, and 

topology optimization. Shape optimization manipulates the geometric shape of a 

component such as changing angles, the length of a section, or introducing a completely 

new geometry. Sizing optimization keeps the geometry but changes the size of a part. 

Part thickness or gauge of selected parts is often used as a design variable in automobile 

sizing optimization. Topology optimization finds the best distribution of material within a 

given part for given boundary conditions. This method adds material to key areas and 

removes material from non-critical areas resulting in a part that has an optimal mass 

distribution within the specified domain. 

Akkerman et al.
3 

used shape and sizing optimization to improve crashworthiness 

of an automotive instrument panel. Rais-Rohani et al.
4
 used shape and sizing optimization 

to improve crashworthiness of a vehicle by altering the geometry of the side rails. 

Strategies for topology optimization can be found in Jung and Gea
5
, Mozumder et al.

6
, 

and Rouhi and Rais-Rohani
7
. 

This study uses a sizing optimization approach. The full-scale, finite element 

vehicle model used as the test bed in this study has components with complicated 

geometries making shape optimization challenging. The components in this model are 

shell elements which makes thickness changes simple. Choosing thicknesses as design 

variables for crashworthiness optimization studies is widely used in the literature 
 4, 6, 8-11

. 
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Crashworthiness 

Crashworthiness is the ability of the structure to protect occupants during crashes. 

Performing real crash tests to obtain necessary data for crashworthiness optimization is 

not feasible. Finite element (FE) crash simulations are used in place of physical 

experiments to obtain responses needed for optimization or exploratory studies. Finite 

element analysis (FEA) separates a computer model of the component(s) into nodes 

connected by elements. Nodal interactions and positions are followed during simulations 

such as crash. One FEA code frequently used for crash simulations is LS-DYNA 

developed by Livermore Software Technology Corporation. LS-DYNA is used in this 

study to perform nonlinear transient dynamic explicit FEA of full-scale vehicle crashes 

for crashworthiness simulations and optimization. 

Objective and constraint responses for crashworthiness optimization are often 

selected to measure or estimate the likelihood of occupant injury. The US Department of 

Transportation places requirements on crash responses felt by crash test dummies through 

the Federal Motor Vehicle Safety Standards (FMVSS)
12

. The FMVSS specify upper 

limits on responses such as chest deflection, upper leg axial force, neck moment, neck 

force, rib deflection, and Head Injury Criteria (HIC). Some of these limits are used as 

responses for design optimization in Chapter V. FMVSS contain specifics for multiple 

crash scenarios as well as for different classes of vehicles. Some crash scenarios in these 

requirements are Full Frontal Impact (FFI), Offset Frontal Impact (OFI), Side Impact 

(SIDE), Roll-over or roof impact, and rear impact. 

Obtaining these values in FE simulations requires a crash occupant model set 

correctly in the vehicle model. This includes interior models of the car and can include 
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airbags and seatbelt models. One type of FE occupant model uses metallic, rubber, and 

plastic materials to simulate the dummies used in laboratory crash tests to rate new 

vehicles. Noureddine et al.
13

 present work developing and validating a FE dummy model 

called a Hybrid III dummy model. Hybrid III models can be used in multiple crash 

scenarios but are usually not used for side impact scenarios. A crash test dummy 

specifically designed for side impacts is used in these cases. 

Research has been progressing in recent years on FE models that simulate a 

human occupant rather than a crash test dummy. These models attempt to create a model 

with materials that accurately model human tissue and bone. Silvestri and Ray
14

 

developed an FE model of a knee, thigh, and hip including ligaments. Components of 

their model were developed using material characteristics from laboratory test results of 

bones and ligaments in the model region. 

Alternative responses must be chosen if an FE model with an occupant model is 

not available. Internal energy absorption, intrusion distance, and acceleration measured at 

selected locations are used as substitutes. These responses focus on the vehicle‟s crash 

performance rather than occupant injury metrics. Fang et al.
8
 used internal energy 

absorption of selected components at two time steps along with peak engine top 

acceleration. Liao et al.
10

 used a combination of occupant-based responses and vehicle 

based responses including an integration of the deceleration curve and intrusion distance 

at the toeboard. Intrusion distance of the front panel for frontal impacts and intrusion 

distance of the door for side impacts were considered by Fang et al.
9
. Horstemeyer et al.

15
 

compared optimum designs using energy-based and injury-based designs and found that 

the injury-based design was safer than the energy-based design. 
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A number of multi-objective problems have been solved regarding 

crashworthiness. One study improved crash performance while maintaining weight in a 

Full Frontal Impact (FFI)
8
 and another improved crash performance considering multiple 

impact scenarios
9
. Another study solved a two-step optimization problem minimizing 

weight and vehicle crash responses before optimizing the occupant restraint system based 

on occupant injury criteria
10

.  

 

Metamodels 

Simulation runtime is a major obstacle in optimization studies. In many cases, 

hundreds or thousands of function evaluations may be required for solving a design 

optimization problem depending on the method selected as well as the numbers of design 

variables and constraints used. This problem is trivial when an analytical function is used 

to describe the objective and constraints but poses a big challenge when high fidelity FE 

crash simulations are required to obtain these values. A single crash simulation in this 

study takes between one and a half to five hours depending on the crash scenario using 4 

six core Intel X5660 with 48GB of total RAM. Another important consideration is the 

non-smooth (noisy) behavior of some of the crash responses that could pose problems in 

application of gradient-based optimization methods. Hence, approximate mathematical 

models or metamodels are often used to overcome the difficulties associated with 

computational cost and noisy responses. 

Metamodels are surrogate models that approximate function values and are 

widely used in automotive crashworthiness studies 
8-11

 to provide approximate responses 

at a design point. Responses predicted using a metamodel will have some error associated 

with them when compared to simulation or test results at the same design point. 
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Metamodels can also provide an analytical function for a response depending on the 

specific metamodeling techniques used. 

 A metamodel is built using data sets obtained through FE simulations or physical 

tests at the training points defined by the selected design of experiments (DOE) model. 

DOE uses mathematical algorithms to create a populated design space where points are 

distributed throughout the domain. Two DOE types frequently used for crashworthiness 

optimization are Taguchi orthogonal arrays
8,9

 and Latin Hypercube Sampling (LHS)
10,16

.  

The number of training points used when building metamodels depends on a 

number of factors. These include the problem type, number of variables, metamodel type, 

and ease of obtaining results. The general agreement in the literature is that at least 3N 

training points must be used where N is the number of design variables. Both Yang et 

al.
17

, using an impact example, and Fang and Wang
18

, using analytic benchmark 

problems, show that metamodels are generally more accurate as the number of training 

points increases but this trend is not true for some functions and metamodel types. 

The next step to create an accurate metamodel is selecting the type to use. 

Different metamodeling techniques have been developed with different levels of 

complexity and accuracy. Turner
18

 shows metamodels divided into three main groups. 

These groups are Geometric containing response surface models and spline-based 

models, Stochastic containing Kriging models and radial basis functions, and Heuristic 

containing kernel model, frequency domain methods and neural networks. 

Metamodel comparison studies have been carried out by Jin et al.
20

 and Wang et 

al.
21

. Both studies compared several metamodeling techniques using metrics such as 

accuracy, robustness, efficiency, transparency, flexibility, and conceptual simplicity for 



8 
 

benchmark as well as more industry relevant example problems. Results from studies 

such as these aided in the decision about which metamodeling techniques to use. 

Additional contributing factors when selecting the techniques used here were 

popularity of the metamodeling method in automotive crashworthiness as well as 

availability of source code for the more complex models. Metamodel techniques explored 

in this study include Polynomial Response Surface (PRS), Radial Basis Function (RBF), 

Kriging (KR), Support Vector Regression (SVR), and Gaussian Process (GP). These 

choices cover all three categories discussed in Turner
19

 and have strong or growing 

popularity. An optimized ensemble (ENS) of multiple metamodels as suggested by Acar 

and Rais-Rohani
22

 is created using the five standalone models listed above. The ENS 

technique was used in Acar and Solanki
23 

for a crashworthiness problem and shown to be 

more accurate than stand alone metamodels. 

The degree of the polynomial in PRS as well as parameters in the formulations of 

RBF, KR, and SVR can be tuned to alter the predicted value and thus accuracy of the 

model. Tuning parameters, particularly for SVR, are crucial for an accurate metamodel. 

Stand alone metamodels for each response are developed and tuned for maximum 

accuracy before being used to construct an optimized ensemble of metamodels.  

The thesis is organized as follows: Chapter II discusses the metamodels used to 

predict crash responses, Chapter III introduces the crash simulation FE models and 

responses, Chapter IV presents the optimization problems and results without the dummy 

model, Chapter V presents the optimization problem and results with the dummy model, 

and Chapter VI contains concluding remarks and future work.  
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CHAPTER II 

 

METAMODELING TECHNIQUES 

 

 

Metamodel construction begins with building a design of experiments (DOE) 

table, which represents a collection of design variable values at the selected training 

points that are spread throughout the design space. Design points for metamodels and in 

some cases test points come from the DOE. Design points or training points are used to 

fit the metamodel and test points are used to determine the accuracy of the model. A 

function response must be obtained at each of the DOE points by analytic function, 

simulation, or experiment. Metamodels can be built and tested for accuracy after the 

DOE and function values are obtained. 

 

Polynomial Response Surface (PRS) 

PRS is one of the most widely used and simplest metamodeling techniques, but it 

may not provide an accurate prediction for certain responses.  The most typical form of 

PRS is a second-degree polynomial function of the form 

              
 
          

           
 
     

   
   

 
     (2.1) 

where       is the metamodel prediction at point x, L is the number of design variables in 

the design vector x, and b0, bi, bii, bij are the unknown coefficients found using the least 

squares technique.  

As a regression model, PRS does not pass through the training points. The degree of 

the polynomial can be changed or some of the terms appearing in Eq. (2.1) can be 
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omitted depending on the nonlinearity of the response function being modeled. The 

polynomial degree is treated as the tuning parameter for PRS. 

 

Gaussian Process (GP) 

Descriptions of Gaussian Process (GP) in this discussion follow that in Wang et 

al.
21

 and Acar and Rais-Rohani
22

. The GP metamodel is a group of output variables 

         
    

      
      

  with a Gaussian joint probability distribution 

             
 

          
      

 

 
         

           (2.2) 

where           
  are N pairs of L-dimensional input variables      

    
      

 , 

   is the covariance matrix with elements of             , and   is the mean output 

vector. 

Elements of the covariance matrix    are calculated from 

           
 

 
 

   
   
   

   
 
 

  
 

 
          (2.3) 

           
 

 
 

   
   
   

   
 
 

  
 

 
               (2.4) 

where         , and   are referred to as “hyperparameters” with    being the length scale. 

   is an independent noise parameter and     is Kronecker‟s delta (equal to one when i = 

j and zero otherwise). These hyperparameters are selected to maximize logarithmic 

likelihood of the predictions matching the training data. This is given by 

     
 

 
        

 

 
  

   
     

 

 
                  (2.5) 

where     is the prior distribution of the hyperparameters. This is usually uniform 

because no prior knowledge is available and can be equated to zero for optimization. 
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Eq. (2.3) and Eq. (2.4) define the interpolation and regression modes of the Gaussian 

process model, respectively. The former passes through all training points while the latter 

provides a smoother surface to help with noisy data. The prediction surface with noise 

filtered out is less complex and might not pass through all training points but this has 

better predictions at non-training points. 

The response value at a prediction point       
    

      
   is estimated as  

           
         (2.6) 

 

where                        . Standard deviation at the prediction point is 

available without requiring additional simulations or tests and can be calculated from 

              
       (2.7) 

where             

No tuning parameters are explored within GP. The MATLAB
24

 toolbox from 

Rasmussen and Williams
25

 is used to develop the GP metamodels. 

 

Radial Basis Function (RBF) 

This formulation of RBF requires normalized training and test points in the range 

of 0 to 1. This is done by dividing each variable by the maximum value of that variable in 

the DOE table. The basic form of RBF is given as 

                  
 
        (2.8) 

where       is the metamodel prediction at point x, N is the number of training points, x is 

the input vector of normalized variables,    is vector of normalized design variables at the 

ith training point, and                       is the Euclidean norm or distance 

r from point x to the training point   . The    parameters are the unknown interpolation 
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coefficients that must be calculated. Φ is the radially symmetric basis function that can 

take on a number of forms. Eq. (2.8) represents a linear combination of a finite number of 

basis functions.  Typical radial basis functions are listed below. 

 Thin Plate Spline:                  

 Gaussian:                   

 Multiquadric:               

 Inverse Multiquadric:               

The value c is a constant that the user determines.  Values of r are between 0 and 

1 because the training and test points are between 0 and 1 resulting in      . In 

general, Multiquadric with c = 1 gives good results for many function types. 

The interpolation coefficients,   , can be found by minimizing the residual (the 

sum of the squares of the deviations) as 

                        
 
    

  
      (2.9) 

In matrix form, this is expressed as 

               (2.10)  

where                  with j=1,N, and i=1,N. Solving Eq. (2.10) for λ and inputting 

into Eq. (2.8) generates predictions. Error analysis typically relies on data at test points 

outside of the training set since RBF is an interpolation model that passes through all the 

training points. The tuning parameters for RBF are Φ and c. 

 

 

 

 

 



13 
 

Kriging (KR) 

Descriptions of Kriging follow those in Acar and Rais-Rohani
22

, Lophaven et 

al.
26

, and Simpson et al.
27

. For this discussion the design (training) point matrix is s, the 

corresponding training point function evaluations are Y, the test point or prediction point 

is x, and general variables w and v are introduced. This description of Kriging requires 

the training set to have zero mean and a covariance of 1. This is done by: 

  
              

  
      (2.11) 

  
              

  
     (2.12) 

where original indicates the un-normalized values,    and    are the means of the 

training points and their responses respectively, and    and    are the standard deviations 

of the training points and their responses, respectively. 

Kriging models assume the function takes the form of  

 

                    (2.13) 

where       is the approximate function,  (x) is a polynomial function that globally 

approximates the actual function, and Z(x) is the stochastic component that accounts for 

deviations or              . 

First, the polynomial portion of the model is explored,     . This is a linear 

combination of np polynomial functions,     , and regression parameters   : 

                  (2.14) 

The degree of the polynomial is chosen to be 0, 1, or 2 resulting in np polynomial 

equations, with a 1
st
 degree polynomial generally being used. The 2

nd
 degree (quadratic) 
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formulation is similar to the 2
nd

 degree PRS model discussed previously. That is, with L= 

number of variables using general variable w: 

                  
    

       
     (2.15) 

 

 

                 
      

                             

     (2.16) 

 

 

                    

   
 

 
          

       

                     

          
                 

           
               

              
 

   (2.17) 

 

Polynomial function evaluations at each training point must be performed to fit 

the training data. Define P(s) or just P as: 

                      
     (2.18) 

where N is the number of training points. This is a vector of ones if the 0 degree 

polynomial is used. 

The stochastic component Z allows the Kriging model to interpolate the response 

value and has a zero mean and covariance of 

                                            (2.19) 

where    is the variance,            is the correlation function between sample points 

   and    and   represents correlation parameters that must be calculated. The user 

defines the correlation function,           , with a Gaussian correlation function 

generally chosen. Correlation functions use general variables w and v and are in the form 
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      (2.20) 

where L is the number of design variables and          is the distance between     

and    at the kth component of the points. Some Kriging correlation functions are listed 

below: 

 Gaussian:                      
   

 Exponential:                        ) 

 Exp. General:                        
    ),            

 Linear:                               

 Spherical:                   
       

 
,                    

 Cubic:                  
     

 
,                     

 Spline:                                 

o        
      

      
              

          
                      

                              

  

The correlation matrix R(s) or R is defined as 

 

                                   (2.21) 

 

Maximum likelihood estimation is used to estimate the correlation parameter, . θ 

is found by solving the following optimization problem if a Gaussian correlation model is 

selected 

                     or   
                           

            
  (2.22) 

where     is the determinant of R and     is the process variance defined as 

            
 
                 (2.23) 
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The initial value of θ as well as its upper and lower bounds influence the 

calculation of θ from Eq. (2.22) and the accuracy of the resulting Kriging model. θ 

usually falls between 0 and 2 with the initial value being taken as the midpoint. Almost 

any value of   will produce a Kriging model and results will be predicted, but these 

predictions are not necessarily accurate. Solving the optimization problem in Eq. (2.22) 

will result in a more accurate Kriging model.  

The steps to derive Eqs. (2.24) through (2.25) are not presented here, see 

Lophaven et al.
26

 for a description of the derivation. Once regression and correlation 

functions are chosen, the response is predicted as   

                         (2.24) 

where p(x) is the polynomial term found from Eq. (2.15) through Eq. (2.17),      is the 

correlation vector (see Eq. (2.25)),    comes from a generalized least squares solution and 

seen in Eq. (2.26), and    is computed from the residual and seen in Eq. (2.27). 

                           
                      (2.25) 

                       (2.26) 

                  (2.27) 

Below are some key points about the discussion of Kriging. 

1)    and    are functions of training points (not test points). This means    and    

are constant for a given training set, so from Eq. (2.24) only the correlation 

and regression functions need to be evaluated at the test point(s) to get the 

Kriging prediction(s) once    and    are found. 

2)     and    are functions of correlation parameter   because         
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3) The quantity     appears in multiple places. This can become very 

computationally expensive as the number training points (N) increases (R is an 

N by N matrix) which is common in a number of metamodeling applications. 

For this reason the inverse should be calculated using linear algebra 

techniques. 

4) The best regression and correlation functions are dependent on the problem, 

but a 1
st
 degree polynomial and a Gaussian correlation function serve as a 

good starting point. 

The MATLAB toolbox developed in Lophaven et al.
26

 is used in this study. The 

tuning parameters of KR explored are the polynomial degree, regression function, as well 

as the upper and lower bounds on θ. 

 

Support Vector Regression (SVR) 

Descriptions of SVR in this discussion follow that in Refs. (22, 28, 29, 30, 31). 

The literature suggests the design variables should be normalized to a range of [-1,1] or 

[0,1]. Simply, SVR constructs a hyperplane that passes near each design point such that 

they fall within a specified distance of the hyperplane. In two dimensions, this hyperplane 

is simply a line. The hyperplane is then used to predict other responses. SVR estimates 

the real function as 

             (2.28) 

where δ is an independent random noise, x is the multivariable input, y is the scalar 

output, and r is the mean of the conditional probability (regression function).  See 

Cherkassky and Ma
28

 and Gunn
29

 for more information. SVR technique selects the “best” 
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approximate model from a group of selection models that minimize the prediction risk. 

Linear or nonlinear regression can be performed. When a linear regression is used, the 

pool of approximation models is given by 

           +b    (2.29) 

where b is the bias term and       is the dot product of   and  . Minimizing empirical 

risk using the ε-insensitive loss function allows regression estimates. It is desirable to 

have a “flat” approximation function and this is achieved by minimizing     . Non-

negative slack variables are introduced to account for training points that fall outside of 

the ε-insensitive zone.  That is: 

         
 

 
             

   
   

     

                
 

                
  
      

 
    (2.30) 

where C is a positive constant, and ε is the insensitive zone, both are chosen by the user.  

C is also referred to as the regression parameter or penalty parameter. Cherkassky and 

Ma
28

 propose C be chosen as 

                            (2.31) 

where    and    are the mean and standard deviation of the training point responses. Hsu 

et al.
30

 suggest a cross-validation approach to find C.   

The parameter ε determines the width of the ε-insensitive zone and affects the 

complexity/flatness of the model. The values of ε should be tuned to the input data, but a 

reasonable starting value is found using 

  
 

   
                   (2.32) 
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with c = 1 where               is the range of the responses at the training points. The 

value of c can be tuned for the function. Cherkassky and Ma
28

 propose ε be chosen as 

     
   

 
     (2.33) 

where ζ is the standard deviation of the noise associated with the training point response 

values and N is the number of training points.  This assumes the noise is known or can be 

determined. Cherkassky and Ma
28

 suggest the following to estimate the unknown 

variance of noise using a k-nearest neighbor technique 

   
     

      
 
 

 
     
 
       

    (2.34) 

where k is in the range [2,6] and      
 
       

  is the squared sum of the residuals. 

The optimization problem in Eq. (2.30) written as a Lagrangian function is 

  
 

 
             

   
                           

       

            
      

               
        

 
        

   
 
  (2.35) 

where    and   
  are additional slack variables. From Lagrangian theory, necessary 

conditions for α to be a solution are listed below  

        
     

 
         (2.36) 

          
     

 
          (2.37) 

                  (2.38) 

   
       

    
       (2.39) 

Substituting Eqs. (2.36) - (2.39) into Eq. (2.30) gives the dual form optimization problem  

          
 

 

 
       

        
   

            

         
    

            
   

   

 

     
       

     
   

      
          

 

  (2.40) 
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Eq. (2.37) is rewritten as 

      
     

 
         (2.41) 

The linear regression first expressed in Eq. (2.29) is written as 

            
   

                 (2.42) 

Clarke et. al
31

 summarize the process of transforming the problem into dual form by 

stating: 

“Transforming the optimization problem into dual form 

yields two advantages. First, the optimization problem is 

now a quadratic programming problem with linear 

constraints and a positive definite Hessian matrix, ensuring 

a unique global optimum. For such problems, highly 

efficient and thoroughly tested quadratic solvers exist.  

Second, as can be seen in Eq. [(2.40)], the input vectors 

only appear inside the dot product. The dot product of each 

pair of input vectors is a scalar and can be preprocessed 

and stored in the quadratic matrix               . In this 

way, the dimensionality of the input space is hidden from 

the remaining computations, providing means for 

addressing the curse of dimensionality.” 

 

A nonlinear regression model can be developed by replacing the dot product         

with a kernel function, k, rewriting the optimization problem in Eq. (2.40) as 

          
 

 

 
       

        
   

             

         
    

            
   

   

 

     
       

     
   

      
          

 

  (2.43) 

Replacing the dot product with a kernel function in the approximation function Eq. (2.42) 

gives the nonlinear SVR approximation as 

            
   

                (2.44) 

Common Kernel functions include the following: 
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 Linear:               
     

 Polynomial:                              

 Gaussian:                  
       

 

   
  

 Radial Basis Function:                         
 
       

 Sigmoid:                              

where γ,d, p, and r are kernel parameters and should be adjusted by the user for each data 

set.  Listed below are some insights about setting kernel parameters: 

1) The polynomial degree d is typically chosen to be 2. Gunn
29

 uses r = 1 to “avoid 

problems with the hessian becoming zero”. 

2) Hsu et al.
30

 use a cross-validation approach to determine γ for RBF. This 

procedure could be applied to γ for other kernels as well as other kernel 

parameters. 

3) Cherkassky and Ma
28

 suggest p for the Gaussian kernel (they call it RBF, the 

formulation is the same as “Gaussian” here) as                      for 

single variable problems and              for multi variable problems where L 

is the number of variables and all input variables are normalized to [0,1]. 

It should be noted that the “Gaussian” kernel here is sometimes referred to as 

“Radial Basis Function” and “Gaussian Radial Basis Function” in the literature. 

Experience shows that SVR metamodels are highly sensitive to tuning parameters. The 

suggestions expressed in this discussion may not result in an acceptable accuracy level.  
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The reader is encouraged to perform SVR tuning to ensure an accurate model for the 

selected response. 

The SVR MATLAB toolbox developed by Gunn
29

 was used in this study and the 

Linear kernel is used. The tuning parameters explored within SVR are penalty parameter, 

C and ε-insensitive zone parameter, c. 

 

Optimized Ensemble (EN) 

An ensemble of metamodels combines predictions from several stand alone 

metamodels such as the ones presented above. Ensemble metamodels are more accurate 

than the individual members but also more computationally expensive. The general form 

of an ensemble is a weighted sum of the predictions of separate metamodels. In 

mathematical form, this is expressed as 

            
 
             (2.45) 

 

where       is the ensemble prediction,   is the vector of input variables, M is the number 

of metamodels used to build the ensemble,    is the weight factor for the ith metamodel, 

and     is the prediction of the ith metamodel. The weight factors must sum to one  

         
       (2.46) 

Selection of the weight factors is the most important step when constructing an 

accurate ensemble. Acar and Rais-Rohani
22

 developed an ensemble minimizing the error 

by finding the optimal weight factors. In mathematical form, this is expressed as  

                     
               

          
   

   (2.47) 
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where Err{ } is the error metric that finds error of the ensemble predictions,   ,       is 

the actual response at the training point   , and N is the number of training points. In this 

study the prediction error was based on the Generalized Mean Square Error (GMSE) 

metric defined as  

     
 

 
         

  
        (2.48) 

where N is the number of design points, fi is the actual response, and     is the predicted 

response from each metamodel.   
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(a)        (b) 

 

Figure 3.1 Dodge Neon FE Model with (a) Exterior Panels and Mesh (b) Exterior Panels                      

and Tires Removed 

 

 

 

 

 

CHAPTER III 

 

CRASH SIMULATIONS 

 

 

A full-scale 1996 Dodge Neon, FE model (v07 in LS-DYNA) is used as the 

vehicle model. This model was developed at the National Crash Analysis Center (NCAC) 

and is a public domain model downloadable from the NCAC website
32

. This model, seen 

in Figure 3.1, contains no interior panels or seats and was designed for crash analysis. 

The glass windows and windshields are modeled but not designed to break or crack. 

Rubbers, foams, and metals are all used to define the 336 separate parts in the 

model. Most structural components are Belytchko-Tsai reduced integration shell elements 

made of steel defined using Mat 24 in LS-DYNA 
33

. The vehicle is made up of 270,768 

elements of which 267,786 are shells, 2,852 are solids, and 122 are beams. It has 

approximately 1.7 million degrees of freedom. Concentrated mass elements are 

positioned throughout the model to approximate the mass distribution of the actual 
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vehicle giving a total vehicle mass of 1,333 kg. These mass elements also account for 

other components of the vehicle such as interior panels, instrumentation, seats, and 

dummies that would be included in a real crash setup.  

 The model uses the spot-weld constraint in LS-DYNA for the majority of the 

connections between parts and uses both rigid and non-rigid constraints to connect other 

parts. Modal analysis is difficult to perform with this model because of the number of 

parts and type of connections. Each part has a unique material identification number 

although the material may be the same as in other parts. This makes it easy to identify 

parts and extract results using the material. 

 A gravitational load is applied to all parts in the model. This model was validated 

by NCAC for FFI crash scenarios 
34

. Responses such as acceleration, velocity, and wall 

force were compared with test results to validate the model. 

 

Impact Scenarios 

This model was incorporated into simulations for Side impact (SIDE) and 40% 

Offset Frontal Impact (OFI) scenarios in addition to FFI providing three impact cases. 

These models followed the FMVSS
 
for impact location, angle, and the vehicle/barrier 

used. The FFI scenario has an impact speed of 56 km/hr (35 mph) into a rigid barrier with 

the bumper impacting squarely with the barrier. This simulates a directly head-on 

collision with a vehicle traveling at the same speed or impact into a rigid or nearly rigid 

structure. The SIDE scenarios simulate the vehicles response when impacted by another 

vehicle when one ignores a stop sign or traffic light. Speed for validation and testing for 

SIDE was 52 km/hr (32 mph). FMVSS specify a 27° impact angle relative to the length 

of the car that is hit by deformable trolley with a crushable honeycomb material 
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(a) (b) 

 

Figure 3.3 Validation of (a) OFI X-Acceleration at Left Rear Sill (b) SIDE Y-

Acceleration at Middle B-Pillar 
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(a)     (b)      (c) 

 

Figure 3.2 Crash Scenarios (a) FFI, (b) SIDE, and (c) OFI 

simulating the front of another vehicle for SIDE. The OFI simulations were validated at 

60 km/hr (37 mph) based on available test data and used for the model without dummy at 

56 km/hr (35 mph) to coincide with FFI simulations. The Neon model impacts a 

deformable honeycomb material barrier in front of a rigid wall with 40% of the vehicle-

front impacting the barrier. This simulates impacting another vehicle at an offset rather 

than directly head on. Figure 3.2 shows the Neon model in each crash simulation. 

A simulation of each scenario was performed in LS-DYNA to validate the 

models. Acceleration curves at the left rear sill for OFI and at the middle of the B-pillar 

Middle B-pillar 

Left Rear Sill 
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Figure 3.4 Selected Vehicle Parts and Associated Design Variables 

 

for SIDE are shown and compared to physical test results 
35, 36

 in Figure 3.3. The SIDE 

test results are from a passenger side impact (with the dummy in the passenger seat) 

while this model uses a driver side impact. Validation of the FFI model beyond what was 

done by NCAC was not performed for this model. Test results for the FFI scenario can be 

found in Ref. 37. This figure shows that the general shapes of the curves are the same but 

peak values differ as a result of filtering and the method used to capture the data. A 9
th

 

order low-pass Butterworth filter at 60 Hz was used to extract the data. This filter was 

chosen to give a smooth curve that produced similar results to the SAE J211 class filters 

used in the test results. The Butterworth filter is also available for use in MATLAB. The 

test result data was taken from a pdf image of the test report using a point-select software 

where peaks, valleys, and the general shape of the curves were captured. The locations of 

these observation points were determined by the position of accelerometers in the actual 

testing. Appendix A contains a portion of the FFI LS-DYNA keyword input cards. 

 

Design Variables 

Twenty-two parts, as shown in Figure 3.4, are chosen as the design parts were 

primarily chosen based on significant contributions to energy absorption, see Figure 3.5. 
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and structural stiffness. Parts such as the Rear Plate (x13) and Roof (x14) were selected 

for their contributions based on findings in Leiva et al.
38

 The internal energy absorption 

of each part is calculated from simulation results using each of the three impact scenarios. 

Selected parts account for approximately 40% of the total vehicle energy absorption in all 

three scenarios and have a mass of 105 kg compared to 1,333 kg for the vehicle, about 

8%. 

Shell element thicknesses of these parts, as noted in Table 3.1, are used as design 

variables with thicknesses of the parts in the NCAC model serving as the baseline values. 

Limits on thickness were set to 50% above and below the baseline thickness for each 

part. This was done to maintain realism through manufacturability. A total of fifteen 

design variables result from the twenty-two parts because of symmetry in the vehicle. 

 

 

 

 

Figure 3.5 Part Internal Energy Contribution and Total Crash Internal Energy 
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Crash Test Dummy Incorporation 

A crash test dummy model was included in the Neon model described previously. 

This provides the ability to obtain responses closely linked to occupant injury during 

crash events. The LS-DYNA dummy models used are distributed by Livermore Software 

Technology Corporation (LSTC), the creators of LS-DYNA. These models are available 

to anyone with an active LS-DYNA license from the LSTC models website 
39

. 

Interior components were put into the Neon model to capture the dummies 

interactions with them. The interior included non-structural panels on the door and 

dashboard, the steering wheel assembly and mounting structure, and a non-rigid seat with 

seatbelt. Only the front interior on the driver side of the vehicle was included. 

Concentrated mass elements were removed from the NCAC v07 Neon model to allow for 

the added mass of the dummy and interior. Mass elements were taken from the front, 

driver‟s side of the vehicle to maintain the mass distribution. The FFI and OFI models 

have a total mass with the interior and dummy of 1,317 kg and the SIDE model has a 

mass of 1,310 kg because there is a difference in the mass of the dummy models used in 

frontal and side impacts. 

There are no airbags installed in this model and the seatbelt is 303 of the 1-

dimensional LS-DYNA seatbelt elements with one degree of freedom along the length. A 

retractor is incorporated to remove slack from the belt before impact and locks at 0.02 

seconds but a pretensioner is not included. This seatbelt model provides adequate realism 

without being as complex as using a design with 2-dimensional shell elements to model 

the seatbelt. 
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A 50
th

 percentile male Hybrid III (H3) dummy model was used for FFI and OFI 

simulations while a 50
th

 percentile male US Side Impact Dummy (USSID) was used in 

SIDE simulations. Both of these dummies were validated by the distributor using 

benchmark tests on actual crash test dummies. Each dummy is positioned in the vehicle‟s 

driver seat following locations specified in the test reports. Contact is defined between 

the legs and back to the seat for frontal and side impacts. Contact is also defined for 

knees to the underside of the dashboard and feet to the floorboard for frontal impacts and 

door to the dummy‟s torso for side impacts. Figure 3.6 shows the added interior with the 

dummy models positioned. 

Validation simulations were run for each of the impact scenarios. Simulation 

results were then compared to the results in the test reports and to the model without the 

interior and dummy. Steering wheel airbags were present in the FFI and OFI test results 

but no airbags were present in the SIDE test results. A comparison of the resultant 

acceleration of the dummy head to test results and at a location on the middle of the B-

pillar to the model without the dummy for FFI can be seen in Figure 3.7. 
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(a) 

 

(b) 

Figure 3.6 Added Interior Parts with Positioned Dummies (a) H3 for FFI and (b) USSID 

for SIDE 

 

(a)       (b) 

Figure 3.7  FFI Dummy Model‟s (a) Chest Resultant Acceleration and (b) Dummy Head 

Resultant Acceleration Compared to Test Results 
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 Figure3.7(a) shows similar peak values and overall shape between the two curves 

for resultant chest acceleration while Figure 3.7(b) shows that peak resultant acceleration 

of the simulation is shifted to the right compared to the test results. The simulation‟s 

second peaks seen around 0.1 seconds in this figure are likely the result of the chest 

hitting the steering wheel between 0.08 and 0.09 sec. The chest deflection time-history 

curve, seen in Figure 3.8, appears to be leveling off at a deflection around 40 to 42 mm 

before suddenly increasing to 56 mm. The maximum chest deflection measured in the 

actual test was 40 mm. This suggests a problem in the modeling of the seat and/or 

seatbelt for frontal impact simulations since a primary function of the seatbelt is to 

prevent the dummy from hitting the steering wheel. 

Acceleration curves for SIDE are compared in Figure 3.9. Figure 3.9(a) shows 

that the dummy pelvis y-acceleration curve is nearly identical for the model and test 

results. Figure 3.8(b) shows the resultant acceleration comparison of the dummy ribs. The 

lower rib (Lwr Rib) corresponds to the accelerometer location in the test setup where 

both upper and lower rib accelerations were measured while only one rib acceleration 

was measured in the simulations. The peak values are nearly identical but with a time 

shift of a difference in data-recording initialization. 

 

Figure 3.8   FFI Simulation Chest Deflection Curve 
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 Figure 3.10(a) shows the resultant acceleration at the middle of the B-

pillar location for the model with and without the dummy for OFI. The dummy model 

response shows a similar curve shape to the model without the dummy but significantly 

larger peak values. This can be partially attributed to a larger speed velocity, 60.3 km/hr 

for the dummy model compared to 56 km/hr for the model with no dummy. Figure 3.10 

(b) shows that the model with the dummy has a larger peak velocity occurring later in the 

  
(a)       (b) 

 

Figure 3.10  OFI Occupant Model Comparison of (a) Resultant Acceleration at the 

Middle of the B-Pillar to the Model Without Dummy and (b) Dummy Head 

Resultant Acceleration to Test Results 
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(a)       (b) 

 

Figure 3.9  SIDE Dummy Model‟s (a) Pelvis Y-Acceleration and (b) Rib Y-Acceleration 

Compared to Test Results 

 

-100

-80

-60

-40

-20

0

20

0.00 0.10
A

cc
el

er
at

io
n
 (

g
's

)

Time (s)

SIDE Sim

Actual
-80

-60

-40

-20

0

20

40

0.00 0.05 0.10 0.15

A
cc

el
er

at
io

n
 (

g
's

)

Time (s)

SIDE Sim

Lwr Rib Actual



34 
 

 

 

Figure 3.11   Selected Vehicle Response Locations 

 

simulation. These results also suggest a problem with this model for frontal impacts. 

Only a limited set of dummy responses discussed in the next section were used in the 

design optimization study given the discrepancies found between the FFI and OFI 

responses of the model with a dummy and the test results. 

 

Design Responses 

 

Vehicle-based responses are intrusion distances at the toeboard and dashboard for 

FFI and OFI and at the door for SIDE (Int Toe, Int Dash, and Int Door), resultant 

acceleration at a location on the B-pillar in all three scenarios (Accel), and internal 

energy absorption of the selected parts in all three scenarios (Int Eng). Locations of these 

responses can be seen in Figure 3.11. These responses were chosen because of their 

relevance to occupant safety. Intrusion into the cabin can cause injuries such as to the 

legs in frontal impacts. The acceleration response location was chosen to be near an 

approximate head location of the driver during a crash.  

Intrusion distance was calculated by measuring the distance between twenty 

nodes at each response location and a reference node on the opposite side of the car 

before and after the crash and then finding the difference. An average over the twenty 
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nodes was used as the intrusion distance response. A 9
th

 order low-pass Butterworth filter 

at 60 Hz was applied to the acceleration curves for twenty nodes at the selected location, 

the resultant found, an average over the twenty nodes taken, and the maximum value 

found to represent an acceleration response. The internal energy response is the sum of 

the internal energy at the end of the simulation for the selected parts. 

Dummy-based responses are based on FMVSS specified upper limits on a number 

of injury criteria for both frontal and side impacts. The limits are set based on test results 

to determine human responses to conditions in a crash environment. Frontal injury 

criteria used as responses are Head Injury Criteria (HIC), maximum upper leg axial force 

(Femur Force), maximum neck axial force (Neck Force), and peak chest deflection 

(Chest Def). Side impact injury criteria used are Thoracic Trauma Index (TTI), maximum 

pelvic acceleration (Pelvis Accel), and peak rib deflection (Rib Def). 

 The HIC was developed to measure the likelihood of an injury to the head. An 

HIC limit is specified as a requirement in the FMVSS for both frontal and side impact 

scenarios. It is only used as a response for frontal impacts here because the USSID used 

is not calibrated for head and neck measurements. HIC is expressed as 

          
 

     
    
  

  
 
   

           (3.1) 

where t is time and a is the resultant acceleration of the head with              . A 

time window size of 15 ms can be used as well but 36 ms is used in this study. The larger 

the HIC value, the more likely a serious injury will occur. Resultant head acceleration is 

calculated from differentiating the velocity versus time curve of the FE model part 

representing the skull. This method was done because of difficulty extracting nodal 
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accelerations and velocities of the accelerometer positioned in the middle of the head. A 

9
th

 order low-pass Butterworth filter at 120 Hz was used to filter the data. 

 The neck force and femur force were measured at the joints connecting the neck 

to skull and leg to pelvis, respectively. The positive axial directions are away from the 

head for the neck force and towards the feet for the femur force. A maximum value was 

taken from the filtered acceleration data using the same type filter as for the head 

acceleration. Femur force was recorded for both legs with the maximum force between 

them used as the response value. Chest deflection was determined by measuring the 

change in length of a spring running from sternum to spine in the FE model. Figure 

3.12(b) shows the H3 dummy model with the parts used for accelerations darkened. 

 Thoracic Trauma Index (TTI) is specified in the FMVSS for side impact 

scenarios. It is defined as 

                          (3.2) 

where       is the y-acceleration (y-axis is from shoulder to shoulder in a forward facing 

dummy) at of the ribs closest to the door where impact occurs and         is the y-

acceleration at of the ribs closet to the door where impact occurs. Filtered data using a 9
th

 

order low-pass Butterworth filter at 120 Hz was used from the differentiation of the part 

y-velocity. The same procedure was used to find the maximum, resultant, pelvis 

acceleration. Rib deflection was determined from the change in length of a spring 

stretching between the ribs in the y-direction. Figure 3.12(a) shows the USSID model 

with the parts used for acceleration darkened. 
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Material Substitution 

AZ 31 magnesium alloy was selected to replace the baseline steel sheet formed 

parts in the Neon model. Mat 124 in LS-DYNA
33

 was used to model it based on work by 

Wagner et al.
40

. This material model allows the definition of separate stress-strain curves 

for compression and tension. These stress-strain curves were taken from quasi-static 

experimental data at 22°C. AZ31(TD) was used for the tension curve where TD is 

transverse direction.This data was unavailable for AZ 31 under compressive loading so a 

relation of the ratio of AM 30 under compression and tension along with AZ 31 was used 

to approximate a curve for AZ 31 compression as 

             
           

            
                 (3.3) 

where RD is rolled direction, ED is extruded direction, ten is tension, and comp is 

compression. Figure 3.13 shows the stress-strain curves for AM 30 and AZ 31. 

 

(a)         (b) 

Figure 3.12 Dummy Models with Shaded Acceleration Locations (a) USSID for SIDE 

(b) H3 for OFI and FFI 
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Figure 3.13 Magnesium Quasi-Static Stress-Strain Curves at 22°C 
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Material substitution was performed by changing the material of the twenty-two 

design parts from steel to magnesium and leaving the other parts in their base material. 

Seven different steel materials are used to define the 22 selected parts in the Neon FE 

model but only one magnesium model is used for each of the selected parts. The 

thicknesses of these magnesium replacement parts were selected to maintain the total 

internal energy absorption of the steel baseline parts in the model without the dummy and 

interior. This was done by using the relation of toughness and thickness shown in Eq. 3.4 

for each selected part. An average of the thicknesses found using the toughness under 

compression and the toughness under tension was used. Magnesium thicknesses were 

found from  

       
   

   
     (3.4) 

where     and     are the thicknesses of magnesium and steel respectively, and     and 

    are the toughness values of steel and magnesium. Toughness was calculated from 
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Table 3.1   Part Thicknesses (in mm) for Baseline Designs  
 

Part 
Design 

Variable 
St Base Mg Base 

A-Pillar x1 1.611 2.597 

Front Bump x2 1.956 5.975 

Firewall x3 0.735 1.072 

Front Floor Panel x4 0.705 1.136 

Rear Cabin Floor x5 0.706 1.138 

Outer Cabin x6 0.829 1.366 

Cabin Seat Reinf. x7 0.682 1.099 

Cabin Mid Rail x8 1.050 1.692 

Shotgun x9 1.524 3.620 

Inner Side Rail x10 1.895 3.966 

Outer Side Rail x11 1.522 3.186 

Side Rail Exten. x12 1.895 3.966 

Rear plate x13 0.710 1.144 

Roof x14 0.702 1.157 

Susp. Frame x15 2.606 5.342 

 

integrating the stress-strain curves for each material from 0 to 0.3 strain. Thicknesses of 

the selected parts are found in Table 3.1 for the steel and magnesium designs. 

This material model also allows the definition of plastic strain to failure. 

Magnesium‟s behavior under compressive loads requires this parameter in order to 

provide a more accurate material response. A plastic strain to failure of 38% is used in 

this study following Wagner et al.
40

. A value of 19% was also considered. Table 3.2 

compares the total internal energy absorption of the 22 selected parts for each crash 

scenario using 19% and 38% plastic strain to failure. This table shows that magnesium 

with 38% plastic strain to failure has total internal energy absorption closer to the steel 

baseline than the 19%. Strain rate effects were found to have a negligible effect on 

selected responses and part energy absorption and were not included.  The material 

defined in this manner is not an exact magnesium material model but a surrogate. 
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(a)             (b) 

 
(c) 

Figure 3.14   Acceleration at B-pillar Response Location-No Dummy (a) x-dir. FFI, (b), 

y-dir. SIDE, and (c) x-dir. OFI for Mg and St 
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Table 3.2    Total Internal Energy of Selected Mg Parts 

Crash Scenario St Mg 19% Mg 38% 

FFI 6.23E+07 6.03E+07 6.36E+07 

OFI 3.94E+07 3.69E+07 3.94E+07 

SIDE 2.24E+07 1.94E+07 2.09E+07 

 

Simulations of each crash scenario using the magnesium material model defined 

previously were performed. Figure 3.14 shows that the acceleration curves at the B-pillar 

response location for each scenario generally match in shape and peak values. Table 3.3 

shows an overview of the responses for baseline simulations with both materials. The 

magnesium parts have significantly less mass than the steel parts and generally maintain 

or improve the internal energy absorption of the replaced parts but the intrusion distances 
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Table 3.3    Response Comparison for Baseline St and Mg 

  
St 

Base 

Mg 

Base 

% from 

St Base 

FFI Int Toe (mm) 157 295 87.9% 

 Int Dash (mm) 122 186 52.3% 

 Accel (g's) 63.5 49.2 -22.5% 

 Int Eng (kJ) 62.3 62.3 0.1% 

SIDE Int Door (mm) 314 420 33.7% 

 Accel (g's) 47.9 40.8 -14.9% 

 Int Eng (kJ) 22.4 21.4 -4.3% 

OFI Int Toe (mm) 273 349 27.7% 

 Int Dash (mm) 247 386 56.2% 

 Accel (g's) 35.0 36.2 3.3% 

 Int Eng (kJ) 39.4 39.2 -0.4% 

    Mass (kg) 105.2 42.7 -59.4% 

 

are significantly larger than the steel parts. These responses and designs are treated as the 

baseline for comparison of the optimum designs when the model without dummy is used. 

Magnesium defined in this manner was also applied to the models with the 

dummy and interior included. Simulations were run for each scenario to compare the 

steel dummy model with the magnesium dummy model. Acceleration results at the 

dummy head and B-pillar location for the FFI case can be seen in Figure 3.15. The B-

pillar x-acceleration curves are similar for the first half of the simulation but differ in the 

last portion. The Mg head acceleration curve has a lower peak value than the St curve but 

have a similar shape. Figure 3.16 shows that for SIDE the y-acceleration curves at the B-

pillar have a similar shape for St and Mg and the Dummy y-accelerations at the Rib 

location are nearly identical. OFI accelerations in Figure 3.17(a) show that x-acceleration 

at the B-pillar does not match and (b) shows the shape is similar but peak values are 

different. 



42 
 

 

 
(a)       (b) 

 

Figure 3.16 SIDE Occupant Model Comparison of (a) y-Acceleration at the Middle of 

the B-Pillar and (b) Dummy Rib y-Acceleration for Mg and St 
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(a)       (b) 

 

Figure 3.15 FFI Occupant Model Comparison of (a) x-Acceleration at the Middle of 

the B-pillar and (b) Dummy Head Resultant Acceleration for Mg and St 
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(a)       (b) 

 

Figure 3.17 OFI Occupant Model Comparison of (a) x-Acceleration at the Middle of 

the B-pillar and (b) Dummy Head Resultant Acceleration 
 

-60

-40

-20

0

20

40

0.00 0.05 0.10 0.15

A
cc

el
er

at
io

n
 (

g
's

)

Time (s)

Mg

St

0

20

40

60

80

100

0.00 0.05 0.10 0.15

A
cc

el
er

at
io

n
 (

g
's

)

Time (s)

Mg

St



43 
 

Dummy-based responses for the St and Mg baseline design along with test result 

values (for Steel) and FMVSS limits can be seen in Table 3.4. All FFI responses are 

larger than the test results and generally below the FMVSS limit. OFI responses are 

generally above the test result values and below the FMVSS limit except neck force. OFI 

responses are all lower than their FFI counterparts. SIDE responses are fairly close to the 

test results and close to or below the FMVSS limit. 

Dummy responses for the FFI and OFI models again show discrepancies between 

simulation results and test results. These differences are likely the result of the chest to 

steering wheel contact as discussed in a previous section caused by inadequacies in the 

seatbelt model and possibly the seat. The three SIDE responses shown in Table 3.4 are 

used as design responses in Chapter V but no frontal dummy responses are used. 

  

Table 3.4     Dummy Responses for Mg and St, Test Results for St, and FMVSS Limits 

 

        
Test Results 

(St) 
  

Simulation 

(St) 
  

FMVSS 

Limit 
  

Simulation 

(Mg) 

Frontal 

HIC36 
FFI  610  1167  

1000 
 949.4 

OFI  111.5  891.6   891.6 

Femur Force 
FFI  6859 N  8646 N  10008 N 

(2250 lb) 

 6600 N 

OFI  4273.5 N  5406.3 N   5406N 

Neck Force 

(compression) 

FFI  2000 N  5260 N  
4000 N 

 4054 N 

OFI  1532.7 N  4498.7 N   4500 N 

Chest 

Deflection 

FFI  40 mm  56.4 mm  
63 mm 

 35.9 mm 

OFI  N/A  15 mm   15 mm 

Side 

Rib Deflection  N/A  42.3 mm  44 mm  44.9 mm 

Pelvis Acceleration  73 g's  82.7 g's  130 g's  77.8 g's 

TTI   65 g's   60.8 g's   85 g's   65.8 g's 
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CHAPTER IV 

OPTIMIZATION WITHOUT DUMMY MODEL 

The overall objective of this optimization process is to find a design that 

minimizes vehicle weight through the selected parts but maintains the crashworthiness of 

the baseline steel model without the dummy and interior. Vehicle-based responses are 

discussed first followed by discussion of the metamodel tuning results and the 

optimization problems.  

The eleven vehicle-based responses presented in Chapter III and total mass of the 

selected parts provide objectives and constraints for design optimization. Mass is 

determined by dividing the initial mass of the baseline part by its initial thickness. This 

coefficient is multiplied by a new thickness for that part to determine the part‟s new 

mass. A metamodel is not used for calculating mass while a metamodel is used to 

calculate each nonlinear response. 

Latin Hypercube Sampling was used to create a DOE table with forty-five points. 

The baseline design point was added for a total of forty six design points. Limits on the 

design variables were 50% above and below the baseline. DOE simulations were 

performed for all three impact types and both materials for a total of 276 simulations for 

this chapter. 
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Metamodel Tuning Parameters 

 

The metamodel techniques discussed in Chapter II were built and tuned for each 

of the eleven responses and then used to create an optimized ensemble. The first step of 

this process was determining the most accurate combination of tuning parameters for 

each response and material. This was done by defining a list of possibilites for each 

tuning parameter. A metamodel was then built and tested for accuracy using all 

combinations of the tuning parameters. 

Cross-validation GMSE was used to measure the error of each model. A cross-

validation technique is used when the number of points and their function evaluations is 

limited through availability or by cost of obtaining them, such as for full-scale crash 

simulations. Cross-validation builds a metamodel using all except one of the available 

training points and then measures the error of the prediction at the point that was left out. 

This is repeated with each point being left out and then the error is averaged to provide 

the error of that metamodel. GMSE is defined as (same as Eq. (2.48)) 

         
 

 
         

  
        (4.1) 

where N is the number of design points, fi is the actual response, and     is the predicted 

response from each metamodel. 

 The tuning parameters tested for PRS were a first, second, and third degree 

polynomial. There are no tuning parameters for GP explored here. RBF tuning 

parameters are the basis function (i.e., Thin Plate, Gaussian, Multiquadric, and Inverse 

Multiquadric) and parameter c. Each of the four basis functions were explored with 

                     . The tuning parameters of KR explored are the polynomial 

degree, regression function, the upper bound on θ (called c) , and the lower bound on  
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Table 4.1    Optimized Ensemble Weight Factors 

  FFI  SIDE  OFI 

  

Int 

Toe 

Int 

Dash Accel 

Int 

Eng  

Int 

Door Accel 

Int 

Eng  

Int 

Toe 

Int 

Dash Accel 

Int 

Eng 

St PRS 0 0 0 0  0 0 0  0 0.56 0 0 

St GP 0.57 0.17 0 0.33  0.48 0 0  0.51 0 0 0 

St RBF 0.30 0 0 0  0.01 0 0  0 0 0.16 0 

St KR 0.13 0.59 0.41 0.54  0.11 0.57 0.59  0.14 0.44 0.54 0.58 

St SVR 0 0.24 0.59 0.13  0.40 0.43 0.41  0.35 0 0.30 0.42 

Mg PRS 0 0 0 0  0 0 0  0.01 0 0 0 

Mg GP 0 0 0 0  0.34 0 0.14  0 0.07 0.27 0.15 

Mg RBF 0.33 0 0 0.09  0.08 0 0  0 0 0 0 

Mg KR 0.67 1.00 0.30 0.36  0.55 1.00 0.86  0.57 0.56 0.10 0.31 

Mg SVR 0 0 0.70 0.55  0.03 0 0  0.42 0.37 0.63 0.55 

 

(called b). Zero and first degree polynomials were explored with                    

and              . The regression functions considered were cubic, exponential, 

gaussian, linear, spherical, and spline. SVR tuning parameters explored were the penalty 

parameter (C) and ε-insensitive zone parameter (c) with                 and   

               .  

An Optimized Ensemble was created using the tuned base metamodels by minimizing 

the GMSE of the ensemble. The weight factors of the optimized ensemble are shown in 

Table 4.1. KR and SVR are the metamodels that have the highest percentage contribution 

to the ensemble across all responses and both materials. KR is the only metamodel in the 

ensemble for intrusion at the dashboard for FFI and acceleration at the B-pillar for SIDE. 

Table 4.2 and 4.3 show the tuned metamodel parameters for steel and magnesium, 

respectively. See Appendix B for a portion of the MATLAB code written to tune the 

metamodels in this manner including the PRS and RBF metamodels. 



 

 

 

 

 

Table 4.2    Tuned Metamodel Parameters for St 

Steel FFI  SIDE  OFI 

  Int Toe Int Dash Accel Int Eng  Int Door Accel Int Eng  Int Toe Int Dash Accel Int Eng 

PRS Poly. Degree 1 1 1 1  1 1 1  1 1 1 1 

RBF Parameter, c 1 1 0.2 1  1 0.05 0.05  1 0.95 0.25 0.75 

 Basis Func, Φ Multi. Multi. T. P. Multi.  Multi. Multi. Gauss  Inv. Multi. Multi. T.P. Multi. 

KR U.B. θ, c 0.1 0.011 1 1  0.1 0.011 0.1  0.011 0.1 1 0.1 

 L.B. θ, b 0.01 0.001 0.001 0.001  0.01 0.001 0.01  0.001 0.001 0.01 0.01 

 Corr. Func. Spline Spher. Exp. Linear  Gauss. Linear Gauss.  Spher. Gauss. Spline Spline 

 Reg. Deg. 0 1 0 1  0 1 0  0 1 0 0 

SVR c 1 1 100 10  0.01 10 10  10 1 10 1 

 Pen. Par., C 10 2 0.1 2  10 2 5  5 5 0.1 5 

Multi. is Multiquadric, T.P. is Thin Plate, Inv is Inverse, Exp is Exponential and Spher is Spherical 

 

 

Table 4.3    Tuned Metamodel Parameters for Mg 

 

Magnesium FFI  SIDE  OFI 

    Int Toe Int Dash Accel Int Eng  Int Door Accel Int Eng  Int Toe Int Dash Accel Int Eng 

PRS Poly. Degree 1 1 1 1  1 1 1  1 1 1 1 

RBF Parameter, c 0.05 0.05 0.2 0.05  1 1 1  1 0.15 0.05 1 

  Basis Func., Φ Gauss Gauss Multi. Gauss.  Multi. Inv. Multi. Multi.  Multi. Gauss Multi. Multi. 

KR U.B. θ, c 0.011 0.1 0.011 0.011  0.011 0.1 0.011  1 0.1 1 1 

 L.B. θ, b 0.01 0.001 0.001 0.001  0.001 0.01 0.001  0.001 0.001 0.01 0.001 

 Corr. Func. Cubic Gauss. Spline Exp.  Linear Spline Cubic  Spher. Spline Spline Cubic 

  Regr. Deg. 0 0 0 0  1 0 1  1 0 0 1 

SVR c 1 1 10 0.01  10 0.01 10  10 0.01 1 10 

  Pen. Par., C 5 10 0.1 2  2 0.1 0.1  10 10 0.1 2 

Multi. is Multiquadric, T.P. is Thin Plate, Inv is Inverse, Exp is Exponential, and Spher is Spherical 

 

4
7
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Single-Objective (SO) Optimization 

 

Weight minimization is the objective of this optimization problem while 

maintaining or improving the baseline crash responses. Both the steel and magnesium 

models are used with each being compared to its own baseline responses. This is 

formulated as 

                          

    
                             

                                  

                                           

     (4.2) 

where F(x) is the objective function, x is the input vector of 15 design variables 

(thickness),    is the jth response predicted by a metamodel, and        is the response of 

the baseline model (material specific). In Eq. (4.2),        represents the intrusion 

distances and accelerations and         represents the internal energy responses. 

This problem was solved using Sequential Quadratic Programming (SQP) 

implemented in the VisualDOC
41

 software package. Eight starting points were used 

because SQP is a gradient-optimization technique that can find local minima rather than 

global. Results are shown only from the best starting point. SQP approximates the 

original nonlinear problem by solving the quadratic programming sub-problem 

   min                                   

s.t.                  
                     (4.3) 

              
                     

where  , is the search direction vector,   the design variable vector, B is positive definite 

matrix that approximates   L (L is the Lagrangian),     and    are constants,    represents 

inequality constraints,    represents equality constraints,   is the number of inequality 
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constraints, and    is the number of equality constraints. Search direction vector d can be 

determined by using the Lagrange multiplier method with Lagrangian 

                       
     

   
  
   

       
  
           

    (4.4) 

The design variable vector is updated using 

              
         (4.5) 

where   
  is the optimal step size along the search direction found by minimizing the 

penalty function given by 

                         
                        

     
   

  
   

  

               (4.6) 

Total mass of the steel parts dropped from 105.2 kg to 88.0 kg and total mass of 

the magnesium parts dropped from 42.7 kg to 37.2 kg. That is a 16% and 13% reduction 

for steel and magnesium, respectively. Responses predicted by the metamodels during 

SQP optimization were compared to the LS-DYNA simulation results at the optimum 

point. Table 4.4 shows percent error of the metamodel predictions relative to the 

simulation results. Percent errors for steel were less than 5% for most responses and 

greater than 13% for the others. Magnesium percent errors were at or less than 10% 

except for OFI acceleration which was 23.3%. The total number of function calls for this 

solution, including all starting points, is 2,483 for steel in nine iterations and 2,095 for 

magnesium in nine iterations. 
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Table 4.4     Metamodel Prediction Error at the SO Optimums 

    
% from St 

LS-DYNA 

 % from Mg 

LS-DYNA 

FFI Int Toe 4.1%  4.9% 

  Int Dash 13.8%  1.2% 

  Accel 14.9%  3.0% 

  Int Eng 3.1%  1.6% 

SIDE Int Door 4.4%  2.2% 

  Accel 15.8%  1.9% 

  Int Eng 2.9%  0.1% 

OFI Int Toe 5.1%  10.1% 

  Int Dash 24.1%  6.7% 

  Accel 0.4%  23.3% 

  Int Eng 0.9%  1.8% 

 

 

  
(a)       (b) 

 

Figure 4.1     Normalized Design Variables for SO Optimums (a) St and (b) Mg 
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Figure 4.1 shows the normalized design variables at the SO optimums. Variable 

x9 (left and right shotgun) went to the lower bound in both the Mg and St SO optimum 

designs. The variables that increased at the SO St optimum were the Outer Cabin and 

Inner Front rail (x6 and x11). The Outer Cabin(s) is the most energy absorbing part for 

SIDE and one of the heaviest whereas the Inner Side Rail(s) is the most energy absorbing 

part for OFI and nearly the most for FFI. The part thicknesses that increased more than 
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Table 4.5    Crash Reponses at the SO Optimums  

   
St  

SO Opt 

% from 

St Base 

 Mg  

SO Opt 

% from 

Mg Base 

FFI Int Toe (mm) 170 8.0%  274 -7.1% 

  Int Dash (mm) 108 -11.2%  167 -9.9% 

  Accel (g's) 69.0 8.6%  53.1 7.8% 

  Int Eng (kJ) 65.7 5.4%  60.1 -3.6% 

SIDE Int Door (mm) 333 6.2%  414 -1.2% 

  Accel (g's) 38.6 -19.5%  41.2 1.0% 

  Int Eng (kJ) 23.2 3.8%  21.5 0.3% 

OFI Int Toe (mm) 233 -14.7%  320 -8.4% 

  Int Dash (mm) 269 9.1%  252 -34.8% 

  Accel (g's) 36.6 4.4%  30.7 -15.0% 

  Int Eng (kJ) 40.2 1.9%  38.3 -2.4% 

MASS (kg) 88.0 -16.4%  37.2 -13.0% 

 

12% at the SO Mg optimum were the Cabin Seat Reinforcement (x7), Side Rail 

Extension(s) (x12), and the Rear Plate (x13). The part thicknesses that decreased to their 

lower bound were the Front Bumper (x2), Rear Cabin Floor (x5), and Shotgun(s) (x9). 

Response values at the baseline and SO optimum points for both steel and 

magnesium can be found in Table 4.5 along with a percent difference relative to their 

respective baselines. It should be noted that these responses are the results from the LS-

DYNA simulation at the optimum point found using the metamodels and not the 

metamodel predictions. The intrusion distances using the Mg parts are still significantly 

larger than the corresponding St parts except for intrusion at the dashboard for OFI. The 

accelerations are lower or about the same for Mg compared to St while internal energy is 

slightly lower.  
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Multi-Objective (MO) Optimization 

 

Results in the previous section suggest that the magnesium designs, both baseline 

and SO optimum, maintain or improve upon the steel baseline responses for acceleration 

and internal energy but exceed the steel baseline intrusion distances. Another 

optimization problem is formulated and solved to determine the mass of a magnesium 

design that meets the crashworthiness of steel baseline. 

This optimization problem uses the magnesium model and targets the baseline 

steel intrusion distance while constraining the acceleration and internal energy to the steel 

baseline values. Mass is not considered for this problem. This problem is formulated as 

                 

         
              

                 

                                  

    (4.7) 

 

where F(x) represents a composite objective function representing the intrusion distances 

of the baseline steel model,      for        are the baseline steel accelerations,      for 

        are the baseline steel internal energies, and    are the baseline magnesium 

design point values. 

VisualDOC software is again used to solve this problem using SQP with eight 

starting points. Results from the best starting point are shown. Compromise programming 

was used inside VisualDOC to convert this multi-objective into a single-objective 

optimization problem. Using the compromise programming formulation, the composite 

objective function in Eq. (4.7) is given by 

         
          

         

    
             

         
 
 

       
     (4.8) 
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Table 4.6     Metamodel (MM) Prediction Error at the MO Optimums  

   
Mg MO 

(MM) 

Mg MO  

(LS- DYNA) 

% from 

DYNA 

FFI Int Toe (mm) 166 186 -10.6% 

  Int Dash (mm) 136 131 4.4% 

  Accel (g's) 52.0 59.3 -12.3% 

  Int Eng (kJ) 65.3 62.0 5.2% 

SIDE Int Door (mm) 328 361 -9.1% 

  Accel (g's) 44.2 48.0 -8.0% 

  Int Eng (kJ) 22.1 21.9 0.8% 

OFI Int Toe (mm) 256 212 20.7% 

  Int Dash (mm) 247 236 4.7% 

  Accel (g's) 35.0 37.0 -5.4% 

  Int Eng (kJ) 39.0 37.9 2.7% 

 

 

where   is the number of targeted objective functions, Wj is the weight factor for the j-th 

objective,       is j-th objective,     
          is the target value of the j-th objective, 

and     
         is the worst known value of the j-th objective (the responses at the 

initial magnesium design). The responses predicted by the metamodels and the LS-

DYNA verified values at the MO optimum design point are found in Table 4.6. The 

metamodel errors are generally less than 10% with only two responses above 11%. The 

total number of function calls, including all starting points, is 2,909 in nine iterations. 

Figure 4.2 shows the normalized design variables for the Mg MO and Mg SO 

optimums. The Cabin Seat Reinforcement (x7) remained at its maximum allowed value 

with the Outer Cabin (x6), Side Rail Extension (x12), and Rear Plate (x13) also going to 

the maximum values. The Rear Cabin Floor (x5) went from its lower bound at Mg SO to 

nearly the upper bound at Mg MO. Shotgun thickness (x9) went to its lower bound. 
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Figure 4.3  Intrusion Distance at the Baselines and MO Optimum; F is FFI, S is SIDE, 

and O is OFI 
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Figure 4.2     Normalized Design Variables for MO Optimums 
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The intrusion distances at the magnesium MO optimum show a reduction from 

the Mg baseline. These responses are also closer to the steel baseline, see Figure 4.3. One 

FFI intrusion distance is larger while the other is about the same as the St baseline, the 

SIDE intrusion distance is larger, and the OFI intrusions are both smaller than the St 

baseline. These values are the LS-DYNA simulation results at the MO optimum rather 

than the metamodel predictions. This design using the magnesium parts has a mass that is 

about 50% of the baseline steel design, 50.7 kg compared to 105.2 kg, and is 8 kg heavier 

than the baseline magnesium design.  
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Table 4.7     Responses at MO Optimums 

 

 FFI  SIDE  OFI  

Mass 
 Accel  Int Eng   Accel Int Eng  Accel Int Eng  

Mg MO… 59.3 g‟s 62.0 kJ  48.0 g‟s 21.9 kJ  37.0 g‟s 37.9 kJ  50.7 kg 

…Relative to St Base -6.6% -0.4%  0.2% -2.1%  5.6% -3.7%  -51.8% 

…Relative to Mg Base 20.5% -0.5%  17.8% 2.3%  2.3% -3.3%  18.7% 

 

Results of the other responses of interest are found in Table 4.7 along with 

percentage comparisons with the Mg and St baselines. The acceleration responses are all 

larger than the Mg baseline but the same or smaller for FFI and SIDE compared to the St 

baseline. The internal energy response at the MO optimum are the same as the baselines 

for FFI, lower than the St baseline and higher than the Mg baseline for SIDE, and lower 

than both for OFI. 

Optimization Results Summary 

 

Optimization problems in this study focused on reducing mass and maintaining 

crash performance. Improved crashworthiness beyond the steel baseline was desirable but 

not an objective. Results show that the magnesium designs have lower mass than the steel 

designs and similar or better crashworthiness when considering acceleration and internal 

energy but worse if considering intrusion distance. The all steel model was 17.2 kg 

lighter when optimized for mass than the steel baseline model. The optimized model with 

selected parts replaced with magnesium was 54.5 kg lighter than the steel baseline and 

37.3 kg lighter than the optimized steel model with similar crash responses. Response 

results for SO and MO optimizations are summarized in Figure 4.4. 
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Table 4.8    Design Variable Summary (thicknesses in mm) 

Part 
Part 

No. 

Design 

Variable 

St 

Base 

Mg 

Base 

St 

SO 

Mg 

SO 

Mg 

MO 

A-Pillar 310,311 x1 1.611 2.597 0.915 2.561 1.984 

Front Bump 330 x2 1.956 5.975 1.204 2.987 6.649 

Firewall 352 x3 0.735 1.072 0.545 0.867 1.515 

Front Floor Panel 353 x4 0.705 1.136 0.612 1.211 1.592 

Rear Cabin Floor 354 x5 0.706 1.138 0.477 0.569 1.696 

Outer Cabin 355,356 x6 0.829 1.366 0.988 1.482 2.049 

Cabin Seat Reinf. 357 x7 0.682 1.099 0.622 1.649 1.649 

Cabin Mid Rail 358,359 x8 1.050 1.692 0.633 1.792 1.636 

Shotgun 373,374 x9 1.524 3.620 0.762 1.810 1.810 

Inner Side Rail 389,391 x10 1.895 3.966 1.887 3.436 4.141 

Outer Side Rail 390,392 x11 1.522 3.186 1.834 3.145 2.754 

Side Rail Exten. 398,399 x12 1.895 3.966 1.780 4.805 5.950 

Rear plate 415 x13 0.710 1.144 0.417 1.559 1.717 

Roof 416 x14 0.702 1.157 0.351 0.739 0.791 

Susp. Frame 439 x15 2.606 5.342 1.303 4.367 4.931 

 

Design variable values representing wall thickness of individual parts at the 

baseline and optimized designs can be found in Table 4.8. Shotgun thickness went to its 

lowest allowable value (50% lower than the baseline) for each of the three optimization 

problems solved. This suggests that this part may be at its limit for energy absorption 

within these thickness bounds because the shotgun has significant energy absorption for 

frontal impacts. Components such as the Roof (x14) were chosen for contributions to 

vehicle stiffness and provide little energy absorbing capability to the vehicle. The Roof 

thickness was significantly reduced in these designs as a result.  Figures 4.5, 4.6, and 4.7 

show simulation images of the five designs for FFI, SIDE, and OFI, respectively. 

Differences can be observed in the door for the FFI scenario, the door and roof for SIDE, 

and the roof for OFI. 
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(a) 

 

 
(b) 

Figure 4.4 Optimization Response Results Summary for (a) Accelerations and Internal 

Energies and (b) Intrusion Distances; F is FFI, S is SIDE, and O is OFI 
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(a) FFI St Base     (b) FFI Mg Base 

 

(c) FFI St SO    (d) FFI Mg SO 

 

(e) FFI Mg MO 

Figure 4.5    Simulation Images of the Designs, FFI at 150 ms 
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(a) SIDE St Base    (b) SIDE Mg Base 

 

(c) SIDE St SO   (d) SIDE Mg SO 

 

(e) SIDE Mg MO  

Figure 4.6    Simulation Images of the Designs, SIDE at 150 ms 
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(a) OFI St Base     (b) OFI Mg Base 

 

(c) OFI St SO     (d) OFI Mg SO 

 

(e) OFI Mg MO  

Figure 4.7    Simulation Images of the Designs, OFI at 150 ms 
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CHAPTER V 

OPTIMIZATION WITH DUMMY MODEL 

This chapter presents the optimization problem and results using the Dodge Neon 

FE models with the dummy and interior included. Only the SIDE dummy responses will 

be used in the optimization problem because of the poor results during validation of the 

FFI and OFI. Optimization problems in this chapter use the three SIDE dummy 

responses, rib deflection (Rib Def), maximum, resultant pelvic acceleration (Pelvis 

Accel), and Thoracic Trauma Index (TTI), total internal energy of the selected parts for 

FFI and SIDE (Int Eng and Int Eng), and intrusion distance at the toeboard for FFI (Int 

Dis Toe). All of these responses are taken from results of the model with the dummy. 

Total mass of the selected parts is the final responses considered for a total of seven. A 

metamodel is not constructed for mass.  

The same DOE generated using Latin Hypercube Sampling in Chapter IV is used 

in this Chapter as well. Simulations at each of the forty-six DOE points were run for the 

FFI and SIDE scenarios. No OFI responses are included because of problems running the 

necessary DOE simulations. This gives a total of 184 simulations. 

The overall objective of this optimization process is to find a design that 

minimizes weight but does not exceed the baseline response and the limits placed on 

occupant injury criteria by the Federal Motor Vehicle Safety Standards (FMVSS). 

Metamodel tuning results are discussed first followed by discussion of the optimization 
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Table 5.1     Optimized Ensemble Weight Factors (Dummy) 

    FFI   SIDE 

    Int Eng Int Dis Toe  Int Eng Rib Def TTI Pelvis Accel 

St PRS 0 0  0 0 0.06 0 

St GP 0 0.29  0.02 0 0.68 0.2 

St RBF 0 0  0 0 0 0 

St KR 0.75 0.07  0.82 0.83 0.26 0.7 

St SVR 0.25 0.64  0.16 0.17 0 0.1 

Mg PRS 0 0  0 0 0 0 

Mg GP 0 0.3  0 0 0 0.17 

Mg RBF 0.07 0  0 0.015 0 0.11 

Mg KR 0.87 0.61  0.59 0.76 1 0.7 

Mg SVR 0.06 0.09   0.41 0.23 0 0.02 

 

problems. Part thicknesses discussed in Chapter III with the same baseline values and 

limits are used as design variables. 

 

Metamodel Tuning Parameters 

 

Metamodel tuning was performed using the same methods described in Chapter 

IV. An Optimized Ensemble was again created using the tuned base metamodels of the 

six responses by minimizing the GMSE of the ensemble. The weight factors of the 

optimized ensemble are shown in Table 5.1. Kriging and Support Vector Regression are 

the models making up the highest percentage of the ensembles similar to the metamodels 

built without using the dummy model. Radial Basis Function does not contribute to the 

ensembles for any St response. Table 5.2 and 5.3 show the tuned metamodel parameters 

for steel and magnesium, respectively. 

 



63 
 

 

 

 

 

 

 

Table 5.2    Tuned Metamodel Parameters for St (Dummy) 

    FFI   SIDE 

    Int Eng Int Dis Toe  Int Eng Rib Def TTI 

Pelvis 

Accel 

PRS Poly. Degree 1 1  1 1 1 1 

RBF Parameter, c 0.05 1  1 0.05 0.55 1 

  Basis Func, Φ Gauss Multi  Multi Gauss Multi Multi 

KR U.B. θ, c 0.011 0.011  0.1 0.011 0.1 0.1 

 L.B. θ, b 0.001 0.01  0.01 0.001 0.01 0.01 

 Corr. Func. Spher Cubic  Spline Gauss Spline Gauss 

  Reg. Deg. 1 0  0 0 0 0 

SVR c 0.01 0.01  10 0.01 10 10 

  Pen. Par., C 0.1 2  2 2 2 10 

Multi. is Multiquadric  and Spher is Spherical 

Table 5.3    Tuned Metamodel Parameters for Mg (Dummy)  

    FFI   SIDE 

    Int Eng Int Dis Toe  Int Eng Rib Def TTI Pelvis Accel 

PRS Poly. Degree 1 1  1 1 1 1 

RBF Parameter, c 0.05 1  1 0.65 1 1 

  Basis Func, Φ Guass Multi  Multi Multi Multi Multi 

KR U.B. θ, c 0.1 0.011  1 0.011 0.1 0.011 

 L.B. θ, b 0.01 0.001  0.001 0.01 0.001 0.01 

 Corr. Func. Guass Cubic  Exp Spher Spher Cubic 

  Reg. Deg. 0 1  0 0 0 0 

SVR c 10 10  0.01 10 10 0.01 

  Pen. Par., C 10 10  10 0.1 2 2 

Multi. is Multiquadric, Gauss is Gaussian, Exp is Exponential and Spher is Spherical 
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Single-Objective (SO1) Optimization with Baseline Constraints 

 

Weight minimization is the objective of this optimization problem while 

maintaining or improving upon the baseline responses. Both of the steel and magnesium 

models are used with each being compared to its own baseline responses. This is 

formulated as 

                          

    
                             

                                 

                                           

     (5.1) 

where F(x) is the objective function, x is the input vector of 15 design variables,    is the 

jth response predicted by a metamodel, and        is the response of the baseline model 

(material specific). In Eq. (5.1),        is the toeboard intrusion distance, rib deflection, 

TTI, and pelvic acceleration while        represents the internal energy responses. 

This problem was solved using SQP in VisualDOC using six starting points. Total 

mass of the steel parts dropped from 105.2 kg to 98.3 kg. That is a 6.6% reduction. 

Responses predicted by the metamodels during optimization were compared to LS-

DYNA simulation results at the optimum point. Table 5.4 shows percent error of the 

metamodel predictions relative to the simulation results. Percent error for steel was 

around 5% or lower except for Rib Deflection and Toeboard Intrusion. Magnesium 

responses were all at or below 3% except maximum pelvis acceleration which was 7.6%. 

The total number of function calls for this solution, including all starting points, is 1,752 

for steel in seven iterations and 443 for magnesium in eleven iterations. 
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Table 5.4    Metamodel Prediction Error at the SO1 Optimums 

    

St SO1 

MM 

St 

DYNA 

St % from 

DYNA 

Mg SO1 

MM  

Mg 

DYNA 

Mg % from 

DYNA 

FFI Int Eng (kJ) 60.60 57.65 5.12% 61.00 62.8 -2.87% 

  Int Dis Toe (mm) 130.90 114.02 14.80% 224.78 229.16 -1.91% 

SIDE Int Eng (kJ) 19.14 19.14 0.00% 18.61 19.2 -3.10% 

 Rib Def (mm) 42.23 37.61 12.28% 44.47 43.32 2.65% 

 TTI (g's) 60.97 61.32 -0.57% 67.75 68.36 -0.90% 

  Pelvis Accel (g's) 75.85 77.37 -1.96% 60.87 65.88 -7.60% 

 

 

   
(a)       (b) 

 

Figure 5.1     Normalized Design Variables for SO1 Optimums (a) St and (b)  Mg 
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Figure 5.1 shows the normalized design variables at the SO1 optimums. Roof 

(x14) and Suspension Frame (x15) went to the lower bound while Side Rail Extension 

went to its upper bound for the steel SO1 design. None of the design variables reached 

the lower bound for magnesium but Front Bumper (x2), Rear Cabin Floor (x5), and 

Suspension Frame (x15) came close. Cabin Mid Rail (x8) and Outer Side Rail(x11) came 

close to the upper bound. 

Response values at the baseline and SO1 optimum points for both steel and 

magnesium can be found in Table 5.5 along with a percent difference relative to their 
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Table 5.5    Crash Reponses at the SO1 Optimum 

    

St SO1 

opt 

% from 

St Base   
Mg 

SO1 opt 

% from Mg 

Base 

FFI Int Eng 60.60 -5.06%  62.8 2.98% 

  Int Dis Toe 130.90 -12.78%  229.16 -8.63% 

SIDE Int Eng 19.14 -0.10%  19.2 5.84% 

 Rib Def 42.23 -11.00%  43.32 -3.50% 

 TTI 60.97 0.80%  68.36 5.56% 

  Pelvis Accel 75.85 -6.43%  65.88 -15.32% 

 Mass (kg)  98.28 -6.60%   41.42 -3.00% 

 

respective baselines. It should be noted that these responses are the results from the LS-

DYNA simulation at the optimum point found using the metamodels and not the 

metamodel predictions. Steel responses except internal energy FFI improved their crash 

response or stayed the same at the SO1 optimum. All of the magnesium responses 

improved their crash performance except for TTI. 

 

Single-Objective (SO2) Optimization with FMVSS Limit Constraints 

 An optimization problem is now formulated and solved using the FMVSS limits 

as constraints rather than baseline design values. The same responses are used for this 

problem. The objective is to find the lightest design that does not violate the FMVSS 

limits on the SIDE occupant responses. FFI part internal energy and intrusion distance at 

the toeboard as well as SIDE part internal energy are constrained to be the same or better 

than their baseline since there is no FMVSS limit on these responses. The SO2 problem is  

                          

    

                              

             

                                 

                                           

     (5.2) 
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Table 5.6     Metamodel (MM) Prediction Error at the SO2 Optimums 

    

St SO2 

(MM) 

St  SO2 

(DYNA) 

St % from 

(DYNA) 

 Mg SO2 

(MM) 

Mg SO2   

(DYNA) 

Mg % from 

(DYNA) 

FFI Int Eng (kJ) 61.42 59.63 3.00%  60.95 59.65 2.18% 

  Int Dis Toe (mm) 131.02 137.96 -5.03%  249.68 233.6 6.88% 

SIDE Int Eng (kJ) 19.10 19.18 -0.42%  18.15 17.83 1.79% 

 Rib Def (mm) 43.91 45.78 -4.08%  43.38 36.35 19.34% 

 TTI (g's) 66.56 67.19 -0.94%  73.98 78.36 -5.59% 

  Pelvis Accel (g's) 84.61 82.63 2.40%  87.05 89.61 -2.86% 

 

where F(x) is the objective function, x is the input vector of 15 design variables,    is the 

jth response predicted by a metamodel,         is the FMVSS limit on the SIDE 

occupant responses, and        is the response of the baseline model (material specific). 

In Eq. (5.2),        is the rib deflection, TTI, and pelvic acceleration,     is the 

toeboard intrusion distance, and        represents the internal energy responses. 

 SQP in VisualDOC is used to solve this problem using six starting points for steel 

and ten for magnesium. Total mass of the steel parts dropped from 105.2 kg to 94.24 kg 

and from 42.7 kg to 32.2 kg for magnesium. That is a 10.4% and 24.5% reduction for St 

and Mg, respectively. Metamodel prediction error compared to simulation results at the 

optimum point is shown in Table 5.6. Percent errors for steel were at or below 5% but 

higher overall for magnesium. Magnesium rib deflection had an error of 19.3% and 

toeboard intrusion had an error of 6.88%. Other magnesium responses had an error less 

than 6%. The total number of function calls for this solution, including all starting points, 

is 1,178 for steel in seven iterations and 638 for magnesium in seven iterations. 

 Normalized design variables for the steel and magnesium design can be seen in 

Figure 5.2. Seven of the steel design variables reached the lower bound for the SO2 
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(a)       (b) 

Figure 5.2    Normalized Design Variables for SO2 Optimums (a) St and (b) Mg 
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Table 5.7    Crash Reponses at the SO2 Optimums 

    

St SO2 

opt 

% from 

St Base  

Mg SO2 

opt 

% from 

Mg Base 

FFI Int Eng 59.63 -1.80%  59.65 -2.18% 

  Int Dis Toe 137.96 5.54%  233.6 -6.86% 

SIDE Int Eng 19.18 0.10%  17.83 -1.71% 

 Rib Def 45.78 8.33%  36.35 -19.02% 

 TTI 67.19 10.45%  78.36 21.00% 

  Pelvis Accel 82.63 -0.07%  89.61 15.18% 

Mass (kg)  94.24 -10.44%  32.2 -24.59% 

 

optimum. These were A-pillar(s) (x1), Front Bumper (x2), Firewall (x3), Cabin Seat 

Reinforcement (x7), Inner Side Rail (x10), Rear Plate (x14), and Suspension Frame (x15). 

Cabin Mid Rail (x8) and Side Rail Extension (x12) increased to their maximum values.  

For Magnesium the Shotgun(s) (x9), Roof (x14), and Suspension Frame (x15) all went to 

the lower bound while reached the upper bound. Cabin Mid Rail (x8) and Side Rail 

Extension (x12) were the largest relative increase in thickness. 

 Responses for SO2 optimum can be seen in Table 5.7 and are compared to the 

baseline response values. All St responses got worse except SIDE Internal Energy and 
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Pelvis Acceleration which remained the same. Both rib deflection and toeboard intrusion 

for the magnesium design decreased while both TTI and pelvis acceleration increased. 

Both internal energy responses decreased from the baseline value. 

 

Optimization Results Summary 

 SIDE occupant-based responses along with SIDE internal energy and FFI internal 

energy and toeboard intrusion distance were used as responses. Single objective 

optimizations were performed to minimize the weight of the vehicle while maintain the 

baseline crashworthiness (SO1) and then staying below the limits specified in the 

FMVSS for occupant-based responses (SO2). 

 Mass was reduced from 105.23 kg to 98.28 kg for the SO1 case and 94.24 kg for 

the SO2 case using the steel components. Magnesium designs saw a mass reduction from 

42.7 kg to 41.42 for the SO1 case and 32.2 kg for the SO2 case. Table 5.8 shows the 

Table 5.8    Design Variable Summary (Dummy) (thicknesses in mm) 

Part 
Design 

Variable 
St Base Mg Base St SO1 St SO2 

Mg 

SO1 
Mg SO2 

A-Pillar x1 1.611 2.597 1.499 0.806 3.725 1.422 

Front Bump x2 1.956 5.975 1.164 0.978 3.138 3.233 

Firewall x3 0.735 1.072 0.446 0.368 1.181 0.807 

Front Floor Panel x4 0.705 1.136 0.89 0.852 0.837 1.056 

Rear Cabin Floor x5 0.706 1.138 0.624 0.564 0.592 0.610 

Outer Cabin x6 0.829 1.366 0.934 0.912 1.944 0.945 

Cabin Seat Reinf x7 0.682 1.099 0.826 0.341 1.164 0.646 

Cabin Mid Rail x8 1.050 1.692 1.043 1.575 2.529 2.368 

Shotgun x9 1.524 3.620 1.004 1.285 3.171 1.880 

Inner Side Rail x10 1.895 3.966 1.269 0.948 3.480 4.043 

Outer Side Rail x11 1.522 3.186 1.221 2.092 4.686 3.760 

Side Rail Exten. x12 1.895 3.966 2.843 2.843 4.482 5.583 

Rear plate x13 0.710 1.144 0.932 0.890 1.470 0.769 

Roof x14 0.702 1.157 0.352 0.351 0.674 0.600 

Susp. Frame x15 2.606 5.342 1.303 1.303 2.930 2.672 
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values of the design variables at each of the optimum points found in this Chapter. 

Shotgun (x9) thickness was reduced or was at the lower bound just as in Chapter IV 

suggesting the part may be at its energy absorption capacity in these bounds. This may 

also be true for the Suspension Frame (x15). Components such as the Roof (x14) were 

chosen for contributions to vehicle stiffness and provide little energy absorbing capability 

to the vehicle. The Roof thickness was significantly reduced in these designs as a result. 

 The SO optimum designs found in Chapter IV were input into the SIDE dummy 

model to determine what the dummy-based injuries would be using the SO optimum 

found using vehicle-based responses. These results can be seen in Figure 5.3 with the 

SIDE occupant-based responses for each of the designs as well as the FMVSS limits on 

each; mass is also shown for comparison. 

 Figure 5.3    SIDE Occupant-Based Responses and the FMVSS Limits 
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 Rib deflection was larger for the SO (Ch IV) design compared to the designs 

found in this chapter and exceeds the FMVSS limit for both materials. Magnesium TTI at 

SO (Ch IV) was larger than SO1 and SO2 and none of the designs exceeded the FMVSS 

limit. Maximum pelvis acceleration for steel was lowest in the SO1 (Ch IV) design. The 

lowest mass for the steel designs was the SO1 (Ch IV) and SO2 for magnesium. 

 Figure 5.4 shows percent change from the baseline responses of the SIDE 

responses for the six single-objective designs. This figure shows that in general the 

vehicle-based responses (intrusion distance at the door and acceleration at the middle of 

the B-pillar) do not indicate the same percentage change in injury as the dummy-based 

responses. Caution should be used when relying on door intrusion distance and maximum 

acceleration at the B-pillar to estimate injury.  

 
 

 Figure 5.4 Percent Change from Baseline for Vehicle and Dummy Responses.  

 
 MG SO2 y-accel is 163.7% and MG SO (V-B) y-accel is 84.6%. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

 

This thesis used metamodeling and optimization techniques to explore the 

application of a lightweight magnesium alloy for a group of energy absorbing parts in a 

full vehicle model. Studies with and without a dummy model were performed. 

A full-scale Dodge Neon model developed and validated for Full Frontal Impact 

(FFI) at the National Crash Analysis Center (NCAC) was incorporated into Side Impact 

(SIDE) and Offset Frontal Impact (OFI) scenarios without a dummy model. A SIDE 

impact model was then validated with a dummy model. 

Vehicle-based responses from these three scenarios along with selected part mass 

were used as constraints and objectives during design optimization with part thicknesses 

as the design variables. Occupant-based responses from the SIDE model were then 

included. All crash simulations were performed using LS-DYNA finite element solver. 

AZ 31 magnesium alloy was used to replace the baseline steel material in the 

finite element model. Due to the complexity of the failure characteristics of magnesium a 

limit on maximum plastic strain was used as a failure criterion to disable failed elements. 

This material substitution coupled with design optimization reduced the mass of the 

vehicle by approximately 50% of the baseline steel model and maintained or improved 

the crashworthiness for most of the factors considered using the model without the 

dummy. A direct substitution of magnesium for steel using thicknesses defined by 
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maintaining the internal energy absorption does not give the same crash characteristics or 

responses as the steel components.  

Material substitution can change the deformation mode and folding mechanism of 

energy absorbing parts under crash loading as indicated by similar internal energies but 

significantly larger intrusion distances for the models using steel and magnesium 

components. Modification of the cross-sectional geometry as well as other geometric 

attributes should be considered along with the thickness modifications in vehicle design 

optimization using magnesium alloys. 

Dummy-based optimum designs did not show as much of a percentage weight 

decrease as the vehicle-based optimum designs. The single-objective designs for steel and 

magnesium found using vehicle-based responses were compared to the single-objective 

designs found using SIDE dummy-based designs. Vehicle-based designs were simulated 

using the SIDE dummy model. Results show that using vehicle-based design responses 

may be acceptable for some cases but vehicle-based responses do not show the same 

percentage change between multiple designs compared to dummy-based responses. 

Shotgun part thickness was reduced to the lower bound in all of the optimum 

designs. This suggests that this part is at its energy absorbing limit for these bounds and 

increasing part thickness does not necessarily increase energy absorption. This behavior 

was also seen to a lesser extent with the Suspension Frame. Parts such as the Roof were 

chosen as design parts primarily because of their contributions to vehicle stiffness. Roof 

thickness was significantly reduced in all of the designs because of its small contribution 

to energy absorption. Inclusion of vehicle stiffness responses during optimization would 

likely show less weight reduction in the optimized designs. 
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Future work will consider inclusion of vehicle stiffness (as a measure of overall 

rigidity as well as the noise, vibration, and harshness (NVH) characteristic of the vehicle) 

in the design optimization process, improving the accuracy of the vehicle models for 

frontal impact with a dummy model included, adding a microstructure-based material 

model to provide a more representative model of magnesium, and using alternative 

optimization strategies. 
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SAMPLE LS-DYNA (971 R4) KEYWORD INPUT 
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Below is a sample keyword input file for LS-DYNA crash simulations. The first 

keyword file combines different components from separate files. This is done by using 

the *INCLUDE card and allows a modular and changeable configuration. For example 

this file defines a translation and then applies this translation to the loadcell wall. The 

Dodge Neon FE model is then included. Initial velocities are defined for parts in the 

model and rotational velocities are defined for the wheels. The road surface is defined 

using a rigid plate with default contact parameters. 

$# LS-DYNA Keyword file created by LS-PREPOST 2.4 - 19Oct2009(11:13) 

$# Created on Feb-18-2010 (14:23:15) 

*KEYWORD MEMORY=76385103  

*TITLE 

$# title 

FFI_Steel                                                        

*DEFINE_TRANSFORMATION 

$------------------------------------------------------------------------------  

$#  tranid 

      1000 

$# option         a1        a2        a3        a4        a5        a6        a7 

TRANSL         0.000 160.00000     0.000     0.000     0.000     0.000     0.000 

*INCLUDE_TRANSFORM 

$# filename  

loadcellwall.key 

$#  idnoff    ideoff    idpoff    idmoff    idsoff    idfoff    iddoff 

          0            0            0             0           0             0           0 

$#  idroff 

               0 

$#  fctmas    fcttim    fctlen    fcttem   incout1 

        0.000     0.000     0.000     0.000         0 

$#  tranid 

      1000 

*INCLUDE 

$# filename  

FFI_neon0.key 

*INITIAL_VELOCITY_GENERATION 

$#nsid/pid      styp     omega             vx           vy          vz      ivatn 

   2000011         3     0.000      15650.000     0.000     0.000         0 

$#      xc        yc        zc        nx        ny        nz     phase    iridid 

     0.000     0.000     0.000     0.000  1.000000     0.000         0         0 

   2000002         1     0.000 15650.000     0.000     0.000         0 

     0.000     0.000     0.000     0.000  1.000000     0.000         0         0 

   2000003         1 52.200001 15650.000     0.000     0.000         0 

 3689.1899     0.000 300.96301     0.000  1.000000     0.000         0         0 

   2000004         1 52.200001 15650.000     0.000     0.000         0 

 1041.4900     0.000 304.72400     0.000  1.000000     0.000         0         0 

*END 
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The second keyword file included is a small portion of the Dodge Neon model 

used in this study. *CONTROL cards define parameters for various aspects of the model 

such as general shell and solid element properties. Termination time or length of the 

simulation is also controlled, 0.15 is the termination time and in the consistent unit set of 

the model, this is in seconds. *DATABASE cards define the information that will be 

recorded throughout the simulation. Shown here are output cards for global stats, joint 

force, material data, node out, and d3plot with the output timestep dt. The titles are self 

explanatory and d3plot is primarily used for visualizing results in a post-processor such 

as LS-PREPOST. *DATABASE_NODE_HISTORY tells LS-DYNA which nodes to 

output at intervals specified in nodout. 

A *CONTACT definition card is shown next. 

*CONTACT_AUTOMATIC_SINGLE SURFACE is a general contact type used for 

most part interactions in this model. A *PART card and its associated cards are shown 

last. This card defines properties of a part number to which elements are assigned. The 

part material card is shown for one of the design variable parts used in this study. Shell 

element material properties are defined here including thickness (T1, T2, T3, and T4). 

 
$# LS-DYNA Keyword file created by LS-PREPOST 3.0(Beta) - 19Jan2010(14:34) 

$# Created on Mar-29-2010 (13:37:33) 

*KEYWORD   

*TITLE 

$# title 

                                              LS-DYNA keyword deck by LS-PrePost 

$------------------------------------------------------------------------------  

$- This model has been developed by the FHWA/NHTSA National Crash Analysis 

$- Center at The George Washington University.  The FE model is based on a 

$- 1996 Dodge Neon.  The model has been validated to a frontal NCAP test. 

$- 

$- The model is continuously updated to improve its capabilities in 

$- predicting responses in various impact scenarios.  However, the user must 

$- verify his own results.  Neither NCAC, GWU, FHWA or NHTSA assume any 

$- responsibility for the validity, accuracy, or applicability of any results 

$- obtained from this model. 
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$- We ask that NCAC be acknowledged under references for any use of this 

$- FE model resulting in papers and publications. 

$- 

$- Please feel free to contact us with any suggestions, comments, or 

$- questions. 

$- 

$-     Dhafer Marzougui      <dmarzoug@ncac.gwu.edu>    (703) 726-8532 

$-     Pradeep Mohan         <pradeep@ncac.gwu.edu>     (703) 726-8538 

$-     Vinay Nagabhushana    <vinay@ncac.gwu.edu>       (703) 726-8392 

$-     Steve Kan             <cdkan@ncac.gwu.edu>       (703) 726-8511 

$- 

$------------------------------------------------------------------------------  

$- Version 7 

$------------------------------------------------------------------------------  

*CONTROL_SHELL 

$#  wrpang     esort     irnxx    istupd    theory       bwc     miter      proj 

     0.000         1         0         0         0         0         0         0 

$# rotascl    intgrd    lamsht    cstyp6    tshell    nfail1    nfail4   psnfail 

  1.000000         0         0         1         0         0         0         0 

$# psstupd    irquad 

         0         0 

*CONTROL_SOLID 

$#   esort   fmatrix   niptets    swlocl    psfail 

         1         0         0         0         0 

$#   pm1     pm2     pm3     pm4     pm5     pm6     pm7     pm8     pm9    pm10 

       0       0       0       0       0       0       0       0       0       0 

*CONTROL_TERMINATION 

$#  endtim    endcyc     dtmin    endeng    endmas 

  0.150000         0     0.000     0.000     0.000 

*CONTROL_TIMESTEP 

$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm     erode     ms1st 

     0.000     0.000         0 1.1120E-6 -1.112E-6         0         0         0 

$#  dt2msf   dt2mslc     imscl 

     0.000         0         0 

*DATABASE_GLSTAT 

$#      dt    binary      lcur     ioopt 

  0.001000         3         0         1 

*DATABASE_JNTFORC 

$#      dt    binary      lcur     ioopt 

  0.001000         3         0         1 

*DATABASE_MATSUM 

$#      dt    binary      lcur     ioopt 

  0.001000         3         0         1 

*DATABASE_NODOUT 

$#      dt    binary      lcur     ioopt      dthf     binhf 

 1.0000E-4         3         0         1     0.000         0 

*DATABASE_BINARY_D3PLOT 

$#      dt      lcdt      beam     npltc    psetid 

  0.005000         0         0         0         0 

$#   ioopt 

         0 

*DATABASE_HISTORY_NODE_SET 

$#     id1       id2       id3       id4       id5       id6       id7       id8 

   2002000   2002001   2002002   2002003   2002004         0         0         0 

*LOAD_BODY_Z 
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$#    lcid        sf    lciddr        xc        yc        zc       cid 

   2000014  1.000000         0     0.000     0.000     0.000         0 

*CONTACT_AUTOMATIC_SINGLE_SURFACE_ID 

$#     cid                                                                 title 

         1                                                                       

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

   2000001         0         2         0         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

  0.010000  0.005000     0.000     0.000     0.000         0     0.000     0.000 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1     0.000         0     0.000     0.000         0         0         0 

$#  penmax    thkopt    shlthk     snlog      isym     i2d3d    sldthk    sldstf 

     0.000         0         0         0         0         0     0.000     0.000 

$#    igap    ignore    dprfac    dtstif   unused     unused    flangl 

         0         0     0.000     0.000         0         0     0.000 

*SET_PART_LIST 

$#     sid       da1       da2       da3       da4 

   2000001     0.000     0.000     0.000     0.000 

$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8 

   2000154   2000161   2000162   2000172   2000173   2000177   2000178   2000179 

   2000180   2000181   2000183   2000185   2000186   2000187   2000196   2000197 

   2000198   2000199   2000200   2000201   2000202   2000203   2000204   2000205 

 [.....] 

*PART 

$-------------------------------------------------------------------------------  

$# title 

                                                               CH-A-PILLAR-B-O-L 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

   2000310   2000310   2000310         0         0         0         0         0 

*SECTION_SHELL 

$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 

   2000310        16     0.000         3         1         0         0         1 

$#      t1        t2        t3        t4      nloc     marea      idof    edgset 

  1.611000  1.611000  1.611000  1.611000     0.000     0.000     0.000         0 

*MAT_PIECEWISE_LINEAR_PLASTICITY 

$#     mid        ro         e        pr      sigy      etan      fail      tdel 

   2000310 7.8900E-9 2.1000E+5  0.300000 330.00000     0.000     0.000     0.000 

$#       c         p      lcss      lcsr        vp 

 80.000000  4.500000   2000007         0     0.000 

$#    eps1      eps2      eps3      eps4      eps5      eps6      eps7      eps8 

     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

$#     es1       es2       es3       es4       es5       es6       es7       es8 

     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 
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APPENDIX B 

 

 

SAMPLE MATLAB
7.8

 CODES FOR METAMODEL TUNING 
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This MATLAB script tunes metamodel parameters and uses the tuned models to 

build an optimized ensemble with them. A cross-validation GMSE and cross-validation 

average (percent) error for the candidate parameter combinations are calculated. 

Parameter lists defined by the user are parametrically combined to test all possible 

combinations of the input parameters. This can become computationally expensive and a 

type of error minimizations is suggested to enhance parameter tuning. Below is a portion 

of the code for tuning the RBF values. Other metamodels are similar but may have more 

or fewer “for” loops depending on the number of parameters. The metamodel functions 

themselves begin with y_pred_[model name]. The PRS, RBF, and Optimized Ensemble 

codes are shown following the tuning code portion. GP, KR, and SVR toolboxes 

developed by Rasmussen and Williams
25

 , Lophaven et al.
26

 , and Gunn
27

 , respectively. 

In the code below, the DOE points and responses are imported into matrices “dsgnvar” 

and “y”, respectively. 

 

% Determine: N = number of DOE points, Ndv = number of design 

variables, 
% res = number of responses, and Nm = number of metamodels used in the 
% ensemble. 
N = size(dsgnvar,1); 
Ndv = size(dsgnvar,2); 
res = size(y,2); 
Nm = 5; 

 
% Normalize each design variable to a range of 0 to 1 
x_norm = dsgnvar./(ones(N,1)*(max(dsgnvar,[],1))); 

  
%%%%% Begin Metamodel Tuning %%%% 

 
%%% Tune Radial Basis Function (RBF) %%%% 
i = 0; 
% parameters are choice = radial basis function and c = constant param. 
for choice = 1:4         % baseline = 3(multiquadric) 
    for c = 0.05:0.05:1; % baseline = 1 
        i = i + 1; 
        % creating cross-validation Metamodels 
        for k = 1:N 
            x_in = x_norm; 
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            y_in = y; 
            x_in(k,:) = []; 
            y_in(k,:) = []; 
            for r = 1:res 
               y_rbf(k,r)=get_ypred_rbfA(x_in,y_in(:,r),x_norm(k,:),... 
                Ndv,c,choice); 
            end     
        end 
        %calculating error 
        diffRBF = y - y_rbf; 
        avg_err_rbf(i,:) = sum(abs(diffRBF).*100./y)./N; 
        gmse_rbf(i,:) = sum(diffRBF.^2)./N; 
        tune_param_rbf(i,1) = choice; 
        tune_param_rbf(i,2) = c; 
    end 
end 
% Finding RBF paramters with lowest average error and GMSE. 
[aeRBF,IRBF] = min(avg_err_rbf); 
[gmRBF,IRBFg] = min(gmse_rbf); 
param_min_rbf(1,:) = tune_param_rbf(IRBF,1)'; 
param_min_rbf(2,:) = tune_param_rbf(IRBF,2)'; 
param_min_rbfg(1,:) = tune_param_rbf(IRBFg,1)'; 
param_min_rbfg(2,:) = tune_param_rbf(IRBFg,2)'; 

  
% creating metamodel responses for ensemble using tuned parameters 
for k = 1:N 
    x_in = x_norm; 
    y_in = y; 
    x_in(k,:) = []; 
    y_in(k,:) = []; 
    for r = 1:res 
        y_rbf(k,r) = get_ypred_rbfA(x_in,y_in(:,r),x_norm(k,:),... 
            Ndv,param_min_rbf(2,r),param_min_rbf(1,r)); 
        y_rbfg(k,r) = get_ypred_rbfA(x_in,y_in(:,r),x_norm(k,:),... 
            Ndv,param_min_rbfg(2,r),param_min_rbfg(1,r)); 
    end 
end 

  
%initializing 
y_pred_ens = ones(N,Nm,res); y_pred_ensg = ones(N,Nm,res); 
% collecint tuning parameters for each response 
param_ens = [param_min_prs; param_min_rbf(2,:);... 
    param_min_rbf(1,:); param_min_kr(2,:); param_min_kr(1,:);... 
    param_min_kr(3,:);param_min_kr(4,:);param_min_svr(1,:);... 
    param_min_svr(2,:);param_min_svr(3,:);param_min_svr(4,:)]; 
param_ensg = [param_min_prsg; param_min_rbfg(2,:);... 
    param_min_rbfg(1,:); param_min_krg(2,:);... 
    param_min_krg(1,:);param_min_krg(3,:);... 
    param_min_krg(4,:);param_min_svrg(1,:); ... 
    param_min_svrg(2,:);param_min_svrg(3,:);param_min_svrg(4,:)]; 

  
% creating a 3-D matrix to store metamodel predictions at each DOE 

point 
% for each response. 
y_pred_ensall(:,1,:) = reshape(y_prs,N,1,res); 
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y_pred_ensall(:,2,:) = reshape(y_gp,N,1,res); 
y_pred_ensall(:,3,:) = reshape(y_rbf,N,1,res); 
y_pred_ensall(:,4,:) = reshape(y_krig,N,1,res); 
y_pred_ensall(:,5,:) = reshape(y_svr,N,1,res); 

  
y_pred_ensallg(:,1,:) = reshape(y_prsg,N,1,res); 
y_pred_ensallg(:,2,:) = reshape(y_gp,N,1,res); 
y_pred_ensallg(:,3,:) = reshape(y_rbfg,N,1,res); 
y_pred_ensallg(:,4,:) = reshape(y_krigg,N,1,res); 
y_pred_ensallg(:,5,:) = reshape(y_svrg,N,1,res); 

  
w_v = zeros(res,Nm); 
w_vg = zeros(res,Nm); 
% determine the weight factors and ensemble predictions for each 

response 
for kk = 1:res 
    y_pred = y_pred_ensall(:,:,kk); 
    y_in = y(:,kk); 
    [y_ens(:,kk),w_v(kk,:)] = ensemble_valid(y_in,y_pred); 
    y_predg = y_pred_ensallg(:,:,kk); 
    [y_ensg(:,kk),w_vg(kk,:)] = ensemble_validg(y_in,y_predg); 
end 

  
% Calculate Ensemble Error 
diff_ens = y - y_ens; 
diff_ensg = y - y_ensg; 
avg_err_ens = sum(abs(diff_ens).*100./y)./N; 
gmse_ens = sum(diff_ensg.^2)./N; 

  
% Collect Errors for each metamodel 
avg_err_all = [aeprs; avg_err_gp; aeRBF; aeKR; aeSVR; avg_err_ens]; 
gmse_all = [gmprs; gmse_gp; gmRBF; gmKR;gmSVR; gmse_ens]; 

  
% Save and write results 
save tunemetamodel_MGall_May30 
csvwrite('MG_bestparam_ae_5-30.csv', [param_ens;w_v']) 
csvwrite('MG_bestparam_gm_5-30.csv', [param_ensg;w_vg']) 

 

 

RBF metamodel… 

 
function [y_pred,lambda] = get_ypred_rbf(x,y,x_test,nvar,c,choice) 
 

%x is training points, y is function value at training points, x_test 

is test or prediction point, nvar is number of design variables  
% choice: 1=thin-plate, 2=gaussian, 3=multiquadric, 4=inverse 

multiquadric, 5=inverse multiquadric sqrt 

  
 % c: constant used in RBF formulation 

  
n = size(x,1);  % training 
n_test = size(x_test,1);  % test 

  
% Define matrix A 
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for i=1:n 
    for j=1:n 
        xj=x(j,:); 
        xi=x(i,:); 
        r=norm(xj-xi); 
        phi = get_phi(r,c,choice); 
        A(i,j) = phi; 
    end 
end 

  
% Solve for lambda 
lambda = A\y; 

  
% Calculate the error at test points 
for j = 1:n_test 
    y_pred(j,1) = 0; 
    xj = x_test(j,:); 
    for i = 1:n 
        xi = x(i,:); 
        r = norm(xj-xi); 
        phi = get_phi(r,c,choice); 
        y_pred(j,1)=y_pred(j,1)+lambda(i)*phi; 
    end 
end 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
function phi = get_phi(r,c,choice) 
% choice: 1=thin-plate, 2=gaussian, 3=multiquadric, 4=inverse 

multiquadric 
if choice == 1 
    if r==0 
        phi = 0; 
    else 
        phi = r^2*log(c*r^2); 
    end 
elseif choice == 2 
    phi = exp(-c*r^2); 
elseif choice == 3 
    phi = sqrt(r^2+c^2); 
elseif choice == 4 
    phi = 1/sqrt(r^2+c^2); 
elseif choice == 5  
    phi = c*r; 
elseif choice == 6 
    phi = (c+r)^3; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

 

PRS metamodel… 

 
function y_pred = get_ypred_prs(x,y,x_test,nvar,npoly) 
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%x is training points, y is function value at training points, x_test 

is test or prediction point, nvar is number of design variables  

 

% npoly is degree of the polynomial 

 
[X, nbeta1] = create_X_matrix(x, nvar, npoly); 
b = X\y;   % solve for the coefficients 

  
% now make predictions 
[Xt, nbeta1] = create_X_matrix(x_test, nvar, npoly); 
y_pred = Xt*b; 

  
% Create X matrix 
function [X, nbeta1] = create_X_matrix(vrn, nvar, npoly) 
n_term = 1; 
n_beta(1) = 1; 
for i=1:10 
    n_term = n_term*(nvar+i); %Number of terms in the response surface 

for nvar variable problem 
    n_beta(i+1) = n_term/factorial(i); 
end 
nbeta1 = n_beta(npoly+1); 

  
[ndata,n] = size(vrn); 

  
%Create X 
X(:,1) = ones(ndata,1); 
X = [X vrn]; 
X1 = vrn; 
nc1 = nvar; 
n_loc = [1:nvar]; 
n_loc1 = 1; 
for i = 2:npoly 
    [nr,nc]=size(X1); 
    clear X2; 
    ctr=1; 
    for k=1:nvar 
        l_ctr = 0; 
        for j=n_loc(k):nc 
            X2(:,ctr) = vrn(:,k).*X1(:,j); 
            ctr = ctr+1; 
            l_ctr = l_ctr+1; 
        end 
        n_loc1(k+1)=l_ctr + n_loc1(k); 
    end 
    nc1 = nc; 
    X = [X X2]; 
    X1 = X2; 
    n_loc = n_loc1; 
end 
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