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The main goal of this research is to investigate vulnerability of levees to future 

slump slides. In the first part, polarimetric synthetic aperture radar (PolSAR) imagery is 

used as input in an automated classification system for characterizing areas on the levee 

having anomalies. In addition, a set of in-situ soil data is collected to provide detailed soil 

properties over the study area. In-situ soil properties of different classes characterized by 

the classifier are analyzed to determine how similarities between different areas. The 

second part, a database including of 34 slump slides that occurred in the lower 

Mississippi River levee system over a period of two years is used. The impacts of rainfall 

as well as several spatial geometrical and geomorphological variables (including channel 

width, river sinuosity index, riverbank erosion, channel shape condition and distance to 

river) are analyzed and tested for significance and used for developing a logistic 

regression model. 
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CHAPTER I 

INTRODUCTION 

Background 

Over 160,000 km of federal and non-federal earthen levees provide flood 

protection in different regions of the United States (CRS, 2011). Failure of levees due to 

natural hazards such as floods or earthquakes causes catastrophic damage and loss of life. 

Various phenomena may lead to levee breach including: overtopping, sand boils and 

hydraulic soil failure and loss of levee stability (Bogardi & Mathe, 1968). Erosion of 

levees due to seepage through the body, seepage under the levee body (i.e., 

underseepage), or saturation of materials in the levee body and loss of soil stability are 

considered as structural failure. Erosion in levees with cohesive soils may occur due to 

existence of cracks and/or hydraulic fractures caused by differential settlement during 

construction or operation, and/or low stresses near conduits or due to high level 

desiccation in the fill (Fell & Fry, 2013). Among different modes of failure in levees, 

seepage and underseepage are crucial factors for distress conditions. They can negatively 

affect slope stability by reducing effective stresses in the levee body and foundation soil 

(Bhowmik et al., 1994; Flor et al., 2010). 

On the other hand, less severe events such as slump slides can also threaten the 

integrity of levees. Slump slides are relatively shallow surficial instabilities on the river-

side of levees which usually occur after a heavy rainfall with a long period of drying 



 

2 

(Sills, 1983). This cycle of wetting and drying reduces the soil strength, and the excess 

water triggers the slump slide (Hossain et al., 2006). Such slump slides occur frequently 

along the Mississippi River levees.   

Objectives 

The main objective of the study outlined in this research is to investigate methods 

that can be used to identify high risk and vulnerable areas to future slump slides on levees 

in order to take immediate protective actions, closer monitoring and early response under 

emergency conditions. 

The first goal of this research is to improve the accuracy of the current levee 

monitoring system by validating the potential of a remote sensing-based model for 

detecting slump slide failures. To accomplish this task, the imagery acquired by the 

NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) from January 

25, 2010 was used as an input in the Reed-Xiaoli Detector (RXD) classifier algorithm 

(Reed and Yu, 1990) along with in situ measurements of a variety of soil properties. 

While the automated classification system correctly identified the location of active 

slides, there were some points, referred to as “false positive points”, which were 

classified as anomalous but no failure was found at those locations. The goal was to 

investigate the vulnerability of false positive points from this unsupervised levee slump 

slide classifier to future failures by comparing in-situ soil properties of the false positive 

points with those of true positive points (i.e., the slide area) and true negatives (i.e., the 

healthy areas) to determine how similar they are to either the healthy or slide areas. 

The second goal of this research is to investigate the relevance and importance of 

rainfall and various geometrical and geomorphological factors to the vulnerability of 



 

3 

earthen levees to slump slides using a dataset from 34 slump slides that occurred in the 

lower Mississippi River levee system over a period of two years. To accomplish this task, 

monthly and cumulative monthly precipitation are plotted for each slump slide to 

qualitatively test the importance of rainfall gradient in the ultimate slump slide failure. In 

addition, multiple spatial variables, including channel width, river sinuosity index, 

riverbank erosion, channel shape condition and distance to river are used in a logistic 

regression model to investigate their impact on slump slide occurrence on levees. 

Scope 

The first part of this research examines false positive points by comparing their 

soil properties with those of the active slump slide and healthy areas on a 1.7 km long 

levee system of the Lower Mississippi River to investigate if they have any similarity to 

either of these areas. Any slope stability analysis for suspected areas as well as huge 

levee failure analysis is beyond the scope of this work. 

In the second part, the relevance and importance of rainfall and various 

geometrical and geomorphological factors are investigated to the vulnerability of more 

than 170 km of Lower Mississippi River levee system to slump slides. The study is 

performed using data from 34 slump slides that occurred in the lower Mississippi River 

levee system over a time period of two years. The scope of this part includes conducting 

qualitative analysis of monthly rainfall and performing a set of logistic regression 

analyses to find the relevance of five factors including channel width, channel sinuosity 

index, riverbank erosion, channel shape condition and distance to river.  
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Contribution 

This study is implemented on the main levee system of the Lower Mississippi 

River. The major contributions from this research are: 

The errors from a classifier’s output known as “errors of commission” or “false 

positive points” are validated by analyzing soil properties on the levee, and the results 

indicate further attention and monitoring at the locations with a high spatial density of 

false positive points are strongly recommended. 

The effects of monthly rainfall in the six months prior to the slump slide events 

are studied. Moreover, the importance of geological and geomorphological parameters on 

the vulnerability of levees to slump slide is analyzed; low channel width and riverbank 

erosion are found to be high risk areas for slump slide vulnerability on levees in this 

study area. 
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USING IN SITU SOIL MEASUREMENTS FOR ANALYSIS OF A POLARIMETRIC 

SAR-BASED CLASSIFICATION OF LEVEE SLUMP SLIDES IN THE LOWER 

MISSISSIPPI RIVER 

Introduction 

Over 160,000 km of federal and non-federal earthen levees provide flood 

protection in different regions of the United States (CRS 2011). Failure of levees due to 

natural hazards such as floods or earthquakes causes catastrophic damage and loss of life. 

In the United States, among 744 levees that were listed in the National Levee Database 

(NDL) only 10% were rated “acceptable” which means the levee was found in 

“satisfactory condition”. The rest were rated “minimally acceptable” (79%) or 

“unacceptable” (11%) indicating the levee has a minor deficiency or the levee cannot 

serve as a reliable flood protection structure, respectively (Maciag, 2011). Many of these 

unacceptable-rated levees are almost 70 years old (NRC, 2012). Catastrophic failures of 

levees in the Midwest and along the Mississippi River and in New Orleans during 

hurricane Katrina are examples of this problem. Even after spending over $14 billion 

dollars on raising, reconstructing and reinforcing levees in the New Orleans area, the U.S. 

Army Corps of Engineers (USACE) admits that the new system still may not fully protect 

New Orleans against future events (Reid, 2013).  
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As demonstrated in Fig. 1, various phenomena may lead to levee failure 

including: overtopping, sand boils and hydraulic soil failure and loss of levee stability 

(Bogardi & Mathe, 1968). Erosion of levees due to seepage through the body, seepage 

under the levee body (i.e., underseepage), or saturation of materials in the levee body and 

loss of soil stability are considered as structural failure. Slump slides are relatively 

shallow surficial failures in levees which occur usually after a heavy rainfall with a long 

period of drying (Sills, 1983). Moisture retention and then the wet-dry cycle decrease soil 

suction and reduce soil shear strength which can lead to slump slide occurrence. Erosion 

in levees with cohesive soils may occur due to existence of cracks and/or hydraulic 

fractures caused by differential settlement during construction or operation, and/or low 

stresses near conduits or due to high level desiccation in the fill (Fell & Fry, 2013). 

Among different modes of failure in levees, seepage and underseepage are crucial factors 

for distress conditions. They can negatively affect slope stability by reducing effective 

stresses in the levee body and foundation soil (Bhowmik et al., 1994; Flor et al., 2010). 

 

Figure 1 Conceptual levee failure mechanisms (after Bogardi and Mathe, 1968) 
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Significant attempts have been made in the last few years to enhance the 

knowledge of levee monitoring including the development of real-time in situ monitoring 

systems (e.g., Abdoun, et al., 2013), multi-scale monitoring techniques to provide early 

warning of distress and degradation (e.g., Zeghal et al., 2013), large scale remote-sensing 

based models (e.g., Aanstoos et al., 2012; Lv et al., 2013). A remote-sensing-based tool 

for early detection that can identify weak areas and impending failures could be an 

effective key to a more cost-effective monitoring system for levees (Lv et al., 2013).  

An extensive research project for screening levees and detecting vulnerabilities by 

utilizing air-borne and space-borne synthetic aperture radar (SAR) systems was recently 

completed at Mississippi State University (Aanstoos et al., 2012). The main objectives of 

that project were developing a set of features and a number of automated supervised and 

unsupervised classifiers to apply to radar imagery in order to identify sections of levees 

vulnerable to failure. One unsupervised classification method tested was the algorithm 

proposed by Irving Reed and Xiaoli Yu (Reed and Yu, 1990), which is referred to as the 

Reed-Xiaoli Detector (RXD) algorithm. The RXD method is capable of detecting the 

presence of optical signal patterns and finds targets that have spectrally different 

signatures from their surroundings (Reed and Yu 1990, Chang and Chiang, 2002). After 

running the RXD-based classifier, sites that were recognized as vulnerable areas were 

visited to see if they would be of concern to levee managers. Site visits concluded that the 

classifier was able to correctly identify the location of the only active slump slide at the 

time of the radar image acquisition. However the classifier’s output included some 

commission errors meaning that based on visual inspections, some areas detected by the 

classifier as anomalies were within apparently healthy areas of levee (i.e., areas where no 
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slope failures were observed). This type of error is referred to as a “false positive”. Site 

visits revealed that the vegetation type for many of these false positive points was 

different from that of the healthy areas (Aanstoos et al., 2012).  

The main objective of this study is to examine these false positive points by 

comparing their soil properties with those of the active slide and healthy areas to find out 

if they have any similarity to either of these areas. To accomplish this task, imagery 

acquired by the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 

was used along with in situ measurements of a variety of soil properties. Investigation of 

the vulnerability of false positive points can help levee managers to find high risk areas 

on levees before occurrence of major failures. 

Study area 

The Mississippi river is approximately 3,766 km long and its basin covers more 

than 3,224,000 km2 that includes all or some parts of 31 states in the United States and 

two Canadian provinces. From the confluence of the Mississippi River with the Ohio 

River to the Gulf of Mexico where it disembogues is called Lower Mississippi River. The 

1.7 km long study area focuses on the mainline levee system on the east side of Lower 

Mississippi River, north of Vicksburg, Mississippi (Fig. 2). The pertinent georeferenced 

layers used in the study and analyses have been masked by an approximately 40-meter 

wide buffer from the levee center line. This study area was selected to support the 

investigation of the use of remotely sensed data to analyze physical factors that may 

indicate slump slides on the river side of levee.  
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Figure 2 (a) Location of the study area in USA river map, (b) Polarimetric 
UAVSAR image of a part of Lower Mississippi river, (c) Levee system 
colored with yellow, and study area colored with red 

 

Soil properties 

An extensive set of in situ tests was conducted by C3 Consulting, LLC to collect 

various soil properties from the top 120 cm of soil over the entire study area. Information 

about soil texture, penetration resistance, hydraulic conductivity and moisture content 

were obtained. These soil properties were selected because of their relevance to earthen 

levee failure mechanisms. 

The main sensor platform that was used to derive soil properties was a hydraulic 

push system (Fig. 3(a)). The system has a probe with different sensors that can be pushed 

into the ground with a push system and an onboard computer that runs the data 

acquisition and analysis software simultaneously. The geophysical probe is pushed into 

the ground to collect continuous data streams for tip resistance, moisture content and 

electrical conductivity. The miniaturized cone penetrometer which was used has a 

diameter of 3.175 cm, surface area of 10 cm2 and cone angle of 60º (Fig. 3(b)). This 
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penetrometer was integrated with resistivity and moisture sensors which collected data on 

tip resistance, resistivity to electric current and soil compactness in increments of one 

centimeter to a depth of 120 cm. In order to supplement and verify the data obtained by 

the cone penetrometer and sensors and to obtain texture information, soil core sampling 

was performed to the depth of 120 cm at nearly 15 cm away from each penetration 

location. The whole sensor platform was used in conjunction with a real-time kinematic 

GPS unit to evaluate spatial variability of soil and topography across the study area. 

 

Figure 3 (a) Sensor platform in conjunction with an all-terrain vehicle-mounted. (b) 
Schematic view of cone penetrometer 

 

The soil profile was broken into surface and subsurface layers. Omitting the top 7 

cm of soil to ignore effects of anthropogenic activities, the surface layer was specified as 

extending from that level to the depth of 30 to 45 cm. The subsurface layer was specified 

from the bottom of the surface layer down to the depth of 120 cm. This depth interval 
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(top 120 cm) is suitable for the purpose of the current study which focuses on slump 

slides (i.e., relatively surficial failures). Moreover, L-band radar, which was used in this 

study, achieves one of the deepest penetration depths among radar bands but cannot 

penetrate the soil to more than a few cm depths. Any deeper signs of instability would not 

be directly observable by the radar, but they might have some correlation with surface 

anomalies. These correlations might be related to such phenomenon as small surface 

deformations, surface cracking and resulting drainage patterns, and common soil textures 

resulting from construction methods. 

The data collected from the cone, sensors and soil corings were then integrated to 

map the soil properties and to generate raster layers showing the spatial distribution of 

each soil parameter of interest over the study area (Grunwald et al., 2001a). 67 data 

points in an area of about 26,400 m2 were collected resulting in a penetrometer density of 

1 per 394 m2. At each point of measurement and in the vertical direction (i.e., along the 

depth), the geotechnical data was a continuous vertical transect from penetrometers and 

soil core samples. The average of measured values in each layer was selected as the 

representing soil property for that layer in the vertical direction. Then raster layers were 

created using the 2-D Kriging interpolation technique (Grunwald et al., 2001b). The 

spatial distribution of the measured data points was designed to uniformly cover different 

zones (healthy, slide, false positives) within the entire study area. It should be noted that 

using interpolated soil property maps may induce some uncertainties that can influence 

the results/conclusions. However, this is an inherent limitation associated with any 

analysis conducted using interpolated data. In the current study, using interpolated maps 

was inevitable considering the regional-scale of study and the raster-based nature of 
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analyses. The possible impact of using interpolated data was minimized by uniformly 

distributing measured points and by employing a robust interpolation technique. Soil 

mapping and the pertinent discussions are beyond the scope of this study and further 

details in this regard can be found in Grunwald et al. (2001b). The raster layers were 

suitable for performing regional scale analyses with ArcGIS. The pixel size of the soil 

properties raster layers was 1m × 1m.  

The texture of the soil can be an indicator of vulnerability of the system to erosion 

(Fell & Fry, 2013). According to the USDA (United States Department of Agriculture) 

Textural Soil Classification (USDA, 1987), the soil in the study area consists of more 

than 55% clay and less than 25% sand. Clay and sand fraction distribution maps for the 

surface layer over the study area are shown in Fig. 4(a) and 4(b), respectively. Clay 

fraction for the surface layer varies between 56.1% and 64.6%.Sand fraction for the 

surface layer varies between 13.3% and 22.2%. 
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Figure 4 Soil texture for the surface layer. (a) Clay fraction (%) and (b) sand fraction 
(%). 

 

The distribution of cone tip resistance over the study area is shown in Fig. 5(a). 

Cone index (CI) is the required force per unit area that is needed to push the cone 

penetrometer into a specific depth of soil (Grunwald et al., 2001a). Penetration resistance 

is the response signal from various soil properties such as texture, strength and 

compaction, moisture content, bulk density, etc. (Grunwald, 2006). Cone tip resistance 

for the surface layer varies between 917.5 kPa to 1,658.9 kPa. 

Hydraulic conductivity is the amount of flow per unit area and is directly 

proportional to seepage velocity and is a key factor for seepage analysis. The distribution 

of hydraulic conductivity for the surface layer is shown in Fig. 5(b). Hydraulic 

conductivity for the surface layer varies between 0.18 cm/h to 0.22 cm/h. 

When water soaks into soil structure, it lowers the strength by lessening cohesion 

(Cedergren, 1989); hence moisture content is an important parameter in stability of 



 

14 

levees. The distribution of moisture content for the surface layer over the study area is 

shown in Fig. 5(c). The moisture content in the surface layer varies between 32% and 

46.3%. 

 

Figure 5 Soil properties for the surface layer. (a) Cone tip resistance (kPa), (b) 
hydraulic conductivity (cm/h), and (c) moisture content (%). 

 

Similar raster layers were created for each soil parameter of interest for the 

subsurface layer but are not shown due to space limitation. However, statistics of the 

parameters for the subsurface layer are presented and discussed in the next sections.  

Radar data, preprocessing and classification 

In this project, a UAVSAR image acquired on January 25, 2010 was used. 

UAVSAR is a polarimetric L-band SAR. It was designed to obtain airborne repeat track 

SAR data for differential interferometric measurements (Rosen 2006). Providing spatially 

continuous data suitable for ground surface feature extraction in digital format, and 
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covering large areas with low costs are the main advantages of interferometric SAR in 

comparison to GPS surveying and photogrammetric methods (e.g., Colesanti and 

Wasowski 2006).  

The radar is fully polarimetric, with a range bandwidth of 80 MHz and 1.8 m 

resolution. To acquire the radar imagery for this study, the flight was flown in a racetrack 

pattern looking towards the river from opposite directions to achieve a range of local 

incidence angles along the levees from which we could choose the best for our purposes. 

Although the raw ground sample distance is 1.6 by 0.6 m, we used multi-look 5 by 7 m 

data to minimize speckle effects. The radar data were already processed with a multi-

look-based speckle reduction method by JPL (Aanstoos et al. 2012). The incidence angle 

of the radar beam varied across the image swath from 25 to 60 degrees. The net local 

incidence angle was further modified by the slope and orientation of the levee. The 

preprocessing of the radar data included adjustments for terrain based on an elevation 

map. However, variations in incidence angle can affect how backscatter magnitude 

depends on surface roughness. To minimize this effect for this study, the study area was 

limited to a segment of levee with a constant orientation and slope. Table 1 summarizes 

the key UAVSAR parameters.  
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Table 1 Key UAVSAR instrument parameters 

Parameter  Value 
Frequency  L-band 
Bandwidth  80 MHZ 
Azimuth steering  > ± 20° 
Range Resolution  1.8 m 
Polarization  Full Quad-Polarization 
Raw ADC Bits  12 baseline 
Waveform  Nominal Chirp/Arbitrary Waveform 
Antenna Dimensions  0.5 m range/1.5 azimuth 
Power  > 2.0 kW 
Polarization Isolation  <-20 dB 

 

Image classification is an important step in image analysis. However, before this 

step, feature extraction must be implemented. The map classification procedure is 

illustrated in Fig. 6. Features are statistical characteristics of image data. In the study 

area, surface roughness is a property that can be used to distinguish slump slide locations. 

Surface roughness is the terrain property that most strongly influences the strength of 

radar backscatter (Jensen 2007). Therefore a feature that correlates well to the surface 

roughness was applied to the classifier: the low frequency sub-bands of the discrete 

wavelet transform. 
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Figure 6 The process of map classification from UAVSAR imagery in the study 
area. 

 

Image classification is the process of assigning classes to component pixels of an 

image in a way that pixels within a class are more similar than pixels in other classes 

(Campbell, 2007). Figure 7(a) shows the UAVSAR image for the study area before 

applying the classifier.  Based on the characteristics of the image over the study area, the 

RXD algorithm was used for classification. It is a training-free unsupervised classifier 

and is commonly used as a benchmark for anomaly detection purposes. It is fast and has 

been successfully utilized to detect anomalies of multispectral images (e.g., Ashton and 

Schaum, 1998, Stellman et al., 2000). The algorithm calculates the Mahalanobis distance 

from the test pixels to the mean of the background pixels. If L is the number of features, r 

is a L × 1-column pixel vector of the image, then the RXD method implements a filter 

specified by 
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 δRXD (r) = (r – μ)T KL×L
−1  (r – μ) (1) 

where μ is the global sample mean and KL×L is the sample covariance matrix of 

the image. Using the backscatter magnitudes of the horizontal and vertical co-polarized 

channels (HH and VV) from the radar data along with the discrete wavelet transform 

resulted in 8 features in the current study. For computation purposes, we used a window 

size of 4  4 pixels, and computed the wavelet coefficients for both HH and VV channels. 

The output generated by RXD is a grayscale image. The larger the gray values of the 

pixels, the more anomalous the pixels would be. For visualization purposes, ranges of 

values of the output are often color-coded.  

Based on the available field data and field visits, the location of the slide was 

known before the classifier detected it as an anomaly. Therefore the geometry of the slide 

was drawn using ERDAS Imagine (software with raster graphics editing capabilities) 

based on the data collected from field visits as well as several aerial photos from the 

study area. The location of the slide that was detected by the classifier is shown in Fig. 

7(b) and is at the southern end of the study area. The slide dimensions were provided by 

the Mississippi Levee Board. It was about 61 m long and 2.43 m deep. The depth was 

measured from the height of the scarp/wall from the top of the unbroken land (also called 

crown) down to the slide debris. The width varied in length from less than 7 m to 36 m. 

After running the classifier, it was concluded that the classifier was able to 

correctly identify the slide location since the pixels in that area had higher values of 

normalized Mahalanobis distance.  A histogram for the normalized Mahalanobis values 

in the slide region was plotted to see their distribution in this area. Quantitative 

assessment of soil properties for the different segments identified by the anomaly 
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detection algorithm requires applying a threshold to the pixel values of the classifier’s 

output. Various threshold values were examined with the goal of maximizing the 

percentage of true positives (i.e., slide pixels detected) and minimizing the percentage of 

false positives. A threshold of 0.002 was chosen which resulted in over 90% true 

positives and less than 20% false positives. RXD is an unsupervised classifier resulting in 

grayscale images and the detection of anomalies is usually carried out through visual 

inspection (Chang and Chiang, 2002). The purpose of selecting a threshold in this study 

was to segment the study area for post-analysis that could inform the design of a more 

robust classifier in the future. The use of all of the “ground truth” data (in this case the 

pixels of the only active slide in the study area) to guide the selection of a threshold 

should not be confused with the testing of a classifier for accuracy – for such purposes it 

would not be statistically sound to use the same data for “training” and “testing”. We 

make no quantitative statement about the accuracy of the RXD method as a slide 

classifier. Based on the chosen threshold, regions with values less than the threshold were 

called “healthy area” and the regions with values greater than the threshold were called 

“anomalous pixels” (Dabbiru et al., 2012). As shown in Fig. 7(b), among the anomalous 

pixels, the classifier’s output included some false positive points which means that some 

detected targets classified as anomalous pixels actually appeared healthy in site visits and 

no visible slide was noticed in that time within those areas.  
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Figure 7 (a) UAVSAR image over lower part of study area. (b) Classified map with 
RX anomaly detector showing normalized Mahalanobis distances for the 
study area. 

 

What brought our attention to these false positive points were two facts. First, as 

noted earlier, site visits showed that the vegetation type for many of these false positive 

points was different from the grass that was covering most of the healthy areas (Aanstoos 

et al., 2012). Second, after the time of the UAVSAR flight, cracks appeared and 

vegetation became stressed in the location of some of these false positive points. 

Therefore we decided to analyze different soil properties of these false positive points 

and compare them with that of the slide and healthy areas to see if there may be an 

increased potential for false positives to slide 

The lack of ability for discriminating the detected targets from another is known 

as a disadvantage for anomaly detectors (e.g., Chang and Chiang, 2002). This 

disadvantage of anomaly detection is mitigated in this study by the fact that the targets 

are on man-made levees which are designed to be quite homogeneous. Therefore, any 
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significant anomalies have a high likelihood of being at least areas of interest to levee 

inspectors. 

Comparison of in situ data for false positive points, slide, and healthy areas 

Most remote sensing land use classification studies are based on pixel information 

(Castillejo-González et al. 2009). Therefore in order to investigate the vulnerability of the 

false positive points to future slump slides, per-pixel statistical analyses were included 

when examining the distribution of five relevant soil parameters and comparing these 

from the slide and healthy areas. The size of the pixels in the classifier’s output was 5.5 

m × 5.5 m. In total, the classifier’s output included 1,633 pixels of which 67 pixels 

corresponded to the slide area (true positives), and 317 pixels corresponded to the false 

positive pixels.  

The first method of analysis was performed by pixel-based comparison of soil 

data for all false positive pixels with that for all pixels of the slide and healthy areas. 

However, when the spatial resolution increases, the intraclass spectral variability 

increases as well and finally, the classification performance decreases (Castillejo-

González et al., 2009). So a second method of analysis, object-based comparison, was 

also used in which regions containing a high density of false positives were analyzed. 

The two zones shown in Fig. 8(b) labeled as FP1 and FP2 were selected for this object-

based method. They both have similar shapes and geometry to the slide area. Our field 

visits and the report of previous slide occurrences provided by the Mississippi Levee 

Board revealed that FP2 is a repaired slide. This object-based analysis was conducted to 

specifically compare soil properties of these dense false positive zones with the slide and 

http://www.sciencedirect.com/science/article/pii/S0168169909000982
http://www.sciencedirect.com/science/article/pii/S0168169909000982
http://www.sciencedirect.com/science/article/pii/S0168169909000982
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healthy areas. The results from each analysis method are presented and discussed 

separately in the following sections.  

 

Figure 8 (a) Location of the slide and (b) dense false positive zones of FP1 and FP2 
(legend shows normalized Mahalanobis distances for the study area). 

 

Method 1: Pixel-based comparison of false positives, healthy and slide areas 

Prior to compiling statistics using the pixel-based method (Method 1), in order to 

improve the accuracy of the classified output and to decrease the amount of isolated false 

positive pixels, a majority filter was applied to the classified image in ArcGIS. Majority 

filters replace cells of a raster based on the majority of their contiguous neighboring cells. 

Four direct (orthogonal) neighbors to the present cell were used in the kernel of the 

majority filter.  

Method 1, surface layer 

The histogram distributions and statistics summary of the analyzed soil 

parameters are shown in Fig. 9 for the surface layer. The clay fraction ranges between 

57.4 and 60.8%, 56.1 and 63.5%, and 56.6 and 64.6% in the three areas with means of 
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59.6%, 59.3%, and 60% for the slide, healthy, and false positives, respectively. This trend 

shows that in the study area, the healthy areas have lower clay fraction compared to the 

slide and false positives (Fig. 9(a)). The sand fraction varies from 14.3 to 18.7%, 13.3 to 

21.2%, and 13.3 to 22.2% for slide, healthy and false positives, respectively. More than 

40% of the three areas have sand fraction of 16%-18%. The averages are 16.2%, 17.6% 

and 16.9% for the slide, healthy, and false positives, respectively (Fig. 9(b)). 

The cone tip resistance for the surface layer ranges between 1,107.5 and 1,521.9, 

973.5 and 1,618.9, 917.5 and 1,658.9 kPa, with means of 1,248.6, 1,260.3 and 1,236.2 

kPa for the slide, healthy areas, and false positives, respectively. There can be seen a 

similar positively skewed distribution in the false positives and slide area while it is a log 

normal distribution for the healthy areas. These trends show that the false positives have 

lower tip resistance than the healthy areas and even slide area ((Fig. 9(c)). As shown in 

Fig. 9(d), the moisture content for the surface layer varies from 33.7 to 39.5%, 32 to 

44.8%, and 32.3 to 46.3% in slide, healthy and false positive areas respectively. The slide 

area has moisture content average of 36.6%. The false positives have a unimodal 

distribution of moisture content with a mean of 38.3% in this range, while the healthy 

area has almost a log normal distribution with a mean of 37.3%.  

Fig. 9(e) shows the hydraulic conductivity histograms which range between 0.19 

and 0.22 cm/h for slide area, 0.18 and 0.22 cm/h for healthy and false positive areas. 

According to the histogram shown in Fig. 9(e), the healthy area has a positively skewed 

distribution with a mean value of 0.20 cm/h and a 50% concentration in the range 0.19-

0.20 cm/h. Both the false positives and slide area have a log normal distribution with 

means of 0.20 cm/h and 0.21 cm/h, respectively. More than 80% of soil of these two 
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areas has a hydraulic conductivity falling in the range of 0.20-0.22 cm/h. This is 

consistent with the fact that the false positives and slide area have higher amount of clay 

fraction than the healthy area. 
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Figure 9 Histogram distribution of (a) clay fraction, (b) sand fraction, (c) cone tip 
resistance, (d) moisture content, and (e) hydraulic conductivity of the 
surface layer using Method 1. 
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Method 1, subsurface layer 

In the subsurface layer, unlike the surface layer, the distributions of soil properties 

of the false positives and healthy areas are more similar to each other than to those of the 

slide area. Fig. 10 shows the histograms and statistics summary of the in-situ soil 

properties for the slide, healthy areas and false positives in the subsurface layer. As 

shown in Fig. 10(a), the clay fraction for the subsurface layer varies from 56 to 63.3% in 

the three areas. Almost 90% of pixels from the slide area have clay fraction in the range 

of 58-60 % with a mean of 58.5%, while both the healthy and false positive areas have 

normal distribution for the clay fraction with means of 59.2 and 58.9%, respectively. The 

sand fraction values vary from 15.9 to 25.2% in the three areas (Fig. 10(b)). There can be 

seen a positively skewed distribution in the slide area with a mean of 18.5%, while it is a 

log normal distribution for the false positives and healthy areas with means of 20.7 and 

21.7%, respectively. More than 80% of pixels in the healthy and false positive areas have 

sand fraction of 20 to 24% while this number varies from 16 to 20% for the slide area.  

As shown in Fig. 10(c), cone tip resistance for the subsurface layer ranges 

between 683 to 1,255.5 kPa. More than 70% of the slide area have tip resistance of 1,000-

1,100 kPa with a mean of 1,063.8 kPa. The healthy and false positive areas have a log 

normal distribution with a concentration of more than 40% in the range of 900-1,000 kPa 

and 1,000-1,100 kPa, respectively. The mean of cone tip resistance data in the subsurface 

layer is 978.5 kPa for the healthy areas and 1,021.5 kPa for the false positives. According 

to the histogram shown in Fig. 10(d), almost 80% of the soil in all the three areas has 

moisture of 56-58%. The means of moisture content for the subsurface layer is 57.4, 56.8 
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and 56.9% for the slide, healthy and false positives, respectively. This shows that the 

false positives and healthy areas have almost similar moisture content values.  

As illustrated in Fig. 10(e), the hydraulic conductivity values in the subsurface 

layer vary from 0.17 to 0.21 cm/h in the three areas. Almost 80% of the slide area pixels 

have hydraulic conductivity of 0.19-0.21 cm/h with a mean of 0.20 cm/h. More than half 

of the false positives and the healthy areas have hydraulic conductivity in the range of 

0.18-0.19 cm/h with means of 0.19 cm/h and 0.18 cm/h, respectively. This trend shows a 

high similarity between the false positives and the healthy areas. 
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Figure 10 Histogram distribution of (a) clay fraction, (b) sand fraction, (c) cone tip 
resistance, (d) moisture content, and (e) hydraulic conductivity for the 
subsurface layer using Method 1. 
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Method 2: Object-based comparison of false positives, healthy and slide areas 

For performing the object-based analysis, two zones of dense false positives, 

labeled as FP1 and FP2 in Fig. 8(b), were compared with the slide and healthy areas. As 

can be seen in Fig. 8(b), FP1 is located in the northern part of the study area, and FP2 is 

almost in the middle of the study area, about 640 meters away from the slide. 

Method 2, surface layer 

Fig. 11 shows the histograms distribution and statistics summary of the in-situ soil 

properties for the slide, healthy areas, FP1, and FP2 in the surface layer. In the surface 

layer, the clay fraction distribution ranges from 56.1 to 64.6% in the four areas (Fig. 

11(a)).  More than half of the pixels in the slide, healthy areas and FP1 have a clay 

fraction of 58-60%, while this range is higher and is 60-62% for FP2. The slide area has a 

positively skewed distribution with min of 57.4 and max of 60.8%. The healthy area has a 

normal distribution with a min of 56.1 and max of 63.5%. FP1 and FP2 have positively 

skewed distributions with min of 58.2 and 59.6%, and max of 62.1% and 64.6%, 

respectively. This trend shows higher amount of clay fraction in the slide, FP1 and FP2 

compared to the healthy area. As shown in Fig. 11(b), the sand distribution ranges from 

13.3 to 21.2% in the four areas. The slide area has sand fraction with min and max values 

of 14.3 and 18.7%, an average of 16.2%. Sand fraction in the healthy area has nearly a 

normal distribution with a mean of 17.6%. FP1 and FP2 have negatively skewed 

distribution with means of 16.8 and 15.8%, min values of 14.8 and 13.3%, and max 

values of 18.1 and 17.3%, respectively. This trend demonstrates how the slide, FP1 and 

FP2 have significantly lower sand fraction than the healthy area. 
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 Cone tip resistance varies from 917.5 to 1,618.9 kPa in the four areas. Tip 

resistance for the slide area has a positively skewed distribution with a mean of 1,248.6, 

min of 1107.5 and max of 1,521.9 kPa. The healthy area has a normal distribution with a 

mean of 1,260.3, min of 973.5 and max of 1,618.9 kPa. Tip resistance mostly varies 

between 1,100 to 1,300 kPa for FP1. It has a mean of 1,201.3, min of 1070.6 and max of 

1,313 kPa. There is a negatively skewed distribution in FP2, with a mean of 1,114.4, min 

of 917.5 and max of 1,252.4 kPa. These numbers show how significantly low the tip 

resistance is in the slide area and in FP1 and FP2 compared to the healthy area (Fig. 

11(c)). Fig. 11(d) shows the moisture content distribution ranging between 32 and 44.8% 

in the four areas. The slide has almost a unimodal distribution in the range 34 to 40% 

with a mean of 36.6%, min of 33.7%, and max of 39.5%, while the healthy areas have a 

normal distribution with a mean of 37.3%, min value of 32%, and max value of 44.8%. 

The moisture content distribution in FP1 is very similar to that in the slide area 

distribution with a mean of 36.7%, min of 34.3%, and max of 39.8%. FP2 has a normal 

distribution with a mean of 40.9%, min of 36.7%, and max of 44.6% which are even 

higher than that of the slide area. The overall trend shown in Fig. 11(d) indicates that the 

distribution of moisture content in FP1 and the slide area are significantly similar to each 

other, and interestingly, FP2 has much higher moisture content than any other classified 

area.  

As shown in Fig. 11(e), hydraulic conductivity varies between 0.18 and 0.22 cm/h 

in the four areas. More than 70% of FP1 and FP2 have hydraulic conductivity of 0.20-

0.21 cm/h where more than half of the slide area falls within that range too. The means 

for FP1, FP2 and the slide are 0.20, 0.21 and 0.21 cm/h, respectively. Hydraulic 
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conductivity has a positively skewed distribution in the healthy areas with a mean of 0.20 

cm/h, min of 0.18 cm/h, and max of 0.22 cm/h. The overall trend observed in the 

distributions of hydraulic conductivity in the two dense false positive zones shows the 

values are as high as that in the slide area. 
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Figure 11 Histogram distribution of (a) clay fraction, (b) sand fraction, (c) cone tip 
resistance, (d) moisture content, and (e) hydraulic conductivity for the 
surface layer for Method 2. 
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Method 2, subsurface layer 

The results of analyses from Method 2 for the subsurface layer are presented in 

Fig. 12. In the subsurface layer, the clay fraction distribution varies between 56 and 

63.3% in the four areas (Fig. 12(a)). Almost 90% of the slide area and FP1 have clay 

fraction of 58-60%. FP2 has a normal distribution with a mean of 61%, min of 59% and 

max of 63.3%. The healthy area also has a normal distribution with a mean of 59.2%, min 

of 56% and max of 62.7%. There cannot be seen a specific relationship in these trends. 

As shown in Fig. 12(b), the sand fraction distribution varies between 16.1 and 25.2% in 

the four areas. The slide area has a positively skewed distribution with a mean of 18.5%, 

min of 16.4%, and max of 20.7%. Almost 80% of the healthy area pixels have a sand 

fraction of 20-24%. The mean, min, and max in this area are 21.7, 16.1 and 25.2%. FP1 

has a unimodal distribution with a mean of 20.9%, min of 19.1%, and max of 23.8%. FP2 

has a negatively skewed distribution with a mean of 22%, min of 19.6%, and max of 

23.3%. The total trend shows that the slide and FP1 have lower fraction of sand while the 

healthy area and FP2 have larger sand fraction. No specific relationship between the slide 

area and the dense false positives zones can be detected.  

The distribution of cone tip resistance for the subsurface layer is shown in Fig. 

12(c). Cone tip resistance changes from 683 to 1,255.5 kPa in the four areas. More than 

70% of the slide area pixels have a tip resistance of 1,100-1,200 kPa. The mean, min, and 

max values for the tip resistance distribution in the slide area are 1,063.8, 905.5, and 

1,187.4 kPa, respectively. The healthy areas have a normal distribution for tip resistance 

with a mean of 978.5 kPa, min of 729.5 kPa, and max of 1,255.5 kPa. Almost 90% of 

FP1 pixels have a tip resistance of 1,000-1,200 kPa. The mean is 1,082.9 kPa, min and 
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max values are 903.6 and 1,150.5 kPa, respectively. FP2 has a bimodal distribution with 

a mean of 880.8 kPa, min of 683 kPa, and max of 1,071.9 kPa. According to the 

histograms, the tip resistance distribution for both the slide and FP1 is higher than that for 

the healthy area. However FP2 has the lowest tip resistance among the other classified 

areas. Moisture content in almost 80% of the four areas is in the range of 56-58% with 

means of 57.4, 56.8, 56.8 and 57.1% in the slide, healthy, FP1 and FP2, respectively (Fig. 

12(d)).  

Hydraulic conductivity ranges between 0.17 and 0.21 cm/h in the four areas (Fig. 

12(e)). The hydraulic conductivity for more than 80% of the slide area varies in the range 

of 0.19-0.21 cm/h while the healthy area has a positively skewed distribution with a mean 

of 0.18 cm/h, min value of 0.17 cm/h, and max value of 0.21 cm/h. Almost 80% of FP1 

varies in the range 0.18-0.20 cm/h with a mean of 0.19 cm/h. The distribution of 

hydraulic conductivity of FP2 ranges between 0.17 and 0.19 cm/h with a mean of 0.18 

cm/h. The trend shows that the slide area has higher hydraulic conductivity in comparison 

to the other areas. 
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Figure 12 Histogram distribution of (a) clay fraction, (b) sand fraction, (c) cone tip 
resistance, (d) moisture content, and (e) hydraulic conductivity for the 
subsurface layer for Method 2. 
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Discussion 

The overall trend observed from the two methods leads to the conclusion that in 

the surface layer, the false positives and the slide area were following similar trends in 

the distribution of different relevant soil measurements. In contrast to the surface layer, in 

the subsurface layer the false positives and the healthy areas were following similar 

trends, and sometimes the three areas had similar soil distribution. As UAVSAR is 

capable of penetrating soil to a few centimeters depth, the most accurate results for 

classification were derived at the surface layer. Therefore distinct trends of soil 

measurement distribution were mostly found in the surface layer, while no specific trends 

were seen in the deep subsurface layer. As mentioned in the previous sections, the 

UAVSAR image acquired from January 25, 2010 was used in this study.  It should be 

noted that a slide had occurred at the location of FP2 in October of 2009 which was 

repaired in November of the same year. However, during our field visits in 2011 linear 

cracks perpendicular to the levee slope were discovered in that area. As shown in Fig. 13, 

grass growing in this location was also stressed and sparse compared to the surrounding 

areas. It was identified as an area of weakness based on these evidences. One possible 

hypothesis to explain the occurrence of cracks could be that it is an early sign of 

reactivation of the repaired slide.  
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Figure 13 Sparse grass (left) and cracks (right) in FP2 observed after the UAVSAR 
image acquired for this study. 

 

The high rate of false positives observed in the classified results is with respect to 

the original definition of a true positive- a visibly detectable slide. The “true positive” 

points (i.e., active slide) used in the analysis were simply defined according to field visits. 

However, an earthen levee can suffer damages which can't be easily recognized in the 

field. For example, small deformations which might precede a visible slide could not be 

detected by means of a simple inspection. Sometimes they do not generate visible cracks 

previous to failure or are filled by sediments or eroded by rainfall. Evidence of these pre-

slide displacements, which can cause surface geomorphological changes detectable by 

the radar-based technique, may be present in the soil properties sampled in this study. 

While no obvious sign of a slide is noticeable on the ground surface, internal erosion and 

damage might be progressing from the subsurface to surface in these false positive points 

which make them vulnerable for near future slides. That is, we investigated the 

hypothesis that the areas classified as false positive might actually be unstable although 

the field inspection would not have allowed recognizing the area as such. A major goal of 
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this post-analysis study was to see if we can expand the target classification to include 

non-visible areas of slope instability that might be detectable with in situ soil property 

measurements. If this turns out to be verified in larger studies it would be of great benefit 

to levee managers by providing a remote-sensing based way to screen large areas for 

more targeted intense inspections. 
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EFFECTS OF RAINFALL, GEOMETRICAL AND GEOMORPHOLOGICAL 

VARIABLES ON VULNERABILITY OF THE LOWER MISSISSIPPI  

RIVER LEVEE SYSTEM TO SLUMP SLIDES 

Introduction 

Levees are located in nearly 22% of the United States (U.S.) counties where half 

of the population of the country resides (CRS, 2011). Levees and other structures such as 

embankments and dams are becoming of major importance due to recent climate trends 

such as sea level rising and more rough weather events (i.e., floods, hurricanes and heavy 

rainfalls) (Bennett et al., 2014). The 2005 Hurricane Katrina is a well-known example of 

how the increasing frequency of extreme events due to climate change could have 

resulted in catastrophic failures in levees (Dupray et al., 2010). Record of the previous 

events shows that levee failures can lead to catastrophic damages to economy, 

infrastructure and population in the affected areas.  

Monitoring levees is usually performed by inspectors walking on the levees 

looking for qualitative indications reflecting a change or coherence loss in the body of the 

levee (Dupray et al., 2010). However, the visual inspection method is expensive, time 

consuming, and impractical during emergencies. Therefore, the need for improving the 

reliability of levees as well as advancing monitoring techniques is inevitable. Design, 

construction and maintenance of levees should assure the integrity of levees against 
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different failure modes with satisfactory margin of safety during the life span of structure. 

While different design methods have been used for the U.S. levee systems, geological 

studies in the area of interest is a mandatory step for any design procedure. According to 

the Engineering Manual of Design and Construction of Levees (USACE, 2000), the first 

step in the levee design process is to “conduct geological studies based on a thorough 

review of available data including analysis of aerial photographs”. However, this step is 

usually neglected especially in the non-federal and private sectors.  

A levee breach can occur as a result of one, or a combination of triggering events 

such as overtopping, severe surface erosion and internal erosion within the levee body or 

foundation soils (Bogardi & Mathe, 1968). Moreover, less severe events such as slump 

slides can also threaten the integrity of levees. Slump slides are relatively shallow 

surficial instabilities on the river-side of levees which usually occur after a heavy rainfall 

with a long period of drying (Sills, 1983). This cycle of wetting and drying reduces the 

soil strength, and the excess water triggers the slump slide (Hossain et al., 2006). Such 

slump slides occur frequently along the Mississippi River levees.  Many attempts have 

been made in recent years to employ remotely-sensed data to detect slump slides in early 

stages. Using multispectral and hyperspectral remotely sensed data and image 

classification (Hossain et al., 2006), developing slide prediction models by utilizing 

airborne hyperspectral imagery (Hossain and Easson, 2012), using PolSAR image with 

supervised and unsupervised algorithms (Aanstoos et al., 2012) and using in situ soil 

measurements for analysis of a PolSAR based classification of slump slides (Sehat et al., 

2014a and 2014b) are examples of these attempts.  
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Many numerical and analytical investigations have been carried out to identify 

parameters that have more influence on levees instability. However, there are still several 

questions that remain unanswered regarding factors affecting the health of levees. A 

limited number of attempts have been made in the past years for the use of logistic 

regression in reliability analysis of levees. For example, Uno et al. (1987) investigated the 

application of a binary logit model for stability analysis of middle/small and large-scale 

levees. Without considering geological and geomorphological variables in the occurrence 

of a failure mechanism referred to as “outside slope failure”, they took into account the 

effects of geometry, soil strength parameters and ratio of flow capacity to flood 

discharge. Using historical maps of the previous levee breach locations and historical 

datasets for site characteristics, Flor et al. (2010) utilized a regression model with a 

database of 76 levee breaches occurred along the Middle and Lower Mississippi River in 

the past 120 years to test the relative significance of geological, geomorphological, and 

other physical parameters on the vulnerability of the levee system. Heyer and Stamm 

(2013) discussed potential applications, advantages and limitations of regression models 

for reliability analysis of levees. Furthermore, while it is common to use for studying 

landslides, limited data exists in literature regarding the use of temporal analysis of 

precipitation data to demonstrate the relationship between rainfall and slump slides in 

levees. For example, Paudel et al. (2007) studied the amount and intensity of rainfall in 

several historical shallow landslides and showed that the occurrence of major landslide 

events coincided with rainfall peaks of heavy storms.  

This study investigates the relevance and importance of rainfall and various 

geometrical and geomorphological factors to the vulnerability of earthen levees to slump 



 

42 

slides. The study is performed using data from 34 slump slides that occurred in the lower 

Mississippi River levee system over a time period of two years. In the first step, the 

precipitation data six months prior to the slump slides are collected and qualitatively 

evaluated to find its importance on the occurrence of the event. The study then takes a 

statistical analysis approach, logistic regression, to test the vulnerability of levees to 

slump slides due to various temporal and spatial parameters.  This approach considers 

both quantitative and qualitative parameters. The binary logistic regression approach is 

utilized to investigate the correlation of some geological, geomorphological, physical and 

environmental factors on the occurrence of slump slides. The spatial factors considered in 

the model include the channel width, sinuosity index, location with respect to the channel 

shape, bank erosion, and distance to river. The spatial data used in the analyses was 

collected from airborne and satellite imageries along with field inspections. Identifying 

more influential factors on the occurrence of slump slides can help to locate high risk 

areas on levees for protective actions, closer monitoring and early response under 

emergency conditions.  

Study area 

The Mississippi River flows more than 3,700 km from its origin at Lake Itasca 

through the Gulf of Mexico. Its basin covers more than 3,224,000 km2 that includes all or 

some parts of 31 states in the U.S. and two Canadian provinces. The lower Mississippi 

River refers to the part of the river starting from its confluence with the Ohio River down 

to the Gulf of Mexico. This study focuses on approximately 174 km of the main line 

levee system of the lower Mississippi River from near Clarksdale to Vicksburg in the 
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state of Mississippi (Figure 14). This area is under the jurisdiction of the Board of 

Mississippi Levee Commissioners.  

An extensive set of in-situ and remotely-sensed data was collected for the study 

area through a research project which was recently completed at Mississippi State 

University (Aanstoos et al., 2012). The collected data includes in-situ soil properties, 

field observation reports, information about slump slides, aerial imagery from the 

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), radar images from the 

TerraSAR-X satellite (Aanstoos et al., 2012, Sehat et al. 2014a).  
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Figure 14 Study area (red rectangle) and slump slide locations (red dots) 
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Levee database  

This study relies on a comprehensive dataset of 34 documented levee slump slides 

through the 174 km of the main line levee system of the Mississippi River collected by 

the U.S. Army Corps of Engineers (USACE), Mississippi Levee Board (2009) and our 

team during a time period of two years, 2008-9009. Table 2 presents the dataset for the 

current study and includes the information regarding the location, geometry, and 

approximate time of appearance and repair for most of the slides. The slides are shown by 

red circles in Figure 14. The length of the slides ranges between approximately 15 m and 

76 m. The distance of the slide from the levee crown is between 0 to approximately 41 m 

and their vertical faces range between 0.3 and 4.57 m deep. Figure 15 displays a 

schematic view of a slump slide on levee, as well as a real slump slide. More than 80% of 

the slump slides occurred between April and October of each year. Specifically, more 

than half of the slump slides that occurred in 2008 and 75% of the slump slides that 

occurred in 2009 appeared between June and October of that year.  

 

Figure 15 Schematic view of levee section with slump slide (modified after Hossain 
et al. 2006) 
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As can be seen in Table 2, the dates of appearance for some of the slump slides 

are not available, while at some points the slump slide appearance day and at other points 

the possible month of occurrence is available. The missing information is due to the 

relatively low frequency of levee inspections. Given the temporal accuracy of the 

available dataset, the precipitation analysis in this work and the developed regression 

model are based on monthly time steps. The same scenario applies to the slump slides 

repair date in the last column of Table 2.    
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Table 2 Levee slump slide dataset over the study area 

Slide 
# 

Length 
(m) 

Vertical 
Face 
(m) 

Distance 
from 

crown 
(m) 

Position 
Date Slide 
Appeared 

Date Slide 
Repaired Latitude 

(North) 
Longitude 

(West) 
1 42.67 0.61 12.19 N34-05'-59.4" W90-52'-52.5" - - 
2 21.34 0.91 4.57 N34-01'-03" W90-54'-41.4" - - 
3 18.29 0.61 19.81 N33-54'-39.1" W91-00'-39.9" June, 2009 - 
4 27.43 1.22 3.05 N33-50'-24.5" W91-02'-02.2" Feb., 2009 April, 2009 
5 21.34 0.91 1.52 N33-47'-02.3" W90-59'-05.4" May, 2008 April, 2009 
6 76.2 1.83 7.01 N33-45'-42.7" W91-00'-41.0" June, 2008 April, 2009 
7 32 0.91 12.8 N33-43'-57.4" W91-01'-27.9" 12 Feb, 2009 Oct., 2009 
8 64.01 1.52 7.32 N33-43'-24.1" W91-01'-21.9" 7 Apr, 2008 Oct., 2009 
9 45.72 0.61 0.3 N33-43'-19.0" W91-01'-20.4" 21 Oct, 2008 Oct., 2009 
10 18.29 2.44 0.3 N33-42'-36.7" W91-01'-46.2" Sept, 2008 Oct., 2009 
11 18.29 0.61 14.32 N33-42'-33.5" W91-01'-46.6" - Mar., 2010 
12 33.53 0.91 0 N33-28'-13" W91-06'-19.8" Nov, 2009 Aug., 2010 
13 45.72 0.91 7.62 N33-28'-03.2" W91-06'-26.1" - Aug., 2010 
14 53.34 0.91 0 N33-27'-56.9" W91-06'-32.5" - Aug., 2010 
15 22.86 0.3 3.66 N33-13'-19.4" W91-04'-21.3" - - 
16 22.86 0.3 19.81 N33-08'-28.6" W91-04'-34.5" 13 Oct, 2008 - 
17 41.15 4.57 3.66 N33-07'-44.4" W91-04'-46.1" Oct, 2009 Mar., 2010 
18 27.43 0.91 21.34 N33-06'-58.5" W91-05'-48.9" 12 Apr, 2008 - 
19 33.53 0.61 9.14 N32-39'-11.7" W91-03'-17" - Nov., 2009 
20 36.58 2.13 0.61 N32-38'-51.4" W91-02'-39.4" 20 Oct, 2009 Nov., 2009 
21 - - 15.24 N32-38'-58.2" W91-01'-48" 26 Oct, 2009 Nov., 2009 
22 30.48 3.05 0.91 N32-37'-42.1" W90-59'-59.5" Oct, 2009 Nov., 2009 
23 70.1 2.13 2.74 N32-37'-37.2" W90-59'-56.2" 21 Oct, 2009 April, 2010 
24 57.91 0.45 36.57 N32-37'-28.2" W90-59'-49.8" - - 
25 33.53 0.61 41.15 N32-36'-55.4" W90-59'-38.8" - - 
26 50.29 0.61 4.57 N32-36'-49.9" W90-59'-37.3" 21 Oct, 2009 Nov., 2009 
27 24.38 0.61 9.14 N32-36'-37.7" W90-59'-42.3" 21 Oct, 2009 Nov., 2009 
28 27.43 0.61 42.67 N32-36'-36.0" W90-59'-45.2" - - 
29 36.58 0.91 4.57 N32-36'-32.0" W90-59'-46.3" Aug, 2008 Nov., 2009 
30 60.96 2.44 2.44 N32-36'-29.1" W90-59'-48.0" - Sept., 2010 
31 15.24 0.3 28.65 N32-35'-43.4" W91-00'-36.5" Sept, 2009 April, 2010 
32 21.34 0.3 30.48 N32-35'-02.4" W91-01'-25.7" - Sept., 2010 
33 24.38 0.61 30.48 N32-34'-57.9" W91-01'-29.0" - Sept., 2010 
34 38.1 0.91 6.09 N32-34'-06.9" W91-02'-21.6" Feb, 2009 Sept., 2010 
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Precipitation data 

Precipitation plays a critical role in triggering slump slides in earthen levees. 

Higher rain intensity and/or longer rain duration can increase the degree of saturation 

within the body of the levee in a short time period. This results in a significant decrease 

in shear strength of the soil due to an increase of pore water pressure and loss of matric 

suction. In this section, the impact of rainfall within the six months of the slide was 

studied.  

Data acquisition 

The precipitation data studied in this work is collected from the “Observed 

Precipitation Data” from the National Weather Service (NWS) website. This data is a 

byproduct of NWS operations at the 12 CONUS River Forecast Centers (RFCs), and is 

displayed as a gridded field with a spatial resolution of about 4x4 km. This dataset is the 

output of algorithms that combine radar, gauge and satellite inputs which results in higher 

accuracy precipitation estimates than those which rely only on single sensors. According 

to the NWS, this dataset is one of the best available sources of timely, high resolution 

precipitation information. For the current study, monthly rainfall data from four 

neighboring points of each slide location was collected.  The precipitation at the slide 

location was interpolated from those four points using the Kriging function of ArcMAP 

10.1. This function measures the distances and directions between all possible pairs of 

sample points and creates the best fit surface. 
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Analysis of precipitation data 

In order to investigate the impact of precipitation, monthly and cumulative 

monthly precipitation were plotted for each slump slide.  As mentioned earlier, the 

amount of rainfall is an important factor triggering slump sliding in levees. For the 23 

slump slides for which the precipitation data was examined, Table 3 summarizes the 

information pertaining the rainfall data in the month of slide as well as cumulative 

rainfall six months prior to the event. Figure 16 shows monthly and cumulative rainfall 

for each slide.  From these it can be seen that the timing of 10 slump slides coincides with 

the month of peak rainfall in the past 6 months. Excluding Slide 8, nine of these (slides 5, 

17, 20, 21, 22, 23, 26, 27 and 29) occurred in the month of maximum rainfall. Seven 

slides occurred one month after the peak rainfall month and the other six slides occurred 

two months after the peak rainfall month and in a drier month. Among these events, slide 

17 which occurred in October 2009 had the maximum cumulative rainfall of 1254 mm, 

and slide number 8 which occurred in April 2008 had the minimum cumulative rainfall of 

679.5mm.  
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Table 3 Summary of cumulative rainfall within the past six months of event 
occurrence and in the month of slump slide  

Slide # 3 4 5 6 7 8 9 10 

Cumulative 
rainfall (mm) 928.1 869.7 819.4 802.9 819.2 679.5 956.1 1007.4 

Event month 
rainfall (mm) 29.2 83.3 209.3 37.6 60.2 135.9 51.8 169.4 

Slide # 12 13 14 16 17 18 20 21 

Cumulative 
rainfall (mm) 1183.4 1183.4 1183.4 1062.0 1254.0 708.9 1045.7 1069.8 

Event month 
rainfall (mm) 58.9 58.9 58.9 33.3 355.3 100.3 293.3 293.1 

Slide # 22 23 26 27 29 31 34 

 Cumulative 
rainfall (mm) 1069.8 1069.8 1074.2 1069.6 856.5 971.3 963.7 

Event month 
rainfall (mm) 293.1 293.1 285.2 285.2 250.4 100.0 20.8 
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Figure 16 Monthly and cumulative rainfall for all slump slides (the x-axis shows the 
time from the month of slide) 

 

The cumulative monthly rainfall curves are qualitatively tested for the 23 slump 

slides (Figure 17). These curves indicate the importance of rainfall gradient in the 

ultimate slump slide failure. The curves show an average gradient of 10 cm/month for the 

first 3-month time step, and a much steeper mean gradient of approximately 16 cm/month 

in the second 3-month time step before the slump slide event. Overall, it indicates an 
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intense rainfall in the 3 months prior to the slump slide event. Similar investigation has 

been implemented by Ibsen and Brunsden (2004) to study the relations between rainfall 

and landslides, and found that an approximate six month rainfall period is enough for 

landslide analysis in a homogeneous clay shales.  

 

Figure 17 Six month cumulative rainfall for 23 slump slides in the study area 

 

The results presented here are a qualitative assessment of the precipitation data 

and their potential impact in triggering slump slides in levees. Upon availability of 

additional data, further studies would be possible to quantitatively analyze rainfall time-

series effects on slump slide failures at finer time scales. For example, for those slides for 

which exact appearance date is available (7, 8, 9, 16, 18, 20, 21, 23, 26 and 27), such 

analysis could be performed on a daily time scale within the past week of the event rather 

than merely within the past 6 months. Such higher resolution precipitation data could 
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reveal relationships between peak rainfall days and slump slide occurrence. Moreover, a 

rainfall threshold could be determined for the slump slide occurrence. However, such 24-

hr precipitation data was not available through the NWS Precipitation Dataset for the 

study area. 

Geometrical and geomorphological variables  

In addition to the precipitation data, this work investigates the impact of various 

geometrical and geomorphological variables through a series of regression analyses. 

Selecting appropriate independent variables is a critical step in the regression analysis. 

The variables should be selected in such a way that they capture the most influencing 

factors on slump slides to obtain the best model fit (Heyer & Stamm, 2013). In the 

following sections, each independent variable used in the model is discussed in detail. 

Most of the site characteristics are derived from investigating the NASA UAVSAR 

imagery acquired on January 25, 2010 as well as the National Agriculture Imagery 

Program (NAIP) aerial imagery of 2012 over the study area.  

It is worth noting that many other parameters besides the ones used in this study 

can possibly stimulate slump slides in levees. Such parameters include human activities, 

earthquakes, engineering characteristics and behavior of the levee soil, vegetation type, 

etc. However, such data did not exist for the levees in the study area which are mostly 

built by piling soil, clay, sand, or rocks borrow pits.  

Channel width 

Channel characteristics such as the channel width, channel depth and meander 

bends are important factors that influence channel capacity and stability as well as flow 
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velocity. Channel modification operations such as deepening and widening the channel, 

and cutting off meanders are commonly conducted along the Mississippi River for flood 

control purposes (Shankman and Smith, 2004). The Mississippi River significantly varies 

in width and historical flood data shows that water surface velocity and divergence 

magnitude is larger in narrower banks and apexes (Hattori et al. 2009). In other words, 

because of their smaller cross sectional areas, they are more prone to flood due to the 

hydrodynamic regime coming from a period of heavy or long-lasting rainfall. A higher 

chance of flooding translates to a higher chance of levee failures and instabilities.  

In the current study, the channel width is selected as a binary independent 

variable. It is investigated whether or not the slump slides have occurred more in the 

locations where the channel width is larger than 1,000 m. This threshold value is selected 

according to a study conducted for assessing unfavorable parameters to identify 

vulnerable areas on the same study area (Hassan, 2011). 

Channel sinuosity index 

The sinuosity index between two points of a river is the ratio of the length of the 

river curve and the straight distance between the two points. This parameter is a strong 

indicator of channel dynamics, which controls channel stability (Lane, 1995). Flor et al. 

(2010) found that levee breaches that occurred along the Lower Mississippi River had a 

noticeable correlation with the river sinuosity index. Fisk’s (1944) and Saucier’s (1994) 

efforts on a broad wealth of materials about the Mississippi River imply that the river has 

significantly changed its path over long periods of time. Meander bends within the 

sinuous channel have been changed into oxbow lakes mostly by neck cut-offs. In this 

study, the sinuosity index is measured according to the current condition of the river after 

http://link.springer.com/search?facet-author=%22Kazuhiko+Hattori%22
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transformations from meander bends to oxbows. In most cases, aerial imagery is used to 

calculate the sinuosity index (e.g., Rosgen, 1994, Flor et al., 2010). There are different 

river classifications available based on the sinuosity, width/depth ratio, etc. Natural rivers 

classification based on sinuosity are usually in the form of low, moderate, high and very 

high sinuous rivers (Rosgen, 1994). Considering the morphology of the study area, the 

sinuosity index is classified into winding (<1.25), twisty (1.25 ~ 1.50) and meandering 

(>1.50) in the current study. 

Location with respect to channel shape 

Meander bends are historically considered as one of the undesirable factors 

triggering levee instabilities. Cutting off meander bends is one of the primary actions that 

has taken place since the 1927 flood over the Lower Mississippi River (USACE, 2014). 

More than 250 km of the channel has been straightened under this action (Shankman and 

Smith, 2004, Hudson et al., 2008). About 76% of the levee scours that happened in the 

Missouri River levee system during the 1993 flood occurred along meander cut banks 

(Galat et al., 1997). Also, the levees of Lower Mississippi River located on meander cut 

banks are found to be 2.3 times more likely to fail than those located along the straight 

portion of the river (Flor et al. 2010). 

The Lower Mississippi River, from Cairo, IL to Red River Landing, is a laterally 

migrating meandering channel within the alluvial valley (Fisk, 1944; Schumm et al., 

1994; Wasklewicz et al., 2004).  According to the morphology of the study area, the 

channel shape is categorized into three possible groups in the sites: meander bends, 

oxbow lakes and straight channel. 
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Riverbank erosion 

Riverbank erosion is primarily controlled by antecedent moisture, texture and 

vegetation cover (Simon et al., 1999, Henshaw, et al., 2013). According to Nagata et al. 

(2000), riverbank erosion usually involves four steps: bed scouring at the side bank, 

collapse due to instability of the scoured bank, deposition of the collapsed bank materials, 

and the movement of the deposited materials. Rate of riverbank erosion increases during 

flooding times (Knighton, 1973). Therefore, studying riverbank erosion around the slump 

slide locations may help identifying vulnerable areas. In this study, riverbank erosions are 

modeled and drawn by visual interpretation, comparing Landsat and TerraSAR imagery 

acquired in September 2010 over the study area. This variable represents a qualitative 

identification of the areas where erosion has taken place. 

Distance to water 

Hasan et al. (2011) showed that most of the slump slides occurred in this study 

area have been in close proximity to the river or water. This variable is selected to be 

examined in the regression model because areas closer to the water are more susceptible 

to be exposed by floodplain areas and are more prone to experience flooding at the time 

of high water levels. This parameter is defined as the shortest distance from the toe of the 

levee to the river. It was measured using the UAVSAR imagery of the study area.  

Logistic regression model 

The main goal of regression analysis is to look for the relation between a 

dependent variable and a number of independent variables. The current study employs 

multiple spatial variables, including both categorical and numerical predictors, in a 

http://www.sciencedirect.com/science/article/pii/S0341816212001646#bb0075
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logistic regression model to investigate the relevance and importance of the parameters to 

slump slide occurrence on levees (i.e., dependent variable). The main advantage of 

logistic regression analysis is the capability of using both qualitative and quantitative 

variables. As the vulnerability of the levee system to slump slide can only have two 

possible outcomes (i.e., slide or non-slide occurrence in levee), it is defined as a binary 

dependent variable in the regression analysis. For example, for assessing whether or not 

the channel width or sinuosity index ratio has affected the health of levee, the dependent 

variable is coded 1 at the locations where a slump slide has occurred and 0 when it has 

not occurred.  

For the dependent variable of the regression model, this study uses the record of 

34 slump slides (reported in Table 2) that occurred in a time period of two years from the 

beginning of 2008 until the end of 2009.  Since the 34 slump slides have occurred 

through a long length of the river (174 km), the number of points with a dependent 

variable of “1” (i.e., occurrence of side) is much lower than the points with the dependent 

variable of “0” (i.e., non-occurrence). Such condition in regression analysis is referred to 

as rare events data (King and Zeng, 2001). Since the contribution to the independent 

variables’ information content for each additional zero drops as the number of zeroes 

exceeds the number of ones, it is recommended to use “0” dependent variables no more 

than two to five times more than “1” dependent variables (King and Zeng, 2001). 

Therefore we randomly collected a total number of 68 (34×2) healthy sites (i.e., sites with 

no record of slump slide). The healthy sites were collected using a random generation of 

mileage from the length of the levee. In general, logistic regression analysis works better 

with large data sets. With this in mind, we selected the number of non-slump slide sites to 
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be two times the number of slump slide sites in order to create a larger dataset and to 

improve the performance of the regression analysis.  

We then employed the five variables discussed in the previous section to 

characterize all of the 102 healthy and slump slide sites.  The spatial variables which 

were used in the logistic regression model include the channel width, channel sinuosity 

index, location with respect to channel shape, riverbank erosion, and distance to water. 

Table 4 shows the list of variables, type of each, and their most appropriate classification 

for the model. Independent variables such as riverbank erosion or sinuosity index are 

classified into categorical variables, meaning that they can be assigned a fixed level from 

a number of feasible values. Levels assigned to each variable are shown using two-letter 

codes. Classification of levels for the variables are described in details in the previous 

section. The only numerical variable, distance to river, can take different values and 

numbers.  
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Table 4 Variables used in the logistic regression model 

Code Variable Type 
Level 
Code 

Level 

W Channel width Categorical 
WL ˂ 1000 m 

WM ˃ 1000 m 

S 
River sinuosity 

index 
Categorical 

SW 1.05 ~ 1.25 

ST 1.25 ~ 1.50 

SM > 1.50 

L 
Location with 

respect to channel 
shape 

Categorical 

LM Meander bend 

LO Oxbow lake 

LS Straight 

E Riverbank erosion Categorical 
EY Yes 

EN No 

D Distance to water Numerical - - 

 

The weighted average distribution for each independent variable can be seen in 

Figures 18 and 19. Chart “a” in figure 5 shows almost a uniform distribution in channel 

sinuosity index between all possible outcomes. 22% of all cases (slides and non-slides) 

are slides with twisting sinuosity index, and the rest of cases with slides that are 

approximately equally distributed between winding and meandering sinuosity index. 

Chart “b” shows that 23.6% of all cases are slides that have riverbank erosion, while 

38.9% of all cases are non-slide areas with no riverbank erosion. According to chart “c”, 

41.2% of all the cases are slides with a corresponding channel width of less than 1000 m. 

Chart “d” shows that 32.3% of all cases are slump slides which are located on ox bow 
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lakes, while only 1.5% of them locate on straight portions of river. On the other hand, 

29.5% of all cases are non-slide areas that locate on straight portions of river, and the rest 

of non-slides are almost equally divided between meandering portions of river and ox 

bow lakes. 

 

Figure 18 Pie chart distribution for qualitative variables: a) Channel sinuosity index, 
b) Riverbank erosion, c) Channel width, d) Location with respect to 
channel shape 

 

Figure 19 shows the data distribution for the numerical variable distance to water. 

More than 70% of non-slide locations are located more than 1000 m away from the 

water, while approximately 80% of slide areas are located in less than 1000 m from the 

water. 
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Figure 19 Data distribution for the numerical variable “Distance to water” 

 

The model is implemented using the binary logistic regression function of 

Minitab 17. The first model includes all the variables while the second model, which is 

developed based on the findings from the first model, includes four variables. The 

Pearson and Deviance tests are used to assure the goodness-of-fit of the logit model.   

Results and discussion  

Regression model with all variables 

After running the model, the first step is to compare the obtained P-values to the α 

level. Fisher (1925) suggested a probability of one in twenty (α level of 0.05, or 

significance level of 95%) as a conservative cutoff level to reject the null hypothesis. 

However, he recommended later to set the significance level according to circumstances 

of the project (Quinn and Keough, 2002). In this section, the significance of each variable 

was tested using an α level of 0.05 in order not to take high risks of making a wrong 

decision. The p-value specifies whether there is a statistically significant association 
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between each predictor variable and the response variable. P-values for each predictor is 

shown in Table 5. The model has an R2 value of 39.02%, and the predictor channel 

sinuosity index is the variable that does not meet the significance threshold of P-value = 

0.05. 

Table 5 Results of the regression model 

Variable P-Value 

Channel width 0.044 

Riverbank erosion 0.001 

Channel sinuosity index 0.285 

Location with respect to channel shape 0.013 

Distance to water 0.029 
 

The odds of an event equal the probability that the event occurs divided by the 

probability that it does not occur. Therefore the odds ratio compares the odds of each two 

levels (here Levels A and B) of a predictor (Table 6). Based on this definition, Levels A 

and B are set for each independent variable to show odds ratio. For example, the odds 

ratio for a location on a levee whose channel width is more than 1,000 meters is 0.237, 

meaning that the slump slides happen 4.219 times more in the areas with a channel width 

less than 1,000 m. The odds ratio of the riverbank erosion variable suggests that the 

slump slide failure is 9.75 times more likely to occur if riverbank erosion is detected there 

compared to the sites without riverbank erosion. As for sinuosity level, the results  

suggest that a slump slide is 0.487 times more likely to appear on parts of the levee with a 

corresponding river sinuosity level of twisty compared to sinuosity level of meandering. 
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In other words, the areas with a meandering level are 2.053 times more likely to be prone 

to slump slides in comparison to the twisty level. A slump slide is 0.269 times more 

likely (3.717 times less likely) to appear on parts of the levee where the corresponding 

river sinuosity level is winding in comparison to meandering. Finally, a slump slide is 

0.552 times more likely (1.811 times less likely) to appear on parts of the levee with a 

corresponding river sinuosity level of winding than with a level of twisty, which means 

that a slump slide is 1.811 times more likely to occur on twisty parts of the levee system 

than winding ones.  

The odds ratio of the location with respect to the channel shape variable suggests 

that a slump slide on levee is 6.707 times more likely to occur on oxbow lakes compared 

to meander bends. It also shows that a levee slump slide is 0.642 times more likely to 

happen on straight portions of river rather than meander bends, which means that 

meander bends are 1.557 times more prone to slump slides than straight portions. The 

results show that oxbow lakes are 10.438 times more prone to slump slide failure than 

straight portions of river. As for the distance to water variable, for each additional 100 m 

distance from the levee toe to the water, the odds that a slump slide occurs decrease by 

6%. In other words, for each 100 m units of becoming closer to the water, the odds of 

slump slide failure increase by 6% (Table 6).  
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Table 6 Summary of odds ratio for level A relative to level B for categorical 
predictors, and odds ratio for continuous predictor 

Categorical Predictors 

Level A Level B Odds Ratio 

Channel width (More) Channel width (Less) 0.237 

River sinuosity index (Twisty) River sinuosity index 
(Meandering) 0.487 

River sinuosity index (Winding) River sinuosity index 
(Meandering) 0.269 

River sinuosity index (Winding) River sinuosity index (Twisty) 0.552 

Riverbank erosion (Yes) Riverbank erosion (No) 9.750 
Location with respect to channel 

shape (Oxbow) 
Location with respect to channel 

shape (Meander bend) 6.707 

Location with respect to channel 
shape (Straight) 

Location with respect to channel 
shape (Meander) 0.642 

Location with respect to channel 
shape (Straight) 

Location with respect to channel 
shape (Oxbow) 0.096 

Continuous Predictor 

Distance to water Unit of change: 100 m 0.941 
 

In binary logistic regression, the probability of slump slide occurrence (= 1) at a 

specific location is derived based on: 

P (1) =
exp (𝑦′)

1+ exp (𝑦′)
    (2) 

where 

  𝑦′ =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖   (3) 

where 𝑥𝑖 observations are the known predictors, and 𝛽𝑖 is the estimated regression 

coefficient. The regression equation which is used to describe the relationship between 

the response and predictor variables is derived as: 
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Y' = 0.074 - 0.000605D + 1.439WL - 2.277EN + 0.718SM - 0.593SW + 1.903LO – 0.442LS (4) 

Regression model without river sinuosity index 

The regression analyses was performed again after excluding the river sinuosity 

index variable as its corresponding P-Value was more than the α level. The new model 

has an R2 value of 37.08%. The Pearson and deviance test was used to assure the 

goodness-of-fit of the logit model.  The P-Values for predictors are shown in Table 7. 

Table 7 Results of the new regression model 

Variable P-Value 

Channel width 0.014 

Riverbank erosion 0.002 

Location with respect to channel shape 0.015 

Distance to water 0.079 
 

The odds ratio for a location on levee whose channel width is more than 1,000 

meters is 0.195, meaning that slump slides happen 5.128 times more in areas with 

channel width less than 1,000 m. The odds ratio of the riverbank erosion variable 

suggests that levee slump slide failure is 8.768 times more likely to occur if riverbank 

erosion is detected there compared to sites without riverbank erosion. The odds ratio of 

the location with respect to channel shape variable suggests that slump slide failure on 

levee is 3.817 times more likely to occur on oxbow lakes compared to meander bends. 

Levee slump slide failure is 0.347 times more likely to occur on straight portions of the 

river rather than meander bends, which means that meander bends are 2.881 times more 

likely to experience slump slide failure than straight portions. It then suggests that oxbow 



 

66 

lakes are 10.976 times more prone to slump slide failure than straight portions of river. 

As for the numerical variable distance to water, for each additional 100 m distance from 

the levee toe to the water, the odds that a slump slide occurs decrease by about 4%. In 

other words, for each 100 m becoming closer to the water, the odds of slump slide failure 

increase by about 4% (Table 8). 

Table 8 Summary of odds ratio for level A relative to level B for categorical 
predictors, and odds ratio for continuous predictor in the new model 

Categorical Predictors 

Level A Level B Odds Ratio 

Channel width (More) Channel width (Less) 0.195 

Riverbank erosion (Yes) Riverbank erosion (No) 8.768 

Location with respect to channel 
shape (Oxbow) 

Location with respect to channel 
shape (Meander bend) 3.817 

Location with respect to channel 
shape (Straight) 

Location with respect to channel 
shape (Meander) 0.347 

Location with respect to channel 
shape (Straight) 

Location with respect to channel 
shape (Oxbow) 0.091 

Continuous Predictor 

Distance to water Unit of change: 100 m 0.960 

 

Regression equation according to the new set of predictors:  

Y' = – 0.030 – 0.000419D + 1.634WL – 2.171EN + 1.340LO – 1.056LS  (5) 

Single variable regression equations 

Using the regression analyses which were discussed in the previous section (i.e., 

after excluding river sinuosity), a separate regression equation is provided for each level 
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of each categorical predictor of the regression model to find the most and the least 

vulnerable locations in the study area. The relative probabilities of the groups can be 

evaluated with a comparison of the constant values in the equation. Table 9 shows the 

individual equations for different qualitative variables. There we have 12 equations as 

there are two predictors with 3 levels, and one predictor with two levels. Since the 

distance to the river predictor is numerical, the coefficient corresponding to this predictor 

is the same in all the equations. According to Table 9, the levee sections with a 

corresponding width of river less than 1,000 m, riverbank erosion detected channel bed, 

and located on oxbow lakes are the most vulnerable areas for failure with the highest 

positive constant value of 2.944. The least vulnerable area for slump slide occurrence are 

areas located more than 1,000 m away from the water, with no riverbank erosion at the 

channel bed and on straight portions of the river. Such a model resulted in an intercept of 

-3.258.  
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Table 9 Separate equations for variables 

W E L Regression Equation 

Less 
Yes 

Oxbow Y' = 2.944 – 0.000419 D (6) 

Meander Y' = 1.604 – 0.000419 D (7) 

More 
Oxbow Y' = 1.309 – 0.000419 D (8) 

Less 
No Y' = 0.7726 – 0.000419 D (9) 

Yes 
Straight Y' = 0.5481 – 0.000419 D (10) 

More 
Meander Y' = –0.03020 – 0.000419D (11) 

Less 
No Y' = –0.5670 – 0.000419D (12) 

More 
Oxbow Y' = –0.8618 – 0.000419D (13) 

Yes 
Straight Y' = –1.086 – 0.000419D (14) 

Less 

No 

Y' = –1.623 – 0.000419D (15) 

More 
Meander Y' = –2.201 – 0.000419D (16) 

Straight Y' = –3.258 – 0.000419D (17) 
 

The model is then used to predict the probability of slump slide occurrence for the 

most and the least vulnerable areas according to Table 9. For example, the fitted 

probability that a slump slide occurs on a specific location of levee with the 

corresponding water width of less than 1,000 m, with detected riverbank erosion, located 

on an oxbow lakes, with a 900 m distance to water, is predicted to be 92.9% with a 

standard error of 0.054. It is estimated that with 95% confidence, the probability of slump 

slide occurrence in this location is between 72.13% and 98.45%. On the other hand, for 

the least vulnerable location where it is assumed to be 1,500 m away from the water, with 
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corresponding water width of more than 1,000 m, no riverbank erosion detected, and 

located on the straight portion of the river, the fitted probability is predicted to be 2.01% 

with a standard error of 0.018. It is estimated that with 95% confidence, the probability of 

slump slide occurrence in such location is between 0.33% and 11.08%. 

Model verification 

In order to verify the logistic regression model which was developed in this study, 

the model’s performance was examined for two new data points which were not included 

in the regression analysis: one case of slump slide and one case of non-slide. The slump 

slide is reported that occurred in June, 2010 on the west side of the Lower Mississippi 

river levee system in the state of Louisiana, and the location of the non-slide point is 

randomly selected. The locations and predictive variables of the slump slide and non-

slide points used for verification purposes are shown in Figure 20 and Table 10, 

respectively.  
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Figure 20 Locations of the slump slide (dark blue dot) and non-slide (green dot) cases 
used for verification. Red dots are the slump slides which were used in the 
regression analysis.   

 

Table 10 Predicted variables for the slide and non-slide cases used for verification 

Predictor variables Case a: Slide 
(1) 

Case b: Non-slide 
(0) 

Riverbank erosion EY EN 
Location with respect to 

channel shape LO LM 

distance to water 1400 m 1400 m 
water width WM : 1170 m WM : 1600 m 

y' 0.7234 -2.7876 
ey′ 2.0614 0.0615 

P(1) 0.6733 0.0579 
 

The results shown in Table 10 indicate that the model could reasonably predict 

the probability of slump slide occurrence for both cases which were tested. As shown, the 

developed regression model predicts probability of 67.3% and 5.8% of slide occurrence 
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for the slump slide and no-slide points, respectively. Since the model predicts a high 

probability of occurrence in the slide location, this area and other areas with such high 

probability need to be in the top priority for monitoring.  
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CONCLUSION 

Summary of work accomplished for using in situ soil measurements for analysis of 
classified UAVSAR imageries of levee slump slides 

In this work statistical analyses were performed to compare soil properties of 

different classes from the output of an earthen levee slump slide classifier. Although 

“false positive” is defined as a commission error of a classifying system, this study 

investigated the vulnerability of false positives from an unsupervised levee slump slide 

classifier to future failures. This task was accomplished by comparing soil texture, 

moisture content, hydraulic conductivity and penetration resistance in different classes of 

the classifier output as contributing factors for slump slides in levees.  

Two methods of analysis were used: pixel-based and object-based. For the first 

method, the soil property distribution of all pixels classified as false positive was 

compared with that of all the slide and healthy area pixels. The comparisons 

demonstrated that the false positives exhibited similar trends in soil properties to the slide 

area in the surface layer. In the second method, this comparison was made between the 

pixels of two dense false positive zones with that of the slide and healthy areas. These 

dense false positive zones were selected based on the fact that their geometries looked 

like the slide area, and also the classifier’s output in these zones had similar values to 

those in the slide area. The results of analyses obtained from the object-based method, 
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and the later discovery of cracks and stressed vegetation in one of these dense false 

positive zones, indicate the importance of this study. The results presented here could 

potentially help engineers and levee managers to find high risk areas and repair the most 

needed ones in advance. However we believe that further investigation is needed to 

strengthen this conclusion. 

Summary of work accomplished for effects of rainfall and other variables on 
vulnerability of levee system to slump slides 

Levees systems provide flood protection in various regions in the U.S. and all 

around the world. Continuous assessment of the levee’s integrity and monitoring their 

health under various normal and extreme loading conditions is a critical task which 

warrants further attention to improve currently available methods. The integrity of a levee 

can be fully or partially threatened by instabilities in the levee’s body or foundation.  

The current study focused on a shallow instability, referred to as slump slide, 

which commonly occurs on the river-side of earthen levees. Rainfall data and five other 

geometrical and geomorphological parameters for a database of 34 slump slides which 

occurred along the Lower Mississippi River levee system between 2008 and 2009 were 

investigated. The rainfall data was collected at the month of event as well as for the past 

six months before the slide event. The precipitation data was examined and the results 

showed that 9 out of 23 slump slide failures with clear observation dates happened in the 

peak rainfall month, 66% higher than average cumulative rainfall. Seven slides occurred 

one month after the peak rainfall month, with more than 70% higher than average 

cumulative rainfall, and the remaining six slides occurred two months after the peak 

rainfall month and in a drier month. A steep gradient in the cumulative rainfall was 
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observed for the three-month duration (0.62) before slump slide occurrence date in 

comparison to the previous three-month duration (0.40). The trend in the curves indicated 

that precipitation development is significant before slope instability occurrence. 

Five geometrical and geomorphological parameters including the channel width, 

distance to water, channel sinuosity index, riverbank erosion detection, and the location 

with respect to channel shape were tested in a series of logistic regression analyses. 

Excluding sinuosity index in the first test, the α level of 0.05 and the P-Values less than α 

level in both tests reject the null hypothesis. With less than 95% significance level, 

sinuosity index was removed from the first model. This was rational according to the 

nature of the river in the study area; that it has high sinuosity in all parts of the study area 

and thus the variable is not an influencing factor in the model. The second model 

suggests that among the qualitative variables, the availability of riverbank erosion around 

the slides locations is the most significant predictor factor. Rate of riverbank erosion is 

directly related to the flood times and is a good indicator of vulnerable areas to flooding. 

Channel width less than 1,000 m wide, due to the lack of capacity to contain large 

volumes of water and thus an increase in the hydrodynamic regime in flood conditions is 

ranked the second most significant variable. Oxbow lakes were 10.976 and 3.817 times 

more prone to slump slide than straight portions of the river and meander bends, 

respectively. Meander bends were 2.881 times more prone to slump slide failure rather 

than straight portions of river. Finally, each additional 100 m distance from the levee toe 

to the water resulted in a 4% less probability of failure. The verification results showed 

that the model can reasonably predict the probability of slump slides for both slide and 

non-slide areas.  It is anticipated that using a larger database of slump slide events and 

javascript:void(0)
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considering more predictor variables can further improve the performance of the 

regression model. Overall, the results suggest that designers consider geological and 

environmental parameters in designing levees for future, and could assist decision-

makers to identify the most vulnerable locations for slump slide failure on levees, in 

order to guide the allocation of monitoring or preventive activity. 

Recommendations for future research 

It is important to note the limitations involved in conducting this research. As for 

the first part of this work, larger studies to screen greater area with targeted intense 

inspections can be one of the best ways to expand the target classification to include non-

visible areas of slope instability. Furthermore, other in situ measurements including more 

geotechnical parameters can be analyzed on the soil of the levee. Moreover, slope 

stability analysis for suspected areas can be conducted in structural scale using different 

methods like the Limit Equilibrium or Finite Element Method in order to find a factor of 

safety against slump slide instability. Also Discrete Element Method can be used to 

compute the motions and effects of each soil particle. 

As for the second part of this work, it is worth noting that there are many other 

parameters besides the ones used in this study that can possibly stimulate slump slides in 

levees. Such parameters include human activities, earthquakes, engineering 

characteristics and behavior of the levee soil, vegetation type, etc. Considering these 

parameters in developing such regression analyses could result in a rich and more general 

regression model. Moreover, upon availability of additional data, further studies can be 

conducted for quantitative analyses of rainfall time-series effects on slump slide failures 

at finer time scales. For example, for those slides with available appearance date such  
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analysis can be performed on a daily time scale within the past week of the event rather 

than merely within the past 6 months. This higher resolution precipitation data can help 

to reveal relationships between peak rainfall days and slump slide occurrence  
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