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Vulnerable code may cause security breaches in software systems resulting in financial

and reputation losses for the organizations in addition to loss of their customers’ confi-

dential data. Delivering proper software security training to software developers is key to

prevent such breaches. Conventional training methods do not take the code written by the

developers over time into account, which makes these training sessions less effective. We

propose a method for recommending computer–security training to help identify focused

and narrow areas in which developers need training. The proposed method leverages the

power of static analysis techniques, by using the flagged vulnerabilities in the source code

as basis, to suggest the most appropriate training topics to different software developers.

Moreover, it utilizes public vulnerability repositories as its knowledgebase to suggest com-

munity accepted solutions to different security problems. Such mitigation strategies are

platform independent, giving further strength to the utility of the system.



This research discussed the proposed architecture of the recommender system, case

studies to validate the system architecture, tailored algorithms to improve the performance

of the system, and human subject evaluation conducted to determine the usefulness of the

system.

Our evaluation suggests that the proposed system successfully retrieves relevant train-

ing articles from the public vulnerability repository. The human subjects found these arti-

cles to be suitable for training. The human subjects also found the proposed recommender

system as effective as a commercial tool.

Key words: Recommender system, software security, software vulnerabilities, CWE, NVD,
training, tf–idf, Jaccard index, Static code analysis, FindBugs.
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CHAPTER 1

INTRODUCTION

1.1 Research Hypothesis

The following is the hypothesis for our research.

Potential vulnerabilities in an individual developer’s source code can be auto-
matically mapped to relevant articles in public vulnerability repositories that
are suitable for training the developer regarding vulnerability mitigation.

1.2 Understanding the Problem

Security breaches in software systems are often caused by vulnerable code, which result

in loss of confidential data in addition to reputation and financial damages. A report1

published by Mcafee Inc. reveals that the world wide annual losses due to security breaches

are $375− $575 billion. Moreover, a report2 by Microsoft suggests that a defect found and

fixed, especially later in the development or post–development process, may cost 100 times

or even higher.

To achieve robust software security, developers must be given proper training on secure

coding practices. Conventional training methods are limited as they do not take the prior

code written by the developers into account.

1See http://www.mcafee.com/us/resources/reports/rp-economic-impact-
cybercrime2.pdf (accessed Jan. 20, 2015).

2See http://www.microsoft.com/hun/getthefacts/ESGNov 2006SDL.mspx (ac-
cessed Jan. 20, 2015).

1



The cost of fixing security vulnerabilities in later stages of software development life-

cycle can be exponentially high. Helping software developers to write secure code in the

first place is a key to avoid such costs.

1.3 Motivation and Objective

The motivation for this research is the idea that training for each software developer

should be in individually identified and focused areas of software security rather than a

generalized security training for all developers. The main objective of our proposed system

is to recommend precise and focused training articles to software developers. Our approach

intends to help developers avoid unsafe coding practices in an efficient and effective way.

1.4 Our Approach to Solving the Problem

Our approach relies on analyzing the code written or modified by individual developers

using static analysis tools3 e.g., FindBugs,4 which detect security and other vulnerabilities

present in the source code. We use the flagged vulnerabilities as the basis for identifying

most relevant training articles for developers who contributed to writing those chunks of

code, hence improving their skill in terms of software security. We explain our approach

with the help of a simple example in Figure 1.1.

It is important to mention that accurately identifying vulnerabilities in developers code

is the key to the success of proposed system.

3List of tools for static code analysis, http://en.wikipedia.org/wiki/List of tools
for static code analysis (accessed Sep. 26, 2014).

4FindBugs, http://findbugs.sourceforge.net/ (accessed Sep. 26, 2014).
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Figure 1.1

Working of proposed system
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1.5 Defining the Recommender Systems

Recommender systems are a special type of information filtering system, which seek

to predict the rating or preference that a user would give to an item [50]. Recommender

systems have been widely used in recent years for various purposes. Common applications

of recommender systems include recommending music [29] or movies [5] based on users’

demographics and interests and recommending books, magazines [47], or news articles

[22] to potential readers or subscribers. Recommenders systems are also popular in social

media where they recommend personalized social updates [45] and social tags [7]. Online

merchants like Amazon boost sales by recommending appropriate products [63] and ser-

vices to their potential customers. In addition to the categories described above, there are

systems for recommending restaurants, insurance, and financial services.

The effectiveness of recommender systems across such a broad range of applications

suggested a novel application: Providing focused and precise security training to software

developers based on the past coding practices of each developer. Such training can be

more effective and efficient than the conventional generalized security training in terms of

helping developers to avoid unsafe coding practices.

1.6 Leveraging the Power of Open Source

The proposed recommender system makes use of valuable knowledge items in vulnera-

bility repositories, such as Common Weakness Enumeration, CWE, which are contributed

by software security experts across the globe, and are available for public use for free.

CWE repository is a unified, measurable set of software weaknesses. It enables more ef-

4



fective discussion, description, selection, and use of software security tools and services

that can find these weaknesses in source code.

With the help of a script, the proof-of-concept implementation of the proposed recom-

mender system downloaded and stored more than 700 articles from CWE repository. Each

article details a specific software weakness such as Cross Site Scripting, SQL injection,

use of hard–coded passwords, and buffer overflow.

The structure of each CWE article is same, and contains information on potential miti-

gation for the vulnerability along with other useful information, more details on the struc-

ture of CWE article can be found in later sections. The potential mitigation strategies in

CWE articles may serve as a training resource for the developers. The proof–of–concept

recommender system maps the discovered vulnerabilities in the source code to the CWE

articles to identify relevant articles which may be used to train different software develop-

ers.

Static code analysis [64], which is an emerging technique for secure software devel-

opment, analyzes large software code bases, without execution, to reveal potential vulner-

abilities present in the code. Static analysis can evaluate the system or a component of a

system based on its form, structure, content, or associated documentation. It is analogous

to the analysis of development products that rely on human examination. The proposed

recommender system utilizes open source static analysis tool(s) as one of it’s components.

Though the proof–of–concept recommender system uses only the CWE repository, the

proposed research will also consider other vulnerability repositories.
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1.7 Organization

This document is organized int the following way. Chapter 2 discusses related work,

chapter 3 discusses the open source, commercial, and custom built tools used in this re-

search, chapter 4 outlines the research methodology, chapter 5 discusses the architecture of

the proposed recommender system, chapter 6 presents the preliminary case study, chapter

7 discusses the human subject evaluation of the recommender system, chapter 8 details

the tailored approach and compares them with the original approaches discussed in previ-

ous chapters, chapter 9 is based on discussion, and chapter 10 presents the conclusion and

future work.
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CHAPTER 2

RELATED WORK

In this chapter we discuss the systematic mapping study on recommender systems for

software engineering, we also discuss potentially useful information retrieval algorithms,

and provide background information on different security vulnerabilities.

2.1 Recommender Systems for Software Engineering

The idea of recommender systems is not new for the software engineering domain.

Several recommender systems have been proposed or built to facilitate software developers

to perform various tasks. We briefly describe some well known recommender systems

below.

2.1.1 Debug Adviser

Debug Adviser [3] is a recommender system, which helps developers to fix software

bugs. A developer enters the contextual information of the bug into the tool, and the

tool searches through the repository of projects for bugs with similar context which have

already been fixed. It requries the developer to manually enter the bug information while

we make use of static analysis techniqes instead. Moreover, the scope of Debug Adviser

7



is limited to the project repository, while our proposed system makes use of vulnerability

repositories to recommend potential mitigation strategies.

2.1.2 Strathcona

Strathcona [26] is a recommendation tool to assist developers in finding relevant frag-

ments of code of an API’s use. The tool recommends examples that can be used by de-

velopers to provide insight on how they are supposed to interact with the API. Like our

system, the purpose of the Strathcona is to train developer, but its scope is focusing on use

of specific APIs.

2.1.3 Hipikat

Hipikat [17] is a recommender tool that scans a project’s archives and recommends arti-

facts from the archive that are related to the software developer’s task at hand. The artifacts

can be versions of source code modules, bugs reports, archived electronic communications,

and web documents. Hipikat is especially helpful for open source projects.

2.1.4 RASCAL

RASCAL [37] is a recommender agent that tracks usage histories of a group of devel-

opers to recommend to an individual developer components that are expected to be needed

by that developer based on the experiences of the groups. RASCAL works in the same

way as Hipikat to help new individuals to adjust in group setting efficiently, but it is not

specifically related to security training.
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2.1.5 Recommender System for Requirements Elicitation

Requirements elicitation includes complex tasks for which recommender systems can

be helpful, examples of such tasks are identification of potential subject matter experts,

Recommender System to Support Requirements Elicitation [13] recommends possible fea-

tures for stakeholders to consider, and keeping stakeholders informed of relevant issues.

2.1.6 Contextual Recommendations

Context Based Recommendations for Software Developers [2] help software develop-

ers to use the elements of the source code in the integrated development environment (IDE)

in smarter ways by identifying the elements that are commonly related. The system pro-

vide an efficient way to reach the desired elements. This system is significantly different

from our proposed system as it helps developer only to identify related elements of source

code and use them effectively.

2.2 Systematic Mapping Study

To get a detailed insight of the existing recommender systems related to the domain of

software engineering, we conducted a systematic mapping study. This sections details our

mapping study.

The following creteria were used to filter the articles.

• Articles that do not address core software engineering functions were excluded.

• Mapping studies on recommender systems were excluded.

• User studies on recommender systems were excluded.

• Duplicate studies were excluded.
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Table 2.1

Filtering Creteria

Filter criteria Excluded Remaining
Total articles found using search criteria 927
Filtered to remove duplicate studies 141 786
Filtered based on title of the article 653 133
Filtered after reading abstract of the article 72 61
Filtered after reading conclusions and results 7 54

The summary of filtering process is given in Table 2.1.

After conducting the systematic mapping study, we categorized the recommender sys-

tems based on their function, they are summarized in Table 2.2.

In addition to the categories of software engineering recommender systems shown in

Table 2.2, there are other systems for miscellaneous tasks e.g., recommender system for

identifying critical modules for rigorous testing [30], automated test recommendation [28],

selection of software development life cycle [32], assigning tasks (e.g., bug reports) to

software developers [36], envisioning a holistic view of recommender systems for software

engineering [48].

The recommender systems discussed in this section facilitate individual software devel-

opers in performing various software engineering tasks. However, we did not find literature

on recommender systems which, by utilizing static code analysis or otherwise, recommend

security related training topics to software developers.

More details about systematic mapping study can be found in the Appendix A.
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Table 2.2

Recommender Systems for Software Engineering

Recommender system category Related systems
Information retrieval
They facilitate software developers identifing relevant
information and artifacts based on the context e.g.,
source code snippets, software components for reuse,
and API usage examples.

[2], [6], [16], [17], [18],
[20], [21], [23], [24],
[25], [33], [35], [37],
[39], [52], [54], [60]

Software development
They enhance development environment for software
developers e.g., identifying tools or commands to use
in an IDE, recommending meaningful method names.

[1], [31], [40], [61]

Software project management
They facilitate software project management activi-
ties e.g., effort estimation, identifying project team,
assigning mentors to software project newcomers.

[15], [46], [55], [56]

Requirements specification
They help in requirements specification, e.g., identi-
fying non-functional requirements based on context.

[10], [14], [19], [53],
[62]

Software design and architecture
Recommender systems that facilitate maintaining
software architecture, e.g., identifying architectural
violations in software, recommending design pat-
terns.

[11], [44], [51], [58]

Other/ Miscellaneous
[28], [30], [32], [36],
[48]
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2.3 Mapping Algorithms

Mapping algorithms are used to find similarity between two given documents, in this

research we intend to calculate similarity between the description of vulnerabilities and the

articles in the public vulnerability repositories. We intend to use the following mapping

algorithms.

1. Vector Space Model (VSM) with term frequency–inverse document frequency (tf–
idf) [9].

2. Jaccard index or Jaccard similarity coefficient [57].

The Jaccard coefficient measures similarity between finite sample sets A and B.

J(A,B) =
| A ∩B |
| A ∪B |

(2.1)

As it is obvious from equation (2.1) that the Jaccard coefficient does not take the weight

of the terms into account. However the tf–idf scores are offset by the frequency of the

words in the corpus, which helps to control the fact that some words are generally more

common than others. More details on tf–idf can be found in chapter 5.

2.4 Software Vulnerabilities

A vulnerability is a weakness in a software system that may be exploited by an at-

tacker. Some examples of vulnerabilities are Injection Attacks, Broken Authentication and

Session Management, Cross-Site Scripting (XSS), Insecure Direct Object References, Se-

curity Misconfiguration, Sensitive Data Exposure, Missing Function Level Access Control,

Cross-Site Request Forgery (CSRF), Using Components with Known Vulnerabilities, and
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Unvalidated Redirects and Forwards. These examples have been taken from OWASP1 Top

Ten Project for the year 2013.

Exploiting these vulnerabilities results in financial and reputation losses to the organi-

zations in addition to the voilation of privacy of the individuals effected. Injection attacks

alone have caused several major data breaches to financial and healthcare organizations in

recent years. There are several preventive and reactive approaches to counter such vulner-

abilities, the work proposed in this research falls under the first category.

The code repository analyzed in our experiments involves four security vulnerabilities.

They are discussed briefly below.

2.4.1 Cross Site Scripting (XSS)

The Cross Site Scripting, or XSS, vulnerability allow an attacker to add malicious code

to a web application. When the infected application is accessed by victim, a legitimate

user, the malicious code/script executes on user’s web browser. The working of Cross Site

Scripting2 is explained in Figure 2.1.

The malicious code runs on victim’s computer everytime the infected webpage is ac-

cessed. Common consequences of XSS attack are session hijacking and stealing victim’s

confidential information.
1OWASP, https://www.owasp.org/ (accessed Nov 21, 2014).
2Typical XSS attack, http://www.pitsolutions.ch/blog/cross-site-scripting/

(accessed Jun 08, 2016).
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Figure 2.1

Typical Cross Site Scripting (XSS) Attack

2.4.2 Hardcoded Constant Database Password

Source code responsible for establishing connection to the database engine may have

hardcoded database password, anyone with access to either the source code or the compiled

code can easily learn the password, which makes the entire application/database vulnera-

ble. Following is an example3 of such vulnerable code.

DriverManager.getConnection(url, "scott", "tiger");

In some cases, if establishing connection to the database fails, the application may

accidently display the hardcoded username and password to users through web browser.

3CWE - Hardcoded passwords, https://cwe.mitre.org/data/definitions/259.html
(accessed Jun 08, 2016).

14



However, this is only possible if the application configuration permits its users to read

detailed error messages.

2.4.3 HTTP Response Splitting

The HTTP response splitting4 occurs when data enters a web application through an

untrusted source (the attacker). The web server does not neutralize or incorrectly neutral-

izes CR and LF characters before the data is included in outgoing HTTP headers.

Including unvalidated data in an HTTP header allows an attacker to specify the entirety

of the HTTP response rendered by the browser. When an HTTP request contains unex-

pected CR (carriage return, also given by %0d or \r) and LF (line feed, also given by %0a

or \n) characters the server may respond with an output stream that is interpreted as two

different HTTP responses (instead of one). An attacker can control the second response

and mount attacks such as cross-site scripting and cache poisoning attacks.

2.4.4 SQL Injection

A program becomes vulnernable to SQL injection attack if it allows a nonconstant

string to be passed to execute method of an SQL statement.

SQL injection attacks (SQLIAs) are launched by entering malicious characters into the

input fields of web applications resulting in a modified SQL query [42]. The concept of

SQL injection attack is explained in Figure 2.2.

4CWE - HTTP response splitting, https://cwe.mitre.org/data/definitions/113.html
(accessed Jun 08, 2016).
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Figure 2.2

Example of SQL injection attack

16



SQL injections have emerged as one of the most dangerous types of attacks to web-

based systems and are ranked number one among the Open Web Application Security

Project’s (OWASP) top ten vulnerabilities.
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CHAPTER 3

TOOLS

This research involves use of different commercial, open source, and custom built tools

and APIs. In this chapter we briefly discuss these tools and APIs.

3.1 Tools for Static Analysis

There are plenty of proprietary and open source tools available which can analyze mil-

lions of lines of code and uncover various types of vulnerabilities. These vulnerabilities

include but are not limited to SQL injections, buffer overflows, cross site scripting, im-

proper security settings and information leakage [27].

Some tools can analyze code written in multiple languages while others are language

specific. Similarly, tools may differ with respect to the purpose they are built, some tools

scan the code for coding style, for example, proper comments and naming conventions,

while other look for vulnerabilities only.

To analyze the selected source code repositories, we plan to use the following tools.

• FindBugs analyzes Java codebases and finds several different types of potential
vulnerabilities in the code. The tool was created at the University of Maryland in
2003. The tool is freely available for noncommercial use.

• HP Fortify Static Code Analyzer helps verify that software is trustwor-
thy. It also helps developers identify software security vulnerabilities in a variety of
programming languages which include C, C++, Java, JSP, ASP/ASP.NET, PHP, Vi-
sual Basic, VBScript, JavaScript, PL/SQL, COBOL. In addition it has the capability
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to scan configuration files. To verify that the most serious issues are addressed first,
it correlates and prioritizes results to deliver an accurate, risk-ranked list of issues.

Although these tools provide an efficient way of scanning large code repositories for

vulnerabilities, usually a high percentage of discovered vulnerabilities are actually false

positives [4] namely, discovered vulnerabilities are not actually present in the code. Soft-

ware development teams can spend many man-hours to track and fix the discovered vul-

nerabilities. The results generated by these tools can cause unproductive consumption of

time and resources [8].

3.2 Tools for Mapping Algorithms

SimScore is a .NET platform based implementation to calculate two statistics namely

tf–idf [9] and Jaccard index or Jaccard similarity coefficient [57]. This tool will be used

to calculate the similarity scores between the description of flagged vulnerabilities and the

articles in public vulnerability repositories. SimScore has been developed by the Empirical

Software Engineering Research Group of the Computer Science and Engineering Depart-

ment at Mississippi State University [34].

3.3 Part of Speech (POS) Tagger

We use the Part of Speech (POS) Tagger1,developed by Stanford University, reads text

in a given document and assigns parts of speech to each word.

1POS Tagger, http://nlp.stanford.edu/software/tagger.shtml (accessed Apr 20,
2016).
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3.4 LOC Calculator

We use LOC Calculator 1.2 which is a simple Java based tool for calculating

lines of code of source files. It scans a single file or a directory, it has option to ignore

white spaces. It ignores binary files.

3.5 Custom Built Tools

We use custom built tools for different purposes. All custom built tools have been made

publically available to facilitate other researchers. We briefly discuss the custom built tools

below.

3.5.1 Article Extractor

The Article Extractor extracts all the articles from the dictionary view of the

CWE2 repository and stores then in individual files. These articles serve as knowledgebase

for our recommender system.

3.5.2 Noun Extractor

This custom built tool has two important functions. First, it uses the Part of Speech

(POS) Tagger library to assign a part of speech to each word, such as noun, adjective, verb

etc., and creates a tagged document for every input document. Second, it reads the tagged

documents one by one, extracts nouns from the doucment, and stores them in a new file.

2CWE, http://cwe.mitre.org/ (accessed Apr 30, 2014).
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3.6 Public Vulnerability Repositories

A public vulnerability repository contains information on vulnerabilities, potential mit-

igations, demonstrative examples, consequences, etc. These repositories are maintained

and made available for public use. They provide unified, effective, and standard informa-

tion on security vulnerabilities. Examples of such repositories are National Vulnerability

Database, NVD,3 Common Vulnerabilities and Exposures, CVE,4 and Common Weakness

Enumeration, CWE.These repositories are frequently updated and some of them do pro-

vide publically accepted solution along with other useful information on various software

security problems. The proposed recommender system leverages the power of public vul-

nerability repositories by mapping the flagged vulnerabilities in source code to the articles

in these repositories.

3NVD, https://nvd.nist.gov/ (accessed Apr 25, 2014).
4CVE, http://cve.mitre.org/ (accessed Apr 30, 2014).
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CHAPTER 4

RESEARCH METHODOLOGY

4.1 Hypothesis and Research Questions

Following is the hypothesis for our research:

Potential vulnerabilities in an individual developer’s source code can be auto-
matically mapped to relevant articles in public vulnerability repositories that
are suitable for training the developer regarding vulnerability mitigation.

Conventional training techniques do not take the code written by the developers over

time into account, which makes training less effective. Static analysis helps identify the

security vulnerabilities in source code written by developers. Using appropriate mapping

algorithms, the flagged vulnerabilities can be mapped to the articles in public vulnerability

repositories. These articles contain useful information which may be used to train devel-

opers to write secure and robust code.

To generalize the core idea explained above, we conduct case studies on a large scale

open source system. There is evidence that the selected open source system has been used

by the research community for similar studies.

4.2 Research Questions

This dissertation attemps to answer the following research questions:

1. How do the recommendations based on CWE repository compare to recommenda-
tion from HP Fortify in terms of training suitability?
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2. How do the TF-IDF and Jaccard index algorithms compare to each other to identify
relevant articles in public repositories given the evaluation of human subjects?

3. Regarding tailored approaches,

(a) How does the tailored mapping algorithm based on TF-IDF scores and addi-
tional attributes, i.e., recency and completeness of the articles compare, to the
other algorithms in terms of relevance?

(b) How does the tailored mapping algorithm based on Jaccard index scores and
additional attributes, i.e., recency and completeness of the articles, compare to
the other algorithms in terms of relevance?

4. What is the statistical profile of developers in the case study based on the following-
parameters?

(a) Tendency to cause vulnerabilities over the case study window

(b) Recency of induced vulnerabilities

(c) Severity of induced vulnerabilities

The following sections discuss each research question in detail and lists the experiments

conducted to answer each question.

4.2.1 How do the recommendations based on CWE repository compare to recom-
mendation from HP Fortify in terms of training suitability?

Public vulnerability repositories host useful information on software vulnerabilities.

This research question addresses whether or not this information can be used for training

purposes. We characterize these repositories to find out whether they are suitable as a

training resource to help developers write secure and robust code.

We compare the recommended articles from public vulnerability repository, i.e. the

CWE repository, with the articles from commercial tool’s repository. Detail about experi-

ment design to address this research question can be found in section 4.3.3 and 4.3.4.
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4.2.2 How do the TF–IDF and Jaccard index algorithms compare to each other to
identify relevant articles in public repositories given the evaluation of human
subjects?

Our research primarily uses tf–idf and Jaccard Index based approaches to map flagged

vulnerabilities to the articles in public vulnerability repository. To answer this research

question we conduct a human subject evaluation. Detail about experiment design to ad-

dress this research question can be found in section 4.3.4 and 4.3.5.

4.2.3 Research questions regarding tailored approach

The research questions regarding tailored versions of tf–idf and Jaccard Index based

approaches are given as under.

4.2.3.1 How does the tailored mapping algorithm based on TF-IDF scores and ad-
ditional attributes, i.e., recency and completeness of the articles compare, to
the other algorithms in terms of relevance?

We create a tailored version of tf–idf based approach and see if we can achieve im-

provement in terms of finding relevant training articles. The modified approach may in-

clude pre–processing the entire dataset in addition to incorporating attributes, i.e., recency

and completeness of the articles.

4.2.3.2 How does the tailored mapping algorithm based on Jaccard index and and
additional attributes, i.e., recency and completeness of the articles, compare
to the other algorithms in terms of relevance?

We create a tailored version of Jaccard index based approach and see if we can achieve

improvement in terms of finding relevant training articles. The modified approach may in-
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clude pre–processing the entire dataset in addition to incorporating attributes, i.e., recency

and completeness of the articles.

Detail about experiment design to address the research questions 4.2.3.1 and 4.2.3.2

can be found in section 4.3.5.

4.2.4 What is the statistical profile of developers in the case study based on the fol-
lowing parameters?

1. Tendency to cause vulnerabilities over the case study window

2. Recency of induced vulnerabilities

3. Severity of induced vulnerabilities

To answer this research question, we analyze different versions of open source software

systems for security vulnerabilities and study the trends.

4.3 Experiment Design

This research involves three main experiments. First, the priliminary case study, which

is discussed in chapter 6; second, The human subject evaluation of the proposed recom-

mender system discussed in chapter 7; and third, the implementation of a tailored approach

discussed in chapter 8. The summary of dataset, pre–processing, and experiment is given

below.

4.3.1 Getting Dataset and Tools Ready

For experiments, we need to identify the following.

• Identify an open source systems, to be used as target code, say C.
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• Identify and explore a static analysis tools, say T .

• Identify a public vulnerability repository, say V .

• Identify and implement two mapping algorithms, say A1 and A2.

• Identify a commercial tool that analyzes a given code repository and recommends
training.

The next section discusses how do we pre–process the data.

4.3.2 Pre–processing

Once we identify target source code, tools, and public vulnerability repository, we pre–

process data as discussed below:

• Extract information from public vulnerability repository. Store information on each
vulnerability in a seperate file, the training articles.

• Exclude articles without mitigation strategies.

• Extract severity level of each vulnerability (to be used for prioritizing training).

The sections below discuss details about experiments.

4.3.3 Experiment I: Preliminary case study

This proof-of-concept case study validates the architecture of the proposed recom-

mender system with a preliminary empirical evaluation. The study is based on analysis

of a open source system using a open source static analysis tool, and uses a tf–idf based

approach to map identified vulnerabilities to the articles in public vulnerability repository.

The following experiment will be performed to answer the research question listed

above.

• Select three open source large scale real world systems to conduct different experi-
ments explained in the following sections.
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• Use two static analysis tools to find out security vulnerabilites in source code of each
selected open source system and compare the results for each case study.

• Analyze flagged vulnerabilities for potential training topics for individual develop-
ers.

4.3.4 Experiment II: Human Subject Evaluation

The human subject evaluation of the system extends the preliminary study. In this

study we use Jaccard index, a set based approach, in addition to tf–idf based approach, for

fetching related articles from the public vulnerability repository. Moreover, we also draw

a comparison of our proposed system with a commercial tool.

A panel of sofware security experts will assess whether the training material will help

the trainee to write secure code in the future? They will be given recommended articles

mapped for different vulnerabilities flagged in source code. This will also provide a way to

find which public vulnerability repository has better and more well structured information,

and also which mapping algorithm has mapped more relevant articles.

The experts are expected to understand the vulnerabilities flagged in the code and the

articles in public vulnerability repositories. We intend to involve graduate students and

faculty members who fulfill criteria. Students enrolled in Software Security and Software

Reverse Engineering classes shall be approached by their respective professors, although

they may be required to participate in the study however the may opt to exclude their

responce from the data.

The following experiments will be performed to answer the research question listed

above.
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• Identified experts will analyze and determine whether or not the mitigation strategies
recommended by the mapping above for software vulnerabilities are suitable for
training?

• Interrater agreement statistics will be calculated.

4.3.5 Experiment III: Implementation of Tailored Algorithms

This study is continuation of the previous studies and implements a tailored version

of our approach. We utilize the Part of Speech (POS) Tagger API to extract Nouns from

all the documents in dataset (i.e., flagged vulnerabilities and training articles from public

vulnerability repository). We also utilize parameters like length of articles in re-ranking the

training articles. Lastly, we analyze trends in discovery of vulnerabilities in open source

software.
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CHAPTER 5

PROPOSED RECOMMENDER SYSTEM ARCHITECTURE

The architecture of the system shown in Figure 5.1 is the context for this research. This

is an extension to our preliminary design [38]. The preliminary design relies primarily on

the custom built training database whereas the refined architecture leverages the power of

vulnerability repositories in addition to custom built training database.

A short description of each module of the proposed system is given below:

5.1 Software Code Repository

The software code repository contains the source code and metadata which is analyzed

by the recommender system. Since, the proposed system may use any available static

analysis tool(s), which implies that the system is capable of handling source code written

in any programming language.

5.2 Static Code Analysis Module

This module contains one or more static analysis tools which scan the given code

repository to find vulnerabilities. The output of this phase is an XML based report contain-

ing details about detected vulnerabilities (e.g., filename, location, vulnerability descrip-
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Figure 5.1

Architecture of the Proposed System

30



tion). Our system is flexible enough to use any tools for static analysis, which makes the

proposed system useful for virtually any programming environment.

5.3 Developers Performance Assessment Module

This module takes the results of the static analysis tool(s) and metadata of the software

repository as input and creates a profile for each developer. A profile primarily contains

the description of vulnerabilities induced by each developer in the code over time. The

profiles are fed into the recommendation module.

5.4 Public Vulnerability Repository

This module refers to one or more repositories containing information on vulnerabil-

ities, potential mitigations, demonstrative examples, consequences etc. These repositories

are maintained and made available for public use. They provide unified, effective, and

standard information on security vulnerabilities.

5.5 Custom Training Database

This refers to a database of custom designed training modules on various topics. This

database may also be populated with of-the-shelf training resources. However, this module

is optional, as we focus more on using the public vulnerability repositories as our knowl-

edgebase.

5.6 Recommender Module

The Recommender Module takes the profiles of developers as input and calculates

the similarity scores between vulnerability descriptions and the articles from vulnerability
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repositories. Moreover it queries the custom training database using the information in

developers profile to find most appropriate training modules. Output of the module is the

recommendation reports customized for individual developers. The Figure 5.2 explains the

working recommender module.

5.7 Training Delivery Module

This module accepts the recommendation report from the recommendation module

and delivers the training modules to the developers using multiple channels including video

streaming, tips delivered via an IDE plugin, and email messages containing helpful litera-

ture.

5.8 Intended benefits for practitioners

Practitioners can benefit from proposed recommender system in the following ways:

Getting Started is Easy. The developers don’t have to wait for the source code of their

current project to become available for analysis; rather, previously written code may be

analyzed to obtain precise and sepcific recommendations on secure coding practices.

Preventive Approach to Counter the Security Vulnerabilites. With the help of narrow

and precise training recommendations, the practitioners can avoid security vulnerabilites

in their source code. This can considerabily lower the effort and cost to fix these vulnera-

bilities at the later stagesof software development life cycle.

Low Cost Alternative to Commercial Tools. The practitioners can adopt our recom-

mender system which is based on open source tools and public vulnerability repository as

a low–cost alternative to commercial tools.
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Figure 5.2

Working of Recommender Module
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In this chapter we discussed the proposed architecture of computer–security training

recommender. It is very important to use the proposed system to analyze large scale open

source system. In next chapter, we present a preliminary case study.
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CHAPTER 6

PRELIMINARY CASE STUDY

We conducted a proof–of–concept case study [41] to evaluate the feasibility of mapping

vulnerabilities discovered by a static analyzer to articles in a public vulnerability reposi-

tory. These articles generally present mitigation strategies. An open source system called

Tolven version 2.0 was the target source code. More information about the system and

download instructions may be found on the official website1. For static code analysis, we

used the open source tool FindBugs2 version 2.0.3. Code used for analysis is summarized

in Table 6.1.

Table 6.1

Summary of System Studied

Item Description
System analyzed Tolven 2.0
Number of Java modules 2,957
No. of non-empty lines of code 417,911
(Calculated using LoC-Calculator 1.2)

1Tolven software downloads, http://tolven.org/download/ (accessed Feb. 11, 2014)
2FindBugs, http://findbugs.sourceforge.net/ (accessed Sep. 26, 2014).
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6.1 Quantitative Analysis

The quantitative study involve analysis of a selected open source system using static

code analysis tool “FindBugs”. Results of static code analysis are summarized in Table 6.2.

Since there can be multiple occurrences of a given vulnerability, the column Flagged Vul-

nerability types represents distinct vulnerabilities discovered while last column represents

Total occurrences for each category.

Table 6.2

Summary of Static Code Analysis

Category Flagged Defect Types Total Occurrences
Bad practice 25 195
Correctness 19 64
Dodgy code 20 226
Experimental 2 31
Internationalization 1 105
Malicious code vulnerability 8 323
Multithreaded correctness 1 1
Performance 15 220
Security 4 14
Totals 95 1179

Categories shown in Table 6.2 were generated by the FindBugs 2.0.3 tool. Even though

some of these categories seem closely related to each other, the short descriptions of the

categories in Table 6.3 show that the categories are distinct.

Every category listed in Table 6.2 has a number of flagged defect types. Due to space

limitations, all defect types cannot be listed. However in this study, we analyze the security
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Table 6.3

Categories in FindBugs

Category Description
Bad practice Code that does not comply with the recom-

mended coding practices.
Correctness Code that may produce different results than the

developer expected.
Dodgy code Dodgy code means an error prone style of code
Experimental Code that fails to cleanup steams, database ob-

jects, or other objects.
Internationalization Code that can prevent the use of international

character set.
Malicious code vulnerability Code that can be maliciously altered by other

code.
Multithreaded correctness Code that could cause problems in multi-

threaded environment.
Performance Code that could be written differently to im-

prove performance.
Security Code that can cause possible security problems.
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category in detail. The security vulnerabilities along with the number of occurrences are

listed in Table 6.4.

Table 6.4

Flagged Security Vulnerability Types

Vulnerability types in Security Category Occurrences
Cross site scripting vulnerability 11
Hardcoded constant database password 1
HTTP Response splitting vulnerability 1
Non-constant SQL string passed to execute method 1
Total 14

All vulnerability types have a description generated by the FindBugs tool. We extracted

a description for each type and stored them in text documents.

We used Vector Space Model (VSM) with term frequency-inverse document frequency

(TFIDF) [9] weights to calculate the similarity between the vulnerability descriptions and

CWE articles. The indexing process includes removing English stop words from docu-

ments. Stemming is then applied to reduce words to their roots, thus improving the effec-

tiveness and the efficiency of the retrieval system [49].

The output of the indexing process is a compact content descriptor, or a profile, where

each document is represented as a set of terms:

T = {t1, t2, t3, ..., tn}. (6.1)

Each term ti in the set T is assigned a certain weight wi. Using TFIDF, the weight of

each word is calculated as:
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wi = tf i · idfi (6.2)

Where tf i is the frequency of term ti in the document and idfi is the inverse document

frequency, and is computed as:

idfi = log2(n/dfi) (6.3)

Where n is the total number of documents in the collection, and dfi is the number of

artifacts in which term ti occurs. TFIDF determines how relevant a given word is in a

particular document. Words that are common in a single or a small group of documents

tend to have higher TFIDF, while terms that are common in all documents such as articles

and prepositions get lower TFIDF values.

Since the documents are represented as weighted vectors in the N-dimensional space,

the similarity of any two documents can be measured as the cosine of the angle between

their vectors as follows:

Sim(v, a) =

∑
vi · ai√∑
v2i ·

∑
a2i

(6.4)

In equation (6.4), Sim(v, a) is similarity score between vulnerability description v and

CWE article a.

The approach discussed above was implemented to automatically calculate similarity

scores between descriptions of the flagged vulnerabilities and CWE articles. Both, flagged

vulnerability types and CWE articles were stored in text files. There were 95 flagged

vulnerability types and 717 repository articles. The mapped articles were filtered based on
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the threshold value of 0.35 which was set after carefully reviewing a sample of mapped

articles in each category.

Figure 6.1

Vulnerabilities Mapped to CWE articles

Figure 6.1 shows that 81 out of 95 vulnerability description files were successfully

mapped to the related CWE articles. The mapping algorithm failed to find relevant CWE

articles for the remaining the 14 vulnerability types. The possible reasons for failing to

map these vulnerabilities to CWE articles could be the fact that the status of some of the

articles is still Draft or Incomplete. Once the articles in CWE repositories are updated, we

expect that the success rate will go higher.

Figure 6.2 shows the mapped CWE articles for each category of vulnerabilities. It

can be observed that most of the articles have potential mitigation section. Articles which

currently do not, might not be very helpful for training purpose.
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Figure 6.2

Mapped CWE Articles with Potential Mitigations

6.2 Qualitative Analysis

The preliminary qualitative analysis examines only the security category. Table 6.5

provides the details about the recommended CWE articles with their similarity scores and

a short description of each recommended article for vulnerability types in the Security

category. The mapping algorithm was able to find multiple relevant CWE articles for each

flagged vulnerability. The last column provides our qualitative evaluation for relevance of

each recommended article. The factors considered while determining the relevance include

‘Status of the CWE article’ (Draft, Incomplete, and Usable etc.) and ‘Opinion of experts’.

It can be observed from the TFIDF scores given in Table 6.5 that CWE articles with

higher TFIDF scores have higher relevance to the flagged vulnerability types.

The CWE articles contain highly useful information related to various types of vul-

nerabilities. This information is usually platform independent and more importantly, is

publically available and accepted. Table 6.6 shows the typical structure of a CWE Arti-
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cle. Important sections of a CWE article, to be used as training resource in the proposed

recommender system, are highlighted in Table 6.6.

Table 6.6

Structure of a Typical CWE Article

Description
Time of Introduction
Applicable Platforms
Modes of Introduction
Common Consequences
Likelihood of Exploit
Enabling Factors of Exploitation
Detection Methods
Demonstrative Examples
Observed Examples
Potential Mitigations
Relationships
Relationship Notes
Taxonomy Mappings
Related Attack Patterns
White Box Definitions
References
Content History

Although the Potential Mitigations section will serve as the core of training materials,

other sections like Description, Demonstrative Examples, Detection Methods, and Com-

mon Consequences can also be useful for developers.

6.3 Conclusions

In this chapter, we demonstrated the technical feasibility of mapping vulnerability type

descriptions to a large collection of articles describing solutions, hence validating the pro-
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posed architecture of the system. We were able to map most of the flagged vulnerabilities

to articles in CWE repository. Also, we found that most of the articles in CWE repository

contain mitigation strategies and other useful information to understand and avoid security

vulnerabilities. Hence, such articles can be used to train the software developers.

Given the technically feasible architecture, we conducted human subject evaluation to

compare the effectivness of the proposed system to a commercial tools that provide similar

recommendations to software developers. The details about human subject evaluation are

given in next chapter.
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CHAPTER 7

HUMAN SUBJECT EVALUATION

The human subject evaluation of the recommender system is a continuation to the work

presented in chapter 6. This chapter outlines how the study was designed and executed.

In this chapter, we answer the following research questions:

1. How do the recommendations based on CWE repository compare to recommenda-
tion from commercial tool’s repository in terms of training suitability?

2. How do the tf–idf and Jaccard index algorithms compare to each other to identify
relevant articles in public repositories given the evaluation of human subjects?

7.1 Apparatus, Materials, and Artifacts

Jaccard index and tf–idf algorithms produce a numeric score for each possible pair of

CWE article and identified vulnerability; however, for evaluation, we selected the top two

most relevant articles using each algorithm for each vulnerability.

In addition to using Jaccard index and tf–idf based approaches, we also used a com-

mercial tool to analyze our target source code. The primary purpose of using a commercial

tool was to use it as a standard to evaluate our recommender system. The commercial tool

uses a proprietary repository to recommend articles for training the software developers. It

fetches exactly one article for each flagged security vulnerability.
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Hence, five articles in total were provided to each human expert for evaluation. The

articles were arranged in random order. Any identifying information about the article (e.g.,

whether it has been taken from CWE or commercial tools repository) is removed before it

is presented to the human expert for evaluation.

Table 7.1 summarizes the identified vulnerabilities and the recommended articles for

each vulnerability.

7.2 Experimental Design

The evaluation of each article was based on three criteria: relevance, suitability for

training, and the amount of information in the article. We used a five point Likert scale

for evaluation. For relevance and suitability 1 = Not relevant or Not suitable and

5 = Highly relevant or Highly suitable, whereas for amount of information 1 = Too

little, 3 = Just right, and 5 = Too much information.

There were 44 human subjects who voluntarily participated in the study. Each partici-

pant was assigned to evaluate the articles for one vulnerability. All subjects had previous

software development experience and had sound software security background. Table 7.2

summarizes the information about participants, including major field of study.

7.3 Data Collection

The participants were briefed about the recommender system and the task to be com-

pleted. They were allotted one hour to complete the survey. The subject experts reviewed

the survey material to make sure that participants had a sufficient amount of time to care-

fully read and evaluate the survey material. Any identifying information about participants
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was detached from the collected data before it was compiled. The researchers obtained

formal permission from Institutional Review Board (IRB)1 of the Mississippi State Uni-

versity before conducting the human subject evaluation. More details about data collection

and experiment design can be found in Appendix B.

7.4 Analysis Methods

For analysis of data we used paired t–test and mixed model ANOVA. Since tf–idf and

Jaccard index are two different methods of measurements therefore the paired t–test2 is the

suitable way to compare their means. Using the same test we compared the means of tf–idf

and Jaccard index to the mean of commercial tool.

Mixed model ANOVA3 is suitable as we are testing for differences among independent

groups and subjecting our participants to repeated measures of independent variables. The

groups in our data are formed on the basis of four vulnerabilities (serving as between–

group factor) and three approaches (serving as within–group factor).

Details about the paired t–test and ANOVA can be found in the following section.

7.5 Results

This section discusses the results of the human subject evaluation. As per our study de-

sign, each participant was asked to evaluate five articles identified by the three approaches

(i.e., tf–idf, Jaccard Index, and commercial tool) for one vulnerability. The four vulnera-

1IRB, http://orc.msstate.edu/humansubjects/
2Paired t–test, http://www.statstutor.ac.uk/resources/

uploaded/paired-t-test.pdf/
3Mixed Model ANOVA, https://en.wikipedia.org/wiki/

Mixed-design analysis of variance/
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bilities (V1, V2, V3, and V4) served as a between–groups factor while the three approaches

served as a within–groups factor in a 4x3 mixed model ANOVA. The analysis shows that

both tf–idf and commercial tool were significantly better than Jaccard index based ap-

proach F (2, 80) = 12.57, p < .001.

For further analysis we excluded the Jaccard index based approach and conducted the

ANOVA using four vulnerabilities and two approaches (i.e., tf–idf and commercial tool) in

a 4x2 mixed model. The small F − value of 0.006(p < .85) strongly suggests that both

approaches are equally good.

The following subsections discuss results about ‘suitability for training’ and ‘rele-

vance’.

7.5.1 Suitability for training

The estimated marginal mean for ‘suitability for training’ of different approaches, as

evaluated by the human subjects, is shown in Figure 7.1. The result of paired t–test for

‘suitability for training’ can be found in Table 7.3. The results are explained below.

tf–idf vs. commercial tool. The paired t–test suggests that there is no significant dif-

ference between the tf–idf based approach and commercial tool in terms of finding articles

suitable for training the software developers. Estimated marginal mean shown in Figure 7.1

and Figure 7.3 suggest the same. Hence, the articles from CWE repository are as good as

the articles from commercial tool’s repository in terms of suitability for training; Hence,

the answer to our first research question.
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tf–idf and commercial tool vs. Jaccard index. The paired t–test suggests that the tf–idf

based approach and commercial tool both performed significantly better than the Jaccard

index based approach in terms of suitability of training. The estimated marginal mean in

Figure 7.3 suggest the same.

Figure 7.1

Mean Suitability for Training

7.5.2 Relevance

The relevance of the identified articles to the detected vulnerabilities, as evaluated by

the human subjects, is shown in Figure 7.2 and Figure 7.3. The result of paired t–test for

relevance can be found in Table 7.4. The results are explained below.

tf–idf vs. commercial tool. The paired t–test for relevance suggests that there is no

significant difference between the tf–idf based approach and commercial tool in terms of

finding articles that are relevant to the flagged vulnerabilities. The estimated marginal

52



Ta
bl

e
7.

4

Pa
ir

ed
Sa

m
pl

es
Te

st
fo

rR
el

ev
an

ce

Pa
ir

M
ea

n
St

d.
D

ev
.

St
d.

E
rr

or
M

ea
n

t
df

Si
g.

(2
ta

ile
d)

tf
–i

df
-C

om
m

er
ci

al
to

ol
-.1

13
1.

12
5

.1
69

-.6
70

43
.5

06
tf

–i
df

-J
ac

ca
rd

in
de

x
.5

00
1.

21
0

.1
82

2.
74

0
43

.0
09

C
om

m
er

ci
al

to
ol

-J
ac

ca
rd

in
de

x
.6

13
1.

20
4

.1
81

3.
37

8
43

.0
02

53



mean for relevance also in Figure 7.2 and Figure 7.3 suggest the same. Hence, the articles

from the CWE repository are as good as the articles from commercial tool’s repository in

terms of their relevance to the flagged vulnerabilities.

Figure 7.2

Mean Relevance

tf–idf vs. Jaccard index. The paired t–test for relevance suggests that the tf–idf based

approach is significantly better than the Jaccard index based approach. The estimated

marginal mean in Figure 7.3 suggest the same. This give us basis for answering our second

research question.

In this chapter, with the help of human subject evaluation, we concluded that CWE

repository is as effective as commercial tool’s repsitory in terms of ‘suitability of training’.

Moreover, we found that tf–idf based approach as accurate as commercial tool in terms of

finding articles relevant to flagged vulnerabilities.
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Figure 7.3

Overall result for all vulnerabilities

In the next chapter, we discuss the tailored version of tf–idf and Jaccard index based

approaches and experiments conducted to evaluate their performance.
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CHAPTER 8

TAILORED ALGORITHMS

This chapter discuss two important experiments. In the first part, i.e., section 8.1, we

discuss the the design and evaluation of tailored version of our tf–idf and Jaccard index

based approaches to map discovered vulnerabilities to the articles in public vulnerability

repository. In the second part, i.e., section 8.2, we analyze security vulnerability trends in

open source software.

8.1 Evaluation of Tailored Approaches

Improving the accuracy of information retrieval algorithms has always been challeng-

ing. In chapter 7, we discussed how stemming and stop words can help improving the ac-

curacy of our approaches. In addition to stemming and stop words, our tailored approaches

also utilize the Part of Speech (POS) Tagger API and custom built tools to transform the en-

tire dataset. The similarity scores are calculated after the transformation. In the future, we

also plan to use parameters like length of articles in re-ranking the recommended training

articles.
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8.1.1 POS Tagger and Noun–based Search

A Part-Of-Speech Tagger (POS Tagger) [59] is a piece of software that reads text in

some language and assigns parts of speech to each word (and other token), such as noun,

verb, adjective, etc., although generally computational applications use more fine–grained

POS tags like ‘noun-plural’.

Literature suggests that taking the linguistic narture of the words into account can be

another way to improve the accuracy of information retrieval approaches. A study on

Noun–based indexing of software artifacts [12] reported significant improvement in the

accuracy of information retrieval. We are introducing this idea in our recommender system.

8.1.2 Extracting Nouns

The dataset used in our experiment, (i.e., flagged vulnerabilities and training articles

from public vulnerability repository), are pre–processed using POS Tagger and the custom

built Noun Extractor tool. The working is explained in Figure 8.1.

The POS Tagger creates a ‘tagged–file’ for each input file. The ‘tagged–file’ is then

input to the cutom built Noun extractor tool, which extracts all nouns and stores them into

a new file. Hence the entire dataset is transformed. Our tailored approach modifies the

working of the recommender module, The ‘Modified Recommender Module’ is shown in

Figure 8.2.
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Figure 8.1

Extracting nouns using POS Tagger
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Figure 8.2

The Modified Recommender Module

8.1.3 Results

In this section we compare the primitive approaches, discussed in chapter 7, with our

tailored approaches. We use Receiver Operating Characteristic (ROC)1 curve to com-

pare the ranking performance of primitive and tailored tf–idf and Jaccard index based

approaches.

8.1.3.1 Primitive vs. Tailored tf–idf Based Approach

The comparison between the primitive and tailored tf–idf based approach is shown in

Figure 8.3. The smaller values represent better ranking. For a given vulnerability, say

Cross Site Scripting or V1, the tailored approach was able to rank all the relevant articles

in a better way compared to the primitive tf–idf based approach.

1ROC Curve, https://en.wikipedia.org/wiki/Receiver operating characteristic
(accessed May 15, 2016).
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Figure 8.3

Primitive vs. tailored tf–idf based approach
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The tailored approach ranked all relevant articles within top 12 articles compared to

the primitive tf–idf based approach which ranked the same articles within top 31. Same is

true for V2 and V4; However, for the HTTP Response Splitting vulnerability, or V3, both

approaches performed equally good.

The ranking data for primitive and tailored tf–idf based approaches is given in Ta-

ble 8.1.

Table 8.1

Primitive vs. tailored tf–idf based approach

Vulnerability type Top ‘n’ articles that contain all relevant articles
Primitive tf–idf Tailored tf–idf
based approach based approach

V1, Cross Site Scripting 31 12
V2, Hard–coded database password 28 13
V3, HTTP Response splitting 7 8
V4, SQL injection 19 4

The ROC curves for primitive and tailored tf–idf based approach for Cross Site Script-

ing vulnerability i.e., V1, are shown in Figure 8.4.

The ROC curves for primitive and tailored tf–idf based approach for Hard–coded con-

stant database password i.e., V2, are shown in Figure 8.5.

The ROC curves for primitive and tailored tf–idf based approach for HTTP Response

Splitting vulnerability i.e., V3, are shown in Figure 8.6.

The ROC curves for primitive and tailored tf–idf based approach for SQL injection

vulnerability i.e., V4, are shown in Figure 8.7.
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Figure 8.4

ROC curves for primitive (L) and tailored (R) tf–idf based approaches for V1
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Figure 8.5

ROC curves for primitive (L) and tailored (R) tf–idf based approaches for V2
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Figure 8.6

ROC curves for primitive (L) and tailored (R) tf–idf based approaches for V3
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Figure 8.7

ROC curves for primitive (L) and tailored (R) tf–idf based approaches for V4
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8.1.3.2 Primitive vs. Tailored Jaccard Index Based Approach

The comparison between the primitive and tailored Jaccard index based approach is

shown in Figure 8.8. As discussed in the previous section, the smaller scores represent

better ranking. The tailored version of Jaccard index based approach performed better than

the primitive approach for Cross Site Scripting vulnerability (V1), the hard–coded password

vulnerability (V2), and the SQL injection vulnerability (V4). However, due to some outliers,

the tailored approach performed worse than the primitive approach for HTTP Response

Splitting vulnerability (V3).

The ranking data for primitive and tailored Jaccard index based approaches is given in

Table 8.2.

Table 8.2

Primitive vs. tailored Jaccard index based approach

Vulnerability type Top ‘n’ articles that contain all relevant articles
Primitive Jaccard index Tailored Jaccard index

based approach based approach
V1, Cross Site Scripting 59 9
V2, Hard–coded database password 32 18
V3, HTTP Response splitting 24 68
V4, SQL injection 31 11

For further analysis, we removed the outliers from the ranking data, the modified results

are shown in Figure 8.9.

The ROC curves for primitive and tailored Jaccard index based approach for Cross Site

Scripting vulnerability i.e., V1, are shown in Figure 8.10.
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Figure 8.8

Primitive vs. tailored Jaccard index based approach
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Figure 8.9

Primitive vs. tailored Jaccard index based approach - outliers excluded
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Figure 8.10

ROC curves for primitive (L) and tailored (R) Jaccard index based approaches for V1
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The ROC curves for primitive and tailored Jaccard index based approach for Hard–

coded constant database password i.e., V2, are shown in Figure 8.11.

The ROC curves for primitive and tailored Jaccard index based approach for HTTP

Response Splitting vulnerability i.e., V3, are shown in Figure 8.12.

The ROC curves for primitive and tailored Jaccard index based approach for SQL in-

jection vulnerability i.e., V4 is shown, are Figure 8.13.

8.2 Analyzing Security Vulnerability Trends in Open Source Software

We analyzed the data regarding reported vulnerabilities2,in different open source soft-

ware systems. In case of Mozila Firefox, we analyzed data for Denial of Service (DoS),

Code Execution, Overflow, Cross Site Scripting (XSS), Bypass some mechanism, and In-

formation Gain vulnerabilities reported over several years.

8.2.1 Results

Figure 8.14 and Figure 8.15 show trends of these reported vulnerabilities. We found

evidence that the vulnerabilities discovered in a specific version of such widely used open

source software product were propogated to the newer versions of the prodcut despite the

fact that software developers working on newer versions of the products had access to

the reported vulnerabilities. Which brings us to the conclusion that providing narrow and

focused security training to software developers may bar propogation of known vulnera-

bilities to the newer versions of software product.

2CVE Datasource, http://www.cvedetails.com/ (accessed Apr 22, 2016).
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Figure 8.11

ROC curves for primitive (L) and tailored (R) Jaccard index based approaches for V2
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Figure 8.12

ROC curves for primitive (L) and tailored (R) Jaccard index based approaches for V3
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Figure 8.13

ROC curves for primitive (L) and tailored (R) Jaccard index based approaches for V4
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Figure 8.14

Reported Vulnerabilites for Mozilla FireFox (A)
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Figure 8.15

Reported Vulnerabilites for Mozilla FireFox (B)
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CHAPTER 9

DISCUSSION

In this dissertation, with the help of experiments and human subject evaluation, we

found that the potential vulnerabilities in an individual developer’s source code can be au-

tomatically mapped to relevant articles in public vulnerability repositories that are suitable

for training the developer regarding vulnerability mitigation.

This chapter discusses findings for our research questions.

9.1 Research Questions

In this section we lists the research questions, result for each question with evidence,

and significance of result for our recommender system and rest of the research community.

1. How do the recommendations based on CWE repository compare to recommenda-
tion from HP Fortify in terms of training suitability?

Result:
Based on the results of human subject evaluation, given in chapter 7, it is concluded
that articles in CWE repository are as suitable for training as articles in commercial
tool’s repository.

Significance:
CWE repository can be used as knowledgebase for recommender system discussed
in this study and other similar systems. Moreover, automated code transformation
tools may use the information in CWE repository

2. How do the tf–idf and Jaccard index algorithms compare to each other to identify
relevant articles in public repositories given the evaluation of human subjects?
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Result:
Based on the results of human subject evaluation, given in chapter 7, it is concluded
that tf–idf based approach is significantly better than Jaccard index based approach
in terms of identifying relevant articles from public vulnerability repository.

Significance:
Our future research will focus on tf–idf based approach; moreover, our findings will
benefit the research community.

3. Regarding tailored approaches,

(a) How does the tailored mapping algorithm based on tf–idf scores and additional
attributes, i.e., recency and completeness of the articles compare, to the other
algorithms in terms of relevance?
Result:
Based on the results of experiment, discussed in chapter 8, it is concluded that
tailored tf–idf based approach performed better than primitive tf–idf based ap-
proache (discussed in chapter 7) in terms of ranking the articles.
Significance:
Modified architecture of our recommender system should have a customizable
POS tagger module, which should allow extracting other parts of speech in ad-
dition to nouns.

(b) How does the tailored mapping algorithm based on Jaccard index scores and
additional attributes, i.e., recency and completeness of the articles, compare to
the other algorithms in terms of relevance?
Result:
Based on the results of experiment, discussed in chapter 8, it is concluded that
tailored Jaccard index based approach performed better than primitive Jaccard
index based approache (discussed in chapter 7) in terms of ranking the articles.
However, none of the Jaccard index based approach performed better than tf–
idf based approaches.
Significance:
Future work of our research should use tf–idf based approaches as primary
means of mapping flagged vulnerablities to training articles.

4. What is the statistical profile of developers in the case study based on the following-
parameters?

(a) Tendency to cause vulnerabilities over the case study window

(b) Recency of induced vulnerabilities
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(c) Severity of induced vulnerabilities

Result:
Based on the analysis of open source software systems, given in chapter 8, we found
evidence that the vulnerabilities discovered in a specific version of a widely used
open source software product can be propogated to the newer versions of the prod-
cut. Which brings us to the conclusion that narrow and focused security training
to software developers may bar propogation of known vulnerabilities to the newer
versions of software product.

Significance:
There is need to analyze factors that result in increase in vulnerabilities.

9.2 Threats to Validity

The experiments and results discussed in this dissertation have the following threats to

validity.

9.2.1 Generic Limitation of Static Analysis Tools

The generic limitations to the static analysis tools may introduce some inaccuracies

or limitations in our system. The static analysis tools may produce false positive or false

negative results. A false positive refers to detection of a vulnerability by the tool in the

given code which actually is not a vulnerability [43]. Often a high percentage of discovered

vulnerabilities are actually false positives [4]. The results generated by such tools can cause

unproductive consumption of time and resources [8].

9.2.1.1 Implication of False Positive Results

Since the recommender discussed in this study relies on the result of static analysis tool

therefore some of the security–training recommended by our system may not actually be

needed. On the other hand a false positive may still indicate an undesirable coding pattern
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for which training would be helpful. However, the static analysis tool used in this study

may not be representative of other similar tools.

9.2.1.2 Implication of False Negative Results

A false negative detection refers to a vulnerability that actually exists in a software

code repository but the static analysis tools is unable to detect. False negative detections

means our system will not recommend training to the software developers which should

have been recommended.

9.2.2 Analysis Limited to one Open Source System

The experiments conducted in this dissertation are limited to the analysis of one open

source system. We discussed in chapter 6 that the target system, i.e., Tolven 2.0, has

already been used by research community in security related studies. However, Replicating

the study to other open source systems, especially with known vulnerabilities, will help to

further validate the effectiveness of the proposed recommender system.

9.2.3 Analysis Limited to one Open Source System

We compare the articles identified by our recommender system to only one commercial

tool’s recommended articles. Comparing the proposed system with other similar systems

will also help to validate the effectiveness and accuracy of our system.

9.2.4 Human Factors

Some of our findings solely rely on the human subject evaluation; e.g., we found that

the articles in CWE repository are as suitable for training as the articles in the commercial
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tool’s repository. Similarly, with the help of human subject evaluation we found that tf–idf

based approach performed better than the Jaccard index based approach. The human bias

may be a threat to the validity of our findings.

In this chapter, we presented the result and its significance for each research question.

We also discussed different factors that impose threats to the validity of our results. The

next chapter focuses on contribution and future work of this dissertation.
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CHAPTER 10

CONCLUSIONS

10.1 Hypothesis

Before moving to the conclusion, let’s revisit the hypothesis for our research:

Potential vulnerabilities in an individual developer’s source code can be auto-
matically mapped to relevant articles in public vulnerability repositories that
are suitable for training the developer regarding vulnerability mitigation.

10.2 Conclusion

In this study, with the help of human subject evaluation, we found that the proposed

computer security–training recommender (with tf–idf based approach) performed as good

as the commercial tool in terms of finding relevant articles from their respective repsi-

tories based on the flagged vulnerabilities. We also found that both the CWE and com-

mercial tool’s repository host articles which are equally suitable for training the software

developers. Hence, the proposed recommender system may be adopted by the software

organizations as a low-cost alternative to commercial tools. Training articles from public

vulnerability repository are not limited on any specific programming language or platform

which gives our system an edge over the commercial tool.

10.3 Contributions

This research has the following contributions.
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10.3.1 The proposed architecture

The major contribution of this research is the architectue of the system, which has been

discussed in detail in chapter 5. The proposed architecture is flexible and can be used

with a variety of open source tools, hence making it useful for software developers with

different programming backgrounds.

10.3.2 Evaluation of Different Approaches for Recommending System

Evaluation of effectiveness of three approaches to retrieve training articles from public

vulnerability repository based on the flagged vulnerabilities in the source code.

10.3.3 Proposing and Evaluating Tailored Approach

In addition to using the primitive tf–idf and Jaccard index based approach to retrieve

training articles, this research proposed and evaluated tailored approaches which proved to

be better than the primitive alogrithms.

10.3.4 Evaluation of CWE Articles for Suitability for Training

Empirical evidence, based on human subject evaluation, indicating that an open source

tools based approach, which utilizes public vulnerability repository, can be as effective as

commercially available tools for training the software developers.

10.3.5 Low Cost Alternative to Commercial Tools

The proposed system, which primarily relies on open source static analysis tools and

public vulnerability repository is a potential alternative to the commercial tools. Software

organizations may significantly reduce the training cost by utilizing the proposed system.
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Also, the human subject evaluation has suggested that there is no significant difference

between the proposed system and commercial tool.

10.4 Publication Plan

Parts of this research have already been published in different conference proceedings.

However, we plan to publish the following completed work:

• A systemic mapping study on recommender systems for software engineering

• ComputerSecurity Training Recommender for software developers: Using POS-
Tagger to pre-process dataset

• Analyzing security vulnerability trends in open source software systems

The identified target journals include IEEE Transaction on Software Engineering and Jour-

nal of Empirical Software Engineering.

10.5 Future Work

In work done so far, we presented the architecture for a computer–security training

recommender and demonstrated the technical feasibility of mapping vulnerability type de-

scriptions to a large collection of articles describing solutions. This work may be extended

in the following possible ways:

10.5.1 Expanding Knowledgebase

The proof-of-concept implementation uses the CWE articles, however the other vulner-

ability databases e.g., National Vulnerability Database, NVD, host useful data related to

security checklists, security related software flaws, misconfigurations, and impact metrics.
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By utilizing the NVD database along with CWE articles, the scope of our recommender

system may expand.

10.5.2 Improving Static Analysis

The static analysis tools produce false positive results. Using other static code analysis

tools, in addition to FindBugs, and comparing their output may help reducing the false

positive detections.

10.5.3 Automatic Code Generation

Although the primary objective of the recommender system is to recommend precise

and focused solution to the security problems detected in developers code, there are other

ways the proposed system may be used. For instance if the mitigation strategies given in

the vulnerability repositories are detailed and standardized, a new module may be added in

the recommender system which will replace the vulnerable code with secure code, hence

adding a self–healing capability to the software. A Recommender system may periodically

check for the newer solution and change the obsolete fixes with new ones.

10.5.4 Usability Studies

The usability study involves building a working prototype of the proposed recom-

mender system and deploying it in software organizations to train the software developers

and observing the improvement in terms of writing secure and robust code.
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10.5.5 Prioritizing the Training for Software Developers

The severity level of the identified vulnerability may also be used in our system to

prioritize the training for software developers. Common Vulnerability Scoring System

(CVSS)1 is one of the potential options that could serve our purpose.

10.5.6 Improving Mapping Algorithms

Different variations of mapping algorithms can designed and implemented to get fur-

ther improvement in identifying relevant articles.

1CVSS, https://nvd.nist.gov/cvss.cfm/
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APPENDIX A

DETAILS OF SYSTEMATIC MAPPING STUDY OF RECOMMENDER SYSTEMS
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A.1 Search Strings Used

We used the following search string

Recommender system for software engineer

Recommender system for software developer

Recommendation system for software engineer

Recommendation system for software developer

The advanced search string is given as under.

(("recommender system") OR ("recommendation system"))

AND

(("software developer") OR ("software engineer"))

A.2 The Databases Used for Literature Search

The following research databases were used for conducting the literature search.

• ACM Digital Library

• Google Scholar

• IEEEXplore

• ScienceDirect

• Scopus

The search initially returend 927 articles, out of which 141 duplicate studies were ex-

cluded; hence, bringing the remaining number of studies to 786. After carefully going

through the title of the article, we excluded 653 more articles; hence, bringing the reamin-

ing number of articles to 133. Then, we excluded 72 more articles after reading the abstract;
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hence, bringing the total down to 61. Finally, after reading conclusions and results, 7 more

articles were excluded; hence, bringing the total to 54 articles.
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APPENDIX B

HUMAN SUBJECT EXPERIMENT DETAILS
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B.1 Human Subject Evaluation

The template of form used for evaluating the different training articles is shown in

Figure B.1.

The template of form used for ranking the different training articles is shown in Fig-

ure B.2.
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Figure B.1

Form used for evaluation of training articles
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Figure B.2

Form used for ranking of training articles
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