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This dissertation examines an iterative multi-attribute auction for multi-unit 

procurement in the first part. A multi-unit allocation problem that allows order split 

among suppliers is formulated to improve the market efficiency. Suppliers are allowed to 

provide discriminative prices over units based on their marginal costs.  

A mechanism called Iterative Multiple-attribute Multiple-unit Reverse Auction 

(IMMRA) is proposed based on the assumption of the modified myopic best-response 

strategies. Numerical experiment results show that the IMMRA achieves market 

efficiency in most instances. The inefficiency occurs occasionally on the special cases 

when cost structures are significantly different among suppliers. Numerical results also 

show that the IMMRA results in lower buyer payments than the Vickrey-Clarke-Grove 

(VCG) payments in most cases. 

In the second part, two sequential auctions with the Vickrey-Clarke-Grove (VCG) 

mechanism are proposed for two buyers to purchase multiple units of an identical item. 



The invited suppliers are assumed to have capacity constraints of providing the required 

demands. Three research problems are raised for the analysis of the sequential auctions: 

the suppliers' expected payoff functions, the suppliers' bidding strategies in the first 

auction, and the buyers' procurement costs. Because of the intrinsic complexity of the 

problems, we limit our study to a duopoly market environment with two suppliers. Both 

suppliers’ dominant bidding strategies are theoretically derived. With numerical 

experiments, suppliers’ expected profits and buyers’ expected procurement costs are 

empirically analyzed. 
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CHAPTER I 

INTRODUCTION

This chapter consists of four sections. Section1.1 addresses the motivation to 

investigate the online business-to-business reverse auctions. Section 1.2 introduces the 

multi-attribute multi-unit reverse auctions that will be investigated in chapters 2 through 

4 in this dissertation. Section 1.3 introduces another type of reverse auctions, sequential 

auctions with capacity constraints, which will be discussed in chapters 5 through 7. 

Section 1.4 presents the organization of this dissertation.  

1.1 Motivation 

Online business-to-business (B2B) auctions have rapidly emerged as an effective 

methodology to make sales or procurements through an electronic marketplace. The 

convenient and fast communication provided by the Internet helps to significantly reduce 

the transaction time, cost and effort compared with traditional auctions. The rapid 

development of the eCommerce prompts researchers’ interest on the mechanism design 

and analysis for online auctions. One special type of online auction is the reverse auction, 

which has become one of the major competitive purchasing tools available for companies 

to reduce procurement costs. In a reverse auction, a buyer wants to auction off his 

procurement contracts to a series of suppliers. One or multiple winners will be awarded 

the contracts based on the auctions’ mechanisms. The reverse auctions have a large 
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proportion in the online B2B auctions because the number of suppliers is much larger 

than the number of buyers in the industrial market. FreeMarkets.com reports a total of 

125 buyers compared with 21,000 suppliers involved in the business transactions in the 

first quarter of year 2002. Hoffman estimates that 43 percent of all the Fortune 2000 

companies plan to conduct the reverse auctions for their procurement transactions [1]. 

Until today, many major corporations, like General Electric (GE), General Motor (GM), 

Motorola, Boeing, and etc., have begun to use online reverse auctions on a regular basis. 

The study in this dissertation will focus on two types of the reverse auctions, the 

multi-attribute multi-unit auction and the sequential auctions.  

1.2 Multi-attribute Multi-unit Reverse Auctions 

Multi-attribute reverse auctions are proposed as “electronic request for quotation” 

(eRFQ) buying processes in the auction literature [2]. In an RFQ process, a corporate 

buyer announces a set of negotiable attributes, such as quality, lead-time, and technical 

specifications, for the bidding product. Each attribute has several possible levels. 

Potential suppliers are invited to submit multi-attribute bids on one or several 

attribute-level bundles. An attribute-level bundle has one and only one level for each 

product attribute. The traditional RFQ process terminates with an outcome of one winner 

and a single selected attribute-level bundle. There are two computational challenges in 

traditional RFQ buying processes: the evaluation of bids and the winner determination. 

With the rapid growth of Internet technologies, automatic eRFQ has become 

common in online Business-to-Business (B2B) auctions. Online auction mechanisms in 

the literature fall into three categories: multi-item auctions, multi-unit auctions, and 
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multi-attribute auctions. The first two auction forms focus on price-only negotiations. The 

optimal solution finds the supplier(s) with the lowest cost by assuming that the value of 

the goods or services for the buyer is pre-determined. In reality, in addition to price, other 

attributes such as quality and specifications may influence the buyer’s utility and, thus, 

her preferences. In such situations, the multi-attribute reverse auctions closely represent 

the eRFQ buying process with a series of negotiable attributes besides price.  

Most research papers on multi-attribute reverse auctions assume that the 

suppliers’ marginal costs of each attribute-level bundle are fixed and independent from 

the quantity. Under this assumption, a multi-attribute reverse auction with multiple units 

is typically reduced to the single-item procurement, and a single supplier wins the entire 

sourcing contract. However, the marginal costs are usually variable over units because of 

setup costs, variable costs, and capacity constraints in reality [3]. Under variable marginal 

costs, allowing the split of the sourcing contract among multiple suppliers may achieve 

more cost-efficient outcomes for both the buyer and the overall system.  

In this dissertation, an iterative multi-unit multi-attribute reverse auction 

mechanism is proposed for multi-attribute procurements with variable marginal costs. 

The mechanism allows the contract to be split among winning suppliers. However, the 

mechanism requires all winners to provide the materials or services on the same 

attribute-level bundle. Most corporate buyers have this homogeneous requirement to 

simplify management, reduce future maintenance cost, and preserve the same add-on 

values for their customers. Parkes and Kalagnanam design an iterative Additive & 

Discrete (AD) Auction for a special case of the multi-attribute allocation problem with 

the assumption of additive structure on the buyer’s valuation and suppliers’ costs [4]. The 
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AD Auction quotes prices on each attribute. We generalize it into the auction with 

bidding on each attribute-level bundle by relaxing the assumptions of additive structure 

and preferential independence [5]. Introducing the concept of attribute-level bundle 

increases the computational complexity for suppliers to evaluate their bids but extends 

the auction to a more general setting. In this dissertation, we formulate a mathematical 

programming model to optimize the efficient market allocation. The results of 

computer-based numerical experiments are used to compare the performance of the 

multi-attribute reverse auction with the reverse Vickrey-Clarke-Grove (VCG) auctions. 

1.3 Capacitated Sequential Reverse Auctions 

The multi-attribute multi-unit auctions studied in the first part of our study are 

one-stage auctions. The suppliers are assumed to participate in only one auction. 

However, in reality, it is possible that multiple auctions will be conducted in a sequence 

for the same set of suppliers to compete for the procurement contracts. For example, two 

automotive manufacturers want to purchase large amounts of tires through the electronic 

market. The same set of auto part suppliers will be invited to participate in the two 

auctions. This market environment including the buyers, a set of suppliers and a 

third-party auctioneer is defined as sequential auctions. In our study, we focus on the 

sequential auctions with two suppliers only, which form a duopoly market environment. 

There are numerous duopoly examples, including Pepsi and Coca-Cola in the soft drink 

market, Airbus and Boeing in the commercial jet aircraft market, Intel and AMD in the 

microprocessor market, and etc. 
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From the viewpoint of the suppliers, the two auctions are not independent to each 

other and the suppliers have to consider both together to determine their proper bidding 

strategies. The sequential auction studied in this dissertation considers multiple units of a 

homogeneous item to purchase in the two auctions. When the suppliers have limited 

capacities, the suppliers have to consider the loss of opportunity in the later auction 

because of the capacity occupation in the early auction. Jofre-Bonet and Pesendorfer 

study the auctions of highway paving contracts run by the California Department of 

Transportation between 1994 and 2002 [6]. It is found that the losing companies in the 

earlier auction are more aggressive in the subsequent auctions than those winners. In this 

dissertation, we propose to use both theoretical analysis and numerical experiments to 

analyze the suppliers’ bidding strategies, payoff functions, and the buyers’ procurement 

costs. Another type of sequential auctions is for the procurements of heterogeneous 

components. Besides the suppliers’ capacity restrictions, the two auctions may also be 

relevant in the suppliers’ production costs. Because of economies and/or diseconomies of 

scale, winning the earlier auction may decrease or increase a supplier’s production cost 

for the later auctioned components. However, variable production costs will not be 

studied in this research.  

This dissertation particularly focuses on a sequence of two Vickrey-Clarke-Grove 

(VCG) procurement auctions of a homogenous item. We investigate the impact of 

suppliers’ capacity restrictions on the bidders’ behaviors and profits of the sequential 

auctions. In the auction literature, no study has considered order splitting in the sequential 

auctions for the procurements of multiple units. Our auction mechanism allows multiple 

winners in each auction to achieve more efficient allocation of the procurement contracts.  
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1.4 Dissertation Organization 

Chapter 2 reviews the literature related to multi-attribute reverse auctions and 

multi-unit auctions. The mathematical programming models that solve the winner 

allocation problem in the proposed multi-attribute multi-unit reverse auction are 

presented in Chapter 3. Chapter 4 proposes the Iterative Multi-attribute Multi-unit 

Reserve Auction (IMMRA) mechanism design and experimental conclusions. Chapter 5 

summarizes the literature review for the sequential auctions. Chapter 6 documents the 

model of the two-stage capacitated sequential reverse auctions. Chapter 7 proposes both 

the theoretical and empirical analysis of sequential reverse auctions and summarizes 

conclusions and future extensions. Reference list and appendices are attached at the end 

of the document. 
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CHAPTER II 

LITERATURE REVIEW OF MULTI-ATTRIBUTE AND MULTI-UNIT AUCTIONS 

2.1 Multi-Attribute Auctions 

Che first presents two-dimensional reverse auctions in which a group of suppliers 

bid on both price and quality [7]. The bids are evaluated by an ex ante scoring rule 

announced by the buyer. By defining each supplier’s cost structure as an increasing 

function in quality with an unknown parameter, Che develops three sealed-bid auction 

mechanisms to maximize the expected buyer profits. With her strong commitment power, 

the buyer can implement the optimal scoring rule. Branco relaxes Che’s assumption of 

independent supplier cost functions and studies the impact of cost correlation on the 

multi-attribute auctions [8]. Considering three product attributes: price, quality, and lead 

time, Chen et al. compare the multi-attribute auctions with the price-only auctions [9]. If 

the quality and lead time utility functions are known to the auctioneer, the multi-attribute 

auctions outperform the price-only auctions always on the buyer’s profit and occasionally 

on sellers’ profits in the standard English auctions. Beil and Wein extend Che’s auction to 

a more general iterative mechanism [10]. In their paper, a supplier’s cost function of each 

attribute is assumed to have P parameters. It is also assumed that the structure of 

suppliers’ cost functions is exposed to the auctioneer while the P parameters are  

private information held by the suppliers. An iterative auction mechanism with P+1
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rounds is designed for the auctioneer to derive the P parameters in suppliers’ cost 

functions of attributes. With all revealed information, the buyer determines the optimal 

scoring functions in the (P+1)st round to maximize her expected profit.  

Based on the second-score auctions [7], Parkes and Kalagnanam develop an 

iterative price-based reverse auction that provides an equilibrium outcome of the 

modified Vickrey-Clarke-Groves (VCG) auctions [4]. Instead of focusing on the buyer’s 

profits, they consider an efficient design for the market that includes the buyer and all the 

suppliers. Under the assumptions of additive cost components [11] and preferential 

independence [5], all suppliers submit bids in the forms of additive price parts for each 

attribute level after evaluating the ask price from the buyer and their own cost structures. 

By assuming fixed marginal costs, it is proposed that a single-item multi-attribute auction 

can be easily extended to homogeneous multi-unit procurement [4]. For heterogeneous 

items, the combinatorial allocation problem (CAP) is studied as multi-item auctions in 

literature [12, 13, 14, 15].  

Bichler and Kalagnanam study multi-attribute reverse auctions in the case of 

multiple sourcing rather than one single supplier [11]. They also extend the 

multi-attribute reverse auctions to the concept of configurable offers. The authors develop 

the mathematical models for the winner determination problems under different situations 

and analyze the computational complexity. However, there is no discussion about the 

implemental mechanism design for multi-attribute reverse auctions in their work. Mishra 

and Veeramani propose a descending-price multi-attribute reverse auction mechanism for 

single outsourcing and study strategic behaviors of both the buyer and suppliers [16]. The 

mechanism achieves nearly efficient allocation and nearly competitive final prices. To the 
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best of our knowledge, no previous literature has proposed a mechanism for 

multi-attribute reverse auctions with order splitting among multiple suppliers.  

2.2 Multi-unit Auctions 

Some researchers study several special assumptions under which the traditional 

single-unit auction can be extended into multi-unit schemes [17, 18]. Teich et al. present a 

traditional multi-unit auction with one seller and multiple buyers [19]. They design an 

algorithm to reduce the price discrimination. Wolfram focuses on the bidding strategies in 

multi-unit auctions [20]. Tenorio first considers a multi-unit reverse auction with 

non-linear cost structures of suppliers [21]. Jin et al. generalize the cost functions in 

Tenorio’s work to a U-shaped curve to capture the economies and diseconomies of scale 

[3]. By investigating the properties of such multi-unit reverse auctions and bidders’ 

behaviors, Jin et al. develop an iterative auction mechanism with three tie-breaking rules 

for multiple optimal solution cases.  
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CHAPTER III 

MULTI-ATTRIBUTE MULTI-UNIT ALLOCATION PROBLEM (MMAP) 

This dissertation studies the multi-attribute multi-unit allocation problem (MMAP) 

and aims to design a reverse auction mechanism that efficiently allocates multiple units of 

a certain product with multiple attributes among suppliers with different cost structures. 

The proposed model relaxes the common assumption that the suppliers’ marginal costs 

for products are constant or monotonic in units. In our study, the suppliers may incur 

variable marginal costs for their products. We first present a mathematical programming 

model formulation for the MMAP that optimizes product allocation based on market 

efficiency. The optimal allocation from the perspective of the integrated market is an 

important criterion for the performance of auctions in commercial procurement. In an 

industrial outsourcing scheme, repeated buying is common. A sustainable procurement 

practice requires long-time partnerships between buyers and suppliers. If the auctioneer 

focuses only on maximizing the buyer’s profits, the suppliers may be discouraged in the 

long run. Therefore, the market efficiency is considered a primary target of the 

mechanism design in this paper. In general, maximizing the integrated market net profits 

provides an important benchmark. 

Next we provide the formulation of the winner determination problem in iterative 

reverse auctions. This formulation represents the buyer’s decision model that maximizes 
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her net profits by optimally determining the winning supplier(s) of each round based on 

the current submitted bids. 

3.1 Market Efficiency Model 

 In the MMAP, a buyer requests D units of a product that has m attributes. The 

number of possible levels of attribute j {1,…,m} is defined as Lj. An attribute-level 

bundle b is mathematically defined as the set of attribute levels b={lj| j=1,…,m}, where 

lj {1,…,Lj}. Therefore, the total number of possible bundles is calculated as j

m

j
LB

1
.

For example, suppose a buyer who seeks to procure desktop computers considers the 

computers’ processing speeds and memory as the two main attributes. If there are two 

levels of processing speed (e.g., 1.66GHz, 3.0GHz) and three levels of memory (e.g., 

128MB, 256MB, and 512MB), then there are 2  3=6 possible attribute bundles. It is 

assumed that n suppliers participate in the auction to compete for the contract. Each 

supplier can bid for any one of the bundles. Supplier i {1,…,n} incurs the marginal cost 

cibk to produce the kth {1,…,D} unit of the product with attribute-level bundle b {1,…,B}.

The marginal cost structures are private information held only by suppliers. The buyer’s 

unit valuation of attribute-level bundle b is vb, which is also private information of the 

buyer. At each iteration, the buyer selects a unique attribute-level bundle for all the 

products to be purchased. As such, even though the buyer can distribute the winning bids 

among multiple suppliers, all the winning bids must be from the same attribute bundle. 

We define a binary variable xb, which equals one if attribute-level bundle b is selected 

and zero otherwise. Another binary variable yik is one if k units are allocated to supplier i
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and zero otherwise. Let Fi denote the total production cost for supplier i. The resulting 

formulation is an integer linear programming (ILP) model that maximizes the market 

efficiency (ME) through optimal attribute selection and demand allocation among 

suppliers:  

Max
n

i
i

B

b
bb FxvD

11
 [MMAP-ME]

s.t. Dyk
n

i

D

k
ik

1 1
 (1)

1
1

B

b
bx  (2)

D

k
iky

1
1 i (3)

)1(
1 1

bib

D

k

k

r
ibriki xMcyF bi, (4)

0};1,0{, iikb Fyx

where 
D

k
ibkib cM

1
 (5)

The model maximizes the total net profits of the market by determining the 

efficient demand allocations and the best attribute-level bundle. Constraint set (1) ensures 

that the required demand from the buyer is met. Constraint set (2) ensures that exactly 

one attribute-level bundle is selected because the buyer wants to procure homogeneous 

items. Constraint set (3) ensures that a unique amount is allocated to each supplier. For 

example, consider the case where a supplier submits three bids for one particular 
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attribute-level bundle: ($2, 2 units), ($3, 3 units), ($4, 5 units). Though the combination 

of the first two bids is better than the third one for the buyer, it is infeasible because this 

supplier accepts only $4 each for 5 units. Constraint set (4) determines Fi by imposing a 

positive right-hand side only if attribute-level bundle b is selected. Mib serves as a big 

number in constraints (4), and its value can be determined by equation (5).  

3.2 Winner Determination Problem 

The mathematical programming model that we use to solve the winner 

determination problem in an iterative auction is a variation of the MMAP-ME model. 

The basic difference is that the suppliers’ private marginal costs are replaced with their 

bidding prices. The bids submitted by supplier i are represented as sibk which denotes the 

unit bidding price to provide k units of the products with attribute bundle b. Suppliers are 

allowed to ask for discriminative bidding prices for different bidding units. That is, their 

unit bidding prices depend on the bidding amount. Supplier i choose to bid on one or 

more attribute-level bundles with equivalent maximal utilities by evaluating her marginal 

costs and the buyer’s current ask prices. The bidders’ behaviors will be discussed in 

detail in later sections. Based on the model MMAP-ME, the winner determination 

problem maximizing the buyer’s profit is formulated as follows: 

Max
n

i

B

b
i

B

b
bb FxvD

1 11
[MMAP-BP]

s.t. Dyk
n

i

D

k
ik

1 1
(6)
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1
1

B

b
bx (7)

D

k
iky

1
1                           i (8)

)1(
1

bib

D

k
ikibki xMyskF bi, (9)

0};1,0{, iikb Fyx

where 
r

k
ibkDrib skM

1}...1{
max  (10)

Here, Fi represents total payment to supplier i. The model MMAP-BP maximizes 

the buyer’s profit by selecting the lowest-cost suppliers and the best attribute-level bundle. 

Equations (6) – (10) indicate the same underlying constraints as those in the model 

MMAP-ME.
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CHAPTER IV 

IMMRA MECHANISM DESIGN AND ANALYSIS 

This chapter presents an Iterative Multi-attribute Multi-unit Reverse Auction 

(IMMRA) mechanism for the MMAP defined in Chapter 3. At the beginning of the 

auction, the auctioneer collects unit valuation vb for each bundle from the buyer. At each 

round t, the auctioneer sets a flat unit ask price pb
t for each attribute-level bundle 

regardless of volume. This flat unit ask price is due to the fact that each product with a 

certain attribute-level bundle has a single unit value for the buyer independent from the 

volume of the purchase. Maintaining a flat unit ask price simplifies the winner 

determination problem for the buyer. It also simplifies the suppliers’ bid evaluation 

process. The price pb
1 at the first round is initialized to be greater than vb. This 

encourages higher supplier participation as the suppliers’ costs are typically lower than 

the buyer's valuations. At each round t, supplier i submits one or more bids sibk
t to 

indicate the acceptable unit price of being allocated k units with attribute-level bundle b.

At any round, suppliers can change their bidding and may bid for a completely different 

attribute-level bundle and quantity from the previous round. However, we assume the 

no-regret rule that the suppliers are not allowed to increase their bids (i.e., ask higher 

prices) for a specific quantity and attribute-level bundle. This is ensured  

by defining }{min
..1

r
ibktr

t
ibk ss . The auctioneer solves the winner determination problem 
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MMAP-BP at round t with parameter t
ibkibk ss . At the next round, ask prices are updated 

as t
b

r
ibktrDkni

t
b psp }{min

..1,..1,..1

1 . The winning bids of the previous round are retained 

automatically even if the bidding prices are lower than the current ask prices. For the 

losing bids or new quantity and bundle pairs, the prices have to be the same or lower than 

the current ask price. However, each supplier is offered a last opportunity to place her 

final bids with prices higher than the current ask prices on any preferred bundles if all 

prices are higher than her expectation and yield negative profits. Once their final bids are 

submitted, suppliers cannot change their bids further. The auction terminates if no 

supplier changes her bids. At the end of the auction the final winners receive their 

payments for winning bids based on prices that they have offered at the previous rounds. 

4.1 Bidding Strategies 

The suppliers determine their bids based on their cost structures and the current 

ask prices without knowing cost information of other competing suppliers. However, 

based on the rule of t
b

r
ibktrDkni

t
b psp }{min

,...,1,,...,1,,...,1

1 , the auctioneer decreases an 

attribute-level bundle's ask price at round t+1 if any supplier submits a bidding price 

lower than the attribute-level bundle's ask price at round t. Thus, the ask prices reveal 

partial bidding information of the competition, which subsequently intensifies the 

competition among suppliers. To analyze suppliers’ bidding strategies in iterative 

auctions, recent papers on auction mechanisms such as [22, 23, 10] employ the myopic

best response (MBR) concept. The myopic best response (MBR) is defined as a supplier’s 

best bids at round t that maximize her profits assuming all other suppliers’ bids at round 
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t-1 stay unchanged [22]. Under this assumption, in single-unit auctions, the suppliers are 

assumed to act as if round t is the last round before the auction terminates as no other 

suppliers are expected to change their bids. This assumption is reasonable for single-unit 

auctions. However, multi-unit auctions may have multiple provisional winners at round 

t-1. As such, a supplier may need to change her bids more than once to achieve her 

highest utility, even if other suppliers keep their bids unchanged. Therefore, assuming 

that round t will be the last round before termination is unreasonable in multi-unit 

auctions. To account for this problem, we define a modified myopic best response 

(MMBR).

Definition 1. Modified myopic best response (MMBR) is the supplier’s best bidding 

strategy for round t and the following rounds to maximize her final profits, assuming that 

other suppliers do not change their bids beyond round t-1.

The solution of the winner determination problem MMAP-BP at round t is 

defined by { 1,1
**

t
ik

t
b t

i
t yx }, which indicates that attribute-level bundle bt* is selected 

and supplier i is allocated ki
t* units. We define a minimal bid decrement , which is a 

positive pre-determined parameter used for updating ask prices in the auction. At round t,

the positive largest utility of supplier i at  below the ask price is defined as 

k

r
ibr

t
bkb

t
i ckpU

1,max }){(max . A non-negative value of t
iU max  indicates that 

supplier i is currently an active bidder in the auction. If supplier i has a negative t
iU max ,

she becomes an inactive supplier and has no option but to submit her final bids.

Consequently, assuming MMBR we can make the following conclusion: 
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Theorem 1 When minimal bid decrement approaches zero, active supplier i's 

modified myopic best response (MMBR) in the AuctionMM at round t+1 is : 

pairs.)(otherbidsno

;))((if
*

**

1

1
max

1

111

b,k

cFUckpps
t
i

tt

k

r
ribi

t
i

k

r
ibr

t
b

t
b

t
ibk (11)  

The detailed proof to Theorem 1 is provided in the Appendix. If supplier i is not a 

winner at round t, then 
*

**

1

t
i

tt

k

r
ribi cF = 0 since no unit is allocated to her (i.e. ki

t*=0,

Fi
t*=0). The first condition of Theorem 1 is satisfied if the losing supplier has a positive 

1
max

t
iU . She will place a bid on all pairs of (b,k) that incur the largest positive utility at 

the prices  below the ask prices of round t+1. If supplier i is a winner at round t (i.e. 

ki
t*>0, Fi

t*>0), t
i

k

r
ribi UcF

t
i

tt max
1

*

**  must be true so that the bids at round t can be 

justified. Since t
b

t
b pp 1  is always true, the first condition of Theorem 1 is violated for 

this winning supplier. As such, the MMBR bidding strategy for a winner is to retain the 

bids from the previous round automatically and submit no new bids.  

Basically, at the first round, supplier i has no incentive to improve the initial ask 

prices at this point and determines her initial bid, 1
ibks , based on the MMBR assumption as 

follows: 

pairs.)(otherbidsno

;0}'{max)(if
'

1
'

1
'','1

111

b,k
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k

r
ribbkb

k

r
ibrbbibk        (12) 

Supplier i places the bids at the initial ask prices on the pairs (b, k) that maximize her 

profit under the initial ask prices. She does not place bids on other (b, k) pairs that have 
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positive utilities at the initial ask prices to avoid unnecessary competition against herself. 

Based on the MMBR assumption, she does not lose any opportunity to update her bids at 

later rounds. However, this assumption may lead to a special scenario where there is no 

feasible solution to satisfy the homogeneous constraint. If this happens, the auctioneer 

updates the ask prices without allocating any units. Therefore, all suppliers are losers at 

this round and continue to bid following equation (11) in the next round.  

For an inactive supplier i at round t (i.e., 0}){(max
1,max

k

r
ibr

t
bkb

t
i ckpU ), if 

she is a winner, the bids submitted by her are retained automatically. However, when the 

inactive supplier is a loser, she is no more competitive compared to her opponents. In 

such a case, she releases her final bids with bidding prices above the ask prices. The 

auctioneer recognizes the bids higher than the current ask prices as final bids. Once a 

supplier submits final bids, she is not allowed to change her bids any more. Therefore, for 

final bids, the supplier is assumed to bid on every pair (b, k) with minimum integer q>0

that satisfies 0)(
1

k

r
ibr

t
b ckqp  to increase her winning possibility. Based on 

the no-regret rule, once a feasible allocation incurs at one round, it is retained if there is 

no better one. As long as no feasible allocation arises, all suppliers act as losers to 

continue decreasing the ask prices until final bids are submitted. Based on the assumption 

of final bids, it is guaranteed that the auction will terminate with a feasible allocation if 

one exists. We note that the final bids may reveal partial information regarding the 

bidding supplier’s marginal costs. In practice, these final bids are recorded by the 

auctioneer, who has the responsibility to protect the privacy of all players. 
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4.2 An Illustrative Example 

Consider a buyer who is to purchase three desktop personal computers. The buyer 

is specifically interested in two attributes of the computers. One attribute is the processor, 

which has two levels as 2.66GHz, 3.0GHz. The other attribute is the memory, with two 

levels as 256MB, 512MB. There are four possible attribute-level bundles that can be 

provided by three suppliers as listed in Table 1. Both the buyer’s unit valuation for each 

bundle and the suppliers’ marginal costs to produce each unit of every attribute-level 

bundle are given in Table 1.  

Table 1 An Instance with Two Attributes and Three Units 

Units Bundle 1 Bundle 2 Bundle 3 Bundle 4 

2.66GHz 

256MB 

3.0GHz 

256MB 

2.66GHz 

512MB 

3.0GHz 

512MB 

 Value/unit 1 $14 $46 $28 $60 

Supplier 1 Marginal 

cost/unit

1 $8 $10 $17 $19 

2 $6 $10 $13 $17 

3 $6 $8 $15 $17 

Supplier 2 Marginal 

cost/unit

1 $6 $9 $13 $16 

2 $9 $12 $18 $21 

3 $10 $12 $21 $23 

Supplier 3  Marginal 

cost/unit

1 $7 $11 $13 $17 

2 $8 $13 $13 $18 

3 $10 $14 $19 $23 
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Based on the buyer valuation and the supplier cost information, we can employ 

the model MMAP-ME to solve the winner allocation problem using any optimization 

solver (such as ILOG CPLEX). The optimal solution selects the bundle of (3.0GHz, 

512MB) with the allocation of (0, 1, 2), indicating that supplier 1 wins nothing, supplier 2 

wins 1 unit, and supplier 3 wins 2 units, respectively. The maximum market gain from 

this trade is: 

(3)($60)- ($16)-($17+$18) =$129. 

The IMMRA for this example is simulated in Table 2. The minimum decrement 

 is set to $6. In reality, this value could be as small as $1. Since most online auctions 

are implemented by computer agents automatically(e.g. Strecker et al., 2004), the number 

of rounds is not a considerable computational issue and, as such, the decrements can be 

kept small. The initial ask prices are set to bb vp1 . All the suppliers follow the 

bidding strategies as described in subsection 4.1. At each round, the auctioneer solves the 

MMAP-BP model to determine the optimal attribute-level bundle and allocation. In case 

of multiple optimal solutions, the winners of the last round are favored. In the following 

IMMRA example, bids are expressed as s[k] under preferred attribute-level bundles from 

suppliers, where s indicates the bid price and k is the desired unit under the price. There 

might be multiple desired units that yield the same potential profits to the supplier, which 

is expressed as s[k1,k2,…].
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Table 2  An IMMRA Example. ("*" indicates the provisional allocation.) 

 B1  B2  B3  B4 

 value  14  46  28  60 

R  S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

1 price  20   52  34   66  

 bid       66*[3] 66[3] 66[3] 

2 price  20  52  34  66 

 bid  66[3] 60*[3] 60[3] 

3 price  20   52  34   60  

 bid    46[3]      60[3] 54*[3] 

4 price  20  46   34  54 

 bid  40[3] 40[3]  54*[3] 

5 price  20   40  34   54  

 bid       48*[3] 48[3] 54[3] 

6 price  20  40  34  48 

 bid  34[3]  48[3]  42*[3] 

7 price  20   34  34   42  

 bid    28[3] 28[3]      42*[3] 

8 price  20  28  34  42 

 bid  36*[3] 36[3] 42[3] 

9 price  20   28  34   36  

 bid     22[3]   28[3] 36*[3]   

10 price  20  22  28  36 

 bid  36[3] 30[3] 30*[3] 

11 price  20   22  28   30  

 bid 14[3] 14[3]       30*[3] 

12 price  14  22  28  30 

 bid  16[3] 22[3]  30*[3] 

13 price  14   16  22   30  

 bid       24*[3] 24[3] 30[3] 

14 price  14  16  22  24 

 bid  16[1] 16[2] 24*[3] 

15 price  14   16  16   24  

 bid  8[1] 8[1,2]    24[3] 18*[1] 18[1,2*] 

16 price  8  16  16  18 

 bid  8[1] 8[1,2] 10[3]  18*[1] 18[1,2*] 

17 price  8  10  16  18 

 bid 8[1,2,3] 8[1] 8[1,2] 10[1,2,3] 22[1] 
16[2,3]

24[1] 
18[2,3] 18*[1] 18[1,2*] 

18 price  8   10  16   18  

 bid 8[1,2,3] 8[1] 8[1,2] 10[1,2,3] 22[1] 
16[2,3] 

24[1] 
18[2,3] 18*[1] 18[1,2*] 

Round 1. Initial prices are set to be =$6 greater than the values of the buyer. Initial 

bidding prices from the suppliers are determined based on condition (12). All suppliers 
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bid at price $66 on attribute-level bundle 4 of 3 units (i.e., the pair of (4, 3)) since this 

pair provides the maximal utility to every supplier. Supplier 1 is arbitrarily selected to be 

the winner.  

Round 2. Winning supplier 1 keeps the same bids. Losing suppliers 2 and 3 update their 

bids following Theorem 1. If they decrease the ask prices by ��$6 for all pairs, their 

maximal utilities still occur on the pair of (4, 3). Therefore, both suppliers 2 and 3 bid at 

$60 on pair (4, 3). Solving the winner determination problem MMAP-BP, supplier 2 is 

selected to be the winner.  

Round 3 - 15. Ask prices are updated to match the lowest bidding prices at the last round. 

Following Theorem 1, losing suppliers update their bids, while winners keep their bids 

unchanged. A provisional allocation of (0, 1, 2) is the result of round 15 with 

attribute-level bundle 4 selected. 

Round 16-17. If the current ask prices are reduced by $6 more, the maximum utility is 

negative for every supplier. Suppliers 2 and 3, who are winners, stay on their current bids. 

However, the loser, supplier 1, who is inactive, submits her final bids. The bids marked in 

bold that are higher than the ask prices are recognized as final bids by the auctioneer. 

Therefore, supplier 1 is forbidden to update her bids anymore. Consequently, the auction 

terminates with bundle 4, and the payments of (0, $18, $36) to the three suppliers are made 

respectively.  

To evaluate the outcome payments further from the simulated IMMRA, we use 

the traditional Vickrey-Clarke-Groves (VCG) payment as a benchmark. Let Z* denote the 

optimal value of the model MMAP-ME. Z-i* is the alternative optimal value without 

supplier i. The marginal value of supplier i is defined as Z*-Z-i*, which is her contribution 
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to the market. The VCG mechanism terminates with a payment of the winner's marginal 

value plus her cost. Thus, a winner's profit is computed as her marginal value. In this 

example, marginal value of supplier 2 is calculated as Z* - Z-2* = $129 - $127 = $2,

while that of supplier 1 is calculated as Z* - Z-1* = $129 - $128 = $1. Therefore, the 

VCG payments to suppliers 2 and 3 are $16(cost)+$2(margin)=$18 and 

$35(cost)+$1(margin)=$36, respectively. In this example, the IMMRA has the same 

payments as the VCG auction. In the next section, more numerical experiments are 

conducted to compare the performance of the IMMRA to the VCG auction. The analysis 

shows that the IMMRA terminates with lower payments than the VCG auction does in 

most cases.  

4.3 Experimental Results and Discussions 

Numerical experiments are conducted on a problem with 4 suppliers, 4 attributes, 

and 4 levels per attribute. It is assumed that the suppliers follow the strategies described 

in subsection 4.1 throughout the auction. In the experiments, data are generated randomly 

with two positive parameters Sell  and Buy . A weight )1,0(~ Uwb is randomly selected 

for each attribute–level bundle b. All weights are normalized to satisfy 1
1

B

b
bw . For 

the buyer’s valuation, we randomly generate B values from ),0( BU Buy  and sort these 

values. Sorted values are multiplied by the weight bw  to generate the buyer’s valuation 

bv  for attribute-level bundle b. For suppliers’ marginal costs, we first create the mean 

value ibc  over all units similarly as the buyer’s valuation. For supplier i, B random 
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values are generated from ),0( BU Sell . These values are sorted and multiplied by the 

normalized weight bw  to generate ibc . For supplier i, D coefficients are randomly 

generated from )5.0,5.0(~ Uuk  for each bundle to compute the marginal cost as 

kibibibk uccc . The two constants are chosen to satisfy SellBuy  to guarantee that 

the buyer’s valuation for a bundle is greater than the marginal cost of an average supplier. 

In the experiments, we set 30Buy  and 40Sell  by default. Table 3 shows the 

performance comparison of the VCG auction and the IMMRA for 20 instances with the 

minimal bid decrement of $1.  

Table 3   Comparison of IMMRA and the VCG Auction 

 The VCG Auction IMMRA 

Instance
System
utility 

Total
payment

Buyer
utility

System
utility 

Total
payment

Buyer
utility

1 354 56 298 347 47 300 
2 371 44 327 371 41 330 
3 332 42 290 332 37 295 
4 153 13 140 153 3 150 
5 468 78 390 468 73 395 
6 256 77 179 256 71 185 
7 323 73 250 323 68 255 
8 437 93 344 437 92 345 
9 332 24 308 332 27 305 
10 329 28 301 329 29 300 
11 342 23 319 342 22 320 
12 278 15 263 278 13 265 
13 390 14 376 390 10 380 
14 168 35 133 168 33 135 
15 430 59 371 430 55 375 
16 640 77 563 640 80 560 
17 782 120 662 782 122 660 
18 820 108 712 818 38 780 
19 776 99 677 776 96 680 
20 997 383 614 997 382 615 
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In the results listed in Table 3, 2 out of 20 instances yield inefficient system utility 

marked in bold and italics. To further verify the efficiency of IMMRA, we run the 

experiments for 100 instances and get 27 cases with inefficient solutions. In other words, 

73 percent of the instances result in efficient allocations and the best bundle selections for 

the market.  

We study the following simple case that does not result in the first best solution 

under the proposed IMMRA procedure to investigate the underlying reasons of the 

inefficiency. Suppose the buyer wants to procure three units of a product with two 

attribute-level bundles. Three suppliers are involved in the auction to compete for the 

order. The buyer’s valuations and suppliers’ marginal costs are provided in Table 4. The 

simulation of IMMRA is conducted round by round in Table 5 with the minimal 

decrement of $10. Solving the optimization model MMAP-ME, we show that the 

efficient solution is to allocate 3 units to supplier 1 with bundle 1. However, the outcome 

of the auction selects bundle 2 with the same allocation. In this case, the system utility is 

degraded from the optimal value of $114 to $92.  
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Table 4   An Inefficient Instance 

  units Bundle 1 Bundle 2 

 Value/unit 1 $70 $80 

supplier 1 marginal 

cost/unit 

1 $34 $58 

2 $34 $54 

3 $28 $36 

supplier 2 Marginal 

cost/unit 

1 $38 $62 

2 $44 $60 

3 $60 $56 

Table 5   An Inefficient IMMRA Example. ("*" indicates the provisional allocation.) 

  B1 B2 
 value 70 80 

R  S1 S2 S1 S2 
1 price 80 90 
 bid 80*[3] 80[3]   
2 price 80 90 
 bid 80[3] 70*[3]   
3 price 70 90 
 bid  70*[3] 80[3]  
4 price 70 80 
 bid 60*[3] 70[3]   
5 price 60 80 
 bid 60*[3]   70[3] 
6 price 60 70 
 bid 60*[3] 50[2]   
7 price 50 70 
 bid 60[3] 40[1]  60*[3] 
8 price 40 60 
 bid  40[1] 50*[3] 60[3] 
9 price 40 50 

 bid 40[1] 
50[2,3] 50*[3] 70[1,2]

60[3]
10 Price 40 50 

 Bid 40[1] 
50[2,3] 50*[3] 70[1,2]

60[3]
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At rounds 6 and 7, supplier 2 reduces her bidding prices of 2 units or 1 unit for 

bundle 1. She is not selected to be a winner because no feasible solution including her 

bids exists. However, the buyer’s ask prices are triggered to decrease because of the 

lowest bidding prices from supplier 2. Supplier 1 automatically retains her bids as a 

provisional winner. Therefore, at round 8, bundle 1 with an ask price at $40 is no longer 

the best choice for supplier 1 to improve her bids based on Theorem 1. After supplier 1 

reduces her bidding price for bundle 2 to $50, supplier 2 is no longer competitive and has 

to submit her final bids. The auction terminates with the outcome of allocating 3 units to 

supplier 1 and selecting bundle 2. This situation occurs when the ask prices for the 

efficient bundle decrease too quickly because a losing supplier has an especially low 

production cost for an amount that is less than the demand and her bids for that bundle do 

not lead to a feasible allocation for the buyer. Nevertheless, the ask price is still decreased 

due to diminishing bids. Meanwhile, there exists another competitive bundle with a better 

utility for the previous winner for which the best feasible allocation is achieved. 

Consequently, the ask prices that are decreased inefficiently lead to less-than-optimal 

results. 

The primary purpose of the buying corporations to participate in online auctions is 

to save their costs by reducing their payments to suppliers. The numerical analysis 

reveals that, under the IMMRA mechanism, auctions terminate with lower payments to 

the winners compared to the VCG auctions in most instances. In the experimental results, 

we observe that the buyer saves money in procurement costs by participating in IMMRA 

in 80 percent instances. Recall that the VCG payment to supplier i is defined as the 
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margin value Z*-Z-i*. Here, Z-i* indicates the optimal market utility based on the optimal 

allocation in the absence of supplier i. This allocation is the second best solution in a 

single item multi-attribute auction. However, since we allow the order split in the 

IMMRA, which considers multiple units, the second best solution may still include 

supplier i as a winner with different winning allocation. Therefore, the IMMRA may 

result in a payment less than the margin value Z*-Z-i* because of a better second-best 

solution that includes supplier i. If the second-best solution for the IMMRA does not 

include any winning supplier from the best allocation, the payment to the winners should 

be at least as good as the VCG payment when the minimal decrement  approaches 

zero. The four payments marked in bold and italics in Table 3 are greater than the VCG 

payments because the minimal decrement  is not small enough. 

4.4 Conclusions

The iterative multi-attribute multi-unit reverse auction (IMMRA) is proposed in 

the previous chapters for procurement auctions involving multiple units of products or 

services with a series of negotiable attributes besides price. The goal of the proposed 

mechanism is to incorporate the suppliers’ variable marginal costs efficiently in the 

multi-attribute reverse auctions, where suppliers prefer to bid with discriminative prices 

over units and buyers can split their purchases among bidding suppliers. Under this 

mechanism, splitting the procurement contract to more than one supplier often leads to 

higher buyer profits. To our knowledge, our work is the first to investigate the mechanism 

design of a multi-attribute auction that allows for multiple unit procurement with order 

splits. 
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We first proposed an integer programming model for the IMMRA to solve the 

winner determination problem. To study the bidders’ behaviors, we tailor the myopic best 

response (MBR) approach for the multi-attribute case and develop the modified myopic 

best response (MMBR). The latter approach ensures a proper bidding strategy for the 

order-splitting situation in the proposed IMMRA mechanism. The suppliers’ MMBR 

bidding strategies for the IMMRA are discussed in detail and illustrated in Section 4. The 

experimental results show that the market efficiency is achieved in most instances. The 

inefficiency occurs occasionally for special cases where bidding suppliers have 

significantly different cost structures. Numerical results show that, in general, the buyer 

pays less in the IMMRA mechanism compared to the VCG payments. 

In the future, it will be interesting to study the information revelation and 

computational complexity issues of the IMMRA discussed in this paper. Fixing the 

inefficiencies that were observed in the experimental results is another interesting future 

topic. One idea is to allow the auctioneer to maintain discriminative ask prices over units, 

meaning that we may avoid the excess price reductions on the efficient allocation but 

increase the computational complexity. Another interesting future direction is to relax the 

assumption for placing the final bids and find out a more robust bidding strategy without 

compensating of efficiency.  
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CHAPTER V 

LITERATURE REVIEW OF SEQUENTIAL AUCTIONS 

In the following chapters 6 and 7, we will investigate another type of online B2B 

auctions, sequential reverse auctions, which is roughly introduced in section 1.3. Chapter 

5 reviews different aspects of literature in this research field. Section 5.1 summarizes 

existing study about morning and afternoon effects of prices in sequential auctions. Both 

theoretical analysis and empirical observations of the price trend have been studied in 

literature. Section 5.2 provides a review of the information structure of sequential 

auctions presented in articles. Section 5.3 discusses two types of bidders’ valuation 

structures, complementarity and substitutes, and reviews the literature relative to these 

two configurations. Section 5.4 reviews articles in which the sequential auctions with 

capacity or budget constraints are investigated. 

5.1 Morning and Afternoon Effects in Sequential Auctions 

Milgrom and Weber studied sequential auctions for selling identical objects to a 

set of bidders who each has unit demand [18]. They compared simultaneous auctions and 

sequential auctions regarding the differences in equilibrium characterizations,  

bidding strategies, expected price series, and expected revenues. The authors theoretically 

presented that the equilibrium expected prices in sequential auctions would follow an 

upward-drifting trend, called “morning effect”, by assuming symmetric risk neutral 
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bidders with independent private valuations. However, empirical evidence shows that 

actual prices may either decline or increase through sequential auctions. In the famous 

empirical phenomenon called "afternoon effect", an obvious decline in prices has been 

observed over sequential auctions for various items. Ashenfelter observed the "afternoon 

effect" in sequential wine auctions [24]. Later, Ashenfelter and Genesove reported the 

similar "price-decline-anomaly" phenomenon in auctions of apartments [25]. McAfee and 

Vincent investigated the Chicago wine auctions to develop theoretical models [26]. They 

obtained the "afternoon effect" in their model with the assumption of non-decreasing 

risk-averse bidders. On the contrary, Gandal observed increasing prices in the cable TV 

license auctions in Israel [27]. In sequential wool auctions, the prices were noticed to 

either increase or decrease [28].  

In the theoretical literature of sequential auctions, these anomalous price trends 

are explained in different ways. Picci and Scorcu used dynamic panel data econometric 

techniques to analyze the price trend in sequential auctions of heterogeneous art objects 

[29]. They took the auctioneer behaviors into consideration to achieve the efficient 

allocation and maximized revenue. Under this environment, no "afternoon effect" was 

observed but a slight price increase seemed to be present. They summarized the literature 

presenting the anomaly "afternoon effect" and the possible underlying assumptions 

leading to decline prices. Von der Fehr took the participation cost into consideration to 

explain "afternoon effect" [30]. Black and de Meza presented the "right to choose" option 

to allow the first-auction winner to select his/her preferred object [31]. The other object 

left was to be auctioned in the second auction by remaining bidders. This option could 

also lead to the "afternoon effect" in sequential auctions. Gale and Hausch compared 
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price tendencies between sealed-bid sequential auctions and "right to choose" sequential 

auctions [32]. With two unit-demand bidders and two identical objects for sale, they 

presented the conjecture that declining prices would be possibly caused by bidders' 

conservative strategies. Under the assumption of the complete information of the future 

object's valuation, sealed-bid sequential auctions may yield a non-efficient allocation 

while "right to choose" sequential auctions can achieve the efficiency. When the 

information of reservation prices and other bidders’ behaviors is available to all bidders, a 

model in which two heterogeneous objects are auctioned off sequentially presents the 

“afternoon effect” and further demonstrates that it is optimal for the auctioneer to order 

the objects by declining estimated values [32]. The impact of the information structure on 

equilibrium bidding strategies and the allocation is another hot topic in the sequential 

auction research.  

5.2 Information Structure in Sequential Auctions 

The assumptions on information structure play an important role in the theoretical 

analysis of sequential auctions. Most researches in the sequential auction literature 

assume identical objects. Bidders are typically assumed to have the complete information 

of future goods. In other words, they know the quantity of identical objects that will be 

auctioned in later auctions. Besides the research by Milgrom and Weber [18] and Black 

and de Meza [31] mentioned in subsection 5.1, Katzman examined a second-price 

sequential auction for multi-unit identical objects with the assumption of diminishing 

marginal valuations of bidders [33]. Both situations of complete and incomplete 

information about other bidders’ behaviors were investigated. The equilibrium allocation 
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under the complete information situation may be inefficient and lead to declining prices 

(afternoon effect). Under the incomplete information, however, symmetric equilibrium 

accomplishes the efficient outcome and increasing prices (morning effect). In practice, 

many sequential auctions have heterogeneous objects to sell. Benoit and Krishna 

proposed common value sequential auctions for two heterogeneous objects and three 

budget-constrained bidders [12]. Under a complete information setting, it is demonstrated 

that selling the more valuable object first improves the expected revenue. This result can 

be extended to the cases with two objects and n budget-constrained bidders. In sequential 

English auctions for common value objects in an incomplete information environment, 

bidders’ budget constraints affect the optimal bidding behaviors and the revenue [34].  

In addition to common value objects, sequential auctions of heterogeneous private 

value objects also got interest from researchers. Pitchik and Schotter studied the 

budget-constrained bidders who were willing to purchase multiple units of both goods 

[35]. With the perfect information about future goods, the authors investigated the effect 

of budget constraints on bidders’ behaviors. Elmaghraby complemented the studies of 

sequential auctions for heterogeneous private value objects under incomplete information 

about future goods and other bidders’ behavior [36]. By using the second-price sealed-bid 

auction mechanism, the author analyzed how the ordering of objects in sequential 

auctions would affect the bidding behaviors and the expected revenue. Fatima et al. 

presented their study of sequential auctions in uncertain information settings [37]. Both 

computational and economic properties of the equilibrium solution were analyzed based 

on three sources of uncertainty: valuation of the objectives for sale, the number of objects 

for sale, and the number of participating bidders.  
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5.3 Complements vs. Substitutes 

Winning an object in the first auction may affect a bidder’s valuations in the 

second auction. This influence commonly happens in sequential auctions of 

heterogeneous objects in practice. If winning previous auction decreases the winner’s 

values of objects in the later auction, these objects being sold are classified as substitutes. 

On the contrary, complementarity means that winning previous auction increases the 

winner’s values of objects in the later auction. Many empirical evidences show that 

complements and substitutes both exist in sequential auctions. Complementarity usually 

exists in sequential procurement auctions of related construction contracts. Winning 

multiple contracts can reduce the total cost because of synergistic tasks. Cramton studied 

the Federal Communications Commission (FCC) spectrum auctions and showed that 

synergies among heterogeneous objects would affect both bidders' complementarities 

between goods and the efficiency of the goods allocation [38]. The synergies could 

directly stimulate winning bidders to bid more aggressively in sequential first-price 

auctions [39]. Wolfram investigated sequential electricity auctions with bids including the 

fixed setup cost and idle cost and reported that complementarities are observed in the 

electricity generation for consecutive time periods [20]. Anton and Yao documented that 

there were complementarities in sequential auctions for defense contracts because 

accumulating higher experience in the earlier project would help to reduce training and 

learning costs in the future contract [40]. Gandal observed complementarities in cable TV 

license auctions [27]. Pesendorfer proposed the incumbency advantage in winning 

adjacent school milk contracts because of cost savings in tank investments and the daily 
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delivery [41]. Substitution usually happens in industrial procurement auctions where the 

bidders (suppliers) have limited capacities. Therefore, winning additional objects (project 

contracts) may require extension of capacities, which may yield extra fixed cost. 

Zulehner observed the negative correlation between bids in the first auction and the 

subsequent auctions from the same bidder in sequential cattle auctions [42]. Jofre-Bonet 

and Pesendorfer theoretically showed that the winning bidder would increase the bid 

mark-up of substitutes [6]. The effect of this substitution was supported by the empirical 

evidence described in the paper. List et al. investigated sequential timber auctions and 

found the similar characterization of substitutes [43]. Jofre-Bonet and Pesendorfer 

studied substitutes in sequential highway-paving procurement auctions and summarized 

characterizations of complementarities and substitutes to provide theoretical analysis of 

two-period reverse sequential auctions with a single contract offered in each period [6]. 

They concluded that the buyer would prefer sequential first-price auctions for substitutes 

while standard English auctions, equivalent to sealed-bid second-price auctions, are 

preferred by the buyer for complementarities. Since the preference of the buyer 

minimizes procurement costs and therefore hurts the profits of bidders, bidders prefer the 

contrary to maximize their revenue. In the next subsection 5.4, we will review papers 

studying budget-constrained sequential auctions as a special case of substitutes. 

5.4 Auctions with Budget or Capacity Constraints 

Gallien and Wein proposed a multi-item procurement auction based on optimal 

winner determination models [23]. In their model, the buyer is willing to buy a set of 

objects from suppliers who have capacity constraints. To efficiently allocate the buyer’s 
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demands among suppliers, order splitting is allowed to purchase one object from multiple 

suppliers. The authors analyzed the bidding behaviors and the incentive compatibility for 

the revelation of suppliers’ capacity and cost information. Capacity constraints are 

necessary to be considered in the order splitting environment to guarantee the feasibility 

of the allocation. In the literature of sequential auctions for identical objects, budget 

constraints are typically simplified to the assumption that each bidder wants only one 

object. For heterogeneous objects, Pitchik studied the budget-constrained sequential 

sealed-bid auctions based on private valuation models [44]. The author investigated the 

impact of bidders’ income budgets on their bidding behaviors and the expected revenues. 

Since two auctions in the sequence were assumed to be offered by the same selling agent, 

the adjustable sequence of objects would also affect the expected revenue and prices.  

In this dissertation, we investigate suppliers’ bidding behaviors under the 

two-stage sequential reverse auctions. We extend Gallien and Wein’s work of 

procurement auctions with capacity constraints for one single project to multi-unit items 

procurement auctions. In our market environment defined in the next chapter, it is 

assumed that suppliers have complete information about other suppliers’ costs and 

capacities, demand for the first auction, and demand distribution for the second auction. 

Under this information structure, suppliers’ payoff functions and buyers’ procurement 

costs are empirically studied in chapter 7. To the best of our knowledge, the reverse 

procurement sequential auctions in which the suppliers have limited manufacturing 

capacities have not been studied in the literature. 
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CHAPTER VI 

FORMULATIONS OF CAPACITATED REVERSE SEQUENTIAL AUCTIONS 

6.1 Market Environment and Problem Description 

In our market environment, we assume two corporations play as buyers in two 

sequential auctions respectively. Buyers A and B want to purchase DA and DB units of one 

homogenous industrial component. Each auction offers one buyer’s procurement 

contracts to suppliers by using the Vickrey-Clarke-Groves (VCG) mechanism. This study 

considers a duopoly supply market in which two monopolistic suppliers compete for the 

two buyers’ procurement opportunities. The two suppliers dominate the market with cost 

competitiveness. Supplier 1 and supplier 2 are characterized by their respective unit costs, 

c1 and c2, and their fixed total supply capacities, O1 and O2, respectively. Without the loss 

of generality, supplier 1 is assumed to be more price-competitive with smaller unit cost, 

(i.e., c1 c2). It is assumed that the capacities of the two suppliers can be used and only 

be used for the two opportunities and any unused capacity is assumed to have zero 

salvage value. In other words, the supply capacity is time-sensitive and cannot be carried 

over periods. It is also assumed that suppliers cannot expand their capacity during and 

after auctions, so overstating his capacity cannot increase a supplier’s profit under any 

circumstances and may cause heavy penalty because of violating procurement contract 

and losing long-term goodness from buyers.  
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In the first auction, buyer A announces her demand, DA, collects prices and 

available quantities from both suppliers, and then determines the optimal assignments of 

her contract to minimize the procurement costs. Order splitting is assumed acceptable for 

the buyers to obtain low costs. When the total submitted amount from the two suppliers is 

not enough for the demand, the buyer can fulfill the unmet demand from a spot market at 

the price of cm, which is higher than both c1 and c2. In the second auction, buyer B and the 

two suppliers follow the same procedures. We assume that when submitting prices and 

available amounts in the first auction, the two suppliers do not exactly know buyer B’s 

demands. However, it is also assumed that the future demand in the second auction can 

be forecasted based on historical data. A common cumulative distribution function F(d)

for the demand in the second auction is public to all suppliers before the first auction. 

Therefore, when suppliers make decisions about their quantities and prices to be 

submitted in the first procurement auction, the uncertainty of the future demand from 

buyer B is necessary to be considered. We assume that in a duopoly market environment, 

the two suppliers monopolize most market share and have enough knowledge of each 

other’s capacity and cost information based on historical experience. Knowing complete 

information except the actual future demand of buyer B, the suppliers need to 

sequentially decide quantities and prices in both auctions to maximize their total profits. 

Under the risk neutral assumption, the suppliers are assumed to solely focus on the 

expected total profits.  
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6.2 Models 

In both auctions, the Vickrey-Clarke-Groves (VCG) mechanism is assumed to be 

used to determine the payment to winning suppliers. In the first procurement auction for 

buyer A, suppliers 1 and 2 set their quantities and prices at ( AQ1 , AP1 ) and ( AQ2 , AP1 )

respectively. Based on the suppliers’ offers, the optimal assignment to minimize the total 

cost to fulfill the demand for buyer A is defined by the following optimization model 

SAP-1:

min mm
A
i

A
i

A ycxPZ [SAP-1]

s.t. A
m

A
i Dyx i =1 or 2; (13)

i
A
i Ox i =1 or 2; (14)

0A
ix i =1 or 2. (15)

The solution to problem SAP-1 is well defined by 
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Here, Ax
1

, Ax
2

, and my are the quantities of buyer A’s demands allocated to 

supplier 1, supplier 2, and spot market respectively. Let A
iZ  as the objective function 

value of the optimal solution to model SAP-1 after setting 0A
iQ . Based on the 

generalized VCG auction mechanism, VCG payments to supplier i would be formulated 

as AA
i

AAA ZZxPPay -1 11
. The same VCG mechanism deciding allocation and payment 
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is also applied for the procurement auction of buyer B. Shown by Vickrey (1961), the 

dominating bidding strategy for a determinant VCG auction is to bid a supplier’s true cost.  

In this sequential auction analysis, suppliers are assumed to be well educated about the 

VCG mechanism and have incentive to set prices as their true costs (i.e., i
B

i
A

i cPP ).   

Since suppliers are willing to submit their true cost information as prices, allocations of 

buyer A’s demand between the two suppliers are simplified to: 

.;where

},,min{

and,

2211

122

11

OQOQ

QDQx

Qx

AA

AAAA

AA

(18)

After the first auction, suppliers’ capacities have been occupied by the assigned 

units xi
A. The available capacity of supplier i for the second auction are reduced to 

A
ii xO . A supplier prefers to submit his true remaining capacity in the second auction 

because he wants to utilize his capacity as much as possible due to the assumption of zero 

salvage values for unused capacity. With submitted quantities of AQO 11  and AxO 22

from the two suppliers, allocations of buyer B’s demand in the second auction are: 

},]~[,]min{[

and}~,min{

11

1

122

11
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AB
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AB

QODQDQx

DQOx

(19)

where random variable BD~  indicates buyer B’s demand, which is not deterministic 

during the first auction when suppliers need to decide bidding quantities in buyer A’s 

procurement auction. The uncertainty of future demand in the second auction brings a 

challenge to suppliers: whether to submit all available capacities in auction 1 or save 

some capacities for auction 2 in which higher payments may be accomplished. The 



42

obvious risk for saving capacities is to encounter some profit loss if demand in the second 

auction is too low to fulfill the remaining capacities. The suppliers’ overall objective is to 

maximize their total profits, denoted by i, from the two buyers’ procurement contracts 

by participating in both auctions. Supplier i’s optimal strategy to determine the bidding 

quantity A
iQ  in the first auction is defined by the following optimization model 

[SAP-2]: 

max B
ii

B
i

A
ii

A
ii xcPayxcPay  [SAP-2]

s.t. ;i
A
i OQ . (20)

0.A
iQ

The two payment terms are defined by the objective function value A
iZ  from 

model [SAP-1], which makes solving the problem [SAP-2] nontrivial. Further more, 

random variable BD~ is involved in the model, which brings additional challenges to 

solve A
iQ  directly. In the next Chapter, we investigate suppliers’ bidding strategies with 

theoretical analysis.  
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CHAPTER VII 

ANALYSIS OF SEQUENTIAL AUCTIONS 

7.1 Suppliers’ Bidding Strategies 

As discussed in Chapter 6, both suppliers have incentive to reveal their true costs 

in the two sequential VCG auctions. Buyers would prefer to allocate the demands to 

supplier 1 until supplier 1’s submitted quantities are fulfilled. Then, buyers assign 

remaining units to supplier 2 with VCG payments A
m

A xcPay 22  and B
m

B xcPay 22  in 

the two auctions respectively.  

Theorem 2. Supplier 2 has dominant strategies in both auctions as follows: 

AB

AA

xOQ

DOQ

222

22 and},min{
(21)

to maximize his total assigned allocations Ax2 and Bx2 by submitting his true available 

capacities in both auctions.   

With the knowledge of VCG payments and supplier 2’s dominant strategies, 

supplier 1’s profit in the first auction is formulated as functions in AQ1 as follows:  
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In the first two scenarios of (22), supplier 1 chooses to provide as many as buyer 

A’s demand to win the whole procurement contract and leaves nothing to supplier 2 in 

buyer A’s procurement auction. In the third and forth scenarios, supplier 1’s submitted 

quantity is not enough to cover buyer A’s procurement demand and supplier 2 has enough 

capacity to meet the remaining demand. In the third scenario, supplier 2 can meet buyer 

A’s demand even without supplier 1’s submitted capacity, which results in a unit payment 

12 cc  to supplier 1. However, in the fourth scenario, price for part of the allocation to 

supplier 1 is determined by the spot market price because of the VCG mechanism. In the 

last scenario, even the sum of the two suppliers submitted capacities is not enough to 

meet buyer A’s demand so that part of the demand has to be fulfilled by the spot market 

with the price of cm.

Supplier 1’s profit in the second auction can be formulated in AQ1 as well. First 

of all, we define three scenarios based on the relationships among capacities, demands, 

and submitted demands AQ1 .

Scenario (a): 21 ODQ AA  and BA DOQ ~
11 ;

Scenario (b):  21 ODQ AA  and BA DOQ ~
11 ; and  

Scenario (c):  21 ODQ AA .
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The close forms for supplier 1’s profit B
ii

B
i

AB xcPayQ )( 11 in buyer B’s procurement 

auction are derived for the three above situations respectively. 

Under scenario (a), the two conditions guarantee that demand from buyer A can 

be covered by the sum of two suppliers’ submitted quantities 21 OQ A . Meanwhile, the 

supplier 1’s remaining capacity AQO 11  is greater than buyer B’s demand BD~ . Then 

the allocation to supplier 1 in the second auction is BB Dx ~
1 . Therefore, the profit of 

supplier 1 is: 
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DQDO
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cDcQODDcDQO

cDcD
Q (23)

(23) shows the profit of supplier 1 in buyer B’s procurement depends on whether supplier 

2 has enough capacity to satisfy buyer B’s demand alone without the participation of 

supplier 1.  

Under scenario (b), the two suppliers submit enough capacities to meet buyer A’s 

demand in the first auction. However, buyer B’s demand BD~  cannot be completely 

covered by supplier 1’s remaining capacity and therefore be partially allocated to supplier 

2 and, if necessary, the spot market. The allocation to supplier 1 in the second auction is 

AB QOx 111  in this scenario. The profit of supplier 1 in buyer B’s procurement is 

determined by (24). 

.~

~,~
~

)()(

)()~()~(
)()(

)(

21

2112

12

11111

11112221

111211

11

BA

BABAA

BAA

A
m

A

A
m

ABABA

AA

AB

DDOO

DDOODQDO
DQDO

cQOcQO

cQOcQODDcDDOO
cQOcQO

Q

(24)



46

In (24), when supplier 2 can completely meet the demand of buyer B alone without the 

contribution from supplier 1, the profit of supplier 1 in buyer B’s procurement is decided 

by the cost difference between the two suppliers because the spot market is not involved 

even in SAP-1 to calculate BZ 1 . When the total capacity of the two suppliers is greater 

than the total demands in the two procurements and supplier 2’s remaining capacity is not 

enough to completely cover the demand of buyer B without the contribution from 

supplier 1, the spot market is involved in SAP-1 to calculate  BZ 1  but not involved in 

SAP-1 to calculate BZ . When the total capacity of the two suppliers is less than the total 

demands in the two procurements, the spot market is involved in the actual allocation of 

buyer B’s demand so that the profit of supplier 1 in buyer B’s procurement is decided by 

the cost difference between supplier 1 and the spot market.  

Under scenario (c), the two suppliers’ total submitted capacities are not sufficient 

for buyer A’s demand. Therefore, supplier 2 utilizes all his capacity in buyer A’s 

procurement and will not participate in buyer B’s procurement. The profit for supplier 1 

in buyer B’s procurement is decided by (25).  
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The allocation to supplier 1 in buyer B’s procurement is },~min{ 111
ABB QODx  and the 

profit rate is decided by the cost difference between supplier 1 and the spot market.   

Since demand from buyer B is uncertain during the procurement auction for buyer 

A, demand BD~  is defined as a random variable following a distribution with a density 

function f(x). By summarizing the profits from the two auctions, the expected total profit 
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)]([ 11
AQE  for supplier 1 when he decides the value of  AQ1  is calculated for the 

following three intervals.  
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(3) When 21 ODQ AA
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Please note that )]([ 11
AQE  is continuous at any )],min(,0[ 11

AA DOQ . It is 

differentiable except at the point of 2ODA if 2ODA  and 12 OOD A . Therefore, 

the optimal bidding quantity for supplier 1 in buyer A’s procurement, AQ*
1 , will either 

satisfy the first-order condition 0)]([

1

11
A

A

dQ
QdE  or incurs at the boundary points 

21 or),,min(0, ODDO AA (if 2ODA ). The derivative of the expected profit function is 

calculated as follows if 2OD A :
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Theorem 3. Supplier 1’s dominant strategy can be determined by 

,)]([maxarg 2111
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where AQ1
ˆ , if exists, is any )],min(),,0[max( 121

AAA DOODQ that can make (29-1) be 

zero. There may be multiple or no AQ1
ˆ existing under certain distributions and cost 

structures.
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When ADOO 21 , we have 21 ODQ AA  for any ].,0[ 21 OQ A  Based on 

(29-2), the first-order condition 0)()()]([
111

1

11 A
mA

A

QOFcc
dQ

QdE  for any 

].,0[ 21 OQ A  Therefore, the optimal bid for supplier 1 in buyer A’s auction is 

1
*
1 OQ A when ADOO 21 . This result is straightforward because the condition of 

ADOO 21  indicates that the two suppliers do not have any remaining capacity after 

satisfying buyer A’s demand  so that the unit profit of supplier 1 in buyer A’s 

procurement is decided by the cost difference between supplier 1 and the spot market (i.e., 

1ccm ), which is already the best marginal profit (cm-c1). Because of the uncertainty of 

the demand from buyer B, the optimal strategy for supplier 1 is to bid 1
*
1 OQ A  in the 

first auction to fully utilize his capacity. 

When ADOO 21 , a feasible bidding from supplier 1 in buyer A’s auction 

AQ1 could be greater than 2ODA . Therefore, we need to consider both intervals in (29). 

The first-order necessary condition 

0))(1)(()()( 2121112
AA

m
A DOQFccQOFcc  yields the local minimum or 

maximum solutions AQ1
ˆ , which is feasible only if it belongs to the interval of 

)],min(),,0[max( 12
AA DOOD . Therefore, under the condition of 212 OODO A ,

supplier 1’s global optimal bidding quantity AQ*
1  in the first auction will happen at 

either feasible AQ1
ˆ  or one of the boundary points 21 and),min( ODDO AA . If 

2ODA , interval for (29-2) disappears. Boundary point 01
AQ  replaces the point of 
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2OD A  as a possible candidate for the optimal bidding quantity. Based on all the 

analysis, supplier 1’s dominant strategy of bidding quantity AQ1  can be well defined. 

7.2 Numerical Illustrations with Uniform Demand 

In this section, we numerically analyze the sequential auctions by considering the 

market environment under different scenarios. The parameters, which are public 

information in numerical examples, include suppliers’ costs, capacities, and buyer A’s 

demand. It is assumed that buyer B’s demand follows a uniform distribution 

U( ),dd ,which is also assumed to be public information for players. In subsection 7.2.1, 

we provide examples to show how supplier 1’s dominant bidding strategy changes along 

with the different settings of parameters. In subsection 7.2.2, we conduct sensitivity 

analysis to demonstrate the impacts of market configurations on suppliers’ optimal 

expected profits with applying dominant strategies.  

7.2.1 Supplier 1’ s Bidding Strategy 

It is shown in section 7.1 that supplier 2’s dominant strategy is to bid his true 

available capacities in both auctions. In the following analysis, it is assumed that supplier 

2 always follows his dominant strategy. Both suppliers have incentive to reveal their true 

costs because VCG payments are applied in both auctions. Based on the analysis in 

section 7.1, supplier 1’s expected profit can be formulated as a function in his bidding 

quantity AQ1 . We provide numerical examples for supplier 1’s expected profit function 

)]([ 11
AQE under the five scenarios listed in Table 6. 
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Table 6   Market Configurations of Scenarios for Expected Profit Function Simulation 

Scenarios c1 c2 cm O1 O2 DA d d
1 8 10 15  70 50 80 30 80 
2 8 10 15  70 50 80 0 20 
3 8 19 20  70 50 80 30 80 
4 8 10 15  70 50 40 30 80 
5 8 10 15 70 50 40 20 30 
6 8 10 15 70 50 40 20 40 
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Figure 1 Supplier 1’s Expected Profit Function (Scenario 1) 

For scenario 1, feasible bidding quantity of supplier 1 falls in the region of [0, 70] 

because it can not exceed the available capacity O1. Figure 1 shows that the maximal 

expected profit happens at 30* 21 ODQ AA . This bidding quantity leaves exactly O2

units of buyer A’s demand in the first auction to supplier 2 and forces supplier 2 to utilize 

all his capacity in buyer A’s auction. By doing it, supplier 1 receives the best unit 
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payment cm in both auctions that maximizes his expected profit. However, this bidding 

quantity is no longer the best choice when buyer B’s demand is too low to compensate 

supplier 1’s loss of opportunity in the first auction, or when the price cm from spot market 

is not much higher than supplier 2’s cost c2. Scenarios 2 and 3 exemplify these two 

possibilities respectively.  
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Figure 2 Supplier 1’s Expected Profit Function (Scenario 2) 

In Figure 2, the optimal expected profit of supplier 1 happens at the point 

70* 11 OQ A  because of buyer B’s low demand represented by the distribution U(0, 

20). In Figure 3, 35*1
AQ  gives supplier 1 the best expected profit as $831.25. This 

optimal bidding quantity is one of the solutions to the first-order necessary condition 

0)]([ 11
AQE  in the interval of ],[ 12 OOD A  (i.e., [30, 70]). In scenarios 4, 5, and 6, 

buyer A’s demand is lower than supplier 2’s capcity (i.e., 02OD A ). Figure 4 shows 
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that the optimal bidding strategy for supplier 1 in this scenario is not to participate in the 

first auction and save all his capacity for the second auction to receive higher payment as 

long as buyer B’s demand is high enough. If buyer B’s demand decreases as in scenarios 

5 and 6, supplier 1’s expected profit has a U-shape function in his bidding quantity and 

the optimum occurs at 11 OQ A  or 01
AQ  as shown in Figure 5 and 6 respectively.  
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Figure 3   Supplier 1’s Expected Profit Function (Scenario 3) 
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Figure 4 Supplier 1’s Expected Profit Function (Scenario 4) 
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Figure 5 Supplier 1’s Expected Profit Function (Scenario 5) 
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Figure 6   Supplier 1’s Expected Profit Function (Scenario 6) 

The six examples numerically demonstrate the Theorem 3 in section 7.1. It shows 

that unique dominant strategy does exist for supplier 1. However, it varies for different 

market configurations. Comparisons of supplier 1’s expected profits among boundary 

values of AQ1  at 0, min{DA, O1}, 2OD A  and feasible solutions to the first-order 

necessary condition 0)]([ 11
AQE  are necessary to determine his dominant strategy.  

7.2.2 Sensitivity Analysis 

In this section, we vary suppliers’ costs, capacities, and buyers’ demands to 

illustrate how these given parameters affect supplier 1’s optimal expected profit when 

both suppliers apply their dominant strategies. Table 7 shows the parameters we use to 

conduct the sensitivity analysis.
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Table 7   Parameters Settings for Sensitivity Analysis 

c1 c2 cm O1 O2 DA d d
4 [5, 14] 15  70 50 80 30 80 
8 10 [11, 22]  70 50 80 30 80 
8 10 15  [10, 120] 50 80 30 80 
8 10 15 70 [10, 150] 80 30 80 
8 10 15 70 50 [10, 120] 30 80 
8 10 15 70 50 80 [10, 65] 80 
8 10 15 70 50 80 30 [35, 90]

In Figure 7, supplier 1’s optimal expected profit does not change when supplier 

2’s unit production cost changes from $5 to $13. After we investigate supplier 1’s profit 

function in AQ1 , supplier 1’s dominant strategy under these cost values happens at 

21 ODQ AA . When 21 ODQ AA  is the dominant strategy, we showed that supplier 

1’s unit payment is determined by the spot market price cm and not related to supplier 2’s 

unit production cost. Therefore, supplier 1’s optimal expected profit keeps the same. The 

sudden increment from 13$2c  to 14$2c  happens because 21 ODQ AA  is no 

longer the optimal bidding quantity when 14$2c , which is similar to scenario 3 in 

section 8.1. When the difference between c2 and cm is small enough, feasible solution 

AQ1  to the first-order condition 0)]([ 11
AQE  may yield a better expected profit for 

supplier 1.  
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Figure 7 Supplier 1’s Optimal Expected Profit changes in c2

As shown in Figure 8, the impact of spot market unit price on the supplier 1’s 

expected profit follows an obvious increasing linear function based on the expected profit 

function presented in section 7.1.
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Figure 8 Supplier 1’s Optimal Expected Profit changes in cm
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Figure 9   Supplier 1’s Optimal Expected Profit changes in O1
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Figure 9 and 10 show us the impact of suppliers’ capacities on supplier 1’s 

expected profit. In Figure 9, supplier 1’s optimal expected profit increases when his 

capacity increases. But the increment rate decreases as capacity becomes higher because 

more units allocated to supplier 1 have a unit payment of c2. Finally, O1 will reach a high 

enough value after which supplier 1’s optimal expected profit is not affected by further 

increasing O1. The impact of changes in O1 always follows this shape though the 

decrement in slope varies based on other parameters. If there is any opportunity for 

supplier 1 to extend his capacity, this sensitivity analysis provides enough information to 

help supplier 1 to determine whether it benefits the expected profit or not. 

Figure 10 Supplier 1’s Optimal Expected Profit changes in O2
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In Figure 10, supplier 1’s optimal expected profit decreases when supplier 2’s 

capacity increases. The more supplier 2’s capacity is, there is less opportunity for supplier 

1 to receive a payment determined by spot market price. When the capacity from supplier 

2 is small enough to make supplier 1 always receive unit payment cm, the changes in O2

has no impact on the optimal expected profit of supplier 1 as shown in Figure 10. 

Similarly, when supplier 2’s capacity is large enough to make supplier 1’s unit payment 

always be c2, supplier 1’s optimal expected profit is not affected by further increment of 

O2.

The impact of buyer A’s demand on supplier 1’s optimal expected profit is shown 

in Figure 11, which has a similar shape as Figure 9. Increment in buyer A’s demand 

definitely brings more profit to supplier 1 as long as he has enough capacity. However, 

even if DA is greater than O1, the optimal expected profit keeps increasing with smaller 

slope because the demand will utilize more supplier 2’s capacity, which may increase 

supplier 1’s VCG payments. 
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Figure 11 Supplier 1’s Optimal Expected Profit changes in DA

Since we assume the demand from buyer B follows a uniform distribution 

U( ),dd , we want to investigate how the two bounds of the distribution will affect 

supplier 1’s optimal expected profit. Figure 12 shows that it increases slightly as d

increases while Figure 13 shows that the upper bound d  has more significant impact. 

However, the increment rate is also related to all other parameters, especially depends on 

suppliers’ capacities based on the expected profit functions derived for uniform 

distribution demand (Appendix B).  
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Figure 12 Supplier 1’s Optimal Expected Profit changes in d
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Figure 13 Supplier 1’s Optimal Expected Profit changes in d
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7.2.3 Buyers’ Procurement Costs 

In this section, we investigate the sequential auctions from the buyers’ viewpoint. 

When both suppliers implement their dominant strategies, we numerically simulate the 

difference between two buyers’ procurement costs under different market configurations 

to make recommendations on the auction sequence if the two buyers’ demands are 

symmetric. For the first two scenarios listed in Table 8, upper bound and lower bound of 

buyer B’s demand distribution are varied to study the impact of this variation on buyers’ 

procurement. 

Table 8   Market Configurations of Scenarios for Buyers’ Procurement Cost Simulation 

Scenarios c1 c2 cm O1 O2 DA d d
1 8 10 15  70 50 80 0 [2,46] 
2 8 10 15 70 50 80 [0, 20] 20 
3 8 10 15 70 50 [65,120] 0 20 
4 8 10 15 [10,120] 50 80 0 20 
5 8 10 15 70 [10,75] 80 0 20 

As shown in Figure 14, buyer A’s unit procurement cost is lower than buyer B’s 

when the upper bound d is smaller than 25 units. We observe that the optimal bidding 

quantity of supplier 1 happens at *1
AQ = min{O1, DA}=70, which yields this morning 

effect in procurement price because buyer A has more opportunity to allocate his demand 

to supplier 1 with lower cost. However, when upper bound d  is greater than 25 units, 

supplier 1’s dominant strategy changes to 21 * ODQ AA which makes the payment to 

supplier 1 from buyer A increases to the spot market price cm=$15. So there is no 
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morning or afternoon effect in price when the supplier 1’s optimal bidding quantity is 

21 * ODQ AA . Figure 15 illustrates the similar impact of d  as shown in Figure 14.  

Figure 16 simulate the third scenario in which buyer A’s demand is varied. 

Similarly as in Figure 14, when buyer A’s demand is less than 90 units, supplier 1’s 

dominant strategy is *1
AQ = min{O1, DA} which results in the morning effect shown in 

Figure 14 and Figure 15. When DA is large enough to make 21 * ODQ AA , both buyers 

have the same unit procurement cost as cm=$15.  
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Figure 14 Buyers’ Procurement Costs change in d
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Figure 15 Buyers’ Procurement Costs change in d

Figure 16 Buyers’ Procurement Costs change in AD
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Figure 17 Buyers’ Procurement Costs change in 1O
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Figure 18 Buyers’ Procurement Costs change in 2O
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Both Figure 17 and Figure 18 under scenarios 4 and 5 respectively show that 

morning effect of buyers’ procurement costs dose exist under some market configurations. 

Based on the numerical experiments conducted, we can empirically conclude that, in 

average, buyer B’s unit procurement cost is higher than Buyer A’s.  

7.3 Conclusions 

In the previous several chapters, the capacity constrained reverse sequential 

auctions are proposed. The procurement auctions involving two buyers and two suppliers 

are defined in chapter 6. It is assumed that suppliers’ costs and capacities are well known 

by each other under the duopoly market environment. The only uncertainty that affect 

suppliers’ bidding strategy is that demand from buyer B is unknown at the beginning of 

the first auction. However, it is assumed that both suppliers know buyer B’s demand 

distribution F(x). We investigate the sequential auctions from the view point of suppliers 

and analyze suppliers’ bidding behaviors. Since both sequential auctions are assumed to 

implement VCG mechanism, it is shown that suppliers have the incentive to reveal their 

true cost as bidding price. Therefore, our study focuses on the other bidding variable, the 

available capacities submitted by the suppliers. It is shown in Theorem 2 that supplier 2 

with higher production cost has a dominant strategy to bid his true capacities in both 

auctions.  

To analyze supplier 1’s dominant strategy which is more sophisticated than 

supplier 2’s dominant strategy, supplier 1’s expected profit function is derived in section 

7.1. By applying the first-order necessary condition, supplier 1’s dominant strategy is 

proposed in Theorem 3. It is shows that, for some situations, it is better for supplier 1 to 
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save some capacities in the first auction to obtain more expected profits in the second 

auction. In section 7.2.1, we numerically illustrate how supplier 1’s dominant strategy is 

affected by the market parameters, like suppliers’ costs and capacities, and buyers’ 

demands, when buyer B’s demand follows a uniform distribution. Furthermore, we 

conduct sensitivity analysis to study the impacts of these market parameters on supplier 

1’s optimal expected profit shown in section 7.2.2. Finally, with numerical experiments, 

we empirically observe a morning effect in buyers’ average unit procurement cost under 

some market configurations. It shows that buyer A’s average unit procurement cost is 

either lower or equal to buyer B’s average unit procurement cost. However, we can not 

conclude that it is always better for a buyer to conduct the auction first because the two 

buyers are not symmetric in our problem definition. But it could be an interesting future 

topic to investigate the impact of the sequence of the two auctions.  

Besides the sequence of the two auctions, it will be also interesting to relax the 

assumption of the duopoly market environment and study more than two suppliers that 

participate into the auctions. Along with this extension, suppliers may no longer know 

other suppliers’ cost and capacity information which brings more uncertainty into the 

information structures and makes the analysis much more complicate.  
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APPENDIX A 

PROOF TO THEOREM 1 
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this upper bound reaches 
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outcome at least as good as any possible ‘better’ solution pair )ˆ,ˆ( ikb  for a provisional 

loser when � approaches zero. 
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APPENDIX B 

COMPUTATION PROCEDURES FOR UNIFORM DEMAND IN THE SEQUENTIAL 

AUCTIONS 
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Calculations of Supplier 1’s Expected profit

(1) ADOO 21

Under this condition (1), sum of two suppliers’ capacities can not meet buyer A’s demand. 

So payments to supplier 1 from the two buyers are the same as spot market price cm.

Because of the uncertainty of buyer B’s demand, supplier 1’s optimal strategy is to bid 

full capacity in the first auction to win as many as possible. 

11 * OQ A
22 * OQ A

)(* 111 ccO m  )(* 222 ccO m

(2) 212 OODO A

Under the condition (2), as discussed in section 7.1, supplier 1’s expected profit is 

derived under three scenarios (2-1), (2-2), (2-3) separately. 
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When the uniform distribution for buyer B’s demand has different parameters d  and d ,

calculations of supplier 1’s expected profit function are conducted as follows. 

(2-1-1) AQOd 11
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Similarly as (2-1), when the uniform distribution for buyer B’s demand has different 

parameters d  and d , calculations of supplier 1’s expected profit function are 

conducted as follows. 
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AAQE 111 )]([

(2-3) 21 ODQ AA

).)()(()]([ 11

01111 dxxFOccQE
AQO

m
A

Under this scenario, supplier 1’s expected profit functions are calculated as follows.

(2-3-1) AQOd 11

))(()(
)(2

)()]([ 111
21

1111 dQOccdd
dd
ccOccQE A

m
m

m
A

(2-3-2) dQOd A
11

2
11

1
1111 )(

)(2
)()]([ dQO

dd
ccOccQE Am

m
A

(2-3-3) dQO A
11

1111 )()]([ OccQE m
A

(3) 022 ODDO AA

Under condition (3), there are two difference scenarios similar as (2-1) and (2-2) while 

(2-3) violates the condition 02OD A .

(3-1) )(
2
1

211 ODOQ AA

Supplier 1’s profit received from the first auction is changed to: 

))(()( 1111121
A

m
AA QOccQcc ;
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A

AA

A DOO

DOQ m

QOAA dxxFccdxxFccQE 21

21

11 )()()()()]([ 20 12111

Supplier 1’s expected profit functions are the same as those derived in (2-1) except the 

term A
1 .

(3-2) )(
2
1

2112 ODOQOD AAA

Supplier 1’s profit received from the first auction is changed to: 

))(()( 1111121
A

m
AA QOccQcc ;

A

AA
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A

AA QO

DOQ

DOO
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DOQAA dxxFccdxxFccdxxFccQE 11

21

21

11

21 )()()()()()()]([ 210 12111

Supplier 1’s expected profit functions are the same as those derived in (2-2) except the 

term A
1 .

Solutions to the first-order necessary condition 0)]([ 11
AQE

As discussed in section 7.1, feasible solutions AQ1
ˆ  to the first-order necessary condition 

0))(1)(()()( 2121112
AA

m
A DOQFccQOFcc  are candidate for global 

optimum. With uniformly distributed buyer B’s demand, AQ1
ˆ  is solved for different 

scenarios defined with conditions (2-1), (2-2), (3-1), and (3-2) above.  

Under the conditions (2-1) and (3-1) )(
2
1

211 ODOQ AA :

(1-a) AQOd 11
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0)]([ 11
AQE  is simplified to 0)( 12 cc  which is infeasible. 

(1-b) AAA DOQdQOd 2111

0)]([ 11
AQE  is solved to get dOQ A

11
ˆ . As long as this AQ1

ˆ  satisfied condition 

(1-b), the solution is feasible.  

(1-c) dDOQQOd AAA
2111

0)]([ 11
AQE  is solved to get 

m

A
mA

ccc
DOdccdOQ

12

221
1 2

))(()(ˆ . As long as this 

AQ1
ˆ  satisfied condition (1-c), the solution is feasible.  

(1-d) AAA DOQddQO 2111

It is shown that )]([ 11
AQE  is constantly equal to zero under this condition.  

(1-e) dDOQdQO AAA
2111

0)]([ 11
AQE  is solved to get AA DOdQ 21

ˆ . As long as this AQ1
ˆ  satisfied 

condition (1-e), the solution is feasible.  

(1-f) dDOQ AA
21

0)]([ 11
AQE  is simplified to 0)( 2ccm  which is infeasible. 

Under the conditions (2-2) and (3-2) )(
2
1

2112 ODOQOD AAA :

 (2-a) AA DOQd 21

0)]([ 11
AQE  is simplified to 0)( 12 cc  which is infeasible. 

 (2-b) AAA QOdDOQd 1121
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0)]([ 11
AQE  is solved to get A

m

A DO
cc

ddccdQ 2
2

12
1 )(

))((ˆ . As long as this 

AQ1
ˆ  satisfied condition (2-b), the solution is feasible.  

(2-c) dQODOQd AAA
1121

0)]([ 11
AQE  is solved to get 

m

A
mA

ccc
DOdccdOQ

12

221
1 2

))(()(ˆ . As long as this 

AQ1
ˆ  satisfied condition (2-c), the solution is feasible.  

(2-d) AAA QOddDOQ 1121

It is shown that )]([ 11
AQE  is constantly equal to zero under this condition.  

 (2-e) dQOdDOQ AAA
1121

0)]([ 11
AQE  is solved to get d

cc
ddccOQ mA

)(
))((ˆ

12

2
11 . As long as this AQ1

ˆ

satisfied condition (2-e), the solution is feasible.  

(2-f) dQO A
11

0)]([ 11
AQE  is simplified to 0)( 2ccm  which is infeasible. 
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