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 This study focuses on molecular dynamics (MD) simulations, coupled with 

a discrete mathematical framework, and crystal plasticity (CP) simulations to 

investigate micro void nucleation and the plastic spin.  The origin and historical 

use of the plastic spin are discussed with particular attention to quantifying the 

plastic spin at the atomistic scale.  Two types of MD simulations are employed: 

(a) aluminum single crystals undergoing simple shear and (b) aluminum triple 

junctions (TJ) with varying grain orientations and textures undergoing uniaxial 

tension.  The high-angle grain boundary simulations nucleate micro voids at or 

around the TJ and the determinant of the deformation gradient shows the ability 

to predict such events.  Crystal plasticity simulations are used to explore the 

stress-state of the aluminum TJ from uniaxial tension at a higher length scale 

with results indicating a direct correlation between CP stress-states and the 

location of micro void nucleation in the MD simulations. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 An important part of multiscale modeling, which investigates a material at 

multiple length scales, is determining mechanisms of failure at the nano-length 

scale via atomistic simulations such as methods like molecular dynamics (MD).  

An example of the use of multiscale modeling is the development of ductile, 

lightweight alloys to replace heavier metals and to lower CO2 emissions.  The 

use of ductile, lightweight structural alloys such as magnesium is becoming 

increasingly popular in a variety of industries, with the automobile industry 

aggressively pursuing their use in components formerly composed of heavier 

steel or aluminum.  Modeling the mechanical behavior of lightweight alloys is 

challenging due to (i) the complex behavior of the material and (ii) the 

complication of relating information between multiple length scales. 

  One of the challenges is linking discrete MD information to continuum 

information.  The difficulty lies in that the discrete quantities (i.e. velocity, 

position, and force) is different from the continuum quantity (stress and strain).  

For example, the most commonly used measure of deformation is strain, which 

takes on a different meaning at the nanoscale.  In a continuum body, strain is a 
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function of the motion.  In particular, the function defines strain as the gradient of 

the displacement.  In a discretized body, this definition directly correlates to the 

change in distance between two atoms, which is empty space.  However, even 

with these complications to overcome, using the continuum framework for a 

discretized body can be beneficial for visualization purposes and for linking the 

atomic scale with the macroscale.  For example, Gullett et al. (2008) used a 

kinematic algorithm for computing the deformation gradient and strain tensors 

from the total atomic motion.  This is significant because strain tensors are the 

first step to understanding the full nature of plastic deformation at an atomistic 

level. 

 

!
!

Figure 1.1 Two GBTP junctions where a (a) micro void formed and (b) micro 
void did not nucleate in a specimen strained to 15% true strain. The 
tensile axis is vertical with respect to the images (Querin et al., 
2007). 
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 One phenomena that is not well understood, examined by Querin et al. 

(2007), involves a grain boundary triple point (GBTP) junction, referred to here as 

a triple junction (TJ) in AA6022, an aluminum alloy.  Querin observed a micro 

void at the TJ for some orientations while other orientations did not exhibit a 

micro void, as shown in Figure 1.1.  Because nucleation of voids is one of the 

primary contributors to material behavior, the void nucleation mechanisms need 

to be better understood to enhance bulk properties of materials. 

 

1.2 Research Objectives 

 The overall goal of this research is to determine a method for calculating 

the plastic spin at the atomistic level for the purpose of multiscale-based 

constitutive modeling. 

 The pursuit of this goal is made possible with two distinctive objectives of 

research connected by constitutive modeling.  The first objective is (i) to quantify 

void nucleation in molecular dynamic simulations of TJ using a discrete 

mathematical framework.  Void nucleation is a central part of determining 

material damage and plays an important role in failure models.  The second 

objective is (ii) to explore the possibility of calculating quantities integral to 

continuum-based failure models, such as the plastic spin.  The plastic spin is an 

important measure used in constitutive modeling due to its ability to capture the 

evolution of texture and deformation-induced anisotropy (Horstemeyer, 1995). 
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1.3 Thesis Organization 

 The thesis begins with an introduction to and explanation of the research 

problem.  Chapter 2 introduces the advancement of research at the nanoscale, 

discusses the fundamentals of molecular dynamics simulations, and introduces 

the kinematics of continuum-based motion.  In addition, previous research of the 

plastic spin and plans for measuring the plastic spin at the nanoscale are 

discussed in Chapter 2.  In Chapter 3, EAMpost, an MD post-processing program 

which uses a discrete gradient operator to calculate strains and other continuum 

metrics at the nanoscale, is introduced and validated.  Chapter 4 examines the 

molecular dynamic study of void nucleation in aluminum triple junctions.  Chapter 

5 introduces crystal plasticity and examines a crystal plasticity study of void 

nucleation in aluminum triple junctions and their comparison with the MD results 

in Chapter 4.  Finally, conclusions and future work are discussed in Chapter 6. 
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CHAPTER II 

BACKGROUND 

 

 The advancement of areas of research such as medicine, electronics, and 

materials, where the size of products is decreasing to the nanoscale, has 

provided the scientific community with an array of new research endeavors.  The 

field of nanotechnology is a blend of engineering and science used to advance 

understanding and materials at length scales that are not visible to the human 

eye.  The increase in interest of the nanoscale is correlated with an increase in 

computational power and modeling techniques.  Liu et al. (2004) forsees the 

advancement research at the nanoscale can have huge implications on areas 

such as national defense and homeland security.  One of the most important 

traits of a present day researcher is to combine new knowledge with accepted 

understanding to advance the information in multiple fields.  Accordingly, 

nanotechnology and the advancement of modeling techniques is a great 

innovation, but it is limited while it stands alone.   

 

2.1 Nanoscale Hurdles 

 Studies at the nanoscale via atomistic simulations have a multitude of 

limitations, which include computing power, simulation time, and simulation size 
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(Buehler, 2004).  These limitations severely lessen the number of problems 

atomistics can be used to solve.  There are a couple of reasons computing power 

is a limiting factor for atomistic simulations.  We will see, in Section 2.2, there are 

many calculations needed to march a single atom through time.  As you increase 

the size of the simulation, the number of calculations made per time step 

increase.  Therefore, computing processors are needed to make the number of 

calculations and computer memory is needed to store the data from the 

calculations transmitted to the processors.  Another difficult coupled with 

computing power is storage space for the simulation data.  After the completion 

of the atomistic simulation, data (position, velocity, centrosymmetry parameter, 

etc.) is saved for each atom at specified time increments.  This data can 

consume large amounts of space depending on the size and duration of the 

simulation. 

 The other limiting factors of atomistic simulations are the size and duration 

of the simulation.  As shown in Figure 2.1, the range of molecular dynamics 

simulations encompasses lengths on the order of microns and time durations on 

the order of nanoseconds.   
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Figure 2.1 Schematic of various theories and the extents of atomistic 
simulations (Horstemeyer et al., 2001). 

 

 For example, simulations of 1 billion atoms would be considered extremely 

large for current atomistic simulations.  However, a system of 1 billion atoms of 

aluminum is a cube with sides of 0.4 microns (µm) (1x10-6 m) in length.  Couple 

the size of this simulation with 1 million time steps of 0.001 picoseconds (ps) 

(1x10-12 sec), and the simulation is 100x smaller than the diameter of a human 

hair (50 – 100 µm) and lasts for 1 ns, or the amount of time it take light to travel 1 

foot (1.017 ns).  However, specific physical phenomena can be studied and 

understood using atomistic simulations as long as these limitations are well 

understood and taken into account during the analysis process. 

 



 8 

2.2 Molecular Dynamics 

 A dynamical system is defined as a system with the capability of motion in 

which quantities and dynamic variables have a value at specific instants of time 

(Logan, 2006).  They are governed by the laws of motion, which are functions of 

time, and satisfy initial conditions.  At the root of understanding dynamical 

systems is molecular dynamics, which utilizes Hamilton’s principle and the 

equations of motion.  Hamilton was able to define a dynamical system such that 

it could be understood over a defined range of time.  The dynamical system 

satisfies a set of differential equations, which are functions of time, and initial 

conditions.  Hamilton’s principle was elegant, yet powerful, and the results from it 

were not fully understood until more recent ventures with the onset of computer 

simulations. 

 

2.2.1 Background 

 Molecular dynamic simulations are used to study many-body interactions 

between atoms and/or molecules.  Initial studies with MD occurred in the 1960’s 

with researchers constructing physical experiments and analyzing elaborate 

systems composed of rubber balls attached with metal rods (Frenkel et al., 

2002).  As the use of computers became more widespread, researchers turned 

to simulations for understanding molecular interaction because of their ability to 

solve large systems of equations quickly. 

 Steve Plimpton at Sandia National Laboratories created the molecular 

dynamics software used for this research, Large-scale Atomic/Molecular 
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Massively Parallel Simulator (LAMMPS) (Plimpton, 1995).  Today, LAMMPS has 

become one of the more popular open-source molecular dynamics code used 

because of its’ ability to run on a plethora of operating systems and ease of 

customization.  Also, molecular dynamics has become a widely used method to 

analyze and understand large-scale atomic interactions.  Its further development 

is providing researchers with an opportunity to better understand complex 

material behavior.   

 

 

Figure 2.2 Process which MD simulations step through and determine atomic 
positions and velocities. 

 

 LAMMPS calculates the position and velocity of atoms through an explicit 

process known as the velocity Verlet algorithm (Swope et al., 1982; Verlet, 

1967), as shown in Figure 2.2.  The initial energy of the system is determined 

based on simulation characteristics such as the configuration of the atomic 

structure, boundary conditions of the simulations, and constraints such as 

temperature.  The kinetic energy is determined from the mass of the atoms and 

their initial velocities while the potential energy is determined from their positions 

and interaction potentials.  With these quantities, the total energy of the system 
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can be calculated.  Given the energy of the system, the forces applied to the 

atoms can be determined.  The forces on the atoms are defined as the derivative 

of the potential energy function.  Then, the forces are applied over a time, !t, 

from which new atomic positions and velocities are calculated. 

 

2.2.2 Velocity Verlet Algorithm 

 The velocity Verlet algorithm determines the velocity and position at time t 

+ !t given the initial position, x(t), and velocity, v(t).  The position of the atom at t 

+ !t is estimated as 

                     x t + !t( )=x t( ) + v t( )!t + 1
2 a t( ) !t( )2 , (2.1) 

and the mid-step velocity is estimated as 

  v t + 1
2 !t( )=v t( ) + 1

2 a t( )!t , (2.2) 

where the acceleration at time t is computed from 

                                           a t( )= F t( )
m

. (2.3) 

Given the updated atomic positions, the updated forces, F(t + !t), are found 

using an interatomic potential and an updated acceleration, a(t + !t), is 

calculated using the relationship in Equation 2.3.  The new velocity is found using 

the mid-step velocity and determined to be 

                    v t + !t( )=v t + 1
2 !t( ) + 1

2 a t + !t( )!t . (2.4) 

 The integration process is repeated for every time step with units of !t. 
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2.2.3 Embedded-Atom Method Potential 

 Molecular dynamic codes use interaction potential models to calculate the 

energy, force, and stress of a simulation.  One of the more commonly used 

potentials for metals or alloys is the embedded-atom method (EAM) potential.  

Developed by Daw and Baskes (1984), the EAM potential includes an 

embedding energy formulation proposed by Friedel (1952) and advanced by 

Stott and Zaremba (1980) and the pair interaction defined by Jones (1924a, 

1924b).  The pair interaction is a function of the distance between two atoms and 

provides a fast and accurate approximation for fully enclosed atoms.  However, 

with the introduction of boundaries or surfaces, the pairwise potential does not 

provide accurate energy calculation and is better supplanted by a many-body 

potential, which maintains the speed while providing the increased level of 

functionality (Gullett et al., 2004).  The EAM potential defines the energy for an 

atom as the sum of embedding energy and the pair potential energy.  The total 

energy, E, for the ith atom is defined as 

  E = Fi ! j rij( )
j" i
#

$

%&
'

()
+ 1

2
i
# *ij rij( )

j" i
# , (2.5) 

where the embedding energy, F, multiplied by the electron density, !, due to the 

neighboring jth atoms is summed with the potential energy term, ", due to the 

neighboring jth atoms. 
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2.2.4 Virial Stress 

 The virial stress tensor (Clausius, 1870; Maxwell, 1870), W, is defined 

from the energy calculations as 

   Wk
mn = 1

Vi
f mij ! r

n
ij

j" i

N

# , (2.6) 

where the total stress tensor is the summation (over N atoms) of the force vector, 

f, multiplied by the displacement vector, r, for each atom pair, ij, divided by the 

volume of the ith atom, V.  The global stress is the over the continuum is the 

volumetric average of the virial stress for each atom,  

  ! = 1
N Wk

k=1

N

" . (2.7) 

Even though the intended use of the virial stress was to relate bulk averages and 

the values of an arbitrary point and time have no physical meaning, the virial 

theorem provides the most consistent expression for relating forces and motion 

within an atomic system to a continuum stress. (J. A. Zimmerman et al., 2002). 

 

2.2.5 Centrosymmetry Parameter 

 Another important measure widely used in MD simulations of metals is the 

centrosymmetry parameter (Kelchner et al., 1998).  All metals have a repeating 

lattice structure and the centrosymmetry parameter measures the deviation from 

the lattice structure.  For face-center cubic (FCC) materials, the centrosymmetry 

parameter is expressed as 
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    Ci
FCC = ri, j + ri, j+6

2

j=1

6

! , (2.8) 

where the centrosymmetry parameter for the ith atom is the sum of the squares 

of pairs of opposite nearest neighbors, twelve atoms total and six pairs.  For an 

atom in a perfect FCC structure, the centrosymmetry value is equal to zero.  As 

the centrosymmetry value increases, so does the deformation of the lattice. 

 

2.3 Continuum Deformation Measures 

 The continuum description used throughout this text distinguishes the 

reference and current configuration.  A body is said to be in a reference 

configuration at time t=t0 and a point on the body is identified by a vector X=(X1, 

X2, X3).  As time passes and motion occurs, the body moves to a current 

configuration and a point on the body is identified by a new vector x=(x1, x2, x3).  

The reference and current configuration can be uniquely mapped by a time-

dependent motion function, known as ! and expressed as 

                                            x = ! X,t( ) . (2.9) 

The spatial gradient of the motion, known as the deformation gradient (Holzapfel, 

2000), is expressed as 

  F= !"
!X

=
!x
!X

. (2.10) 

The deformation gradient can be used to define the rotation and stretch effects 

about a point.  The displacement field in the reference configuration, expressed 

as  
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     U X, t( ) = x X, t( ) ! X , (2.11) 

is the difference between the original position, X, in the undeformed configuration 

and the new position, x, in the deformed configuration.  The displacement field 

can also be written in terms of the current configuration, which is expressed as 

    u x,t( )=x-X x,t( ) . (2.12) 

It can be shown that U(X,t) = u(x,t), but for brevity, we will just mention it is true.  

Therefore, the displacement fields can be written in terms of the reference or 

current configuration and they are equal.  Taking the time derivative of the 

material configuration displacement field yields  

  V(X,t)= !U(X,t)
! t

, (2.13) 

but by using the above statement of U(X,t) = u(x,t), then Equation 2.13 can be 

rewritten as 

  v(X,t)= !u(x,t)
! t

. (2.14) 

Defining the velocity gradient in the current configuration provides much more 

flexibility for subsequent derivations, as shown below.  The velocity gradient, L, 

is  

                       
 
L =

!v
!x

=
! !"(X, t)
!X

!X
!x

, (2.15) 

or simply expressed as 

     L= !FF-1 , (2.16) 
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where the velocity gradient is the product of the material time derivative of the 

deformation gradient with the deformation gradient.  The velocity gradient can be 

decomposed into a symmetric tensor, d, and an anti-symmetric tensor, w, and 

expressed as    

  L = d+w . (2.17) 

The symmetric tensor is commonly referred to as the stretch tensor, written as  

           d =
1
2
L + LT( ) , (2.18) 

and the anti-symmetric tensor is the spin tensor, expressed as 

          w =
1
2
L ! LT( ) . (2.19) 

 Calculations of strain are very important in engineering applications, 

because they can typically be used across length scales to describe the 

deformation of a body.  Two common strain measures (Ogden, 1984), the 

Lagrangian-Green (or material) strain, expressed as  

          E=
1
2
FTF-I( ) , (2.20) 

and the Eulerian (or spatial) strain, expressed as 

             e=
1
2
I-F-TF-1( ) . (2.21) 

 

2.4 Material Response Modeling 

 The mathematical description of continuum behavior is fundamentally 

nonlinear in both geometry and material properties.  For this reason, analytic 
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studies generally focused on linearized geometry and isotropic linear-elastic 

material behavior.  The theory of elasticity states the deformation of solid 

materials is induced by the application of mechanical and thermal forces (Barber, 

2002).  One of the restrictions of elasticity is the assumption of perfectly elastic 

loading and the small strain assumption.  Real materials are not perfectly elastic 

under all loading conditions nor do they only undergo small strains.  However, 

before the advanced computational power provided by computers, little was 

understood of material behavior beyond the elastic region.     

 The onset of computer simulations has created an upsurge of research on 

material responses past the elastic region.  Computers have allowed us to 

pursue the understanding of materials with highly nonlinear behaviors such as 

polymers and biological materials.  For example, time and temperature 

dependent plasticity models were originally created to model materials 

undergoing large strains (Bammann, 1984).  Models such as this were the 

beginning of constitutive models known as internal state variable (ISV) models.  

ISV models use stress-strain data from mechanical testing (uniaxial tension, 

compression, and torsion) to determine constants to fit constitutive equations in 

an effort to match computational solutions with experimental data to predict a 

material’s behavior under certain loading conditions.   

 Today, such models have been expanded to include rate dependence and 

recovery mechanisms (Marin et al., 2006).  Also included in this model is a 

porosity-based isotropic damage variable to model the ductile failure 

mechanisms due to the nucleation, growth, and coalescence of micro voids.  
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These models lend themselves to multiscale modeling because of the multiple 

length scales involved in material failure.  There are two types of approaches for 

multiscale modeling: (1) the hierarchical approach and (2) the concurrent 

approach.  The hierarchical approach determines causality at lower length scales 

and integrates them into macroscale models (Horstemeyer et al., 2003).  In 

contrast, the concurrent approach includes multiple length scales in a single 

simulation (Tadmore, 1996).   

 For an example of the use of multiscale modeling, McDowell (2000) states 

plasticity occurs over an expansive collection of length scales and is affected by 

dislocation generation and kinetics.  Therefore, the models used to simulate 

plastic deformation should also involve multiple length scales.  This is important 

for the research discussed here because the study of void nucleation at the 

atomistic level is an important aspect of the multiscale models. 

  

2.4.1 Work Towards Plastic Spin 

 Plastic deformation of crystalline materials is related to changes in the 

crystal lattice such as dislocation glide or twinning that lead to changes in the 

texture (Bunge et al., 1997).  Bunge also stated that glide and rotation occur 

simultaneously in a polycrystalline material so continuity of the plastic 

deformation is maintained over the grain boundaries.  The total of all crystal 

orientations is called the texture of the material and the rotation of grains leads to 

texture changes also referred to as deformation texture.  Texture is important 

because it can lead to anisotropy in many of a material’s physical properties.  
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Within the theoretical framework of continuum mechanics, one of the quantities 

commonly associated with texture evolution is the plastic spin.  It is an important 

quantity in constitutive modeling because of its ability for analyzing texture and 

deformation-induced anisotropy in macroscale unified creep-plasticity and 

mesoscale polycrystalline plasticity models (Horstemeyer, 1995).   

 

2.4.2 Deformation Gradient Decomposition 

 For elasto-plastic modeling at finite deformations, the total deformation 

gradient is commonly written as the product of two components (Bilby et al., 

1957; Kröner, 1959; Lee, 1969).  It is broken up into a reference configuration, 

labeled !o, an unstressed intermediate configuration, labeled !i, and the current 

configuration, labeled !c.  The reference configuration is mapped to the 

intermediate configuration with the plastic deformation gradient, Fp. and the 

intermediate configuration is mapped to the current configuration with the elastic 

deformation gradient, Fe.  This is illustrated in Figure 2.3 and expressed as 

F=FeFp . (2.22) 

 The multiplicative decomposition of the deformation gradient is motivated 

by the kinematics of single crystals where dislocations move along fixed slip 

systems through the crystal lattice (Steinmann, 1996).  Steinmann also stated the 

intermediate configuration is incompatible because some dislocations do not 

completely transverse the crystal resulting in plastic deformation that is not 

uniform. 
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Figure 2.3 Diagram drawing of the decomposition of the deformation gradient 
into elastic and plastic parts. 

  

 The deformation gradient can be decomposed into a variety of ways, 

therefore it must follow that values in terms of the deformation gradient also have 

the ability to be decomposed.  Mandel (1973) first proposed the decomposition of 

the spin tensor into elastic and plastic rotations.  This decomposition provides an 

intermediate, unstressed configuration where the elastic deformation has been 

removed, as illustrated by !i in the figure above.  However, the unstressed 

configuration is not uniquely defined because an arbitrary rigid-body rotation can 

be superimposed on the configuration and it stays unstressed (Aravas 1994).  

Mandel (1971) also proposed a local triad of direction vectors, which are 

embedded in the material substructure, to relate the orientation of the 

intermediate configuration to a fixed cartesian coordinate system.   

 The plastic rotation proposed by Mandel (1973) is also known as the 

plastic spin.  Defined as the anti-symmetric portion of the plastic velocity 

gradient, the plastic spin is directly related to texture.  Specification of this 
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quantity from the continuum level provides no clean path of evolution because it 

inherently lives in an intermediate configuration.  Quantifying the plastic spin 

would allow researchers to investigate grain rotations, which play a significant 

role in large deformations.  For example, Horstemeyer et al. (2002) used 

experimental data and MD to illustrate the plastic spin played a role in dislocation 

nucleation when torsion was applied to single crystal copper.  In the past 20 

years, many bright and inquisitive minds have determined formulations for the 

plastic spin under certain loading conditions and material behaviors.  Therefore, 

a discussion has been created recently in the literature in regards to the plastic 

spin, its true meaning, and possible formulations.  However, in these discussions, 

some ambiguity associated with term ‘plastic spin’ and its qualitative meaning 

has surfaced.  The next section is an attempt to clear up these ambiguities and 

what it means for the determination of the plastic spin at the atomistic level. 

 

2.4.3 Dafalias and the Plastic Spin 

 Dafalias (1998) defines the antisymmetric portion of the plastic velocity 

gradient as the ‘plastic material spin’, but the plastic spin refers to the addition of 

the plastic material spin and the constitutive spin.  The “plastic spin”, as coined 

by Dafalias (1984, 1985), is the rotation rate of a reference system.  This total 

rotation rate can be decomposed into the antisymmetric portion of the velocity 

gradient (flow-induced spin) and the relative rotation rate (texture spin) as 

considered by Teodosiu (1989) and Lippmann (1995). 
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 Following Mandel (1971, 1973) and Kratochvil (1971, 1973), Dafalias 

(1984) chose direction vectors that coincide with a fixed orientation relative to the 

global coordinate system, making them an isoclinic configuration.  After working 

through the continuum mechanics done by Aravas (1994), one will find the plastic 

spin, defined as a purely plastic quantity (in the intermediate configuration), is  

   
Wi

p = 1
2
!F p F p( )!1 ! F p( )!T !F p( )T( ) . (2.23) 

He, like Mandel and Kratochvil, believed constitutive relations in a macroscopic 

formulation must include the plastic rate of deformation and the plastic spin.  

Dafalias introduced a constitutive equation for the plastic spin to obtain an 

appropriate corotational rate for kinematic hardening (1983).  This additional 

equation was found using the representation theorem, which defines the stress 

by a response function that is material frame-indifferent (Holzapfel, 2000).  The 

importance of this equation is it does not include the evolution of other variables; 

it is self-containing.  However, studies in the 1980’s were limited to isotropic 

materials and did not expand to anisotropic materials until later.  Mandel (1971) 

and Kratochvil (1973) found the plastic spin is identically zero for the deformation 

of isotropic materials.  At this time, the majority of macroscopic plasticity theories 

did not explicitly state the plastic spin despite its significance in microscopic 

formulations (Dafalias et al., 1990).   

 Equation 2.23 led Dafalias to the conclusion that the plastic spin is equal 

to the continuum spin in the intermediate configuration because the substructure 

spin is zero due to the definition of the direction vectors not varying with time.  
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For a rigid plastic material, Dafalias clearly defines the plastic spin as a function 

of the continuum spin, W, and the substructure spin, ! as illustrated by 

  W p =W !" . (2.24) 

By rewriting Equation 2.24, the spin of the substructure can be found in 

continuum models provided the continuum spin is known and a constitutive 

equation for the plastic spin is given.  The spin of the substructure can be used to 

determine the evolution of anisotropy.   

  

2.4.4 Others and the Plastic Spin 

 Other camps of understanding the plastic spin exist and came to much 

different conclusions in regards to the creation of constitutive equations.  Schieck 

et al. (1995) chronologically lists the progress of the plastic spin calculation and 

the ambiguity associated with the quantity and its worth to constitutive modeling.  

For example, Nemat-Nasser (1990) states the plastic spin is not an independent 

quantity and as such does not need to be explicitly defined in constitutive 

modeling.  Nemat-Nasser provided an alternate kinematic function for the plastic 

spin defined in terms of the stretch rate, which was also supported by Stumpf 

(1990).  Nemat-Nasser came to this conclusion by defining the deformation 

gradient with the decomposition laid out be Lee (1969) and then using the polar 

decomposition of the elastic and plastic deformation gradients in his theory.  His 

expression is 
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I pII p ! III p( )Ŵ p = I p

2

U pD̂ p ! D̂ pU p( )
!I p U p2 D̂ p ! D̂ pU p2( ) +U p U pD̂ p ! D̂ pU p( )U p

, (2.25) 

where Ŵ p  is the plastic spin, D̂ p  is the plastic deformation rate, U p  is the total 

plastic stretch tensor, and I p , II p , and III p  are the basic invariants of U p  

(Nemat-Nasser, 1990).   

 Also, Kröner (1981) states that during elastic deformation the lattice 

stretches and contracts while neighboring particles remain neighboring particles 

and during plastic deformation the lattice structure is not changed.  For clarity, 

the body referenced in Figure 2.4 is made up of many infinitesimal elements, as 

shown in Figure 2.4(a).  When the body is plastically loaded, the intermediate 

state of the elements is shown in Figure 2.4(b).  However, the elements are not 

compatible with neighboring elements, so an additional deformation must take 

place for the final state of the body to occur in Figure 2.4(c).  Therefore, Kroner’s 

theory suggests there are two elastic deformations present: (1) an internal elastic 

deformation that is equal and opposite to the plastic deformation to make the 

elements compatible and (2) the elastic deformation that relaxes the system to a 

low energy configuration.  Schieck et al. (1995) also discussed the 

decomposition of the deformation gradient and the various configurations 

associated with the decomposition.  He concluded it is not possible to determine, 

uniquely, the stress-free intermediate configuration.   
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Figure 2.4  A body comprised of elements (a) before deformation, (b) after 
deformation but separated, and (c) after deformation and joined 
together (Kröner, 1981). 

  

 Kroner’s findings are supported by Prantil et al. (1993), who discusses the 

creation of a constitutive model for planar polycrystal where, during typical metal 

forming operations, plastic deformation takes place primarily by crystallographic 

slip (Kocks, 1975).  But, for up to moderately large strains, the reorientation of 

crystals is the dominant factor affecting the developing anisotropy (Prantil et al., 

1993).  The distribution of the reorientation of crystals is commonly referred to as 

texture.  Prantil assumes a homogeneous deformation throughout the body to 

ensure compatibility, which allows the deformation gradient of each crystal to be 

equal to the deformation gradient of the body.  However, it also violates the 

intergranular equilibrium, meaning if identical deformation occurred through all of 

the crystals, they would not fit together after deformation (Taylor, 1938).  

 The study of the plastic spin by various researchers has led to a plethora 

of statements and equations to relate the plastic spin to anisotropy and texture.  

However, none of those studies have explicitly discussed the application of the 

plastic spin at the nanoscale, which creates additional complexity.   
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2.4.5 Intermediate Configuration in Atomistics 

 In all of the plastic spin formulations previously mentioned, the plastic spin 

was determined for the intermediate or stress-free configuration.  One of the 

major complications of determining the plastic spin at the atomistic level is to 

determine a stress-free configuration.   In order to investigate the nature of the 

plastic spin we proposed developing a series of molecular dynamic (MD) 

simulations and examining the associated deformations.   

 

 

Figure 2.5 Stress-strain curve that depicts the projected load-unload path for 
determination of the plastic spin. 

  

 The proposed method of determining the plastic spin, wp, is as follows.  

The specimen will be incremently loaded, indicated by the blue line, and then 

fully unloaded, indicated by the red lines.  A collection of load-unload increment 

curves will be collected to make a complete stress-strain curve, as illustrated in 

Figure 2.5.  The loading of the specimen is comprised of elastic and plastic 

deformation.  With loading the specimen, we can calculate the total deformation 
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gradient, F, which leads to the determination of the total velocity gradient 

expressed in Equation 2.16.  To determine the total velocity gradient, the material 

time derivative of the deformation gradient is also necessary.  This value can be 

approximated in a couple of different ways, one being a first-order linear 

approximation of the deformation gradient (Tucker et al., 2010), expressed as 

                          
 

!F=
Fcurrent ! Fpast
tcurrent ! tpast

=
"F
"t

. (2.26) 

The decomposition of the velocity gradient is expressed as 

       L=Le+Lp . (2.27) 

When the specimen is unloaded, only elastic deformation is removed, thus 

leaving a sample with only plastic deformation present.  During unloading, the 

elastic deformation gradient would be removed and the plastic deformation 

gradient can be found.  The elastic deformation gradient can be found given F 

and Fp along with Equation 2.22.  With all the deformation gradients accounted 

for, the decomposed velocity gradients can be determined.  The expression for 

the elastic velocity gradient, Le, is  

   Le= !FeFe
-1 , (2.28) 

and the expression for the plastic velocity gradient, Lp, is 

          Lp=Fe
!FpFp

-1Fe
-1 . (2.29) 

Then, the anti-symmetric portion of plastic velocity gradient, wp, can be found 

using an expression similar to Equation 2.19 which is 

      Lp=dp+wp . (2.30) 
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 However, there are difficulties with this plan.  The main obstacle is the 

ability to reach the intermediate configuration by simply unloading the atomistic 

simulation to a relaxed state and the validity of the proposed plan.  It is clearly 

shown in earlier sections the elastic and plastic deformations are applied 

simultaneously, thus making the intermediate configuration a fictitious 

configuration.  For example, separately Fe and Fp are incompatible fields.  But, 

join them together to get the total deformation gradient, and they obey the 

compatibility equation, .  Zimmerman’s (2009) recent work studies 

nanoscale thin films of copper to determine the deformation gradient and the curl 

of the deformation gradient.  The film was biaxially loaded and unloaded, similar 

to the proposed work here.  The assumption made was the loading induced 

elastic and plastic deformation, while the unloading removed the elastic loading.  

Therefore, only plastic deformation should be left.  However, the plastic 

deformation satisfied the compatibility equation, thus leading to Zimmerman 

supporting the 3-term multiplicative of the deformation gradient proposed by 

Clayton (Clayton et al., 2006), expressed as 

  F=FeFiFp . (2.31) 

 In conclusion, the method proposed to calculate the plastic spin entailed 

loading a body and calculating F, unloading the body and calculating Fp., and 

determining Fe with equation 2.22.  This would lead to determining Lp and 

ultimately wp.  However, the information provided tells us that simply unloading 

the body and removing the elastic deformation to reveal the plastic deformation is 

  

 

F !" = 0
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not possible.  A more elaborate method must be used to determine the plastic 

spin. 

 

2.4.6 The New Plastic Spin Hypothesis 

 The new hypothesis proposes determining the elastic and plastic 

deformation gradients at different locations from the same simulation at the same 

time.  Although load-unload method presently will not work given the information 

in the previous section, we can make use of a couple of facts about the 

simulation to determine the elastic and plastic deformation gradients.   

 While deformation is occurring in a polycrystalline system, deformation 

occurs in different grains at various rates.  The incompatibilities begin to build up 

and move towards the grain boundaries.  However, smaller sections of these 

grains unload once enough deformation has occurred, leaving only elastic 

deformation at the center of the sections.  Therefore, the plastic deformation 

gradient can be found at the boundaries of these sections and the elastic 

deformation gradient can be found at the center of the sections. 

 The proposed plan is to load the simulation until plastic deformation 

occurs and calculate the deformation gradient at the center of the sections and at 

the boundary of the sections in a polycrystalline simulation.  The bulk 

deformation gradient can also be found for the simulation, therefore a 

comparison of the bulk with the elastic and plastic deformation gradients can take 

place with Equation 2.22.  If Equation 2.22 is satisfied, the plastic spin can be 

determined in a similar fashion as Section 2.4.5.   
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 A new plan has been proposed for determining the elastic and plastic 

deformation gradients at the atomistic scale.  The validity of the proposed plan 

has yet to be tested, but it is a step in the right direction for determining the 

plastic spin in a discrete mathematical framework.   
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CHAPTER III 

EAMPOST 

 

3.1 Background 

 Providing a link between the atomic scale and the continuum framework is 

a vital part of the hierarchical approach of material modeling.  Many phenomena 

found in atomistic simulations need to be understood and described in terms of a 

higher scale.  This link would allow us to compare kinematics at the atomic scale 

with larger scale continuum results.  However, relating deformation at the 

nanoscale to the larger length scales is difficult because there are no intrinsic 

measures that relate the two.   

 At the root of the difficulty is a difference in body type.  At the macroscale, 

a continuum body is considered to have continuous mass and volume within an 

explicitly defined boundary or surface, along with dimensions much greater than 

atomic spacings.  The motion of a continuum body can be explicitly defined by a 

one-to-one mapping of a point from the reference configuration to a point in the 

current configuration.  In contrast, an atomistic body is discrete and composed of 

a collection of finite number of particles with a lack of matter between the 

particles.  The motion of a discrete body is characterized by the position and 

velocity of each particle.  Because the continuum measures of deformation rely 
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on the gradient of a continuous displacement field, they do not apply to the 

nanoscale in their current state due to the lack of a continuous body.   

 

3.2 Discrete Gradient Operator 

 The deformation of a discrete body at the nanoscale has been commonly 

characterized by the centrosymmetry parameter (Kelchner et al., 1998) and slip 

vector (Zimmerman et al., 2001).  However, there is no relationship between 

these quantities and strain or deformation commonly used in continuum-based 

analysis.  In order to compare the atomistic scale to the continuum scale, a strain 

measure must be defined for atomistic bodies.  There are two options for creating 

strain measures at the atomistic scale: (1) create a continuous displacement 

fields by interpolating atomic data or (2) devise a discrete gradient operator.  The 

deformation gradient is essential in calculating strain measures used at higher 

length scales. 

 Gullett et al. (2008) proposed a discrete deformation gradient which can 

capture the motion of a body of discrete objects similar to a deformation gradient 

in a continuous body.  One difficulty of the discrete deformation gradient was 

solving the system of linear equations.  For a single atom and a single neighbor, 

a unique deformation gradient can be found.  But, the deformation gradient for a 

single atom and each of its neighbors may not be identical.  An optimal 

deformation gradient that solves the system of linear equations between an atom 

and its neighbors is sought and the error between them minimized.  
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Figure 3.1  The mapping between reference and current configuration for a 
discrete field (Gullett et al., 2008). 

 

 In that work, the discrete operator is developed by first considering the 

relative position of atoms, m, to neighbors, n is 

  !Xmn = Xn " Xm , (3.1) 

for the reference configuration and 

  !xmn = xn " xm , (3.2) 

for the current configuration.  Using the continuum definition of the deformation 

gradient, the linear mapping is defined as 

     !xmn = Fm " !Xmn , (3.3) 

where Fm is the deformation gradient at m for position xm.  Because of the 

considerable freedom of motion between atoms m and n, the system of equations 

created by Equation 3.3 do not have a single Fm.  So, to find the “best fit” Fm, the 
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mapping error between m and each n is measured as the L2-norm of the 

difference, which is expressed as 

  !mn = "xmn # Fm $ "Xmn( )T "xmn # Fm $ "Xmn( ) . (3.4) 

Therefore, the weighted least squares error for m over N number of neighbors 

can be expressed as 

           !m = "xmn # Fm $ "Xmn( )T "xmn # Fm $ "Xmn( )
n=1

N

% wn , (3.5) 

where wn is a weight function.  If we multiply out and take the derivative of 

Equation 3.5 with respect to F, we can solve for the deformation gradient.  This 

equation is minimized with respect to the components of F and set equal to zero 

to yield an expression 

                  Fm = !xmn( )
n
" !Xmn( )Twn
#
$%

&
'(

!Xmn( )
n
" !Xmn( )Twn
#
$%

&
'(

)1

. (3.6) 

The weight function used in this paper is a step function that applies a weight to a 

neighbor depending on how close it is to atom m.  A step function is used instead 

of the cubic spline because it allows the atoms in a particular grouping to have 

the same weight, thus not changing an atom’s weight because of thermal 

oscillations, as shown in Figure 3.2.  The closer n is to m, the greater the impact n 

has on the deformation gradient of m.  The weight function, wn, is a series of step-

functions (from 1 to 0) used to assign weights to atoms, n, within the cutoff 

radius.  The n atoms are divided into groups based on proximity to m.  Each 

group is assigned a weight value.  The radius of n closest to m in each group is 

used to determine the weight value.  
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Figure 3.2 The atom, m, and the weight function for its neighbors, n, where 
atoms of same colors have the same weights. 

 

3.3 Additions and Revisions 

 For this work, several enhancements were made to EAMpost.  EAMpost, 

written in Fortran, was originally created and used as a post-processing program 

for the MD software package DYNAMO, written by Stephen Foiles and Murray 

Daw at Sandia National Laboratories in Livermore, CA (Daw et al., 1993), so the 

code needed to be updated to read data from LAMMPS.  EAMpost was also 

modified by applying the use of a more sophisticated and less computationally 

expensive neighbor list routine.  Steve Plimpton originally wrote this routine for 

an earlier molecular dynamics software known as WARP (Plimpton, 1995).  

Finally, the code was expanded to include various continuum-based measures of 

deformation. 

 In its original form, EAMpost was capable of calculating a variety of 

continuum metrics.  Those metrics include the deformation gradient, Green 
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(Lagrangian) strain, and Almansi strain.  For the purposes of quantifying failure 

and, eventually, the plastic spin, additional continuum metrics were considered 

and some added to the post-processing program.   

  

3.3.1 Tensor and Scalar Deformation Strain Measures 

 Upon reviewing the literature, very few studies have been done utilizing 

local atomic strain measures.  Mott et al. (1992) proposed a local atomic strain 

measure for three-dimensional, disordered systems, such as glass.  Mott’s 

approach calculated a strain directly from atomistic data using the small strain 

assumption, previously shown in Equation 2.10.  He also utilized the norm of the 

strain deviator to analyze an atomic deformation strain measure, a dilatation 

measure defined as 

                 !dev
2 = 2

3 tr !dev
T !dev( )  , (3.7) 

where !G is the Green’s strain and the deviatoric strain, !dev, is defined as 

                     !dev = !G " 1
3 tr !G( )I  . (3.8) 

A similar measure to Mott’s strain tensor is the first invariant of the Green strain 

tensor.  The first invariant is the trace of the Green strain and is also a dilatation 

measure.  It is expressed as 

                       I1 = tr !G( ) .  (3.9) 

Another strain value of interest is the effective strain.  The effective strain is a 

measure commonly used to express bulk strains in stress-strain curves and is 

expressed as 
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  Eeff = 1
2 !11 " !22( )2 + !11 " !33( )2 + !22 " !33( )2 . (3.10) 

To better explore the expansive or contractive nature around an atom, the 

determinant of the deformation gradient is used.  The determinant of the 

deformation gradient, also referred to as the Jacobian (J), is a measure of the 

change in volume from the reference configuration to the current configuration 

and is expressed as 

                       J = F .  (3.11) 

 

3.3.2 Tensor and Scalar Deformation Stress Measures 

 In addition to strain measures, values of stress were also considered.  The 

hydrostatic stress is explored because of its role in elastic volume changes, 

which can play a role in the fracture strain of the material (Dieter, 1976).  The 

equation for hydrostatic stress, sometimes referred to as pressure, is 

                   ! hyd = 1
3 ! xx +! yy +! zz( ) . (3.12) 

Another measure of stress commonly used is the effective stress, which has 

alternate names such as the deviatoric stress or von Mises stress.  Although it is 

more commonly used in bulk stress-strain response, the deviatoric portion of the 

strain tensor contains the shear stresses, which cause plastic deformation.  The 

effective stress is expressed as 

     ! eff = 1
2 ! xx " ! yy( )2 + ! xx " ! zz( )2 + ! yy " ! zz( )2 . (3.13) 
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The last stress measure is a ratio of the hydrostatic stress to the deviatoric 

(effective) stress, also referred to as stress triaxiality.  The stress triaxiality has 

been previously determined as a critical factor of void nucleation and void 

growth.  Triaxiality is defined as the hydrostatic stress divided by the deviatoric 

stress, or  

  ! =
" hyd

" dev

. (3.14) 

 

3.4 EAMpost Validation 

 Once EAMpost was written and compiled to work with LAMMPS dump 

data, it was ready to be validated.  An ideal, discrete particle simulation was 

performed where the deformation gradient could be found manually.  An ideal 

simulation was not created with MD software, but by building a set of points, 

defined by a smooth displacement field, and imposing motion based on the 

points and their position in the field.  Simple shear was applied to the points for a 

desired amount of time to confirm the precision of EAMpost. 

 The simulation box consisted of 50,000 particles with a spacing of 5.0 Å 

and a box of dimensions 625 Å (wide) x 500 Å (high) x 20 Å (thick).  This created 

a fictitious set of particles that could be deformed in accordance with simple 

shear movement.  The simulation schematic is shown in Figure 3.3 and the script 

file is located in Appendix A. 
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Figure 3.3 Illustration of the simple shear of a box for EAMpost validation. 

 

 The applied velocity for the simulation, vx, was 0.0025 Å/ps with a total 

simulation time of 50,000 ps.  The velocity was applied to particles based on their 

height in the simulation box.  Atoms at the bottom were held fixed (v = 0 Å/ps), 

atoms at the top exhibited the full velocity (v = 0.0025 Å/ps), and atoms in 

between had a velocity according to 

  vi =
vxyi
h

, (3.15) 

where vi is the velocity of particle i, h is the height of the simulation, yi is the 

height of particle i, and t is the time.  The current x-location of the atom could be 

found according to 

       xi = x0 + vit . (3.16) 

Simple shear and the values mentioned below come from (Khan et al., 1995).  

The mapping of reference configuration to current configuration is described by 

          

x = X +
vt
h
Y

y = Y
z = Z

. (3.17) 

The deformation gradient associated with this motion is 

hTime, t

Vx

x

y

z
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  F =
1 vxt
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The Green strain (E) is given as 

             E =
1
2

0 vxt
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and the Eulerian strain (e) is  

                 e =
1
2

0 !
vxt
h

0
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Also, the velocity gradient is expressed as 

             

 

L = !FF!1 =
0 vx

h
0

0 0 0
0 0 0

"
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'
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'

, (3.21) 

which can be decomposed into stretch components, 

      

d =

0 vx
2h

0

vx
2h

0 0

0 0 0

!

"

#
#
#
#
#
#

$

%

&
&
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, (3.22) 
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and spin components, 

  

w =

0 vx
2h

0

!
vx
2h

0 0

0 0 0

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

. (3.23) 

the local particle movement should be equivalent to the bulk system movement 

and the theoretical values should compare exactly with our discrete deformation 

gradient.  Note that for this linear motion, a single, unique F exists. 

 

Table 3.1 A comparison of the theoretical and bulk values for simple shear of 
an ideal, discrete particle simulation. 

Timestep 10,000 ps 30,000 ps 50,000 ps 
Value Theoretical Bulk Theoretical Bulk Theoretical Bulk 

F12 0.0202 0.0202 0.0606 0.0606 0.101 0.101 

E12 0.0101 0.0101 0.0303 0.0303 0.0505 0.0505 

L12 2.0 x 10-6 2.0 x 10-6 6.1 x 10-6 6.1 x 10-6 1.0 x 10-5 1.0 x 10-5 

d12 1.0 x 10-6 1.0 x 10-6 3.0 x 10-6 3.0 x 10-6 5.1 x 10-6 5.1 x 10-6 

w12 1.0 x 10-6 1.0 x 10-6 3.0 x 10-6 3.0 x 10-6 5.1 x 10-6 5.1 x 10-6 

 

 As shown in Table 3.1, the computed values for the xy-component of the 

deformation gradient, Green strain, velocity gradient, stretch, and spin match 

exactly for time steps of 10,000, 30,000, and 50,000 ps.  This shows the code 

calculated the value properly and implemented the procedure correctly.  This 

also illustrates that a first-order approximation of the deformation gradient is 

adequate in capturing this motion. 
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CHAPTER IV 

MOLECULAR DYNAMIC SIMULATIONS 

 

4.1 Simple Shear 

 In this section, local deformation of an atomic system was subjected to 

simple shear boundary conditions and evaluated.  Once EAMpost was validated 

with an ideal discrete particle simulation, a simple shear simulation was run with 

LAMMPS to determine the effects of variations of atomic movement. 

 

4.1.1 Simulation Overview 

 The MD simple shear simulation was setup very similarly to the ideal 

simple shear simulation used to validate EAMpost.  The simulation box consists 

of 44,513 aluminum atoms with a lattice spacing of 4.05 Å and a box of 

dimensions 636 Å (wide) x 313 Å (high) x 242 Å (thick).  The lattice crystal 

direction [100 ], [ 011 ], & [ ] correspond to the x-, y-, and z-direction, 

respectively.   

 The simulation was run using the an EAM potential (Mendelev et al., 

2008) to calculate the system energies and determine the interaction forces 

between atoms.  With the interatomic forces calculated, an isothermal-isobaric 

NPT ensemble, where P stands for pressure and T stands for temperature, was 
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used to advance the atomic positions and velocities through time.  The 

temperature equlibration and pressure minimization are performed with a 

Nose/Hoover temperature thermostat (Hoover, 1985) and Nose/Hoover pressure 

barostat (Hoover, 1986) as implemented by Melchionna (1993).  Coefficients for 

the NPT ensemble included a pressure coefficient, damping coefficient, and drag 

coefficient of 0.5, 25, and 50, respectively.   The coefficients are used to aid in 

dampening the oscillations of temperature and pressure.  LAMMPS uses a 

velocity Verlet algorithm (Verlet, 1967; Swope et al., 1982) to integrate the 

equations of motion with a time step of 5 fs. 

 

 
 
Figure 4.1 Schematic of the molecular dynamic simple shear simulation.  The 

black dots on the top were applied a velocity, the black dots on the 
bottom were held fixed, and the white dots in the middle were 
allowed to move freely. 
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 All of the molecular dynamic simulations were run on a Sun X2200 M2 

Server containing 512 AMD® Opteron 2.60 GHz quad-core processors with the 

SuSE SLES 10 operating system.  

 These simulations were relaxed for 150 ps (30,000 time steps) with a 

Nose-Hoover thermostat/barostat with a temperature of 0.01K and zero pressure 

in the z-direction.  The LAMMPS input file for the relaxation of this atomic system 

is located in Appendix B.  Three groups were created to apply the simple shear 

boundary conditions.  The top group, shown as the black dots at the top of Figure 

4.1 and comprised of 5,329 atoms, were applied a velocity in the x-direction.  The 

bottom groups, shown as the black dots at the bottom of Figure 4.1 and 

comprised of 5,329 atoms, were held fixed throughout the simple shear 

simulation.  The free atoms group, the white dots between the top and bottom 

groups, is comprised of 33,855 atoms and were allowed to move freely. 

 The simple shear simulation was run for 320,000 time steps (1600 ps) with 

an applied velocity in the x-direction, vx, of 0.01 Å/ps.  This was achieved with a 

LAMMPS command that allows one to apply a prescribed velocity to a group of 

atoms regardless of the forces acting on the atoms (Plimpton, 1995).   Therefore, 

the applied velocities of atoms in the top group were 0.01, 0, and 0 Å/ps in the x-, 

y-, and z-direction, respectively and the bottom group was held fixed in the x-, y-, 

and z-directions.  This LAMMPS input file is located in Appendix C. 

 In addition to the solid simple shear simulation, a simple shear simulation 

with a hole was constructed.  The aluminum simulation was created in 

accordance with Figure 4.2, with the only difference in it and the solid simple 
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shear being the hole and its radius of 12.15 Å.  This simulation has all of the 

specifications of the solid simple shear simulation, which minor changes to the 

total number of atoms (42,810) and the number of free atoms (32,245).   

 

 
 
Figure 4.2 Schematic of the molecular dynamic simple shear simulation with a 

hole.  The black dots on the top were applied a velocity, the black 
dots on the bottom were held fixed, and the white dots in the middle 
allowed to move freely. 

 

4.1.2 Simple Shear Results 

 The bulk shear stress versus nominal shear strain curve for the simple 

shear simulation is shown in Figure 4.3.  The stress-strain response is a typical 

response with a linear behavior and plastic deformation to 20% nominal shear 

strain.  The block of aluminum also endured plastic deformation, so the atomic 

strain tensors will contain elastic and plastic deformation.  It was important to 
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validate EAMpost in the elastic regime as well as the plastic portion of a 

materials’ deformation.  The elastic portion of the stress-strain curve is linear with 

little deviations, most likely due to the running of the simulation at a temperature 

of 0.01K thus removing thermal oscillations.  We wanted to validate EAMpost 

with MD software, but we did not want to introduce too much noise in the data 

due to temperature rescaling. 

 

 
 

Figure 4.3 The bulk shear stress versus nominal shear strain curve for the 
aluminum MD simple shear simulation without a hole. 
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 EAMpost was able to capture the entire deformation gradient and 

subsequent strain tensors with good success.  Table 4.1 illustrates the shear (xy) 

component of the Green strain as calculated using Equation 3.19, the mode of 

the atomic values, and the mean ± the standard deviation of the atomic values.  

Table 4.1 illustrates there was a difference ranging from 1.2% difference (100 ps) 

to 27.4% difference (600 ps) between the nominal value and the average atomic 

value.  However, the nominal is an exact match to the mode value, or the value 

of highest frequency in the simulation at a specific time step. 

 

Table 4.1 Comparison of the nominal, mode, and average of the atomic 
values of the shear component of the Green strain for the simple 
shear simulation without a hole. 

Green Strain (xy) Component (nm/nm) Time (ps) 
Nominal Mode Mean ± Std Dev 

100 0.0083 0.0083 0.0104 ± 0.0028 
200 0.0167 0.0168 0.0173 ± 0.0047 
400 0.0333 0.0338 0.0312 ± 0.0085 
600 0.05 0.0505 0.0448 ± 0.0127 

 

 This is further illustrated in Figure 4.4, a histogram that shows the shear 

component of the Green strain at particular instances in time versus atom count.  

The majority of the top and bottom group of the simulation, approximately 10,000 

atoms, would have a shear strain component close to zero because the atoms 

are held constant distances from each other over time.  That leaves 

approximately 33,000 atoms to move freely.  At a time of 100 ps, the nominal 

shear strain value is equal to 0.0083 nm/nm.  In Figure 4.4a, approximately 

14,985 atoms are between the range of shear strain values of 0.008 and 0.0086 
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nm/nm.  Similarly, in Figure 4.3b, approximately 15,334 atoms have a shear 

strain value between 0.016 and 0.0175 nm/nm while the applied shear strain is 

0.0167 nm/nm.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.4 Histograms of the shear strain versus atom count at (a) t=100 ps, 

(b) t=200 ps, (c) t=400 ps, and (d) t=600 ps 

 

 Figure 4.5 illustrates the spatial distribution of the shear strain values.  In 

Figure 4.5b, the top and bottom regions are blue, indicating their shear strain 

values equal zero.  But, the center of the simulation box has a constant shear 

strain value that is consistent with the applied value.  Moving further in time, 
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Figure 4.5d shows a distribution of shear strain values which are constant 

towards the center but vary at the edges.  Although the shear strain values are 

not constant over the entire simulation, Figure 4.5, supported by Figure 4.4 and 

Table 4.1, demonstrate the simple shear simulation is moving with motion and 

boundary conditions that are consistent.   

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.5 The Green shear strain for the simple shear simulation without a 

hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, and (d) t=600 ps. 

 

 The velocity gradient is the next intermediate value in the process of 

determining the plastic spin.  In Figure 4.6, the (xy) component of the velocity 

gradient is shown for the simple shear simulation without a hole.  The values are 

zero around the top and bottom region with a consistent value in the center of the 

simulation box.  In Figure 4.6d, the velocity gradient slightly increases at the top-
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left and bottom-right corner of the simulation box.  This coincides with the region 

in Figure 4.5d where the Green shear strain values increase in both of those 

corners as well. 

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.6 The xy-component of the velocity gradient for the simple shear 

simulation without a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, 
and (d) t=600 ps. 

 

 The spin tensor for the simple shear simulation without a hole, shown in 

Figure 4.7, does illustrate an increase in rotations (depicted in yellow) around the 

front and back edge of the simulation box.  These images follow in the fact there 

are no regions of local deformation in the simple shear simulation without a hole.  

The regions of blue atoms located on the top and bottom of the simulation box 
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are due to those atoms being held in a fixed position relative to their neighboring 

atoms. 

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.7 The xy-component of the spin tensor for the simple shear 

simulation without a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, 
and (d) t=600 ps. 

 

 At this time, it is important to note the use of current parameters and the 

need for additional measures of deformation.  Figure 4.8 illustrates the simple 

shear simulation with the atoms colored by centrosymmetry parameter.  Notice 

the centrosymmetry values do not deviate from zero, even though it is obvious in 

Figure 4.5 the material is undergoing deformation.  The centrosymmetry value is 

intended as a measure to show a deviation in the FCC lattice, but as such it does 



 51 

not provide information relevant to the development of multiscale constitutive 

models. 

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.8 The centrosymmetry parameter for the simple shear simulation 

without a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, and (d) 
t=600 ps 

 

4.1.3 Simple Shear with a Hole Results 

 The bulk shear stress versus nominal shear strain curve for the simple 

shear simulation with a hole is shown in Figure 4.9 and is very similar to the solid 

simple shear simulation response.  The stress-strain response is a typical 

response with a linear behavior and plastic deformation to 20% nominal shear 

strain.  The yield stress of the simulation with a hole is approximately 2.5 GPa 

and the simulation without a hole had a yield stress of approximately 2.8 GPa for 
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an increase of 0.3 GPa.  But, the similarities of the stress-strain curves do not tell 

the true story of the differences of the atomic response during deformation.   

 

 
 
Figure 4.9 The bulk shear stress versus nominal shear strain curve for the 

aluminum simple shear simulation with a hole. 

 

 Figure 4.10 illustrates the following major differences in the simulation with 

the hole versus the solid simulation.  In Figure 4.10, the Green shear strain 

values are not constant over the middle of the simulation block as in the 

simulation with a hole.  However, the regions around the corners of the 

simulation box are similar between the simulation with a hole and without a hole.  
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The absence of atoms at the center causes local motion patterns that are not 

consistent with simple shear and shown in the simple shear simulation without a 

hole.  Figure 4.10d illustrates low- (shown in yellow) and high-strain (shown in 

red) regions around the hole.  The low-strain regions experience approximately 

25% less shear strain than the same region in the simple shear simulation 

without a hole. 

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.10 The Green shear strain for the simple shear simulation with a hole 

at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, and (d) t=600 ps. 

 

 Table 4.2 illustrates the shear (xy) component of the Green strain as 

calculated using Equation 3.19, the mode of the atomic values, and the mean ± 

the standard deviation of the atomic values for the simulation with a hole.  Table 

4.2 illustrates there was a difference ranging from 8.4% difference (100 ps) to 
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21.5% difference (200 ps) between the nominal value and the average atomic 

value.  The mode value is close to zero, indicating the highest frequency of 

atoms are boundary atoms.  In Table 4.2, the standard deviation values are 

becoming extremely large relative to the mean value.  This is an indicator of a 

wide range of distribution of the atomic values. 

 

Table 4.2 Comparison of the nominal, mode, and average of the atomic 
values of the shear component of the Green strain for the simple 
shear simulation with a hole. 

Green Strain (xy) Component (nm/nm) Time (ps) 
Nominal Mode Mean ± Std Dev 

50 0.0042 0.00005 0.0064 ± 0.0019 
100 0.0083 0.0001 0.0095 ± 0.0028 
200 0.0167 0.00025 0.0163 ± 0.0202 

  

 The distribution of the Green shear strain values for the simulation with a 

hole shows a marked difference than the values for the simulation without a hole.  

Figure 4.11 illustrates the Green shear strain distribution versus atom count.  

Figure 4.11c shows approximately 9,967 atoms have a shear strain value below 

0.0005.  This leads us to believe the boundary atoms are acting the same in this 

simulation as in the solid block simulation.  However, the distribution of the 

nonzero shear strain values is changed because of the presence of the hole.  At 

a time of 100 ps, the nominal shear strain value is equal to 0.0083 nm/nm.  In 

Figure 4.9b, approximately 2,843 atoms are between the range of shear strain 

values of 0.008 and 0.0086 nm/nm.  In Figure 4.11c, approximately 3,511 atoms 

have a shear strain value between 0.016 and 0.0175 nm/nm while the applied 
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shear strain is 0.0167 nm/nm.  There is no concentration of atoms at the specific 

green strain value as in the simulation without a hole.  Instead, the atoms are 

exhibiting a much larger range of shear strain values with no concentration equal 

to the applied shear strain.  Comparing Figure 4.11c to Figure 4.4b, there is a 

broader distribution of nonzero shear strain values and a greater frequency of the 

zero shear strain values for the simulation with a hole as compared to the 

simulation without a hole. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 4.11 Histograms of the shear strain versus atom count for the simple 

shear simulation with a hole at (a) t=50 ps, (b) t=100 ps, and (c) 
t=200 ps. 
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 To better explain the deformation of the simulation with a hole, images of 

the Jacobian or determinant of the deformation gradient are shown in Figure 

4.12.  In this context, the Jacobian represents the expansive or contractive 

nature of a region around an atom.  A region that has a constant volume will 

have a Jacobian value equal to one.   

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.12 The determinant of the deformation gradient for the simple shear 

simulation with a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, 
and (d) t=600 ps. 

 

 A value greater than one indicates expansion and a value less than one 

indicates contraction.  In Figure 4.12d, regions on the top left and bottom right of 

the hole as well as the upper right-hand corner and lower left-hand corner of the 

simulation box are expanding.  In comparison, regions on the top right and 
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bottom left as well as regions in the upper right-hand corner and lower left-hand 

corner are contracting.  These areas of expansion and contraction are the 

locations that have varying shear strain values in Figure 4.10d.   

 Figure 4.13 illustrates the shear (xy) component of the velocity gradient for 

the simple shear simulation with a hole.  With the presence of the hole, the 

velocity gradient values are not constant throughout the center like shown in 

Figure 4.6 for the simulation without a hole.  As the simulation progresses, the 

velocity gradient value increases to the left and the right of the hole while it is 

minimal on the top and bottom of the hole.   

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.13 The xy-component of the velocity gradient for the simple shear 

simulation with a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, 
and (d) t=600 ps. 
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 Figure 4.14 is the shear component of the total spin for the simulation with 

a hole.  As depicted in Figure 4.13, increased values are located to the left and 

right of the hole while decreased values are located on the top and bottom of the 

hole.  This indicates minimal rotations on the top and bottom of the hole while the 

rotations are larger to the left and right of the hole.   

 

(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.14 The xy-component of the spin tensor for the simple shear 

simulation with a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, 
and (d) t=600 ps. 

 

 Again, the centrosymmetry parameter, pictured in Figure 4.15, did not 

capture the local deformation. 
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(a) 

 

(b) 

 

 
(c) 

 
(d) 

 
Figure 4.15 The centrosymmetry parameter for the simple shear simulation with 

a hole at (a) t=100 ps, (b) t=200 ps, (c) t=400 ps, and (d) t=600 ps 

 

4.2 Uniaxial Tension of Aluminum Triple Junctions  

 The purpose of this project was to assist in characterizing the failure of the 

TJ with the following objectives: (i) quantify void nucleation in molecular dynamic 

simulations of TJ using a discrete mathematical framework and (ii) explore the 

possibility of calculating advanced deformation quantities such as the plastic 

spin.  The groundwork for the item (i) and (ii) have been laid with the theoretical 

backing and the use of examples shown previously in this chapter.  The 

knowledge and methods are now extended to the problem of which they were 

originally intended. 
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4.2.1 Simulation Overview 

 To further understand void nucleation at different grain boundaries, a suite 

of simulations with high- and low-angle grain boundary orientations were 

performed.  For this study, high-angle grain boundaries are defined as grains 

which have a misorientation of 30° to 60° and low-angle grain boundaries have a 

misoreintation of 5° to 10°.  In addition to various grain boundaries, the (110) and 

(100) textures were used.  The introduction of the (100) texture altered the 

number of slip systems from four to eight (Horstemeyer et al., 2002).   

 The triple junction structures studied consisted of three columnar grains 

truncated to isolate a single triple junction.  The structures were created using 

PreWarp, a program that can create complex atomic structures which defines the 

center of each grain and uses a modified Voronoi construction scheme to 

determine the grain boundary locations.  The grains were grown using the 

appropriate lattice parameter (4.05 Å for aluminum) and grain orientations.  A 

critical parameter to ensure was the atomic spacing at the grain boundaries.  

With the construction of multiple grains, areas where grains meet have atoms 

located in close proximity with no apparent structure.  To ensure a reasonable 

initial structure, the atomic spacing at the grain boundaries was prescribed to 

equal or exceed the lattice parameter.  The PreWarp input file for the creation of 

the triple junction structures is located in Appendix D and a table of the 

orientation angles used by PreWarp is located in Appendix E. 
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Figure 4.16 The schematic of the aluminum triple junction structure including 

the grain orientation and boundary conditions. 

 

 Each grain portion represented a section of a perfectly hexagonal grain 

with a longest diagonal of approximately 35 nm.  The schematic of the uniaxial 

simulation is shown in Figure 4.16.  The thickness was a multiple of the primitive 

unit cell for the defined texture to accommodate periodic boundary conditions in 

the z-direction. The simulations are approximately 530,000 atoms and have a 

box size of 400 Å (wide) x 400 Å (high) x 56.7 Å (thick).  The various orientations 

for each grain are shown in Table 4.3. 
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Table 4.3 The orientation angles and texture of the four triple junction 
simulations. 

Rotation Angle 
Grain 1 Grain 2 Grain 3 Name 

(!1) (!2) (!3) 
Texture 

Al_100_High 0 30 60 (100) 
Al_100_Low 0 5 10 (100) 
Al_110_High 0 30 60 (110) 
Al_110_Low 0 5 10 (110) 

 

 To simplify the simulation, most structures had (110) textures to create a 

pseudo two-dimensional plain strain problem.  The (110) orientation allowed for a 

smaller thickness while capturing the correct mechanisms of full three-

dimensional atomistic simulations including four active slip systems 

(Horstemeyer et al., 1999; Yamakov et al., 2003; Yamakov et al., 2002; Yamakov 

et al., 2001; Zhu et al., 2004).  Under uniaxial straining, a 5 Å boundary along the 

edges of the x-y plane was held fixed in the direction of applied strain.  The 

sample could also shrink in the two unstrained directions in response to 

Poisson’s effects.  The uniaxial straining implemented periodic boundary 

conditions for only the z-direction.  By isolating a single triple junction and fixing 

the exterior boundary, we effectively removed the influence of anisotropic 

neighboring grains and cumulative grain motion.  Analyzing the stress necessary 

to nucleate damage near a defect became the key focus.  Since aluminum is 

nearly isotropic, the influence of neighboring grains should be mitigated.  

However, it is necessary to keep in mind we are neglecting some of the grain’s 

ability to rotate. 
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 The same simulation parameters used in the simple shear simulations, 

such as EAM potential (Mendelev et al., 2008) and NPT ensemble and 

coefficients, were also used for the triple junction simulations.  The relaxation of 

each simulation occurred by ramping the temperature from 1K to 300K and 

minimizing the pressure in the y- and z-directions over 50,000 time steps while 

allowing the pressure in the x-direction to equlibrate.  Fixing the outer boundary 

maintained the square structure of the simulation and held the box size constant 

in the x-direction, so there were some residual stresses built up with an increase 

in temperature in the x-direction.  The purpose of performing such a relaxation 

was to retain the polycrystalline structure.  The input file for the relaxation of the 

triple junction structures is located in Appendix F. 

 After 50,000 time steps, the pressure was minimized in the x- and z-

directions while it was allowed to equilibrate in the y-direction without a change in 

the simulation size in the y-direction for 10,000 time steps.  Subsequently, fixing 

the x- and y-directions of the boundary, each for 10,000 time steps, performed an 

iterative process such that the stress went to zero in the x- and y-directions.  This 

alternating process was performed until the entire simulation reached 90,000 

time steps.  The purpose was to “anneal” the structure and relax the grain 

boundaries and other defects.  

 Once relaxed, a displacement-controlled deformation, was applied to all 

atoms establishing uniaxial straining in the direction of deformation at a strain 

rate of 1 x 109 sec-1.  The total deformation applied to the triple junction structure 

was a nominal strain of 15% over a time interval of 1,500 picoseconds.  The input 
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file for the uniaxial tension simulation of the triple junction structures is located in 

Appendix G. 

 

4.2.2 Results  

 The results illustrate the use of typical atomistic measures of deformation 

(i.e. centrosymmetry) and compare them with the strain measures introduced in 

the preceding chapter.  The stress-strain response for the four simulations is 

shown in Figure 4.17.  The maximum stresses for the (100) high (3.3 GPa), (100) 

low (3.1 GPa), (110) high (3.1 GPa), and (110) low (3.0 GPa) had no significant 

difference.  However, the strains where peak stresses occurred for the (100) high 

(8.4%), (100) low (10.5%), (110) high (6.7%), and (110) low (9.0%).  The (100) 

high-angle simulation had a slightly larger peak stress and corresponding strain 

than the (110) high-angle simulation.  Similarly, the (100) low-angle simulation 

had a slightly larger peak stress and corresponding strain than the (110) low-

angle simulation.  The high-angle grain boundary simulations had larger peak 

stresses and smaller corresponding strains than their respective low-angle grain 

boundary simulations. 
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Figure 4.17 The uniaxial stress-strain curves of the four triple junction 

simulations labeled by their high- and low-angle grain boundaries 
and their orientations of (100) and (110). 

 

 The centrosymmetry parameter for the (100) high-angle grain boundary 

simulation and (100) low-angle grain boundary simulation at initial strain and 

before failure is shown in Figure 4.18.  Figure 4.18a illustrates the (100) high-

angle simulation has clear grain boundaries while Figure 4.18b shows the (100) 

low-angle simulation is not clearly defined.  In Figure 4.18c and 4.18d, the 

centrosymmetry parameter does not illustrate any deviations from a normal FCC 

lattice before failure. 
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(a) (100) High at 0.5% Strain 

 

(b) (100) Low at 0.5% Strain 

 

 
(c) (100) High at 8.0% Strain 

 
(d) (100) Low at 10.0% Strain 

 
Figure 4.18 The centrosymmetry parameter  for the (a) (100) high-angle at 

0.5% strain, (b) (100) low-angle at 0.5% strain, (c) (100) high-angle 
at 8.0% strain, and (d) (100) low-angle at 10.0% strain. 

  

 This is also illustrated in Figure 4.19 with the (110) high-angle grain 

boundary simulation and (110) low-angle grain boundary simulation.  Figure 

4.19a illustrates the (110) high-angle simulation has definite grain boundaries 

while the boundary for the (110) low-angle is not clearly defined as shown in 

Figure 4.19b.  However, the centrosymmetry parameter does capture some 
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dislocations in the (110) simulations directly before failure as shown in Figure 

4.19c and 4.19d. 

 

(a) (110) High at 0.5% Strain 

 

(c) (110) Low at 0.5% Strain 

 

 
(b) (110) High at 6.5% Strain 

 
(d) (110) Low at 9.0% Strain 

 
Figure 4.19 The centrosymmetry parameter for the (a) (110) high-angle at 0.5% 

strain, (b) (110) low-angle at 0.5% strain, (c) (110) high-angle at 
6.5% strain, and (d) (110) low-angle at 9.0% strain. 

 

 The xx-component of the Green strain was investigated because of its 

ability to capture local deformation missed by the centrosymmetry parameter.  

Figure 4.20 depicts the (100) high-angle and low-angle grain boundary 
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simulation.  At initial loading, shown in Figures 4.20a and 4.20b, the xx-

component is zero.  Directly before failure, shown in Figure 4.20c and 4.20d, 

dislocations are evident in these simulations. 

 

(a) (100) High at 0.5% Strain 

 

(b) (100) Low at 0.5% Strain 

 

 
(c) (100) High at 8.0% Strain 

 
(d) (100) Low at 10.0% Strain 

 
Figure 4.20 The xx-component of the Green strain for the (a) (100) high-angle 

at 0.5% strain, (b) (100) low-angle at 0.5% strain, (c) (100) high-
angle at 8.0% strain, and (d) (100) low-angle at 10.0% strain. 

  

 Figure 4.21 depicts the (110) high-angle and the (110) low-angle grain 

boundary simulation.  At initial loading, shown in Figures 4.21a and 4.21b, the xx-
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component is zero for the (110) high-angle and (110) low-angle simulations.  

Directly before failure, shown in Figure 4.21c and 4.21d, dislocations are evident 

in these simulations that were displayed with the centrosymmetry parameter. 

 

(a) (110) High at 0.5% Strain 

 

(b) (110) Low at 0.5% Strain 

 

 
(c) (110) High at 6.5% Strain 

 
(d) (110) Low at 9.0% Strain 

 
Figure 4.21 The xx-component of the Green strain for the (a) (110) high-angle 

at 0.5% strain, (b) (110) low-angle at 0.5% strain, (c) (110) high-
angle at 6.5% strain, and (d) (110) low-angle at 9.0% strain. 

 

 Given the success of the Green strain tensor, it was a natural movement 

to apply other metrics that involve the deformation gradient.  In particular, the use 
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of the determinant of the deformation gradient was of interest.  It has the ability to 

measure the expansion and contraction around single atoms, which is exactly 

what happens in the case of void nucleation.  Shown below in Figure 4.22 are 

images of the Jacobian for the (100) high-angle simulation.   

 

(a) (100) High at 0.5% Strain 

 

(b) (100) High at 7.5% Strain 

 

 
(c) (100) High at 8.0% Strain 

 
(d) (100) High at 8.5% Strain 

 
Figure 4.22  The determinant of the deformation gradient for the (100) high-angle 

simulation at (a) 0.5% strain, (b) 7.5% strain, (c) 8.0% strain, and (d) 
8.5% strain. 
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 The Jacobian for the (110) high-angle simulation illustrates expansion 

around the triple junction, as shown below in Figure 4.23.  Figure 4.23c shows an 

expansive area at the triple junction and Figure 4.23d illustrates a void at that 

precise location.  Interestingly, the increase of the Jacobian along GB2 in Figure 

4.23d does not lie on top of the grain boundary. 

 

(a) (110) High at 0.5% Strain 

 

(b) (110) High at 6.0% Strain 

 

 
(c) (110) High at 6.5% Strain 

 
(d) (110) High at 7.0% Strain 

 
Figure 4.23 The determinant of the deformation gradient for the (110) high-

angle simulation at (a) 0.5% strain, (b) 6.0% strain, (c) 6.5% strain, 
and (d) 7.0% strain. 
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 The xy-component of the spin tensor is shown in Figure 4.24 for the (100) 

high-angle simulation.  In Figure 4.24a, the grain boundaries have a clearly 

defined spin value while the grains have small gradients of spin dispersed 

throughout.  In Figures 4.24b and 4.24c, the rotations at the triple junction are in 

opposite directions, implying those areas are pulling away from each other.   

 

(a) (100) High at 1.5% Strain 

 

(b) (100) High at 7.5% Strain 

 

 
(c) (100) High at 8.0% Strain 

 
(d) (100) High at 8.5% Strain 

 
Figure 4.24 The xy-component of the spin tensor for the (100) high-angle 

simulation at (a) 1.5% strain, (b) 7.5% strain, (c) 8.0% strain, and (d) 
8.5% strain. 



 73 

 The xy-component of the spin tensor for the (110) high-angle simulation 

illustrates rotation around the triple junction, as shown below in Figure 4.25.  

Figure 4.25c shows GB1 and GB2 having rotations in opposite directions and 

Figure 4.25d illustrates a void at the triple junction and then propagated vertically.    

 

(a) (110) High at 1.5% Strain 

 

(b) (110) High at 6.0% Strain 

 

 
(c) (110) High at 6.5% Strain 

 
(d) (110) High at 7.0% Strain 

 
Figure 4.25 The xy-component of the spin tensor for the (110) high-angle 

simulation at (a) 1.5% strain, (b) 6.0% strain, (c) 6.5% strain, and 
(d) 7.0% strain. 
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 On the other hand, the deviatoric stress is a widely used measure to 

indicate local areas of high stress.  However, the deviatoric stress tensor does 

not indicate the triple junction as the location of highest stress.  Figure 4.26 

indicates the deviatoric stress plays no role in the nucleation of a void at the triple 

junction for the (100) high-angle simulations.  The deviatoric stress is generally 

higher in grain 3 and on the right boundary, shown in Figure 4.26c and 4.26d.    

 

(a) (100) High at 0.5% Strain 

 

(b) (100) High at 7.5% Strain 

 

 
(c) (100) High at 8.0% Strain 

 
(d) (100) High at 8.5% Strain 

 
Figure 4.26 The deviatoric stress for the (100) high-angle simulation at (a) 0.5% 

strain, (b) 7.5% strain, (c) 8.0% strain, and (d) 8.5% strain. 



 75 

Similarly, the deviatoric stress does not indicate a pattern for the (110) high-angle 

simulations either.  In Figure 4.27c and 4.27d, the stress is generally higher on 

the right boundary, as shown in the (100) simulation.  However, the use of a 

stress metric to indicate possible areas of failure in atomistic triple junctions 

yields little results. 

 

(a) (110) High at 0.5% Strain 

 

(b) (110) High at 6.0% Strain 

 

 
(c) (110) High at 6.5% Strain 

 
(d) (110) High at 7.0% Strain 

 
Figure 4.27 The deviatoric stress for the (110) high-angle simulation at (a) 0.5% 

strain, (b) 6.0% strain, (c) 6.5% strain, and (d) 7.0% strain. 
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 To provide another method of comparison for the four triple junction 

simulations, the Schmid factor was calculated.  The Schmid factor is a factor 

used to characterize the value of slip in any given crystal.  The FCC lattice of 

aluminum has 12 slip systems and each one has a corresponding Schmid factor.  

Each grain is characterized by the Schmid factor of highest value.  These are 

shown below in Table 4.4.  Notice the Schmid factors for the high-angle 

simulations have a wider range than the Schmid factors for the low-angle 

simulations. 

 

Table 4.4 The Schmid factors for each grain of the four simulations. 

Orientation Grain 1 Grain 2 Grain 3 
(110) High 0.408 0.334 0.433 
(110) Low 0.408 0.429 0.433 
(100) High 0.423 0.433 0.349 
(100) Low 0.423 0.43 0.445 

 

4.2.3 Conclusions 

 The purpose of these simulations was to determine a metric that could be 

utilized to indicate or characterize void nucleation.  The centrosymmetry 

parameter was little help in visualizing areas of local deformation and void 

nucleation and the stress-based values did a poor job of capturing local 

deformation and predicting void nulceation.  However, the use of deformation 

gradient-based measures, such as the Green strain or Jacobian of the 

deformation gradient, in atomistic simulations was successful in visualizing local 

deformation and predicting void nucleation. 
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CHAPTER V 

CRYSTAL PLASTICITY SIMULATIONS 

 

5.1 Crystal Plasticity Overview 

 To learn more about the grain boundary triple junctions and for the 

purpose of comparison, the finite element method coupled with crystal plasticity 

was used to analyze the stress-state of the simulations.  Multiscale modeling 

encompasses microscale approaches as well as mesoscale approaches.  One of 

the mesoscale approaches used for material modeling is crystal plasticity 

modeling (Kocks et al., 1998).  Crystal plasticity models have the capability of 

modeling individual grains and their orientations to determine, for example, the 

stress state of the material (Asaro, 1983).  Since crystal plasticity models input 

the grain orientation and slip systems, these models account for a material’s 

anisotropy and texture evolution.  The formulation and implementation of the 

crystal plasticity model used for this research was done by Marin (2006) and is 

discussed in detail in the previously mentioned report.   

 

5.2 Simulation Overview 

 The crystal plasticity subroutine was coupled with Abaqus (6.9-1), a 

commercial finite element analysis (FEA) software package, to run the triple 
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junction simulations.  The implicit integration scheme, commonly referred to as 

Abaqus/Standard, was used for these simulations (Hibbitt et al., 2009).  The 

dimensions of the three-dimensional triple junction simulation are 400 millimeters 

(mm) (wide) x 400 mm (high) x 100 mm (thick) and it consists of 33,040 linear 

hexahedral elements.  In comparison, these dimensions are 1 x 107 larger in 

magnitude than the dimensions of the molecular dynamic simulations.  However, 

the use of the crystal plasticity was to calculate the granular rotations and 

determine the location of increased stress and strain, which are not affected by 

the size of the simulation. 

 

 
 
Figure 5.1 The schematic of the aluminum triple junction crystal plasticity 

simulations including the grain orientations and boundary 
conditions. 
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 The simulations were run on a Sun Ultra 27 Workstation with an Intel® 

Xeon® W3570 3.20 GHz quad-core processor with the SuSE Linux Enterpise 

Desktop 10 operating system. 

 The boundary conditions applied to the system included a velocity-

controlled boundary condition on the positive and negative x-face to simulate 

uniaxial tension.  The negative y-face was constrained to movement in the x- and 

z- direction only, as shown in Figure 5.1.  The total deformation applied to the 

triple junction structure was a nominal strain of 15% over a time interval of 150 

seconds.  The applied strain rate for the simulation is 1x10-1 sec-1.  The material 

properties for the crystal plasticity simulations of aluminum are shown in Table 

5.1.  The table includes the elastic parameters, specified for an anisotropic cubic 

lattice, and the viscoplasticity parameters.  More detailed information about 

theses parameters and their use in the model can be found in Marin (2006). 

 

Table 5.1 Material properties for aluminum crystal plasticity simulations. 

Elasticity Parameters 
C11 C12 C44 

108.2 GPa 61.3 GPa 28.5 GPa 
 

Viscoplasticity Parameters 

m   !! 0  h0  ! s,0  ! s,S0  !m   !! S0  

0.05 1.0 s-1 204.0 MPa 205.0 MPa 290.0 MPa 0.0 5 x 1010 s-1 

 

 The rotation angles for the grains of each of the four simulations are 

specified in Table 4.3.  The crystal plasticity model requires the angles to be in 

Euler angle notation using Kock’s convention.  The Euler angles for the (110) 
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texture are shown in Table 5.2 and the Euler angles for the (100) texture are 

shown in Table 5.3. 

 

Table 5.2 The Euler angles (!,",#) for (110) texture and specified rotation 
angle ($). 

$ ! " # 
0 0 90 45 
5 5 90 45 
10 10 90 45 
15 15 90 45 
30 30 90 45 
60 60 90 45 

 

 

Table 5.3 The Euler angles (!,",#) for (100) texture and specified rotation 
angle ($). 

$ ! " # 
0 -90 0 -180 
5 -90 0 -175 
10 -90 0 -170 
15 -90 0 -165 
30 -90 0 -150 
60 -90 0 -120 

 

5.3 Results 

 The main objectives of the crystal plasticity simulations were to (i) make 

qualitative comparisons between the crystal plasticity and MD simulations and (ii) 

analyze the development of the texture, which is routinely done in crystal 

plasticity simulations.  The (100) high-angle grain boundary simulations has 

elevated von Mises stress along GB2, as shown in Figure 5.2.   
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(a) (100) High at 0.0% Strain 

 

(b) (100) High at 2.1% Strain 

 

 
(c) (100) High at 5.8% Strain 

 
(d) (100) High at 9.5% Strain 

 
Figure 5.2 The von Mises stress (MPa) for the (100) high-angle simulation at 

(a) 0.0% strain, (b) 2.1% strain, (c) 5.8% strain, and (d) 9.5% strain. 

 

 Figure 5.2d is of particular interest because the molecular dynamic 

simulation of the (100) high-angle configuration nucleated a void at 

approximately 7.5% strain.  If we disregard the elevation of stress around the 

bottom-right corner as a result of the FEA boundary conditions, the location of 

increased stress close to the triple junction on GB2 is the location of void 
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nucleation in the MD simulation.  However, by looking at the plastic strain 

evolution pictured in Figure 5.3, we can conclude there is no such correlation 

between the area of increased von Mises stress and plastic strain.   

 

(a) (100) High at 0.0% Strain 

 

(b) (100) High at 2.1% Strain 

 

 
(c) (100) High at 5.8% Strain 

 
(d) (100) High at 9.5% Strain 

 
Figure 5.3 The plastic strain (mm/mm) for the (100) high-angle simulation at 

(a) 0.0% strain, (b) 2.1% strain, (c) 5.8% strain, and (d) 9.5% strain. 

 

 A similar analysis by Querin et al. (2007) concluded that an increase in 

hydrostatic stress, or pressure, was an important factor in the creation of voids at 
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the triple junction.  By illustrating the hydrostatic pressure in Figure 5.4c and 

Figure 5.4d, we notice there is a noticeable jump at GB2 between the hydrostatic 

stress on either side of the grain boundary.  Therefore, for this particular 

simulation, our results align with the results from Querin. 

 

(a) (100) High at 0.0% Strain 

 

(b) (100) High at 2.1% Strain 

 

 
(c) (100) High at 5.8% Strain 

 
(d) (100) High at 9.5% Strain 

 
Figure 5.4 The hydrostatic stress (MPa) for the (100) high-angle simulation at 

(a) 0.0% strain, (b) 2.1% strain, (c) 5.8% strain, and (d) 9.5% strain. 
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 Similarly, for the (110) high-angle grain boundary simulations, the von 

Mises stress is elevated around GB2 and GB3, as shown in Figures 5.5a and 

5.5b.  More importantly, the hydrostatic stress is nearly constant over the 

simulation at 1.8% strain but develops local maximums at 9.3% strain, as shown 

in Figures 5.5c and 5.5d. 

 

(a) (110) High at 1.8% Strain 

 

(b) (110) High at 9.3% Strain 

 

 
(c) (110) High at 1.8% Strain 

 
(d) (110) High at 9.3% Strain 

 
Figure 5.5 The (110) high-angle simulation with von Mises stress (MPa) 

shown at (a) 1.8% strain and (b) 9.3% strain as well as pressure 
(MPa) shown at (c) 1.8% strain and (d) 9.3% strain. 
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 To contrast the (110) texture simulations, the (100) low-angle grain 

boundary simulation is shown below in Figure 5.6.  The von Mises stress, 

Figures 5.6a and 5.6b, show little variation at 2.1% and 9.5% strain.  Also, the 

hydrostatic pressure is constant over the simulation for the same strain levels, as 

shown in Figures 5.6c and 5.6d.  This is intriguing because neither of the low-

angle grain boundary simulations nucleated a void at a grain boundary.   

 

(a) (100) Low at 2.1% Strain 

 

(b) (100) Low at 9.5% Strain 

 

 
(c) (100) Low at 2.1% Strain 

 
(d) (100) Low at 9.5% Strain 

 
Figure 5.6 The (100) low-angle simulation with von Mises stress (MPa) shown 

at (a) 2.1% strain and (b) 9.5% strain as well as pressure (MPa) 
shown at (c) 2.1% strain and (d) 9.5% strain. 
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 The other objective of the crystal plasticity simulations was to analyze the 

rotation of grains during the simulation.  For the (100) high- and low- angle 

simulations, the rotation of grains is very large, as shown in Tables 5.4.  Euler 

angle 2, denoted by !, maintained a value of zero while the other two angles 

changed by a wide range of magnitudes.  This seems to indicate a major rotation 

in the grains during deformation. 

 

Table 5.4 The Euler angles, in degrees, for the (100) high-angle and (100) 
low-angle simulation at 0.0% strain and 5.8% strain. 

(100) High-angle GB (100) Low-angle GB 
Grain Angle 0.0% 

Strain 
5.8% 
Strain 

0.0% 
Strain 

5.8% 
Strain 

" -90 42.63 -90 -19.84 
! 0 0.08 0 0.21 1 
# -180 -14.44 -180 29.3 
" -90 10.55 -90 -8.32 
! 0 0.2 0 0.16 2 
# -150 -0.22 -175 12.95 
" -90 -42.27 -90 -2.28 
! 0 0.15 0 0.21 3 
# -120 35.69 -170 8 

 

 The (110) high- and low- angle grain boundary simulations tell a different 

story.  The second and third Euler angles do not have bulk changes while the 

first Euler angle changes by a very small amount, as shown in Tables 5.5.  For 

the (110) high-angle simulation, Euler angle 1 changes 1.38º for grain 1, 2.66º for 

grain 2, and 1.67º for grain 3.  Similarly, for the (110) low-angle simulation, Euler 

angle 1 changes 0.06º for grain 1, 1.18º for grain 2, and 0.7º for grain 3. 
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Table 5.5 The Euler angles, in degrees, for the (110) high-angle and (110) 
low-angle simulation at 0.0% strain and 5.8% strain 

(110) High-angle GB (110) Low-angle GB 
Grain Angle 0.0% 

Strain 
5.8% 
Strain 

0.0% 
Strain 

5.8% 
Strain 

! 0 -1.38 0 -0.06 
" 90 90 90 90 1 
# 45 45 45 45 
! 30 32.66 5 3.82 
" 90 90 90 90 2 
# 45 45 45 45 
! 60 58.33 10 9.3 
" 90 90 90 90 3 
# 45 45 45 45 

 

 

Table 5.6 The Euler angles for the four elements located at the triple junction 
in each simulation at 5.8% strain. 

Grain Angl
e 

(100) 
High 

(100) 
Low 

(110) 
High (110) Low 

! 102.8 70.6 -1.44 0.04 
" 0.07 0.93 91.8 89.4 1 
# 11.2 -19.6 43.8 44.9 
! -161.1 136.8 30 4.36 
" 0.03 0.88 91.4 89.7 2 (top) 
# 137.6 50.9 42.7 45.2 
! 132.4 107.9 29.8 4.37 
" 0.47 0.8 91.4 89.7 

2 
(botto

m) # 70.64 22.2 89.6 44.9 
! -132.2 144.9 57.9 9.25 
" 0.51 1.26 89.6 89.5 3 
# -162.8 63.7 43.9 45.3 

 



 

 88 

 The Euler angles of the four elements located at the triple junction at 5.8% 

strain are shown in Table 5.6.  The Euler angles show a large deviation in the 

initial values for the (100) high- and low-angle simulations while the deviations 

are small in the (110) high- and low- angle simulations. 

 

5.4 Conclusions 

 The uniaxial tension simulations of triple junction simulations using a 

crystal plasticity model were setup very similarly to the molecular dynamics 

simulations.  For the (100) high-angle simulation, the von Mises stress and the 

hydrostatic stress are elevated at the location of the nucleation of a void, while 

the plastic strain revealed no correlation between strain and the location of the 

nucleated void.  For the (110) high-angle simulation, the hydrostatic stress is 

elevated at the triple junction but the von Mises stress is not.  For the (100) low-

angle grain boundary simulation, there is no concentration of von Mises or 

hydrostatic stress, which agrees with the MD simulation that did not nucleate a 

void.  The stress values were the metric that provided the most information in the 

crystal plasticity simulations while strain values were more helpful in the 

molecular dynamic simulations.   
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

 The overall goal of this research was to determine a method for 

calculating the plastic spin at the atomistic level for the purpose of multiscale-

based constitutive modeling.  Strides were made towards this goal with the 

pursuit of the two main objectives: (a) to quantify void nucleation in molecular 

dynamic simulations of TJ using a discrete mathematical framework and (b) to 

explore the possibility of calculating quantities integral to continuum-based failure 

models, such as the plastic spin.  

 A summary of the conclusions and plans for future work is described 

below. 

! The previous research of the plastic spin was discussed, in detail, with 

special attention made to the configurations of the formulations of the 

constitutive equations for the plastic spin. 

! Presently, a hypothesis for the calculation of the plastic spin has been 

provided, but needs additional research completed to determine the 

validity of the proposed plan of action. 

! EAMpost was modified to use LAMMPS data and revised to include 

deformation metrics such as (1) the Jacobian of the deformation gradient, 
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(2) the velocity gradient, and (3) the spin tensor.  Additional research 

needs to be completed to determine the importance and proper use of 

these metrics in regards to the atomistic level. 

! Molecular dynamic simple shear simulation with and without a hole 

illustrated the importance of the use of local deformation measures in MD 

simulations.  The difference in the local deformation in the simulations was 

clearly noticed with the use of the metrics listed above. 

! The molecular dynamic triple junction simulations nucleated voids in the 

(100) and (110) high-angle grain orientation while voids did not nucleate in 

the (100) and (110) low-angle grain orientation simulations.  The Green 

strain and Jacobian of the deformation gradient show promise as 

advanced local deformation measures to quantify void nucleation at the 

atomistic level.  Future work should be done to incorporate the spin tensor 

analysis with the triple junction simulations once. 

! Crystal plasticity simulations of the triple junction were able to illustrate the 

increase in von Mises and hydrostatic stress along the grain boundaries 

for the (100) and (110) high-angle simulation.  The (100) low-angle 

simulation revealed no local gradients in the stress values.  However, the 

plastic strain did not reveal as much information as hypothesized, 

therefore future work with the code is proposed to determine the validity of 

these simulations. 
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################################################################ 
#python 2.6 
# 
#  smpl_shr_sim.py 
#   
#  Created by Matthew Priddy on 2/12/09. 
# 
# This is an attempt to write python to perform a simple 
# shear movement of a block of atoms (represented by points in  
# python).  The purpose of this is to create an example that can be 
# used by EAMpost to accurately calculate the deformation gradient. 
# 
# Note: To output numbers with decimal places, input numbers with 
#   decimal places.  One strange thing about Python. 
# 
import linecache 
import random 
import math 
 
f=atom_file = open('atom.initial', 'a')  # write initial data 
f2=solution_file = open('dump.eampost', 'a') # write final data 
 
# input values 
r =   2.5   # radius of atom (lattice units) 
x_natoms =  50   # number of atoms in x-direction 
y_natoms =  25   # number of atoms in y-direction 
z_natoms =  4   # number of atoms in z-direction 
v =   0.0002  # velocity of shear (distance/timestep) 
timestep =  5   # number of timesteps in simulation 
t_inc =  10000   # the length of the timestep 
 
# The outer box bounds of the simulation (unit length) 
xlo = -(2.0 * r * x_natoms / 2.0)    
xhi = (2.0 * r * x_natoms / 2.0)  
ylo = -(2.0 * r * y_natoms / 2.0)  
yhi = (2.0 * r * y_natoms / 2.0)  
zlo = -(2.0 * r * z_natoms / 2.0)  
zhi = (2.0 * r * z_natoms / 2.0) 
 
# initial variables 
d = 1   # the atom number counter 
i = 0.0   # the count operator for the x-coordinate 
j = 0.0   # the count operator for the y-coordinate 
k = 0.0  # the count operator for the z-coordinate 
xcoord = 0.0  # the x-coordinate calculated next 
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ycoord = 0.0  # the y-coordinate calculated next 
zcoord = 0.0  # the z-coordinate calculated next 
 
# write the number of atoms before creating them all.  The values are (# + 1) 
because it starts at 0, not 1.  i.e. if a = 39, the number of atoms would be 40 in x-
direction because the interval is (0,39) 
 
natoms = (x_natoms) * (y_natoms) * (z_natoms) 
 
# determine coordinates for each atom and write it to atom.initial 
while k <= z_natoms - 1: 
 zcoord = (zlo + r) + (k * (2.0*r)) 
  
 j = 0 
 while j <= y_natoms - 1: 
  ycoord = (ylo + r) + (j * (2.0*r)) 
   
  i = 0 
  while i <= x_natoms - 1: 
   xcoord = (xlo + r) + (i * (2.0*r)) 
   f.write(str(d) + ", " + str(xcoord) + ", " + \ 
     str(ycoord) + ", " + str(zcoord) + "\n") 
   d = d + 1 
   i = i + 1 
  j = j + 1  
 k = k + 1   
f.close() 
 
# use atom.initial for the initial data so we can start moving. 
   
t = 0    # the time starts at t = 0 
i = 1    # variables used throughout 
j = 0 
k = 0 
 
# LAMMPS dump output has 9 lines of various information 
# before the atom data which is also written below. 
while t <= timestep: 
  
# these are the new values for the updated timesteps 
 xlo = xlo + (v * t * t_inc) 
 xhi = xhi + (v * t * t_inc) 
 t_timestep = t * t_inc 
  
 f2.write("ITEM: TIMESTEP\n" + str(t_timestep) + "\n" + \ 
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 "ITEM: NUMBER OF ATOMS\n" + str(natoms) + "\n" + \ 
 "ITEM: BOX BOUNDS\n" + str(xlo) + " " + str(xhi) + "\n" + \ 
 str(ylo) + " " + str(yhi) + "\n" + str(zlo) + " " + \ 
 str(zhi) + "\n" + "ITEM: ATOMS FROM PYTHON PROGRAM\n") 
  
 i = 1 
 while i <= natoms: 
  atom_data = linecache.getline('atom.initial', i, 
module_globals=None) 
  if atom_data == "": 
   break 
  atom_data = eval(atom_data) 
  atom_data = list(atom_data) 
  atom_coord = atom_data  
  atom_coord_num = atom_coord[0] 
  atom_coord_x = atom_coord[1] 
  atom_coord_x = float(atom_coord_x) 
  atom_coord_y = atom_coord[2] 
  atom_coord_y = float(atom_coord_y) 
  atom_coord_z = atom_coord[3] 
  atom_coord_z = float(atom_coord_z) 
   
# We want to change the x-coordinate of the atom based on the  
# y-coordinate of the atom.  In simple shear, as the y-coordinate 
# increases, the atoms are moving faster in the positive 
# x-direction. 
# the velocity equation is v_atom = v * [(y - ylo) / (yhi - ylo)] 
# simply multiply the velocity times time and add it to the x-coordinate 
  ylo_r = ylo + r 
  yhi_r = yhi - r 
  v_atom = 0.0 
  v_atom = v * ((atom_coord_y - ylo_r) / (yhi_r - ylo_r)) 
  atom_coord_x = (atom_coord_x + (v_atom * t * t_inc)) 
 
# Round the values to 4 decimal places (LAMMPS outputs 6 sig. figures, 
# so this is the closest I can get to 6 significant figures. 
 
  atom_coord_x = round(atom_coord_x, 4)  
  atom_coord[1] = atom_coord_x 
  f2.write(str(atom_coord[0]) + "  " + str(atom_coord[1]) + \ 
  str(atom_coord[2]) + "  " + str(atom_coord[3]) + "\n")  
  i = i + 1 
 t = t + 1 
f2.close() 
############################################################### 
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LAMMPS SIMPLE SHEAR RELAXATION INPUT FILE 
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################################################################
# LAMMPS – version 15 January 2010 
# 3d metal relaxation simulation  -  relax_shear.in 
# Al Simple Shear Simulation, Relaxation process 
 
units   metal 
boundary  s  s  p 
atom_style  atomic 
region  box block -120 120 -50 50 -30 30 units box 
create_box  1 box 
lattice  fcc 4.05 orient x 1 0 0 orient y 0 1 1 orient z 0 -1 1 
create_atoms 1 box 
mass   1 26.9815 
region  inner block -80 80 -40 40 -30 30 units box 
group   inner region inner 
group   outer subtract all inner 
delete_atoms group outer 
 
# Uncomment this section for simulation with hole 
#region  hole cylinder z 0 0 3 INF INF 
#group  hole region hole 
#group  final subtract inner hole 
#delete_atoms group hole  
 
pair_style  eam/fs 
pair_coeff  * * Al_mm.eam.fs Al 
lattice  fcc 1.0 
log   pyr_full.log 
restart  10000 pyr_1.rst pyr_2.rst 
neighbor  2.0 bin 
neigh_modify delay 10 
fix   1 all npt temp 0.01 0.01 0.5 z 0 0 25 drag 50    
compute  1 all centro/atom fcc 
compute  my_temp all temp 
thermo  10 
thermo_style custom step temp pe pxx pyy pzz pxy xlo xhi ylo yhi zlo zhi 
thermo_modify lost warn norm yes 
dump   1 all custom 10000 dump.eampost id x y z c_1 
timestep  0.005 
run   30000 
################################################################ 
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LAMMPS SIMPLE SHEAR INPUT FILE 
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################################################################
# LAMMPS – version 15 January 2010 
# 3d metal simple shear simulation  -  uni_shear.in 
# Al Simple Shear Simulation, shear process 
 
units   metal 
boundary  s  s  p 
atom_style  atomic 
read_restart ../relax_hole_3/pyr_1.rst 
mass   1 26.9815 
pair_style  eam/fs 
pair_coeff  * * Al_mm.eam.fs Al 
lattice  fcc 1.0 
log   pyr_full.log 
restart  10000 pyr_1.rst pyr_2.rst 
neighbor  2.0 bin 
neigh_modify delay 10 
region  top block INF INF 30 INF INF INF units box 
group   top region top 
region  bottom block INF INF INF -30 INF INF units box 
group   bottom region bottom  
group   boundary union bottom top  
group   free subtract all boundary 
group   most subtract all top  
fix 1 free npt temp 0.01 0.01 0.5 z 0 0 25 couple none drag 50 
fix   4 bottom move linear 0.00 0.00 0.00 units box 
fix   5 top move linear 0.01 0.00 0.00 units box 
compute  1 all centro/atom fcc 
compute  2 all stress/atom 
compute  my_temp all temp 
thermo  10 
thermo_modify lost warn norm yes  
thermo_style custom step temp pe pxx pyy pzz pxy xlo xhi ylo yhi zlo zhi 
dump   1 all  custom 10000 dump.eampost  id type x y z c_1 c_2[1] 
c_2[2] c_2[3] c_2[4] c_2[5] c_2[6]  
dump   2 free  custom 10000 dump.free  id type x y z c_1 c_2[1] 
c_2[2] c_2[3] c_2[4] c_2[5] c_2[6] 
timestep  0.005 
run   320000 
################################################################ 
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PREWARP INPUT FILE 
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################################################################
# PreWarp Input File for Al_15_30 aka Al (110) high-angle grain boundary  
# simulation. 
 
# set output filename root 
filename ./Al_H_00.run3 
 
# set size of atomic system 
box -300  300  -300  300  -11.456  11.456  1.0 
 
# set periodicity 
periodicity 0 1 0 
overlap 1.1 
#expand 1.07 
 
# set number of grains 
grain AlH      # Grain 3 (top left) 
site -8.0 10.0 0.0 1.0 
orient x -.707 .707 0 y 0 0 1 
 
grain AlH      # Grain 2 (right side) 
site 12.5 -1.0 0.0 1.0 
orient x .966 -.966 .259 y -.259 .259 .966  
 
grain AlH      # Grain 1 (bottom left)  
site -7.0 -9.75 0.0 1.0 
orient x .866 -.866 .5 y -.5 .5 .866 
 
# define lattice 
lattice user AlH 
   0.00000000  2.02500000  2.02500000 
   2.02500000  0.00000000  2.02500000 
   2.02500000  2.02500000  0.00000000 
2       # number of atoms 
Al 0.0 0.0 0.0   1.00  
H  0.5 0.5 0.5   0.00 
 
build 
 
# set output files 
write data 
#write ensight 
#write r3d 
write warp 
################################################################
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APPENDIX E 

PREWARP ORIENTATION ANGLES 
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Table E.1 Orientation angles for (110) texture for x- and y-components of the 
grains. 

!
! x-components y-components 
0 0.707 -0.707 0.000 0.000 0.000 1.000 
5 0.704 -0.704 0.087 -0.062 0.062 0.996 

10 0.696 -0.696 0.174 -0.123 0.123 0.985 
15 0.683 -0.683 0.259 -0.183 0.183 0.966 
30 0.612 -0.612 0.500 -0.354 0.354 0.866 
60 0.354 -0.354 0.866 -0.612 0.612 0.500 

 

 

Table E.2 Orientation angles for (100) texture for x- and y-components of the 
grains. 

!
! x-components y-components 
0 1.000 0.000 0.000 0.000 1.000 0.000 
5 0.996 0.087 0.000 -0.087 0.996 0.000 

10 0.985 0.174 0.000 -0.174 0.985 0.000 
15 0.966 0.259 0.000 -0.259 0.966 0.000 
30 0.866 0.500 0.000 -0.500 0.866 0.000 
60 0.500 0.866 0.000 -0.866 0.500 0.000 
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LAMMPS AL TJ RELAXATION INPUT FILE 
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################################################################
# LAMMPS – version 9 January 2009 
# 3d metal relaxation simulation  -  relax_iter.in 
# Al Triple Junction, iteration relaxation 
 
units   metal 
boundary  p  p  p 
atom_style  atomic 
read_data  atom_in_00.atoms 
mass   1 26.9815 
pair_style  eam/fs 
pair_coeff  * * Al_mm.eam.fs Al 
lattice  fcc 1.0 
log   pyr_full.log 
restart  1000 pyr_1.rst pyr_2.rst 
neighbor  2.0 bin 
neigh_modify delay 10 
region  left block INF -185.0 INF INF INF INF units box 
group   left region left 
group   swap1 subtract all left 
region  right block 185.0 INF INF INF INF INF units box 
group   right region right 
group   swap2 subtract swap1 right  
region  top block INF INF 185.0 INF INF INF units box 
group   top region top  
group   swap3 subtract swap2 top  
region  bottom block INF INF INF -185.0 INF INF units box 
group   bottom region bottom  
group   free subtract swap3 bottom  
velocity  all create 1.0 1231  
fix 1 free npt 1.0 300.0 0.5 aniso NULL NULL 0 0 0 0 25 drag 50 
fix   2 left planeforce 1.0 0.0 0.0 
fix   3 right planeforce 1.0 0.0 0.0 
fix   4 top planeforce 1.0 0.0 0.0 
fix   5 bottom planeforce 1.0 0.0 0.0 
compute  1 all centro/atom 
compute  my_temp all temp 
thermo  10 
thermo_modify lost warn norm yes  
thermo_style custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   1 all custom 50000 dump.relax tag type x y z c_1  
timestep  0.005 
run   50000 
 
# now, all the pressure to minimize in the y-direction 
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fix 1 free npt 300.0 300.0 0.5 aniso 0 0 NULL NULL 0 0 25 drag 50    
fix   2 left planeforce 0.0 1.0 0.0    
fix   3 right planeforce 0.0 1.0 0.0    
fix   4 top planeforce 0.0 1.0 0.0    
fix   5 bottom planeforce 0.0 1.0 0.0    
thermo  10 
thermo_modify  lost warn norm yes  
thermo_style  custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   2 all custom 10000 dump.relax2 tag type x y z c_1 
run   10000  
# now, all the pressure to minimize in the x-direction 
fix   1 free npt 300.0 300.0 0.5 aniso NULL NULL 0 0 0 0 25 drag 
50    
fix   2 left planeforce 1.0 0.0 0.0    
fix   3 right planeforce 1.0 0.0 0.0    
fix   4 top planeforce 1.0 0.0 0.0    
fix   5 bottom planeforce 1.0 0.0 0.0    
thermo  10 
thermo_modify  lost warn norm yes  
thermo_style  custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   3 all custom 10000 dump.relax3 tag type x y z c_1 
run   10000  
# now, all the pressure to minimize in the y-direction 
fix 1 free npt 300.0 300.0 0.5 aniso 0 0 NULL NULL 0 0 25 drag 50    
fix   2 left planeforce 0.0 1.0 0.0    
fix   3 right planeforce 0.0 1.0 0.0    
fix   4 top planeforce 0.0 1.0 0.0    
fix   5 bottom planeforce 0.0 1.0 0.0    
thermo  10 
thermo_modify  lost warn norm yes  
thermo_style  custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   4 all custom 10000 dump.relax4 tag type x y z c_1 
run   10000  
# now, all the pressure to minimize in the x-direction 
fix 1 free npt 300.0 300.0 0.5 aniso NULL NULL 0 0 0 0 25 drag 50    
fix   2 left planeforce 1.0 0.0 0.0    
fix   3 right planeforce 1.0 0.0 0.0    
fix   4 top planeforce 1.0 0.0 0.0    
fix   5 bottom planeforce 1.0 0.0 0.0    
thermo  10 
thermo_modify  lost warn norm yes  
thermo_style  custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   5 all custom 10000 dump.relax5 tag type x y z c_1 
run   10000 
################################################################
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APPENDIX G 

LAMMPS AL TJ UNIAXIAL TENSION INPUT FILE 
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################################################################
# LAMMPS – version 9 January 2009 
# 3d metal uniaxial tension test  -  uni_iter.in 
# Al Triple Junction, uniaxial tension 
 
units   metal 
boundary  p  p  p 
atom_style  atomic 
read_restart ../pyr_2high_110.rst     
reset_timestep 0 
mass   1 26.9815  
pair_style  eam/fs 
pair_coeff  * * ./Al_mm.eam.fs Al  
lattice  fcc 1.0 
log   pyr_full.log 
restart 10000 pyr_h100_*.rst 
neighbor  2.0 bin 
neigh_modify delay 10 
fix 1 free npt 300.0 300.0 0.5 aniso NULL NULL 0 0 0 0 25 drag 50    
fix   2 left planeforce 1.0 0.0 0.0    
fix   3 right planeforce 1.0 0.0 0.0    
fix   4 top planeforce 1.0 0.0 0.0    
fix   5 bottom planeforce 1.0 0.0 0.0    
fix   6 all deform 1 x delta -20 20 units box remap x 
compute  1 all centro/atom 
compute  2 all stress/atom 
compute  my_temp all temp 
thermo  10 
thermo_modify lost warn norm yes  
thermo_style custom step temp pe pxx pyy pzz press xlo xhi ylo yhi zlo zhi 
dump   1 all  custom 10000 dump.relax tag type x y z c_1 c_2[1] 
c_2[2] c_2[3] c_2[4] c_2[5] c_2[6] 
dump   2 all  custom 10000 dump.eampost tag x y z  
timestep  0.005 
run   200000 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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APPENDIX H 

CRYSTAL PLASTICITY SIMULATION ABAQUS INPUT FILE 
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*Heading 
 Aluminum (100) High-Angle TJ - 3D Model Uniaxial Deformation (Abaqus 6.9-1) 
** in mm, N, tonne(10^3 kg), s, MPa (N/mm^2), mJ, tonne/mm^3 
** Job name: 3D_uniaxial_100_high  Model name: Al_100_high 
********************************************************************************************
Node,    INPUT=tj.nd 
*Include, INPUT=node_sets.es  
*Element, INPUT=tj.el type=C3D8R 
*Include, INPUT=el_sets.es 
*Solid Section, elset=grain1, controls=EC-1, material="Grain 1", 
*Solid Section, elset=grain2, controls=EC-1, material="Grain 2", 
*Solid Section, elset=grain3, controls=EC-1, material="Grain 3", 
*Section Controls, name=EC-1, hourglass=ENHANCED 1., 1., 1. 
*Amplitude, name=Amp-1  0.,           0.,         150.,           1. 
*Material, name="Grain 1" 
*Depvar 70, 
*User Material, constants=5 
10080.,   1., -90.,   0.,-180. 
*Material, name="Grain 2" 
*Depvar 70, 
*User Material, constants=5 
12880.,   1., -90.,   0.,-150. 
*Material, name="Grain 3" 
*Depvar 70, 
*User Material, constants=5 
10080.,   1., -90.,   0.,-120. 
********************************************************************************************
Step, name=Step-1, nlgeom=YES, inc=500 
uniaxial tension, rate ~ 2 mm/sec 
*Static  0.01, 150., 2e-06, 1.5 
*Boundary 
Bottom, 2, 2 
*Boundary, amplitude=Amp-1 
Left, 1, 1, -30. 
*Boundary, amplitude=Amp-1 
Right, 1, 1, 30. 
*Output, field 
*Node Output 
CF, RF, U 
*Element Output, directions=YES 
LE, S, SDV 
*Contact Output 
CDISP, CSTRESS 
*End Step 
******************************************************************************************** 
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