
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-12-2016

Multiscale Structure-Property Relationships of Ultra-High Multiscale Structure-Property Relationships of Ultra-High

Performance Concrete Performance Concrete

Megan Noel Burcham

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Burcham, Megan Noel, "Multiscale Structure-Property Relationships of Ultra-High Performance Concrete"
(2016). Theses and Dissertations. 3249.
https://scholarsjunction.msstate.edu/td/3249

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3249?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v3.0 (beta): Created by J. Nail 06/2015

Multiscale structure-property relationships of ultra-high performance concrete

By
TITLE PAGE

Megan Noel Burcham

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Mechanical Engineering
in the Department of Mechanical Engineering

Mississippi State, Mississippi

August 2016

Copyright by
COPYRIGHT PAGE
Megan Noel Burcham

2016

Multiscale structure-property relationships of ultra-high performance concrete

By
APPROVAL PAGE

Megan Noel Burcham

Approved:

Mark F. Horstemeyer

(Major Professor)

Youssef Hammi

(Committee Member)

Tonya W. Stone

(Committee Member)

D. Keith Walters

(Graduate Coordinator)

Jason M. Keith

Dean
Bagley College of Engineering

Name: Megan Noel Burcham
ABSTRACT

Date of Degree: August 12, 2016

Institution: Mississippi State University

Major Field: Mechanical Engineering

Major Professor: Mark F. Horstemeyer

Title of Study: Multiscale structure-property relationships of ultra-high performance
concrete

Pages in Study: 55

Candidate for Degree of Master of Science

The structure-property relationships of Ultra-High Performance Concrete (UHPC)

were quantified using imaging techniques to characterize the multiscale hierarchical

heterogeneities and the mechanical properties. Through image analysis the average size,

percent area, nearest neighbor distance, and relative number density of each inclusion

type was determined and then used to create Representative Volume Element (RVE)

cubes for use in Finite Element (FE) analysis. Three different size scale RVEs at the

mesoscale were found to best represent the material: the largest length scale (35 mm side

length) included steel fibers, the middle length scale (0.54 mm side length) included large

voids and silica sand grains, and the smallest length scale (0.04 mm side length) included

small voids and unhydrated cement grains. By using three length scales of mesoscale FE

modeling, the bridge of information to the macroscale cementitious material model is

more physically based.

ii

DEDICATION

I would like to dedicate this work to all my family and friends who have helped

me get this far. To my parents for their love and support in everything I have done. I have

been blessed to have two parents with engineering graduate degrees to help me through

this process. To my sister, Hannah, who has proofread every document I have ever

written (including this one). To my Granddaddy Olan who has inspired me with his

passion for math and physics.

iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Dr. Mark Horstemeyer, for his support

throughout my research. I am also very appreciative of Dr. Howard, who helped me

understand the ins and outs of concrete. I would like to thank the Engineering Research

and Development Center (ERDC) for providing the funding to make this research

possible. Lastly, a big thanks is necessary to all my colleagues at the Center for

Advanced Vehicular Systems (CAVS) who helped me along the way.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION AND LITERATURE REVIEW ...1

II. MATERIAL CHARACTERIZATION ...6

2.1 Cement Chemistry ...6

2.2 Curing ..7

2.3 Imaging ..8

2.4 ImageJ ..8

2.5 Computed Tomography (CT) Scan ...9

2.6 Mechanical Testing ...9

III. FINITE ELEMENT MODELING ..11

3.1 Structural Scale Finite Element Modeling ..11

3.2 Mesoscale Finite Element Modeling ...12

IV. RESULTS ..14

4.1 Multiscale Materials Morphology ...14

4.2 Mechanical Behavior ...19

4.3 Finite Element Analysis ..24

4.4 Geometry Generation ..27

V. CONCLUSIONS ...30

v

REFERENCES ... 32

APPENDIX

A. RANDOM GEOMETRY GENERATION PYTHON SCRIPT35

vi

LIST OF TABLES

 2.1 Phases and percentages present in Class H cement [Jupe et al. 2008].7

 2.2 Breakdown of the material (inclusion) types used in each constituent
mixture. ...10

 4.1 Average values for inclusions in ultra-high performance concrete
found through image analysis. ..16

 4.2 Calculated damage values for inclusions in ultra-high performance
concrete. ..17

 4.3 Average volume fractions of the inclusions in ultra-high performance
concrete specimens. ..19

 4.4 Percentage difference in elastic moduli found through
compressometer and stress-strain behavior, which led to the
calculation of an average modulus and standard deviation22

 4.5 Elastic modulus and Poisson’s ratio for inclusions in ultra-high
performance concrete. ..22

 4.6 Comparison of elastic moduli found through various procedures for
constituents of ultra-high performance concrete. ...23

 4.7 Mean radius and variance for each inclusion type from found through
lognormal fit curves. ...24

vii

LIST OF FIGURES

 1.1 Macroscopic comparison of a) ordinary concrete and b) ultra-high
performance concrete. ..1

 1.2 Size and shape of fibers used in ultra-high performance concrete
throughout this work. ..2

 1.3 Chemistry-process-structure-property-performance method for
determining cause and effect relationships. ..5

 2.1 ImageJ process for turning a) scanning electron microscope images to
a b) binary image and then to c) isolated inclusions.9

 2.2 Schematic of the a) compression and b) indirect tensile tests
completed on ultra-high performance concrete and constituents.10

 3.1 Ultra-high performance concrete beam used in finite element
simulations with dimensions and boundary conditions shown.12

 4.1 Images of ultra-high performance concrete at three mesoscale length
scales with inclusions of interest pointed out. ..15

 4.2 Size distributions of the inclusions in ultra-high performance concrete
with length scales used in representative volume element cubes.16

 4.3 Computed Tomography (CT) scan of ultra-high performance concrete
showing a) approximately 3% steel fibers and b) large voids
illustrated; note that although the material’s behavior is isotropic,
there is local anisotropy from the fibers. ..18

 4.4 Stress-strain behavior of constituents showing different elastic moduli
for a) compression and b) tension tests and the effect of the steel
fibers included. ...20

 4.5 Comparison of each material’s compressive and tensile stress-strain
behavior to highlight cementitious materials’ heterogeneity in a)
cement paste, b) mortar (cement paste and sand), c) fiber-reinforced
paste (cement paste and steel fibers), and d) ultra-high performance
concrete (cement paste, sand, and steel fibers). ..21

viii

 4.6 Probability of radius occurrence for inclusions in ultra-high
performance concrete fitted with lognormal curves.24

 4.7 Displacement (in mm) in the y-direction caused by the velocity
applied to the upper cylinders. ..25

 4.8 Max principal strain of the beam in bending. ...26

 4.9 Max principal strain of the beam in bending. ...26

 4.10 Geometries generated using the area fractions and length scales found
through image analysis. ..28

 4.11 Meshed representative volume element cubes at varying length scales
showing unhydrated cement grains (blue), sand grains (yellow), and
steel fibers (purple). ..28

 4.12 Distributed sizes of inclusions based on lognormal fit curves in
representative volume element cubes. ..29

1

CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Ultra-High Performance Concrete (UHPC) is defined as having a compressive

strength over 150 MPa and a tensile strength over 8 MPa [Habel et al. 2006]. This

strength is accomplished by the exclusion of coarse aggregate, inclusion of silica fume,

and reduction of the water to binder ratio [Zadeh et al. 2008]. Figure 1.1 shows the

macroscopic differences between ordinary concrete and UHPC. The adjustments made to

UHPC also improve the density of the mixture, making it less permeable than ordinary

concrete. The impermeability makes the material useful in highly corrosive environments

and environments subjected to high strain rates [Charron et al. 2006].

Figure 1.1 Macroscopic comparison of a) ordinary concrete and b) ultra-high
performance concrete.

The differences in aggregate sizes and the presence of steel fibers differentiate the two
materials.

2

A key aspect in the enhanced performance of UHPC is the use of steel fibers. For

over 50 years, Fiber-Reinforced Concrete (FRC) has been a promising avenue for

cementitious material improvement [Zollo 1997]. Ordinary concrete displays

characteristics associated with brittle materials, but FRC has shown enhanced ductility in

tensile testing. These improvements have been linked to fibers that bridge cracks at

different length scales [Scott et al. 2015]. Work has been done to determine the material

characteristics of these fibers and methods to improve their performance [Rivera-Soto et

al.]. Experimentation of fiber size, shape, and material has helped improve the pull-out

properties of the fibers. Figure 1.2 shows the size and shape of fibers used throughout this

study.

Figure 1.2 Size and shape of fibers used in ultra-high performance concrete
throughout this work.

3

With UHPC’s densely packed morphology, the primary length scale of focus is

the mesoscale. This range shows the distribution and sizes of all the pertinent

constituents, which include steel fibers, sand grains, unhydrated cement grains, silica

fume, and voids. Nano-indentation tests were conducted to quantify some of the

mesoscale material properties of these constituents by Moser et al. [2013]. Computed

Tomography (CT) has also been used to quantify the volumetric characteristics of the

material’s inclusions [Huang et al. 2015]. These characteristics further confirm the

multiscale properties of cementitious materials, which are key in fully understanding the

material’s behavior [Unger and Eckardt 2011].

The goal of modeling cementitious materials was in place long before the

technology, but by the early 1990s strides were made towards this objective [Vecchio

1992]. Further models began to utilize the two main phases of concrete, the aggregate and

matrix, and development of these basic models has led to more robust and reliable results

[Lopez et al. 2008]. The complexity of these models has increased, and multiple

constituents have been included along with the Interfacial Transition Zone (ITZ)

[Garboczi and Bentz 1995]. From there, the size and shapes of constituents have been

considered in finite element models [Wang et al. 2016].

From nanometer sized voids to centimeter length steel fibers, UHPC has a range

of lengths that is incompatible with structural scale Finite Element Analysis (FEA). This

disagreement stems from the element sizes that are best suited for each inclusion. These

difficulties in modeling can result in an inability to represent the “coupling effect” that

the microstructural features have at increasing length scales [Gokhale and Yang 1999].

4

The use of multiple length scales in modeling would help capture this effect, and improve

cementitious modeling.

The Chemistry-Process-Structure-Property-Performance (CPSPP) sequence is a

useful technique in multiscale modeling. In this work, the CPSPP structure will aid in

determining the cause-effect quantification of relationships within UHPC. Figure 1.3

outlines this method. While cement chemistry is not the main focus of this work, it is

important to consider the unique constitution of cement when modeling concrete. Curing

is the method by which UHPC hardens and results from hydration of the cement particles

creating a glue to bond the inclusions together. UHPC’s structure has features at various

length scales, and the distribution of inclusions impact the material’s performance.

Several properties were found via mechanical testing, and these results helped determine

the performance of the material in terms of fracture and ductility.

5

Figure 1.3 Chemistry-process-structure-property-performance method for determining
cause and effect relationships.

This work focuses on the forward looking cause-effect relationships.

Since the 1980s, the Engineer Research and Development Center (ERDC) has

been testing UHPC in varying applications and has developed a UHPC material called

Cor-Tuf Baseline [Green et al. 2014]. All further references to UHPC will imply the use

of Cor-Tuf Baseline mix and its curing procedures. This material will be the focus of this

study, as accurately modeling this material is of current interest. Knowledge of the

mechanical properties and mesoscale characteristics of Cor-Tuf Baseline will enable

improved predictability of the material model.

6

CHAPTER II

MATERIAL CHARACTERIZATION

To determine the cause-effect relationship within UHPC, several experimental

methods were employed. These processes included examination of the chemistry of

cementitious materials, the curing procedure of UHPC, Scanning Electron Microscope

(SEM) imaging, ImageJ image analysis, CT scanning, and mechanical testing. At the

structural scale, a UHPC beam in bending was modeled with FEA assuming a

homogenous medium. Then, the mesoscale characteristics of UHPC, which included

different length scales of heterogeneous structures, were broken down into three length

scales for improved modeling results. Constituents quantified were steel fibers, large

voids, sand grains, unhydrated cement grains, and small voids.

2.1 Cement Chemistry

 Cement chemistry is a complicated field, as cement is made by heating

materials like limestone and clay until they partially fuse. These materials are then mixed

with calcium sulfate and ground down into a powder [Taylor 1997]. This process can

result in cement grains with varying properties, which can result in different reactions

during hydration. Ordinary concrete is produced by mixing water, Portland cement, and

aggregate. The cement is hydrated by the water and forms a paste; this paste acts as a

glue that holds the aggregate together. Class H cement, which is commonly used in oil

wells, was used in the UHPC tested throughout this work. The chemistry associated with

7

this material is shown in Table 2.1. Upon hydration, the unhydrated cement grains go

through the following reactions,

2(3𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 11𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 + 3(𝐶𝑎𝑂 ∙ 𝐻2𝑂) (2.1)

2(2𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 9𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 + 𝐶𝑎𝑂 ∙ 𝐻2𝑂 (2.2)

4𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝐹𝑒2𝑂3 + 10𝐻2𝑂 + 2(𝐶𝑎𝑂 ∙ 𝐻2𝑂) = 6𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝐹𝑒2𝑂3 ∙ 12𝐻2𝑂 (2.3)

3𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 + 3(𝐶𝑎𝑂 ∙ 𝑆𝑂3 ∙ 2𝐻2𝑂) + 26𝐻2𝑂 = 6𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 3𝑆𝑂3 ∙ 32𝐻2𝑂 (2.4)

where 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 is Calcium Silicate Hydrate (C-S-H), which is the primary

form of cementitious binder [Kosmatka and Wilson 2011].

Table 2.1 Phases and percentages present in Class H cement [Jupe et al. 2008].

Phases Present Cement Chemist
Notation

% Present
3 CaO • SiO2 C3S 47.1
2 CaO • SiO2 C2S 28.3

4 CaO • Al2O3• Fe2O3 C4AF 17.0
3 CaO • Al2O3 C3A 0.65

CaSO4 CS̅ 4.72
MgO M 1.09
K2O K 0.45
TiO2 T 0.18

2.2 Curing

All UHPC examined in this study followed the same curing procedure, which

lasted a total of two weeks. Specimens were mixed together, poured into molds, and then

kept moist for 24-48 hours until completely set. After a day or two in the molds,

specimens were removed and placed in a Fog Room (100% humidity and 21.1-25°C) for

six days. When the six days were over, the specimens were placed into a room

temperature water bath and then the bath was heated to 90°C to reduce the likelihood of

8

cracking due to sudden temperature change. Steam curing in the water bath lasted seven

days, after which the water bath was dropped back to room temperature. The specimens

were then removed from the bath and shelved to await testing.

2.3 Imaging

Lower magnification images were taken using a ZEISS Axiovert 200 optical

microscope at the Center for Advanced Vehicular Systems (CAVS). A SUPRA 40 FEG-

SEM, also at CAVS, was used to take higher magnification images. The surfaces of the

concrete specimens were ground smooth before imaging to ensure quality pictures. The

combination of the low and high magnification microscopes allowed for images to be

taken at a variety of length scales to accurately capture the distributions of each

constituent.

2.4 ImageJ

The image processing tool, ImageJ, was used for analyzing images [Schneider et

al. 2012]. This software was utilized to identify, isolate, and measure constituents. Figure

2.1 shows this process. These results allowed for the determination of the average size,

number density, area fraction, and nearest neighbor distance of each constituent. ImageJ

was used on multiple images at varying length scales to ensure accurate results were

found for each of the constituents.

9

Figure 2.1 ImageJ process for turning a) scanning electron microscope images to a b)
binary image and then to c) isolated inclusions.

2.5 Computed Tomography (CT) Scan

The Phoenix X-Ray CT system with dual focus, reaching one micron resolution,

at CAVS was used for 3D imaging. CT scans were conducted on a UHPC cube with sides

of approximately 50 mm. The CT scan could only distinguish the larger constituents,

large voids, and steel fibers, helping to determine the 3D characteristics of UHPC. The

large voids, which arise from entrapped air during mixing, had previously been ignored

until these scans showed their high frequency of occurrence. The orientation of the fibers

was assumed to be random, but the CT scan aided in observing the locations of the fibers

within the matrix.

2.6 Mechanical Testing

Mechanical testing was accomplished using the equipment at the Construction

Materials Research Center at Mississippi State. Cylinders of Cement Paste (CP), Mortar

(M), Fiber-Reinforced Paste (FRP), and UHPC were subjected to testing to obtain elastic

moduli, stress-strain behavior, compressive strengths, and tensile strengths. The materials

involved in each of the constituent mixtures are outlined in Table 2.2. Compressive tests

10

were conducted according to ASTM C39, tensile tests were conducted according to

ASTM C496, and elastic modulus tests were conducted according to ASTM C469. Figure

2.2 shows the setup that was used in the compression and tension tests. The testing of

these combinations of constituents enabled more accurate FE modeling, as the

characteristics of each constituent were known.

Table 2.2 Breakdown of the material (inclusion) types used in each constituent
mixture.

Constituent Cement
Matrix Voids Unhydrated

Cement Grains
Sand

Grains
Steel

Fibers

Cement Paste X X X
Mortar X X X X

Fiber-Reinforced Paste X X X X
Ultra-High Performance Concrete X X X X X

Figure 2.2 Schematic of the a) compression and b) indirect tensile tests completed on
ultra-high performance concrete and constituents.

11

CHAPTER III

FINITE ELEMENT MODELING

UHPC modeling was accomplished using the software Abaqus CAE version 6.14

[Abaqus 2014]. This work focused on the generation of Representative Volume Element

(RVE) cubes with various inclusions suspended in a matrix.

3.1 Structural Scale Finite Element Modeling

Within Abaqus CAE, a structural scale beam in bending was selected for

modeling in order to fully capture the heterogeneous properties of UHPC. The size of the

UHPC beam and the boundary conditions applied mirrored previous experiments

conducted at ERDC [Roth 2008]. Figure 3.1 shows the test setup, the beam’s dimensions,

and the boundary conditions used of the FEA. This beam was treated as a continuum,

containing no inclusions, with material properties determined by ERDC’s testing results

[Scott et al. 2015].

12

Figure 3.1 Ultra-high performance concrete beam used in finite element simulations
with dimensions and boundary conditions shown.

This beam represents the structural scale (Length Scale 4) and is modeled after physical
tests.

3.2 Mesoscale Finite Element Modeling

It was determined that three length scales would aid modeling the mesoscale

characteristics of the UHPC beam in bending, as there were such differences in the size

of constituents. The largest cube had sides of 35 mm, and it included only steel fibers

within the matrix. The middle length scale included large voids and silica sand grains and

had sides of 0.54 mm. The smallest length scale was a cube with sides of 0.04 mm, and it

included small voids and unhydrated cement grains. To best portray the material,

inclusions were randomly distributed throughout the matrix according to their measured

distributions.

13

Two python scripts were written to generate these RVE cubes. The first script

asked for an average inclusion size, found using ImageJ, and inclusions of that size were

inserted into the matrix until the desired volume fraction was reached. Plots of constituent

size versus number of occurrences revealed that using only the average constituent size

left out the range of inclusion sizes found in UHPC. The size versus number of

occurrences graph was fitted with a distribution curve, and a second script was created

that asked for the mean and variance of this fitted curve. The inclusions inserted into the

matrix by this second code were of sizes that varied according to the distribution curve.

Both random generation codes required the size of the cube, as well as the

number, shape, and volume fraction of each constituent. Two shapes, spheres and

cylinders, were used in modeling the inclusions in subsequent simulations. Spheres were

used to model the voids, unhydrated cement grains, and sand grains; cylinders were used

to model the steel fibers. The algorithms then randomly inserted and distributed these

shapes, making sure none overlapped (see Appendix A).

14

CHAPTER IV

RESULTS

The results from image analysis, mechanical testing, geometry generation, and

finite element analysis are discussed in the following section.

4.1 Multiscale Materials Morphology

Area fractions of constituents were found using Image J, and Figure 4.1 shows a

sample of the images used for analysis. The length scales of images varied greatly to

accurately capture the constituents in RVE cubes with sides of 35 mm, 0.54 mm, and

0.04 mm. In the case of voids, an area criteria of 0.01 mm2 was established to distinguish

between small and large voids. This distinction aided in modeling, as both microscopic

and macroscopic voids were present in the UHPC. Large voids occurred as the wet

concrete was poured into molds. Vibrating tables were used to shake the material down

into the molds and reduce the size and occurrence of voids. Smaller voids were likely

caused by improper bonding of the matrix to inclusions, such as sand grains and fibers.

15

Figure 4.1 Images of ultra-high performance concrete at three mesoscale length scales
with inclusions of interest pointed out.

To determine the sizes of RVE cubes for simulations, the number of occurrences

for each size of each inclusion was determined. Figure 4.2 shows the resulting curves.

Divisions of each length scale are also shown for reference. These length scales became

the side length for RVE cubes. Large voids were included in the middle RVE, and small

voids were included in the small RVE. Table 4.1 shows the resulting area fractions found

through image analysis.

16

Figure 4.2 Size distributions of the inclusions in ultra-high performance concrete with
length scales used in representative volume element cubes.

Table 4.1 Average values for inclusions in ultra-high performance concrete found
through image analysis.

Inclusion Radius
(mm) Area % Nearest Neighbor

Distance (mm)
Number Density

(mm-2)
Small Void 0.000853 0.317 0.00832 1,350

Unhydrated Cement 0.00310 11.7 0.0114 2,290
Sand 0.123 22.3 0.322 4.44

Large Void 0.108 6.49 0.526 0.951
Steel Fiber 0.275 3.68 0.919 0.0593

Matrix - 55.51 - -

From the average values determined through image analysis, the damage can be

quantified using

𝜑 = 𝜂𝜐 (4.1)

17

where 𝜑 is the damage, 𝜂 is the number density (mm-2), and 𝜐 is the inclusion

area (mm2). The use of this equation with values from Table 4.1 allowed for the results

displayed in Table 4.2. These values are approximations, as the area of each void was

assumed to be a perfect circle. The poor bond between the fibers and the matrix causes

the fibers to act as cracks when the material is in compression. Using the volume of each

fiber (7.4 mm3), volume of the cylindrical specimen (667,000 mm3), and number of

fibers in each specimen (~2830), the damage associated with the fibers was found to be

0.0314.

Table 4.2 Calculated damage values for inclusions in ultra-high performance
concrete.

Inclusion Damage
Small Void 0.00309
Large Void 0.0349

The specimen of UHPC used for CT scanning gave interesting insight into the

UHPC material. Steel fibers within the matrix are supposed to be randomly distributed

and oriented, but as observed in Figure 4.3, the fibers all tend toward a similar

orientation. The large number of macroscopic voids within the material was not known

until this scan showed a high concentration of sizable voids. At this point, the decision to

account for voids at two length scales was made.

18

Figure 4.3 Computed Tomography (CT) scan of ultra-high performance concrete
showing a) approximately 3% steel fibers and b) large voids illustrated;
note that although the material’s behavior is isotropic, there is local
anisotropy from the fibers.

The volume fractions of air, cement, sand, and fibers were calculated for each

specimen tested. These values were found using the known batching mass percentages of

each inclusion, and the mass of each inclusion in a specimen was determined. Using the

specific gravity of each inclusion (besides air), the volume of these inclusions were

established. These values were found for M, FRP, and UHPC specimens tested.

By adding the volume fractions of the inclusions with the volume fractions of

water and various admixtures, an “ideal” volume was found. This “ideal” volume

contained no air; therefore, the difference between the “ideal” volume and the recorded

volume of the specimen was assumed to be air. Two major assumptions were made in

19

making these calculations. The first assumption was that no water was absorbed by the

sand, and that all the water in each specimen was retained throughout the entire curing

and testing process. The second assumption was that each of these specimens was ideally

batched, as each batch had enough materials to make 3 specimens. The results of these

calculations are shown in Table 4.3.

Table 4.3 Average volume fractions of the inclusions in ultra-high performance
concrete specimens.

 Average Volume %

Inclusion Mortar Fiber-Reinforced Paste Ultra-High Performance
Concrete

Air 4.54 1.83 2.42
Sand Grains 18.1 - 29.2

Fibers - 5.18 3.18

4.2 Mechanical Behavior

Mechanical testing enabled appropriate modeling by revealing information about

constituents in UHPC. The results from compression and tension tests are shown in

Figure 4.4. As cracks developed in the specimens, the stress-strain behavior became

unreliable; therefore, only the earlier (mostly linear) portions of the stress-strain curves

were plotted. A direct comparison of each constituent’s compressive and tensile

properties is shown in Figure 4.5 to highlight the different stress state dependences.

20

Figure 4.4 Stress-strain behavior of constituents showing different elastic moduli for
a) compression and b) tension tests and the effect of the steel fibers
included.

21

Figure 4.5 Comparison of each material’s compressive and tensile stress-strain
behavior to highlight cementitious materials’ heterogeneity in a) cement
paste, b) mortar (cement paste and sand), c) fiber-reinforced paste (cement
paste and steel fibers), and d) ultra-high performance concrete (cement
paste, sand, and steel fibers).

During testing, the elastic modulus was also found using a compressometer.

These values were compared to the elastic moduli determined from compressive stress-

strain testing, and the results are shown in Table 4.4. Elastic moduli and Poisson’s ratios

for inclusions in UHPC were found in the literature and are shown in Table 4.5. These

values were used with the Simple Rule of Mixtures (SROM) which was calculated by

𝐸𝑀 = (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑎𝑛𝑑 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.2)

𝐸𝐹𝑅𝑃 = (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑏𝑒𝑟𝑠 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.3)

22

𝐸𝑈𝐻𝑃𝐶 = (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑎𝑛𝑑 + (𝐸𝑉)𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑏𝑒𝑟𝑠 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.4)

where E is the elastic modulus from Tables 4.4 and 4.5, and V is the volume fraction

from Table 4.3. The information gathered from stress-strain behavior, compressometer

results, pulse velocity results, and the SROM are compared in Table 4.6.

Table 4.4 Percentage difference in elastic moduli found through compressometer and
stress-strain behavior, which led to the calculation of an average modulus
and standard deviation

Constituent % Difference Average
Modulus (GPa)

Standard
Deviation (GPa)

Cement Paste 38.93 29.54 11.5
Mortar 12.29 38.99 4.8

Fiber-Reinforced Paste 29.53 27.60 8.2
Ultra-High Performance Concrete 44.39 38.52 17.1

Table 4.5 Elastic modulus and Poisson’s ratio for inclusions in ultra-high
performance concrete.

Inclusion Elastic Modulus (GPa) Poisson’s Ratio
Unhydrated Cement Grain 135 [Smilauer and Bittnar 2006] 0.3 [Davydov et al. 2011]

Sand Grain 87.6 [Lutz et al. 1997] 0.17 [Lutz et al. 1997]
Steel Fiber 200 [Maalej and Li 1994] 0.3 [Maalej and Li 1994]

23

Table 4.6 Comparison of elastic moduli found through various procedures for
constituents of ultra-high performance concrete.

Constituent
Compression
Strain Gage

(GPa)

Tension
Strain Gage

(GPa)

Compresso-
meter (GPa)

Pulse
Velocity
(GPa)

Simple Rule
of Mixtures

(GPa)

Cement Paste 22.40 9.866 36.68 - -

Mortar 36.44 8.612 41.55 - 44.21

Fiber-Reinforced
Paste 22.81 6.965 32.37 - 44.47

Ultra-High
Performance

Concrete
27.53 22.19 49.51

57.90
[Williams et

al. 2009]
55.58

The mean size of each constituent was found using a Matlab script. This script

took the size of each individual constituent and plotted the number of occurrences of each

size. These plots show the wide distribution of sizes within this material, and a lognormal

curve was fitted to the probability curve. Figure 4.6 shows the fitted distributions for the

constituents of concern in UHPC. The equations for the lognormal curves enabled

modeling of constituents with distributed sizes. Values were input into the random

generation code, and RVE’s with different sized inclusions were made. Table 4.7

compares the mean radii and variances found through these fitted curves.

24

Figure 4.6 Probability of radius occurrence for inclusions in ultra-high performance
concrete fitted with lognormal curves.

Table 4.7 Mean radius and variance for each inclusion type from found through
lognormal fit curves.

Inclusion Mean Radius (mm) Radius Variance
Small Void 0.00090 0.000000063

Unhydrated Cement Grain 0.0029 0.0000035
Large Void 0.10 0.0026
Sand Grain 0.12 0.0017

4.3 Finite Element Analysis

A structural scale, UHPC beam in bending was simulated in the FE code Abaqus

[Abaqus 2014] using the specifications of an experiment conducted by ERDC [Scott et al.

25

2015]. The mesh created on this beam included 2,702 quadratic triangular elements and

5,577 nodes. The displacements caused by the loading conditions are shown in Figure

4.7. Also from the simulation, the crack path can be observed by examining the principal

strain. This is shown in Figure 4.8. Results from the test ERDC completed were

documented, and Figure 4.9 shows the crack propagation from the experiment.

Figure 4.7 Displacement (in mm) in the y-direction caused by the velocity applied to
the upper cylinders.

26

Figure 4.8 Max principal strain of the beam in bending.

Note the likely path of crack propagation that would have started on the tensile face.

Figure 4.9 Max principal strain of the beam in bending.

Note the likely path of crack propagation that would have started on the tensile face.

27

4.4 Geometry Generation

The resulting values from Table 4.1 were used to generate three RVE cubes, each

of a different size and including different inclusion types. Results from the structural

scale beam gave valuable insight into the UHPC’s behavior, but simulations at the

mesoscale will enable results with a new level of accuracy to be found. Figure 4.10

shows the matrix of the each of the three mesoscale RVE cubes. These cubes were then

meshed, and the results are shown in Figure 4.11. The mesh of Length Scale 1 was made

up of 1,344,350 tetrahedral elements, Length Scale 2 was made up of 887,345 tetrahedral

elements, and Length Scale 3 was made up of 2,389,963 tetrahedral elements and

125,557 hexahedral elements. Tetrahedral elements were used on the matrix and

spherical inclusions, while hexahedral elements were applied to the cylindrical

inclusions. All elements generated were linear to reduce simulation time. Simulations on

these meshed cubes will occur in the future using the material properties outlined in this

study.

28

Figure 4.10 Geometries generated using the area fractions and length scales found
through image analysis.

Figure 4.11 Meshed representative volume element cubes at varying length scales
showing unhydrated cement grains (blue), sand grains (yellow), and steel
fibers (purple).

29

To capture the distributed sizes of inclusions in UHPC, the results from the

lognormal fitted curves were input into the generation process, and Figure 4.12 displays

the distributed size RVE cubes. Since the variances are quite small, the different sizes are

hard to discern. A cube with inclusions of distributed sizes was not constructed for

Length Scale 3, as the fibers were manmade to be the same size. These RVE cubes will

be beneficial in future work involving mesoscale finite element simulations, as

comparisons will be made between results from cubes using the average size inclusion

and cubes with inclusions of distributed sizes.

Figure 4.12 Distributed sizes of inclusions based on lognormal fit curves in
representative volume element cubes.

30

CHAPTER V

CONCLUSIONS

Comparing the elastic moduli of the four constituents tested led to several

observations. The inclusion of fibers reduced the elastic modulus, as the fibers did not

fully bond to the matrix. Sand provided a much better cohesion to the matrix, since

mortar had a higher elastic modulus than fiber-reinforced paste in compression. The

variances in elastic moduli results from different methods increased the complication of

drawing further conclusions about the effects of different inclusions. Tensile testing of

cementitious materials provided many challenges, and the results varied widely. The

stress-strain curves shown in Figures 4.4 and 4.5 were based on one experiment;

therefore, more tests would need to be conducted to make more observations.

The orientation in fibers, observed through the CT scan, occurred during the

pouring of the concrete. The similar orientation of the fibers allowed for a greater

packing density within the matrix. When randomly generating RVE cubes, this

orientation also occurred. The large volume fraction of fibers resulted in this non-random

distribution, as all the fibers tried to fit and bond to the matrix.

In the FEA of the UHPC beam in bending, the crack started on the tensile face,

which would accurately represent the material. This model would be useful in future

work of transferring boundary conditions through the mesoscale lengths. The actual

fracture location on the physical beam started closer to the load head, while the FEA

31

simulation showed the crack starting almost equidistant between the two load heads.

Continued work on this project will work to provide more accurate simulations.

32

REFERENCES

Abaqus CAE (version 6.14). 2014. Dassault Systems.

Charron, J P, E Denarie, and E Bruhwiler. 2006. “Permeability of Ultra High
Performance Fiber Reinforced Concretes (UHPFRC) under High Stresses.”
Materials and Structures 40 (3): 269–77.

Davydov, D, M Jirasek, and L Kopcky. 2011. “Critical Aspects of Nano-Indentation
Technique in Application to Hardened Cement Paste.” Cement and Concrete
Research 41 (1): 20–29.

Garboczi, E, and D Bentz. 1995. “Modelling of the Microstructure and Transport
Properties of Concrete.” Construction and Building Materials 10 (5): 293–300.

Gokhale, A M, and S Yang. 1999. “Application of Image Processing for Simulation of
Mechanical Response of Multi-Length Scale Microstructures of Engineering
Alloys.” Metallurgical and Material Transactions A 30 (9): 2369–81.

Green, Brian, Robert Moser, Dylan Scott, and Wendy Long. 2014. “Ultra-High
Performance Concrete History and Usage by the United States Army Engineer
Research and Development Center.” Advances in Civil Engineering Materials 4
(2): 132–43.

Habel, K, M Viviani, E Denarie, and E Bruhwiler. 2006. “Development of the
Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete
(UHPFRC).” Cement and Concrete Research 36 (7): 1362–70.

Huang, Y, Z Yang, W Ren, G Liu, and C Zhang. 2015. “3D Meso-Scale Fracture
Modelling and Validation of Concrete Based on In-Situ X-Ray Computed
Tomography Images Using Damage Plasticity Model.” International Journal of
Solids and Structures 67–68 (August): 340–52.

Jupe, A C, A P Wilkinson, K Luke, and G P Funkhouser. 2008. “Class H Cement
Hydration at 180 Degree C and High Pressure in the Presence of Added Silica.”
Cement and Concrete Research 38 (5): 660–66.

Kosmatka, S H, and M L Wilson. 2011. Design and Control of Concrete Mixtures.
15thed. Skokie, Illinois, USA: Portland Cement Association.

33

Lopez, Z, I Carol, and A Aguado. 2008. “Meso-Structural Study of Concrete Fracture
Using Interface Elements. I: Numerical Model and Tensile Behavior.” Materials
and Structures 41 (3): 583–99.

Lutz, M, P Monteiro, and R Zimmerman. 1997. “Inhomogenous Interfacial Transition
Zone Model for the Bulk Modulus of Mortar.” Cement and Concrete Research 27
(7): 1113–22.

Maalej, M, and V Li. 1994. “Flexural/tensile-Strength Ratio in Engineered Cementitious
Composites.” Journal of Materials in Civil Engineering 6 (4): 513–28.

Moser, Robert, P Allison, and M Chandler. 2013. “Characterization of Impact Damage in
Ultra-High Performance Concrete Using Spatially Correlated
Nanoindentation/SEM/EDX.” Journal of Materials Engineering and Performance
22 (12): 3902–8.

Rivera-Soto, Paola, R D Moser, Z B McClelland, B A Williams, and S L Williams. n.d.
“Thermal Processing and Alloys Selection to Modify Steel Fiber Performance in
Ultra-High Performance Concrete.”

Roth, Michael. 2008. “Flexural and Tensile Properties of Thin, Very High-Strength,
Fiber-Reinforced Concrete Panels.” Engineer Research and Development Center:
US Army Corps of Engineers.

Schneider, C A, W S Rasband, and K W Eliceiri. 2012. “NIH Image to ImageJ: 25 Years
of Image Analysis.” Nature Methods 9 (7): 671–75.

Scott, Dylan, Wendy Long, Robert Moser, Brian Green, James O’Daniel, and Brett
Williams. 2015. “Impact of Steel Fiber Size and Shape on the Mechanical
Properties of Ultra-High Performance Concrete.” ERDC/GSL-TR-15-22.
Engineer Research and Development Center: Engineer Research and
Development Center Geotechnical and Structures Lab.

Smilauer, V, and Z Bittnar. 2006. “Microstructure-Based Micromechanical Prediction of
Elastic Properties in Hydrating Cement Paste.” Cement and Concrete Research 36
(9): 1708–18.

Taylor, H F W. 1997. Cement Chemistry. Second.

Unger, J, and S Eckardt. 2011. “Multiscale Modeling of Concrete.” Archives of
Computational Methods in Engineering 18 (3): 341–93.

Vecchio, F J. 1992. “Finite Element Modeling of Concrete Expansion and Confinement.”
Journal of Structural Engineering 118 (9): 2390–2406.

34

Wang, Xiaofeng, Mingzhong Zhang, and Andrey P Jivkov. 2016. “Computational
Technology for Analysis of 3D Meso-Structure Effects on Damage and Failure of
Concrete.” International Journal of Solids and Structures 80 (February): 310–33.

Williams, Erin, Steven Graham, Paul Reed, and Todd Rusing. 2009. “Laboratory
Characterization of Cor-Tuf Concrete With and Without Steel Fibers.” Engineer
Research and Development Center: US Army Corps of Engineers.

Zadeh, D, A Bahari, and F Tirandaz. 2008. “Ultra-High Performance Concrete.” In
Excellence in Concrete Construction through Innovation, 275–78.

Zollo, Ronald. 1997. “Fiber-Reinforced Concrete: An Overview after 30 Years of
Development.” Cement and Concrete Composites 19 (2): 107–22.

35

APPENDIX A

RANDOM GEOMETRY GENERATION PYTHON SCRIPT

36

G E O M E T R Y G E N E S I S

For: Dual phase nanocomposites adapted for concrete
Developed by: W.B. Lawrimore II - wbl59@msstate.edu
P.I.: M.Q. Chandler, PhD. - mei.q.chandler@erdc.dren.mil
U.S. Army Engineering Research and Development Center (ERDC)

Version: 2.0 - (12.15.13)

Imports and intitialization for ABAQUS
import random
import math
import time
import re
import string
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *
from abaqus import *

C L A S S D E F I N I T I O N S

37

Class Declaration: Cylinder
Variables:
index - A numbering scheme for the system
majAx - Disk major axis
minAx - Disk minor axis
thickness - Disk thickness
orient - 3D orientation [alpha, beta, gamma]
cen - Center point of disk
boundBox - Hexagonal volume disk occupies
-[minX, maxX]
-[minY, maxY]
-[minZ, maxZ]
boundPts - List of 8 nodes that form bounding box
volume - Volume of the disk

class Cylinder:
 def __init__(self, ind, data, orient, center, protuberance, inBT):
 # Instance Variables: filler attributes
 # Generated randomly from function below
 self.index = ind
 self.incType = 'cylinder'
 self.mat = data[0]
 self.majAx = data[3]
 self.minAx = data[4]
 self.intFactor = 1
 self.height = data[5]
 self.orient = orient
 self.cen = center

 self.inT = inBT[1]
 self.inB = inBT[0]

 self.boundBox = defBounds(self)
 # From boundaries, aggregate a list of the 8 points making the "hit box"
around each disk
 self.boundPts = []
 for x in range(0,2):
 for y in range(0,2):

38

 for z in range(0,2):
 self.boundPts.append([self.boundBox[0][x],
self.boundBox[1][y], self.boundBox[2][z]])
 self.protuberance = protuberance

 self.volume = math.pi*(self.majAx*self.minAx)*self.height*self.intFactor

 # Function: __str__
 # Purpose: Print a dictionary type description of disk
 # Returns: String containing disk attributes

 def __str__(self):
 return str(self.__dict__)

 def __setIn__(self,inB,inT):
 self.inB=inB
 self.inT=inT

 # Function: __eq__
 # Purpose: Is the proposed disk exactly the same as this one?
 # Returns: Boolean value: True if disks are equal False if they are not

 def __eq__(self, other):
 return self.__dict__==other.__dict__

Class Declaration: Sphere
Variables:
index - A numbering scheme for the system
radius - Cylinder Radius
cen - Center point of cylinder
boundBox - Hexagonal volume disk occupies
-[minX, maxX]
-[minY, maxY]
-[minZ, maxZ]
boundPts - List of 8 nodes that form bounding box
volume - Volume of the cylinder

39

class Sphere:
 def __init__(self, ind, data, center, protuberance, inBT):
 # Instance Variables: filler attributes
 # Generated randomly from function below
 self.index = ind
 self.incType = 'sphere'
 self.mat = data[0]
 self.radius = data[3]
 self.cen = center
 self.inT = inBT[1]
 self.inB = inBT[0]

 self.boundBox = defBounds(self)
 # From boundaries, aggregate a list of the 8 points making the "hit box"
around each disk
 self.boundPts = []
 for x in range(0,2):
 for y in range(0,2):
 for z in range(0,2):
 self.boundPts.append([self.boundBox[0][x],
self.boundBox[1][y], self.boundBox[2][z]])
 self.protuberance = protuberance

 self.volume = math.pi*(self.radius**3)

 # Function: __str__
 # Purpose: Print a dictionary type description of disk
 # Returns: String containing disk attributes

 def __str__(self):
 return str(self.__dict__)

 def __setIn__(self,inB,inT):
 self.inB=inB
 self.inT=inT

 # Function: __eq__
 # Purpose: Is the proposed disk exactly the same as this one?
 # Returns: Boolean value: True if disks are equal False if they are not

 def __eq__(self, other):

40

 return self.__dict__==other.__dict__

def defBounds(inclusion):
Initial dummy values
 boundX = [1000, -1000]
 boundY = [1000, -1000]
 boundZ = [1000, -1000]

 if inclusion.incType =='cylinder':
 # Using a radial mesh with a density of one node every 2 degrees, find the
bounds in cartesian space for the lower face
 # Account for nanodisk position and orientation in global 3D space
 for theta in drange(0, 2*math.pi, math.pi/180.0):
 stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx *
math.sin(theta), 0]
 stage2 = rot_trans_3D(stage1, inclusion.orient)
 stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] +
stage2[1], inclusion.cen[2] + stage2[2]]
 boundX = [min(stage3[0], boundX[0]), max(stage3[0],
boundX[1])]
 boundY = [min(stage3[1], boundY[0]), max(stage3[1],
boundY[1])]
 boundZ = [min(stage3[2], boundZ[0]), max(stage3[2], boundZ[1])]

 # Repeat process for upper face of disk.
 offset = inclusion.height
 for theta in drange(0, 2*math.pi, math.pi/180.0):
 stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx *
math.sin(theta), offset]
 stage2 = rot_trans_3D(stage1, inclusion.orient)
 stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] +
stage2[1], inclusion.cen[2] + stage2[2]]
 boundX = [min(stage3[0], boundX[0]), max(stage3[0],
boundX[1])]
 boundY = [min(stage3[1], boundY[0]), max(stage3[1],
boundY[1])]
 boundZ = [min(stage3[2], boundZ[0]), max(stage3[2], boundZ[1])]

 elif inclusion.incType =='sphere':

41

 # Using a radial mesh with a density of one node every 1 degree, find the
bounds in cartesian space for the lower face
 # Account for cylinder position and orientation in global 3D space
 boundX = [-inclusion.radius + inclusion.cen[0],
inclusion.radius+inclusion.cen[0]]
 boundY = [-inclusion.radius + inclusion.cen[1],
inclusion.radius+inclusion.cen[1]]
 boundZ = [-inclusion.radius + inclusion.cen[2],
inclusion.radius+inclusion.cen[2]]

 return [boundX, boundY, boundZ]

def makeNewInclusion(RVE_Dim, data, index):

 # Generate random location
 xCoord = random.uniform(0, 0.95*RVE_Dim)
 yCoord = random.uniform(0, 0.95*RVE_Dim)
 zCoord = random.uniform(0, 0.95*RVE_Dim)+0.5*data[5]

 protuberance=[]
 for i in range(3):
 protuberance.append([0,0])

 if data[1] == 'cylinder':
 alpha = random.uniform(-data[6], data[6])
 beta = random.uniform(-data[7], data[7])
 gamma = random.uniform(-data[8], data[8])

 newInc = Cylinder(index, data, [alpha, beta, gamma], [xCoord, yCoord,
zCoord], protuberance, [-1,-1])

 elif data[1] =='sphere':
 data_copy = data[:]
 if data_copy[6] == 1:
 rad = random.normalvariate(data[3],data[4])
 elif data_copy[6] == 2:
 safety = 1000
 trys = 0

42

 rad = 0
 while rad < data[7] and trys < safety:
 trys += 1
 rad = random.lognormvariate(data[3],data[4])
 if rad < data[7]:
 raise Exception("Try a smaller minimum size, or a larger
mean radius")
 data_copy[3] = rad
 newInc = Sphere(index, data_copy, [xCoord, yCoord, zCoord],
protuberance, [-1,-1])

 # Determine protuberance
 for i in range(len(newInc.boundBox)):
 for j in range(len(newInc.boundBox[i])):
 if (newInc.boundBox[i][j] < 0.0 or newInc.boundBox[i][j] >
RVE_Dim):
 protuberance[i][j] = 1
 newInc.protuberance = protuberance
 return newInc

Function: verifyInclusion
Purpose: Determine whether a new inclusion can be placed in matrix without
intersecting other inclusions or lying outside boundaries
Returns: Boolean value: True if the new inclusion is unique, completely within
matrix boundaries, has no intersections with other
inclusions, and is well spaced from other inclusions, False if any one of
those are not true

def verifyInclusion(currInc, RVE_Dim, masterList, maxRadius):
 # Booleans to denote whether a inlclusion satisfies all requirements.
 noIntersect = 1
 """
 if currInc.incType == 'cylinder':

43

 #criteria = 2*max(2*currInc.majAx, 2*currInc.minAx, currInc.height)
 criteria = RVE_Dim
 elif currInc.incType == 'sphere':
 criteria = 2*max(maxRadius, currInc.radius)
 """

 collisionList = []
 if len(masterList) > 0:
 for entry in masterList:
 #if distance(currInc.cen, entry[0].cen) <= criteria:
 collisionList.append(entry[0])

 i = 0
 #for i in range(0, len(regions)):
 testIncInd = 0
 #while noIntersect and testIncInd < len(regionList[regions[i]]):
 while noIntersect and testIncInd < len(collisionList):
 testInc = collisionList[testIncInd]
 collided = collisionDetect(currInc, testInc)
 if collided:
 noIntersect = 0
 testIncInd += 1

 return noIntersect

def collisionDetect(inc1, inc2):
 # Boolean Value
 collisionDetected = 0
 # Intersection vector

 if inc1.incType =='sphere' and inc2.incType =='sphere':
 if distance(inc1.cen, inc2.cen) <= (inc1.radius+inc2.radius):
 collisionDetected = 1
 else:
 xyzIn = [0,0,0]
 offset = 0
 # Test each bound edge for coincidence with the other inclusion's box
 for i in range(0, len(inc1.boundBox)):
 if (inc1.boundBox[i][0] >= inc2.boundBox[i][0]-offset) and
(inc1.boundBox[i][0] <= inc2.boundBox[i][1]+offset):

44

 xyzIn[i] = 1
 elif inc1.boundBox[i][1] >= inc2.boundBox[i][0]-offset and
inc1.boundBox[i][1] <= inc2.boundBox[i][1]+offset:
 xyzIn[i] = 1
 for i in range(0, len(inc2.boundBox)):
 if (inc2.boundBox[i][0] >= inc1.boundBox[i][0]-offset) and
(inc2.boundBox[i][0] <= inc1.boundBox[i][1]+offset):
 xyzIn[i] = 1
 elif inc2.boundBox[i][1] >= inc1.boundBox[i][0]-offset and
inc2.boundBox[i][1] <= inc1.boundBox[i][1]+offset:
 xyzIn[i] = 1
 #For intersections xyzIn = [1,1,1]
 if sum(xyzIn) == 3:
 collisionDetected = 1

 return collisionDetected

def generateCopies(newInc, RVE_Dim, index, maxRadius):
 goodCopies = 1
 axis = 0
 copies = []
 finalCopy = [0,0,0]
 currIndex = index
 for axis in range(len(newInc.protuberance)):
 alteredCoords=[]
 if newInc.protuberance[axis][0] ==1.0:
 finalCopy[axis] = 1.0
 elif newInc.protuberance[axis][1] == 1.0:
 finalCopy[axis] = -1.0
 if finalCopy[axis] != 0:
 currIndex = currIndex + 1
 for x in newInc.cen:
 alteredCoords.append(x)
 alteredCoords[axis] = alteredCoords[axis] +
finalCopy[axis]*RVE_Dim
 currCopy = copyInclusion(newInc, alteredCoords, currIndex,
RVE_Dim)
 if not currCopy[1]:
 goodCopies = 0
 #print 'MMT %i too small 1\n' %currIndex
 else:

45

 copies.append([currCopy[0],[0]])
 if len(copies) > 1:
 currIndex = currIndex + 1
 alteredCoords = []
 for x in newInc.cen:
 alteredCoords.append(x)
 for x in range(len(finalCopy)):
 alteredCoords[x] = alteredCoords[x] + finalCopy[x]*RVE_Dim
 currCopy = copyInclusion(newInc, alteredCoords, currIndex, RVE_Dim)
 if not currCopy[1]:
 goodCopies = 0
 #print 'MMT %i too small 2\n' %currIndex
 currIndex = currIndex-1
 else:
 copies.append([currCopy[0],[0]])
 copyIndex = 0
 while goodCopies and copyIndex < len(copies):
 verifyCopy = verifyInclusion(copies[copyIndex][0], RVE_Dim,
masterList, maxRadius)
 if not verifyCopy:
 goodCopies = 0
 else: copies[copyIndex][1] = verifyCopy
 copyIndex = copyIndex + 1
 return [goodCopies, copies, currIndex]

def copyInclusion(currInc, coords, index, RVE_Dim):
 tooSmall = 0
 if currInc.incType == 'cylinder':
 incData = [currInc.mat, currInc.incType,0, currInc.majAx, currInc.minAx,
currInc.height]
 newInc = Cylinder(index, incData, currInc.orient, coords,
[[0,0],[0,0],[0,0]],[-5, -5])
 contained= RVEcontainer(newInc,RVE_Dim)
 elif currInc.incType == 'sphere':
 incData = [currInc.mat, currInc.incType,0, currInc.radius, 0, 0]
 newInc = Sphere(index, incData, coords, [[0,0],[0,0],[0,0]],[-5, -5])
 contained= RVEcontainer(newInc,RVE_Dim)
 return [newInc, contained]

46

def RVEcontainer(inclusion, RVE_Dim):
 incount_B = 0
 incount_T = 0
 incount_XY = 0
 incount_XZ = 0
 incount_YZ = 0
 contained = 1
 if inclusion.incType == 'cylinder':
 theta = 0
 while theta < 2*math.pi:
 stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx *
math.sin(theta), 0]
 stage2 = rot_trans_3D(stage1, inclusion.orient)
 stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] +
stage2[1], inclusion.cen[2] + stage2[2]]
 if (stage3[0] > 0) and (stage3[0] < RVE_Dim):
 if (stage3[1] > 0) and (stage3[1] < RVE_Dim):
 if (stage3[2] > 0) and (stage3[2] < RVE_Dim):
 incount_B += 1
 theta = theta + math.pi/180
 theta = 0
 while theta < 2*math.pi:
 stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx *
math.sin(theta), (13+(inclusion.intFactor-1)*4)]
 stage2 = rot_trans_3D(stage1, inclusion.orient)
 stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] +
stage2[1], inclusion.cen[2] + stage2[2]]
 if (stage3[0] > 0) and (stage3[0] < RVE_Dim):
 if (stage3[1] > 0) and (stage3[1] < RVE_Dim):
 if (stage3[2] > 0) and (stage3[2] < RVE_Dim):
 incount_T += 1
 theta = theta + math.pi/180
 if incount_B < 180 and incount_T <180:
 contained = 0
 inclusion.inB = incount_B
 inclusion.inT = incount_T

 elif inclusion.incType == 'sphere':
 theta = 0

47

 while theta < 2*math.pi:
 stage1 = [inclusion.radius*math.cos(theta), 0,
inclusion.radius*math.sin(theta)]
 stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1],
inclusion.cen[2]+stage1[2]]

 if (stage2[0] > 0) and (stage2[0] < RVE_Dim):
 if (stage2[1] > 0) and (stage2[1] < RVE_Dim):
 if (stage2[2] > 0) and (stage2[2] < RVE_Dim):
 incount_XZ += 1
 theta = theta + math.pi/180
 theta = 0
 while theta < 2*math.pi:
 stage1 = [0,inclusion.radius*math.cos(theta),
inclusion.radius*math.sin(theta)]
 stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1],
inclusion.cen[2]+stage1[2]]
 if (stage2[0] > 0) and (stage2[0] < RVE_Dim):
 if (stage2[1] > 0) and (stage2[1] < RVE_Dim):
 if (stage2[2] > 0) and (stage2[2] < RVE_Dim):
 incount_YZ += 1
 theta = theta + math.pi/180
 theta = 0
 while theta < 2*math.pi:
 stage1 = [inclusion.radius*math.cos(theta),
inclusion.radius*math.sin(theta),0]
 stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1],
inclusion.cen[2]+stage1[2]]
 if (stage2[0] > 0) and (stage2[0] < RVE_Dim):
 if (stage2[1] > 0) and (stage2[1] < RVE_Dim):
 if (stage2[2] > 0) and (stage2[2] < RVE_Dim):
 incount_XY += 1
 theta = theta + math.pi/180
 if incount_XZ < 50 and incount_YZ<50 and incount_XY<50:
 contained = 0
 return contained

Function: buildGeometry

48

Purpose: Take the array of generated inclusions and issue commands to ABAQUS
CAE to create the geometry, mesh, and periodic boundary
conditions of the UHPC composite
Returns: None

def buildGeometry(RVE_Dim, masterList, modelName, matName, incMatList):
 indicies = []
 newInd = []
 # Tell abaqus to use detailed commands
 session.journalOptions.setValues(replayGeometry=COORDINATE,
recoverGeometry=COORDINATE)
 # Generate new model with custom name
 # Delete old model
 mdb.Model(name=modelName)
 del mdb.models['Model-1']
 model = mdb.models[modelName]

 rve = 'RVE_Box'
 # Create matrix
 # Cube with side length imported from input file
 model.ConstrainedSketch(name=rve, sheetSize=RVE_Dim)
 model.sketches[rve].rectangle(point1=(0,0), point2=(RVE_Dim, RVE_Dim))
 model.Part(dimensionality=THREE_D, name=rve,
type=DEFORMABLE_BODY)
 model.parts[rve].BaseSolidExtrude(depth=RVE_Dim,
sketch=model.sketches[rve])
 model.parts[rve].BaseShell(sketch=model.sketches[rve])
 del model.sketches[rve]

 model.Material(name=matName)
 model.HomogeneousSolidSection(material=matName, name='Matrix',
thickness=None)
 model.parts[rve].SectionAssignment(offset=0.0, offsetField='',
offsetType=MIDDLE_SURFACE,
region=Region(cells=model.parts[rve].cells.findAt(((0,0,0),),)), sectionName='Matrix',
thicknessAssignment=FROM_SECTION)

 # Create a material and section for each inclusion material
 for mat in incMatList.keys():
 model.Material(name=mat)

49

 model.HomogeneousSolidSection(material=mat, name=mat,
thickness=None)

 # Establish an assembly
 # Import matrix
 model.rootAssembly.DatumCsysByDefault(CARTESIAN)
 model.rootAssembly.Instance(dependent=ON, name=rve, part=model.parts[rve])

 # Define lists for inclusion names and their instance objects
 cNames = []
 instList = []
 voidList = []
 ENames = []
 prtList = []

 assembly = model.rootAssembly

 # Add inclusions into assembly
 for inc in masterList:
 incMatList[inc[0].mat].append(inc[0])
 #incMatNum = len(incMatList[inc[0].mat])
 incMatNum = inc[0].index
 incName = inc[0].mat + '_' + str(incMatNum)
 dbf.write('Inc %i: %4.4f %4.4f %4.4f\n' %(inc[0].index, inc[0].cen[0],
inc[0].cen[1], inc[0].cen[2]))

 # Create part
 model.ConstrainedSketch(name=incName, sheetSize=RVE_Dim)

 if inc[0].incType == 'cylinder':

 model.sketches[incName].EllipseByCenterPerimeter(axisPoint1=(inc[0].majAx,
0.0), axisPoint2=(0.0, inc[0].minAx), center=(0.0, 0.0))
 model.Part(dimensionality=THREE_D, name=incName,
type=DEFORMABLE_BODY)
 model.parts[incName].BaseSolidExtrude(depth=inc[0].height,
sketch=model.sketches[incName])
 model.parts[incName].SectionAssignment(offset=0.0,
offsetField='', offsetType=MIDDLE_SURFACE,
region=Region(cells=model.parts[incName].cells.findAt(((0,0,0),),)),
sectionName=inc[0].mat, thicknessAssignment=FROM_SECTION)

50

 model.parts[incName].Surface(name='Front',
side1Faces=model.parts[incName].faces.findAt(((0, 0, inc[0].height),),
((inc[0].majAx/2.0, inc[0].minAx/2.0, inc[0].height),),))
 model.parts[incName].Surface(name='Back',
side1Faces=model.parts[incName].faces.findAt(((0.0,0.0, 0.0),), ((inc[0].majAx/2.0,
inc[0].minAx/2.0, 0.0),),))
 model.parts[incName].Surface(name='Edge',
side1Faces=model.parts[incName].faces.findAt(((inc[0].majAx, 0.0, inc[0].height/2.0),),
((0.0, inc[0].minAx, inc[0].height/2.0),), ((-inc[0].majAx, 0.0, inc[0].height/2.0),),))
 for key in incMatList.keys():
 results = key.find(inc[0].mat)
 if results != -1:

 model.parts[incName].SectionAssignment(offset=0.0, offsetField='',
offsetType=MIDDLE_SURFACE,
region=Region(cells=model.parts[rve].cells.findAt(((inc[0].cen),),)), sectionName=key,
thicknessAssignment=FROM_SECTION)
 elif inc[0].incType == 'sphere':
 model.sketches[incName].ConstructionLine(point1=(0.0, -
RVE_Dim/2.0), point2=(0.0, RVE_Dim/2.0))
 model.sketches[incName].geometry.findAt((0.0, 0.0))

 model.sketches[incName].FixedConstraint(entity=model.sketches[incName].geo
metry.findAt((0.0, 0.0),))
 model.sketches[incName].ArcByCenterEnds(center=(0.0, 0.0),
direction=CLOCKWISE, point1=(0.0, inc[0].radius), point2=(0.0, -inc[0].radius))
 model.sketches[incName].Line(point1=(0.0, inc[0].radius),
point2=(0.0, -inc[0].radius))
 model.sketches[incName].geometry.findAt((0.0, -inc[0].radius))
 model.sketches[incName].VerticalConstraint(addUndoState=False,
entity=model.sketches[incName].geometry.findAt((0.0, -inc[0].radius),))
 model.sketches[incName].geometry.findAt((inc[0].radius, 0.0))
 model.sketches[incName].geometry.findAt((0.0, -inc[0].radius))

 model.sketches[incName].PerpendicularConstraint(addUndoState=False,
entity1=model.sketches[incName].geometry.findAt((inc[0].radius, 0.0),),
entity2=model.sketches[incName].geometry.findAt((0.0, -inc[0].radius),))
 model.Part(dimensionality=THREE_D, name=incName,
type=DEFORMABLE_BODY)
 model.parts[incName].BaseSolidRevolve(angle=360.0,
flipRevolveDirection=OFF, sketch=model.sketches[incName])
 model.parts[incName].Surface(name='Surf',
side1Faces=model.parts[incName].faces.findAt(((inc[0].radius, 0, 0),)))
 for key in incMatList.keys():
 results = key.find(inc[0].mat)

51

 if results != -1:

 model.parts[incName].SectionAssignment(offset=0.0, offsetField='',
offsetType=MIDDLE_SURFACE,
region=Region(cells=model.parts[rve].cells.findAt(((inc[0].cen),),)), sectionName=key,
thicknessAssignment=FROM_SECTION)

 del model.sketches[incName]

 assembly.Instance(dependent=OFF, name=incName,
part=model.parts[incName])
 # Rotate and translate inclusion in 3D space
 if inc[0].incType == 'cylinder':
 assembly.rotate(angle=inc[0].orient[1], axisDirection=(0.0, 1.0,
0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,))
 assembly.rotate(angle=inc[0].orient[2], axisDirection=(0.0, 0.0,
1.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,))
 assembly.rotate(angle=inc[0].orient[0], axisDirection=(1.0, 0.0,
0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,))
 assembly.translate(instanceList=(incName,), vector=(inc[0].cen))

 if inc[1]:
 if inc[0].mat != 'Void':
 try:

 assembly.InstanceFromBooleanCut(cuttingInstances=(assembly.instances[rve],),
instanceToBeCut=assembly.instances[incName], name=incName + 'T',
originalInstances=SUPPRESS)
 except (AbaqusException), value:
 print "CUT ERROR1"
 print "Inclusion %d inT: %d inB:%d\n"
%(incMatNum, inc[0].inT, inc[0].inB)
 print "Cen: %f, %f, %f"
%(inc[0].cen[0],inc[0].cen[1],inc[0].cen[2])
 assembly.features[incName].resume()
 assembly.features[rve].resume()
 try:

 assembly.InstanceFromBooleanCut(cuttingInstances=(assembly.instances[incNa
me + 'T-1'],), instanceToBeCut=assembly.instances[incName], name=incName+ '_C',
originalInstances=DELETE)
 except (AbaqusException), value:
 print "CUT ERROR2"
 print "Inclusion %d inT: %d inB:%d\n"
%(incMatNum, inc[0].inT, inc[0].inB)

52

 print "Cen: %f, %f, %f"
%(inc[0].cen[0],inc[0].cen[1],inc[0].cen[2])
 print 'Protuberance'
 print inc[0].protuberance
 assembly.features.changeKey(fromName=incName+ '_C' +
'-1', toName=incName)
 del model.parts[incName + 'T']

 assembly.makeIndependent(instances=(assembly.instances[incName],))
 del model.parts[incName]
 model.parts.changeKey(fromName=incName+ '_C',
toName=incName)

 if inc[0].mat == 'Void':
 voidList.append(assembly.instances[incName])
 else:
 cNames.append([incName, inc[0].incType])
 instList.append(assembly.instances[incName])
 # Progress report
 if inc[0].index%100 == 0 and inc.index > 0:
 print("Inclusions Inserted " + str(inc[0].index))

 print("Carving voids in matrix for inclusions to occupy")
 if len(voidList) > 0:
 assembly.InstanceFromBooleanCut(cuttingInstances=(voidList),
instanceToBeCut=assembly.instances[rve], name=rve, originalInstances=DELETE)
 # After all inclusions added, cut out overlapping sections of the matrix
 assembly.InstanceFromBooleanCut(cuttingInstances=(instList),
instanceToBeCut=assembly.instances[rve+'-1'], name=matName,
originalInstances=SUPPRESS)
 del assembly.features[rve+'-1']
 else:
 assembly.InstanceFromBooleanCut(cuttingInstances=(instList),
instanceToBeCut=assembly.instances[rve], name=matName,
originalInstances=SUPPRESS)

 assembly.resumeFeatures((col(cNames,0)))

 assembly.features.changeKey(fromName=matName + '-1',
toName=matName+'_Box')
 assembly.makeIndependent(instances=(assembly.instances[matName+'_Box'],))

53

 # Tie Coplanar faces together
 i = 0
 for i in range(len(cNames)):
 names = col(cNames, 0)
 types = col(cNames,1)
 if types[i] == 'cylinder':
 surfs = ['Front', 'Back','Edge']
 elif types[i] =='sphere':
 surfs = ['Surf']
 for s in surfs:
 j=0
 found = 0
 minD = RVE_Dim
 for face in assembly.instances[names[i]].surfaces[s].faces:
 bCent= face.getCentroid()[0]
 while not found and j <
len(assembly.instances[matName+'_Box'].faces):
 matFace =
assembly.instances[matName+'_Box'].faces[j]
 matCent = matFace.getCentroid()[0]
 if distance(bCent, matCent) < minD:
 minD = distance(bCent, matCent)
 minFace = matFace
 minFPoint = matFace.pointOn[0]
 j = j+1
 surfName = str(matName +'_' +names[i])
 assembly.Surface(name=surfName,
side1Faces=assembly.instances[matName+'_Box'].faces.findAt(((minFPoint),)))
 model.Tie(adjust=ON, master=assembly.surfaces[surfName],
name=names[i]+'_'+str(s) , positionToleranceMethod=COMPUTED,
slave=assembly.instances[names[i]].surfaces[s], thickness=ON, tieRotations=ON)

Funtion: drange
Purpose: Define a range of values with a non-default, prescribed step.
def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r += step

Funtion: distance
Purpose: Calculate the 2D cartesian distance between 2 points.

54

def distance(point1,point2):
 return math.sqrt((point2[0]-point1[0])**2 + (point2[1]-point1[1])**2 +
(point2[2]-point1[2])**2)

Funtion: rot_trans_3D
Purpose: Performs vector rotation transformation on a given point by a given
angle.
def rot_trans_3D(point, orient):
 radAlpha = math.radians(orient[0])
 radBeta = math.radians(orient[1])
 radGamma = math.radians(orient[2])
 # Equivalent to the multiplication of the three rotation matricies
 # Order [Rot abt Y-axis] * [Rot abt Z-axis] * [Rot abt X-axis]
 xPrime = math.cos(radGamma)*math.cos(radBeta)*point[0] -
math.sin(radGamma)*point[1] + math.cos(radGamma)*math.sin(radBeta)*point[2]
 yPrime =
(math.cos(radAlpha)*math.sin(radGamma)*math.cos(radBeta)+math.sin(radAlpha)*mat
h.sin(radBeta))*point[0] +
math.cos(radAlpha)*math.cos(radGamma)*point[1]+(math.cos(radAlpha)*math.sin(radG
amma)*math.sin(radBeta)-math.sin(radAlpha)*math.cos(radBeta))*point[2]
 zPrime = (math.sin(radAlpha)*math.sin(radGamma)*math.cos(radBeta)-
math.cos(radAlpha)*math.sin(radBeta))*point[0] +
math.sin(radAlpha)*math.cos(radGamma)*point[1]+(math.sin(radAlpha)*math.sin(radG
amma)*math.sin(radBeta)+math.cos(radAlpha)*math.cos(radBeta))*point[2]
 return [xPrime, yPrime, zPrime]

def col(matrix, n):
 return [column[n] for column in matrix]

fields = (('Model Name:','Cor-Tuf'), ('Matrix Material:','Cement Paste'), ('RVE
Dimension:','10'), ('Number of Incusion Types:','1'))

modelName, matrixName, RVE_Dim, Num_Inc_types = getInputs(fields=fields,
label='Input Parameters', dialogTitle='Composite Geometry Genesis')

RVE_Dim = float(RVE_Dim)
Num_Inc_types = int(Num_Inc_types)
incData= []

55

matList={}

for k in range(Num_Inc_types):
 newMat = 1
 Incfields = (('Material Name:', 'Void'),('Geometry (1-Cylinder, 2-Sphere)',
'2'),('Volume Fraction (%):', '1'),('Geometry Distribution Function (1-Gaussian, 2-
Lognormal)','2'))
 name, geom, vfrac, gdist = getInputs(fields=Incfields, label='Inclusion Type
'+str(k+1), dialogTitle='Inclusion Type '+str(k+1))
 geom = float(geom)
 gdist = int(gdist)

 for mat in matList.keys():
 if mat == name:
 newMat = 0
 if newMat:
 matList[name]=[]

 if geom == 1:
 gType = 'cylinder'
 cylFields = (('Major Radius:','0.08'),('Minor Radius:','0.08'),('Height:','6'),
('Maximum Alpha (deg):','360'), ('Maximum Beta (deg):','360'), ('Maximum Gamma
(deg):','360'))
 majR, minR, height, alpha, beta,gamma = getInputs(fields=cylFields,
label=name+' Parameters', dialogTitle=name+ 'Parameters')
 incData.append([name, gType, float(vfrac), float(majR), float(minR),
float(height), float(alpha), float(beta), float(gamma)])
 elif geom == 2:
 gType = 'sphere'
 if gdist == 1:
 sphFields = (('Mean Radius:','0.5'),('Min Radius','0.005'),('Standard
Deviation:','0.001'))
 elif gdist == 2:
 sphFields = (('Mean Radius:','0.5'),('Min Radius','0.005'),('Log
Standard Deviation:','1.0'))
 rad, rmin, rstd = getInputs(fields=sphFields, label=name+' Parameters',
dialogTitle=name+ ' Parameters')
 if gdist == 1:
 rad = float(rad)
 rstd = float(rstd)
 rmin = float(rmin)
 elif gdist == 2:
 m = float(rad)
 rad = log(m) - float(rstd[0])**2 / 2
 rstd = float(rstd)

56

 rmin = float(rmin)
 incData.append([name, gType, float(vfrac), rad, rstd, 0, gdist,rmin,0])

trys = 0
masterList = []
index = 0
num = 0
maxRadius = 0

safety = 500000

dbf = open('debug.txt' ,'w')

for inc in incData:
 currFrac = 0
 currVol = 0
 while currFrac < inc[2] and trys <= safety:
 newInc = makeNewInclusion(RVE_Dim, inc, index)
 verified = verifyInclusion(newInc, RVE_Dim, masterList, maxRadius)
 edgeFlag = 0
 if verified:
 verified2 = [1,0,0]
 for ax in range(len(newInc.protuberance)):
 for lvl in newInc.protuberance[ax]:
 if lvl == 1:
 edgeFlag= 1
 if edgeFlag:
 verified2 = generateCopies(newInc, RVE_Dim, index,
maxRadius)
 if verified2[0]:
 num+=1
 currVol = currVol + newInc.volume
 masterList.append([newInc, edgeFlag])
 if newInc.incType == 'sphere':
 if newInc.radius > maxRadius:
 maxRadius = newInc.radius

 if verified2[1]:
 for copy in verified2[1]:
 masterList.append([copy[0], edgeFlag])
 if verified2[2]:
 index = verified2[2]+1
 else: index = index + 1

57

 currFrac = float(currVol/RVE_Dim**3)*100
 if trys%100 == 0 and trys > 0:
 print("Progress after %d trys." %trys)
 print(inc[0] + " Inclusions: %d" %num)
 print(inc[0] + " Volume fraction: " + str(currFrac) + "%")
 trys = trys+1

exit=0
if trys >= safety:
 decision = getWarningReply('Safety reached before deisred volume fraction.\n
Generate geometry anyway?', (YES,NO))
 if str(decision) =='NO':
 exit = 1

if not exit:

 print("Inserting inclusion collection into matrix")
 # After either volume fraction or safety is reached submit geometry to ABAQUS
for construction
 buildGeometry(RVE_Dim, masterList, modelName, matrixName, matList)

 dbf.close()

 # Save the abaqus model
 mdb.saveAs(pathName='CGG_Test.cae')
else:
 print 'Aborting Geometry Genesis'

	Multiscale Structure-Property Relationships of Ultra-High Performance Concrete
	Recommended Citation

	tmp.1625165283.pdf.zafaf

