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The structure-property relationships of Ultra-High Performance Concrete (UHPC) 

were quantified using imaging techniques to characterize the multiscale hierarchical 

heterogeneities and the mechanical properties. Through image analysis the average size, 

percent area, nearest neighbor distance, and relative number density of each inclusion 

type was determined and then used to create Representative Volume Element (RVE) 

cubes for use in Finite Element (FE) analysis. Three different size scale RVEs at the 

mesoscale were found to best represent the material: the largest length scale (35 mm side 

length) included steel fibers, the middle length scale (0.54 mm side length) included large 

voids and silica sand grains, and the smallest length scale (0.04 mm side length) included 

small voids and unhydrated cement grains. By using three length scales of mesoscale FE 

modeling, the bridge of information to the macroscale cementitious material model is 

more physically based. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Ultra-High Performance Concrete (UHPC) is defined as having a compressive 

strength over 150 MPa and a tensile strength over 8 MPa [Habel et al. 2006]. This 

strength is accomplished by the exclusion of coarse aggregate, inclusion of silica fume, 

and reduction of the water to binder ratio [Zadeh et al. 2008]. Figure 1.1 shows the 

macroscopic differences between ordinary concrete and UHPC. The adjustments made to 

UHPC also improve the density of the mixture, making it less permeable than ordinary 

concrete. The impermeability makes the material useful in highly corrosive environments 

and environments subjected to high strain rates [Charron et al. 2006].  

 

Figure 1.1 Macroscopic comparison of a) ordinary concrete and b) ultra-high 
performance concrete.  

The differences in aggregate sizes and the presence of steel fibers differentiate the two 
materials.  
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A key aspect in the enhanced performance of UHPC is the use of steel fibers. For 

over 50 years, Fiber-Reinforced Concrete (FRC) has been a promising avenue for 

cementitious material improvement [Zollo 1997]. Ordinary concrete displays 

characteristics associated with brittle materials, but FRC has shown enhanced ductility in 

tensile testing. These improvements have been linked to fibers that bridge cracks at 

different length scales [Scott et al. 2015]. Work has been done to determine the material 

characteristics of these fibers and methods to improve their performance [Rivera-Soto et 

al.]. Experimentation of fiber size, shape, and material has helped improve the pull-out 

properties of the fibers. Figure 1.2 shows the size and shape of fibers used throughout this 

study. 

 

Figure 1.2 Size and shape of fibers used in ultra-high performance concrete 
throughout this work. 
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With UHPC’s densely packed morphology, the primary length scale of focus is 

the mesoscale. This range shows the distribution and sizes of all the pertinent 

constituents, which include steel fibers, sand grains, unhydrated cement grains, silica 

fume, and voids. Nano-indentation tests were conducted to quantify some of the 

mesoscale material properties of these constituents by Moser et al. [2013]. Computed 

Tomography (CT) has also been used to quantify the volumetric characteristics of the 

material’s inclusions [Huang et al. 2015]. These characteristics further confirm the 

multiscale properties of cementitious materials, which are key in fully understanding the 

material’s behavior [Unger and Eckardt 2011]. 

The goal of modeling cementitious materials was in place long before the 

technology, but by the early 1990s strides were made towards this objective [Vecchio 

1992]. Further models began to utilize the two main phases of concrete, the aggregate and 

matrix, and development of these basic models has led to more robust and reliable results 

[Lopez et al. 2008]. The complexity of these models has increased, and multiple 

constituents have been included along with the Interfacial Transition Zone (ITZ) 

[Garboczi and Bentz 1995]. From there, the size and shapes of constituents have been 

considered in finite element models [Wang et al. 2016]. 

From nanometer sized voids to centimeter length steel fibers, UHPC has a range 

of lengths that is incompatible with structural scale Finite Element Analysis (FEA). This 

disagreement stems from the element sizes that are best suited for each inclusion. These 

difficulties in modeling can result in an inability to represent the “coupling effect” that 

the microstructural features have at increasing length scales [Gokhale and Yang 1999]. 
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The use of multiple length scales in modeling would help capture this effect, and improve 

cementitious modeling. 

The Chemistry-Process-Structure-Property-Performance (CPSPP) sequence is a 

useful technique in multiscale modeling. In this work, the CPSPP structure will aid in 

determining the cause-effect quantification of relationships within UHPC. Figure 1.3 

outlines this method. While cement chemistry is not the main focus of this work, it is 

important to consider the unique constitution of cement when modeling concrete. Curing 

is the method by which UHPC hardens and results from hydration of the cement particles 

creating a glue to bond the inclusions together. UHPC’s structure has features at various 

length scales, and the distribution of inclusions impact the material’s performance. 

Several properties were found via mechanical testing, and these results helped determine 

the performance of the material in terms of fracture and ductility. 
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Figure 1.3 Chemistry-process-structure-property-performance method for determining 
cause and effect relationships.  

This work focuses on the forward looking cause-effect relationships.  

 

Since the 1980s, the Engineer Research and Development Center (ERDC) has 

been testing UHPC in varying applications and has developed a UHPC material called 

Cor-Tuf Baseline [Green et al. 2014]. All further references to UHPC will imply the use 

of Cor-Tuf Baseline mix and its curing procedures. This material will be the focus of this 

study, as accurately modeling this material is of current interest. Knowledge of the 

mechanical properties and mesoscale characteristics of Cor-Tuf Baseline will enable 

improved predictability of the material model. 
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CHAPTER II 

MATERIAL CHARACTERIZATION 

To determine the cause-effect relationship within UHPC, several experimental 

methods were employed. These processes included examination of the chemistry of 

cementitious materials, the curing procedure of UHPC, Scanning Electron Microscope 

(SEM) imaging, ImageJ image analysis, CT scanning, and mechanical testing. At the 

structural scale, a UHPC beam in bending was modeled with FEA assuming a 

homogenous medium. Then, the mesoscale characteristics of UHPC, which included 

different length scales of heterogeneous structures, were broken down into three length 

scales for improved modeling results. Constituents quantified were steel fibers, large 

voids, sand grains, unhydrated cement grains, and small voids. 

2.1 Cement Chemistry 

 Cement chemistry is a complicated field, as cement is made by heating 

materials like limestone and clay until they partially fuse. These materials are then mixed 

with calcium sulfate and ground down into a powder [Taylor 1997]. This process can 

result in cement grains with varying properties, which can result in different reactions 

during hydration. Ordinary concrete is produced by mixing water, Portland cement, and 

aggregate. The cement is hydrated by the water and forms a paste; this paste acts as a 

glue that holds the aggregate together. Class H cement, which is commonly used in oil 

wells, was used in the UHPC tested throughout this work. The chemistry associated with 



 

7 

this material is shown in Table 2.1. Upon hydration, the unhydrated cement grains go 

through the following reactions, 

2(3𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 11𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 + 3(𝐶𝑎𝑂 ∙ 𝐻2𝑂) (2.1) 

2(2𝐶𝑎𝑂 ∙ 𝑆𝑖𝑂2) + 9𝐻2𝑂 = 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 + 𝐶𝑎𝑂 ∙ 𝐻2𝑂 (2.2) 

4𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝐹𝑒2𝑂3 + 10𝐻2𝑂 + 2(𝐶𝑎𝑂 ∙ 𝐻2𝑂) = 6𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝐹𝑒2𝑂3 ∙ 12𝐻2𝑂 (2.3) 

3𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 + 3(𝐶𝑎𝑂 ∙ 𝑆𝑂3 ∙ 2𝐻2𝑂) + 26𝐻2𝑂 = 6𝐶𝑎𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 3𝑆𝑂3 ∙ 32𝐻2𝑂 (2.4) 

where 3𝐶𝑎𝑂 ∙ 2𝑆𝑖𝑂2 ∙ 8𝐻2𝑂 is Calcium Silicate Hydrate (C-S-H), which is the primary 

form of cementitious binder [Kosmatka and Wilson 2011].  

Table 2.1 Phases and percentages present in Class H cement [Jupe et al. 2008]. 

Phases Present Cement Chemist 
Notation 

% Present 
3 CaO • SiO2 C3S 47.1 
2 CaO • SiO2 C2S 28.3 

4 CaO • Al2O3• Fe2O3 C4AF 17.0 
3 CaO • Al2O3 C3A 0.65 

CaSO4 CS̅ 4.72 
MgO M 1.09 
K2O K 0.45 
TiO2 T 0.18 

 

2.2 Curing 

All UHPC examined in this study followed the same curing procedure, which 

lasted a total of two weeks. Specimens were mixed together, poured into molds, and then 

kept moist for 24-48 hours until completely set. After a day or two in the molds, 

specimens were removed and placed in a Fog Room (100% humidity and 21.1-25°C) for 

six days. When the six days were over, the specimens were placed into a room 

temperature water bath and then the bath was heated to 90°C to reduce the likelihood of 
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cracking due to sudden temperature change. Steam curing in the water bath lasted seven 

days, after which the water bath was dropped back to room temperature. The specimens 

were then removed from the bath and shelved to await testing. 

2.3 Imaging 

Lower magnification images were taken using a ZEISS Axiovert 200 optical 

microscope at the Center for Advanced Vehicular Systems (CAVS). A SUPRA 40 FEG-

SEM, also at CAVS, was used to take higher magnification images. The surfaces of the 

concrete specimens were ground smooth before imaging to ensure quality pictures. The 

combination of the low and high magnification microscopes allowed for images to be 

taken at a variety of length scales to accurately capture the distributions of each 

constituent. 

2.4 ImageJ 

The image processing tool, ImageJ, was used for analyzing images [Schneider et 

al. 2012]. This software was utilized to identify, isolate, and measure constituents. Figure 

2.1 shows this process. These results allowed for the determination of the average size, 

number density, area fraction, and nearest neighbor distance of each constituent. ImageJ 

was used on multiple images at varying length scales to ensure accurate results were 

found for each of the constituents. 
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Figure 2.1 ImageJ process for turning a) scanning electron microscope images to a b) 
binary image and then to c) isolated inclusions. 

 

2.5 Computed Tomography (CT) Scan 

The Phoenix X-Ray CT system with dual focus, reaching one micron resolution, 

at CAVS was used for 3D imaging. CT scans were conducted on a UHPC cube with sides 

of approximately 50 mm. The CT scan could only distinguish the larger constituents, 

large voids, and steel fibers, helping to determine the 3D characteristics of UHPC. The 

large voids, which arise from entrapped air during mixing, had previously been ignored 

until these scans showed their high frequency of occurrence. The orientation of the fibers 

was assumed to be random, but the CT scan aided in observing the locations of the fibers 

within the matrix. 

2.6 Mechanical Testing 

Mechanical testing was accomplished using the equipment at the Construction 

Materials Research Center at Mississippi State. Cylinders of Cement Paste (CP), Mortar 

(M), Fiber-Reinforced Paste (FRP), and UHPC were subjected to testing to obtain elastic 

moduli, stress-strain behavior, compressive strengths, and tensile strengths. The materials 

involved in each of the constituent mixtures are outlined in Table 2.2. Compressive tests 
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were conducted according to ASTM C39, tensile tests were conducted according to 

ASTM C496, and elastic modulus tests were conducted according to ASTM C469. Figure 

2.2 shows the setup that was used in the compression and tension tests. The testing of 

these combinations of constituents enabled more accurate FE modeling, as the 

characteristics of each constituent were known. 

Table 2.2 Breakdown of the material (inclusion) types used in each constituent 
mixture. 

Constituent Cement 
Matrix Voids Unhydrated 

Cement Grains 
Sand 

Grains 
Steel 

Fibers 
 

Cement Paste X X X    
Mortar X X X X   

Fiber-Reinforced Paste X X X  X  
Ultra-High Performance Concrete X X X X X  

 

 

Figure 2.2 Schematic of the a) compression and b) indirect tensile tests completed on 
ultra-high performance concrete and constituents. 
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CHAPTER III 

FINITE ELEMENT MODELING 

UHPC modeling was accomplished using the software Abaqus CAE version 6.14 

[Abaqus 2014]. This work focused on the generation of Representative Volume Element 

(RVE) cubes with various inclusions suspended in a matrix. 

3.1 Structural Scale Finite Element Modeling 

Within Abaqus CAE, a structural scale beam in bending was selected for 

modeling in order to fully capture the heterogeneous properties of UHPC. The size of the 

UHPC beam and the boundary conditions applied mirrored previous experiments 

conducted at ERDC [Roth 2008]. Figure 3.1 shows the test setup, the beam’s dimensions, 

and the boundary conditions used of the FEA. This beam was treated as a continuum, 

containing no inclusions, with material properties determined by ERDC’s testing results 

[Scott et al. 2015].  
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Figure 3.1 Ultra-high performance concrete beam used in finite element simulations 
with dimensions and boundary conditions shown.  

This beam represents the structural scale (Length Scale 4) and is modeled after physical 
tests. 
 

3.2 Mesoscale Finite Element Modeling 

It was determined that three length scales would aid modeling the mesoscale 

characteristics of the UHPC beam in bending, as there were such differences in the size 

of constituents. The largest cube had sides of 35 mm, and it included only steel fibers 

within the matrix. The middle length scale included large voids and silica sand grains and 

had sides of 0.54 mm. The smallest length scale was a cube with sides of 0.04 mm, and it 

included small voids and unhydrated cement grains. To best portray the material, 

inclusions were randomly distributed throughout the matrix according to their measured 

distributions.  
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Two python scripts were written to generate these RVE cubes. The first script 

asked for an average inclusion size, found using ImageJ, and inclusions of that size were 

inserted into the matrix until the desired volume fraction was reached. Plots of constituent 

size versus number of occurrences revealed that using only the average constituent size 

left out the range of inclusion sizes found in UHPC. The size versus number of 

occurrences graph was fitted with a distribution curve, and a second script was created 

that asked for the mean and variance of this fitted curve. The inclusions inserted into the 

matrix by this second code were of sizes that varied according to the distribution curve. 

Both random generation codes required the size of the cube, as well as the 

number, shape, and volume fraction of each constituent. Two shapes, spheres and 

cylinders, were used in modeling the inclusions in subsequent simulations. Spheres were 

used to model the voids, unhydrated cement grains, and sand grains; cylinders were used 

to model the steel fibers. The algorithms then randomly inserted and distributed these 

shapes, making sure none overlapped (see Appendix A). 
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CHAPTER IV 

RESULTS 

The results from image analysis, mechanical testing, geometry generation, and 

finite element analysis are discussed in the following section. 

4.1 Multiscale Materials Morphology 

Area fractions of constituents were found using Image J, and Figure 4.1 shows a 

sample of the images used for analysis. The length scales of images varied greatly to 

accurately capture the constituents in RVE cubes with sides of 35 mm, 0.54 mm, and 

0.04 mm. In the case of voids, an area criteria of 0.01 mm2 was established to distinguish 

between small and large voids. This distinction aided in modeling, as both microscopic 

and macroscopic voids were present in the UHPC. Large voids occurred as the wet 

concrete was poured into molds. Vibrating tables were used to shake the material down 

into the molds and reduce the size and occurrence of voids. Smaller voids were likely 

caused by improper bonding of the matrix to inclusions, such as sand grains and fibers. 
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Figure 4.1 Images of ultra-high performance concrete at three mesoscale length scales 
with inclusions of interest pointed out.  

 

To determine the sizes of RVE cubes for simulations, the number of occurrences 

for each size of each inclusion was determined. Figure 4.2 shows the resulting curves. 

Divisions of each length scale are also shown for reference. These length scales became 

the side length for RVE cubes. Large voids were included in the middle RVE, and small 

voids were included in the small RVE. Table 4.1 shows the resulting area fractions found 

through image analysis. 
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Figure 4.2 Size distributions of the inclusions in ultra-high performance concrete with 
length scales used in representative volume element cubes. 

 

Table 4.1 Average values for inclusions in ultra-high performance concrete found 
through image analysis. 

Inclusion Radius 
(mm) Area % Nearest Neighbor 

Distance (mm) 
Number Density 

(mm-2) 
Small Void 0.000853 0.317 0.00832 1,350 

Unhydrated Cement 0.00310 11.7 0.0114 2,290 
Sand 0.123 22.3 0.322 4.44 

Large Void 0.108 6.49 0.526 0.951 
Steel Fiber 0.275 3.68 0.919 0.0593 

Matrix - 55.51 - - 
 

From the average values determined through image analysis, the damage can be 

quantified using 

𝜑 = 𝜂𝜐  (4.1) 
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where 𝜑 is the damage, 𝜂 is the number density (mm-2), and 𝜐 is the inclusion 

area (mm2). The use of this equation with values from Table 4.1 allowed for the results 

displayed in Table 4.2. These values are approximations, as the area of each void was 

assumed to be a perfect circle. The poor bond between the fibers and the matrix causes 

the fibers to act as cracks when the material is in compression. Using the volume of each 

fiber (7.4 mm3), volume of the cylindrical specimen (667,000 mm3), and number of 

fibers in each specimen (~2830), the damage associated with the fibers was found to be 

0.0314.  

Table 4.2 Calculated damage values for inclusions in ultra-high performance 
concrete. 

Inclusion Damage 
Small Void 0.00309 
Large Void 0.0349 

 

The specimen of UHPC used for CT scanning gave interesting insight into the 

UHPC material. Steel fibers within the matrix are supposed to be randomly distributed 

and oriented, but as observed in Figure 4.3, the fibers all tend toward a similar 

orientation. The large number of macroscopic voids within the material was not known 

until this scan showed a high concentration of sizable voids. At this point, the decision to 

account for voids at two length scales was made. 
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Figure 4.3 Computed Tomography (CT) scan of ultra-high performance concrete 
showing a) approximately 3% steel fibers and b) large voids illustrated; 
note that although the material’s behavior is isotropic, there is local 
anisotropy from the fibers. 

 

The volume fractions of air, cement, sand, and fibers were calculated for each 

specimen tested. These values were found using the known batching mass percentages of 

each inclusion, and the mass of each inclusion in a specimen was determined. Using the 

specific gravity of each inclusion (besides air), the volume of these inclusions were 

established. These values were found for M, FRP, and UHPC specimens tested. 

By adding the volume fractions of the inclusions with the volume fractions of 

water and various admixtures, an “ideal” volume was found. This “ideal” volume 

contained no air; therefore, the difference between the “ideal” volume and the recorded 

volume of the specimen was assumed to be air. Two major assumptions were made in 
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making these calculations. The first assumption was that no water was absorbed by the 

sand, and that all the water in each specimen was retained throughout the entire curing 

and testing process. The second assumption was that each of these specimens was ideally 

batched, as each batch had enough materials to make 3 specimens. The results of these 

calculations are shown in Table 4.3. 

Table 4.3 Average volume fractions of the inclusions in ultra-high performance 
concrete specimens. 

 Average Volume % 

Inclusion Mortar Fiber-Reinforced Paste Ultra-High Performance 
Concrete 

Air 4.54 1.83 2.42 
Sand Grains 18.1 - 29.2 

Fibers - 5.18 3.18 
 

4.2 Mechanical Behavior 

Mechanical testing enabled appropriate modeling by revealing information about 

constituents in UHPC. The results from compression and tension tests are shown in 

Figure 4.4. As cracks developed in the specimens, the stress-strain behavior became 

unreliable; therefore, only the earlier (mostly linear) portions of the stress-strain curves 

were plotted. A direct comparison of each constituent’s compressive and tensile 

properties is shown in Figure 4.5 to highlight the different stress state dependences. 
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Figure 4.4 Stress-strain behavior of constituents showing different elastic moduli for 
a) compression and b) tension tests and the effect of the steel fibers 
included. 
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Figure 4.5 Comparison of each material’s compressive and tensile stress-strain 
behavior to highlight cementitious materials’ heterogeneity in a) cement 
paste, b) mortar (cement paste and sand), c) fiber-reinforced paste (cement 
paste and steel fibers), and d) ultra-high performance concrete (cement 
paste, sand, and steel fibers). 

 

During testing, the elastic modulus was also found using a compressometer. 

These values were compared to the elastic moduli determined from compressive stress-

strain testing, and the results are shown in Table 4.4. Elastic moduli and Poisson’s ratios 

for inclusions in UHPC were found in the literature and are shown in Table 4.5. These 

values were used with the Simple Rule of Mixtures (SROM) which was calculated by 

𝐸𝑀 = (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑎𝑛𝑑 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.2) 

𝐸𝐹𝑅𝑃 =  (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑏𝑒𝑟𝑠 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.3) 
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𝐸𝑈𝐻𝑃𝐶 = (𝐸𝑉)𝑎𝑖𝑟 + (𝐸𝑉)𝑠𝑎𝑛𝑑 +  (𝐸𝑉)𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑏𝑒𝑟𝑠 + (𝐸𝑉)𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑎𝑠𝑡𝑒 (4.4) 

where E is the elastic modulus from Tables 4.4 and 4.5, and V is the volume fraction 

from Table 4.3. The information gathered from stress-strain behavior, compressometer 

results, pulse velocity results, and the SROM are compared in Table 4.6.  

Table 4.4 Percentage difference in elastic moduli found through compressometer and 
stress-strain behavior, which led to the calculation of an average modulus 
and standard deviation 

Constituent % Difference Average 
Modulus (GPa) 

Standard 
Deviation (GPa) 

 

Cement Paste 38.93 29.54 11.5  
Mortar 12.29 38.99 4.8  

Fiber-Reinforced Paste 29.53 27.60 8.2  
Ultra-High Performance Concrete 44.39 38.52 17.1  

 

Table 4.5 Elastic modulus and Poisson’s ratio for inclusions in ultra-high 
performance concrete. 

Inclusion Elastic Modulus (GPa) Poisson’s Ratio 
Unhydrated Cement Grain 135 [Smilauer and Bittnar 2006] 0.3 [Davydov et al. 2011] 

Sand Grain 87.6 [Lutz et al. 1997] 0.17 [Lutz et al. 1997] 
Steel Fiber 200 [Maalej and Li 1994] 0.3 [Maalej and Li 1994] 
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Table 4.6 Comparison of elastic moduli found through various procedures for 
constituents of ultra-high performance concrete. 

Constituent 
Compression 
Strain Gage 

(GPa) 

Tension 
Strain Gage 

(GPa) 

Compresso-
meter (GPa) 

Pulse 
Velocity 
(GPa) 

Simple Rule 
of Mixtures 

(GPa) 

 

Cement Paste 22.40 9.866 36.68 - - 
 

Mortar 36.44 8.612 41.55 - 44.21 
 

Fiber-Reinforced 
Paste 22.81 6.965 32.37 - 44.47 

 

Ultra-High 
Performance 

Concrete 
27.53 22.19 49.51 

57.90 
[Williams et 

al. 2009] 
55.58 

 

 

The mean size of each constituent was found using a Matlab script. This script 

took the size of each individual constituent and plotted the number of occurrences of each 

size. These plots show the wide distribution of sizes within this material, and a lognormal 

curve was fitted to the probability curve. Figure 4.6 shows the fitted distributions for the 

constituents of concern in UHPC. The equations for the lognormal curves enabled 

modeling of constituents with distributed sizes. Values were input into the random 

generation code, and RVE’s with different sized inclusions were made. Table 4.7 

compares the mean radii and variances found through these fitted curves. 
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Figure 4.6 Probability of radius occurrence for inclusions in ultra-high performance 
concrete fitted with lognormal curves. 

 

Table 4.7 Mean radius and variance for each inclusion type from found through 
lognormal fit curves. 

Inclusion Mean Radius (mm) Radius Variance 
Small Void 0.00090 0.000000063 

Unhydrated Cement Grain 0.0029 0.0000035 
Large Void 0.10 0.0026 
Sand Grain 0.12 0.0017 

 

4.3 Finite Element Analysis 

A structural scale, UHPC beam in bending was simulated in the FE code Abaqus 

[Abaqus 2014] using the specifications of an experiment conducted by ERDC [Scott et al. 
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2015]. The mesh created on this beam included 2,702 quadratic triangular elements and 

5,577 nodes. The displacements caused by the loading conditions are shown in Figure 

4.7. Also from the simulation, the crack path can be observed by examining the principal 

strain. This is shown in Figure 4.8. Results from the test ERDC completed were 

documented, and Figure 4.9 shows the crack propagation from the experiment.  

 

Figure 4.7 Displacement (in mm) in the y-direction caused by the velocity applied to 
the upper cylinders. 
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Figure 4.8 Max principal strain of the beam in bending.  

Note the likely path of crack propagation that would have started on the tensile face. 

 

Figure 4.9 Max principal strain of the beam in bending.  

Note the likely path of crack propagation that would have started on the tensile face. 
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4.4 Geometry Generation 

The resulting values from Table 4.1 were used to generate three RVE cubes, each 

of a different size and including different inclusion types. Results from the structural 

scale beam gave valuable insight into the UHPC’s behavior, but simulations at the 

mesoscale will enable results with a new level of accuracy to be found. Figure 4.10 

shows the matrix of the each of the three mesoscale RVE cubes. These cubes were then 

meshed, and the results are shown in Figure 4.11. The mesh of Length Scale 1 was made 

up of 1,344,350 tetrahedral elements, Length Scale 2 was made up of 887,345 tetrahedral 

elements, and Length Scale 3 was made up of 2,389,963 tetrahedral elements and 

125,557 hexahedral elements. Tetrahedral elements were used on the matrix and 

spherical inclusions, while hexahedral elements were applied to the cylindrical 

inclusions. All elements generated were linear to reduce simulation time. Simulations on 

these meshed cubes will occur in the future using the material properties outlined in this 

study. 
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Figure 4.10 Geometries generated using the area fractions and length scales found 
through image analysis. 

 

 

Figure 4.11 Meshed representative volume element cubes at varying length scales 
showing unhydrated cement grains (blue), sand grains (yellow), and steel 
fibers (purple). 
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To capture the distributed sizes of inclusions in UHPC, the results from the 

lognormal fitted curves were input into the generation process, and Figure 4.12 displays 

the distributed size RVE cubes. Since the variances are quite small, the different sizes are 

hard to discern. A cube with inclusions of distributed sizes was not constructed for 

Length Scale 3, as the fibers were manmade to be the same size. These RVE cubes will 

be beneficial in future work involving mesoscale finite element simulations, as 

comparisons will be made between results from cubes using the average size inclusion 

and cubes with inclusions of distributed sizes.  

 

 

Figure 4.12 Distributed sizes of inclusions based on lognormal fit curves in 
representative volume element cubes. 
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CHAPTER V 

CONCLUSIONS 

Comparing the elastic moduli of the four constituents tested led to several 

observations. The inclusion of fibers reduced the elastic modulus, as the fibers did not 

fully bond to the matrix. Sand provided a much better cohesion to the matrix, since 

mortar had a higher elastic modulus than fiber-reinforced paste in compression. The 

variances in elastic moduli results from different methods increased the complication of 

drawing further conclusions about the effects of different inclusions. Tensile testing of 

cementitious materials provided many challenges, and the results varied widely. The 

stress-strain curves shown in Figures 4.4 and 4.5 were based on one experiment; 

therefore, more tests would need to be conducted to make more observations. 

The orientation in fibers, observed through the CT scan, occurred during the 

pouring of the concrete. The similar orientation of the fibers allowed for a greater 

packing density within the matrix. When randomly generating RVE cubes, this 

orientation also occurred. The large volume fraction of fibers resulted in this non-random 

distribution, as all the fibers tried to fit and bond to the matrix. 

In the FEA of the UHPC beam in bending, the crack started on the tensile face, 

which would accurately represent the material. This model would be useful in future 

work of transferring boundary conditions through the mesoscale lengths. The actual 

fracture location on the physical beam started closer to the load head, while the FEA 
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simulation showed the crack starting almost equidistant between the two load heads. 

Continued work on this project will work to provide more accurate simulations.  
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APPENDIX A 

RANDOM GEOMETRY GENERATION PYTHON SCRIPT 
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# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
#  G  E  O  M  E  T  R  Y    G  E  N  E  S  I  S 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# For: Dual phase nanocomposites adapted for concrete 
# Developed by: W.B. Lawrimore II - wbl59@msstate.edu 
# P.I.: M.Q. Chandler, PhD. - mei.q.chandler@erdc.dren.mil 
# U.S. Army Engineering Research and Development Center (ERDC) 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# Version: 2.0 - (12.15.13) 
 
# Imports and intitialization for ABAQUS 
import random 
import math 
import time 
import re 
import string 
from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
from abaqus import * 
 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# C L A S S  D E F I N I T I O N S 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
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# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
# Class Declaration: Cylinder 
# Variables: 
#   index - A numbering scheme for the system 
#   majAx - Disk major axis 
#   minAx - Disk minor axis 
#   thickness - Disk thickness 
#   orient - 3D orientation [alpha, beta, gamma] 
#   cen    - Center point of disk 
#   boundBox - Hexagonal volume disk occupies 
#       -[minX, maxX] 
#   -[minY, maxY] 
#   -[minZ, maxZ] 
#   boundPts - List of 8 nodes that form bounding box 
#   volume - Volume of the disk 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
class Cylinder: 
 def __init__(self, ind, data, orient, center, protuberance, inBT): 
  # Instance Variables: filler attributes 
  # Generated randomly from function below 
  self.index = ind 
  self.incType = 'cylinder' 
  self.mat = data[0] 
  self.majAx = data[3] 
  self.minAx = data[4] 
  self.intFactor = 1 
  self.height = data[5] 
  self.orient = orient 
  self.cen = center 
   
  self.inT = inBT[1] 
  self.inB = inBT[0] 
 
  self.boundBox = defBounds(self) 
  # From boundaries, aggregate a list of the 8 points making the "hit box" 
around each disk 
  self.boundPts = [] 
  for x in range(0,2): 
   for y in range(0,2): 
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    for z in range(0,2): 
     self.boundPts.append([self.boundBox[0][x], 
self.boundBox[1][y], self.boundBox[2][z]])  
  self.protuberance = protuberance 
   
  self.volume = math.pi*(self.majAx*self.minAx)*self.height*self.intFactor 
    
 # Function: __str__ 
 # Purpose: Print a dictionary type description of disk 
 # Returns: String containing disk attributes 
  
 def __str__(self): 
  return str(self.__dict__) 
 
 def __setIn__(self,inB,inT): 
  self.inB=inB 
  self.inT=inT 
  
 # Function: __eq__ 
 # Purpose: Is the proposed disk exactly the same as this one? 
 # Returns: Boolean value: True if disks are equal False if they are not 
  
 def __eq__(self, other): 
  return self.__dict__==other.__dict__ 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
 
 
# Class Declaration: Sphere 
# Variables: 
#   index - A numbering scheme for the system 
#   radius - Cylinder Radius 
#   cen    - Center point of cylinder 
#   boundBox - Hexagonal volume disk occupies 
#       -[minX, maxX] 
#   -[minY, maxY] 
#   -[minZ, maxZ] 
#   boundPts - List of 8 nodes that form bounding box 
#   volume - Volume of the cylinder 
 



 

39 

# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
class Sphere: 
 def __init__(self, ind, data, center, protuberance, inBT): 
  # Instance Variables: filler attributes 
  # Generated randomly from function below 
  self.index = ind 
  self.incType = 'sphere' 
  self.mat = data[0] 
  self.radius = data[3] 
  self.cen = center 
  self.inT = inBT[1] 
  self.inB = inBT[0] 
 
  self.boundBox = defBounds(self) 
  # From boundaries, aggregate a list of the 8 points making the "hit box" 
around each disk 
  self.boundPts = [] 
  for x in range(0,2): 
   for y in range(0,2): 
    for z in range(0,2): 
     self.boundPts.append([self.boundBox[0][x], 
self.boundBox[1][y], self.boundBox[2][z]])  
  self.protuberance = protuberance 
   
  self.volume = math.pi*(self.radius**3) 
    
 # Function: __str__ 
 # Purpose: Print a dictionary type description of disk 
 # Returns: String containing disk attributes 
  
 def __str__(self): 
  return str(self.__dict__) 
 
 def __setIn__(self,inB,inT): 
  self.inB=inB 
  self.inT=inT 
  
 # Function: __eq__ 
 # Purpose: Is the proposed disk exactly the same as this one? 
 # Returns: Boolean value: True if disks are equal False if they are not 
  
 def __eq__(self, other): 
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  return self.__dict__==other.__dict__ 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def defBounds(inclusion): 
# Initial dummy values 
 boundX = [1000, -1000] 
 boundY = [1000, -1000] 
 boundZ = [1000, -1000] 
  
 if inclusion.incType =='cylinder': 
  # Using a radial mesh with a density of one node every 2 degrees, find the 
bounds in cartesian space for the lower face 
  # Account for nanodisk position and orientation in global 3D space 
  for theta in drange(0, 2*math.pi, math.pi/180.0): 
   stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx * 
math.sin(theta), 0] 
   stage2 = rot_trans_3D(stage1, inclusion.orient) 
   stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] + 
stage2[1], inclusion.cen[2] + stage2[2]] 
   boundX = [min(stage3[0], boundX[0]), max(stage3[0], 
boundX[1])] 
   boundY = [min(stage3[1], boundY[0]), max(stage3[1], 
boundY[1])] 
   boundZ = [min(stage3[2], boundZ[0]), max(stage3[2], boundZ[1])] 
  
  # Repeat process for upper face of disk. 
  offset = inclusion.height 
  for theta in drange(0, 2*math.pi, math.pi/180.0): 
   stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx * 
math.sin(theta), offset] 
   stage2 = rot_trans_3D(stage1, inclusion.orient) 
   stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] + 
stage2[1], inclusion.cen[2] + stage2[2]] 
   boundX = [min(stage3[0], boundX[0]), max(stage3[0], 
boundX[1])] 
   boundY = [min(stage3[1], boundY[0]), max(stage3[1], 
boundY[1])] 
   boundZ = [min(stage3[2], boundZ[0]), max(stage3[2], boundZ[1])] 
 
 elif inclusion.incType =='sphere': 
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  # Using a radial mesh with a density of one node every 1 degree, find the 
bounds in cartesian space for the lower face 
  # Account for cylinder position and orientation in global 3D space 
  boundX = [-inclusion.radius + inclusion.cen[0], 
inclusion.radius+inclusion.cen[0]] 
  boundY = [-inclusion.radius + inclusion.cen[1], 
inclusion.radius+inclusion.cen[1]] 
  boundZ = [-inclusion.radius + inclusion.cen[2], 
inclusion.radius+inclusion.cen[2]] 
 
 return [boundX, boundY, boundZ] 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
 
def makeNewInclusion(RVE_Dim, data, index): 
  
 # Generate random location 
 xCoord = random.uniform(0, 0.95*RVE_Dim) 
 yCoord = random.uniform(0, 0.95*RVE_Dim) 
 zCoord = random.uniform(0, 0.95*RVE_Dim)+0.5*data[5] 
 
 protuberance=[] 
 for i in range(3): 
  protuberance.append([0,0]) 
 
 
 if data[1] == 'cylinder': 
  alpha = random.uniform(-data[6], data[6]) 
  beta = random.uniform(-data[7], data[7]) 
  gamma = random.uniform(-data[8], data[8]) 
 
  newInc = Cylinder(index, data, [alpha, beta, gamma], [xCoord, yCoord, 
zCoord], protuberance, [-1,-1]) 
 
 elif data[1] =='sphere': 
  data_copy = data[:] 
  if data_copy[6] == 1: 
   rad = random.normalvariate(data[3],data[4]) 
  elif data_copy[6] == 2: 
   safety = 1000 
   trys = 0 
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   rad = 0 
   while rad < data[7] and trys < safety: 
    trys += 1 
    rad = random.lognormvariate(data[3],data[4]) 
   if rad < data[7]: 
    raise Exception("Try a smaller minimum size, or a larger 
mean radius") 
  data_copy[3] = rad 
  newInc = Sphere(index, data_copy, [xCoord, yCoord, zCoord], 
protuberance, [-1,-1]) 
   
 
 # Determine protuberance 
 for i in range(len(newInc.boundBox)): 
  for j in range(len(newInc.boundBox[i])): 
   if (newInc.boundBox[i][j] < 0.0 or newInc.boundBox[i][j] > 
RVE_Dim): 
    protuberance[i][j] = 1 
 newInc.protuberance = protuberance 
 return newInc 
  
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
# Function: verifyInclusion 
# Purpose: Determine whether a new inclusion can be placed in matrix without 
intersecting other inclusions or lying outside boundaries 
# Returns: Boolean value: True if the new inclusion is unique, completely within 
matrix boundaries, has no intersections with other 
#  inclusions, and is well spaced from other inclusions, False if any one of 
those are not true 
# 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def verifyInclusion(currInc, RVE_Dim, masterList, maxRadius): 
 # Booleans to denote whether a inlclusion satisfies all requirements. 
 noIntersect = 1 
 """ 
 if currInc.incType == 'cylinder': 
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  #criteria = 2*max(2*currInc.majAx, 2*currInc.minAx, currInc.height) 
  criteria = RVE_Dim 
 elif currInc.incType == 'sphere': 
  criteria = 2*max(maxRadius, currInc.radius) 
 """ 
 
 collisionList = [] 
 if len(masterList) > 0: 
  for entry in masterList: 
   #if distance(currInc.cen, entry[0].cen) <= criteria: 
    collisionList.append(entry[0]) 
 
 i = 0 
 #for i in range(0, len(regions)): 
 testIncInd = 0 
 #while noIntersect and testIncInd < len(regionList[regions[i]]): 
 while noIntersect and testIncInd < len(collisionList): 
  testInc = collisionList[testIncInd] 
  collided = collisionDetect(currInc, testInc) 
  if collided: 
   noIntersect = 0 
  testIncInd += 1 
  
 return noIntersect 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def collisionDetect(inc1, inc2): 
 # Boolean Value 
 collisionDetected = 0 
 # Intersection vector 
 
 if inc1.incType =='sphere' and inc2.incType =='sphere': 
  if distance(inc1.cen, inc2.cen) <= (inc1.radius+inc2.radius): 
   collisionDetected = 1 
 else: 
  xyzIn = [0,0,0] 
  offset = 0 
  # Test each bound edge for coincidence with the other inclusion's box 
  for i in range(0, len(inc1.boundBox)): 
   if (inc1.boundBox[i][0] >= inc2.boundBox[i][0]-offset) and 
(inc1.boundBox[i][0] <= inc2.boundBox[i][1]+offset): 
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    xyzIn[i] = 1 
   elif inc1.boundBox[i][1] >= inc2.boundBox[i][0]-offset and 
inc1.boundBox[i][1] <= inc2.boundBox[i][1]+offset: 
    xyzIn[i] = 1 
  for i in range(0, len(inc2.boundBox)): 
   if (inc2.boundBox[i][0] >= inc1.boundBox[i][0]-offset) and 
(inc2.boundBox[i][0] <= inc1.boundBox[i][1]+offset): 
    xyzIn[i] = 1 
   elif inc2.boundBox[i][1] >= inc1.boundBox[i][0]-offset and 
inc2.boundBox[i][1] <= inc1.boundBox[i][1]+offset: 
    xyzIn[i] = 1 
  #For intersections xyzIn = [1,1,1] 
  if sum(xyzIn) == 3: 
   collisionDetected = 1 
  
 return collisionDetected 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def generateCopies(newInc, RVE_Dim, index, maxRadius): 
 goodCopies = 1 
 axis = 0 
 copies = [] 
 finalCopy = [0,0,0] 
 currIndex = index 
 for axis in range(len(newInc.protuberance)): 
  alteredCoords=[] 
  if newInc.protuberance[axis][0] ==1.0: 
   finalCopy[axis] = 1.0 
  elif newInc.protuberance[axis][1] == 1.0: 
   finalCopy[axis] = -1.0 
  if finalCopy[axis] != 0: 
   currIndex = currIndex + 1 
   for x in newInc.cen: 
    alteredCoords.append(x) 
   alteredCoords[axis] = alteredCoords[axis] + 
finalCopy[axis]*RVE_Dim 
   currCopy = copyInclusion(newInc, alteredCoords, currIndex, 
RVE_Dim) 
   if not currCopy[1]: 
    goodCopies = 0 
    #print 'MMT %i too small 1\n' %currIndex 
   else: 
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    copies.append([currCopy[0],[0]]) 
 if len(copies) > 1: 
  currIndex = currIndex + 1 
  alteredCoords = [] 
  for x in newInc.cen: 
    alteredCoords.append(x) 
  for x in range(len(finalCopy)): 
   alteredCoords[x] = alteredCoords[x] + finalCopy[x]*RVE_Dim 
  currCopy = copyInclusion(newInc, alteredCoords, currIndex, RVE_Dim) 
  if not currCopy[1]: 
    goodCopies = 0 
    #print 'MMT %i too small 2\n' %currIndex 
    currIndex = currIndex-1 
  else: 
   copies.append([currCopy[0],[0]]) 
 copyIndex = 0 
 while goodCopies and copyIndex < len(copies): 
  verifyCopy = verifyInclusion(copies[copyIndex][0], RVE_Dim, 
masterList, maxRadius) 
  if not verifyCopy: 
   goodCopies = 0 
  else: copies[copyIndex][1] = verifyCopy 
  copyIndex = copyIndex + 1 
 return [goodCopies, copies, currIndex] 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def copyInclusion(currInc, coords, index, RVE_Dim): 
 tooSmall = 0 
 if currInc.incType == 'cylinder': 
  incData = [currInc.mat, currInc.incType,0, currInc.majAx, currInc.minAx, 
currInc.height] 
  newInc = Cylinder(index, incData, currInc.orient, coords, 
[[0,0],[0,0],[0,0]],[-5, -5]) 
  contained= RVEcontainer(newInc,RVE_Dim) 
 elif currInc.incType == 'sphere': 
  incData = [currInc.mat, currInc.incType,0, currInc.radius, 0, 0] 
  newInc = Sphere(index, incData, coords, [[0,0],[0,0],[0,0]],[-5, -5]) 
  contained= RVEcontainer(newInc,RVE_Dim) 
 return [newInc, contained] 
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# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
 
def RVEcontainer(inclusion, RVE_Dim): 
 incount_B = 0 
 incount_T = 0 
 incount_XY = 0 
 incount_XZ = 0 
 incount_YZ = 0 
 contained = 1 
 if inclusion.incType == 'cylinder': 
  theta = 0 
  while theta < 2*math.pi: 
   stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx * 
math.sin(theta), 0] 
   stage2 = rot_trans_3D(stage1, inclusion.orient) 
   stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] + 
stage2[1], inclusion.cen[2] + stage2[2]] 
   if (stage3[0] > 0) and (stage3[0] < RVE_Dim): 
    if (stage3[1] > 0) and (stage3[1] < RVE_Dim): 
     if (stage3[2] > 0) and (stage3[2] < RVE_Dim): 
      incount_B += 1 
   theta = theta + math.pi/180 
  theta = 0 
  while theta < 2*math.pi: 
   stage1 = [inclusion.majAx * math.cos(theta), inclusion.minAx * 
math.sin(theta), (13+(inclusion.intFactor-1)*4)] 
   stage2 = rot_trans_3D(stage1, inclusion.orient) 
   stage3 = [inclusion.cen[0] + stage2[0], inclusion.cen[1] + 
stage2[1], inclusion.cen[2] + stage2[2]] 
   if (stage3[0] > 0) and (stage3[0] < RVE_Dim): 
    if (stage3[1] > 0) and (stage3[1] < RVE_Dim): 
     if (stage3[2] > 0) and (stage3[2] < RVE_Dim): 
      incount_T += 1 
   theta = theta + math.pi/180 
  if incount_B < 180 and incount_T <180: 
   contained = 0 
  inclusion.inB = incount_B 
  inclusion.inT = incount_T 
 
 elif inclusion.incType == 'sphere': 
  theta = 0 
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  while theta < 2*math.pi: 
   stage1 = [inclusion.radius*math.cos(theta), 0, 
inclusion.radius*math.sin(theta)] 
   stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1], 
inclusion.cen[2]+stage1[2]] 
 
   if (stage2[0] > 0) and (stage2[0] < RVE_Dim): 
    if (stage2[1] > 0) and (stage2[1] < RVE_Dim): 
     if (stage2[2] > 0) and (stage2[2] < RVE_Dim): 
      incount_XZ += 1 
   theta = theta + math.pi/180 
  theta = 0 
  while theta < 2*math.pi: 
   stage1 = [0,inclusion.radius*math.cos(theta), 
inclusion.radius*math.sin(theta)] 
   stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1], 
inclusion.cen[2]+stage1[2]] 
   if (stage2[0] > 0) and (stage2[0] < RVE_Dim): 
    if (stage2[1] > 0) and (stage2[1] < RVE_Dim): 
     if (stage2[2] > 0) and (stage2[2] < RVE_Dim): 
      incount_YZ += 1 
   theta = theta + math.pi/180 
  theta = 0 
  while theta < 2*math.pi: 
   stage1 = [inclusion.radius*math.cos(theta), 
inclusion.radius*math.sin(theta),0] 
   stage2 = [inclusion.cen[0] + stage1[0], inclusion.cen[1]+stage1[1], 
inclusion.cen[2]+stage1[2]] 
   if (stage2[0] > 0) and (stage2[0] < RVE_Dim): 
    if (stage2[1] > 0) and (stage2[1] < RVE_Dim): 
     if (stage2[2] > 0) and (stage2[2] < RVE_Dim): 
      incount_XY += 1 
   theta = theta + math.pi/180 
  if incount_XZ < 50 and incount_YZ<50 and incount_XY<50: 
   contained = 0 
 return contained 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
 
# Function: buildGeometry 
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# Purpose: Take the array of generated inclusions and issue commands to ABAQUS 
CAE to create the geometry, mesh, and periodic boundary 
#  conditions of the UHPC composite 
# Returns: None 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
def buildGeometry(RVE_Dim, masterList, modelName, matName, incMatList): 
 indicies = [] 
 newInd = [] 
 # Tell abaqus to use detailed commands 
 session.journalOptions.setValues(replayGeometry=COORDINATE, 
recoverGeometry=COORDINATE) 
 # Generate new model with custom name 
 # Delete old model 
 mdb.Model(name=modelName) 
 del mdb.models['Model-1'] 
 model = mdb.models[modelName] 
  
 rve = 'RVE_Box' 
 # Create matrix 
 # Cube with side length imported from input file 
 model.ConstrainedSketch(name=rve, sheetSize=RVE_Dim) 
 model.sketches[rve].rectangle(point1=(0,0), point2=(RVE_Dim, RVE_Dim)) 
 model.Part(dimensionality=THREE_D, name=rve, 
type=DEFORMABLE_BODY) 
 model.parts[rve].BaseSolidExtrude(depth=RVE_Dim, 
sketch=model.sketches[rve]) 
 model.parts[rve].BaseShell(sketch=model.sketches[rve]) 
 del model.sketches[rve] 
 
 model.Material(name=matName) 
 model.HomogeneousSolidSection(material=matName, name='Matrix', 
thickness=None) 
 model.parts[rve].SectionAssignment(offset=0.0, offsetField='', 
offsetType=MIDDLE_SURFACE, 
region=Region(cells=model.parts[rve].cells.findAt(((0,0,0), ), )), sectionName='Matrix', 
thicknessAssignment=FROM_SECTION) 
  
 # Create a material and section for each inclusion material 
 for mat in incMatList.keys(): 
  model.Material(name=mat) 
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  model.HomogeneousSolidSection(material=mat, name=mat, 
thickness=None) 
 
 
 # Establish an assembly 
 # Import matrix 
 model.rootAssembly.DatumCsysByDefault(CARTESIAN) 
 model.rootAssembly.Instance(dependent=ON, name=rve, part=model.parts[rve]) 
 
 # Define lists for inclusion names and their instance objects 
 cNames = [] 
 instList = [] 
 voidList = [] 
 ENames = [] 
 prtList = [] 
  
 assembly = model.rootAssembly 
  
 
 # Add inclusions into assembly 
 for inc in masterList: 
  incMatList[inc[0].mat].append(inc[0]) 
  #incMatNum = len(incMatList[inc[0].mat]) 
  incMatNum = inc[0].index 
  incName = inc[0].mat + '_' + str(incMatNum) 
  dbf.write('Inc %i: %4.4f  %4.4f  %4.4f\n' %(inc[0].index, inc[0].cen[0], 
inc[0].cen[1], inc[0].cen[2])) 
   
  # Create part 
  model.ConstrainedSketch(name=incName, sheetSize=RVE_Dim) 
   
  if inc[0].incType == 'cylinder': 
  
 model.sketches[incName].EllipseByCenterPerimeter(axisPoint1=(inc[0].majAx, 
0.0), axisPoint2=(0.0, inc[0].minAx), center=(0.0, 0.0)) 
   model.Part(dimensionality=THREE_D, name=incName, 
type=DEFORMABLE_BODY) 
   model.parts[incName].BaseSolidExtrude(depth=inc[0].height, 
sketch=model.sketches[incName]) 
   model.parts[incName].SectionAssignment(offset=0.0, 
offsetField='', offsetType=MIDDLE_SURFACE, 
region=Region(cells=model.parts[incName].cells.findAt(((0,0,0), ), )), 
sectionName=inc[0].mat, thicknessAssignment=FROM_SECTION) 
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   model.parts[incName].Surface(name='Front', 
side1Faces=model.parts[incName].faces.findAt(((0, 0, inc[0].height), ), 
((inc[0].majAx/2.0, inc[0].minAx/2.0, inc[0].height), ), )) 
   model.parts[incName].Surface(name='Back', 
side1Faces=model.parts[incName].faces.findAt(((0.0,0.0, 0.0), ), ((inc[0].majAx/2.0, 
inc[0].minAx/2.0, 0.0), ), )) 
   model.parts[incName].Surface(name='Edge', 
side1Faces=model.parts[incName].faces.findAt(((inc[0].majAx, 0.0, inc[0].height/2.0), ), 
((0.0, inc[0].minAx, inc[0].height/2.0), ), ((-inc[0].majAx, 0.0, inc[0].height/2.0), ), )) 
   for key in incMatList.keys(): 
    results = key.find(inc[0].mat) 
    if results != -1: 
    
 model.parts[incName].SectionAssignment(offset=0.0, offsetField='', 
offsetType=MIDDLE_SURFACE, 
region=Region(cells=model.parts[rve].cells.findAt(((inc[0].cen), ), )), sectionName=key, 
thicknessAssignment=FROM_SECTION) 
  elif inc[0].incType == 'sphere': 
   model.sketches[incName].ConstructionLine(point1=(0.0, -
RVE_Dim/2.0), point2=(0.0, RVE_Dim/2.0)) 
   model.sketches[incName].geometry.findAt((0.0, 0.0)) 
  
 model.sketches[incName].FixedConstraint(entity=model.sketches[incName].geo
metry.findAt((0.0, 0.0), )) 
   model.sketches[incName].ArcByCenterEnds(center=(0.0, 0.0), 
direction=CLOCKWISE, point1=(0.0, inc[0].radius), point2=(0.0, -inc[0].radius)) 
   model.sketches[incName].Line(point1=(0.0, inc[0].radius), 
point2=(0.0, -inc[0].radius)) 
   model.sketches[incName].geometry.findAt((0.0, -inc[0].radius)) 
   model.sketches[incName].VerticalConstraint(addUndoState=False, 
entity=model.sketches[incName].geometry.findAt((0.0, -inc[0].radius), )) 
   model.sketches[incName].geometry.findAt((inc[0].radius, 0.0)) 
   model.sketches[incName].geometry.findAt((0.0, -inc[0].radius)) 
  
 model.sketches[incName].PerpendicularConstraint(addUndoState=False, 
entity1=model.sketches[incName].geometry.findAt((inc[0].radius, 0.0), ), 
entity2=model.sketches[incName].geometry.findAt((0.0, -inc[0].radius), )) 
   model.Part(dimensionality=THREE_D, name=incName, 
type=DEFORMABLE_BODY) 
   model.parts[incName].BaseSolidRevolve(angle=360.0, 
flipRevolveDirection=OFF, sketch=model.sketches[incName]) 
   model.parts[incName].Surface(name='Surf', 
side1Faces=model.parts[incName].faces.findAt(((inc[0].radius, 0, 0), ))) 
   for key in incMatList.keys(): 
    results = key.find(inc[0].mat) 
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    if results != -1: 
    
 model.parts[incName].SectionAssignment(offset=0.0, offsetField='', 
offsetType=MIDDLE_SURFACE, 
region=Region(cells=model.parts[rve].cells.findAt(((inc[0].cen), ), )), sectionName=key, 
thicknessAssignment=FROM_SECTION) 
 
  del model.sketches[incName] 
 
  assembly.Instance(dependent=OFF, name=incName, 
part=model.parts[incName]) 
  # Rotate and translate inclusion in 3D space 
  if inc[0].incType == 'cylinder': 
   assembly.rotate(angle=inc[0].orient[1], axisDirection=(0.0, 1.0, 
0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,)) 
   assembly.rotate(angle=inc[0].orient[2], axisDirection=(0.0, 0.0, 
1.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,)) 
   assembly.rotate(angle=inc[0].orient[0], axisDirection=(1.0, 0.0, 
0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(incName,)) 
  assembly.translate(instanceList=(incName,), vector=(inc[0].cen)) 
 
  if inc[1]: 
   if inc[0].mat != 'Void': 
    try: 
    
 assembly.InstanceFromBooleanCut(cuttingInstances=(assembly.instances[rve], ), 
instanceToBeCut=assembly.instances[incName], name=incName + 'T', 
originalInstances=SUPPRESS) 
    except (AbaqusException), value: 
     print "CUT ERROR1" 
     print "Inclusion %d    inT: %d    inB:%d\n" 
%(incMatNum, inc[0].inT, inc[0].inB) 
     print "Cen: %f, %f, %f" 
%(inc[0].cen[0],inc[0].cen[1],inc[0].cen[2])  
    assembly.features[incName].resume() 
    assembly.features[rve].resume() 
    try: 
    
 assembly.InstanceFromBooleanCut(cuttingInstances=(assembly.instances[incNa
me + 'T-1'], ), instanceToBeCut=assembly.instances[incName], name=incName+ '_C', 
originalInstances=DELETE) 
    except (AbaqusException), value: 
     print "CUT ERROR2" 
     print "Inclusion %d    inT: %d    inB:%d\n" 
%(incMatNum, inc[0].inT, inc[0].inB) 
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     print "Cen: %f, %f, %f" 
%(inc[0].cen[0],inc[0].cen[1],inc[0].cen[2]) 
     print 'Protuberance' 
     print inc[0].protuberance 
    assembly.features.changeKey(fromName=incName+ '_C' + 
'-1', toName=incName) 
    del model.parts[incName + 'T'] 
   
 assembly.makeIndependent(instances=(assembly.instances[incName], )) 
    del model.parts[incName] 
    model.parts.changeKey(fromName=incName+ '_C', 
toName=incName) 
    
  if inc[0].mat == 'Void': 
   voidList.append(assembly.instances[incName]) 
  else: 
   cNames.append([incName, inc[0].incType]) 
   instList.append(assembly.instances[incName]) 
  # Progress report 
  if inc[0].index%100 == 0 and inc.index > 0: 
   print("Inclusions Inserted " + str(inc[0].index)) 
    
    
    
 print("Carving voids in matrix for inclusions to occupy") 
 if len(voidList) > 0: 
  assembly.InstanceFromBooleanCut(cuttingInstances=(voidList), 
instanceToBeCut=assembly.instances[rve], name=rve, originalInstances=DELETE) 
  # After all inclusions added, cut out overlapping sections of the matrix 
  assembly.InstanceFromBooleanCut(cuttingInstances=(instList), 
instanceToBeCut=assembly.instances[rve+'-1'], name=matName, 
originalInstances=SUPPRESS) 
  del assembly.features[rve+'-1'] 
 else: 
  assembly.InstanceFromBooleanCut(cuttingInstances=(instList), 
instanceToBeCut=assembly.instances[rve], name=matName, 
originalInstances=SUPPRESS)  
 
 assembly.resumeFeatures((col(cNames,0))) 
  
 assembly.features.changeKey(fromName=matName + '-1', 
toName=matName+'_Box') 
 assembly.makeIndependent(instances=(assembly.instances[matName+'_Box'], )) 
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 # Tie Coplanar faces together 
 i = 0 
  for i in range(len(cNames)): 
  names = col(cNames, 0) 
  types = col(cNames,1) 
  if types[i] == 'cylinder': 
   surfs = ['Front', 'Back','Edge'] 
  elif types[i] =='sphere': 
   surfs = ['Surf'] 
  for s in surfs: 
   j=0 
   found = 0 
   minD = RVE_Dim 
   for face in assembly.instances[names[i]].surfaces[s].faces: 
    bCent= face.getCentroid()[0] 
    while not found and j < 
len(assembly.instances[matName+'_Box'].faces): 
     matFace = 
assembly.instances[matName+'_Box'].faces[j] 
     matCent = matFace.getCentroid()[0] 
     if distance(bCent, matCent) < minD: 
      minD = distance(bCent, matCent) 
      minFace = matFace 
      minFPoint = matFace.pointOn[0] 
     j = j+1 
   surfName = str(matName +'_' +names[i]) 
   assembly.Surface(name=surfName, 
side1Faces=assembly.instances[matName+'_Box'].faces.findAt(((minFPoint), ))) 
   model.Tie(adjust=ON, master=assembly.surfaces[surfName], 
name=names[i]+'_'+str(s) , positionToleranceMethod=COMPUTED, 
slave=assembly.instances[names[i]].surfaces[s], thickness=ON, tieRotations=ON) 
 
 
# Funtion: drange 
#  Purpose: Define a range of values with a non-default, prescribed step. 
def drange(start, stop, step): 
 r = start 
 while r < stop: 
  yield r 
  r += step 
 
# Funtion: distance 
#  Purpose: Calculate the 2D cartesian distance between 2 points. 
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def distance(point1,point2): 
 return math.sqrt((point2[0]-point1[0])**2 + (point2[1]-point1[1])**2 +  
(point2[2]-point1[2])**2) 
 
# Funtion: rot_trans_3D 
#  Purpose: Performs vector rotation transformation on a given point by a given 
angle. 
def rot_trans_3D(point, orient): 
 radAlpha = math.radians(orient[0]) 
 radBeta = math.radians(orient[1]) 
 radGamma = math.radians(orient[2]) 
 # Equivalent to the multiplication of the three rotation matricies 
 # Order [Rot abt Y-axis] * [Rot abt Z-axis] * [Rot abt X-axis] 
 xPrime = math.cos(radGamma)*math.cos(radBeta)*point[0] - 
math.sin(radGamma)*point[1] + math.cos(radGamma)*math.sin(radBeta)*point[2] 
 yPrime = 
(math.cos(radAlpha)*math.sin(radGamma)*math.cos(radBeta)+math.sin(radAlpha)*mat
h.sin(radBeta))*point[0] + 
math.cos(radAlpha)*math.cos(radGamma)*point[1]+(math.cos(radAlpha)*math.sin(radG
amma)*math.sin(radBeta)-math.sin(radAlpha)*math.cos(radBeta))*point[2] 
 zPrime = (math.sin(radAlpha)*math.sin(radGamma)*math.cos(radBeta)-
math.cos(radAlpha)*math.sin(radBeta))*point[0] + 
math.sin(radAlpha)*math.cos(radGamma)*point[1]+(math.sin(radAlpha)*math.sin(radG
amma)*math.sin(radBeta)+math.cos(radAlpha)*math.cos(radBeta))*point[2] 
 return [xPrime, yPrime, zPrime] 
 
def col(matrix, n): 
 return [column[n] for column in matrix] 
 
 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
# ---------------------------------------------------------------------------------------------------------
--------------------------- 
 
 
fields = (('Model Name:','Cor-Tuf'), ('Matrix Material:','Cement Paste'), ('RVE 
Dimension:','10'), ('Number of Incusion Types:','1')) 
 
modelName, matrixName, RVE_Dim, Num_Inc_types = getInputs(fields=fields, 
label='Input Parameters', dialogTitle='Composite Geometry Genesis') 
 
RVE_Dim = float(RVE_Dim) 
Num_Inc_types = int(Num_Inc_types) 
incData= [] 
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matList={} 
 
for k in range(Num_Inc_types): 
 newMat = 1 
 Incfields = (('Material Name:', 'Void'),('Geometry (1-Cylinder, 2-Sphere)', 
'2'),('Volume Fraction (%):', '1'),('Geometry Distribution Function (1-Gaussian, 2-
Lognormal)','2')) 
 name, geom, vfrac, gdist = getInputs(fields=Incfields, label='Inclusion Type 
'+str(k+1), dialogTitle='Inclusion Type '+str(k+1)) 
 geom = float(geom) 
 gdist = int(gdist) 
 
 for mat in matList.keys(): 
  if mat == name: 
   newMat = 0 
 if newMat: 
  matList[name]=[] 
 
 if geom == 1: 
  gType = 'cylinder' 
  cylFields = (('Major Radius:','0.08'),('Minor Radius:','0.08'),('Height:','6'), 
('Maximum Alpha (deg):','360'), ('Maximum Beta (deg):','360'), ('Maximum Gamma 
(deg):','360')) 
  majR, minR, height, alpha, beta,gamma = getInputs(fields=cylFields, 
label=name+' Parameters', dialogTitle=name+ 'Parameters') 
  incData.append([name, gType,  float(vfrac), float(majR), float(minR), 
float(height), float(alpha), float(beta), float(gamma)]) 
 elif geom == 2: 
  gType = 'sphere' 
  if gdist == 1: 
   sphFields = (('Mean Radius:','0.5'),('Min Radius','0.005'),('Standard 
Deviation:','0.001')) 
  elif gdist == 2: 
   sphFields = (('Mean Radius:','0.5'),('Min Radius','0.005'),('Log 
Standard Deviation:','1.0')) 
  rad, rmin, rstd = getInputs(fields=sphFields, label=name+' Parameters', 
dialogTitle=name+ ' Parameters') 
  if gdist == 1: 
   rad = float(rad) 
   rstd = float(rstd) 
   rmin = float(rmin) 
  elif gdist == 2: 
   m = float(rad) 
   rad = log( m ) - float(rstd[0])**2 / 2 
   rstd = float(rstd) 
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   rmin = float(rmin) 
  incData.append([name, gType, float(vfrac),  rad, rstd, 0, gdist,rmin,0]) 
 
 
 
trys = 0 
masterList = [] 
index = 0 
num = 0 
maxRadius = 0 
 
safety = 500000 
 
dbf = open('debug.txt' ,'w') 
 
for inc in incData: 
 currFrac = 0 
 currVol = 0 
 while currFrac < inc[2] and trys <= safety: 
  newInc = makeNewInclusion(RVE_Dim, inc, index) 
  verified = verifyInclusion(newInc, RVE_Dim, masterList, maxRadius) 
  edgeFlag = 0 
  if verified: 
   verified2 = [1,0,0] 
   for ax in range(len(newInc.protuberance)): 
    for lvl in newInc.protuberance[ax]: 
     if lvl == 1: 
      edgeFlag= 1 
   if edgeFlag: 
    verified2 = generateCopies(newInc, RVE_Dim, index, 
maxRadius) 
   if verified2[0]: 
    num+=1 
    currVol = currVol + newInc.volume 
    masterList.append([newInc, edgeFlag]) 
    if newInc.incType == 'sphere': 
     if newInc.radius > maxRadius: 
      maxRadius = newInc.radius 
     
    if verified2[1]: 
     for copy in verified2[1]: 
      masterList.append([copy[0], edgeFlag]) 
    if verified2[2]: 
     index = verified2[2]+1 
    else: index = index + 1 
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  currFrac = float(currVol/RVE_Dim**3)*100 
  if trys%100 == 0 and trys > 0: 
   print("Progress after %d trys." %trys) 
   print(inc[0] + " Inclusions: %d" %num) 
   print(inc[0] + " Volume fraction: " + str(currFrac) + "%") 
  trys = trys+1 
 
exit=0 
if trys >= safety: 
 decision = getWarningReply('Safety reached before deisred volume fraction.\n 
Generate geometry anyway?', (YES,NO)) 
 if str(decision) =='NO': 
  exit = 1 
 
if not exit: 
 
 print("Inserting inclusion collection into matrix") 
 # After either volume fraction or safety is reached submit geometry to ABAQUS 
for construction 
 buildGeometry(RVE_Dim, masterList, modelName, matrixName, matList) 
 
 dbf.close() 
 
 # Save the abaqus model 
 mdb.saveAs(pathName='CGG_Test.cae') 
else: 
 print 'Aborting Geometry Genesis' 
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