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CHAPTER 1

INTRODUCTION

Ádám conjectured [1] in 1967 that any two circulant graphs Cay(Zn, S) and Cay(Zn, T )

are isomorphic if and only if there exists m ∈ Z∗n such that mS = T . This is equivalent

to the two circulant graphs being isomorphic if and only if the automorphism of Zn de-

fined by x 7→ mx is an isomorphism between the two circulant graphs. While the original

conjecture was shown to be false in 1970 by Elspas and Turner [12], there has been much

interest in determining isomorphisms between circulant digraphs. At first, the focus was

on determining for which positive integers any two circulant (di)graphs of order n are iso-

morphic if an only if they are isomorphic by a group automorphism of Zn ( such groups

Zn are called CI-groups with respect to digraphs). This line of research was finished

by Muzychuk [18], who showed Zn is a CI-group with respect to graphs if and only if

n = 9,m, 2m, or 4m and is a CI-group with respect to digraphs if and only if n = m, 2m,

or 4m, where m is odd and square-free.

Instead of determining for which n Ádám’s conjecture is true, we can ask for a given

n, which circulant graphs of order n will the conjecture hold? We can rephrase the ques-

tion as follows. For which circulant Cay(Zn, S) is it true that any other circulant digraph

Cay(Zn, T ) is isomorphic to Cay(Zn, S) if and only if α(S) = T for some α ∈ Aut(Zn)?

1



Alspach and Parsons in 1979 [2] gave conditions for the case n = p2. In this thesis we

will generalize Alspach and Parsons’ result and explicitly determine all circulant digraphs

Cay(Zn, S) of order n such that if Cay(Zn, T ) is another circulant digraph of order n, then

Cay(Zn, S) and Cay(Zn, T ) are isomorphic if and only if there exists α ∈ Aut(Zn) such

that α(S) = T .
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CHAPTER 2

GRAPH THEORY AND GROUP THEORY

In this chapter we gather the basic definitions and results concerning Cayley (di)graphs,

the main object of study in this thesis.

A digraph is an ordered pair G = (V,A) comprising a set V of vertices together with

a set A of arcs, which are ordered pairs of elements of V . A graph is a digraph, whenever

(u, v) ∈ A(G) then (v, u) ∈ A(G). Kn will denote the complete graph, that is the digraph

with all possible arcs. In this case, we identify (u, v) and (v, u) and call it an edge.

A permutation group is a subgroup of the symmetric group on n letters, Sn. Unless

otherwise stated, we will take the n letters that Sn permutes to be the elements of the set

Zn, the integers modulo n. We denote the group of units in Zn under multiplication by Z∗n,

and note that Aut(Zn) = {x 7→ ax : a ∈ Z∗n}. .

Definition 1

An isomorphism of digraphs G and H is a bijection between the vertex sets of G and H

f : V (G)→ V (H)

such that (u, v) ∈ A(G) if and only if (f(u), f(v)) ∈ A(H). If an isomorphism exists

between two digraphs, then the digraphs are called isomorphic and denoted as G ∼= H

3



•0

•6

•5

•
4

•
3

• 2

•1

•0

•6

•5

•
4

•
3

• 2

•1

Figure 2.1

Two isomorphic graphs

Definition 2

A (di)graph isomorphism from G to itself is called a automorphism. The set all automor-

phims of G is denoted Aut(G).

Definition 3

Let G be a group and S ⊆ G. Define a Cayley digraph of G, denoted Cay(G,S), to be

the digraph with V (Cay(G,S)) = G and A(Cay(G,S)) = {(g, gs) : g ∈ G, s ∈ S}. We

call S the connection set of Cay(G,S).

If we additionally insist that S = S−1 = {s−1 : s ∈ S} (or if the group is abelian and

the operation is addition, then S = −S), then there will be no directed edges in Cay(G,S),

and we obtain a Cayley graph. This follows as if (g, gs) ∈ A(Cay(G,S)) and s−1 ∈ S,

then (gs, gs(s−1)) = (gs, s) ∈ A(Cay(G,S)).
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Perhaps the most common Cayley digraphs that one encounters are Cayley digraphs

of the cyclic groups Zn of order n, as in Figure 2.2. A Cayley (di)graph of Zn is called a

circulant (di)graph circulant graph of order n. We state this as a definition and we present

and example.

Definition 4

A circulant (di)graph is Cayley (di)graph of Zn.

The graph in Figure 2.2 is Cay(Z10, {1, 3, 7, 9}). Note that as the binary operation on

Z10 is addition, there is an edge between two vertices if and only if the difference of the

labels on the vertices is contained in the set {1, 3, 7, 9}. Observe that a clockwise rotation

of 36◦ leaves the graph unchanged.
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Figure 2.2

The Cayley graph Cay(Z10, {1, 3, 7, 9}).
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Definition 5

For a group G, the left regular representation, denoted GL, is the subgroup of SG given

by the left translations of G. More specifically, GL = {x 7→ gx : g ∈ G}. We denote the

map x 7→ gx by gL. It is straightforward to verify that GL is a group and that GL
∼= G

Let x, y ∈ G, and g = yx−1. Then gL(x) = yx−1x = y so that GL is transitive on G.

For example the permutations obtained by clockwise rotation of 36◦ in the graph of

figure 2.2 generates GL = (Z10)L

In general, for an abelian group G, the group GL will consist of “translations by g” that

is x 7→ g + x = x+ g, or GL = {x 7→ x+ g : g ∈ G}. More specifically, the cyclic group

Zn is generated by the map x 7→ x+ 1 (or course instead of 1, one could put any generator

of Zn).

Now we will see some useful results.

Lemma 1

If G is a group and S ⊆ G, then GL ≤ Aut(Cay(G,S)).

Proof: Let a = (g, gs) ∈ A(Cay(G,S)), where g ∈ G and s ∈ S. Let h ∈ G. We must

show that hL(e) ∈ A(Cay(G,S)), or that hL(a) = (g′, g′s′) for some g′ ∈ G and s′ ∈ S.

Setting g′ = hg and s′ = s, we have

hL(a) = hL(g, gs) = (hg, h(gs)) = (hg, (hg)s) = (g′, g′s′).

Now we turn to the relationship between Cayley digraphs of G and Aut(G), the auto-

morphism group of G.
6



Lemma 2

Let G be a group, α ∈ Aut(G) and S ⊆ G. Then α(Cay(G,S)) is a Cayley digraph of G

with connection set α(S).

Proof: Clearly α : G 7→ G so that V (α(Cay(G,S))) = G. Let a = (g, gs) ∈ A(Cay(G,S)),

where g ∈ G and s ∈ S. Then

α(a) = α(g, gs) = (α(g), α(gs)) = (α(g), α(g)α(s)) = (g′, g′s′)

where g′ = α(g) and s′ = α(s) ∈ α(S).

This says that the image under a group automorphism of a Cayley digraph is another

Cayley digraph.
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CHAPTER 3

ÁDÁM’S CONJECTURE

In 1967, Ádám [1] conjectured that two circulant graphs Cay(Zn, S) and Cay(Zn, S ′)

are isomorphic if and only if there exists m ∈ Z∗n such that mS = S ′ (where mS = {ms :

s ∈ S}). If mS = S ′ it is often said that Cay(Zn, S) and Cay(Zn, S ′) are isomorphic by

a multiplier. As for each m ∈ Z∗n, the map x 7→ mx is a group automorphism of Zn.

Ádám conjectured that two circulant graphs of order n are isomorphic if and only if they

are isomorphic by a group automorphism of Zn.

It was quickly shown by Elspas and Turner [12] that Ádám’s conjecture is not true, by

giving two isomorphic circulant graphs of order 16 that are not isomorphic by a multiplier.

Following Elspas and Turner’s example showing that Ádám’s original conjecture was

false, the conjecture quickly (we remark that one reason that Ádám’s conjecture was not

abandoned was that already in 1967 Turner [20] had verified Ádám’s conjecture for circu-

lant graphs of prime order) turned into a problem and was generalized to Cayley graphs

of groups that were non-cyclic. The new question was, which groups G have the property

that any two Cayley (di)graphs of G are isomorphic if and only if they are isomorphic by a

group automorphism of G? This question motivates the following definition:

8



Definition 6

A group G which has the property that any two Cayley (di)graphs of G are isomorphic if

and only if they are isomorphic by a group automorphism of G is called a CI-group with

respect to (di)graphs.

One may wonder why we do not just say “CI-group” instead of “CI-group with respect

to (di)graphs”. This is because it is possible to ask the same question about other classes

of “combinatorial objects”, e.g. combinatorial designs, once one has a notion of a “Cayley

object” or “Cayley design”.

One more term is necessary before we proceed.

Definition 7

Suppose that there is a Cayley (di)graph Γ of G such that if Γ′ is any Cayley (di)graph

of G, then Γ and Γ′ are isomorphic if and only if they are are isomorphic by a group

automorphism of G. Such a Cayley (di)graph of G is called a CI-(di)graph of G.

Evidently, G is a CI-group with respect to (di)graphs if and every Cayley (di)graph of G is

a CI-(di)graph.

Theorem 1

Let G be a CI-group with respect to digraphs and H ≤ G. Then H is a CI-group with

respect to digraphs.

Proof: Let Cay(H,S1) and Cay(H,S2) be isomorphic Cayley digraphs of H . As the

digraph Cay(H,S1) is a CI-digraph of H if and only if its complement is a CI-digraph of

H we may assume that Cay(H,S1) and Cay(H,S2) are both connected by replacing them

with their complements if necessary. It is not hard to see then that 〈S1〉 = 〈S2〉 = H . Then
9



Cay(G,S1) and Cay(G,S2) are isomorphic Cayley digraphs of G, so there exists α ∈

Aut(G) such that Cay(G,S2) = α(Cay(G,S1)) = Cay(G,α(S1)). Hence α(S1) = S2,

and so H = 〈S2〉 = α(〈S1〉) = α(H). The restriction of α to H is then an isomorphism

from Cay(H,S1) to Cay(H,S2).

3.1 Counterexamples

As we said it was quickly shown by Elspas and Turner that Ádám’s conjecture is not

true, that is that there are two isomorphic circulant graphs of order 16 that are not isomor-

phic by a multiplier.We now give Elspas and Turner’s example.

Let Γ1 = Cay(Z16, {1, 2, 7, 9, 14, 15}) and Γ2 = Cay(Z16, {2, 3, 5, 11, 13, 14}) be the

circulant graphs shown in Figure 3.1. If Γ1 and Γ2 are isomorphic by a multiplier, then

there exists m ∈ Z16 such that m{1, 2, 7, 9, 14, 15} = {2, 3, 5, 11, 13, 14}. As both Γ1 and

Γ2 are graphs, the map x 7→ −x is an automorphism of both Γ1 and Γ2. Thus for graphs,

mS = S ′ if and only if (−m)S = S ′. We may thus assume without loss of generality that

m ≤ 8, and as m ∈ Z∗16, m = 1, 3, 5, 7. As 1 is in the connection set of Γ1, m is in the

connection set of Γ2, so m = 3, 5. As 3 · 2 = 6 6∈ S ′, and 5 · 2 = 10 6∈ S ′, where S ′ is

the connection set of Γ2, we see that Γ1 and Γ2 are not isomorphic by a multiplier. Finally,

straightforward though tedious computations will show that the map defined by x 7→ x if

x is even and x 7→ x+ 4 if x is odd is an isomorphism from Γ1 to Γ2.

Elspas and Turner also gave an example of two circulant digraphs of order 8 that are

not isomorphic by a multiplier, see[[12].

10
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Two circulant graphs not isomorphic by a multiplier

Alpach and Parsons also have examples for the case of circulant graphs of order p2 for

p an odd prime. As a simple consequence of Theorem 1 we see that the conjecture is false

in most cases when n is divisible by p2, or n is divisible by 16.

Theorem 2

If 8|n and n > 8, then Zn is not a CI-group with respect to graphs.

Proof: In view of Theorem 1, it suffices to show that Z8p, p a prime, is not a CI-group with

respect to graphs. Let S = {1, 4p + 1, 8p − 1, 4p − 1, 2, 8p − 2}, and Γ1 = Cay(Z8p, S).

Let β ∈ Z4p such that β ≡ 3 (mod 4) and β ≡ 1 (mod p). Let T = {1, 4p+1, 8p−1, 4p−

1, 2β, 8p− 2β}, and Γ2 = Cay(Z8p, T ) (here 2β is considered as an element of Z8p in the

natural way). We will show that Γ1 and Γ2 are isomorphic but not by an element of Z∗8p.

11



First observe that as 1 ∈ S if mS = T for any m ∈ Z∗8p, then m = 1, 4p + 1, 8p − 1

or 4p− 1. It is easy to check that for such m, mS = S, in which case the map x 7→ mx is

contained in Aut(Γ1) by Lemma 2. It thus suffices to show that Γ1
∼= Γ2.

Define φ : Z8p 7→ Z8p by φ(2k) = 2(βk) and φ(2k + 1) = 2(βk) + 1, where 0 ≤ k ≤

4p−1. Let α = ρ−1φ−1ρφ. Observe that α(2k) = 2k while α(2k+1) = 2k+1+2(β−1−1).

Note that β−1 − 1 ≡ 0 (mod p), while β−1 − 1 ≡ 2 (mod 4). We conclude that a =

2(β−1 − 1) ≡ 4p (mod 8p). Noting α is self-inverse, we see that α−1ρα = ρ1+a. As

α(0) = 0, we have by Corollary [6, Corollary 4.2B] that α ∈ Aut(Z8p). It is easy to see

that α(S) = S, and so by Lemma 2, α ∈ Aut(Γ1). Thus φ−1ρφ = ρα ∈ Aut(Γ1), and

ρ = φραφ−1. Then φ−1ραφ = ρ ∈ φ(Γ1), and φ(Γ1) is a circulant graph of order 8p. Then

the neighbors of 0 in φ(Γ1) are φ(S) = T , and so φ(Γ1) = Γ2.

Theorem 3

The group Z9n is not a CI-group with respect to graphs for any n ≥ 3.

Proof: For i = 0, 1, 2, let

Si = {±1,±(3n+ 1),±(6n+ 1),±3(in+ 1)}.

We first show that if 3 does not divide in + 1, then Cay(9n, S0) ∼= Cay(9n, Si). For

x ∈ Z9n, let 0 ≤ x′ ≤ 2 be such that x′ ≡ x (mod 3), and define φ : Z9n 7→ Z9n by

φ(x) = x + in(x − x′). Clearly φ is well-defined. Suppose that φ(x) ≡ φ(y) (mod 9n).

Observing that x+in(x−x′) ≡ x (mod 3), we see that φ(x) ≡ φ(y) (mod 3). Then x′ = y′

and so x + inx ≡ y + iny (mod 9n) or equivalently x(1 + in) ≡ y(1 + in) (mod 9n).

12



As 3 does not divide in + 1, neither 9 nor n divide in + 1 and in + 1 is a unit in Z9n. We

conclude that x ≡ y (mod 9n) and so φ is one-to-one and consequently a bijection.

Now consider an edge from x to x + 3n + 1. Notice that (x + 3n + 1)′ = x′ + 1.

It is then straightforward to verify that φ(x + 3n + 1) − φ(x) = 3n(in + 1) + 1. If

in+ 1 ≡ 1 (mod 3), then 3n(in+ 1) + 1 ≡ 3n+ 1 (mod 9n) while if in+ 1 ≡ 2 (mod 3),

then 3n(in + 1) ≡ 6n + 1 (mod 9n). Similar type computations for the other types of

edges of Cay(Z9n, S) will show that φ is indeed an isomorphism from Cay(Z9n, S) to

Cay(Z9n, Si).

Finally, we show that kS0 6= S1 or S2. Suppose that kS0 = Si, where i = 1 or 2. As

S0 6= Si, ±3(in+ 1) is not a unit, and k ∈ kS0, we see that k = ±(3n+ 1) or ±(6n+ 1).

As the map x 7→ −x is in Aut(Cay(Z9n, S)), to simplify computations we assume that

k = 3n + 1 or 6n + 1. As the only nonunits in Si are ±3(in + 1), i = 0, 1, 2, it must be

the case that k(±3) ≡ k(±3(in + 1)) (mod 9n). However, k(±3) ≡ ±3 (mod 9n) and

k(±3(in+ 1)) ≡ ±3(in+ 1) (mod 9n), and so ±3 ≡ 3(in+ 1) (mod 9n). As i = 1 or 2,

we have±3 ≡ 3n+3 or 6n+3 (mod 9n). The four equations yield that 3n ≡ 0 (mod 9n),

−6 ≡ 3n (mod 9n), 6n ≡ 0 (mod 9n), and −6 ≡ 6n (mod 9n). The first and third of

these equations are not true. The second equation is only true if n = 1, while the fourth

equation is only true if n = 2, a contradiction. This if im + 1 6≡ 0 (mod 3), then we have

isomorphic circulant graphs that are not multiplier equivalent. As only one of 1, n + 1,

and 2n + 1 are divisible by 3, some in + 1, i = 1, 2, is not divisible by 3, an Z9n is not a

CI-group with respect to graphs.

13



Although we saw that the Ádám conjecture is false, Ádám was not totally wrong. In

the next section we will see there are integers were Ádáms conjecture is true.

3.2 Examples

In this subsection, we summarize the positive results on Adám’s conjecture. The first

positive result was obatined by Elspas and Turner in 1967 when they showed the conjecture

is true when n is a prime number. As the proof in this case is quite easy, we will state it as

a theorem and prove it.

Theorem 4

Let p be a prime. Then Zp is a CI-group with respect to digraphs and graphs.

Proof: Let Γ = Cay(Zp, S) be a Cayley digraph of Zp, and φ ∈ Sp such that φ−1(Zp)Lφ ≤

Aut(Γ). Notice that (Zp)L has order p, and that Sp has order p!. Also observe that the

highest power of p that divides p! is p. We conclude that (Zp)L and φ−1(Zp)Lφ are Sy-

low p-subgroups of Sp, and so are Sylow p-subgroups of Aut(Γ). Consequently, by a

Sylow Theorem (Zp)L and φ−1(Zp)Lφ are conjugate in Aut(Γ). The result then follows

by Lemma 3 (this is stated in more generality later).

Alpach and Parsons in 1979 [2] showed that Zn is a CI-group with respect to digraphs

for n = pq where p and q are two different primes numbers. Godsil [13] showed that it

is true for n = 4p, and Muzychuk [17, 18] showed that Zn is a CI-group with respect to

graphs if and only if n = 9,m, 2m, or 4m and is a CI-group with respect to digraphs if and

only if n = m, 2m, or 4m, where m is odd and square-free.

14



Muzychuk [19] gave a polynomial time algorithm to solve the isomorphism problem

for circulant digraphs. The algorithm reduces the problem to the prime power case, see

Theorem 9.2 at the end of this thesis.

As we said before Alpach and Parsons gave conditions for the case n = p2. In this

thesis we will generalize their result. The basic idea is to show that if G is not a CI-digraph

of Zn then the graph must be a wreath product of very specific digraphs. Before going to

the mains results we will need some extra tools and results.

15



CHAPTER 4

COLOR DIGRAPHS AND WREATH PRODUCTS

Our main results actually hold for a more general object than a digraph, namely a color

digraph. In this chapter we define these objects as well as define and give examples of

wreath products.

Definition 8

A color digraph Γ is a set of digraphs {Γi : 1 ≤ i ≤ r} such that ∪ri=1A(Γi) = A(Kn),

where each Γi is of order n.

Notice that a digraph whose arcs have been colored in some fashion (but perhaps there

are some arcs not in the digraph) can always be regarded as a color digraph as any edges

which are missing can always be colored with a color not already used. Additionally, it is

useful to think of the arcs of Γi as being labelled with the color i. In this case, we will refer

to Γi the subdigraph of Γ colored with the color i.

We will usually work with color Cayley digraphs. These are Cayley digraphs in which

the arcs have been partitioned into, say r, (color) classes, and each color class is a Cayley

digraph of G. Formally,

Definition 9

A color digraph is an unordered set {Γ1, . . . ,Γr} where the Γi are pairwise arc-disjoint

digraphs such that ∪ri=1A(Γi) = A(Kn). The automorphism group of a color digraph Γ
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is defined to be the intersection of the automorphism groups of each Γi, so ∩ri=1Aut(Γi).

Two color digraphs Γ = {Γ1, . . . ,Γr} and Γ′ = {Γ1, . . . ,Γs} are isomorphic if r = s and

there exists a bijection φ : V (Γ) 7→ V (Γ′) such that

φ({Γi : 1 ≤ i ≤ r}) = {φ(Γi) : 1 ≤ i ≤ r}

= {Γ′i : 1 ≤ i ≤ r}.

If each Γi = Cay(G,Si) for Si ⊂ G, then Γ is a Cayley color digraph, which we denote

by Cay(G,S1, . . . , Sr). Usually, we will simply denote the set {S1, . . . , Sr} of connection

sets of a Cayley color digraph of G by S .

Wielandt introduced the notion of a 2-closed group in [22], as well as the 2-closure of a

permutation group G, denoted G(2). A 2-closed group is simply the automorphism group

of a color digraph, while the 2-closure of G is the smallest 2-closed group (in the same

symmetric group) that contains G.

The most common way of obtaining a color digraph is via the orbital digraph con-

struction. Let G ≤ SX , be a transitive group and let G act on X × X by g(x, y) =

(g(x), g(y)). Let O1, . . . ,Or be the orbits of G under this action, and define digraphs

Γ1, . . . ,Γr by V (Γi) = X and A(Γi) = Oi. Then {Γi : 1 ≤ i ≤ r} is a color digraph, and

each Γi is an orbital digraph of G.

We shall have need of the wreath product of both digraphs and groups.
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Definition 10

Let Γ1 and Γ2 be digraphs. The wreath product of Γ1 and Γ2, denoted Γ1 o Γ2, is the

digraph with vertex set V (Γ1) × V (Γ2) and edges (u, v)(u, v′) for u ∈ V (Γ1) and vv′ ∈

E(Γ2) or (u, v)(u′, v′) where uu′ ∈ E(Γ1) and v, v′ ∈ V (Γ2).

•

•

•
•

•
•

Figure 4.1

The graph K3 o K̄2.

We will also need the wreath product of color digraphs. For such a wreath product to

make sense, the two color digraphs Γ1 and Γ2 must have the same colors, so we always

adopt the convention that if a color is present in Γ1 but not Γ2, one color digraph but not

in the other, then a digraph with no arcs is added to Γ2 to represent the missing color.

Similarly, if Γ2 has a color not represented in Γ1.
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 4.2

The graph C4 o C4.

Definition 11

Let Γ1 and Γ2 be color digraphs with the same colors. The wreath product of Γ1 and Γ2,

denoted Γ1 o Γ2, IS the color digraph consisting of Γ1,i o Γ2,i, where Γj,i is the subdigraph

of Γj colored with color i, j = 1, 2.

Notice that in this definition, the color digraphs Γ1 and Γ2 are necessarily are ordered

color digraphs in order for us to know which digraph to wreath with which digraph. That

the wreath product cannot be defined for unordered color digraphs will present some ad-

ditional obstacles in our work. Finally, we mention that the isomorphism problem for

unordered circulant digraphs is not the same as the isomorphism problem for ordered circu-

lant digraphs. For example, there are self-complementary circulant graphs Γ and Γ̄ (where

Γ̄ is the complement of Γ) where the graph and its complement are not isomorphic by a

group automorphism of Zn [14] or [15]. The unordered color graph {Γ, Γ̄} is obviously
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isomorphic to itself by a group automorphism of Zn, but the two ordered color graphs

(Γ, Γ̄) and (Γ̄,Γ) are not.

Definition 12

Let G be a permutation group acting on the set X and H a permutation group acting on

the set Y . Define the wreath product of G and H , denoted G o H , to be the set of all

permutations of X × Y of the form (x, y) 7→ (g(x), hx(y)).

It is easy to see that Aut(Γ1) o Aut(Γ2) ≤ Aut(Γ1 o Γ2). The automorphism groups

of the wreath product of two vertex-transitive color digraphs are given in [10, Theorem

5.7]. Based on their automorphism groups, circulant color digraphs can be placed into

three classes of digraphs, normal circulant digraphs, deleted wreath types, and generalized

wreath products - see [24] for the definition of a normal circulant, and [4] for the definition

of a deleted wreath types. Generalized wreath products get their name not from any sort of

“product”, but because they generalize the notion of the wreath product in Cayley digraphs.

Definition 13

Let Γ = Cay(W,S) be a color digraph for some abelian group W and S ⊂ W . We say

that Γ is a (K,L)-generalized wreath product or, more simply a generalized wreath

product, if there exists 1 < L ≤ K ≤ W such that Si K is a union of cosets of L for each

1 ≤ i ≤ r.

It is not difficult to see that a circulant color digraph is a nontrivial wreath product

of two circulants color digraphs of smaller order if and only if it is a (K,K)-generalized

wreath product for some 1 < K < A. In the next section, we will show that every circulant

color digraph that is not a CI-digraph is isomorphic to a generalized wreath product. We
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then will show a generalized wreath product circulant color digraph is CI-color digraph

only if it is a wreath product of circulant color digraphs of smaller order and of a particular

and restricted form.

The following result that characterizes CI-color digraphs is due to Babai [3], although

a version for cyclic groups was also independently derived by Alspach and Parsons [2].

Lemma 3

Let Γ = Cay(G,S) be a Cayley color digraph of G. Then the following are equivalent:

1. Γ is a CI-color digraph of G,

2. whenever φ ∈ SG such that φ−1GLφ ≤ Aut(Γ), then GL and φ−1GLφ are conjugate
in Aut(Γ).

We finish this section with some terms from permutation group theory that we will

need.

Definition 14

Let G ≤ Sn be transitive on Zn. A subset B ⊆ Zn is a block of G if g(B) = B or

g(B) ∩ B = ∅ for every g ∈ G. If B is a block, then g(B) is also a block of G, called a

conjugate block. The set of all conjugate blocks of B is classed a G-invariant partition,

usually denoted B. Thus B = {g(B) : g ∈ G}. If the group is clear, we will also say that B

is an invariant partition or and invariant partition of G. Any element g ∈ G also permutes

the blocks in B, and so each g ∈ G induces a permutation g/B on B by g/B(B) = B′ if

and only if g(B) = B′. We let G/B = {g/B : g ∈ G{, and fixG(B) = {g ∈ G : g(B) =

B for all g ∈ G}. Note that there is an induced homomorphism φ : G 7→ SB given by

φ(g) = g/B and Ker(φ) = fixG(B). Finally, if G ≤ Aut(Γ) for some digraph Γ, we define
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Γ/B by V (Γ) = B and (B,B′) ∈ A(Γ/B) if and only if (b, b′) ∈ A(Γ) for some b ∈ B

and b′ ∈ B′.
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CHAPTER 5

A NON-CI-CIRCULANT IS A GENERALIZED WREATH PRODUCT

We fix some notation that will be used throughout the following chapters. Let p be a

prime and define β, ρ : Zpk → Zpk by β(i) = (1+p)i and ρ(i) = i+1. It is straightforward

to verify that β is an automorphism of (Zpk)L of order pk−1 if p is odd while i → 3i has

order pk−2 if p = 2, and that (Zpk)L = 〈ρ〉. If p = 2, then define ι : Z2k 7→ Z2k be given

by ι(i) = −i.

Lemma 4

Let p be prime, k ≥ 1, and P ≤ N(pk) = NS
pk

((Zpk)L) be a p-group that contains (Zpk)L.

Then every circulant color digraph whose automorphism group contains P is a generalized

wreath product or

• if p is odd then P = (Zpk)L, or

• if p = 2, then P = (Z2k)L or P = 〈(Z2k)L, ιβ
2k−3〉 or 〈(Z2k)L, ι〉 is of order 2k+1

and has a unique regular cyclic subgroup.

Proof: If k = 1, then the result is trivial as (Zp)L is a Sylow p-subgroup of Sp, so we

assume that k ≥ 2.

As a Sylow p-subgroup of N(pk)/〈ρ〉 is isomorphic to Zpk−1 if p is odd or Z2 × Z2k−2

if p = 2, we see that a Sylow p-subgroup Q of N(pk) is 〈β, ρ〉 if p is odd and is 〈ρ, β, ι〉 if

p = 2.
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We now show that if β` 6= 1 is contained in P , then every circulant color digraph

whose automorphism group contains P is a generalized wreath product. Indeed, if such

an ` exists, then by raising β` to an appropriate power we may choose ` = 2k−3 if p = 2

while if p 6= 2, we may choose ` = pk−2. Then β`(a + bp) = a + bp + apk−1 and so

β` fixes every element of H = 〈p〉 and the cycle of β` that contains a + bp, a 6= 0 is

(a + bp a + b + apk−1 . . . a + bp + a(p − 1)pk−1). Thus if Γ = Cay(Zn, S) is an

orbital digraph of P and 0 is adjacent to any element of the cycle of β` that contains a+bp,

then 0 is adjacent in Γ to every element of the cycle that contains a + bp. Hence the coset

a+ bp+ 〈pk−1〉 ⊆ S. Setting K = 〈pk−1〉 we see that S−H is a union of cosets of K and

Γ is an (H,K)-generalized wreath product. We may henceforth assume that p = 2.

If k = 2, Then Z2 o Z2 of order 8 is a Sylow 2-subgroup of S4, β = 1, and P = 〈ρ, ι〉.

It is not difficult to verify that Z2 oZ2 contains a unique regular cyclic subgroup of order 4.

We henceforth assume k ≥ 3.

Assume that P 6= 〈ρ〉. ThenNP (〈ρ〉) 6= 〈ρ〉 by a Sylow Theorem. We may assume that

there is no β` 6= 1 in P as otherwise the result follows by arguments above. Then there

exists u ∈ Z such that ιβu ∈ P .

Suppose first that u ≡ 0 (mod 2k−2), in which case ιβu = ι. If |P | > 2k+1 then there

exists ιβv ∈ P for some v with v 6≡ 0 (mod 2k−2), but then βv ∈ P , a contradiction. Thus

if u ≡ 0 (mod 2k−2), then |P | = 2k+1. We claim that 〈ρ〉 is the unique regular cyclic

subgroup of P in this case. Indeed, if 〈δ〉 is another regular cyclic subgroup of P , then

δ = ιρi for some i, but straightforward computations show that (ιρi)2 = 1, a contradiction.

Thus if u ≡ 0 (mod 2k−2) then the result follows.
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Suppose u 6≡ 0 (mod 2k−2) or equivalently that ιβu 6= ι. As Z∗
2k

is abelian, (ιβu)2 =

ι2β2u = β2u ∈ 〈β〉. The result then follows by arguments above unless 32u = 1, and

|ιβu| = 2. This then implies that |〈ρ, ιβu〉| = 2k+1, and that u ≡ 0 (mod 2k−3) as 3 has

multiplicative order 2k−2 in Z2k . If k = 3, then we have that |P | = 2k+1 as there is now

only one choice for ιβu, namely ιβ. If k ≥ 4, then u ≡ 0 (mod 2k−3) and so u = x2k−3

for some odd integer x. We may and do assume without loss of generality that x = 1.

Now assume that |P | > 2k+1 (and so k ≥ 4). Then there exists v ∈ Z such that

βu 6= βv and ιβv ∈ P . Applying arguments analogous to those above to ιβv, we see that

v = y2k−3 for some odd integer y. But then ιβuιβv(i) = (1+p)(x+y)2k−3 and as both x and

y are odd, x + y is even. Hence ιβuιβv = 1, and ιβv = (ιβu)−1 = ιβu, a contradiction.

Hence if k ≥ 4 we also have |P | = 2k+1, and so if k ≥ 3 we have |P | = 2k+1.

Now let δ ∈ P such that 〈δ〉 is a regular cyclic subgroup, and assume that 〈δ〉 6= 〈ρ〉. As

P = 〈ρ, ιβ2k−3〉, δ = ρaιβ2k−3 . Then δ2(i) = i− 32k−3
a+ a. If k = 3, then δ2(i) = i+ 6a

which has order 4 if and only if gcd(2, a) = 1. Also, δ(i) = 5i + a, and it is easy to see

that the map i 7→ 5i maps cosets of the unique subgroup K of Z8 of order 2 to themselves

and also maps cosets of the unique subgroup H of Z8 of order 4 to themselves. This then

implies that any generalized orbital digraph of P is an (H,K)-generalized wreath digraph

and the result follows. To finish, we will show that if k ≥ 4, then no such δ exists.

To show δ doesn’t exist, we first show that the congruence 32k ≡ 1 (mod 2k+2) holds

for k ≥ 1. This is easy to verify if k = 1, so inductively assume it is true for k ≥ 1. Then

32k = `2k+2 + 1 for some positive integer `, and 32k+1
= 32k · 32k = `222k+1 + 2`2k+3 + 1

so indeed 32k+1 ≡ 1 (mod 2k+3) and the congruence is established by induction. Rewrite
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32k ≡ 1 (mod 2k+2) as 32k−2 ≡ 1 (mod 2k), k ≥ 3, and observing that 33k−2
= 32k−3 ·32k−3 ,

we conclude that 33k−3 has multiplicative order 2 in Z2k . As Z∗
2k
∼= Z2 × Z2k−2 , there are

four elements of Z2k whose multiplicative order is divisible by 2, namely,±1 and 2k−1±1.

If k ≥ 4, then we know that 32k−3 ≡ 1 (mod 2k−1) and so 32k−3 ≡ 1 or 2k−1 + 1 (mod 2k).

Finally,

δ2(i) = i− 32k−3

a+ a = i− a(32k−3 − 1)

≡ i or i− 2k−1 (mod 2k).

This implies that |δ| = 1 or 2, and so |δ| = 2 or 4. This however contradicts k ≥ 4,

establishing the result.

For the next several lemmas we will fix some more notation. Let B be the invariant

partition of 〈ρ〉 formed by the orbits of 〈ρpk−1〉, so that the blocks of B are of size p.

Let C be the invariant partition of 〈ρ〉 consisting of pk−` blocks of size p`, where ` ≥ 2.

Let G = GC = 〈ρ, ρpk−1|C : C ∈ C〉. Then B and C are invariant partitions of G, and

G/B = 〈ρ〉/B.

Lemma 5

The group G contains at least two different regular cyclic subgroups R1 6= R2. Addition-

ally, G is generated by the set of all regular cyclic subgroups.

Proof: For this proof it will be convenient to view ρ as a permutation in Spk−1 × Sp given

by ρ(i, j) = (i + 1, j + bi), where each bi ∈ Zp. As ρ has order pk and ρpk−1
= (i, j +∑pk−1−1

m=0 bi), we see that c =
∑pk−1−1

m=0 bi 6≡ 0 (mod p). Let Cn ∈ C with (n, 0) ∈ Ci.
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Consider ρn = ρ(ρp
k−1|Cn), and let ρn(i, j) = (i+1, j+di), where di ∈ Zp. For i ∈ Zpk−1 ,

let Bi = {(i, j) : j ∈ Zp}, so that B = {Bi : i ∈ Zpk−1}. Then di = bi if Bi 6⊂ Cn and

di = bi + 1 if Bi ⊂ Cn. Then (ρn)p
k−1

(i, j) = (i, j +
∑pk−1−1

m=0 di), and

pk−1−1∑
m=0

di = p`−1 +

pk−1−1∑
m=0

bi ≡
pk−1−1∑
m=0

bi 6≡ 0 (mod p).

We conclude that 〈ρn〉 has order pk, and as ρn 6∈ 〈ρ〉, the first part of the result follows with

R1 = 〈ρ〉 and R2 = 〈ρn〉 for some n. The second part follows as 〈ρ−1ρn : n ∈ Zpk−1〉 =

fixG(B).

For the remainder of this section it will be most convenient to view the set Zpk as the

set Zpk−` ×Zp` with ρ(i, j) = (i+ 1, j+ bi), where bpk−`−1 = 1 and bi = 0 if i 6= pk−`− 1.

Also, C = {{(i, j) : j ∈ Zp`} : i ∈ Zpk−`}. Let α = (1 + p)p
`−2 ∈ Z∗

p`
, and define

γ : Zpk−` × Zp` 7→ Zpk−` × Zp` be given by γ(i, j) = (i, αj).

Lemma 6

If R1 and R2 are regular cyclic subgroups of G and δ ∈ Spk with δ−1R2δ = R1, then

δ = nγag normalizes G, where g ∈ fixG(B), n ∈ N(pk), and a ∈ Zp. Also, NS
pk

(G) =

〈G,N(pk), γ〉, fixNS
pk

(B) = 〈fixG(B), γ〉 / NS
pk

(G) and |NS
pk

(G)| = (p− 1)p2k−1+pk−` .

Proof: First, every element of N(pk) normalizes G. This follows as every subgroup of

Zpk is characteristic. In particular, if ω ∈ N(pk) then ω(B) = B and ω(C) = C. Then

ω−1〈ρpk−1〉ω = 〈ρpk−1〉, and for any C ∈ C, ω(C) ∈ C. So ω−1(ρp
k−1|C)ω = ρrp

k−1|C′ for

some r ∈ Zp and C ′ ∈ C and indeed N(pk) normalizes G.

As G is a p-group, G has nontrivial center, which of course commutes with every

element of 〈ρ〉. As 〈ρ〉 is a regular abelian subgroup, it is self-centralizing, and hence
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Z(G) ≤ 〈ρ〉. We conclude that 〈τ pk−1〉 ≤ Z(G). Similarly, 〈τ pk−1〉 is contained in every

regular cyclic subgroup of G.

Let R1, R2 ≤ G be regular cyclic subgroups with δ−1R2δ = R1. By the immediately

preceding paragraph, 〈τ pk−1〉 ≤ R1 ∩ R2 is characteristic in both R1 and R2 as it is the

unique subgroup of R1 and R2 of order p. We conclude that δ(B) = B as B is formed by

the orbits of 〈τ pk−1〉. As R1/B = R2, we see that δ/B ∈ NS
pk−1

(〈ρ/B〉). As every element

of Aut(Zpk−1) extends to an automorphism of Zpk , by [6, Corollary 4.2B] every element

of NS
pk−1

(〈ρ〉/B) extends to an element of NS
pk

(〈ρ〉). Hence there exists n ∈ NS
pk−1

(〈ρ〉)

such that n/B = δ/B.

Now, as 〈τ pk−1〉|B ∼= (Zp)L is normal in fixG(B)|B for every B ∈ B, we conclude that

(n−1δ)|B ∈ AGL(1, p) for every B ∈ B. Additionally, as fixG(C)|C ∼= Zpk−` for every

C ∈ C, (n−1δ)|C is contained in N(pk−`) for every C ∈ C. As k − ` ≥ 2, there is no

element of order relatively prime to p that fixes each block of B set-wise by [9, Lemma

29]. This then implies that n−1δ(i, j) = (i, αaij + ci) where ai ∈ Zp and ci ∈ Zp` has

additive order p. Note that δ−1n(i, j) = (i, α−aij − α−aici).

Now, let ω = ρ−1nδ−1ρn−1δ, so that

ω(i, j) = (i, α−ai+1+aij + α−ai+1(ci − ci+1) + bi(α
−ai+1 − 1).

As α = (1+p)p
`−2 , we see that α−ai+1−1 ≡ 0 (mod p`−1), and so addition of bi(α−ai+1−1)

fixes each block of B, as does addition of α−ai+1(ci−ci+1). We conclude that ω ∈ fixG(B),

and as fixG(B)|C is semiregular, it must be that ai = ai+1 for all i ∈ Zpk−` , and n−1δ = γag

for some g ∈ fixG(B) and a = ai. Hence δ = nγag.
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We have already seen that n normalizes G, as does g ∈ G. Similar to the computation

for the displayed equation above, we see that ρ−1γργ−1(i, j) = (i, j + bi(α − 1)) and

again α − 1 ≡ 0 (mod p`−1). Then ρ−1γ−1ργ ∈ fixG(B) and as γ centralizes fixG(B), γ

normalizes G as well. Hence nγag normalizes G.

To show that NS
pk

(G) = 〈N(pk), γ, G〉, we observe that conjugation by φ ∈ NS
pk

(G)

maps the regular cyclic subgroups of G to the regular cyclic subgroups of G. By the

immediately preceding argument we see that φ = nγag as above and φ ∈ 〈N(pk), G, γ〉.

Finally, let δ ∈ fixNS
pk

(B). As was shown above, δ = nγag for n ∈ N(pk), g ∈ fixG(B),

and a ∈ Zp. As δ/B = 1, we may choose n = 1, in which case δ = γag. Hence

〈fixG(B), γ〉 = fixNS
pk

(B) / 〈G,N(pk), γ〉. Finally, as fixG(B) / fixNS
pk

(B), we see that

|NS
pk

(G)| = |NS
pk

(G)/B| · |fixG(B)|

= pk−1 · (p− 1)pk−1 · |fixG(B)| · |〈γ〉|

= (p− 1)p2k−2 · ppk−` · p

= (p− 1)p2k−1+pk−` .

Lemma 7

G contains exactly ppk−` regular cyclic subgroups.

Proof: As any regular cyclic subgroup R of G is conjugate in Spk to 〈ρ〉 as R and 〈ρ〉

are permutation equivalent, and by Lemma 6 any element δ ∈ Spk with δ−1〈ρ〉δ = R

is contained in NS
pk

(G), the number of regular cyclic subgroups of G is the number of
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regular cyclic subgroups of G conjugate in NS
pk

(G) to 〈ρ〉. This number is [NS
pk

(G) :

NNS
pk

(G)(〈ρ〉)]. As NNS
pk

(〈ρ〉) = N(pk) has order (p − 1)p2k−1, by Lemma 6 we see the

number of regular cyclic subgroups of G is

(p− 1)p2k−1+pk−`

(p− 1)p2k−1
= pp

k−`
.

Lemma 8

Let Γ = Cay(G,S) be a Cayey color digraph for some abelian groupG, and 1 < H ≤ L <

G such that Γ is a (L,H)-generalized wreath product. Let B � C be the invariant partitions

of GL consisting of cosets of H and L, respectively. Let K ≤ Aut(Γ) be maximal that

admits both B and C as invariant partitions. If γ ∈ K such that γ|C fixes each block of B

contained in C, then γ|C ∈ K.

Proof: Let e = (x, y) be an arc of Γi = Cay(G,Si). As GL is transitive and contained

in Aut(Γ), it suffices to only consider the case where x = 0. Let C ∈ C with 0 ∈ C,

and γ ∈ K such that γ|C fixes each block of B contained in C. If x, y ∈ C, then clearly

γ|C(0, y) = γ(0, y) is an arc of Γi. If x, y 6∈ C then γ|C(x, y) = (x, y) is an arc of Γi.

If x ∈ C and y 6∈ C, then as Γi is an (L,H)-generalized wreath product, every vertex

of x + H is outadjacent in Γi to every vertex of y + H and (y − x) + H ⊆ S. Also,

γ(x+H) = x+H and γ|C(y+H) = y+H . We conclude that γ|C(y)−γ|C(0) ∈ y+H .

The case where y ∈ C but x 6∈ C is analogous and γ ∈ Aut(Γi). As Γi is arbitrary, the

result follows.
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Lemma 9

Let n be an odd positive integer and G ≤ Sn contain a regular cyclic subgroup and have an

invariant partition B that is not trivial and is not refined by an nontrivial invariant partition.

Then either |B| = p for B ∈ B and some prime p or StabG(B) in its action on B is a

doubly-transitive group with nonabelian almost simple socle.

Proof: Assume |B| does not have prime order. As B is not trivial, n is composite. Next,

StabG(B)|B is primitive by [6, Exercise 1.5.10] for every B ∈ B. As Zn is a Burnside

group [6, Theorem 3.5A] and StabG(B)|B contains a regular cyclic subgroup, it is doubly-

transitive and has socle a simple group or a regular elementary abelian p-group for some

(odd) prime p by [6, Theorem 4.1B]. As a transitive subgroup of Sp2 contains a regular

subgroup and an elementary abelian subgroup if and only if it has Sylow p-subgroup Sp o

Sp by [11, Lemma 4], it is easy to see that AGL(k, p) does not contain a regular cyclic

subgroup if k ≥ 2. Thus if StabG(B)|B has elementary abelian socle then it is a subgroup

of AGL(1, p) and |B| = p, and the result follows.

Lemma 10

Let p be prime, k ≥ 2, and Γ = Cay(Zpk , S) a color digraph that is a nontrivial generalized

wreath product that is not isomorphic to a color digraph whose automorphism group has

the form G1 o G2 for some 2-closed subgroups G1 ≤ Spk−i and G2 ≤ Spi is a symmetric

group if i ≥ 2. Then Cay(Zpk , S) is not a CI-color digraph.

Proof: Let P be a Sylow p-subgroup of Aut(Γ) that contains (Zpk)L. As Γ is a nontrivial

generalized wreath product, there exists 1 < L ≤ K ≤ (Zpk)L such that Sj − K is a

union of cosets of L for every Sj ∈ S. We choose K to be minimal such that Sj −K is a
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union of cosets of L for every Sj ∈ S, and suppose that L is not of prime order. Let C be

the invariant partition of (Zpk)L formed by the cosets of L. Then G = GC ≤ Aut(Γ) but

GD 6≤ Aut(Γ) for any D ≺ C. We will show that there is a regular cyclic subgroup R in G

that is not conjugate in Aut(Γ) to 〈ρ〉. This will imply our claim by Lemma 3.

By Lemma 6, if R is conjugate to 〈ρ〉 in Aut(Γ), then there exists δ ∈ NS
pk

(G) such

that δ−1〈ρ〉δ = R. Hence the number of regular cyclic subgroups inG conjugate in Aut(Γ)

to 〈ρ〉 is the number of regular cyclic subgroups in G conjugate in NAut(Γ)(G) to 〈ρ〉. By

Lemma 6, NAut(Γ)(G) = 〈G,N(pk), γ〉 ∩ Aut(Γ) = H (where γ is defined as above).

Suppose γ ∈ H . Let M be the largest subgroup of Aut(Γ) that admits B (consisting

of the cosets of the unique subgroup of Zpk of size p). Note that P ≤ M and as P is

a Sylow p-subgroup of Aut(Γ), P is a Sylow p-subgroup of M . Define an equivalence

relation ≡ on B by B ≡ B′ if and only if whenever ω ∈ fixM(B) then ω|B is a p-cycle if

and only if ω|B′ is a p-cycle. By [7, Lemma 2], the union of the equivalence classes of ≡

is an invariant partition E of M and ρ|E ∈ Aut(Γ′) for every E ∈ E . As ρpk−1|C ∈ Aut(Γ)

and M , we see thatM � C. As γ|C is of prime order and contains a fixed point for every

C ∈ C, for C ∈ C there exists B,B′ ∈ B with B,B′ ⊆ C but B 6≡ B′. This then implies

that E ≺ C, and so if E is formed by the orbits of A < L ≤ 〈ρ〉, then Sj − A is a union of

cosets of A for every Sj ∈ S. This contradicts our choice of L, and so γ 6∈ H .

Now suppose that γn ∈ H for some n ∈ Aut(Zpk), and let |L| = `. Then γn|C

normalizes 〈ρpk−` |C〉 and fixes 0 so γn is an automorphism of Zp` . As Aut(Zp`) is abelian,

raising γn to an appropriate power relatively prime to p, we may assume without loss of
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generality that γn has order a power of p. Then n|C = 1 and by Lemma 8 γ|C ∈ Aut(Γ).

But then γ ∈ H , a contradiction. We conclude that H ≤ 〈G,N(pk)〉.

Let |H| = |G| · m. As H ≤ 〈G,N(pk)〉, we see G / N(pk). As 〈ρ〉 ≤ G and

N(pk)/〈ρ〉 is isomorphic to a subgroup of Aut(Zpk), there exists A ≤ Aut(Zpk) such that

H = 〈G,A〉 = GA and

|H| = |G| · |A|
|G ∩ A|

=
pk−1+pk−` |A|

p
,

and m = |A|/pk+1. Then the number of subgroups of H conjugate to 〈ρ〉 in H is

[H : NH(〈ρ〉)] =
|H|

|NH(〈ρ〉)|
=
|H|

pk · |A|
= pp

k−`−2.

However, by Lemma 7, G contains exactly ppk−` regular cyclic subgroups, so there are

indeed regular cyclic subgroups of H that are not conjugate in G. This gives that if Γ is a

circulant color digraph that is a CI-digraph of Zpk , then L is of prime order and so B = C.

Applying Lemma 8 to M with C = B, we see that the StabB(M)|B ≤ Aut(Γ), where

StabB(M) is the setwise stabilizer of the block B ∈ B in M . Applying the Embedding

Theorem we see that M = M/B o (StabM(B)|B). As M (2) = (M/B)(2) o (StabM(B)|B)(2)

by [5, Theorem 5.1], the result follows if M = Aut(Γ). Otherwise, B is not an invari-

ant partition of Aut(Γ). Let D be the invariant partition of Aut(Γ) with non-singleton

blocks of smallest order. As B ≺ D the blocks of D are of composite order. By Lemma

9, StabAut(Γ)(D)|D is a doubly-transitive group with simple nonabelian socle. This im-

plies fixAut(Γ)(D|D is a doubly-transitive group with simple socle for every D ∈ D. As

B ≺ D and ρpk−1|B ∈ Aut(Γ) for every B ∈ B, the normal closure N of 〈ρpk−1|B〉 in
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StabAut(Γ)(D) is also doubly-transitive with nonabelian socle where B ⊆ D. We con-

clude that any orbital digraph ∆ of Aut(Γ) is isomorphic to a wreath ∆ = ∆/D oKpk−i or

∆ = ∆/D o K̄pk−i in which case Aut(Γ)/D o Spk−i = Aut(Γ)(2) = Aut(Γ) where the last

equality is true as the automorphism group of a color digraph is 2-closed and |D| = pk−i.

Lemma 11

Let Γ = Cay(Zpk , S) be a circulant CI-color digraph, and suppose Aut(Cay(Zpk , S)) ∼=

Aut(Cay(Zpk−i , S1))oAut(Cay(Zpi , S2)) for some circulant color digraphs Cay(Zpk−i , S1)

and Cay(Zpi , S2). Then Cay(Zpk−i , S1) is a circulant CI-color digraph.

Proof: Let B be the invariant partition of Aut(Γ) be formed by the orbits of 1S
pk−i
o

Aut(Cay(Zpi , S2)). Suppose first that for any regular cyclic subgroup R of the color Cay-

ley digraph Aut(Cay(Zpk−i , S1)), there exists regular cyclic subgroup T of Aut(Γ) such

that T/B = R. Let δ ∈ Spk−i such that R = δ−1(Zpk−i)Lδ ≤ Aut(Cay(Zpk−i , S1)). Then

there exists a regular cyclic subgroup T such that T/B = R. As any two regular cyclic

subgroups are permutation equivalent, there exists ω ∈ Spk such that ω−1(Zpk)Lω = T .

As Γ is a circulant CI-color digraph, by Lemma 3 there exists φ ∈ Aut(Γ) such that

φ−1ω−1(Zpk)Lωφ = (Zpk)L. Then φ/B ∈ Aut(Cay(Zpk−i , S1)) and (φ/B)−1Rφ/B =

(Zpk−i)L and Cay(Zpk−i , S1) is a circulant CI-color digraph. It thus suffices to show that

for every regular cyclic subgroup of R of Aut(Cay(Zpk−i , S1)) there is a regular cyclic

subgroup T of Aut(Γ) with T/B = R.

Let R = 〈σ〉 be a regular cyclic subgroup in Aut(Cay(Zpk−i , S1)). For i ∈ Zpk−i , let

bi = 0 if i 6= 0 and b0 = 1. Then the function (x, y) 7→ (σ(x), j + bi) is contained in

34



Aut(Cay(Zpk−i , S1)) o (Zpi)L ≤ Aut(Γ) and this function has order pk−i. Letting T be the

corresponding regular cyclic subgroup of Aut(Γ), we see that T/B = R.

Corollary 1

Let Γ = Cay(Zpk , S) be a CI-color digraph. Then there exists an integer 0 ≤ i ≤ k and

a 2-closed group G1 that contains (Zpk−i)L, and Gj ≤ Spaj that is 2-closed and contains

(Zpaj )L, 2 ≤ j ≤ r such that
∑r

j=1 ai = k − i and if aj ≥ 2 then Gj = Spaj and

Aut(Γ) ∼= G1 o G2 o · · · o Gr. Additionally, the Sylow p-subgroup of G1 that contains

(Zpk−i)L contains a unique regular cyclic subgroup and is either (Zpk−i)L or p = 2 and is

〈(Z2k)L, ι〉 or 〈(Z2k−i)L, ιβ
2k−i−3〉 of order 2k−i+1.

Proof: We proceed by induction on k. If k = 1, the result is trivial as a Sylow p-subgroup

of Sp is a regular cyclic subgroup, so we assume k ≥ 2 and assume the result is true for

all circulant color digraphs of order at most pk−1. Let Γ be a circulant color digraph of

order pk. Let P be a Sylow p-subgroup of Aut(Γ). By Lemma 4 either the result follows

with ` = 0 or Γ is isomorphic to a generalized wreath product. If Γ is isomorphic to a

generalized wreath product, then by Lemma 10 Aut(Γ) = H1 oH2 where H1 ≤ Spk−i for

some i ≥ 0 and H2 ≤ Spi are 2-closed that contain (Zpk−i)L and (Zpi)L, respectively, and

if i ≥ 2 then H2 = Spi . As H1 is 2-closed, it is the automorphism group of some circulant

color digraph Cay(Zpk−i , S ′). By Lemma 11, we see that Cay(Zpk−i , S ′) is a circulant

CI-color digraph, and the result then follows by induction applied to Cay(Zpk−i , S ′).

Corollary 2

Let Cay(Zpk , S) be a circulant color digraph such that there exists 0 ≤ i ≤ k and a

2-closed group G1 that contains (Zpk−i)L, and Gj ≤ S
aj
p that is 2-closed and contains
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(Zpaj )L, 2 ≤ j ≤ r such that
∑r

j=1 ai = k − i and if aj ≥ 2 then Gj = Spaj and

Aut(Γ) ∼= G1oG2o· · ·oGr. Additionally, the Sylow p-subgroup ofG1 that contains (Zpk−i)L

contains a unique regular cyclic subgroup and is either (Zpk−i)L or p = 2 and is 〈(Z2k)L, ι〉

or 〈(Z2k−i)L, ιβ
2k−i−3〉 of order 2k−i+1. Then Aut(Cay(Zpk , S)) = Aut(Cay(Zpk), T ) for

some circulant digraph Aut(Zpk , T ).

Proof: By [6, Theorem 3.5B] either Gj contains a regular cyclic subgroup or is doubly-

transitive and as 2-closed, is a symmetric group. As symmetric groups are automorphism

groups of circulant digraphs are automorphism groups of digraphs (either the complete

graph or its complement) as are 2-closed groups that contain a normal regular cyclic sub-

group by [23], we have that Gi = Aut(Γi) for some digraph Γi. We need one final condi-

tion. Namely, if Γi = Kp, 2 ≤ i ≤ `, then Γi−1 6= Kp (we choose it to be the complement

of Kp if Gi−1 is doubly-transitive). We then have that

Aut(Γ1 o Γ2 o · · · o Γr) = Aut(Γ1) o Aut(Γ2) o · · · o Aut(Γ`) = G1 oG2 o · · · oGr

by [10, Theorem 5.7] and straightforward induction argument.

The preceding result has a more appealing form in the case where Γ is a digraph as

then any complete graph or its complement can be written as a wreath product of order p

circulants (either all complete or complements of complete graphs, respectively).

Corollary 3

Let Cay(Zpk , S) be a CI-digraph. Then

Cay(Zpk , S) = Cay(Zpk−i , S1) o Cay(Zp, S2) o · · · o Cay(Zp, Sk−i+1)
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for some S1 ⊆ Zpk−i and Sj ⊆ Zp, 2 ≤ j ≤ k− i+ 1. Additionally, the Sylow p-subgroup

of Aut(Cay(Zpk−i), S1) that contains (Zpk−i)L contains a unique regular cyclic subgroup

and is either (Zpk−i)L or p = 2 and is 〈(Z2k)L, ι〉 or 〈(Z2k−i)L, ιβ
2k−i−3〉 of order 2k−i+1

37



CHAPTER 6

THE PRIMARY KEY OF A PRIME-POWER CI CIRCULANT

In this chapter we turn towards Muzychuk’s solution of the isomorphism problem for

circulants. He showed that a necessary (but not sufficient) condition for two circulant

digraphs of order n to be isomorphic is that they have the same “key”. In this section we

will introduce some of the notation that Muzychuk needed for his solution, and compute

the “key” of a CI-circulant digraph of prime-power order.

Definition 15

Let p be prime and n ≥ 1 an integer. Define a primary key space Kpn to be the set of all

integer vectors (k1, . . . , kn) satisfying the following two properties:

1. ki < i for each 1 ≤ i ≤ n, and

2. ki−1 ≤ ki for each 2 ≤ i ≤ n.

A vector in Kpa is called a primary key.

Definition 16

Let k be a primary key. For g ∈ Zpn\{0}, define b(g) = k, where |g| = pk, and let

Cg = g + 〈pn−kb(g)〉.

Clearly each Cg is a coset of some subgroup of Zpn . It is easy to verify that all the

elements of Cg has the same order as g. Additionally, if k is a primary key, then Σ(k) =

{{0}, Cg : g ∈ Zpn\{0}}, then Σ(k) is a partition of Zpn .
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Definition 17

The partition Σ(k) is called the primary key partition corresponding to k.

We may compare two primary keys by setting k = (k1, . . . , kn) ≤ (`1, . . . , `n) = `

if and only if ki ≤ `i, 1 ≤ i ≤ n. It is not hard to show that if k ≤ `, then Σ(k) �

Σ(`), which means that Σ(k) is a refinement of Σ(`).. There is a largest primary key

(0, 1, . . . , n − 1), and a smallest primary key (0, . . . , 0). Corresponding to each primary

key there is a set of permutations of Zpk defined as follows.

Definition 18

Let p be prime and n a positive integer. Define the set Z∗∗pn of to be the set of all vectors

{(m1, . . . ,mn) : mi ∈ Z∗pi}. For each ~m ∈ Z∗∗pn , define a function f~m : Zpn 7→ Zpn by

f~m(x) = f~m

( n−1∑
i=0

xip
i

)
=

n−1∑
i=0

mn−ixip
i.

It is not difficult to show that for ~m ∈ Z∗∗pn , the function f~m is a well-defined bijection of

Zpn .

Definition 19

Let k = (k1, . . . , kn) ∈ K(pn) be a primary key. Define the set of all primary genuine

generalized multipliers corresponding to the key k, denoted Z∗∗pn(k), to be the set of all

primary generalized multipliers ~m in Z∗∗pn that satisfy the following two conditions:

1. mδ ≡ mδ−1 (mod pδ−kδ−1), 2 ≤ δ ≤ n, and

2. mδ ∈ Zpδ−kδ , 1 ≤ δ ≤ n.

We remark that our notation is slightly different in the previous definition than that of

Muzychuk.
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Definition 20

For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Kpn , define u ∧ v to be the

vector (min{u1, v1},min{u2, v2}, . . . ,min{un, vn}). Now let P and Q be two partitions

of a set X . We define the join of P and Q, denoted P ∨Q, to be the smallest partition that

refines both P and Q. join

Lemma 12

Let k and ` be primary keys in K(pn). Then Σ(k) ∨ Σ(`) = Σ(k ∧ `).

Definition 21

Let ∆ be a partition of Zpn . The partition for which Σ(k) is the unique largest (in the sense

of refinement) primary key partition that is a refinement of ∆ is the key of ∆ and denoted

k(∆). Let Cay(Zpn , S) be a circulant digraph. The key of Cay(Zpn , S) is defined to be

the key of the partition {S,Zpn\S}.

We are now ready to state our final definition, and then give the statement of the Muzy-

chuk’s Theorem in the prime-power case.

Definition 22

Let Cay(Zpn , S1, . . . , Sr) have primary key k. The solving set of Cay(Zpn , S) is defined

to be the set P (k) = {f~m : ~m ∈ Z∗∗pn(k)}. That is, the solving set of Cay(Zpn , S) is the set

of all genuine generalized multipliers related to the primary key of Cay(Zpn , S).

Theorem 5

Let p be prime, n a positive integer, Cay(Zpn , S1, . . . , Sr) and Cay(Zpn , S ′1, . . . , S ′r) circu-

lant color digraphs with primary keys k and k′, respectively. Then

1. if k 6= k′, then Cay(Zpn , S1, . . . , Sr) is not isomorphic to Cay(Zpn , S ′1, . . . , S ′r),

2. if k = k′, then the following are equivalent:
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(a) Cay(Zpn , S1, . . . , Sr) and Cay(Zpn , S ′1, . . . , S ′r) are isomorphic,

(b) f~m(Cay(Zpn , S1, . . . , Sr)) = Cay(Zpn , S ′) for some f~m ∈ P (k), and

(c) f~m(S) = S ′ for some f~m ∈ P (k).

Lemma 13

A circulant digraph Γ = Cay(Zpn , S) is isomorphic to a wreath product of a circulant di-

graph Γ1 = Cay(Zpn−i , S1)oCay(Zpi , S2) if and only if Γ has primary key k = (k1, . . . , kn)

and ki+1 = i.

Proof: Let H = 〈pn−i〉. We first observe that Γ is isomorphic to a wreath product of the

given form if and only if S−H is a union of cosets ofH . This occurs if and only whenever

g ∈ Zpn , |g| ≥ pi+1, either g+H ⊂ S or (g+H)∩S = ∅. This last condition occurs if and

only if every cell of the primary key partition Σ(k) not contained in H is a union of cosets

of H . As the cell of Σ(k) that contains g with |g| = pj , j ≥ i + 1 is Cg = g + 〈pn−kj〉,

every cell of the primary key partition Σ(k) not contained in H is a union of cosets of H if

and only if Cg = g+ 〈pn−kj〉 is a union of cosets of H for every g with |g| = pj , j ≥ i+ 1.

This occurs if and only if 〈pn−kj〉 ≥ 〈pn−i〉, or equivalently, kj ≥ i for every j ≥ i+ 1. As

kj < j, we see that ki+1 ≥ i if and only if ki+1 = i.

Lemma 14

Let Γ1 = Cay(Zpi , S1) where S1 ⊂ Zpi , and Γ2 = Cay(Zpj , S2) where S2 ⊂ Zpj . Let

k1 = (k1, . . . , ki) be the primary key of Γ1 and k2 = (`1, . . . , `j) be the primary key of Γ2.

Then Γ1 o Γ2 has key (`1, . . . , `j, k1 + j, . . . , ki + j).

Proof: LetHm be the unique subgroup of Zpi+j of order pm, Jm the unique subgroup of Zpj

of order pm, and Im the unique subgroup of Zpi of order pm. Let g ∈ Zpi+j and |g| = pm,
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and S the connection set of Γ1 o Γ2 as a circulant digraph, and k = (k′1, . . . , k
′
i+j) be the

key of Γ1 o Γ2.

If 1 ≤ m ≤ j, then g ∈ Hm ≤ Hj and Γ[Hj] ∼= Γ2. Then g = g′pi where g′ ∈ Zpj .

In Zpj , Cg′ is then a coset of the unique subgroup Jj−`g′ of order pj−`g′ , so in Zpi+j , Cg

is a coset of the unique subgroup Hi+j−`g′ of Zpi+j of order pj−`
′
g . Thus Cg is a coset of

Hi+j−`g′ , and k′ = `g′ as required.

If i ≤ m ≤ i+j, then the connection set S−Hj is a union of cosets ofHj . Additionally,

as the primary key partition Σ(k1) is refinement of {S1,Zpi − S1}, either g (mod pi) +

Ii−ki is contained in S1 or disjoint from S1. As Σ(k) is the unique least refinement of

{S,Zpi+j − S} that is a key partition, we conclude that either g +Hi+j−(j+ki) is contained

in S or disjoint from S. Then, in Zi+j , Cg = g+Hi−ki and so k′g = i+j−(i−ki) = j+ki

as required.

Lemma 15

A circulant digraph Γ = Cay(Zpn , S) is a nontrivial generalized wreath product if and only

if its primary key k 6= (0, 0, . . . , 0).

Proof: By definition, the key partition Σ(0, . . . , 0) consists of singletons, and every cell of

any key partition is a coset of some subgroup of Zn. It thus suffices to show that the key

partition corresponding to a generalized wreath product contains a coset of some nontrivial

subgroup. The digraph Γ is a nontrivial generalized wreath product if and only if there

exists subgroups 1 < L ≤ K ≤ Zn and S −K is a union of cosets of L. Also, S −K is

a union of cosets of L if and only if (Zn − S)−K is a union of cosets of L. We conclude

that Γ is a nontrivial generalized wreath product if and only if the unique key partition that
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refines {S,Zn − S} is bounded below by the partition {{k}, g + L : k ∈ K, g ∈ Zn −K}

which has key (0, . . . , 0, `, . . . , `) where |L| = `, and there are k 0’s, where |K| = pk. This

implies that the key partition of {S,Zn − S} is not all singletons, and the result follows.

Corollary 4

If a circulant digraph Cay(Zpn , S) is a CI-digraph then it has primary key k = (0, 1, . . . , i−

1, i− 1, . . . , i− 1).

Proof: By Corollary 1, there exists an integer 0 ≤ ` ≤ k and Cayley digraph Γ1 =

Cay(Zpk−` , S1), and Γi = Cay(Zp, Si), 0 ≤ i ≤ ` such that Γ ∼= Γ1 o Γ2 o · · · o Γ`. Addi-

tionally, the Sylow p-subgroup of Aut(Γ1) that contains (Zpk−`)L contains a unique regular

cyclic subgroup and is either (Zpk−`)L or p = 2 and is 〈(Z2k)L, ι〉 or 〈(Z2k−`)L, ιβ
2k−`−3〉

of order 2k−`+1. Note that Γ1 is not isomorphic to a nontrivial generalized wreath product

as the automorphism group of a nontrivial generalized wreath product has more than one

regular cyclic subgroup by Lemma 5. By 15, we see Γ1 has key (0, . . . , 0). By Lemma 13

Γ2 has key (0, 1, 2, . . . , i− 1) and the result follows by Lemma 14

Muzychuk has shown that two isomorphic circulant digraphs of order pn have the same

primary key, and given a primary key k, they are isomorphic if and only if they are iso-

morphic by a genuine generalized multiplier. These are straighforward to calculate, and

below we record the conditions such a genuine generalized multiplier must satisfy for the

primary key k = (0, 1, 2, . . . , i− 1, i− 1, . . . , i− 1).

Lemma 16

The genuine generalized multipliers (m1, . . .mn) for the primary key k = (0, 1, 2, . . . , i−

1, i− 1, . . . , i− 1) satisfy the following conditions:
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• For 1 ≤ j ≤ i, mj ∈ {1, . . . , p− 1},

• For 1 ≤ j ≤ n− i, mi+j ∈ {1, . . . , pj+1 − 1}, and

• For 0 ≤ j ≤ n− i, mi+j ≡ mi+j−1 (mod pj).
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CHAPTER 7

CI-DIGRAPHS OF PRIME-POWER ORDER

In this chapter, we will determine a necessary and sufficient condition for a circulant

digraph of prime power order to be a CI-digraph.

Lemma 17

Let Γ1 = Cay(Zpn , S1) be a digraph with primary key

k = (0, 1, . . . , i− 1, i− 1, . . . , i− 1).

Suppose that Γ2 = Cay(Zpn , S2) and Γ1
∼= Γ2 by a genuine generalized multiplier γ of the

form (m1, . . . ,mn) where mn ≡ 1 (mod p) and mj ≡ 1 (mod p) for every 1 ≤ j ≤ i.

Then α(Γ1) = Γ2 for some α ∈ Aut(Zpn) of order a power of p.

Proof: As Γ1 has primary key k, by inductively applying Lemma 13 we see that Γ1 =

Cay(Zpi , T1)oCay(Zp, T2)o· · ·oCay(Zp, Tn−i+1) for T1 ⊂ Zpi and Tj ⊂ Zp, 2 ≤ j ≤ n−i+

1. Additionally, Cay(Zpi , T1) is not a generalized wreath product by Lemma 15, and so by

Lemma 4 a Sylow p-subgroup of Aut(Cay(Zpi , T1)) has a unique regular cyclic subgroup.

Let P be a Sylow p-subgroup of Aut(Γ1) that contains (Zpn)L. It is not hard to see that

γ−1(Zpn)Lγ ≤ P . Notice that P admits an invariant partition Bj consisting of blocks of

size pj for 0 ≤ j ≤ n by [8, Lemma 9], and that Bj is the unique invariant partition of

P by [21, Exercise 6.5]. Then P/Bn−i contains a unique regular cyclic subgroup, and so
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every conjugate of (Zpn)L contained in P is contained in P ′ = Zpi o Zp o · · · o Zp, where

there are n− i factors in this wreath product isomorphic to Zp.

Now observe that the conditions for the genuine generalized multipliers corresponding

to the primary key k are given in Lemma 16. In particular, mi+1 ≡ mi (mod p). Also,

mi+2 ≡ mi+1 (mod p2), and so mi+2 ≡ mi+1 (mod p). Arguing inductively, we see that

mi ≡ mi+1 ≡ . . . ≡ mn (mod p), and as mn ≡ 1 (mod p), mi+j ≡ 1 (mod p) for every

0 ≤ i ≤ n − i. We will show by induction on n − i that there exists β ∈ P ′ such that

γβ = α ∈ Aut(Zpn).

The base case of induction is n− i = 0 and as a generalized multiplier fixes 0, we see

that in this case γ ∈ Aut(Zpi) by Corollary 1. Assume the result is true for n − i = j ≤

n− 2 and suppose n− i = j + 1. By induction, there exist β1 ∈ P ′ such that γβ1/B1 is an

automorphism of Zpn−1. Let P ′′ be the Sylow p-subgroup of Spn that contains (Zpn)L, so

that P ≤ P ′′. Also, a Sylow p-subgroup Π of Aut(Zpn)·(Zpn)L is also contained in P ′′. By

the Embedding Theorem [16, Theorem 1.2.6] and the fact that Π/B1 is a Sylow p-subgroup

of Aut(Zpn−1) · (Zpn−1)L, we see Aut(Zpn) · (Zpn)L ≤ (Aut(Zpn−1) · (Zpn−1)L) o Zp. Let

α ∈ Aut(Zpn) such that γβ1/B1 = α/B1. Then α−1γβ1 = β−1
2 ∈ fixP ′′(B1) = Znp =

fixP (B). Then γβ1β2 = α and β1β2 ∈ P . The result follows by induction.

We now consider which digraphs with primary key k = (0, 1, . . . , i−1, i−1, . . . , i−1)

are CI-digraphs. For this it will be convenient to write an element of Zpn in it p-adic form.

That is, each element of Zpn can be written uniquely in the form
∑n−1

j=0 xjp
j , where j ∈ Zp.

The permutation corresponding to a generalized multiplier (m1, . . . ,mn) maps
∑n−1

j=0 xjp
j

to
∑n−1

j=0 mn−jxjp
j .

46



Lemma 18

Let Γ1 = Cay(Zpn , S1) have primary key k = (0, 1, . . . , i − 1, . . . , i − 1) so that Γ1
∼=

Cay(Zpi , T1) o Cay(Zp, T2) o · · · o Cay(Zp, Tn−i+1) for T1 ⊂ Zpi and Tj ⊂ Zp, 2 ≤ j ≤

n−i+1. Suppose that Γ2 = Cay(Zpn , S2) and Γ1
∼= Γ2 by a genuine generalized multiplier

γ of the form (m1, . . . ,mn) where 1 ≤ mj ≤ p−1 for every 1 ≤ j ≤ n. Then α(Γ1) = Γ2

for some α ∈ Aut(Zpn) if and only if there exists `1 ∈ Aut(Zpi , T1) and `j ∈ Aut(Zp, Tj)

such that if (t1, . . . , tn) = (`m−i+1, `m−i, . . . , `2, `1, . . . , `1) then for all 1 ≤ r, s ≤ n we

have mrtr = msts.

Proof: Suppose that there exists m ∈ Z∗n such that the function α : Zpn 7→ Zpn given

by α(x) = mx is an isomorphism from Γ1 to Γ2. As a generalized multiplier, m =

(m,m, . . . ,m) and

(t−1
1 , . . . , t−1

n )(m, . . . ,m) = (t−1
1 m, t−1

2 m, . . . , t−1
n m) ∈ Aut(Γ1).

As

Γ1
∼= Cay(Zpi , T1) o Cay(Zp, T2) o · · · o Cay(Zp, Tn−i+1),

we see

Aut(Γ1) ≥ Aut(Cay(Zpi , T1)) o Aut(Cay(Zp, T2)) o · · · o Aut(Cay(Zp, Tn−i+1)).

For 1 ≤ j ≤ i, we have that m−1
j m ∈ Aut(Cay(Zp, Tj)) and m−1

j m ·mj = m as required.

Conversely, suppose that there exists `1 ∈ Aut(Zpi , T1) and `j ∈ Aut(Zp, Tj) such

that if (t1, . . . , tn) = (`m−i+1, `m−i, . . . , `2, `1, . . . , `1) then for all 1 ≤ r, s ≤ n we
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have mrtr = msts. As Aut(Γ) contains Aut(Cay(Zpi , T1)) o Aut(Cay(Zp, T2)) o · · · o

Aut(Cay(Zp, Tn−i+1)), the permutation in Spn corresponding to the generalized multiplier

(`m−i+1, `m−i, . . . , `2, `1, . . . , `1) is contained in Aut(Γ). Set m = m1t1. Then the map

x 7→
n−1∑
j=0

mxjp
j = m

n−1∑
j=0

xjp
j = mx

is an isomorphism between Γ1 and Γ2 as required.

Corollary 5

Let Γ1 = Cay(Zpn , S1) have primary key k = (0, 1, . . . , i − 1, . . . , i − 1) so that Γ1
∼=

Cay(Zpi , T1) o Cay(Zp, T2) o · · · o Cay(Zp, Tn−i+1) for T1 ⊂ Zpi and Tj ⊂ Zp, 2 ≤

j ≤ n − i + 1. Suppose that Γ2 = Cay(Zpn , S2) and Γ1
∼= Γ2 by a genuine general-

ized multiplier γ = (m1, . . . ,mn). Then α(Γ1) = Γ2 for some α ∈ Aut(Zpn) if and

only if there exists `1 ∈ Aut(Zpi , T1) and `j ∈ Aut(Zp, Tj) such that if (t1, . . . , tn) =

(`m−i+1, `m−i, . . . , `2, `1, . . . , `1) then for all 1 ≤ r, s ≤ n we have mrtr = msts.

Proof: As γ is a genuine generalized multiplier, by Lemma 16

• For 1 ≤ j ≤ i, mj ∈ {1, . . . , p− 1},

• For 1 ≤ j ≤ n− i, mi+j ∈ {1, . . . , pj+1 − 1}, and

• For 0 ≤ j ≤ n− i, mi+j ≡ mi+j−1 (mod pj).

Then for 1 ≤ j ≤ n − i, there exists ui+j ≡ 1 (mod p) and vi+j ∈ {1, . . . , p − 1} such

that mi+j = ui+jvi+j . Let ν = (1, . . . , 1, ni, vi+1, . . . , vn). Then ν is a genuine generalized

multiplier, so if v : Znp 7→ Zpn is given by v(x) =
∑n−1

j=0 vn−jxjp
j , then v(Γ1) is a circulant

digraph isomorphic to Γ1 and Γ2. By Lemma 17, there exists α1 ∈ Aut(Zpn) such that

α1(Γ1) = v(Γ). Additionally, Γ1 and Γ2 are isomorphic by an automorphism of Zpn if and
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only if α1(Γ1) and Γ2 are isomorphic by an automorphism of Zpn . It thus suffices to verify

the result provided that each mj ∈ {1, . . . , p− 1} and the result follows by Lemma 18.

Definition 23

For a set S ⊆ Zpk , we let I(S) be the set of all 1 ≤ m ≤ p − 1 such that mS =

{ms (mod pk) : s ∈ S} = S, and for S ⊆ Zpk and T ⊆ Zpj , we let I(S) ∗ I(T ) = 〈S, T 〉

as a subgroup of Z∗p.

Theorem 6

Let p be a prime and Cay(Zpk , S) a circulant digraph. Then Cay(Zpk , S) is a CI-digraph of

Zpk if and only if there exist a CI-digraph Cay(Zpi , S1), i ≤ k, and k− i circulant digraphs

Cay(Zp, T2), . . . ,Cay(Zp, Tk−i+1) such that

Cay(Zpk , S) ∼= Cay(Zpi , S1) o Cay(Zp, T2) o . . . o Cay(Zp, Tk−i+1),

and I(T`) ∗ I(Tn) = Z∗p for every 1 ≤ ` < n ≤ k − i+ 1.

Proof: Suppose I(T`)∗ I(Tn) 6= Z∗p for 1 ≤ ` < n ≤ k− i+1. Let r ∈ Z∗p− I(T`)∗ I(Tn).

If ` = 1, then let mj = r for every j > k− i− 1 and mj = 1 for 1 ≤ j ≤ k− i+ 1, while

if ` 6= 1, let m` = r and mj = 1 for j 6= `. Then (m1, ...,m`, ....,mn) defines a genuine

generalized multiplier and the image of Cay(Zpk , S) under f(m1,...,m`,....,mn) is a circulant

digraph by [19, Theorem 2.4]. By Corollary 5 there must be t` ∈ I(T`) and tn ∈ I(Tn)

such that m`t` = mntn, in which case t`t−1
m = r ∈ I(T`) ∗ I(Tm), a contradiction.

Conversely, let Γ2 be any circulant digraph isomorphic to Γ1. By Theorem 5 Γ1 and

Γ2 are isomorphic by fm for a genuine generalized multiplier m = (m1, . . . ,mn), where

mj is a positive integer. By Corollary 5 we have α(Γ1) = Γ2 for some α ∈ Aut(Zpk) if

49



and only if there exists `1 ∈ Aut(Zpi , T1) and `j ∈ Aut(Zp, Tj) such that if (t1, . . . , tn) =

(`m−i+1, `m−i, . . . , `2, `1, . . . , `1) then for all 1 ≤ r, s ≤ n we have mrtr = msts.

Let p − 1 = Πr
j=1q

aj
j be the prime power decomposition of p − 1. As Z∗p is cyclic

and hence nilpotent, Z∗p ∼=
∏r

j=1 Qj where the Qj are cyclic Sylow qj-subgroups of Z∗p,

1 ≤ j ≤ r. As I(Tx) ∗ I(Ty) = Z∗p for every 1 ≤ x < y < k − i we must have

that (Qj

⋂
I(Tx)) ∗ (Qj

⋂
I(Ty)) = Qj for every 1 ≤ j ≤ r. Also, (Qj

⋂
I(Tx)) ∗

(Qj

⋂
I(Ty)) = Qj if and only if Qj

⋂
I(Tx) = Qj or Qj

⋂
I(Ty) = Qj for each Qj as

Qj cyclic of prime power order. Consequently, for each 1 ≤ j ≤ r there is at most one

1 ≤ zj ≤ k − i+ 1 such that Qj ∩ Aut(Zp, Tzj) 6= Qj .

Let mx =
∏r

j=1 mj,x, where mj,x ∈ Qj . Fix 1 ≤ j ≤ r. If zj exists, then let

tj,zj = mj,zj , and otherwise, let tj,zj = 1. If 1 ≤ y ≤ n − i + 1 and y 6= zj , then

Qj ∩ Aut(Zp, Ty) = Qj , and so there exists `j,y ∈ Aut(Zp, Ty) such that `j,ymj,y = mj,zj .

Setting m =
∏r

j=1mj,zj and `j =
∏r

j=1 `j,y, we have that `jmj = m for all 1 ≤ j ≤ r.
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CHAPTER 8

CI-COLOR DIGRAPHS OF PRIME-POWER ORDER

A circulant color digraph Γ of order pk is a CI-color digraph of Zpk if and only if there

is one conjugacy class of regular cyclic subgroups in its automorphism group by Lemma

3. The preceding result gives conditions, which when appropriately reformulated, will

determine which circulant color digraphs of order pk are CI-color digraphs as Aut(Γ) is

the automorphism group of a circulant digraph of order pk by Corollary 2.

Definition 24

Let Γ = Cay(Zpk , S) be a circulant color digraph. Let Icj be the set of all 1 ≤ mj ≤ p− 1

such that there exists a genuine generalized multiplier m′ = (m′1,m
′
2, . . . ,m

′
k) with fm′ ∈

Aut(Γ) and m′j = mj .

Lemma 19

Let p be a prime and Γ = Cay(Zpk , S) a circulant color digraph. If Γ has primary key

k = (0, 1, . . . , i− 1, . . . , i− 1) for some i ≤ k, then there exists a color circulant digraph

Cay(Zpk , T ), T ⊂ Zpk , such that Aut(Γ) = Aut(Cay(Zpk , T )).

Proof: Let H be the unique subgroup of Zpk of prime order p. The primary key kj of

Cay(Zpk , Sj) is refined by k, and so Sj −H is a union of cosets of H , where Sj ∈ S. This

implies that Cay(Zpk , Sj) = Cay(Zpk−1 , Sj,1) o Cay(Zp, Sj2) for some Sj,1 ⊆ Zpk−1 and

Sj,2 ⊆ Zp.
51



If the cosets of H form an invariant partition of Aut(Γ), then Aut(Γ) = G1 o G2

where G1 ≤ Spk−1 is 2-closed and G2 ≤ Sp is 2-closed. Otherwise, let B be the invariant

partition of Aut(Γ) with blocks of smallest size, p` with ` ≥ 2. Note that the cosets of

H are a nontrivial refinement of B. Additionally, StabAut(Γ)(B)|B is a doubly-transitive

group with nonabelian simple socle by Lemma 9, B ∈ B. Also, as Aut(Cay(Zpk−1 , Sj,1)) o

Aut(Cay(Zp, Sj2)) ≤ Aut(Γ), we see that for eachB ∈ B there existsLB ≤ StabAut(Γ)(B)

such that LB/B = 1, LB|B is a doubly-transitive nonabelian almost simple group with so-

cle T , and LB|B′ = 1 if B′ ∈ B and B 6= B′. This then implies that Cay(Zpk , Sj) =

Cay(Zp` , S3) o ∆, where S3 ⊆ Zpk−` and ∆ = Kp` or K̄p` . As Sj ∈ S was arbitrary, we

conclude that Aut(Γ) = G1 o Sp` for some 2-closed G1 ≤ Spk−` . We have thus established

that Aut(Γ) = G1 o G2 where G1 ≤ Spk−` is 2-closed and G2 ≤ Sp` is 2-closed and if

` ≥ 2, then G2 = Sp` . Also notice that as k = (0, 1, . . . , i − 1, i − 1, . . . , i − 1) we have

` ≤ i.

Now let S = {Sj : 1 ≤ j ≤ r} and let kj = (k0,j, k1,j, . . . , kk,j) be the primary key

of Cay(Zpk , Sj). As the primary key partition of k is a refinement of each kj , we see that

kx,j ≥ k` for every 1 ≤ x ≤ k and 1 ≤ j ≤ r. Thus kx,j = j − 1 for all x ≤ i. Also,

as Aut(Γ) = G1 o G2, each Cay(Zpk , Sj) can be written as a wreath product Γ1,j o Γ2,j ,

where Γ1,j is a circulant digraph of order pk−` and Γ2,j is a circulant digraph of order p`.

Notice that Γ2,j has key partition (0, 1, . . . , `− 1) and so by Lemma 14 it must be that the

key partition of Γ1,j is (kj,` − `, . . . , kj,` − `) if ` < i and is (0, 0, . . . , 0) if ` = i. Then the

largest refinement of all of these key partitions is (0, 1, . . . , i−1−`, i−1−`, . . . , i−1−`)
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if i < ` or (0, 0, . . . , 0) if i = `. We conclude that Γ/B has key partition (0, . . . , i − 1 −

`, i− 1− `, . . . , i− 1− `) or (0, 0, . . . , 0), and the induction hypothesis applies to Γ/B.

We now argue inductively and get that there exists a 2-closed group G1 that contains

(Zpk−i)L, and Gj ≤ Spaj that is 2-closed and contains (Zpaj )L, 2 ≤ j ≤ r such that∑r
j=1 ai = k− i and if aj ≥ 2 then Gj = Spaj and Aut(Γ) ∼= G1 oG2 o · · · oGr. By Lemma

2 Aut(Cay(Zpk , S)) = Aut(Cay(Zpk , T )) for some T ⊂ Zpk .

Corollary 6

Let p be a prime and Γ = Cay(Zpk , S) a circulant color digraph. Then Γ is a CI-color

digraph of Zpk if and only if Γ has primary key k = (0, 1, . . . , i − 1, . . . , i − 1) for some

1 ≤ i ≤ k and Ic` ∗ Icn = Z∗p for every 1 ≤ ` < n ≤ i+ 1.

Proof: Suppose that Γ has primary key k = (0, 1, . . . , i − 1, . . . , i − 1) for some 1 ≤

i ≤ k. By Lemma 19 Aut(Γ) is isomorphic to the automorphism group of a circulant

digraph Cay(Zpk , T ) for some T ⊂ Zpk . Conversely, if Γ is a CI-color digraph then by

Corollaries 1 and 2 Aut(Γ) is also isomorphic to the automorphism group of a circulant

digraph Cay(Zpk , T ). By Lemma 3, we see that Γ is a CI-color digraph of Zpk if and only

if Cay(Zpk , T ) is a CI-digraph of Zpk . By Theorem 6, Cay(Zpk , T ) is a CI-digraph of Zpk

if and only if there exist a CI-digraph Cay(Zpi , U1), i ≤ k, and k − i circulant digraphs

Cay(Zp, U2), . . . ,Cay(Zp, Uk−i+1) such that

Cay(Zpk , T ) ∼= Cay(Zpi , U1) o Cay(Zp, U2) o . . . o Cay(Zp, Uk−i+1),

and I(U`) ∗ I(Un) = Z∗p for every 1 ≤ ` < n ≤ k− i+ 1. Finally, observe that y ∈ I(U`),

` ≤ i if and only if the generalized multiplier m = (m1, . . . ,mk) with m` = y and mj = 1
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otherwise, while if ` ≥ i + 1, then m` = y if j ≥ i + 1 and m` = 1 if j ≤ i. That is,

I(U`) ∗ I(Un) = Z∗p if and only if Ic` ∗ Icn = Z∗p. Thus Cay(Zpk , T ) is a CI-digraph of

Zpk , and so Cay(Zpk , S) is a CI-color digraph. This establishes that if Γ has primary key

(0, 1, . . . , i − 1, . . . , i − 1) and Ic` ∗ Icn = Z∗p for every 1 ≤ ` < n ≤ i + 1, then Γ is a

CI-color digraph of Zpk , as well as establishing that if Γ is a CI-color digraph of Zpk then

Ic` ∗ Inc = Z∗p for every 1 ≤ ` < n ≤ i + 1. It only remains to show that if Γ is a CI-color

digraph of Zpk then Γ has primary key (0, 1, . . . , i−1, . . . , i−1). As Aut(Γ) is isomorphic

to Aut(Cay(Zpk , T )) as above, this follows by Lemma 4.

Definition 25

Henceforth a primary key of the form (0, 1, . . . , i− 1, i− 1, . . . , i− 1) for some i will be

called a CI primary key with top i.
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CHAPTER 9

CIRCULANT CI-COLOR DIGRAPHS

We are now ready for the final terminology that will be needed for our solution to which

circulant color digraphs are CI-color digraphs.

As Zn may be written as a direct product Πs
i=1Zpaii , where n has prime-power decompo-

sition n = pa11 · · · pkss , there are keys, key partitions, and generalized multipliers, each of

which is a direct product of primary keys, primary key partitions, and primary generalized

multipliers corresponding to the prime-power decomposition of n. All such definitions are

stated in the following definition.

Definition 26

Let n be a positive integer with prime-power decomposition n = pa11 · pa22 · · · pass . De-

fine the key space Kn to be Πs
i=1K(paii ). That is, Kn is the direct product of primary

keys. Similarly, if Σ(ki) is a primary key partition of Zpaii , then a key partition of Zn is

Πs
i=1Σ(ki). Define a set of generalized multipliers, denoted Z∗∗n , as Πs

i=1Z∗∗paii . For each

~m = (~m1, ~m2, . . . , ~ms) ∈ Z∗∗n , where each ~mi ∈ Z∗∗
p
ai
i

, define a function f~m : Zn 7→ Zn by

f~m(x1, . . . , xs) = (f~m1(x1), f~m2(x2), . . . , f~ms(xs)).
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For a key k = (k1,k2, . . . ,ks) where ki ∈ Kp
ai
i

is a primary key, define the set of all gen-

uine generalized multipliers related to the key k, denoted Z∗∗n (k), to be Πs
i=1Z∗∗paii (ki).

Now let ∆ be a partition of Zn. The partition for which Σ(k) is the unique largest (in the

sense of refinement) primary key partition that is a refinement of ∆ is the key of ∆ and

denoted k(∆). Let Cay(Zn, S) be a circulant color digraph. The key of Cay(Zn, S) is

defined to be the key of the partition {Sj ∈ S : 1 ≤ j ≤ r}. Finally, let Cay(Zn, S) have

key k. The solving set of Cay(Zn, S) is defined to be the set P (k) = {f~m : ~m ∈ Z∗∗n (k)}.

The following result is Muzychuk’s solution to the isomorphism problem for circulant

color digraphs.

Theorem 7

Let n be a positive integer, Cay(Zn, S) and Cay(Zn, S ′) circulant color digraphs with keys

k and k′, respectively. Then

1. if k 6= k′, then Cay(Zn, S) is not isomorphic to Cay(Zn, S ′),

2. if k = k′, then the following are equivalent:

(a) Cay(Zn, S) and Cay(Zn, S ′) are isomorphic,

(b) f~m(Cay(Zn, S) = Cay(Zn, S ′) for some f~m ∈ P (k), and

(c) f~m(S) = S ′ for some f~m ∈ P (k).

Definition 27

Let Γ = Cay(Zn, S) be a circulant color digraph and n = pa11 p
a2
2 · · · pass the prime-power

decomposition of n. Let m = (m1, . . . ,ms) be a genuine generalized multiplier with

mi = (mi,1,mi,2, . . . ,mi,ai). For 1 ≤ i ≤ s and 1 ≤ j ≤ ai, let Ici,j be the set of all

1 ≤ m′i,j ≤ pi − 1 such that fm ∈ Aut(Γ) with mi,j = m′i,j .
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Combining Theorem 7 with Corollary 6 we have the following characterization of cir-

culant color digraphs that are CI-color digraphs.

Theorem 8

Let n be an integer with prime-power decompostion n = pa11 · · · pass . A circulant color

digraph Cay(Zn, S) with key k = (k1, . . . ,ks) is a CI-color digraph of Zn if and only if

each ki is a CI-primary key with top ji and for every 1 ≤ i ≤ s and 1 ≤ j, ` ≤ ji we have

Ici,j ∗ Ici,` = Z∗pi .

57



REFERENCES
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[17] M. Muzychuk, “Ádám’s conjecture is true in the square-free case,” J. Combin. Theory
Ser. A, vol. 72, no. 1, 1995, pp. 118–134.
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