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In this dissertation, an important homeland security problem is studied. With the 

focus on wildfire and pyro-terrorism management. We begin the dissertation by studying 

the vulnerability of landscapes to pyro-terrorism. We develop a maximal covering based 

optimization model to investigate the impact of a pyro-terror attack on landscapes based 

on the ignition locations of fires. We use three test case landscapes for experimentation. 

We compare the impact of a pyro-terror wildfire with the impacts of naturally-caused 

wildfires with randomly located ignition points. Our results indicate that a pyro-terror 

attack, on average, has more than twice the impact on landscapes than wildfires with 

randomly located ignition points.  

In the next chapter, we develop a Stackelberg game model, a min-max network 

interdiction framework that identifies a fuel management schedule that, with limited 

budget, maximally mitigates the impact of a pyro-terror attack. We develop a 

decomposition algorithm called MinMaxDA to solve the model for three test case 

landscapes, located in Western U.S. Our results indicate that fuel management, even 

when conducted on a small scale (when 2% of a landscape is treated), can mitigate a 



 

 

pyro-terror attack by 14%, on average, comparing to doing nothing. For a fuel 

management plan with 5%, and 10% budget, it can reduce the damage by 27% and 43% 

on average.  

Finally, we extend our study to the problem of suppression response after a pyro-

terror attack. We develop a max-min model to identify the vulnerability of initial attack 

resources when used to fight a pyro-terror attack. We use a test case landscape for 

experimentation and develop a decomposition algorithm called Bounded Decomposition 

Algorithm (BDA) to solve the problem since the model has bilevel max-min structure 

with binary variables in the lower level and therefore not solvable by conventional 

methods. Our results indicate that although pyro-terror attacks with one ignition point can 

be controlled with an initial attack, pyro-terror attacks with two and more ignition points 

may not be controlled by initial attack. Also, a faster response is more promising in 

controlling pyro-terror fires.  

Key words: Homeland security, Stackelberg game, decomposition algorithms, 

bilevel programming 
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CHAPTER I 

INTRODUCTION 

Over the last ten years, there has been an average of 75,000 wildfires per year in 

the United States and an average of 7.2 million acres has burned each year [1]. Billions of 

dollars are spent annually by the U.S. Forest Service for wildfire suppression [2]. The 

cost of wildfires is not restricted to monetary cost, but environmental and socioeconomic 

costs as well. In addition, the loss of human lives is a tremendous societal cost over the 

course of a wildfire. Destructive wildfires become a primary concern in places where 

major cities are located close to highly flammable vegetation areas as in Western and 

Southern U.S., as well as Australia and Mediterranean Europe [3]. About 32 percent of 

housing units including homes, apartments and buildings in the U.S. and 10 percent of all 

lands with houses are situated in the wildland-urban interface (WUI), which is the zone 

of transition between natural land and human development [4], and WUI is expected to 

continue to grow [5]. With human populations reaching further into wildlands, wildfire 

risk has further increased. 

Along with increasing wildfire risk, the costs associated with wildfire 

management have also increased. The United States Department of Agriculture (USDA) 

reported that more than $1.6 billion is spent annually by state forestry agencies on 

wildfire protection, prevention, and suppression and this cost is increasing [2]. Despite 

increased investments in wildfire prevention and suppression, wildfire related destruction 
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is a problem that appears to be worsening [6]. Increased wildfire activities have been 

observed in the U.S. [7], Canada [8], Mediterranean Europe [9] and Australia [10].  

Because of the increase in fire activities, their significant short and long term 

threats to forest ecosystems, and the danger they pose to public safety and property, 

wildfires have received increased public attention. There are some concerns that the 

destructive power of wildfires may attract terrorist organizations to use them as a weapon 

of mass destruction [11–13]. Indeed, pyro-terrorism events have been documented in 

France, Spain, and Greece [11,12,14]. Pyro-terrorism is the use of large-scale arson 

attacks by non-state organizations to terrorize, intimidate or coerce a government, the 

civilian population, or any segment in order to advance, political or social objectives [13]. 

According to Baird [12], pyro-terrorism possesses the four generally accepted elements 

of terrorism: targeting of noncombatants, political motivation, violence with 

psychological impact and organized perpetrators. As a result, both the Department of 

Homeland Security (DHS) and the Federation Bureau of Investigation (FBI) are 

concerned about this novel threat [15,16]. It is important for decision makers in these 

departments to anticipate potential threats, and implement countermeasures to avoid a 

potential devastating domestic attack. However, no study has been done to investigate the 

impact of this threat and the vulnerability of landscapes and our suppression resources in 

confronting such threat; nor there has been any study investigating ways to mitigate 

against it. Considering the destructive power of natural wildfires, what is the potential 

impact of a human-made wildfire, i.e., a pyro-terrorism attack? 

Wildfire incidences require the co-occurrence of three factors: fire-conductive-

weather, source of ignition and fuels, (i.e. flammable vegetation) [17]. In pyro-terrorism, 
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the adversaries can cause the joint occurrence of these three factors by providing the 

sources of ignitions and choosing where, when and how many fires to start. This makes 

pyro-terrorism a more destructive threat than natural wildfires. Knowing this, is a way to 

mitigate pyro-terrorism? If so, how? Are existing resources available to fight natural 

wildfires sufficient to fight pyro-terrorism? This dissertation explores the use of 

Operations Research (OR) methods in analyzing these three questions. Specifically, this 

dissertation has the following main goals: analyze the pyro-terrorism threat and 

investigate the vulnerability of landscapes to such threats, examine the capability of our 

resources in suppressing those fires, and investigate a way to mitigate such a hostile 

activity.  

Risk assessment has increasingly become a key input to the wildfire prevention 

and mitigation decision making processes [18–21]. Determining the vulnerability of a 

system is an important component of risk assessment, which is employed to help develop 

risk mitigation strategies to counter risks [22]. Vulnerability assessment studies identify 

weak points in the system, and focus on defined threats that could compromise the 

system's ability to meet its intended function. To our knowledge, no risk assessment 

study has considered the worst-case scenario wildfires based on fire ignition locations 

and there has not been any pilot risk assessment for a potential pyro-terror attack that 

utilizes coordinated multiple ignition points. The results of such study can be used in 

strategic planning efforts for risk mitigation against a threat, especially when available 

resources and funds are limited. This study is demonstrated in Chapter 2. 

Fuels, weather condition and topography of a landscape are the three factors that 

influence fire behavior, and fuel is the only factor that can be managed in the short run 
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[10]. To reduce the flammability of landscape and decrease the risk of (natural) wildfires, 

fire managers use fuels management programs. Fuels management is the process of 

altering the amount and structure of fuels through the construction of fuel breaks or 

applications of fuel treatments such as prescribed burning, commercial harvesting and 

mechanical thinning, to reduce the spread and intensity of wildfires before they occur 

[23,24]. Modeling methods have been used to design efficient fuels management 

programs over a landscape. Researchers have used heuristic methods [25–28] and 

optimization models such as mixed integer programming [17,29–31] and stochastic 

dynamic programming [32,33] for the spatial allocation of fuels management over a 

landscape. All these fuels management models, however, have been developed for 

reducing the impact of naturally-caused wildfires, not arson-induced fires neither pyro-

terrorism. To our knowledge, there is no study investigating the effectiveness of fuels 

management in mitigating pyro-terrorism. Chapter 3 studies the use of fuels management 

in mitigating pyro-terrorism. 

Forest fire management agencies are responsible for dealing with wildland fires 

and their impacts on people and forest ecosystems [34]. There are certain measures that 

these management agencies take to deal with fires. The term initial attack (IA) is used by 

forest fire managers to refer to the first suppression action taken on a wildfire [34]. Initial 

attack is the primary attempt in suppressing a wildfire within the first several hours of fire 

discovery [35] to contain the fire before it grows large and becomes difficult to control. 

Although the majority of wildfire incidents between 1970 and 2002 have been reported to 

be contained by initial attack, the small percentage of escaped wildfires reportedly have 

caused more than 97% of the total area burned [36]. Therefore developing more efficient 
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suppression strategies including initial attack is very important for wildland management 

agencies [37,38]. A number of researchers have developed two stage stochastic 

programming models for addressing initial attack decision making procedure. In these 

models, the acquisition and deployment decisions take place in the first stage of the 

model, and to support a robust decision in the first stage, the dispatching of the resources 

are decided in the second stage of the model [35,39–44]. With the increasing rate of 

wildfire incidences and their severity, it is important to assess the capacity of IA in 

responding to severe wildfires, specifically worst-case scenario wildfires. On the other 

hand, given the existence of the threat of pyro-terrorism, it is important to evaluate the 

capability of our IA against such a threat. However, to the best of our knowledge, there 

have not been any studies addressing this capability. We present a vulnerability analysis 

of IA capability against pyro-terrorism in Chapter 4. 

Thus, the proposed contributions of this dissertation are as follows: 

1. In this research the first vulnerability assessment of landscapes to pyro-
terrorism is studied. The purpose of the vulnerability assessment study is 
to help wildfire managers identify critical locations whose protection 
yields a fire management system robust against possible worst-case 
scenarios, or potential pyro-terrorism. This study can be used in 
identifying these highly vulnerable areas for wildfire risk mitigation 
planning such as fuels treatment scheduling and fire suppression 
preparedness planning to reduce potential worst-case scenario wildfires. 
To our knowledge, no risk assessment study has considered worst-case 
scenario wildfires, and there has not been any pilot risk assessment for a 
potential arson attack that utilizes coordinated multiple ignition points.  

2. After identifying the most vulnerable areas in a landscape, and evaluating 
the impact of a pyro-terror attack, a model is developed for planning a 
fuels management layout that can be used for mitigating pyro-terrorism.  



 

6 

3. In addition, a vulnerability analysis of initial attack suppression resources 
is developed for worst-case scenario wildfires and pyro-terrorism. We 
examine the initial attack (IA) capacity in responding to the worst-case 
scenario wildfires and pyro-terrorism. The managerial insights extracted 
from this research can raise awareness and help decision makers improve 
fire suppression programs. 

The reset of this dissertation is organized as follows: In CHAPTER II the 

vulnerability of landscapes to pyro-terrorism is studied. A mathematical programming 

model is developed to assess the maximum damage that a fire can cause on a landscape 

by optimally locating the ignition points. The model is used to examine the impact of 

wildfire on a landscape when fire can start from multiple locations. Three case studies are 

used to investigate the wildfire impacts using this model. A manuscript based on the 

contents of this chapter [45] was submitted to the European Journal of Operational 

Research in October 2015.  

After assessing the vulnerability of landscapes to pyro-terrorism, in CHAPTER 

III a mitigation strategy using fuels management is proposed to reduce the impact of a 

pyro-terror attack on a landscape. This problem is modeled as a Stackelberg game 

problem in which a fire manager, acting first, finds optimal locations for fuels treatments, 

and the adversaries, acting second, locate ignition points to maximize the damage. 

Experiments are conducted on three landscape case studies. A manuscript based on the 

contents of this chapter [46] was submitted to the IIE Transactions in February 2016. 

In 3.6.2, a vulnerability analysis for assessing the capacity of the current initial 

attack suppression resources in the face of a pyro-terror attack is presented. This study 

will go a step further than the first vulnerability assessment study presented in chapter 2 

and will incorporate the capacity of suppression resources in response to a pyro-terror 

attack. In case of a pyro-terror attack, the adversaries are aware of the resources deployed 
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to fire stations for an initial attack. Therefore, they can plan accordingly to maximize the 

impact of their attack such that the initial attack would not be able to control the wildfire 

and reduce the damage. A manuscript based on this research is under preparation for 

submission to European Journal of Operational Research.  
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CHAPTER II 

A MAXIMAL COVERING LOCATION-BASED MODEL FOR ANALYZING THE 

VULNERABILITY OF LANDSCAPES TO PYRO-TERRORISM 

2.1 Introduction 

Although natural fires are part of many terrestrial ecosystems [47], uncontrolled 

wildfires can be destructive and can cause loss of human life and property [3]. 

Destructive wildfires are a primary concern in places where major cities are located close 

to highly flammable vegetation areas, such as the Western and Southern U.S., Australia 

and Mediterranean Europe [3]. There has been a sharp increase in fire events across the 

globe [10], and the destruction caused by wildfires appears to be worsening [6]. From 

2002 through 2011, wildfires in the U.S. accounted for $13.7 billion in total economic 

losses, a $6.9 billion increase from the previous decade [48]. The deaths of 19 firefighters 

in 2013 the largest such loss since 1933, were part of a general trend of rising threats to 

lives as well as properties [48]. 

Wildfire risk has increased with human populations reaching further into 

wildlands. About 32 percent of housing units including homes, apartments and buildings 

in the U.S. and 10 percent of all lands with houses are situated in the wildland-urban 

interface (WUI; the zone of transition between natural land and human development) [4], 

and WUI is expected to continue to grow[5]. Homes located in the WUI have a high 

probability of exposure to wildfire, regardless of vegetation type or potential fire size [2]. 
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Along with increasing wildfire risk, the costs associated with wildfire management are 

increasing. The United States Department of Agriculture (USDA) reported that more than 

$ 1.6 billion is spent annually by state forestry agencies on wildfire protection, 

prevention, and suppression [2]. To reduce the consequences of catastrophic wildfires, 

planning an effective mitigation programs is essential. 

Risk assessment has increasingly become a key input to wildfire prevention and 

mitigation decision making processes [18–20,49]. Determining the vulnerability of a 

system is an important component of risk assessment, which is employed to help develop 

risk mitigation strategies to counter risks [22]. Vulnerability assessment studies identify 

weak points in the system, and focus on defined threats that could compromise the 

system's ability to meet its intended function. To our knowledge, no risk assessment 

study has considered the worst-case scenario wildfires, and there has not been any pilot 

risk assessment for a potential arson attack that utilizes coordinated multiple ignition 

points. The results of such study can be used in strategic planning efforts for risk 

mitigation against a threat, especially when available resources and funds are limited. 

This paper aims to fill this gap by proposing a mathematical programming model to study 

the vulnerability of landscapes to wildfires in the worst-case scenario.  

Operations Research (OR) specialists have worked with fire managers to develop 

decision support systems that can help improve fire management; however, there remain 

substantial gaps between wildfire managers’ needs and the decision support systems used  

[34]. Linear programming and mixed integer programming (MIP) have been frequently 

used in wildfire management (e.g., [50–52]). Other approaches such as heuristics [25–

27,53], goal programming [54], stochastic programming [40], stochastic dynamic 
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programming [32,33], and robust optimization [39,55] also have been used in wildfire 

management. In this research, we develop a mathematical programming model to 

evaluate the maximum impact of a wildfire on a landscape. We use the model to analyze 

the vulnerability of landscapes to wildfires based on the impact of the worst-case scenario 

ignition locations. 

Although wildfires can start from anywhere on a landscape, the location and 

number of ignition points can be an important factor that impact the resulting wildfire 

spread. Using our developed model, we investigate the effect of ignition locations on 

wildfires and identify the potential ignition locations which result in a wildfire with the 

maximum impact on a landscape. To model wildfires' behavior on a landscape, we use 

FlamMap [56], a fire behavior mapping and analysis program. We consider wildfires that 

contain a single and multiple ignition points, such as the case in lightning-caused 

wildfires [57]. The proposed model is then used to evaluate the impact of wildfire on 

three landscape cases from three national forests in the Western U.S. 

We believe this to be the first study that analyzes the vulnerability of landscapes 

to worst-case wildfires with regard to the location of ignition sites. Our ultimate goal in 

this research is to help wildfire managers identify critical locations whose protection 

yields a fire management system robust against possible worst-case scenarios, or 

potential arson attacks. This study can be used in identifying these highly vulnerable 

areas for wildfire risk mitigation planning such as fuels treatment scheduling and fire 

suppression preparedness planning to reduce potential worst-case scenario wildfires.  
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2.2 Problem description and model formulation 

Our objective is to identify ignition locations of a wildfire that pose the maximum 

damage to the landscape. Damage or impact (used interchangeably through this paper) 

can be evaluated as the percentage of the landscape burned, or the value lost to fire. For 

the latter, the value of vegetation type, e.g. commercial timber, and the value of wildland-

urban interface (WUI), if any, is used. We consider a landscape divided into a number of 

raster cells, and use FlamMap to model fire spread characteristics in each cell. If 𝑋 is the 

set of vector 𝑥 indicating the cell(s) that a fire originates from, and 𝑓(𝑥) is a function 

representing the corresponding impact of the fire on the landscape, then the research 

problem can be defined as identifying the ignition points, represented by vector 𝑥, of a 

fire that has the largest impact on the landscape, or equivalently to find 𝑥 for which 𝑓(𝑥) 

is the maximum. We formulate the problem as a network optimization problem and later 

in section 3 test it on three landscape cases.  

2.2.1 Modeling the spread of wildfire 

To model the spread of wildfire as a network optimization problem, we represent 

a landscape with a raster map divided into grid cells. If we represent the center of each 

cell as a node, and connect neighboring cells with directed arcs, then the landscape can be 

represented with a directed network (see Figure 2.1).  
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Figure 2.1 Rasterized landscape 

(a) A landscape modeled as a 10 by 10 raster cells,  
(b) The network representation of the landscape 

To model the spread of fire in the landscape, we use the minimum travel time 

algorithm (MTT) [58]. We study a case that multiple wildfires start at the same time 

across a landscape. Therefore, to apply the MTT algorithm, we need to calculate the 

minimum travel time from any cell in the network (potential ignition points) to any other 

cell in the network. This requires calculating minimum travel time for a network problem 

with multiple sources and multiple sinks (a source is the starting point of a travel path, 

and a sink is the ending point; see [59]). In order to facilitate the construction of our 

model, we convert the problem to a single-source shortest path problem by adding a 

dummy super source to the network. The dummy super source represents the primary 

ignition source of fire. We then use the shortest path formulation to compute the 

minimum travel time from the super source to any cell in the network. The super source, 

cell 0 , is connected to every cell in the network with 0 travel time. Since we 

hypothetically assume wildfires start at the dummy super source, the 0 travel time 

assumption is legitimate. We assume that for any cell 𝑖 (an ignition point), and any cell 𝑗 
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that fire can reach from  , a single fire flow is sent from the super source to cell 𝑖 . Then 

the model identifies the shortest path for sending a fire flow unit from cell 𝑖 to cell 𝑗 (in 

the shortest path formulation, it is assumed that a flow unit is sent from the source to the 

sink; in our formulation, hypothetically, we assume fire flow units are sent from an 

ignition point to any point in a landscape). An example of this process is shown in Figure 

2.2. 

 

Figure 2.2 Modeling fire spread 

The simulated wildfire (a) starts at the super source (cell 0) and arrives at ignition points 
at time 0, (b) sets fire on the ignition points and spreads through the landscape 

In this example, wildfire starts at the super source, travels to the three sample 

ignition points, arrives at the ignition points at time 0 (simulation time) and from there 

spreads through the landscape. The travel time from the ignition points to other cells are 

computed based on the length of the respective shortest path. Using this structure, we can 

simulate the spread of wildfire in a landscape. 
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2.2.2 Mathematical formulation 

The primary assumptions for the research problem are as follows: 

1. The ignition points of wildfires are randomly distributed across the 
landscape; 

2. Multiple fires can start at any location in the landscape; however, for 
simplicity, we assume that the interaction of fires is negligible; 

3. The areas outside the boundaries are unburnable;  

4. When wildfire reaches the center of a cell, that cell is assumed burned;  

5. Fire spreads in an elliptical shape within each cell.  

We use FlamMap to calculate the Rate of Spread (ROS) along with the major fire 

spread direction in each cell. The major fire spread direction in each cell represents the 

direction in that cell for which fires spread with the fastest speed. Fires would also spread 

along other directions, but at slower speed [31]. We use formulas (2.1) and (2.2) to 

calculate ROS along other directions: 

 𝑅𝑂𝑆 =
𝑏2−𝑐2

𝑏−𝑐×𝐶𝑂𝑆(𝜃)
    for 0 ≤ 𝜃 <

𝜋

2
 (2.1) 

 𝑅𝑂𝑆 =
𝑏2−𝑐2

𝑏+𝑐×𝐶𝑂𝑆(𝜋−𝜃)
    for 𝜋

2
≤ 𝜃 < 𝜋 (2.2) 

𝜃 is the angle between the major fire spread direction in each cell computed by 

FlamMap and the fire spread direction from this cell to the center of adjacent cells. In this 

formula 𝑏 and 𝑐 are outputs of FlamMap and are standard parameters used to describe the 

ellipse of fire spread. For more information we refer the reader to [60]. Two mixed-

integer programming formulations are developed for this problem and are presented in 

this section. The models use the following notations: 
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Table 2.1 Notations 

Sets and indices 

𝑑 is the expected fire duration 

𝐶 is the set of raster cells in a landscape indexed with 𝑟, 𝑖 and 𝑗  
𝑁𝑖 is the set of raster cells adjacent to cell 𝑖  

  
Parameters 

𝐹𝑖,𝑗 distance (meters) from the center of cell 𝑖 to the center of cell 𝑗  
𝑅𝑖,𝑗 rate of fire spread (meters per minute) from cell 𝑖 to cell 𝑗  
𝑡𝑖,𝑗 the fire spread time (minutes) from cell 𝑖 to cell 𝑗, 𝑡𝑖,𝑗 =

𝐹𝑖,𝑗

𝑅𝑖,𝑗
 

𝐵 is the number of ignition points 
𝑉𝑟 is the value of cell 𝑟 lost to the fire 

  
Variables 

𝑥𝑟,𝑖,𝑗 1 if the shortest path from an ignition point to cell 𝑟 passes through link 
(𝑖, 𝑗); 0 otherwise 

𝑧𝑗 1 if a fire starts at cell 𝑗; 0 otherwise 
𝑦𝑟 1 if cell 𝑟 is reached by a fire within duration 𝑑; 0 otherwise 

 

The objective of this model is to locate wildfire ignition points with the largest 

impact on the landscape. In wildfires, it is not only how much of the landscape that is 

burned and damaged that matters, but also wildfire losses. Therefore, the objective 

function of the model should also compute the total damage including a monetary value 

lost to fire. The model identifies the optimal locations of ignition points such that the 

resulting wildfire has the maximum impact on the landscape based on the value lost. The 

MIP model is as follows: 

 𝑆𝑃𝑊𝑉𝐴: max 𝑓 = ∑ 𝑉𝑟𝑦𝑟𝑟∈𝐶  (2.3) 

 ∑ 𝑥𝑟,𝑖,𝑗 − ∑ 𝑥𝑟,𝑗,𝑖𝑗∈𝑁𝑖𝑗∈𝑁𝑖
= {

1  𝑖 = 0
    0  𝑖 ≠ 0, 𝑟

−1  𝑖 = 𝑟
    ∀𝑖, 𝑟 ∈ 𝐶 (2.4) 

  𝑥𝑟,0,𝑗 ≤  𝑧𝑗    ∀𝑗, 𝑟 ∈ 𝐶 (2.5) 
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  𝑦𝑟 ≤
𝑑

∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖

   ∀  𝑟 ∈ 𝐶 (2.6) 

 ∑ 𝑧𝑗 ≤ 𝐵𝑗∈𝐶  (2.7) 

  𝑥𝑟,𝑖,𝑗 ∈ {0,1}    ∀  𝑟, 𝑗 ∈ 𝐶, 𝑖 ∈ 𝐶 ∪ {0} (2.8) 

  𝑦𝑟 ∈ {0,1}    ∀  𝑟 ∈ 𝐶 (2.9) 

  𝑧𝑗 ∈ {0,1}    ∀ 𝑗 ∈ 𝐶 (2.10) 

We term the model “shortest path-based wildfire vulnerability assessment” or 

SPWVA. The objective function (2.3) maximizes the total loss due to wildfire within 

duration 𝑑. Constraints (2.4) ensure that one unit fire flow is sent from the super source to 

every cell. These constraints are called the flow conservative constraints (see [59]). 

Constraints (2.5) ensure that the fire spreads to cell 𝑗 from the super source only when 

cell 𝑗 is selected as an ignition point. Constraints (2.6) are the burn constraints, and set 

the values of the binary variables  𝑦𝑟 . These variables are used to track whether cell 𝑟 is 

reached by wildfire and, therefore, burned within duration 𝑑. If the minimum travel time 

from a fire to cell r is less than or equal to the duration 𝑑, which is ∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖
≤ 𝑑, 

then 𝑑

∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖

≥ 1 and therefore  𝑦𝑟 will be equal to 1 (the objective is maximizing 

on  𝑦𝑟). Otherwise if ∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖
> 𝑑, then 𝑑

∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖

< 1, and therefore  𝑦𝑟 has 

to be 0 as it is a binary variable. It is noteworthy that the model maximizes on 𝑦𝑟, and, 

therefore based on constraint (2.6) minimizes ∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖
 , which is the fire travel 

time to cell r. This along with constraints (2.4) and (2.5) form a travel time minimization 

problem, or the shortest path problem. Constraint (2.7) controls the number of ignition 

points. 
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To linearize constraints (2.6) we introduce another binary variable  wr,i,j =  yr ×

xr,i,j and add the following constraints to the model:  

 ∑ 𝑤𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖
≤ 𝑑     ∀ 𝑟 ∈ 𝐶 (2.11) 

 𝑤𝑟,𝑖,𝑗 ≤  𝑦𝑟    ∀ 𝑟, 𝑖, 𝑗 ∈ 𝐶 (2.12) 

 𝑤𝑟,𝑖,𝑗 ≤ 𝑥𝑟,𝑖,𝑗    ∀ 𝑟, 𝑖, 𝑗 ∈ 𝐶 (2.13) 

 𝑤𝑟,𝑖,𝑗 ≥ 𝑥𝑟,𝑖,𝑗 +  𝑦𝑟 − 1    ∀ 𝑟, 𝑖, 𝑗 ∈ 𝐶 (2.14) 

  𝑥𝑟,𝑖,𝑗 ∈ {0,1}    ∀ 𝑟, 𝑖, 𝑗 ∈ 𝐶 (2.15) 

Doing so would increase the size of the model, however, and would make it more 

difficult to solve. An alternative way to formulate constraints (2.6) is as follows: 

  𝑦𝑟 ≤
𝑑−∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖

𝑀
+ 1    ∀ 𝑟 ∈ 𝐶 (2.16) 

𝑀 is the length of the travel time path (𝑀 = max{∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖
, ∀ 𝑟 ∈ 𝐶}). 

Constraints (2.16) perform the same function as constraints (2.6) while they are 

linear, and, therefore, unlike constraints (2.6), they do not require adding extra constraints 

and variables for linearization. To illustrate how constraints (2.16) work, assume that the 

length of the shortest path to 𝑟 is less than or equal to duration 𝑑 , which means cell 𝑟 is 

considered burned, then 𝑑 − ∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗(𝑖,𝑗)  is non-negative, say  
𝑑−∑ 𝑥𝑟,𝑖,𝑗𝑡𝑖,𝑗𝑖∈𝐶,𝑗∈𝑁𝑖

𝑀
= 𝜀 >

0, thus .  𝑦𝑟 ≤ 1 + 𝜀, and  𝑦𝑟 can be 1, otherwise 𝑦𝑟 ≤ 1 − 𝜀, and  𝑦𝑟 must be 0. 

The model selects the optimum potential cells for starting a fire that can reach and 

burn the maximum number of cells in the landscape. In this model, the ignition points are 

selected, and then, the shortest paths between the ignition points and every cell in the 

network are calculated and, accordingly, the number of cells reachable by the fire within 

duration 𝑑 is computed. Our preliminary tests with hypothetical landscapes, similar to 
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those used in [31], reveal a drawback of SPWVA model. The model is difficult to solve 

for sample instances larger than 100 cells. To overcome this problem, and solve large 

landscape cases more efficiently, we develop an additional model. 

2.2.3 A maximal covering location-based formulation 

To overcome the difficulty of solving the shortest path problems as part of the 

original problem, we develop another model based on the idea of the maximal covering 

location problem [61]. This model represents the cover of wildfire in a landscape in a 

given time when fire uses shortest path to spread. In this model, the shortest paths are 

calculated prior to solving the model and entered into the model as input parameters. This 

way we no longer require shortest path problems as part of the original problem. To 

present the model, we define a new parameter, 𝐻𝑟,𝑗, which is 1 if the length of the 

shortest path from cell 𝑗 to cell 𝑟 is less than 𝑑 , and 0 otherwise. For any cell 𝑟 in the 

landscape, 𝐻𝑟,𝑗 implies whether cell 𝑟 is reached within duration 𝑑 by a wildfire that 

starts at cell. The model is as follows: 

 MCWVA: max 𝑓 = ∑ 𝑉𝑟𝑟∈𝐶  (2.17) 

  𝑦𝑟 ≤ ∑ 𝐻𝑟,𝑗 × 𝑧𝑗𝑗∈𝐶     ∀  𝑟 ∈ 𝐶 (2.18) 

 ∑ 𝑧𝑗 ≤ 𝐵𝑗∈𝐶  (2.19) 

  𝑦𝑟 ∈ {0,1}   ∀  𝑟 ∈ 𝐶 (2.20) 

  𝑧𝑗 ∈ {0,1}   ∀  𝑗 ∈ 𝐶 (2.21) 

We term the model “maximal covering location-based wildfire vulnerability 

assessment” or MCWVA. MCWVA uses the same variable  𝑦𝑟 as was used in SPWVA. 

Since the shortest paths are already given, MCWVA has fewer variables and constraints 
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than SPWVA. In fact, SPWVA has 𝑛3 +  𝑛2 + 2𝑛 variables and 2𝑛2 + 2𝑛 + 1 

constraints (𝑛 is the number of cells in the network), while MCWVA has only 2𝑛 

variables and 𝑛 + 1 constraints. This is without considering variable type constraints 

(2.8)-(2.10) and (2.20)-(2.21). Therefore, we expect MCWVA to be solved faster.  

The objective function (2.17) maximizes the total loss of the landscape due to 

wildfires. Constraints (2.18) are the burn constraints, and set the values of the binary 

variables  𝑦𝑟. Constraint (2.19) controls the number of ignition points. Constraints (2.20) 

- (2.21) restrict the variables to binary values. The model can consider unburnable cells or 

treated cells (e.g. cells with fuel breaks) if such data are available. These considerations 

need to be made for fire behavior in each cell. For example, if cell 𝑖 is a treated cell then 

this affects the fire spread time  𝑡𝑖,𝑗 from cell 𝑖 to any adjacent cell 𝑗. We can increase  𝑡𝑖,𝑗 

by a constant greater than d so that it lengthens the paths that go through cell 𝑖, and, 

therefore, prohibits wildfires from spreading through cell 𝑖. One can also define the 

ignition probability for each cell in the landscape such that for unburnable cells or treated 

cells, the corresponding ignition probability is zero. There might be parts of the landscape 

that have more fire incidences, so those cells should have higher ignition probabilities. 

For this reason, historical wildfire records can be used to estimate average annual wildfire 

occurrence rates in each cell [28]. In the next section, we use MCWVA to investigate the 

impact of wildfires with optimally located ignition points. We also compute the average 

impact of wildfires over all possible ignition location scenarios. The current model can be 

extended to compute the expected loss due to wildfires across a possible fire duration 

distribution [62], instead of a fixed fire duration. Given the probability for each fire 

duration, it can be added to the objective function. 



 

20 

2.3 Model demonstration 

In this section, we use MCWVA model to assess the impacts of the worst-case 

scenario wildfires. A preliminary experiment using hypothetical landscapes, of sizes 7×7, 

8×8 and 10×10, indicates that MCWVA can be solved efficiently. To use more realistic-

sized networks, we use three case studies located in the western USA, where large 

wildfires are common. For these landscapes, we compare two scenarios: worst-case 

wildfires with optimally located ignition points and wildfires with randomly located 

ignition points. For the former, we use our MCWVA model to compute the maximum 

impact of wildfires, based on their ignition locations, and for the latter we compute the 

average impact of wildfires with ignition points randomly located across the landscape. 

For this reason, we conduct a series of experiments to consider the impact of wildfires on 

different landscapes, with different fire duration, and different wind speed scenarios. We 

also run a series of experiments to compute the impact of wildfires in presence of WUI in 

a landscape. These experiments are discussed in details in the following sections. Since 

we use case study landscapes for experimentation (which are much larger than the 

hypothetical landscapes used in the preliminary tests), we do not report the results of the 

preliminary tests on the hypothetical landscapes. 

We used the LANDFIRE database to obtain landscape files (LCP) for the 

landscapes under study. LANDFIRE data are commonly used in wildland fire simulation 

modeling, as they are standardized, and updated regularly to adjust to disturbances such 

as wildfires, fuels treatment and urban development [20]. Landscape files (LCP) contain 

spatial data themes such as fuel models, elevation, slope, aspect, and canopy 

characteristics. We use these data as inputs of FlamMap to model fire behavior and 
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spread in each cell of the landscapes. FlamMap inputs these data, along with wind speed, 

wind direction, and fuel moisture conditions to compute rate of spread and the major fire 

spread direction in each cell. We use the outputs of FlamMap (the rate of spread, and the 

major fire spread direction in each cell) to model fire spread in the landscapes using 

minimum travel time algorithm. The details of the landscape cases are discussed in the 

following section. 

2.3.1 Case studies 

The first case is the 6307 km2 Santa Fe National Forest in northern New Mexico. 

A prevailing west to east wind is assumed for this case with 300 Azimuth at 12 miles per 

hour ( 19.31 km per hour). The second case is the 3979 km2 Umpqua National Forest at 

the western slopes of Cascade Mountains in Oregon. The same wind condition is 

assumed. The third case is the 3334 km2 San Bernardino National Forest located in the 

San Bernardino Mountains in southern California. For this case a prevailing east to west 

wind with 270 Azimuth at 12 miles per hour is assumed. However, we also study this 

case under slower and faster wind speed conditions. Figure 2.3 Figure 2.2 shows the 

approximate locations of these case study landscapes. 
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Figure 2.3 Test case locations 

The approximate locations of the case study landscapes in the US (retrieved from [63] ) 

Although modeling these cases into rasterized networks with high number of cells 

makes the model more accurate, as the size of the networks increases, the model becomes 

more difficult to solve. According to Minas et al [17], landscapes divided into several 

hundred to a thousand management units are of practical interest for fuels management 

purposes. We clip an area of 3 km×3 km from the first and second landscapes. To test the 

capability of the model for a larger landscape, we clip an area of 4.2 km×4.2 km from the 

third landscape and rasterize them into networks with 25×25 (625) square cells, each 120 

m × 120 m wide, for the first two landscapes, and 35×35 (1225) square cells, each 120 m 

× 120 m wide, for the third landscape. To quantify fire behavior on these landscapes we 

use FlamMap 5.0 to calculate the rate of spread and fire spread directions. 
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Table 2.2 Initial fuel moisture conditions used in FlamMap 

1 hour initial moisture 6 
10 hour initial moisture 7 
100 hours initial moisture 8 
Herbaceius fuel moisture 60 
Live woody fuel moisture 90 

 

We use the same initial fuel moisture scenarios for all three cases in our study 

(Table 2.2 ). FlamMap uses GIS data, landscape characteristics, fuel moisture, and wind 

conditions and outputs fire behavior for each cell. In this section, we run a set of 

experiments to find the effect of the locations of ignition points on the damage that 

wildfires can cause. Therefore, we compare two scenarios: (1) wildfires with random 

ignition points (“random wildfires”), and (2) wildfires with optimally located ignition 

points (“worst-case wildfires”). In the worst-case wildfires, the ignition locations are 

selected optimally through solving MCWVA model. Figure 2.4 shows the fire foot print 

after 24 hours for a sample random wildfire and the worst-case wildfire with one ignition 

point for the Santa Fe landscape. The worst-case wildfire with an optimally located 

ignition point has much larger impact on the landscape than the sample random wildfire 

(see Figure 2.4). 
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Figure 2.4 Fire footprint example 

Fire footprint after 24 hours for the Santa Fe National Forest landscape for  
(a) a sample random wildfire with single ignition point,  
(b) the worst-case wildfire with single ignition point 

To compare these wildfires, we conduct a series of experiments by which we also 

test the effect of other parameters. In the first set of experiments we assume cells have the 

same value across all the landscapes. We compute the impact of wildfires as percentages 

of landscapes burned. Through these experiments, we can see the impact of wildfires on 

different landscapes as well. In the second set of experiments, we only focus on the 

largest landscape and test the effect of wind speed on wildfires impact. In the last set of 

experiments, we assume that part of the landscape is occupied by WUI, and, therefore, 

not all cells have equal value. In this experiment, we test the impact of worst-case 

scenario wildfires in presence of WUI. 

To calculate the impact of wildfires with optimally located ignition points, we 

solve the MCWVA model for the three landscape cases. We implement the model 
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formulation using Python 2.7 and solve it with Gurobi 6.0 [64]. All tests are performed 

on a computer with Intel Core i5 2520M processor at 2.5 GHz and 8 GB RAM. By 

solving the model to optimality, it gives us the optimal location(s) of ignition point(s) for 

a wildfire with the maximum damage it can cause.  

In all of the following experiments, we compare the two wildfire cases (random 

wildfires and worst-case wildfires) for different number of ignition point scenarios, by 

systematically increasing the number of ignition points from one to five. To calculate the 

impact of random wildfires, in which the ignition points are randomly located, we 

compute the average impact of wildfires, for all scenarios of ignition locations, for one 

and two ignition points. However, for three and more ignition points, computing the 

average impact of wildfires requires tremendous computational effort. For example, for a 

three ignition point scenario, we would need to compute the average impact of wildfires 

for 𝐶3
625 scenarios (number of 3-combination from a set with 625 elements), which 

entails more than 40 million scenarios for the first two landscapes, and more than 300 

million scenarios for the third landscape (𝐶3
1225). Therefore, we use Monte Carlo 

simulation for 3, 4, and 5 ignition point scenarios. We take a random sample of 5,000 

possible ignition location scenarios, and after finding the average and standard deviation 

of the impact of wildfires for each case, we build 95% confidence intervals for 

comparison. The experiments are discussed in the following sections. 

2.3.2 The impact of wildfires on different landscapes 

In this section, we run a set of experiments on the three landscape case studies to 

investigate the impact of two cases of wildfires, random wildfires, and worst-case 

wildfires. We compute the impacts of these wildfires under three fire duration scenarios, 
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12, 18 and 24 hours. For random wildfires, we compute the average impact, and the 95% 

confidence intervals for 5,000 randomly selected Monte Carlo samples. We assume that 

all cells are homogeneous and have equal values (𝑉𝑟=1.. ∀ 𝑟 ∈ 𝐶). Thus, the impacts of 

wildfires can be presented as the percentages of the landscape burned. Table 2.3 shows 

the percentages of each landscape burned by worst-case wildfires with 𝑋 number of 

ignition points (represented by WCWF(𝑋)), and the average percentages of landscapes 

burned by random wildfires with 𝑋 number of ignition points (represented by RWF(𝑋)). 

The 95% confidence intervals for random wildfires are presented in Table 2.4 

Table 2.3 The percentages of landscape burned 

Fire duration Landscape name 
WCWF 

(1) 
RWF 
(1) 

WCWF 
(2) 

RWF 
(2) 

WCWF 
(3) 

RWF 
(3) 

WCWF 
(4) 

RWF 
(4) 

WCWF 
(5) 

RWF 
(5) 

12
 h

ou
rs

 Santa Fe 7.84 2.72 14.72 5.28 20.96 8.00 25.92 10.56 30.56 12.96 
Umpqua 8.96 2.40 16.64 4.80 22.24 7.20 27.20 9.44 32.16 11.68 
San Bernardino 11.84 4.73 20.24 9.31 28.24 13.63 36.00 17.63 42.69 21.47 

18
 h

ou
rs

 Santa Fe 13.92 5.12 23.84 11.36 33.28 16.48 42.40 21.28 49.44 25.76 
Umpqua 17.60 5.28 28.16 10.24 36.48 15.04 44.32 19.36 52.00 23.52 
San Bernardino 20.73 10.20 36.33 19.27 49.71 27.27 61.63 34.45 72.90 40.82 

24
 h

ou
rs

 Santa Fe 21.12 9.92 35.84 18.88 48.32 26.88 59.20 33.92 68.80 40.00 
Umpqua 25.60 9.28 38.56 17.44 50.08 24.80 60.64 31.36 69.76 36.80 
San Bernardino 31.84 17.06 55.43 30.94 76.49 87.02 42.12 51.51 93.71 59.02 

Average 17.72 17.72 7.41 29.97 14.20 40.64 20.16 49.37 25.50 56.89 

The percentages of study landscapes burned with the worst-case wildfires with 𝑋 number 
of ignition points (represented by WCWF(𝑋)), and the average percentages of landscapes 
burned by random wildfires with 𝑋 number of ignition points (represented by RWF(𝑋)) 
for different numbers of ignition points and under different fire duration scenarios. 
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Table 2.4 The 95% confidence interval 

Duration Landscape name 
RWF(1) RWF(2) RWF(3) RWF(4) RWF(5) 

LB UB LB UB LB UB LB UB LB UB 
12

 h
ou

rs
 Santa Fe 2.61 2.83 5.23 5.33 7.94 8.06 10.49 10.63 12.88 13.04 

Umpqua 2.26 2.54 4.73 4.87 7.12 7.28 9.35 9.63 11.58 11.87 

San Bernardino 4.42 4.66 9.23 9.38 13.54 13.37 17.53 17.74 21.35 21.59 

18
 h

ou
rs

 Santa Fe 4.90 5.34 11.26 11.46 16.36 16.60 21.15 21.41 25.63 25.89 

Umpqua 5.00 5.56 10.11 10.37 14.90 15.18 19.21 19.51 23.36 23.68 

San Bernardino 10.02 10.39 19.15 19.38 27.09 27.44 34.26 34.64 40.62 41.02 

24
 h

ou
rs

 Santa Fe 9.57 10.27 18.72 19.04 26.71 27.05 33.74 34.10 39.81 40.19 

Umpqua 8.84 9.72 17.25 17.63 24.60 25.00 31.15 31.57 36.60 37.00 

San Bernardino 16.81 17.31 30.79 31.09 41.87 42.38 51.24 51.78 58.75 59.29 

Average 7.16 7.63 14.05 14.28 20.01 20.30 25.35 25.66 30.06 30.39 

The 95% confidence interval for percentages of landscapes burned by RWF wildfires for 
different number of ignition points, and fire duration scenarios. 

Table 2.5 The ratios of percentages of landscapes burned 

Duration Landscape name 
𝑊𝐶𝑊𝐹(1)

𝑅𝑊𝐹(1)
 

𝑊𝐶𝑊𝐹(2)

𝑅𝑊𝐹(2)
 

𝑊𝐶𝑊𝐹(3)

𝑅𝑊𝐹(3)
 

𝑊𝐶𝑊𝐹(4)

𝑅𝑊𝐹(4)
 

𝑊𝐶𝑊𝐹(5)

𝑅𝑊𝐹(5)
 Average 

12
 h

ou
rs

 Santa Fe 2.88 2.79 2.62 2.45 2.36 2.62 

Umpqua 3.73 3.47 3.09 2.88 2.75 3.18 

San Bernardino 2.50 2.17 2.07 2.04 1.99 2.16 

18
 h

ou
rs

 Santa Fe 2.72 2.10 2.02 1.99 1.92 2.15 

Umpqua 3.33 2.75 2.43 2.29 2.21 2.60 

San Bernardino 2.03 1.89 1.82 1.79 1.79 1.86 

24
 h

ou
rs

 Santa Fe 2.13 1.90 1.80 1.75 1.72 1.86 

Umpqua 2.76 2.21 2.02 1.93 1.90 2.16 

San Bernardino 1.87 1.79 1.82 1.69 1.59 1.75 

Average 2.66 2.34 2.19 2.09 2.02 2.26 

The ratios of percentages of landscapes burned with the worst-case wildfires with X 
number of ignition points (represented by WCWF(X)), and the average percentages of 
landscapes burned by random wildfires with X number of ignition points (represented by 
RWF(X)) for different numbers of ignition points and under different fire duration 
scenarios. 
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Using the confidence intervals, we can see whether there is a significant 

difference between the impact of random wildfires and the worst-case wildfires on each 

landscape. For the three landscape cases, the differences between the average impacts of 

random wildfires (based on the number of ignition points) are statistically significant at 

95% significance level (none of the computed confidence intervals overlap, see Table 

2.4). For wildfires with the same number of ignition points and under the same fire 

duration scenario, the differences between the impacts of the worst-case wildfires and the 

average impacts of random wildfires on each landscape case are statistically significant at 

95% significance level. For wildfires with the same number of ignition points, the worst-

case wildfires cause more than twice the damage than random wildfires (Figure 2.5). This 

difference is marked for wildfires with only one ignition point; the WCWF(1) causes 

approximately three times more damage to the landscapes than RWF(1), when wildfire 

last for 12 hours. When the number of ignition points increases, the difference between 

the two wildfire cases decreases slightly (Figure 2.5). The worst-case wildfires over 

random wildfires ratio goes from 2.66 for wildfires with one ignition point to 2.02 for 

wildfires with five ignition points.  

The worst-case wildfires have higher impacts on the landscapes than random 

wildfires (Figure 2.5, Figure 2.7 and Figure 2.8). Wildfires have different impacts on 

different landscapes. The worst-case wildfires and random wildfires both have higher 

impact on the San Bernardino case landscape than the other two landscape cases (Figure 

2.5, Figure 2.7 and Figure 2.8). Also, the difference between the impact of the worst-case 

wildfires and the average impact of random wildfires is greater for the Umpqua landscape 
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case than the San Bernardino landscape case (0). These differences are likely due to 

landscape characteristics which impact the rate of spread and major fire spread direction.  

 

Figure 2.5 The percentage of Santa Fe landscape burned 

The percentage of Santa Fe National Forest landscape case burned with random wildfires 
(represented by RWF) and the worst-case wildfires (represented by WCWF) under 
different number of ignition points; in which fire lasts: (a) 12 hours, (b) 18 hours, and (c) 
24 hours 
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Figure 2.6 The percentage of Umpqua landscape burned 

The percentage of Umpqua National Forest landscape case burned with random wildfires 
(represented by RWF) and the worst-case wildfires (represented by WCWF) under 
different number of ignition points; in which fire lasts: (a) 12 hours, (b) 18 hours, and (c) 
24 hours 
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Figure 2.7 The percentage of San Bernardino landscape burned 

The percentage of San Bernardino National Forest landscape case burned with random 
wildfires (represented by RWF) and the worst-case wildfires (represented by WCWF) 
under different number of ignition points; in which fire lasts: (a) 12 hours, (b) 18 hours, 
and (c) 24 hours 
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Figure 2.8 The percentage of three landscape burned 

The percentage of the three landscape cases burned with random wildfires (represented 
by RWF) and the worst-case wildfires (represented by WCWF) under different number of 
ignition points, and different fire duration scenario 

The worst-case wildfires and random wildfires both cause more damage on 

landscapes when fires last longer; however, the worst-case wildfires on average spread 

faster and cause more damage over shorter times than random wildfires cause over longer 

times (Figure 2.8). For example, the impact of the worst-case wildfires over 12 hours and 

18 hours are respectively more than the impact of random wildfires over 18 hours and 24 

hours.  

2.3.3 The impact of wildfires under different wind speed scenarios 

In addition to landscape characteristics, wind speed also has a major impact on 

fire behavior [65]. In the previous set of experiments, we assumed the same wind speed 
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conditions for all three landscape cases. In this section, we test the impact of wildfires 

under three different wind speed scenarios. By doing so, we can obtain a more robust 

conclusion about the effect of ignition locations on the impact of wildfires on landscapes. 

For this reason, we run a set of experiments on the San Bernardino landscape case (the 

largest landscape with 35 × 35 cells) to investigate the impact of wildfires under three 

different wind speed scenarios: 8 , 12 and 16 mph ( 12.87 , 19.31 , 25.75 kph 

respectively). As we discussed before, of the three cases, the San Bernardino case has the 

least difference between worst-case wildfires and random wildfires (we pick the weakest 

case for this experiment). The results show that for higher speed winds, wildfires cause 

more damage; the higher the wind speed, the more damage the wildfires cause (Table 2.6 

and Figure 2.9). In this experiment, under different wind speed scenarios, the worst-case 

wildfires still have a greater impact on the landscape than random wildfires (Table 2.6 

and Table 2.8; for 95% confidence intervals for random wildfires see Table 2.7). 

Table 2.6 The impact of wind speed, the percentages burned 

Fire 
duration 

Wind 
speed 

WCWF 
(1) 

RWF 
(1) 

WCWF 
(2) 

RWF 
(2) 

WCWF 
(3) 

RWF 
(3) 

WCWF 
(4) 

RWF 
(4) 

WCWF 
(5) 

RWF 
(5) 

12 hours 

8 11.67 3.92 20.08 7.67 26.29 11.18 32.00 14.61 37.47 17.88 

12 11.84 4.73 20.24 9.31 28.24 13.63 36.00 17.63 42.69 21.47 

16 13.06 5.88 23.67 11.51 33.71 16.65 43.18 21.47 50.53 26.04 

18 hours 

8 20.24 8.33 32.73 15.84 43.27 27.61 53.71 28.73 62.53 34.29 

12 20.73 10.20 36.33 19.27 49.71 27.27 61.63 34.45 72.90 40.82 

16 21.63 12.57 42.29 23.43 60.82 32.73 74.04 40.90 84.49 47.92 

24 hours 

8 31.18 13.96 48.24 25.63 62.37 35.43 72.65 43.59 83.67 50.69 

12 31.84 17.06 55.43 30.94 76.49 87.02 42.12 51.51 93.71 59.02 

16 35.10 20.82 62.61 36.90 84.33 49.39 94.12 59.27 96.65 66.86 

Average 21.92 10.83 37.96 20.06 51.69 33.43 56.61 34.68 69.40 40.55 

The percentages of the San Bernardino landscape burned with the worst-case wildfires 
with X number of ignition points (represented by WCWF(X)), and the average 
percentages of landscapes burned by random wildfires with X number of ignition points 
(represented by RWF(X)) for different numbers of ignition points and under different fire 
duration and wind speed scenarios. 
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Table 2.7 The impact of wind speed, the 95% confidence interval  

Fire duration Landscape name 
RWF(1) RWF(2) RWF(3) RWF(4) RWF(5) 

LB UB LB UB LB UB LB UB LB UB 

12 hours 
Santa Fe 2.61 2.83 5.23 5.33 7.94 8.06 10.49 10.63 12.88 13.04 

Umpqua 2.26 2.54 4.73 4.87 7.12 7.28 9.35 9.63 11.58 11.87 
San Bernardino 4.42 4.66 9.23 9.38 13.54 13.37 17.53 17.74 21.35 21.59 

18 hours 
Santa Fe 4.90 5.34 11.26 11.46 16.36 16.60 21.15 21.41 25.63 25.89 

Umpqua 5.00 5.56 10.11 10.37 14.90 15.18 19.21 19.51 23.36 23.68 
San Bernardino 10.02 10.39 19.15 19.38 27.09 27.44 34.26 34.64 40.62 41.02 

24 hours 
Santa Fe 9.57 10.27 18.72 19.04 26.71 27.05 33.74 34.10 39.81 40.19 

Umpqua 8.84 9.72 17.25 17.63 24.60 25.00 31.15 31.57 36.60 37.00 
San Bernardino 16.81 17.31 30.79 31.09 41.87 42.38 51.24 51.78 58.75 59.29 

Average 7.16 7.63 14.05 14.28 20.01 20.30 25.35 25.66 30.06 30.39 

The 95% confidence interval for percentages of San Bernardino landscape burned by 
RWF wildfires for different number of ignition points, and under different fire duration 
and wind speed scenarios. 

Table 2.8 The impact of wind speed, ratios 

Duration Wind speed 𝑊𝐶𝑊𝐹(1)

𝑅𝑊𝐹(1)
 

𝑊𝐶𝑊𝐹(2)

𝑅𝑊𝐹(2)
 

𝑊𝐶𝑊𝐹(3)

𝑅𝑊𝐹(3)
 

𝑊𝐶𝑊𝐹(4)

𝑅𝑊𝐹(4)
 

𝑊𝐶𝑊𝐹(5)

𝑅𝑊𝐹(5)
 Average 

12 hours 
8 2.98 2.62 2.35 2.19 2.10 2.45 

12 2.50 2.17 2.07 2.04 1.99 2.16 
16 2.22 2.06 2.02 2.01 1.94 2.05 

18 hours 
8 2.43 2.07 1.91 1.87 1.82 2.02 

12 2.03 1.89 1.82 1.79 1.79 1.86 
16 1.72 1.80 1.86 1.81 1.76 1.79 

24 hours 
8 2.23 1.88 1.76 1.67 1.65 1.84 

12 1.87 1.79 1.82 1.69 1.59 1.75 
16 1.69 1.70 1.71 1.59 1.45 1.62 

Average 2.19 2.00 1.93 1.85 1.79 1.95 
The ratios of percentages of the San Bernardino landscape burned with the worst-case 
wildfires with X number of ignition points (represented by WCWF(X)), and the average 
percentages of landscapes burned by random wildfires with X number of ignition points 
(represented by RWF(X)) for different numbers of ignition points and under different fire 
duration and wind speed scenarios. 

For wildfires with the same number of ignition points, and for the same fire 

duration scenario, the worst-case wildfires under low wind speed condition have higher 

impact on the landscape than random wildfires under higher wind speed condition 

(Figure 2.9). For example, the worst-case wildfires with the 8 mph wind condition have 

higher impact on the landscape than random wildfires with the 16 mph wind condition. 



 

35 

For wildfires with one and two ignition points, the impact of worst-case wildfires is on 

average twice the impact of random wildfires (Table 2.8). This difference decreases as 

the number of ignition points and the fire duration increases.  

 

Figure 2.9 The impact of wind speed, San Bernardino case 

The percentages of the San Bernardino landscape case burned with: (a) the worst-case 
wildfires, and (b) random wildfires; for different number of ignition points when 
wildfires last for 24 hours.  

2.3.4 The impact of wildfires in presence of wildland-urban interface 

To investigate the impact of wildfires on landscapes in the presence of WUI, we 

run another set of experiments on San Bernardino landscape (the largest landscape with 

35 by 35 cells). In this set of experiments, we assume that about ten percent of the 

landscape contains intermix WUI. In intermix WUI, as opposed to interface WUI, houses 

mingle with wildland fuels [2], allowing the cells containing WUI to be ignitable points. 

To address WUI losses due to wildfires, we include the value of each cell in the model. 

By doing so, we can also address cases where cells have different values depending on 

the vegetation type. In this experiment, WUI locations are distributed arbitrarily through 

the landscape. To set a value for each cell in the corresponding network, we assume a 
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non-WUI cell has a value of 0.4, the same value that Wei [31] uses for non-commercial 

timber forest. As it is difficult to estimate the damage to a WUI cell, including damage to 

properties and human life, we follow Wei [31] and use a value of 1.4 for cells containing 

WUI (and non-commercial timber). These values are unit-less. However, the RAVAR 

[66] resource evaluation method along with the real locations of WUI and vegetation 

types can be used to assign a value to each cell. We assume that all wildfires burn for 24 

hours. The objective of the mathematical optimization model is to locate the ignition 

points of a wildfire that causes the maximum damage. Therefore, we expect the model to 

locate the ignition points adjacent to cells with higher values (WUI cells), and thus the 

resulting worst-case wildfire causes more damage to WUI cells than random wildfires 

causes. Figure 2.10 (a) shows the value lost due to wildfires that last for 24 hours 

considering different numbers of ignition points, and Figure 2.10 (b) shows the 

percentage of WUI cells that are burned by the two types of wildfires, the worst-case 

wildfires and random wildfires. As expected, the worst-case wildfires still have higher 

impact on the landscape and pose more risk (more than two times on average) to WUI 

than random wildfires (Figure 2.10 (b)). 
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Figure 2.10 The impact of wildfires on WUI 

(a) Value lost (unit-less) for the San Bernardino case with random wildfires (represented 
by RWF) and the worst-case wildfires (represented by WCWF) for different ignition 
point scenarios, (b) The percentage of WUI burnt in the San Bernardino case with 
random wildfires and the worst-case wildfires for different number of ignition point 
scenarios when fire last for 24 hours. 

2.4 Discussion and conclusions 

Wildfires can have serious and long-lasting impacts on ecological, social and 

economic systems [49]. It is necessary to identify and understand these impacts, and to 

develop cost effective mitigation strategies accordingly. In this paper, we studied the 

vulnerability of landscapes to wildfire threats considering the impact of fire ignition 

locations – the worst case scenario. We compared the impacts of wildfires with optimally 

located ignition points, the worst-case wildfires, with the impacts of wildfires with 

randomly located ignition points, random wildfires. We used FlamMap to model fire 

behavior using landscape data, wind condition and fuel moisture data, and developed a 

mixed integer programming model to find the maximum impact of wildfires and their 

optimal ignition locations. Three landscape cases were used for experimentation and the 

impacts of various factors such as the number and location of ignition points, fire 

durations, and wind speeds were investigated. The proposed model is compact, and yet it 
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can incorporate a variety of features such as the presence of fuel breaks and unburnable 

cells, and fire duration distribution.  

The major contribution of this work is the development of a compact model for 

assessing the vulnerability of landscapes to wildfires regarding the location and number 

of ignition points – the worst case scenario. The model can be used for assessing the 

vulnerability of landscapes to arson-induced wildfires, for identifying high vulnerability 

areas in a landscape. This is especially important for wildfire management and mitigation 

planning. Thus far, no other research has attempted to provide such assessment. Our 

results show that the worst-case wildfires cause more damage (more than two times on 

average) to the landscapes than random wildfires. This is also true when WUI exists in 

the landscape. The worst-case wildfires cause more than two times, on average, damage 

to WUI lands than random wildfires. Although higher wind speed can exacerbate the 

impact of wildfires [67], our study shows that even under low wind speed condition, the 

worst-case wildfires have higher impact on landscapes than random wildfires would have 

under high wind speed condition. The worst-case wildfires spread faster and cause more 

damage in shorter period of time than random wildfires can cause in longer period of 

time. Within 12 hours, a worst-case wildfire with one ignition point can cause three 

times, on average, more damage to a landscape than a random wildfire with one ignition 

point. This indicates the need for a faster response to the worst-case wildfires than 

random wildfires would require. Thus, controlling the worst-case wildfires would require 

a faster and larger initial attack than random wildfires would need. 

For arson-induced wildfire cases, it is not only the location of ignition points that 

can be determined, but the number of ignition points can also be determined. Therefore, 
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arson-induced wildfires can have more ignition points (multiple fires) than natural 

wildfires; which makes arson-induced wildfires more catastrophic and difficult to 

suppress. Our results indicate that the worst-case wildfires with five ignition points 

respectively cause 7 and 4 times more damage to a landscape than random wildfires with 

one and two ignition points (Table 2.3). This difference can grow even larger if more 

ignition points are chosen in an arson-induced wildfire, which makes arson-induced 

wildfires even more catastrophic. Thus, the resources currently used for mitigating and 

suppressing natural wildfires are probably insufficient for controlling a potential arson-

induced wildfire. 

As illustrated in this research, the worst-case wildfires have different impacts on 

different landscapes. This is likely due to differences in landscapes and vegetation 

characteristics that influence rate of spread, and major fire spread direction; which makes 

a landscape more vulnerable to arson-induced wildfires. Therefore, our model can be 

used to assess the vulnerability of a particular landscape to these wildfires. The model 

can identify high priority areas for wildfire risk mitigation planning such as fuels 

treatment scheduling and fire suppression preparedness planning to reduce the spread and 

intensity of the potential worst-case wildfires. Kim and Bettinger [68] illustrated that a 

fuels management program across a broad landscape may have limited impact on human-

caused wildfires. We suspect this is also true for arson-induced wildfires. In a fuels 

management program planned for mitigating arson-induced wildfires, the high priority 

areas should be prioritized for fuels treatments. This can reduce the vulnerability of 

landscapes, and mitigate the impact of these wildfires. The same prioritization is also 
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suggested for suppression preparedness planning. However, a more extensive analysis 

may be required for investigating the merits of these plans. 

There can be extensions to this research for future studies that are not addressed in 

this paper. We investigated the impact of wildfires based on how long they last before 

suppressed; assuming that the suppression efforts can successfully control wildfires. One 

might investigate the impact of wildfires while also taking fire response into account, 

knowing how many resources and fire-response crews are available at various points in 

the landscape. This can be especially helpful in assessing the risk of arson attacks in 

which adversaries are aware of fire response resources and their locations, so that they 

can plan accordingly. This research can be further extended to study the mitigation of 

potential arson attacks with fuels management. Although prioritizing high vulnerable 

areas of a landscape for fuels management is suggested, it is not the optimal approach. 

Since the fuels management program is visible to arsonists, they can act accordingly by 

attacking other vulnerable areas. In that case, a network interdiction approach [69] might 

be more effective. Another extension to this work is to consider the interaction effects of 

multiple fires, which have been assumed negligible in this research. Fire behavior and 

characteristics can dramatically change in the presence of another fire [70], and, 

therefore, they can cause more damage than it is shown in this research. Therefore, one 

can also take the fire interaction effects into account. We also did not include spot fires in 

this study; they can increase wildfires risks by helping them spread faster [71]. For more 

accurate assessment, a study can include spot fires into account as well. 

In this research we have developed a mathematical programming model to the 

combinatorially complex problem of landscape vulnerability assessments to arson-
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induced wildfires (worst-case wildfires). Our hope is that this study can fill the gap in the 

literature, and assist landscape and wildfire managers in developing a fire management 

system resilient to potential arson-induced wildfire threats. 
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CHAPTER III 

MITIGATING A PYRO-TERROR ATTACK USING FUEL MANAGEMENT 

3.1 Introduction 

In this paper, we study the mitigation of a potential pyro-terror attack using fuel 

management. Fuel management is used to reduce the flammability of a landscape and 

decrease the risk of wildfires. Wildfire managers use fuel management to reduce the 

spread rate and intensity of wildfires and therefore mitigate their impacts. Our goal is to 

plan a fuel management on a landscape that minimizes the impact of a possible pyro-

terror attack. 

To reduce the flammability of a landscape and decrease the risk of wildfires, fire 

managers use fuel management programs. Fuel management is the process of altering the 

amount and structure of fuel through the construction of fuel breaks or applications of 

fuel treatments such as prescribed burning, commercial harvesting and mechanical 

thinning, to reduce the spread and intensity of wildfires before they occur. 

Over the last ten years, there has been an average of 75,000 wildfires per year and 

an average of 7.2 million acres have burned in the U.S. [1]. The U.S. Forest Service 

spends billions of dollars annually for wildfire suppression [2]. Moreover, wildfires also 

incur tremendous environmental and socioeconomic costs as well as the loss of human 

life. In particular, destructive wildfires become a primary concern in places where major 

cities are located close to highly flammable vegetation areas such as in the western and 
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southern U.S. along with Australia and Mediterranean Europe [3]. Due to the significant 

short- and long-term threats of wildfires to forest ecosystems, and due to public safety 

and property concerns, wildfires have been receiving increased public attention [72]. 

Wildfires can be categorized into two general categories: natural wildfires, and 

arson-induced wildfires. Although arson-induced wildfires (which are mostly 

unintentional) occur more often than natural wildfires, natural wildfires are more likely to 

escape containment and become severe [34]. The destructive power of wildfires makes 

them a viable option for adversaries as in pyro-terrorism. Pyro-terrorism is the use of 

large-scale arson attacks by non-state organizations to terrorize, intimidate or coerce a 

government or the civilian population in order to advance political or social objectives 

[13]. According to [12], pyro-terrorism possesses the four generally accepted elements of 

terrorism: targeting of noncombatants, political motivation, violence with psychological 

impact, and organized perpetrators. Previous studies of pyro-terrorism have demonstrated 

that it is a realistic threat [11,12,14]. Pyro-terrorism events have been documented in 

France, Spain, and Greece [11,12]. As a result, both the Department of Homeland 

Security (DHS) and the Federal Bureau of Investigations (FBI) are concerned about this 

novel threat [15,16]. It is important for decision makers in these government agencies to 

anticipate potential threats and implement countermeasures to avoid a potentially 

devastating domestic attack. However, no previous study has investigated how to 

mitigate the threat of pyro-terrorism. In this study we investigate how to mitigate pyro-

terrorism using fuel treatment, a popular approach for mitigating natural wildfires. 

Wildfire incidences require the co-occurrence of three factors: fire-conducive-

weather, a source of ignition, and fuel (i.e. flammable vegetation) [17]. In pyro-terrorism, 
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the arsonist(s) can facilitate this process by providing a source of ignition; the location, 

time, and quantity of fires are decisions for the arsonist(s) to make. Because of this ability 

to optimally choose wildfire conditions, pyro-terrorism can be a more destructive threat 

than natural wildfires. Rashidi et al. [45] conducted a vulnerability assessment of 

landscapes to the worst-case wildfires, finding that a pyro-terror attack with a single fire 

could be twice as destructive as natural wildfire.   

Fuel, weather conditions and topography of a landscape are the three factors that 

influence fire behavior, and fuel is the only factor that can be managed in the short run 

[10]. To reduce the flammability of a landscape and decrease the risk of wildfires, fire 

managers use fuel management programs. Fuel management is the process of altering the 

amount and structure of fuel through the construction of fuel breaks or applications of 

fuel treatments such as prescribed burning, commercial harvesting and mechanical 

thinning, to reduce the spread and intensity of wildfires before they occur [23,24]. 

Modeling methods have been used to design efficient fuel management programs over a 

landscape. Researchers have used heuristic methods [25–28,53] and optimization models 

such as mixed integer programming [3,29–31], and stochastic dynamic programming 

[32,33] for spatial allocation of fuel management over a landscape. However, all of these 

fuel management models have been developed for reducing the spread and resulting 

impact of natural wildfires. Thus, more understanding is needed of how effective fuel 

management is at mitigating pyro-terror attacks and worst-case wildfires. 

Although there is a rich literature on using fuel management programs to mitigate 

natural wildfires, no previous study has investigated mitigation of the worst-case 

wildfires. Human-caused wildfires account for a large majority of all wildfire incidences. 
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In the Mediterranean region and in Southern California, human-caused wildfires account 

for more than 95% of all fires [73–75]. A study in Spain found that more than 71% of all 

wildfires are caused by people [76]. Of those human-caused wildfires, only 22.5% (16% 

of all wildfires) were due to negligence while 77.5% (55% of all wildfires) were 

intentional [76]. Pyro-terrorism can be considered a worst-case arson-induced wildfire. 

Some studies have shown that arson-induced wildfires cannot be mitigated effectively 

with fuel management programs designed for mitigating natural wildfires [27]. In this 

paper, we investigate the mitigation of pyro-terrorism using a constrained fuel 

management program. 

In this paper, we use a network interdiction model for planning a fuel 

management program that mitigates the impact of a single-ignition-point pyro-terror 

attack. However, the results of this study can also be used for worst-case wildfires 

regardless of the cause of the wildfire. In the worst-case wildfire the ignition points are 

placed at the worst possible locations in a landscape such that it results in a wildfire that 

causes the maximum damage to the landscape. We model a natural landscape as a grid 

network and model the spread of fire in the landscape as a network optimization problem. 

We assume that fire uses paths with the minimum travel time (i.e. shortest path) to spread 

through the network. For this reason, we use the minimum travel time algorithm (MTT) 

to model fire growth in the landscape [77]. MTT has also been used in wildfire 

simulation models such as FlamMap [56], FsPro [78], and FSim [79]. When a wildfire 

starts in a cell in the network, it uses its adjacent cell to spread through the network and 

reach other cells. Therefore, the spread of wildfire in the network within a given time 

limit (for example d hours) can be modeled as a one-to-all shortest path problem. For any 
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given cell in the network, if the length of the shortest path from the fire ignition point to 

that cell is less than d, then we assume that the cell can be reached and burned by the fire. 

This process can equivalently be viewed as computing the “cover” of a wildfire given 

that fire uses the shortest paths to spread. This methodology gives a basis for interdicting 

the spread of fire in the network through interdicting the wildfire spread paths (i.e. 

shortest paths) using fuel management. Given that we know the location of fire ignition 

and that we are constrained on the number of interdictions (b is the maximum number of 

cells that we can interdict), the problem becomes identifying b cells to interdict in order 

to minimize the number of cells that will be reached (burned) by the fire. 

Network interdiction models are network-based bilevel optimization programs in 

which the objective of the upper level model is to impair the objective of the lower level 

model. Wollmer (1964), McMasters and Mustin (1970), and Ghareh et al. (1971) were 

the earliest to study network interdiction. Network interdiction has received extensive 

attention in literature because of its utility in modeling practical applications in homeland 

security problems such as delaying an adversary’s development of a first nuclear weapon 

[82], securing a border against smuggling nuclear material [83–85], drug enforcement 

optimization [86]; and other applications such as electrical grid analysis [87–90], 

preventing hospital infections [91], conflict resolution [92], multicommodity flow 

networks [93,94], and optimizing the placement of stationary monitors [95]. 

One of the classic examples of network interdiction is interdicting the shortest 

path between a source node and a sink node [96,97]. A discrete version of this problem in 

which the interdicted arcs are removed from the network is called the k-most-vital-arcs 

problem [98–100]. In the k-most-vital-arcs problem, the objective is to identify a fixed 
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number of arcs that, if removed, would cause the largest increase in the length of the 

shortest path between two specified nodes. Israeli and Wood [101] considered a 

generalization of the k-most-vital-arcs problem. Maximizing the shortest path through 

interdicting nodes also has been studied [99,102]. In all of these cases, the objective is to 

maximize the length of the shortest path between two given nodes. In our case, however, 

the objective is to identify a fixed number of nodes (considering a limited budget for 

interdiction) that, if interdicted, would delay the spread of fire and minimize the number 

of nodes that can be reached by fire within a given time. This problem is similar to the 𝑟-

interdiction covering problem which was studied by Church et al. [103]. However, in 

their problem they only considered interdiction of source nodes (i.e. facilities), not the 

intermediate nodes that build paths through which demands are met. In this research, 

however, we also consider the interdiction of intermediate nodes. 

The pyro-terrorism mitigation problem can be interpreted as identifying the b-

most-vital-nodes (b is the budget for interdiction) in a one-to-all shortest path problem 

whose interdiction would minimize the number of nodes reachable from the source node 

within a critical time limit (i.e. nodes whose shortest path’s length from the source node 

is within a critical value - suppression time d). Based on this idea, we develop a network 

interdiction model for mitigating a pyro-terror attack using fuel management. The model 

is considered as a Stackelberg leader-follower game [104] in which fire managers, acting 

first, identify optimal locations for fuel management (with the limited budget b), and 

terrorists, acting second with complete information of the fuel management locations, 

identify the optimal ignition point for a pyro-terror attack to inflict the maximum damage. 

Assuming that in d hours the adversary-ignited fire can be suppressed, the goal of the fire 
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managers is to delay the spread of fire by spatially allocating fuel management, with 

limited budget b (number of treated cells), across the landscape to delay the spread of the 

fire and minimize damage caused by the fire (the number of cells burned in d hours). This 

work is the first attempt to develop a model for mitigating pyro-terrorism using fuel 

management. The major contribution of this work is developing a computational method 

for optimizing the spatial allocation of fuel management for mitigating a pyro-terror 

attack. Since the model is a min-max model in which the inner level is a mixed-integer 

programming model, the model cannot be directly solved using any commercial solver; 

therefore, we utilize a decomposition algorithm to solve the model. The proposed 

decomposition algorithm alternates between a master problem for fuel managers and a 

sub problem for pyro-terrorists. The master problem identifies an optimal interdiction 

strategy for a fixed pyro-terror attack (a known attack). The sub problem chooses an 

optimal pyro-terror attack that identifies the ignition point of an attack given a fuel 

management program. The algorithm iteratively solves the two problems generating 

lower bounds and upper bounds for the problem, until the two bounds converge. 

3.2 Pyro-terrorism mitigation problem (PTMP) 

The pyro-terrorism mitigation problem is as follows. Wildfire managers choose a 

fuel treatment plan 𝑯 (a spatial allocation of fuel treatment) that will mitigate the impact 

of a potential pyro-terror attack on the landscape. Specifically, if a landscape area is 

treated, fire cannot spread through that area. Next, the adversary, having seen the fuel 

treatment applied by the wildfire managers, chooses a pyro-terror attack 𝑭 by selecting 

the most vulnerable area in the landscape to start a fire at a single ignition point in order 

to maximize the total value of acreage burned by the fire.  
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In this section we develop a bi-level integer program for PTMP. In our model 

both the wildfire managers’ problem and the adversary’s problem problems are modeled 

as network optimization problems. We also model fire behavior in a landscape as a 

shortest path problem through a composite network formed by the landscape 

characteristics.  

3.2.1 Modeling a landscape as a raster cell 

We consider a landscape divided into a number of raster cells representing 

potential fire ignition locations and candidate locations for fuel management (Figure 3.1), 

and we use FlamMap [56], a fire behavior mapping and analysis program, to model the 

rate of fire spread in each cell. FlamMap uses Geographic Information Systems (GIS) 

data, landscape characteristics, fuel moisture, and wind conditions and computes the rate 

of spread (ROS) and the major fire spread direction for each cell. These data are then 

used to model fire spread behavior in each cell. The major fire spread direction in each 

cell is the direction of the fastest fire spread for that cell. In reality, fire would also spread 

along other directions but at a slower speed [31]. We use equations (3.1) and (3.2) to 

calculate ROS along the other directions.  

 

Figure 3.1 A landscape modeled as a 10 by 10 raster cell. 



 

50 

 𝑅𝑞,𝑟 =
𝑏2−𝑐2

𝑏−𝑐×𝑐𝑜𝑠𝜃
 ,   0 ≤ 𝜃 <

𝜋

2
, 𝑞 ∈ 𝐶, 𝑟 ∈ 𝑁𝑞 (3.1) 

 𝑅𝑞,𝑟 =
𝑏2−𝑐2

𝑏+𝑐×𝑐𝑜𝑠(𝜋−𝜃)
,    

𝜋

2
≤ 𝜃 < 𝜋, 𝑞 ∈ 𝐶, 𝑟 ∈ 𝑁𝑞 (3.2) 

𝜃 is the angle between the major fire spread direction in cell 𝑞, computed by 

FlamMap, and the fire spread direction from cell 𝑞 to the center of the adjacent cell 𝑟. 

The values of b and c are outputs of FlamMap and are standard parameters used to 

describe the ellipse of fire spread. For a more detailed description, we refer the reader to 

Green et al. [60]. 

3.2.2 Problem description and model formulation 

In our model the adversary has complete knowledge about weather and the 

topography of the landscape. They also are aware of the location of all treated cells. 

Having this complete knowledge, they identify an optimal ignition point in the landscape 

to ignite a fire with maximum total damage in terms of the value of landscape burned. 

The wildfire managers act before the adversary and take a proactive approach, identifying 

the optimal locations for fuel treatment. The wildfire manager’s objective is to minimize 

the total damage of an attack in terms of the value of landscape burned; thus, the two-

player game is symmetric. In our model the wildfire manager seeks to mitigate against 

the attack with the worst possible damage. Thus, the optimal objective value returned by 

our model is a lower bound on the case in which the adversary does not have complete 

knowledge.  

The damage of a pyro-terror attack can be evaluated as a percent of the landscape 

burned or the value lost to fire (such as value of vegetation depending on the type, e.g. 

commercial timber) and the value of wild-land urban interface (WUI) lost. In this 
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research, we measure the damage as the percent of the landscape burned. However, our 

model can also be directly used for cases in which landscape areas have different values. 

The primary assumptions of this research are the following: (1) Fire travels using 

paths with the minimum travel time to spread through the landscape. (2) When a fire 

reaches the center of a cell, that cell is completely burned. (3) If fuel treatment is 

conducted in a cell, it delays the fire from spreading to the adjacent cells; however, it will 

not prevent this cell from burning. (4) We only focus on the landscape, and ignore the 

effect of fire on the areas outside the boundary. (5) The fire managers are able to suppress 

the fire in 24 hours. (6) The pyro-terrorist only starts a wildfire in one cell. 

Although a multiple-ignition-point pyro-terror attack is more destructive than a 

single-ignition-point pyro-terrorism event [45], in this paper we assume the adversary 

conducts single-ignition-point attack. The single-ignition-point pyro-terror attack is a 

reasonable assumption due to the fact that although the adversary wants to maximize the 

damage of his attack, he or she also may wish to avoid detection. Starting multiple man-

made fires (i.e. using a multiple-ignition-point pyro-terror attack) increases the likelihood 

of being seen by authorities or civilians.  
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The notations used in the model are as follows: 

Table 3.1 Notations 

Sets and indices 

𝐶 is the set of raster cells in a landscape indexed with 𝑟, 𝑖 and 𝑗  
𝑁𝑞 is the set of raster cells adjacent to cell 𝑞  

Parameters 
𝜏𝑖,𝑗 the fire spread time from cell 𝑖 to cell 𝑗 
𝑣𝑟 value of cell 𝑟 
𝑀 a big number which is bigger than the largest shortest travel time path 

from any point to any other point in the landscape 
∆𝑞,𝑟 the distance between cells 𝑟 and 𝑞 
𝑅𝑞,𝑟 the rate of spread from 𝑞 to 𝑟 

Γ the delay in fire spread time in a cell caused by treating the cell 
𝑏 the fuel management budget 
𝑑 the duration of pyro-terrorism wildfire 

Variables 
 𝑋𝑟,𝑖,𝑗 1 if the shortest path for fire passes from cell 𝑖 to cell 𝑗 to reach cell 𝑟, 

0 otherwise (vector 𝑿) 
𝐹𝑗 1 if the adversary ignites a fire at cell 𝑗, otherwise 0 (vector 𝑭 is the 

pyro-terror attack) 
 𝐻𝑗 1 if cell 𝑗 is treated, otherwise 0 (vector 𝑯 is the fuel management 

program used as an mitigation plan) 
𝑇𝑠,𝑟 the fire arrival time for cell 𝑟 when fire has started from cell 𝑠 
𝑌𝑟 1 if fire reaches cell 𝑟, otherwise 0 (vector 𝒀) 

𝑌𝑠,𝑟 1 if fire that is ignited at cell s reaches cell 𝑟, otherwise 0 (vector 𝒀) 
 

The mathematical formulation for the pyro-terrorism mitigation problem (PTMP) 

is as follows: 

 𝑃𝑇𝑀𝑃: 𝑍∗ = min𝑯∈Ω(𝑀𝑎𝑥(𝑿,𝑭)∈Ψ(𝑯)  ∑ 𝑣𝑟𝑌𝑟𝑟 ) (3.3) 

Where the set Ω is defined as the set of all 𝑯 such that 

 ∑ 𝐻𝑖 ≤ 𝑏𝑖  (3.4) 

 𝐻 ∈ {0, 1},   ∀  𝑖 ∈ 𝐶 (3.5) 
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and the set Ψ(𝑯) is defined by 

 ∑ 𝑋𝑟,𝑖,𝑗 − ∑ 𝑋𝑟,𝑗,𝑖𝑗∈𝑁𝑖𝑗∈𝑁𝑖
= {

1        𝑖 = 0, …
0      𝑖 ≠ 0, 𝑟

−1     𝑖 = 𝑟 … .
    ∀ 𝑟 ∈ 𝐶, 𝑖 ∈ 𝐶 ∪ {0} (3.6) 

 𝑋𝑟,0,𝑗 ≤  𝐹𝑗     ∀ 𝑟, 𝑗 ∈ 𝐶  (3.7) 

 ∑ 𝐹𝑗 ≤ 1𝑗∈𝐶  (3.8) 

 𝑌𝑟 ≤
𝑑−∑ (𝜏𝑖,𝑗+ 𝐻𝑖Γ)𝑋𝑟,𝑖,𝑗(𝑖,𝑗)

𝑀
+ 1   ∀ 𝑟 ∈ 𝐶 (3.9) 

 𝑌𝑖 ∈ {0, 1},   ∀  𝑖 ∈ 𝐶 (3.10) 

 𝑋𝑟,𝑗,𝑖 ∈ [0, 1],   ∀  𝑟 ∈ 𝐶, 𝑗, 𝑖 ∈ 𝐶 ∪ {0} (3.11) 

 𝐹𝑗 ∈ {0, 1},   ∀  𝑗 ∈ 𝐶 (3.12) 

This is a bilevel optimization model with fire managers’ problem in the upper 

level, and the adversary’s problem in the lower level.  The objective function (3.3) 

represents the fire managers’ desire to choose a fuel management program 𝑯 (i.e., a 

mitigation plan) which limits the fire spread and thereby minimizes the damage caused 

by the pyro-terror attack; simultaneously, it also represents the adversary’s desire to 

maximize the damage of a pyro-terror attack by choosing the optimal ignition point of 

fire in the landscape. The fire managers’ mitigation plan is restricted by constraints (3.4) 

and (3.5). Constraint (3.4) is the restriction on the budget for fuel management; it is the 

number of cells to which fuel management can be applied.  

For any specific fuel management program 𝑯 chosen by the wildfire managers 

(𝑯  should be viewed as data when viewing the adversary’s problem) the adversary’s 

pyro-terror plan is restricted to set Ψ(𝑯), as defined by constraints (3.6) through (3.12). 

In addition to choosing the optimal ignition location, the lower level problem identifies 
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paths with the minimum travel time for modeling fire spread in the landscape. The model 

contains the one-to-all shortest path formulation. Since the starting point of fire is 

unknown, we use a dummy super source (cell 0) to represent the starting point of fire. 

The super source is a hypothetical cell and is connected to every cell in the landscape, 

with zero travel time. For any target cell (a potential cell for the wildfire to reach and 

burn) in the landscape, one unit fire flow is sent from the super source through the 

ignition point (cell i) and from there to the target cell, using the shortest path (Figure 3.2)  

The set of flow conservative constraints in (3.6) requires that one unit of fire flow 

is sent from the super source to any cell 𝑟. The set of constraints (3.7) ensures that the fire 

spreads to cell 𝑗 from the super source only when cell 𝑗 is selected as the ignition point by 

the adversary. Constraint (3.8) enforces the assumption that the adversary only starts a 

wildfire in one cell. The constraints presented in the equation (3.9) are the burn 

constraints and set the values of the binary variables 𝑌𝑟. These variables are used to track 

whether the fire reaches cell 𝑟 and therefore burned within duration 𝑑. Also, the 

mitigation impact of fuel management is implemented in constraints (3.9). For example, 

if fuel management is conducted in cell 𝑖 ( 𝐻𝑖 = 1), through these constraints the fire 

travel time from cell 𝑖 to each adjacent cell 𝑗 increases by Γ. Constraints (3.9) resembles 

the node-interdiction version of the shortest path network interdiction problem [101]. 

Fire managers aim to interdict fire growth by lengthening fire travel time, 

assuming that fire travels along paths with the minimum travel time (i.e., the shortest 

path) [58]. Constraints (3.6) through (3.9) form a one-to-all shortest path problem and are 

used to identify paths with the minimum travel time. 
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Figure 3.2 Modeling fire spread using shortest paths 

A dummy super source (cell 0) is connected to each cell with 0 travel time: (a) A wildfire 
would start at cell 0; (b) would set fire on the ignition point at time 0 and from there 
would spread through the landscape using shortest paths. 

3.3 A solution approach 

The pyro-terrorism mitigation problem (PTMP) has a bilevel “min-max” structure 

with a mixed integer programming (MIP) problem as the lower level; thus, the lower 

level problem is not guaranteed a nonzero duality gap. Therefore, the problem does not 

readily lend itself to the common approach of taking the dual of the inner problem, 

resulting in a single-level minimization problem. In this section, we present a 

decomposition algorithm, called Min-Max Decomposition Algorithm (𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴), to 

solve 𝑃𝑇𝑀𝑃. 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴, like the decomposition algorithm proposed by Brown et al. 

[82] alternates between (𝑖) a master problem, where the wildfire managers identify an 

optimal mitigation strategy through a fuel management program for a fixed pyro-terror 

attack with the starting point of the fire being known, and (𝑖𝑖) a sub problem, where the 

pyro-terrorist (adversary) identifies an optimal pyro-terror attack to start the fire for a 

fixed fuel management program. In 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴, unlike the standard Benders 
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decomposition algorithm, the sub problem is a MIP, not a linear program, and it is not 

totally unimodular to be relaxed.  

The sub problem and master problem of our decomposition algorithm are 

discussed in the following sections. To present the algorithm we first need to introduce 

new notations: 

Table 3.2 Additional notations 

Sets and indices 

𝜙 the set of pyro-terror attack plans (cells considered to start a pyro-terror 
wildfire) used in the decomposition algorithm  

Ω the set of feasible solutions for the upper level problem (the fire 
managers’ problem) 

Ψ(. ) the set of feasible solutions for the lower level problem (the pyro-
terrorist’s problem) 

 

3.3.1 The pyro-terrorists’ problem (PTP) for a known fuel management 
program 

For a fixed fuel management program �̂� ∈ Ω, we denote the resulting pyro-

terrorism model for the adversary as 𝑃𝑇𝑃(�̂�): 

 PTP(�̂�): 𝑍𝑚𝑎𝑥(�̂�) =  max ∑ 𝑣𝑟𝑌𝑟𝑟  (3.13) 

With constraints (3.6) through (3.12), in which the variable  𝐻𝑗 is replaced with 

 �̂�𝑗 ∈ �̂� for all 𝑗 ∈ 𝐶 (i.e. the locations of the cells that underwent fuel management is 

known to the adversary) 

The PTP model presented above selects the optimum potential cell to start a fire 

that can cause the maximum damage to the landscape given an observed fuel 

management program �̂�. For any potential ignition point, the model computes the 
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number of cells that the fire is able to reach (using the paths with minimum travel time) 

within duration 𝑑 and selects the ignition point that, if fire starts from that cell, causes the 

maximum damage to the landscape. A major computation burden of this problem is 

calculating the minimum travel time paths (shortest paths) for any potential ignition 

point. For a given fuel management program �̂�, if the shortest paths were known, the 

problem would be equivalent to a maximal covering location problem [61]. For example, 

say 𝐿𝑗,𝑟(�̂�) is 1 if the length of the shortest path from cell j to cell r is less than or equal 

to d, and 0 otherwise. This implies whether the fire ignited at cell j can reach (cover) cell 

r within duration d. The equivalent maximal covering-based pyro-terrorism model 

(MCPTP) is as follows: 

 MCPTP(�̂�): 𝑍𝑚𝑎𝑥(�̂�) =  max ∑ 𝑣𝑟𝑌𝑟𝑟  (3.14) 

  𝑌𝑟 ≤ ∑ 𝐿𝑗,𝑟(�̂�)𝐹𝑗𝑗∈𝐶     ∀ 𝑟 ∈ 𝐶  (3.15) 

 ∑ 𝐹𝑗𝑗∈𝐶 ≤ 1     (3.16) 

 𝑌𝑟 ∈ {0, 1},   ∀  𝑟 ∈ 𝐶 (3.17) 

 𝐹𝑗 ∈ {0, 1},   ∀  𝑗 ∈ 𝐶 (3.18) 

MCPTP(�̂�) is a smaller model than PTP(�̂�) in that it has fewer variables and 

constraints. In fact, PTP(�̂�) has 𝑛3 + 𝑛2 + 2𝑛 variables and 2𝑛2 + 2𝑛 + 1 constraints (𝑛 

is the number of cells in the network), without considering sign restriction constraints 

(3.10) through (3.12). MCPTP(�̂�) on other hand has only 2𝑛 variables and 𝑛 + 1 

constraints without sign restriction constraints (3.17) through (3.18). Our preliminary 

experiments verify that MCPTP(�̂�) can be solved faster than PTP(�̂�). 
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To solve MCPTP(�̂�), we first compute 𝐿𝑗,𝑟(�̂�) for ∀  𝑗, 𝑟 ∈ 𝐶. The mitigation 

effect of a fuel management program �̂� is imposed in calculating 𝐿𝑗,𝑟(�̂�). For this 

reason, we assume that treated cells can block the spread of fire (treated cells are 

impassable); therefore the fire cannot use any treated cell to spread through the 

landscape. To compute 𝑃𝑗,𝑟(�̂�) , we independently solve the all-to-all shortest paths 

problem, and compute 𝑇𝑗,𝑟 (the fire arrival time to cell 𝑟 when fire has started from cell 𝑗) 

for all cells in the network. If a cell is treated, the time required for the fire to spread 

through this cell will be given a value larger than 𝑑; therefore, the fire cannot spread out 

of this cell to any adjacent cell within duration 𝑑. Solving MCPTP(�̂�) renders the 

ignition point of the optimal pyro-terror attack for the given fuel management program �̂�.  

Knowing the adversary’s problem for a specific fuel management program, as 

shown above, the pyro-terrorism mitigation problem 𝑃𝑇𝑀𝑃 is equivalent to: 

 𝑍∗ =  min 𝑍𝑚𝑎𝑥(𝑯)      𝑯 ∈ Ω   (3.19) 

Theoretically, we could solve (3.19) by enumerating the finite set of fuel 

management mitigation plans �̂� ∈ Ω, solving MCPTP(�̂�) for each plan, and choosing the 

plan that results in the least value of 𝑍𝑚𝑎𝑥(�̂�). However, in reality, Ω is too large to 

enumerate. For a landscape rasterized into a 100 cells network and for a 10% fuel 

management budget, there are 𝐶10
100 ≅ 1.73 × 1013 fuel management programs. 

Therefore, we solve (3.19) with the decomposition algorithm described below. 
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3.3.2 Optimal mitigation of a known pyro-terror attack using fuel management 
program 

To solve PTMP we use a procedure that computes a lower bound on the objective 

value (the effect of an optimal fuel management on controlling fire growth). This lower 

bound is an optimistic value of how much the wildfire managers can reduce the damage 

caused by fire by interdicting the fire growth with a fuel management program. For this 

reason, we formulate an optimization model denoted by IPMin (�̂�) that can determine an 

optimal mitigation of any fixed pyro-terror attack plan (�̂�) using an optimal fuel 

management program. A solution to this model is a lower bound to 𝑃𝑇𝑀𝑃 because the 

adversary’s plan is restricted to (�̂�). This model is adopted from [31]. 

 IPMin: 𝑍min(�̂�) ≡ min𝑯∈Ω𝑍 (3.20) 

 𝑠. 𝑡.   𝑍 ≥ ∑ 𝑣𝑟𝑌𝑠,𝑟𝑟       ∀  𝑠 ∈ 𝜙  (3.21) 

 𝑇𝑠,𝑠 = 0          ∀  𝑠 ∈ 𝜙 (3.22) 

 𝑇𝑠,𝑟 ≤ 𝑇𝑠,𝑞 +
∆𝑞,𝑟

𝑅𝑞,𝑟
+ Γ𝐻𝑞     ∀  𝑟, 𝑞 ∈ 𝐶, 𝑠 ∈ 𝜙 (3.23) 

 𝑌𝑠,𝑟 ≥
𝑑−𝑇𝑠,𝑟

𝑑
       ∀𝑠 ∈ 𝜙, 𝑟 ∈ 𝐶 (3.24) 

 ∑ 𝐻𝑟𝑟 ≤ 𝑏    (3.25) 

𝑇𝑠,𝑟 = the fire arrival time from the ignition point 𝑠 to cell 𝑟 

In this model 𝜙 is the set of ignition points of the optimal pyro-terror attacks 

found up to the current point in the algorithm’s progression. For the given pyro-terror 

attack �̂�, if �̂� is the index of the ignition point in �̂� (�̂� = {𝑠 ∈ 𝐶 |𝐹�̂� = 1}), we add �̂� to 𝜙. 

The objective function (3.20) represents the loss caused by fire and is denoted by a new 

variable 𝑍 and is bounded in constraint (3.21). Constraints (3.22) set the fire arrival time 
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of cell 𝑠 to zero when cell 𝑠 has been chosen by the adversary (pyro-terrorist) as the 

ignition point. Constraints (3.23) apply the minimum travel time algorithm to track the 

earliest time that the fire can reach cell 𝑟 from any of its adjacent cells when the fire starts 

from cell 𝑠; this is where the fuel management based interdiction strategy can be imposed 

to mitigate the damage of fire by delaying the fire’s growth. This formulation also 

resembles a node-based shortest path network interdiction problem; it is used to delay fire 

growth by means of the treated cells. The amount of time delay is defined by a parameter 

Γ. If Γ is set to a value larger than the maximum fire duration, then constraint (3.23) 

implies that fuel management can block the fire from spreading out of the treated cells. 

Constraints (3.24) track whether fire has reached cell 𝑟 within duration 𝑑. If the 

fire can reach the center of a cell within duration 𝑑 (𝑇𝑠,𝑟 ≤ 𝑑) then that cell is considered 

burned or lost and the binary variable 𝑌𝑠,𝑟 is set to 1. The model is minimizing the amount 

of loss due to the fire represented by 𝑌𝑠,𝑟 variables, and, therefore, through constraints 

(3.24), it maximizes the fire arrival time (calculated with the MTT algorithm) by 

allocating fuel management resources in the landscape (through 𝐻𝑞 in constraints (3.23)). 

Constraint (3.25) is the budget constraint restricting the number of fuel management cells 

due to limited resources. 

3.3.3 Decomposition algorithm: MinMaxDA 

We define a set of pyro-terror attacks 𝜙. At iteration 𝑘 of 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴, a pyro-

terror attack 𝐹�̂�(𝑘 = 1, … , 𝐾), will have been generated from the sub problem which 

identifies an optimal ignition point. The set of pyro-terror attacks 𝜙𝑘 is updated by 

adding the index of the newly found attack 𝐹�̂� (𝑠�̂� = {𝑠 ∈ 𝐶 |𝐹𝑠
�̂� = 1}). Then the master 
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problem IPMin is updated to include new constraints and variables associated with the 

newly found ignition plan 𝐹�̂�. In particular, constraint (3.21) is replaced with constraints 

(3.26) to impose a lower bound on the fire loss due to the fire that is generated by all 

pyro-terror attacks found so far, including 𝐹�̂�. Also, constraints (3.22) − (3.24) are 

updated to include the newly found ignition point (𝑠�̂� = {𝑠 ∈ 𝐶 |𝐹𝑠
�̂� = 1}). 

 𝑍 ≥ ∑ 𝑣𝑟𝑌𝑠,𝑟𝑟        ∀  𝑠 ∈ 𝜙𝑘  (3.26) 

Constraints (3.26) are analogous to Benders cuts. Let’s call the master problem at 

iteration 𝑘 that contains these cuts 𝐼𝑃𝑀𝑖𝑛𝑘.  

3.3.3.1 Theorem 1 

The optimal objective value for 𝐼𝑃𝑀𝑖𝑛𝑘 provides a valid lower bound for 𝑍∗.  

This is true because 𝐼𝑃𝑀𝑖𝑛𝑘 determines an optimal mitigation plan for any fixed 

pyro-terror attack limited to 𝜙𝑘 while 𝑍∗ in PTMP (equation (3.3)) considers all possible 

pyro-terror attacks. This is similar to solving 𝑍∗ for 𝑯 ∈ Ω when Ψ(𝑯) (the lower level 

problem) is restricted on the set of potential ignition points. ∎ 

3.3.3.2 Theorem 2: 𝑍𝑘+1
𝑚𝑖𝑛 ≥ 𝑍𝑘

𝑚𝑖𝑛. 

Since 𝜙𝑘 ⊆ 𝜙𝑘+1, therefore, 𝐼𝑃𝑀𝑖𝑛𝑘+1 is more restricted than 𝐼𝑃𝑀𝑖𝑛𝑘. ∎ 

The lower bound from 𝐼𝑃𝑀𝑖𝑛𝑘 converges to Z∗. Since the lower bound is non-

decreasing (theorem 2), if the solution of the master problem does not repeat, 𝐼𝑃𝑀𝑖𝑛𝑘 

converges to Z∗. We use the solution elimination constraints (3.27) [82] to prohibit any 

mitigation plan from being repeated and ensure the convergence of the algorithm.  

 ∑ 𝐻𝑞 +
𝑞|𝐻𝑞

𝑘=0̂
∑ (1 − 𝐻𝑞) ≥ 1

𝑞|𝐻𝑞
𝑘=1̂

       𝑘 = 1, … , 𝐾  (3.27) 
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3.3.3.3 Algorithm 𝑴𝒊𝒏𝑴𝒂𝒙𝑫𝑨: 

At iteration 𝑘 of this algorithm, we refer to the optimal objective value of the 

master problem 𝐼𝑃𝑀𝑖𝑛𝑘 as 𝑍𝑘
𝑚𝑖𝑛, and the optimal objective value of the sub problem as 

𝑍𝑚𝑎𝑥(𝑯𝑘)̂ ; 

Step (1) Initialize upper bound and lower bound: �̅�𝑈𝐵 = ∞, 𝑍𝐿𝐵 = 0, and set the 

iteration counter 𝑘 = 1. Set the mitigation plan and the pyro-terror attack 

plan to null: 𝑯�̂� = {} , 𝜙𝑘 = {}. Set the current mitigation plan as the best 

found so far: 𝑯∗ = 𝑯�̂�; 

Step (2) Given the mitigation fuel management program 𝑯�̂�, compute the values 

of 𝐿𝑟,𝑗(�̂�) and then solve the sub-problem 𝑀𝐶𝑃𝑇𝑃(𝑯�̂�) to find the 

optimal pyro-terror attack represented by a fire ignition point 𝐹�̂�. The 

bound on the damage caused by the corresponding pyro-terror attack is 

𝑍𝑘
𝑚𝑎𝑥; 

Step (3) If 𝑍𝑘
𝑚𝑎𝑥 < �̅�𝑈𝐵, then set �̅�𝑈𝐵 = 𝑍𝑘

𝑚𝑎𝑥 and update the best fuel 

management program 𝑯∗ = 𝑯�̂�; 

Step (4) If �̅�𝑈𝐵 − 𝑍𝐿𝐵 ≤ 𝜀; stop, the algorithm has converged to an 𝜀 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

mitigation plan; 

Step (5) Update the set of pyro-terror attack 𝜙𝑘 with the newly found 𝐹�̂�, and 

then update the master problem 𝐼𝑃𝑀𝑖𝑛𝑘: all the constraints (3.21) 

through (3.24) need to be updated to include the new attack 𝐹�̂�, which is 

added as a new ignition point to the model, and, accordingly, a new set of 

constraints (3.21) through (3.24) will be generated. Next, solve the 
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updated master problem, 𝐼𝑃𝑀𝑖𝑛𝑘, for a new mitigation plan and find 

𝑍𝑘
𝑚𝑖𝑛 and a new mitigation plan 𝑯�̂�; 

Step (6) If 𝑍𝑘
𝑚𝑖𝑛 > 𝑍𝐿𝐵, then set 𝑍𝐿𝐵 = 𝑍𝑘

𝑚𝑖𝑛; 

Step (7) If �̅�𝑈𝐵 − 𝑍𝐿𝐵 ≤ 𝜀, stop, the algorithm has converged to an 𝜀 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

mitigation plan; 

Step (8) set k = k + 1 and go to step (2); 

Note: 𝑀𝐶𝑃𝑇𝑃(𝑯�̂�) is always feasible. Even when every cell in the landscape has 

been treated (interdicted); starting a fire at any cell will burn that cell, and 

𝑍𝑚𝑎𝑥(𝑯𝑘)̂ = 1. 

Note: 𝐼𝑃𝑀𝑖𝑛𝑘 is always feasible. By setting  𝐻𝑟   = 0 ∀𝑟 ∈ 𝐶, and 𝑌𝑠,𝑟 = 1 ∀ 𝑟 ∈

𝐶, ∀  𝑠 ∈ 𝜙, the model is linear; for the remaining variables, 𝑇𝑠,𝑟 ∀ 𝑟 ∈

𝐶, ∀  𝑠 ∈ 𝜙, a feasible solution can be found by solving the shortest path 

problem for each origin ∀  𝑠 ∈ 𝜙 and destination ∀ 𝑟 ∈ 𝐶.  

 Whenever 𝑍𝐿𝐵 or �̅�𝑈𝐵 is updated, we need to check whether the 𝜀 −

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 mitigation plan has been achieved; that is why the stopping 

criteria is checked both in step (4) and in step (7). 

Note: The master problem grows in size as more cuts are added and more 

constraints and variables are added to the model. At step (5), however, 

when adding constraints (3.23) and (3.24) for each new ignition point, 

instead of considering all target points ∀ 𝑟 ∈ 𝐶, we can only consider the 

target points 𝑟 ∈ 𝐶 that are reachable by the fire. The one-to-all shortest 

path problem can be solved for this purpose. Only those target cells whose 
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shortest path’s length is less than or equal to duration d (cells reachable by 

fire within duration d) need to be considered. This realization eliminates 

some unnecessary variables and constraints and speeds up the algorithm.  

3.4 Experimentation 

Fuel management programs can influence fire behavior differently based on their 

spatial layouts [31]. Identifying the best fuel treatment layout to interdict pyro-terrorism 

and mitigate its consequences is a challenging problem. We have arbitrarily picked three 

small landscapes from the U.S. national forests for experimentation. Here, we implement 

our pyro-terrorism mitigation model on these test landscapes to identify the optimal fuel 

management plan that can optimally mitigate a pyro-terror attack. 

3.4.1 Test landscapes 

The first test case is taken from the landscape of Santa Fe National Forest in 

northern New Mexico. A prevailing west to east wind is assumed for this case at 12 miles 

per hour (19.31 km per hour). The second test case is taken from the landscape of 

Umpqua National Forest located at the western slopes of the Cascade Mountains in 

Oregon. The same wind condition is assumed. The third test case is taken from the 

landscape of San Bernardino National Forest located in the San Bernardino Mountains of 

California. For this test case, a prevailing west to east wind at 12 miles per hour is 

assumed. Figure 3.3 shows the approximate locations of these landscapes.  
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Figure 3.3 The approximate locations of the test case landscapes 

 

Similar to a study by [31], we clip an area of 1.8 km by 1.8 km (the area is 

arbitrarily chosen) from these landscapes and rasterize them into 10 × 10 square cells, 

each 180 m by 180 m. To calculate the rate of spread and major fire spread directions 

under these conditions for these three landscapes, we use FlamMap 5.0 with the 

LANDFIRE database [105] providing the landscape files (LCP) for these test cases. 

LANDFIRE data are commonly used in wildland fire simulation modeling, as they are 

standardized and updated regularly to adjust to disturbances such as wildfires, fuel 

treatment, and urban development [20]. Landscape files (LCP) contain spatial data 

themes such as fuel models, elevation, slope, aspect and canopy characteristics. FlamMap 

inputs these data along with wind speed, wind direction, and fuel moisture conditions to 

compute rate of spread (ROS) and the major direction of fire spread in each cell. 

We use the same initial fuel moisture conditions for the three test cases in our 

study (Table 3.3). The outputs of FlamMap (the rate of spread and the major direction of 

fire spread in each cell) are used to model fire spread in the landscapes using a minimum 
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travel time algorithm. Figure 3.4, Figure 3.5 and Figure 3.6 show major fire spread 

directions (degree) and rate of spread (meter/minute) along the major fire spread 

directions for the three test cases. To calculate the impact of wildfires with optimally 

located ignition points, we implement the model using Python 2.7 and solve it with 

Gurobi 6.0 [64]. All tests are performed on a computer with an Intel Core i5 2520M 

processor at 2.5 GHz and 8 GB RAM 

Table 3.3 Initial fuel moisture conditions used in FlamMap 

1 hour initial moisture 6 
10 hour initial moisture 7 
100 hours initial moisture 8 
Herbaceius fuel moisture 60 
Live woody fuel moisture 90 

 

 

Figure 3.4 Santa Fe data heat map 

Santa Fe landscape test case; (a) Major fire spread direction (degree),  
(b) Rate of spread (meter/minute) along the major fire spread directions 
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Figure 3.5 Umpqua data heat map 

Umpqua landscape test case; (a) Major fire spread direction (degree),  
(b) Rate of spread (meter/minute) along the major fire spread directions 

 

Figure 3.6 San Bernardino data heat map 

San Bernardino landscape test case; (a) Major fire spread direction (degree),  
(b) Rate of spread (meter/minute) along the major fire spread directions 

The Umpqua test case has an average ROS of 1.2 (meter/minute), which is higher 

than that of the Santa Fe test case, with an average ROS of 0.4 (meter/minute). The San 

Bernardino test case has an average ROS of 1.7 (meter/minute), the highest of these test 
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cases. The higher the ROS for a landscape, the faster fire grows and the more damage it 

causes to the landscape before it is suppressed. 

3.4.2 Computational experiments 

3.4.2.1 Optimal pyro-terrorism fuel management plan (PFMP) 

By solving our pyro-terrorism mitigation model to optimality, we can compute the 

percentage of the area burned and find the optimal spatial allocation for the fuel 

management strategy to mitigate a pyro-terror attack. The results indicate that the optimal 

fuel management plan can mitigate the impact of pyro-terrorism on the three landscape 

test cases (Table 3.4). As expected, the San Bernardino test case has been affected the 

most with pyro-terrorism (100 % burned when no fuel management is conducted). This is 

likely due to the characteristics of this landscape that influence the rate of spread and the 

major fire spread direction. As mentioned earlier, the San Bernardino test case has the 

highest ROS.  

We term the fuel management plan that resulted from solving our model the Pyro-

terrorism Fuel Management Plan (PFMP). Following Minas et al. [10], we consider three 

scenarios for the fuel treatment budget: 2%, 5% and 10%. The results indicate that the 

PFMP with a 10% budget can mitigate the impact of a pyro-terror attack by more than 

42%, 46% and 41% respectively for the Santa Fe, Umpqua, and San Bernardino test 

cases (Table 3.4). Even the PFMP with a small budget (2%) can mitigate the impact of 

pyro-terrorism by 13.9% on average over the three landscape test cases. 
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Table 3.4 The impact of PFMP 

Landscape % landscape treated 
2% 5% 10% 

Santa Fe 25.00 30.77  42.31  
Umpqua  13.70  32.88  46.58  
San Bernardino 3.00 18.00  41.00  

Average 13.9 27.22 43.30 
The percent improvement in area burned when the PFMP is implemented 

Table 3.5 Computation time 

Landscape % landscape treated 
2% 5% 10% 

Santa Fe 7 37 2,139 
Umpqua  8 171 4,716 
San Bernardino 3 570 32,722 

Computation times (seconds) for solving the pyro-terrorism mitigation problem 
 for test landscapes with different fuel management budgets 

Table 3.5  shows the computation time for solving the pyro-terrorism mitigation 

problem using the 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴. As the budget for fuel management grows, the 

computation time for solving the PTMP model increases.  

3.4.2.2 A Wildfire Fuel Management Plan (WFMP) v.s. Pyro-terrorism Fuel 
Management Plan (PFMP) 

A fuel management program designed for mitigating a wildfire does not consider 

the threat of a pyro-terror attack, and, therefore, we hypothesize that it cannot optimally 

mitigate a pyro-terror attack. To investigate this hypothesis, we conduct an experiment to 

compare the effectiveness of a fuel management program developed for wildfires 

(WFMP) with the fuel management program developed for pyro-terrorism (PFMP); we 

use Wei’s model [31] to develop the WFMP. The results indicate that with a low fuel 

management budget, the difference between the two fuel management programs is small, 

averaging 2.55% (Table 3.6). However, with a larger budget, the differences are more 
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significant: 7.85% and 10.49%, respectively, for fuel management programs with 5% and 

10% budgets.  

The PFMP is designed to mitigate pyro-terrorism and, as is shown in Table 3.6, it 

is more effective in mitigating pyro-terrorism than the WFMP. However, the PFMP may 

not be as effective in mitigating natural wildfires (we use natural wildfires and wildfires 

interchangeably). To investigate this hypothesis, we draw a comparison between the 

effects of the PFMP and those of the WFMP for wildfires. Figure 3.7, Figure 3.8 and 

Figure 3.9 illustrate the performance of the WFMP and the PFMP for both natural 

wildfires and pyro-terrorism. These results indicate that the PFMP is also effective in 

mitigating wildfires but not as effective as the WFMP. As can be seen in Figure 3.9, there 

is a noticeable difference between the two fuel treatment plans for the San Bernardino 

landscape test case when a wildfire occurs; however, for the Santa Fe and Umpqua 

landscape test cases, the differences are small.  

Table 3.6 WFMP v.s. PFMP: A comparison 

Landscape Fuel  
management plan 

% landscape treated 
2% 5% 10% 

Santa Fe 
WFMP 23.08 23.08 26.92 
PFMP 25.00 30.77 42.31 

Difference 1.92 7.69 15.39 

Umpqua 
WFMP 10.96 26.03 31.51 
PFMP 13.70 32.88 46.58 

Difference 2.74 6.85 15.07 
San 
Bernardino 

 

WFMP 0.00 9.00 40.00 
PFMP 3.00 18.00 41.00 

Difference 3.00 9.00 1.00 
Average difference 2.55 7.85 10.49 

A comparison between the WFMP and the PFMP: The percent improvement in landscape 
burned by a pyro-terror attack when different fuel management programs with different 
budgets are implemented. 
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For the San Bernardino test case, not conducting any fuel management leads to a 

complete burn of the landscape (Figure 3.9), while a fuel management program with 10% 

budget can mitigate pyro-terrorism by more than 41%, as shown in Table 3.6. Also, for 

this test case, when the budget is 10%, the difference between the WFMP and the PFMP 

under pyro-terrorism is small; however, when the budget is 9%, the difference is again 

noticeable (Figure 3.9).  

 

Figure 3.7 Percent area burned Santa Fe 

Percent area burned for Santa Fe landscape test case; the WFMP and the PFMP under  
pyro-terrorism and wildfires 

 

Figure 3.8 Percent area burned Umpqua 

Percent area burned for Umpqua landscape test case; the WFMP and the PFMP under  
pyro-terrorism and wildfires 
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Figure 3.9 Percent area burned San Bernardino 

Percent area burned for San Bernardino landscape test case; the WFMP and the PFMP 
under pyro-terrorism and wildfires 

After plotting the spatial distribution of fuel treatment for the WFMP for this case, 

we realize that, when the budget is 10%, the San Bernardino landscape test case is 

divided into two halves under this fuel treatment plan (Figure 3.10). Therefore, when the 

adversary attacks either half, the fire burns that half completely (because of the high ROS 

in San Bernardino test case); however, the fire cannot reach the other half.  
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Figure 3.10 San Bernardino fuel management layout 
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Figure 3.11 Santa Fe fuel management layout 
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Figure 3.12 Umpqua fuel management layout 

 

As a result, the difference between the PFMP and the WFMP in this case when 

the budget is 10% is small. However, for smaller budgets, the difference is more 

significant. Figure 3.11 and Figure 3.12 show the spatial layouts for the WFMP and the 

PFMP for the two other test cases. 

Figure 3.13 shows the fire foot print of a pyro-terror attack on the Santa Fe 

landscape test case. It shows three scenarios: (1) when no fuel management plan is 

conducted on the landscape, (2) when the PFMP with 10% budget is conducted on the 

landscape, and (3) when the WFMP with a 10% budget is conducted on the landscape. As 

is shown in this figure, the impact of pyro-terrorism is less on this landscape when the 
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PFMP is conducted, as opposed to when no fuel management plan is conducted at all or 

when the WFMP is conducted. 

 

Figure 3.13 Pyro-terrorism fire footprint for Santa Fe test case 

Santa Fe landscape test case; fire footprint of pyro-terror attacks with and without fuel 
management 

3.5 Discussions 

In this paper, we have presented the first optimization model for mitigating a 

pyro-terror attack. The model spatially allocates fuel treatment through a landscape such 

that it mitigates the impact of the resulting wildfire. We have demonstrated the use of this 

model on three landscape test cases with differing fuel management budgets. Of these 

three cases, the San Bernardino test case is the most vulnerable to pyro-terrorism. When 

no fuel treatment is scheduled, a pyro-terror attack will burn 100% of this landscape; 

proportionally, this massive devastation is two times greater than that of the Santa Fe test 

case. This significant increase in damage is likely due to a higher rate of fire spread; the 

higher the rate of spread, the faster the fire can grow, and the more damaging the fire can 

be to the landscape in a given amount of time. The average rate of spread for the San 

Bernardino case is 1.7 (meter/minute), more than that of Umpqua at 1.2 (meter/minute) 
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and Santa Fe at 0.4 (meter/minute). However, these landscapes also have different major 

fire spread directions, and this difference can affect their vulnerability to wildfires as 

well.  

Our results indicate that fuel management, even on a small scale, if appropriately 

allocated on a landscape, can mitigate the impact of pyro-terrorism. An optimal fuel 

management plan for pyro-terrorism (PFMP) with a 2% budget can mitigate the impact 

of a pyro-terror attack by 25%, 13% and 3% for the Santa Fe, Umpqua and San 

Bernardino test cases, respectively. Our results indicate that the rate of spread is also 

important in the effectiveness of the fuel treatment plan. The PFMP is less effective on 

the San Bernardino test case than it is on the Umpqua and Santa Fe test cases. However, 

as the budget for fuel treatment increases, so does the effectiveness of fuel treatment on 

mitigating pyro-terrorism. The PFMP with a 10% budget can mitigate the impact of pyro-

terrorism by 41% for the San Bernardino test case, a significant improvement. Similarly, 

the PFMP can mitigate pyro-terrorism by 46.58% and 42.31% for the Santa Fe and 

Umpqua test cases, respectively.  

We have compared the effectiveness of the PFMP versus the WFMP (an optimal 

fuel management plan designed to mitigate natural wildfires) for mitigating pyro-

terrorism. The two fuel management plans have different layouts, and our results show 

that the spatial layout of a fuel treatment allocation is an important factor in its 

effectiveness in mitigating a pyro-terror attack. As we have illustrated, a fuel 

management layout designed to mitigate a natural wildfire (i.e. WFMP) is not as effective 

for mitigating the impact of pyro-terrorism. For example, for the San Bernardino case, the 

PFMP with 2% budget can mitigate pyro-terrorism by 3%, the WFMP with 2% budget 
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has no impact at all. Although the differences between the effectiveness of the WFMP 

and the PFMP are small for all test cases, as the budget for fuel treatment increases, the 

difference between the two fuels treatment plans increases as well. With a 10% fuel 

treatment budget, the PFMP, on average, is more than 15% more effective in mitigating 

pyro-terrorism than the WFMP for the Santa Fe and Umpqua test cases. However, there 

is an exception for the San Bernardino case; the difference between the PFMP and the 

WFMP is about 1%. This is because with a 10% budget, the WFMP (almost) equally 

divides the landscape into two pieces and since it is assumed that the adversary only uses 

single-point pyro-terror attacks, the WFMP can prevent the fire from reaching the other 

half of the landscape. This layout makes the WFMP (with a 10% budget) almost as 

effective as the PFMP (with a 10% budget) for the San Bernardino test case. Overall, the 

PFMP with 10% budget is, on average, more than 10% more effective in mitigating pyro-

terrorism than the WFMP with a 10% budget. This indicates that a fuel treatment plan 

that has been optimally designed to mitigate wildfires (i.e. WFMP) is not as effective in 

mitigating pyro-terrorism (i.e. arson-induced wildfire). This result is consistent with what 

Kim et al. [27] reported for arson-induced wildfires. 

Our results indicate that for the Santa Fe and Umpqua test cases, the PFMP is 

effective under both natural wildfires and pyro-terrorism conditions. Although the 

WFMP is more effective than the PFMP in mitigating natural wildfires, the difference 

between these two fuel treatment plans are small for the Santa Fe and Umpqua test cases. 

Considering the weaker performance of the WFMP against pyro-terrorism, the PFMP can 

be a more robust fuel treatment plan for these landscape test cases. A common 

characteristic of the Santa Fe and Umpqua test cases is that, on average, they have 
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smaller rate of spread than the San Bernardino case. Therefore, this result might be also 

applicable to other landscape test cases with low rates of spread; conducting the PFMP 

might be a better alternative than the WFMP for those cases. For those landscapes, the 

PFMP is a more robust fuel management plan and makes the landscapes resilient against 

worst-case wildfires and pyro-terrorism. However, this requires more investigation that is 

beyond the scope of this work. The San Bernardino landscape test case is the most 

vulnerable of all under both natural wildfires and pyro-terrorism conditions. Although 

conducting fuel treatment in a small scale (e.g. 2%) cannot effectively mitigate wildfires 

and pyro-terrorism for this case, fuel management in a larger scale (e.g. 10%) is effective; 

we speculate the high rate of spread is the reason for that. For this landscape, the 

difference between the WFMP and the PFMP under wildfire conditions when the fuel 

management budget is 10% is larger than that of the Santa Fe and Umpqua landscape test 

cases. Therefore, for this case, the PFMP cannot be recommended for mitigating 

wildfires. 

The computation time for 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴 is different for each landscape test case 

and for different budgets. The difficulty of 𝑀𝑖𝑛𝑀𝑎𝑥𝐷𝐴 lies in solving the master 

problem that allocates fuel management spatially in a landscape. The percentage of 

landscape treated (which is dependent on the fuel management budget) is an important 

factor in computation efforts required to solve the master problem. For larger fuel 

management budgets, the problem is more difficult to solve.  

Also, the larger the size of a landscape, the more difficult the pyro-terrorism 

mitigation problem is. Solving the mitigation problem for larger landscapes (modeled as 

large networks) requires a more efficient method to solve the corresponding master 
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problem. We leave this challenge for future studies. However, since the problem is a 

strategic level decision making problem, the computation time can be tolerated depending 

on the benefit-cost ratio of the solution.  

3.6 Conclusions and future work 

3.6.1 Conclusion 

In this research, we investigated the possibility of mitigating a pyro-terrorism 

wildfire using fuel management. We modeled this problem as a bilevel min-max 

optimization problem and developed a decomposition algorithm to solve it. We restricted 

our study only to acts of pyro-terrorism with one ignition point. Our results indicate that 

fuel management can effectively be used to mitigate a potential pyro-terrorism attack (or 

worst-case wildfires).  

3.6.2 Future work 

The proposed model has been presented in a simple and general form. However, 

the model could be readily adapted without significantly changing its structure to include 

a fire duration distribution. Additionally, the model can be extended to include Wildland 

Urban Interface (WUI) by adjusting cell values used in the objective function (3).  

In addition to the ignition location, the number of ignition points also increases 

the damage caused by a pyro-terrorism attack [45]. One can study the pyro-terrorism 

mitigation problem with multiple ignition points (multiple concurrent fires); however, 

such a problem is more difficult to solve. Increasing the number of ignition points causes 

the master problem to grow exponentially, and the number of iterations can grow as well.  
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We have investigated the effect of fuel management in mitigating pyro-terrorism 

assuming that it can be successfully suppressed within a time d. This requires an 

appropriate response from fire managers that are expected to dispatch fire control 

resources from bases to which they have already been deployed. However, a pyro-

terrorist can observe the locations, types, and amount of these resources and plan an 

attack accordingly. A network interdiction approach can be used for optimally deploying 

the resources to bases such that the impact of pyro-terrorism can be mitigated.  
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CHAPTER IV 

AN ATTACKER-DEFENDER MODEL FOR ANALYZING THE VULNERABILITY 

OF INITIAL ATTACK IN FIGHTING THE WORST CASE 

 WILDFIRES AND PYRO-TERRORISM  

4.1 Introduction 

In this paper, we study the vulnerability analysis of initial attack (IA) in 

controlling pyro-terrorism and worst case wildfires. IA is used as the primary suppression 

response to control a wildfire after its discovery. Wildfire managers use initial attack to 

contain a wildfire before it grows large and becomes difficult to suppress. IA is usually 

planned using historical wildfires data such as ignition locations and number of fires. 

However, unlike natural wildfires, in which the ignition locations are located randomly, 

pyro-terrorists can use coordinated wildfires [45] which are more difficult to control. Our 

goal in this paper is to evaluate the vulnerability of IA to these worst case wildfires and 

get managerial insights.  

There are two general types of wildfires: natural wildfires and human-caused 

wildfires. Human caused wildfires account for a large majority of all wildfire incidences: 

e.g., more than 95% of wildfires in Mediterranean region and in Southern California are 

caused by humans [73–75]. A study in Spain found that more than 71% of all wildfires 

are caused by people [76]. Of those human-caused wildfires, only 22.5% (16% of all 

wildfires) were due to negligence while 77.5% (55% of all wildfires) were intentional 
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[76]. Because of the destructive power of wildfires, authorities are concerned about the 

possibility of using wildfires as a means of terrorism [15,16]. 

Pyro-terrorism is the use of large-scale arson attacks by non-state organizations to 

terrorize, intimidate or coerce a government or the civilian population in order to advance 

political or social objectives [13]. Pyro-terrorism possesses the major elements of 

terrorism: targeting of noncombatants, political motivation, and organized violence with 

psychological impacts [11,12,14]. Pyro-terrorism has been documented in France, Spain, 

and Greece [11,12]. Pyro-terror wildfires are more destructive than natural wildfires [45], 

as the arsonists can make decisions about the location, time, and quantity of fires. It is 

therefore important for decision makers to anticipate potential threats and implement 

countermeasures to avoid a potentially devastating disaster. In this study, we investigate 

the capability of initial attack resources for responding to pyro-terrorism, or worst-case 

wildfires.  

It has been long understood that a vigorous, rapid IA can contain a fire quickly 

before it grows large and causes substantial damage [43]. IA is the primary suppression 

attempt in containing a wildfire within the first several hours of fire discovery. Although 

the majority of wildfire incidents have been reported to be contained by IA, more than 

97% of the total area burned by wildfires have been caused by fires that have escaped IA 

[36]. Therefore, successfully containing a fire using IA is very important [37,38]. 

Initial attack planning consists of two types of allocation decisions. First is the 

deployment decision in which wildfire managers assign suppression resources to fire 

bases1 to minimize operating costs, subject to fire bases capacity, while meeting resource 

                                                 
1 The locations where initial attack resources are located. 
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requirements for suppressing potential fires in coming days, weeks, or months. Second is 

the dispatch decision for the time when fires occur. Dispatch decisions include 

determining the number and type of suppression resources to dispatch to fires which are 

subject to resource availability, and dispatching costs.  

To improve the efficiency of IA, researchers have developed several optimization 

models with different structures and fire containment rules, e.g. a dynamic programming 

model for IA dispatching decisions [106], a mixed integer programming (MIP) model for 

dispatching fire suppression resources to a fire across multiple time steps [107], MIP 

models for containing fires at multiple locations while they are competing for suppression 

resources [108,109], and a MIP model to allocate control locations one fire to minimize 

fire loss [110]. 

All these models are deterministic. To make the IA decisions, the wildfire 

managers face substantial uncertainty about the number, location, and intensity of fires as 

resources are deployed to fire bases before the number, location and intensity of fires are 

known [35]. To incorporate the uncertainties affiliated with wildfires in an IA decision 

making, a number of researchers have developed two stage stochastic programming 

models in which the acquisition and deployment decision of resources takes place in the 

first stage of the model, and the dispatching of those resources to fire locations takes 

place in the second stage of the model [35,39–44]. In these models, the deployment and 

dispatching of resources are planned based on the average impact of fires considering 

multiple ignition location scenarios using historical data.  

However, unlike the natural wildfires that are subject to those uncertainties, in 

pyro-terror wildfires the adversaries can facilitate the conditions for a more severe 
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wildfire. For example, the adversaries can choose to ignite a fire on a day with suitable 

wind and low humidity, and coordinate fire ignition locations such that the resulting 

wildfire poses the maximum damage to the land. Rashidi et al [45] showed that 

coordinating ignition locations can have a significant impact on the severity of a wildfire. 

However, as suppressing of wildfires is concerned, the distance of fire locations from fire 

bases also becomes important. The adversaries can identify the optimal locations for fires 

after observing fire bases and the available fire suppression resources at those fire bases 

so that it will be more difficult for wildfire managers to suppress the fires. Therefore, we 

can expect a pyro-terror wildfire with coordinated ignition points, equivalently a worst-

case wildfire, to be more devastating and more difficult to suppress than a typical wildfire 

with average impact. However, the IA decision making in most of recent literature is 

planned based on the average scenario and not the worst case scenario. In this research, 

we study the effectiveness of IA in containing worst case wildfires, and pyro-terrorism. 

Vulnerability assessment studies identify weak points in the system, and focus on 

defined threats that could compromise the system’s ability to meet its intended function. 

Determining the vulnerability of a system is an important component of risk assessment, 

which is employed to help develop risk mitigation strategies to counter risks [22]. Risk 

assessment has increasingly become a key input to wildfire management [18–20,49]. To 

our knowledge, no study has been done on vulnerability assessment of IA when 

responding to pyro-terrorism or worst case wildfires. This paper aims to fill this gap by 

proposing a mathematical programming model to identify the vulnerability of initial 

attack. The resulting managerial insights of this study can help wildfire managers in 

planning an initial attack strategy that is robust against worst case scenarios. 
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We model a natural landscape as a grid network and model the spread of fires in 

the landscape and the initial attack as a network optimization problem. To model 

wildfire’s behavior in a landscape, we use FlamMap [56], a fire behavior mapping and 

analysis program. We develop a Stackelberg game model for analyzing the vulnerability 

of initial attack when responding to pyro-terrorism or worst-case wildfires in that 

landscape. The arsonists, acting as the first player, observe the locations and amount of 

fire suppression resources, and having perfect knowledge of fire spread and weather 

condition, they start fires across the landscape so that the number of fires that cannot be 

contained by IA (escaped fires), and the resulting damage to the landscape are 

maximized. The wildfire managers, on the other hand, observe the location of fires, and 

optimally dispatch the available suppression resources to contain the fires. We then use 

the model to evaluate the vulnerability of IA on a test case problem for a landscape 

clipped out of Santa Fe National forest, located in Western U.S.  

We believe this to be the first study that analyzes the vulnerability of initial attack 

when responding to the worst case wildfires and pyro-terrorism. Identifying the 

vulnerability of initial attack can help wildfire managers in developing a more robust 

suppression strategy that can successfully respond to the worst case scenario wildfires, 

and pyro-terrorism. The contributions of this paper are as follows: (1) Proposing the first 

mathematical model for studying the vulnerability of initial attack, and (2) developing a 

decomposition algorithm to solve the model.  

4.2 Vulnerability assessment of initial attack problem (VAIAP) 

The problem of vulnerability assessment of initial attack is as follows. 

Adversaries, having observed the location of bases and the suppression resources, choose 
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a pyro-terror attack plan 𝑾 (a set of specific fire ignition locations), selecting the most 

vulnerable area in the landscape to start a wildfire that spreads quickly as is difficult to 

contain; in other words, it causes the maximum damage. Next, the wildfire managers, 

detecting the location of fires, attack the fires using an optimal dispatching of resources 𝑫 

to contain the fires and minimize the number of escaped fires and the acreage they could 

burn. In this section we develop a Stackelberg game model for the VAIAP. It is a bi-level 

integer programming model with the adversaries’ problem represented with the outer 

level model, and the wildfire managers’ problem represented with the inner level model. 

Both the wildfire managers’ problem and the adversaries’ problem are modeled as 

network optimization problems. 

4.2.1 Modeling fire behavior in a landscape 

To model fire behavior in a landscape, we consider a landscape divided into a 

number of raster cells representing potential fire ignition points. If we represent the center 

of each cell as a node, and connect neighboring cells with directed arcs (Figure 4.1) we 

will have a bidirectional network [45]. This bidirectional network implies that fire can 

burn up and down slopes and with and into the wind. We use FlamMap [56], a fire 

behavior mapping and analysis program to compute the rate of fire spread on each of 

those arcs. FlamMap uses Geographic Information Systems (GIS) data, landscape 

characteristics, fuel moisture, and wind conditions and computes the major fire spread 

direction and the rate of spread (ROS) along the major fire spread direction for each cell. 

We then use the Minimum Travel Time algorithm (MTT) [58] to model the spread of fire 

through the landscape. MTT has also been used in wildfire simulation programs such as 

FlamMap [56], FsPro [78], and FSim [79].  
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Figure 4.1 A landscape modeled as a bidirectional network 

 

4.2.2 Problem description and model formulation 

In our model, the adversaries are assumed to have complete knowledge about 

weather and the topography of the landscape. They are also aware of the location of fire 

bases and the available suppression resources at each fire base. Having this complete 

knowledge, they identify an optimal set of ignition points across the landscape to start 

fires that are difficult for wildfire managers to contain, using initial attack, and the 

maximum acreage is burned by the escaped fires2. The wildfire managers, after detecting 

fire locations, initiate an optimal initial attack by optimally dispatching the fire 

suppression resources from fire bases to fire locations. The wildfire managers’ objective 

is to control the fires and minimize the number of escaped fires and the acreage they 

could burn; thus, this two-player game is symmetric. In this model, the wildfire managers 

are assumed to use optimal dispatching of resources which requires wildfire managers to 

have perfect knowledge about fire suppression requirements and the ability to anticipate 

the amount of resources needed from each fire base to control the fire. However, in 

reality, wildfire managers do not have perfect knowledge about weather and the 

                                                 
2 Escaped fires are those fires that cannot be contained using initial attack. 
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landscape, and cannot use optimal dispatching of resources. Therefore, the vulnerability 

assessment gained with our model is a lower bound for the real problem.  

The primary assumptions of this research are as follows: (1) The fire area 

containment rate of the fire suppression resource are known. (2) Wildfire managers have 

perfect knowledge of the amount of resources required to control each fire. (3) All cells 

have high fire intensity. (4) There is no interaction between fires. 

The notations used in the model are as follows: 

Table 4.1 Notations 

Sets and indices 

𝐶 is the set of raster cells in a landscape indexed with 𝑗 
𝐹 is the set of potential fire ignition locations indexed with 𝑓 
𝐵 is the set of operating bases indexed with 𝑏 
𝑅 is the set of resources type indexed with 𝑟 

Parameters 

Φ𝑏,𝑟,𝑓 
fire containment area built by 𝑇 by resource 𝑟 dispatched from operating base 
𝑏 to fire 𝑓 

π𝑓,𝑗 if cell 𝑗 reached and burned by fire 𝑓 within fire duration 𝑇 

φ𝑗 the area of cell 𝑗 

Δ𝑓 
total area burned by fire ignited at location 𝑓 (∑ φ𝑗π𝑓,𝑗𝑤𝑓𝑗∈𝐶 ) within fire 
duration 𝑇; 

𝛽 the pyro-terrorists’ budget (number of fires the terrorists ignite) 

𝑄𝑏,𝑟 the number of resources of type 𝑟 available at operating base 𝑏 

Variables 
𝑍𝑓 1 if the fire ignited at location 𝑓 is contained with initial attack, 0 otherwise; 

𝑊𝑓 1 if a fire is ignited at location 𝑓, 0 otherwise; 

𝑌𝑏,𝑟,𝑓 
the number of resources of type 𝑟 dispatched from operating base 𝑏 to the 
fire ignited at location 𝑓; 
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The mathematical formulation for the vulnerability assessment of initial attack 

problem (VAIAP) is as follows: 

VAIAP: 𝐴∗ = max𝑾∈Ξ(𝑚𝑖𝑛𝒀∈Ψ(𝑾)  ∑ (1 − 𝑍𝑓)𝑓∈𝐹 Δ𝑓) (4.1) 

Where the set Ξ is defined as the set of all 𝑾 such that 

 ∑ 𝑊𝑓 ≤ 𝛽𝑓∈𝐹  (4.2) 

 𝑊𝑓 ∈ {0, 1},   ∀  𝑓 ∈ 𝐹 (4.3) 

and the set Ψ(𝑾) is defined by 

 Δ𝑓𝑍𝑓𝑊𝑓 ≤ ∑ ∑ Φ𝑏,𝑟,𝑓𝑌𝑏,𝑟,𝑓𝑟∈𝑅𝑏∈𝐵     ∀ 𝑓 ∈ 𝐹 (4.4) 

 ∑ 𝑌𝑏,𝑟,𝑓𝑓∈𝐹 ≤ 𝑄𝑏,𝑟    ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (4.5) 

 𝑌𝑏,𝑟,𝑓 ∈ ℤ        ∀𝑓 ∈ 𝐹, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (4.6) 

 𝑍𝑓 ∈ {0, 1}               ∀  𝑓 ∈ 𝐹 (4.7) 

This is a bilevel optimization problem with the arsonists’ problem in the outer 

level, and the wildfire managers’ problem in the inner level. The objective function (4.1) 

includes maximizing the area burned (represented by A) by the escaped fires caused by a 

pyro-terror attack in the outer level (the attacker problem) while minimizing that in the 

inner level (the defender problem). We assume that fire managers can see the terrorists’ 

attack, the number and locations of fires. The arsonists’ pyro-terror attack plan is 

restricted by constraints (4.2) and (4.3). Constraint (4.2) sets the limit for the number of 

fires the terrorists can start. Constraints (4.3) are variable type constraints. 

For any specific pyro-terror attack plan 𝑾 chosen by the adversaries, the wildfire 

managers problem is restricted to set Ψ(𝑾), as defined by constraints (4.4) through (4.7). 

Instead of using predefined values for evaluating containment of a fire as in Haight and 
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Fried, and Lee et al. [39,43], we directly model fire containment condition by comparing 

the size of fire area at time 𝑇 and the size of fire containment area built by suppression 

resources at time 𝑇. We use containment area construction instead of line construction as 

used in [35,42,111]. In our model, computing the area of a fire is simpler than its 

perimeter, therefore, we do not use perimeter for this reason. The containment condition 

is enforced using constraints (4). Fire set at location 𝑓 is considered contained (𝑍𝑓 = 1) if 

the total containment area built by the suppression resources dispatched to that fire is 

greater than or equal to the area burnt by that fire by time 𝑇. To ensure that no more 

resources than what is available at each fire base can be dispatched to fires, we enforce 

constraints (4.5). Constraints (4.6) and (4.7) are variable type constraints.  

It should be noted that this model only considers the dispatch decisions and not 

the resource deployment decisions. In this Stackelberg game model, when attackers plan 

a pyro-terror wildfire, they can observe the resources that wildfire managers have 

deployed to each base. When the pyro-terrorists attack a landscape (as the first player in 

this game), wildfire managers have to dispatch the available resources from fire bases to 

fires to control them. 

4.3 Solution methodology 

The vulnerability assessment of initial attack problem (VAIAP) has a bilevel 

“max-min” structure with an integer programming problem in the lower level; thus, the 

lower level problem is not guaranteed a nonzero duality gap. Therefore, the problem does 

not readily lend itself to the common approach of taking the dual of the inner level 

problem, resulting in a single-level minimization problem. To solve the VAIAP, we 
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develop a decomposition algorithm, called Bounded Decomposition Algorithm (BDA). 

BDA alternates between (𝑖) a master problem, where the pyro-terrorists identify the 

ignition locations to start a wildfire, and (𝑖𝑖) a sub problem, where wildfire managers, 

having observed the location of fires, trigger an IA by optimally dispatching suppression 

resources to control the fires. The sub-problem and master problem are presented as 

follows. 

4.3.1 The dispatching problem (DP) for a known pyro-terror attack 

For a given pyro-terror attack �̂� ∈ Ξ (the ignition locations are known), we 

denote the dispatching problem (sub problem) for wildfire managers as DP(�̂�) which 

identifies the optimal dispatching of resources for wildfire scenario �̂� and computes the 

resulting containment area constructed with those resources around the fires:  

 DP(�̂�):  𝐴𝑚𝑖𝑛(�̂�) = min ∑ (1 − 𝑍𝑓)𝑓∈𝐹 Δ𝑓 (4.8) 

 Δ𝑓𝑍𝑓�̂�𝑓 ≤ ∑ ∑ Φ𝑏,𝑟,𝑓𝑌𝑏,𝑟,𝑓𝑟∈𝑅𝑏∈𝐵  ∀  𝑓 ∈ 𝐹 (4.9) 

 ∑ 𝑌𝑏,𝑟,𝑓𝑓∈𝐹 ≤ 𝑄𝑏,𝑟               ∀𝑏 ∈ 𝐵, 𝑟 ∈ 𝑅 (4.10) 

 𝑍𝑓 ∈ {0, 1}                                   ∀  𝑓 ∈ 𝐹 (4.11) 

    𝑌𝑏,𝑟,𝑓 ∈ ℤ             ∀𝑓 ∈ 𝐹, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (4.12) 

𝜃𝑓 = ∑ ∑ Φ𝑏,𝑟,𝑓𝑌𝑏,𝑟,𝑓𝑟∈𝑅𝑏∈𝐵   is the containment area constructed around fire 𝑓 by 

the optimal dispatching of resources in response to fire scenario �̂�, and 𝛩 = ∑ 𝜃𝑓∀𝑓∈𝐹  is 

the total containment area constructed by resources. Knowing wildfire managers’ optimal 

dispatching plan for a specific pyro-terror attack, the initial attack vulnerability 

assessment problem is equivalent to: 

 𝐴∗ = max𝐴𝑚𝑖𝑛(𝑾)               𝑾 ∈ Ξ    (4.13) 
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Theoretically, we could solve (4.13) by enumerating the finite set of pyro-terror 

attack plans �̂� ∈ Ξ (representing fire location scenarios), solving DP(�̂�) for each plan, 

and choosing the pyro-terror plan that results in the maximum acreage burned by the 

escaped fires 𝐴𝑚𝑖𝑛(�̂�). However, in reality, Ξ is too large to enumerate. For example, 

for a landscape rasterized into a 100,000 cells grid network, and for pyro-terror attacks 

with 3-ignition points, there are 𝐶3
100,000 ≅ 8.33 × 1022 fire ignition scenarios. Therefore, we 

solve (4.13) with our BDA decomposition algorithm. 

For solving the VAIAP problem, we need to consider two factors: (i) The ROS 

value at each cell (fires grow at different rate at different locations in the landscape); (ii) 

Fire base locations and the amount of suppression resources available at each base (the 

location of fire bases can impact the initial attack’s response time at a given fire location). 

The distance between a fire base and a fire location, along with the number of resources 

available at each fire base and the resources’ speed to reach a target in the landscape can 

affect the effectiveness of initial attack at each potential fire location. Indeed if we could 

ignore the travel time required for a resource to reach a fire location from a fire base, then 

the location of fire bases would not matter at all. In addition to that, we need to consider 

that fires would compete for resources which add up to the complexity of problem. We 

take these factors into consideration in developing our BDA decomposition algorithm.  

4.3.2 The Bounded Decomposition Algorithm (BDA) 

We decompose the VAIAP problem into a master problem, the pyro-terrorist 

problem (PTP), and a sub problem, the dispatching problem (DP) shown with (4.8) 

through (4.12). The PTP problem is as follows: 
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 PTP: Λ = m𝑎𝑥 ∑ 𝑊𝑓Δ𝑓𝑓∈𝐶  (4.14) 

 ∑ 𝑊𝑓𝑓∈𝐹 ≤ 𝛽               (4.15) 

 𝑊𝑓 ∈ {0, 1}   ∀  𝑓 ∈ 𝐹 (4.16) 

The BDA uses PTP to identify the fire ignition location scenarios that would 

result in the maximum acreage burned. Those fires, with their large potential acreage 

burnt, would require a larger containment area construction to be controlled. This will 

help us prioritize our search space in finding the optimal fire ignition location scenario 

(i.e. the pyro-terrorism) that IA is vulnerable to. 

For any given fire ignition location scenario �̂� found by solving PTP, the BDA 

solves DP(�̂�) to compute the optimum dispatching of resources for fighting that fire, and 

evaluates whether the fire can be contained by an IA or not. If the optimal dispatching of 

resources for fire scenario �̂� was able to contain the fire, the algorithm would update 

PTP with a constraint that would exclude �̂� from the search space, and continue for 

another iteration. Otherwise, if the optimal dispatching of resources was incapable of 

containing the fire, then the algorithm would stop and conclude that the IA is vulnerable 

to the pyro-terror attack scenario �̂�.  

In a situation where IA is not vulnerable to any wildfire scenarios, the BDA 

algorithm would continue until it exhausts all the fire ignition location scenarios, which 

would be computationally expensive as explained before. To avoid an exhaustive 

enumeration in such a situation, we propose a lower bound (LB) on the capability of IA 

on containing wildfires to bound the search space and use it as a stopping criterion. The 

LB is computed using the following model: 
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 𝐿𝐵: 𝛩𝐿𝐵 = 𝑚𝑖𝑛 ∑ Φ𝑏,𝑟,𝑓𝑌𝑏,𝑟,𝑓𝑏,𝑟,𝑓                              (4.17) 

 ∑ 𝑊𝑓 ≤ 𝛽𝑓∈𝐹                                                                   (4.18) 

 ∑ ∑ 𝑌𝑏,𝑟,𝑓𝑟∈𝑅𝑏∈𝐵 ≤ ∑ ∑ 𝑄𝑏,𝑟𝑊𝑓𝑟∈𝑅𝑏∈𝐵       ∀  𝑓 ∈ 𝐹 (4.19) 

 ∑ 𝑌𝑏,𝑟,𝑓𝑓∈𝐹 ≥ 𝑄𝑏,𝑟                             ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (4.20) 

 𝑌𝑏,𝑟,𝑓 ∈ ℤ                        ∀𝑓 ∈ 𝐹, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅 (4.21) 

 𝑍𝑓 ∈ {0, 1}                                               ∀  𝑓 ∈ 𝐹 (4.22) 

The objective function (4.17) is to identify a fire scenario 𝑾 for which the 

containment area constructed by the resources is minimum. Constraint (4.18) limits the 

number of fires in a fire scenario. Constraints (4.19) ensure that the amount of resources 

dispatched to a fire is less than or equal to the amount those resources that are available at 

fire bases. Constraints (4.19) also ensure that resources are only dispatched to the fire 

locations. Constraints (4.20) ensure that all of the available resources are dispatched to 

fire locations, otherwise the model would converge to a solution that does not dispatch 

any resources at all which would result to a dispatching solution with a zero containment 

area. Constraints (4.21) and (4.22) are variable type constraints.  

4.3.2.1 Theorem 1 

𝛩𝐿𝐵 is a lower bound on the capability of IA in containing any fire scenario when 

all the resources are dispatched.  

Any dispatching plan �̂� that uses all the resources to construct containment area 

around a set of fires is a feasible solution for LB, and, therefore would construct a 

containment area no less than 𝛩𝐿𝐵. Lets’ assume �̃�(𝑾) is the optimal dispatching plan 
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for fire scenario 𝑾 that would construct the containment area �̃�(𝑾) around an arbitrary 

fire scenario 𝑾. Since �̃�(𝑾) is a feasible solution for LB, therefore 𝛩𝐿𝐵 ≤ �̃�(𝑾).  ∎ 

In developing a lower bound for IA capability, as implied in theorem 1 above, we 

only focus on fire scenarios that require dispatching of all the resources. The reason for 

this is if there is a fire scenario that cannot be contained with an IA, it must be one that 

depletes all the resources and, even when all the resources are dispatched, cannot be 

contained. If, at any given iteration of BDA, the computed maximum acreage burned (Λ) 

by the optimal pyro-terror attack found by solving PTP was less than or equal to 𝛩𝐿𝐵, 

then the BDA algorithm could stop to avoid an exhaustive enumeration. However, it 

could be the case that while the total acreage burned by a fire scenario was not greater 

than the total containment area built by an IA (Λ(𝑾) ≤ 𝛩(𝑾)), there was still at least 

one fire for which the containment area built was less than the acreage burned by that 

fire, and therefore not enough to contain it (for example while 3 + 6 < 2 + 8, but still 3 > 

2). To avoid this exception, we need to add an additional condition to the BDA algorithm 

before we use LB as a stopping criterion. That is, if at any iteration of BDA, the first 

condition is held (Λ ≤ 𝛩𝐿𝐵), then the algorithm would check to see whether the 

maximum acreage burned by each individual fire is less than or equal to the minimum 

containment area built by the dispatching plan in 𝛩𝐿𝐵. If so, then the algorithm would 

stop and conclude that all wildfire scenarios can be contained by IA (i.e., IA is not 

vulnerable to any wildfire scenarios or pyro-terrorism). 

The steps of the BDA is as follows: 
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Step (1) Solve the lower bound (LB) problem for dispatching model and identify 

the corresponding fire scenario for which these bounds hold. We refer to 

the corresponding fire location scenario for which LB is held as 𝑾𝑳𝑩. 

Step (2) Set the iteration counter 𝑘 =  1; 

Step (3) Solve the master problem PTP and compute the area burned Λ(𝑾�̂�) for 

the optimal pyro-terror attack 𝑾�̂�; 

Step (4) If Λ(𝑾�̂�)  < 𝛩𝐿𝐵, then if 𝑀𝑎𝑥 {Δ𝑓| 𝑓 ∈  {𝑓 ∈ 𝐹|𝑾𝒇
𝑘 = 1}̂ } <

𝑀𝑖𝑛 {𝜃𝑓  | 𝑓 ∈  {𝑓 ∈ 𝐹|𝑾𝑳𝑩 = 1}} stop, there is no pyro-terror attack that 

cannot be contained; 

Step (5) Solve the lower level problem 𝐷𝑃(𝑾�̂�) for the optimal pyro-terror attack 

𝑾�̂� .  

Step (6) If 𝐴𝑚𝑖𝑛(𝑾�̂�) > 0, stop; the resulting fire cannot be contained and IA is 

vulnerable to fir scenario 𝑾�̂�.  

Step (7) If 𝐴𝑚𝑖𝑛(𝑾�̂�) = 0, then set 𝑘 =  𝑘 + 1, add constraint (2.23) to the 

master problem and go to Step (3). 

 ∑ 𝑊𝑞 < 𝛽
𝑞|𝑊𝑞

�̂�=1
                                               (4.23) 

Constraint (4.23) excludes the latest optimal pyro-terror attack 𝑾�̂� from the 

search space when we realize that an optimal dispatching of resources can contain the 

resulting fires.  
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4.4 Model demonstration 

4.4.1 Test case problem 

We test our model on a test case problem that is based on a small piece of 

landscape extracted from the Santa Fe National Forest which is located in northern New 

Mexico. The test case landscape is about 111.68 km2 (11.49 km long and 9.72 km wide). 

We rasterize the landscape into a grid network with 124,092 (383 by 324) square cells, 

each 30 m by 30 m wide. If we represent the center of each cell as a node, and connect 

adjacent cells with directed edges, then the landscape can be represented with a directed 

network. The resulting network has 124,092 nodes and 988,498 edges.  

To model the spread of fire in this landscape, we use FlamMap 5.0 to compute the 

rate of spread from any cell in the landscape to any of its adjacent cells. We then use the 

minimum travel time algorithm (MTT) [77] to compute the time requires for fire to travel 

from any point in the landscape to any other point. FlamMap requires some input data 

such as fuel models, elevation, slope, aspect and canopy in addition to wind speed and 

direction and fuel moisture. For this test case, we assume a prevailing west to east wind at 

12 miles per hour (19.31 km per hour), similar to [45]. For our test case problem we 

acquire the landscape files (LCP), containing fuel models, elevation, slope, aspect and 

canopy cover, from the LANDFIRE database [105]. Table 1 shows the initial fuel 

moisture conditions that we use for this problem (similar to [45]).  

Table 4.2 Initial fuel moisture conditions used in FlamMap 

1 hour fuel moisture 6 
10 hour fuel moisture 7 
100 hour fuel moisture 8 
Herbaceous fuel moisture 60 
Live woody fuel moisture 90 
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Figure 4.2 The ROS heat map for the test case landscape problem. 

The ROS ranges from 0 meter/minute to 55 meter/minute (darker area shows higher 
ROS). Each pixel is 30 meter long and 30 meter wide. 

Initial attack is generally defined as the first 1-8 hours of fire suppression effort, 

during which the primary objective is to contain all the fires in the shortest possible time 

[43]. Examples of initial attack resources that are used in suppressing fires are engines, 

bulldozers, hand crews, and water dropping helicopters. In this test case problem, we use 

three types of resources in initial attack: hand crew, small engine and large engine. This 

decision is based on our discussion with Santa Fe National Forest administration. Due to 

security concern, we do not use real data (such as the number and locations of resources) 

when modeling the initial attack.  
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Table 4.3 Initial attack resource characteristics 

Resources 
Average fire line 

production rate (m/hour) 
[35] 

Hand crew 39 
Small engine 180 
Large engine 317 

 

As mentioned earlier, in this research we use the area of fire containment 

constructed by resources instead of the perimeter. If the area of fire containment 

constructed by the dispatched resources was bigger than the area of the fire at the end of 

initial attack time limit, then the fire is considered contained, otherwise, it is considered 

escaped. The containment area that a resource can construct depends on its “fire area 

production rate” and the available time to construct the containment area which is the 

defined time limit for initial attack (i.e. the response time threshold) deducted by the time 

that it takes for a resource to travel from a fire base to a fire. Table 4.3 shows the 

“average fire line production rate” for the resources adapted from [35]. 

The response times for resources to travel between the fire bases and fire 

locations are computed based on their approximate Euclidian distance and the speed of 

the resources, plus a 1-hour delay between fire ignition and dispatch (time required for 

detecting the fire and initiating a dispatch), similar to We et al [35]. The average speed 

for these resources is assumed to be 56 km/hour (933.33 meter/minute) [35].  

To solve the resulting optimization problem, we model the problem with Python 

2.7 and use Gurobi Optimizer 6.5 on a desktop computer with 32 GB memory and an 

Intel (R) Core ™ i7-4770S CPU at 3.1 GH running on a 64-bit Windows 7 Operating 

System. 
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We consider three different time limits for initial attack: 4 hours, 6 hours and 8 

hours (Table 4.4Table 4.5 and Table 4.6). For all these time limit scenarios, the results 

show that for pyro-terror attack fires with one ignition point, the IA can successfully 

contain the fire. However, for pyro-terror attacks with more than one ignition point, IA is 

incapable of containing the resulting fires.  

Table 4.4 Computational results: 𝑇 = 4 hours 

Scenario 𝛽 Computation 
time (sec.) 

𝛩𝐿𝐵 Λ(�̂�) 𝐴𝑚𝑖𝑛(�̂�) Vulnerable 

1 1 2197 972314 611100 996171 No 
2 2 2229 985835 1217700 1002817 Yes 

Vulnerability analysis of IA when the time limit for IA is 4 hours. 

Table 4.5 Computational results: 𝑇 = 6 hours 

Scenario 𝛽 Computation 
time (sec.) 

𝛩𝐿𝐵 Λ(�̂�) 𝐴𝑚𝑖𝑛(�̂�) Vulnerable 

1 1 2243 1491941 933300 1501865 No 
2 2 2252 1494237 1855800 1501879 Yes 

Vulnerability analysis of IA when the time limit for IA is 6 hours. 

Table 4.6 Computational results: 𝑇 = 8 hours 

Scenario 𝛽 Computation 
time (sec.) 

𝛩𝐿𝐵 Λ(�̂�) 𝐴𝑚𝑖𝑛(�̂�) Vulnerable 

1 1 2278 1998344 1309500 2000342 No 
2 2 2246 1998354 2614500 2002638 Yes 

Vulnerability analysis of IA when the time limit for IA is 8 hours. 
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Figure 4.3 Computational results 

Computational results for different initial attack time limits 

As seen in Figure 4.3, as the allotted time for IA increases, so does the gap 

between area burned and the containment area built. This is because the rate by which the 

containment area is built is constant while, the rate by which the fire grows and spreads 

can be variant, depending especially on ROS. The results suggest a faster IA response is 

more promising for containing a pyro-terror fire.  

For pyro-terror attacks with one ignition point (when 𝛽 = 1), the BDA algorithm 

is terminated by the LB stopping criteria. However, for pyro-terror attacks with more 

ignition points (when 𝛽 ≥ 2), since the resulting fire cannot be contained with an IA, the 

algorithm stops and concludes that the IA is vulnerable to those fires.  
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4.5 Conclusions and future works 

4.5.1 Conclusions 

In this paper, we have presented the first optimization model for studying the 

vulnerability assessment of initial attack to pyro-terror wildfires. The model is a 

Stackelberg game model with max-min bilevel structure that has integer variables in the 

lower level. To solve the model, we develop a decomposition algorithm named Bounded 

Decomposition Algorithm (BDA).  

We have demonstrated the use of this model on a test case problem, a landscape 

that covers a small portion of Santa Fe National Forest, located in New Mexico. For 

experimentation, we have considered three time limit scenarios for initial attack. The 

results indicate that although IA can contain a pyro-terror attack with one ignition point, 

when the number of ignition points increases, initial attack can no longer control the fire. 

The results also suggest that a quicker response is more effective, as fire grows, it 

becomes more difficult to control.  

4.5.2 Future work 

Initial attack includes two decisions: deploying of resources to fire bases, and 

dispatching of those resources to fires when they occur. In this paper, we study the 

vulnerability of initial attack when responding to pyro-terrorism based only on the 

dispatching decision. Researchers have used stochastic programming models, to identify 

the optimal deployment decision based on various fire location scenarios. However, in 

pyro-terrorism, the ignition locations are not arbitrarily; rather, they are selected such that 

the resulting fire can cause the maximum damage, and the likelihood of not being 

contained is maximized. However, this depends on the resources, types and numbers, that 
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are available at fire stations. One can study an optimal initial attack especially designed 

for responding to pyro-terrorism by planning an optimal deployment of resources to fire 

bases such that when dispatch to a pyro-terror fire, can maximally contain it.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

Wildfires can have serious and long-lasting impacts on ecological, social and 

economic systems [21]. Because of the increase in fire activities, their significant short 

and long term threats to forest ecosystems, and the danger they pose to public safety and 

property, wildfires have received increased public attention. There are some concerns that 

the destructive power of wildfires may attract terrorist organizations to use them as a 

weapon of mass destruction [11–13]. Indeed, pyro-terrorism events have been 

documented in France, Spain, and Greece [11,12,14]. It is, therefore, necessary, to 

identify and understand the impact of a potential pyro-terror attack on a landscape, and 

our ability to mitigate and control such a threat. In this dissertation, we study the impact 

of pyro-terrorism on landscapes, and the effectiveness of initial attack in responding to 

them. We also study the possibility of mitigating a pyro-terrorism fire using fuel 

management.  

We first study the vulnerability of landscapes to the worst case wildfires (i.e. 

pyro-terrorism). We develop a maximal covering location-based formulation for the 

problem. We use FlamMap to model fire behavior, and use the mathematical model to 

identify the vulnerable areas in a landscape, the potential ignition locations for a pyro-

terror attack. We use three test case landscapes for experimentation. Our results indicate 
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that pyro-terrorism wildfires with coordinated ignition points, on average, have more than 

twice the impact on landscapes than natural wildfires with randomly located ignition 

points.  

Next, we study the problem of mitigating a pyro-terror attack with fuel 

management. We model the problem as defender attacker Stackelberg game and develop 

a bilevel min-max model. We develop a decomposition algorithm called MinMaxDA to 

solve the problem, as it is not solvable by conventional methods. Three test case 

landscapes are used for experimentation. The results indicate that fuel management, even 

if conducted on small scale, can effectively mitigate the effects of a pyro-terrorism.  

Suppressing a pyro-terror fire using initial attack is our focus in the next chapter. 

We investigate the effectiveness of initial attack in containing a pyro-terror fire by 

developing an attacker-defender Stackelberg model. The model is a bilevel max-min 

model with integer variables in the lower level, therefore, we develop a decomposition 

algorithm called Bounded Decomposition Algorithm (BDA) to solve the problem. We 

test the model on a test case landscape extracted from the Santa Fe National Forest.  

5.2 Future work 

For the future research, one can study the pyro-terrorism mitigation problem with 

multiple ignition points (multiple concurrent fires); however, such a problem is more 

difficult to solve. Increasing the number of ignition points causes the master problem to 

grow exponentially, and the number of iterations can grow as well. 

When studying multiple ignition points wildfires (concurrent fires), one can take 

the interaction of fires into consideration, as we neglect the interaction effects. Fire 

behavior and characteristics can dramatically change in presence of another fire [70], and 
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therefore, they can cause more damage that it was shown in our research, and as a result, 

they can be more difficult to contain. We also did not include spot fires in this study; they 

can increase wildfires risks by helping them spread faster [71]. For a more accurate 

assessment, a study can include spot fires into account as well.  

Initial attack includes two decisions: deploying of resources to fire bases, and 

when fires occur, dispatching of those resources to fires. We studied the vulnerability of 

initial attack when responding to pyro-terrorism based on dispatching the available 

resources that have already been deployed to fire bases. Researchers have used stochastic 

programming models, considering the uncertainty of the ignition locations using various 

scenarios, to identify the optimal deployment decision. However, in pyro-terrorism, the 

ignition locations are intelligently selected so that the resulting fire causes the maximum 

damage, and is more difficult to contain by initial attack. One can study an optimal initial 

attack especially designed for responding to pyro-terrorism by planning an optimal 

deployment of resources to fire bases such that when dispatch to a pyro-terror fire, can 

maximally contain it.  
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